
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

8-2022 

Data-Driven Distributed Modeling, Operation, and Control of Data-Driven Distributed Modeling, Operation, and Control of 

Electric Power Distribution Systems Electric Power Distribution Systems 

Hasala Dharmawardena 
hdharma@clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the Power and Energy Commons 

Recommended Citation Recommended Citation 
Dharmawardena, Hasala, "Data-Driven Distributed Modeling, Operation, and Control of Electric Power 
Distribution Systems" (2022). All Dissertations. 3090. 
https://tigerprints.clemson.edu/all_dissertations/3090 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3090?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Data-Driven Distributed Modeling, Operation, and
Control of Electric Power Distribution Systems

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Hasala Indika Dharmawardena

August 2022

Accepted by:

Dr. Ganesh Kumar Venayagamoorthy, Committee Chair

Dr. Johan Enslin

Dr. Rajendra Singh

Dr. Yongjia Song



Abstract

The power distribution system is disorderly in design and implementation, chaotic in op-

eration, large in scale, and complex in every way possible. Therefore, modeling, operating, and

controlling the distribution system is incredibly challenging. It is required to find solutions to the

multitude of challenges facing the distribution grid to transition towards a just and sustainable en-

ergy future for our society. The key to addressing distribution system challenges lies in unlocking the

full potential of the distribution grid. The work in this dissertation is focused on finding methods

to operate the distribution system in a reliable, cost-effective, and just manner.

In this PhD dissertation, a new data-driven distributed (D3M) framework using cellular

computational networks has been developed to model power distribution systems. Its performance

is validated on an IEEE test case. The results indicate a significant enhancement in accuracy and

performance compared to the state-of-the-art centralized modeling approach.

This dissertation also presents a new distributed and data-driven optimization method for

volt-var control in power distribution systems. The framework is validated for voltage control on an

IEEE test feeder. The results indicate that the system has improved performance compared to the

state-of-the-art approach.

The PhD dissertation also presents a design for a real-time power distribution system

testbed. A new data-in-the-loop (DIL) simulation method has been developed and integrated into

the testbed. The DIL method has been used to enhance the quality of the real-time simulations.

The assets combined with the testbed include data, control, and hardware-in-the-loop infrastructure.

The testbed is used to validate the performance of a distribution system with significant penetration

of distributed energy resources.
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Chapter 1

Introduction

The last decade has seen a significant reversal in public policy where sustainability and

energy security have become major global energy policy driving forces [4]. This is a significant

reversal from the last century, where the globally dominating energy policy was thematically centered

around enhancing access to electricity. This shift in policy is best illustrated by the fact that in 2021

two of the world’s largest global greenhouse gas emitters in the US [5] and China [6] have set official

policy goals to reach net-zero emissions in 2050 and 2060, respectively.

In broader terms, a sustainable power sector energizes the economy in a manner that does not

adversely impact the environment throughout the life cycle of the technology used for all sub-sectors

it is involved in, starting from power generation to power distribution. Sustainable technologies

are expected to have minimal impact on the local environment and the global environment in the

short-term and very long-term time scales throughout their life cycle, starting from production,

application, and end of use.

However, much ground needs to be covered to reach the goal of a globally sustainable energy

sector, as evident by Fig. 1.1. It is clear from this plot that the total energy consumption is growing

across the world. Additionally, the consumption of fossil fuels is also expected to increase propor-

tionally. There is an increasing trend in the ’other’ category, which covers the renewable sources

such as wind and solar that are increasingly taking a more significant portion of the consumption,

predominantly in the electricity sector. The challenge, therefore, consists of two steps, the first

step is to stop the increase in fossil fuel consumption, and the second step is to decrease the total

consumption of fossil fuel-based energy sources.
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Figure 1.1: The world total energy supply by source from 1971 to 2018 [1] (y-axis is Mtoe)

When the electric sector is zoomed in, the image is less stark, as shown by Fig. 1.2. In this

case, the electricity consumption is still increasing. However, fossil fuel-based generation has started

showing a decreasing trend with the shortfall provided by exponentially increasing non-conventional

renewable energy sources. This plot also shows the change required to achieve the net-zero goal.

When comparing the electric generation mix from 1973 and 2019, shown in Fig. 1.3 and

1.4, it is clear that it is possible to change the generation mix towards the net-zero goal. The plots

show that oil-based generation has changed from 25% to 3% and non-conventional renewables from

0.3% to 11%. Even though the trends are encouraging, it is also clear that coal has stayed steady,

while natural gas had an almost twofold increase in the mix. These trends show that the task at

hand is very challenging but provides hope that net-zero is still an achievable goal.

Achieving a green and sustainable energy sector requires a two-prong strategy. The first

strategy is to decrease the total energy consumption across all sectors. This mainly requires increas-

ing efficiency in human activity. Optimizing transportation, housing, agriculture, and other vital

sectors will play a significant role in realizing this strategy. This strategy does not necessarily focus
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Figure 1.2: The world total electricity consumption by source from 1971 to 2018 [1] (y-axis is TWh)

on the source but on the quantity of energy used. The second strategy is focused on creating a

greener energy landscape for the energy life cycle.

This involves different power generation, transmission, distribution, and demand-side man-

agement technologies. A fundamental shift in the processes involving these four areas is required

to create the magnitude of changes set by policy goals. The design framework for these new tech-

nologies requires addressing any cultural differences. For example, the importance of privacy and

cyber-security has become a major cultural shift observed in society. These technologies should be

designed inside frameworks that provide security by architecture to be acceptable by the community.

For example, large centralized corporations will have difficulty taking action related to sharing user

data and control of user resources, even if it is feasible from a technological standpoint. This will also

help create less infrastructure requirement, secure data flow, and less fragile and resilient systems

that are hardened by design architecture against the increasing cyber-physical threats [7].

Technologies for both generation and transmission have been the focal point for greening

the grid for a long time [8] [9] [10]. As a result, existing investments, policy directives, research
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Figure 1.3: The world total electricity consumption in 1973 [1]

enhancements, and mature technology support these two parts of the power system. Unfortunately,

due to the last mile nature of the distribution system, it has not been considered an important

component of the grid. However, currently, the distribution grid has regained attention from a

policy perspective, as well as a technological perspective [11]. With the decreasing cost of distributed

energy resources and increasing penetration of distributed energy, it has come to light that the key

to the next generation lies in addressing the challenges of the distribution grid. It is clear now that

understanding operating, planning, and optimizing the distribution grid needs to be re-imagined

and requires revolutionary work. For example, the fundamentalism assumption that the load is an

uncontrollable variable or that electricity tariff should not be time-dependent needs to be changed.

If we assume that the load is fixed and the economic signal that drives the demand is also fixed, it is

not possible to operate a grid with high DER penetration. The costs will be high, and the reliability

of this use case will be low. On the other hand, if the optimization is executed with open-ended

variables, then remarkable enhancements in cost, sustainability, and reliability can be achieved [12].

The major drivers of this transformation are,
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Figure 1.4: The world total electricity consumption in 2019 [1]

� Decreasing cost of non-conventional renewable energy resources

� Increasing penetration of distributed energy resources

� Increasing focus on the environmental impact of the energy sector, resulting in the integration

of environmental cost in the planning process

� Increasing flexibility in the distribution network, including the ability to control household

loads

� Increasing service providers who service the optimization requirements with a high level of

efficiency

� Societal and cultural changes increasing the need for self-sufficiency in energy consumption

� Increasing societal need to enhance privacy and cyber-security

In ’greening the energy grid,’ many essential areas in technology require innovations. Among

those different options, greening the distribution grid takes prominence since it is one of the most
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challenging problems with a long way to go in its transformation. This is due to reasons such as

a large number of components, large investment requirements, and closeness to people’s lives. The

current distribution grid has been static, and most parts operate under borrowed time. The required

cost in resources and time is also significant. On the other hand, the expectation for distributed

energy resource integration, demand-side management, and electrification of personal transportation

pivots on the ability of the aging distribution grid to support those technologies. Technology plays

a pivotal role in the distribution grid in the energy transition. This dissertation looks at new

approaches to model and control the power distribution system.

This dissertation aims to blend state-of-the-art methods with artificial intelligence and cel-

lular computational network methods to demonstrate feasible approaches to model, operate, and

optimize the control of DER integrated future distribution grids. Therefore, the overarching goal of

this dissertation is to contribute to the development of an intelligent power distribution system.

1.1 Research challenges in the Electric Power Distribution

Systems

Some of the research challenges that need to be addressed in order to advance the field are:

� Modeling a large distribution system based on predominantly data while ensuring privacy and

model accuracy.

� Adapting a system model dynamically when the distribution system changes over time.

� Controlling a distribution system to be resilient and efficient.

� Operating and controlling a distribution system fairly while ensuring optimality.

� Demonstrating the application of smart control methods in a realistic power distribution system

simulation platform.

1.2 Research objectives of this dissertation

This dissertation aims to advance distribution system modeling, operation, and control by

developing new approaches. The research objectives are to:
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� Develop a distributed data-driven modeling method for power distribution systems.

� Develop a distributed volt-var curve optimization method for distributed energy resources in

power distribution systems.

� Develop a real-time power distribution system testbed and demonstrate the ability to perform

optimization in a real-time environment.

1.3 Main contributions

1.3.1 Distribution system modeling

A distributed data-driven distributed (D3M) framework to model a power distribution

system based on CCN has been proposed to be used for distributed energy resource-rich power

distribution system [13]. The formulation is demonstrated on a realistic power distribution system

with significant voltage variations, unbalanced loads and lines, and a 100% capacity in DER pene-

tration. The presented framework accurately models the power distribution system in a distributed

data-driven manner. Additionally, it ensures the privacy and security of sensitive utility and user

data used for model development.

1.3.2 Distribution system control optimization

A scalable distributed optimization framework for concurrent multiple volt-var curve op-

timization is proposed [14]. This method is based on creating a cellular computation network

representation of the electric power distribution system with DERs, which allows for distributed

data-driven modeling and optimization of the distribution system. A ranking method for cell pri-

oritization for optimization has been developed. Cell prioritization for optimization based on a

formulated impact ranking criteria improves the computational throughput for determining optimal

volt-var curve parameters. The application of DOF on a modified IEEE 34 bus test system with

100% DER penetration has been illustrated. The demonstrated approach allows for distributed

optimization of the volt-var curves of the power distribution system, allowing for enhancing voltage

control of the system and thereby allowing for increased penetration of distributed energy resources.
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1.3.3 Distribution system real-time testbed

A real-time testbed to model the core operational components of an existing power dis-

tribution system in a laboratory is proposed. The real-time testbed integrates actual data and

components and allows the real-time digital model to include the cyber-physical characteristics.

The implemented model includes hardware-in-the-loop, control-in-the-loop, and data-in-the-loop

functionalities. A new data-in-the-loop (DIL) method is presented, which can project data from

live loads and generators to the real-time simulator for more realistic simulations. The data in

the loop method is implemented on this testbed, and its real-time simulation capabilities are val-

idated. The control capabilities of the emulated PV plant are also demonstrated, and the results

illustrate how this testbed can represent a comprehensive cyber-physical real-time simulation of a

power distribution system.
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Chapter 2

Transformation of the Power

Distribution System

2.1 Introduction

The power sector has grown with minimal and gradual changes for over a hundred years.

This transformation can be accurately characterized as an evolution. However, the power sector is

now undergoing a revolutionary transition fueled by rapidly evolving core and support technologies,

societal and cultural changes, and energy policy changes, some of which were discussed in chapter

1.

The two visible revolutionary changes are unidirectional power flow in the distribution sys-

tem changing to bi-directional power flow and passive operation and control of the distribution

system changing to dynamic operation. Since the revolutionary changes are occurring in the power

distribution system, it has become a pivotal part of the power sector transformation. This chapter

describes the changes that have occurred thus far, currently occurring changes, and the further nec-

essary changes in the future to complete the transformation. It will look at the core and support

technologies that empower these changes and how these are helping to change the power sector.

This chapter will detail the strengths and weaknesses of the different state-of-the-art technologies

and the areas that need addressing for a successful transition.
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Figure 2.1: A passive/conventional distribution system. The power flow is uni-directional [2].

2.2 The power distribution system

2.2.1 Traditional power distribution system

In traditional power systems, distribution networks are predominantly operated as passive

circuits with the assumption of uni-directional power flows. The typical structure where power is

received in bulk from the transmission network and distributed to individual consumers (e.g., houses,

businesses, factories) through a radially connected system of poles and wires (commonly referred to

as feeders) is shown in Fig. 2.1.
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Distribution networks often have limited observability and controllability since it is histor-

ically a passively operated infrastructure. Therefore, they are built to cope with the worst-case

scenarios without external interventions. Furthermore, as new issues develop over time, the predom-

inant solution is network augmentation (where the existing infrastructure is upgraded based on the

newly determined worst-case scenarios). This conservative approach is a non-intelligent planning

and operation approach. Distribution networks that are operated based on this design philosophy

are passive.

Among the technical constraints considered in the day-to-day operation of distribution net-

works, two dominant ones are voltage and thermal limits. This means ensuring voltage limits at

critical nodes (e.g., consumer connection points) and thermal limits of network assets (e.g., distri-

bution lines and transformers) are not violated during critical periods. When distribution networks

only cater to demand, in a typical passive system, these criticalities (or worst-case scenarios) cor-

respond to periods with maximum demand since it results in the most extensive power flows and

voltage drops in distribution feeders. There are traditional ways of managing voltage and thermal

issues in passive distribution networks. The existing components are designed according to the ex-

pected peak demand, preventing thermal overload from a thermal capacity perspective. For voltage

management, apart from sizing the conductor appropriately to minimize ohm losses and voltage

drops, a few other mechanisms are in place. For instance, primary substations are equipped with

on-load tap changers, which are autonomous devices that adjust the transformation ratio of the

corresponding transformer (and thus the voltage) according to the variations in demand throughout

the day. Furthermore, distribution transformers are often configured to provide a voltage boost to

compensate for voltage drops in LV feeders. Capacitor banks and voltage regulators are sometimes

installed along a feeder for voltage regulation purposes. Usually, there are two distinct voltage levels

in a distribution network: medium voltage (MV) and low voltage (LV), medium voltage comes up to

the residence in the US, and the drop-down is in low voltage. There are significant differences in the

design philosophy for the distribution system when comparing the US and other countries, where

a significant amount of wires are connected at LV. MV feeders start from primary substations and

extend throughout the serviced area. Since each primary substation can service a large geographical

area, transporting electricity at the MV level has technical benefits such as lower losses. Typical volt-

ages used in MV networks can range from several kV to tens of kV; for instance, the most common

voltages are 13, 25, and 36kV in the US. Large consumers such as high-rise buildings and factories
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are connected directly to MV feeders for increased power capacity (peak demands over hundreds

of kVA). In contrast, LV feeders are created for groups of small consumers (residential properties

along a street) and interfaced with the MV feeders through distribution transformers. The North

American grid brings the distribution transformer closer to the consumer, which provides a better

potential for expansion of capacity, but at a higher distribution service cost.

2.2.2 Distributed Energy Resources (DER) integrated distribution grid

More and more renewable generation will be connected to the distribution network to de-

carbonize the electricity sector. Consequently, this is changing the source of energy generation in

modern power systems: from large-scale, central power stations that are located away from urban ar-

eas to small-scale, decentralized power generating units that are connected to distribution networks

[2]. The power generation within the nodes of distribution networks is referred to as distributed

generation (DG). In LV distribution networks, the growth of renewable DG is due to rooftop solar

PV systems [15]. Since rooftops are often under-utilized areas and have minimal obstruction from

sunlight, they are prime locations for solar PV systems. Depending on the available area, the in-

stalled capacity can range from multiple kW (e.g., on top of residential properties) to hundreds of

kW (e.g., on top of large factories). On the other hand, in MV distribution networks, renewable DG

is often observed in megawatt-scale wind farms, and solar farms [15]. This is common in rural areas

as land is more readily available and utilizing the existing distribution network decreases the need

for additional transmission infrastructure to connect them.

2.2.3 New challenges

The major challenges created by the DER integration into the traditional grid are,

� reverse power flows in distribution feeder that was designed for unidirectional flow causing

severe voltage fluctuations in the distribution system

� uncontrollability of the distributed generation causing congestion and thermal limit violations

in distribution corridors

� operator having null observability to the distributed generation (decreased situational aware-

ness), causing challenges in maintaining the optimal generation resources
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The non-dispatchable nature of renewable generation creates a mismatch between generation

(from DG units) and demand within the distribution networks. As a result of the reverse power

flows during periods of surplus generation, technical issues such as voltage rise and distribution

congestion are becoming common in renewable-rich distribution networks [16, 15], as illustrated in

Fig. 2.2. In most cases, voltage and thermal limits determine the technical viability of the DG

installation capacity of a distribution system. Other technical issues, such as fault currents, relate

to the protection of the power system and power factor, which relates to operational capability

limitations of specific power distribution system components such as transformers.

For example, in residential LV feeders, maximum PV generation typically coincides with low

residential demand (due to low occupancy on weekday work hours). It results in reverse power flow

towards the distribution transformers. Since the existing infrastructure is designed to accommodate

voltage drop (the opposite of voltage rise caused by reverse power flows), the potential of voltage

violations is increased mainly during these periods of excessive reverse power flows. To fully use the

available voltage operational region (usually a 5% from the nominal), the voltage at the head of a

feeder is often boosted towards the upper limit. This strategy ensures that the voltage at the feeder’s

end remains within the lower limit during maximum demand. However, it can cause problems when

dealing with reverse power flows since it results in little space to operate from the upper voltage

limit. Additionally, unlike the typical domestic residential demand profile, which is not significantly

correlated, peak generation from rooftop PV systems is largely correlated in any region. As a result,

there is an increased risk of system congestion in the LV feeders and the upstream MV feeder. The

underlying causes of technical issues in MV distribution networks largely follow the same principles

as in LV networks: a mismatch between peak generation and peak demand. Additionally, due to

longer distances of rural MV feeders (which is where most renewable generation is being connected to

at the MV level), the corresponding infrastructure is weaker than their urban areas (more sensitive

to voltage issues due to the higher impedances, and this causes higher magnitude of voltage rise

for the same amount of reverse power flows). This significantly increases the risk of technical issues

from excessive reverse power flows.

2.2.4 State-of-the-art

With the proliferation of DERs in the late 1990s (driven by state subsidies, net metering,

and decreasing PV costs), the operators first observed the challenge of frequency fluctuations in their
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Figure 2.2: A traditional distribution grid with high penetration of DERs results in adverse opera-
tional challenges [2]

distribution feeders. In order to address this specific challenge, they came up with the idea of fully

decentralized controls where the generation would react to the frequency of the system [17]. If the

frequency is beyond the upper limits, the DERs were programmed to ramp down the active power

generation, and at a specific limit, they were programmed to be disconnected. This helped in system

frequency controls especially given that the system controller did not have observability or direct

control of behind-the-meter distributed generation resources. Since frequency was a system-wide
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measurement, this decentralized control approach was reasonable and only came into effect very

rarely in high-impact low probability events.

However, with further penetration of DERs, the operators realized that the DERs were

starting to cause voltage fluctuations in the distribution system. They observed many grid code

violations when they measured the power quality in particular nodes. To address this, the first

solution came up with expanding the planning and operational studies from steady-state power

flow to Quasi-static time-series power flow, where the hosting capacity study became a significant

component of the distribution network planning process [18]. Using the hosting capacity studies,

the operators could define the boundaries for operation and ultimately come up with the maximum

capacity of DERs that can be connected at any node in the system [15]. Many DSOs have started

to host publicly accessible hosting capacity maps to ensure transparency, for example, Fig. 2.3. The

challenge with these hosting capacity studies is that, unfortunately, it assumes homogeneous control

functionality of the DER resources, which, even though compliant with IEEE 1547, results in severe

underutilization of the value available from DERs.

With further penetration of DERs, many distribution systems showed large voltage fluctu-

ations even if the hosting capacity requirements were met. To counter this challenge, the industry

came up with volt-var controls for the DERs [19] [20], an innovation that emulated the operation

of the generators in the conventional power generation system. Here, the flexible, reactive power

capability of the inverters was used to create reactive power injection based on a generic reactive

power capability curve. The IEEE 1547 standard [17] was amended in 2018 to include this capability.

However, an entirely decentralized control system that responded to voltage, which was

typically a local variable, made the operation non-optimal and unfair [21]. Some DERs that are

connected at high Thevenin impedance points had larger voltage variations and therefore had to

contribute more reactive power while having to curtail the generation more than others. Therefore,

in some critical networks, operators or owners have started to control it similar to the larger power

generation system, using a Distributed Energy Resource Management Systems (DERMS) that cen-

trally measures and controls the setpoints based on optimal power flow (OPF) algorithm. Since

the OPF is computationally intensive, especially in three-phase unbalanced networks, innovations

on relaxations, linearizations, and formulations, are being made to increase the potential scale of

applicability [22] [23] [24] [25]. Examples such as [26, 21] have demonstrated that even simple op-

timization provides a significant enhancement to the conventional distribution network to provide
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Figure 2.3: A map of available hosting capacity maintained and hosted publicly by Pacific Gas and
Electric Company [3]

the capability to install higher penetrations of DG.

On the operation side, a more granular approach has been proposed in the last two years

and was first presented in [27]. In this approach, the OPF study is carried and an optimal ’envelope’

of the day ahead operations for DERs are calculated and sent to the DERs. The envelope defines the

allowed operation region for these DERs for the day. Whereas this method could work for a small

system, a centralized approach is not feasible for a generic application. This is due to the challenge

of maintaining physical models of the distribution system that could consist of several thousand to

tens of thousands of small nodes while gaining both the required observability of the system and the

communication access/capability at the needed granularity.

Apart from the centralized control approaches, decentralized approaches based mostly on

gradient-based network optimization theory has been presented in the last decade in [28] [29] [30]

[31] [32] [33] . However, the work presented depends on three-phase balanced approaches to attain

optimization. Additionally, the optimization requires a significant amount of data transfer and
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iterations, even for a system with a single DER. Given that the number of DERs, the dynamic

characteristics, and system unbalance are increasing, these methods are challenged to serve the

present and future needs of the distribution grid.

The transition to active distribution networks will unlock new opportunities to support

active bidirectional power flows instead of just relying on brute force reinforcement of existing assets.

Furthermore, due to the increasing deployment of smart grid technologies such as communication

infrastructure and smart meters [34], the observability and controllability of existing distribution

networks have improved significantly, making their granular monitoring and control an increasing

reality. Almost 100 million smart meters have already been installed in the US out of a total of 127

million consumers in the US [35].

2.2.5 Smart distribution grid

The rapid increase of DG in recent decades has changed the role of modern distribution net-

works at a fundamental level. Its functionality is no longer limited to serving as the last-mile power

delivery to consumers. As a result, being passive throughout the life cycle from the planning stage

through network augmentation may no longer be an effective norm but rather an exception. The

challenges faced by the future distribution system can only be addressed by leveraging the ’smart’

capabilities of new technologies and need to be addressed in a holistic manner using system engi-

neering approaches. A ’smart’ or an intelligent power system is defined by the below characteristics

and functions [36] [37] [38] [39],

� has self-healing and fault tolerant capabilities:

� has plug and play capabilities

� is distributed by design

� operates with dynamic optimization

� integrates heterogeneous consumers, generators, and prosumers

� improves system reliability, power quality, security and efficiency

Therefore, an intelligent distribution system is a distributed system that allows for the

connection of different sources and sinks without prior knowledge, allows for demand side and
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supply side management, and optimizes dynamically, while operating optimally and efficiently. On

the other hand, it is highly secure, making it difficult to attack. It can tolerate a high level of cyber

and physical damage. When damaged, it can autonomously heal, providing a reliable and resilient

service.

2.2.6 Journey from the smart distribution system to an intelligent dis-

tribution system

In order to operate intelligently, the system needs the capabilities to monitor, store, and

forecast, as well as share information; the system needs the capabilities to communicate with different

entities, to calculate, learn, share understanding, schedule, take and implement decisions and well

as adapt when the system environment changes. This will help the system operate in an efficient,

optimal, reliable, and efficient manner.

In the context of the work presented in this dissertation, smart and intelligent distribution

technologies can be differentiated based on defining characteristics. A smart system is defined by

using past data (prior) to adapt its operation. For example, a set of policies that were optimized for

different operating conditions and the relevant policy chosen for controls at a given time of control

based on current operating conditions. This approach was presented in [40]. This provides better

performance than a fixed control policy, an example of which is the standard volt-var control, which

does not change based on different operating conditions. It provides satisfactory performance as

long as the operating region is limited to design conditions. However, as elucidated earlier in this

chapter, the power distribution system is constantly in flux and has varying spatial and temporal

operating regions.

Intelligent technology is differentiated from smart technology based on its ability to learn

on the go. It does not require prior knowledge to optimize since it can use available information and

learn on the go using present information. The gained knowledge is also added to the current under-

standing of the system termed ’the well on learning.’ When a system faces a previously unknown and

unexpected change in the system itself or the external environment, intelligent technology provides

the ability still to push the operational trajectory towards an optimal operation. Even when prior

information is unavailable, the ability to learn on the go differentiates an intelligent technology from

a smart one. An example of intelligent technology is [39].
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In order to be intelligent, it is required to leverage both cyber and physical technologies in

a system thinking framework. The process for system design can be encapsulated into three main

components; communication, computation, and controls, also known collectively as C3 [39]. The

overview of the envisioned smart distribution system that includes the properties mentioned above

is described in Fig. 2.4.
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2.2.6.1 Communication

An intelligent distribution system requires information to be shared in a secure, reliable,

and robust manner within different spatially distributed nodes. The ability to do so is critical to

implementing an intelligent distribution system. The ability to share information is provided by the

Communication component of the C3 framework. The dynamic distribution system will always be in

flux with different loads, such as electric vehicles and HVACs connecting and disconnecting from the

system. The sub-networks will also be connecting and disconnecting based on different operational

conditions creating uncertainty even in the topology. The node-connected DERs will also add to the

system dynamics with different active and reactive power injections based on operating conditions.

Therefore, the first component of system design goes into ensuring sufficient sense-making. This has

two sub-components, the first being the sensing and the second being the communication.

The current state-of-the-art provides for a plethora of options for sense-making. Micro

Phasor measurement units are dedicated measuring units that connect to the distribution system.

They can create phasor measurements of node voltage and link currents at a frequency up to 120 Hz

[41]. Examples of other sense-making options are the integrated measurement units of components

such as Advanced Metering Infrastructure, inverters, breakers, and IoT sensors that provide sensing

at a granular level. Apart from these traditional sensors, visual sensors and drones that detect an

adverse impact on the system such as wildfire, component thermal hot-spots, and line degradation,

and sensors that provide input on the local weather conditions, also support the overall sense making

mechanism.

The sensed system conditions need to be communicated in different layers to make use of

them effectively. The communication shown in Fig. 2.4 using purple arrows includes the technology

used for this part of the process. From a physical standpoint, a combination of technologies spanning

from 2G to 6G, Ethernet, fiber, Zigbee, and satellite can be used for communication. The commu-

nication could be on dedicated or shared and public channels. The cyber part of communication

technology also plays a critical part in ensuring its effectiveness. Due to the large amount of raw

data created by the many sensors, at a frequency that could be up to 120 Hz, it is not possible to

collect and make effective use of it at one central location. Therefore, it is vital to use different

approaches to ensure that the data is processed locally and only communicated when necessary.

An example of this is the phasor data concentrators and software such as OpenPDC. Therefore, an
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optimal sense-making framework is a critical component of the smart distribution system.

This diagram shows that the smart distribution consists of two layers, the first being the

physical layer and the second being the cyber layer. The different components of each layer and its

connectivity is shown in Fig. 2.5. The cyber layer includes a significant part of the communication,

control, and computation functionalities. The physical layer represents the physical equipment of

the system. The distribution system shown is a radial system.

Each node of the system includes a communication hub, a prosumer, energy converters,

Advanced Metering Infrastructure, and a node Energy Management System (EMS). These infras-

tructures are interconnected in the physical layer. The operational information from the physical

layer is communicated to the cyber layer. Each node can communicate with the cell IOT in a star

configuration. The cell communicators are assumed to be connected in a ring configuration to show

the difference between the connections in the physical and cyber layers.

The cyber layer components collect and share information and use the computation and

control components situated in that layer to share the control output with the physical layer com-

ponents. The typical CPS diagram shown in Fig. 2.5 includes computation and control blocks.

These functionalities are part of the cyber layer’s node and cell blocks. A smart distribution system

has interdependencies between the components in each layer and interdependence in components

between the two layers.

2.2.6.2 Computation

Computation consists of technologies that enable solutions to many complex problems that

must be solved. The modeling approaches and the control approaches in the smart distribution sys-

tem require computation that is fast and efficient. The computation is expected to be heterogeneous

since the type of optimization is diverse and has different functions across the system. Traditional

approaches based on mathematical programming and computational intelligence-based approaches

such as particle swarm optimization will all have a role in the different computations required to be

carried out across the system. Additionally, there will be a requirement for both distributed and

central computation. The computations could be carried out in IoT-based embedded computation

systems, as well as large high-performance computers. It is a critical enabling technology in realizing

an intelligent distribution system.
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Figure 2.5: Cyber-physical framework of the smart distribution system

2.2.6.3 Controls

The controls are shown in orange in the conceptual framework. The computations support

the smart controls of the devices to influence the operation of the different levels of the system

to realize their goals. These include the adaptive and self-learning methods required to manage

the fast-changing environment and provide the capability to learn, adapt, generalize, and associate

the system controls. Examples of digital controls are system components such as line breakers and

consumer loads such as HVAC, dishwasher, EV Charger, or Washer/Dryer. These can be controlled

based on the control signals that are transmitted. Examples of equipment that are controlled using

analog signals are power electronic transformers, PV inverters, D-Statcom, and batteries. These

controls are shown using an Orange arrow in the conceptual framework.

The controls can be hierarchical, distributed, centralized, or a combination of them. The

conceptual framework shows nodal, cell, and system-level controllers. Though cell controls are shown

as centralized, the same objective can also potentially be realized using a decentralized approach.

The central controller will be a virtual controller or a representation of the cell level control function.
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Similarly, system-level control is shown to be decentralized, but it could also be carried out via a

central controller. Each cell or node layer could have different objectives. This provides the ability

to democratize the operation. It is possible to have competing objectives on different levels. The

controls will then move to an equilibrium based on the many different objectives that superimpose

on each other. Based on the changing operation scenarios, the controls will have to adapt and

optimize in real-time and morph their characteristics such that their effectiveness is maintained in

highly dynamic operations.

In combination, these technologies lead to the creation of a Computation System Thinking

Machine (CSTM) [39], a framework that encapsulates all three technologies and empowers the

intelligent operation of the power distribution system. It is clear that to optimally utilize the

various sources of flexibility in the distribution network, advanced intelligent or ’smart’ approaches

must be used to operate and control power distribution networks. The ’smart distribution grid,’

where the network issues are solved at the operational stage by the real-time monitoring and control

of network assets and participants, is the best way forward. It helps to leverage the various sources

of flexibility in real-time, and distributed controllers can optimally use the capability of installed

infrastructure and provide dynamic and optimal operation.

2.3 Summary

The rapid growth of distributed energy resources has changed the unidirectional conventional

power distribution system to a bi-directional system. This has given rise to challenges for frequency

regulation, voltage control, and congestion control. In order to address these challenges, it is critical

to move from evolutionary to revolutionary technological innovations supporting the distribution

grid. The main evolution required is to create an intelligent distribution system. An intelligent

system requires the functions and capabilities for self-healing, plug and play, distributed operation,

dynamic optimization, and efficient, reliable, and resilient operation.

The current state-of-the-art consists of decentralized and centralized approaches, but these

methods have flaws that make them unsuitable for generic application to a typical distribution

system. A decentralized control approach will not be fair and non-optimal, while centralized options

have scalability, resilience, and cost challenges. Therefore, the research gap in realizing a smart

distribution grid is significant.
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The smart distribution requires leveraging many different cyber-physical technologies that

can be encapsulated in the C3 framework. This framework consists of communication: which refers

to sensors and communication infrastructure that helps to make sense of the situation/ provides

situational awareness; computation: which refers to the different technologies that help solve the

optimization and control problems across different layers; and control: which provides the ability

to adapt, learn and relearn, as both the environment and the system change spatially as well as

temporally.
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Chapter 3

Distribution System Modeling

The power distribution system is increasing in importance and complexity as a result of

the exponential growth in the adoption of smart grid technologies. The ability to model the power

distribution system is critical to ensuring a smooth transition to a sustainable power system. This

study presents a distributed data-driven framework based on Cellular Computational Networks

(CCN) for power distribution system modelling where the CCN framework facilitates for system

decomposition. The learning in CCN is distributed and asynchronous, thus adaptive models can

be developed. The computational engine of the CCN cells can be based on data-driven, physics-

driven, or a hybrid approach. The CCN based distribution system modelling secures the privacy and

security of the sensitive utility information, thus allowing third-party application providers access

to system models and behaviours. The application of a CCN based power flow model is illustrated

on a modified IEEE 34 test system. Typical results show the suitability of the new approach in

modelling the sample distribution system, as well as its enhanced performance when compared to

the centralized modelling approach.

3.1 Introduction

The power distribution system has continuously played a passive and relatively minor role in

the power system since the advent of electricity as a commercial power source. However, in the last

decade, the role of the power distribution system has started to increase in importance as a result of

the adoption and acceptance of smart grid technologies, such as distributed energy resources, energy
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storage, demand-side management, dynamic electricity pricing, advanced metering infrastructure,

and electric vehicles. Additionally, there is a clear indication that extreme weather events, such as

storms and forest fires are increasing. The extreme events disproportionately impact the distribution

system. For example, when a storm impacts a geographical area, many assets get damaged and have

to be replaced. In this kind of situation, the records of the replaced assets tend to get lost. It is clear

that distribution system assets change much more frequently and are more numerous [42, 43]. As a

result, the distribution system, formerly known to be a stable and predictive power system asset, is

transforming into a class of power system assets that undergo frequent and unpredictable changes.

With time, there is a high probability that the power distribution system physical models will be

incomplete and inaccurate, causing divergence from the ground truth.

Generating and maintaining accurate models for the power system is a labor-intensive pro-

cess. The transmission and distribution system has a limited number of components, is comparably

static, and each component has a high impact on the system operation. On the other hand, the

distribution system consists of a large number of physical assets and network nodes. Typically, the

impact of a single component in a distribution system is negligible. However, when small changes

occur across a significant portion of the network, the impact on the system is significant. Therefore,

when developing and maintaining high-fidelity models, an automated approach with minimal human

interference is preferable to a human-based manual approach. With the help of these high-quality

models, the distribution networks can be optimally operated and controlled, paving the way to a

fast, efficient, and economic transition from the traditional static distribution system to the smart,

sustainable distribution system of the future [44, 45].

Fig. 3.1 illustrates the different options available for modeling a distribution system. The

two main approaches are data-driven and first principle modeling. First principle (physical model)

based approaches, which are currently dominant, have two sub-categories. The first category is exact

modeling. The complete first principle model is used without any assumptions in this approach. As

the size of the distribution system gets larger, developing an exact model from the first principle

becomes a complex and labour consuming task. The second category is approximate modeling.

Approximate modeling relaxes some of the non-linearities of the models to decrease the model com-

putational burden and development time. There are three subcategories of approximate modeling;

linear, non-linear, and hybrid. The non-linear approach includes approximations for simplification,

but not up to the level of full linearisation, and therefore is more accurate over a more extensive
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Figure 3.1: Different approaches to distribution system modelling.

operation space. When fully linearised, the model becomes computationally efficient, yet the perfor-

mance (accuracy) of the model over the state space could degrade significantly. Presently, the fully

linearised approaches are widely used for applications, such as distribution system optimal power

flow [24].

Data-driven modeling consists of two categories. The first category is pure data model

approach, where only data is used for modeling. In this case, both the structure and the parameters

are learned from the data. The other approach is hybrid modeling, which uses a combination of both

first principle as well as data-driven modeling [42, 43, 46]. In this case, the first principle model

provides information about the structure, whereas some parameters are learned using data. The

data model approach has two categories based on its internal structure. The linear and non-linear

categories are based on the type of structure used in the data model. The non-linear data model

approach, shown in green in Fig. 3.4 is applied in this chapter.

In addressing modeling challenges in complex systems, an increasing number of data-driven

methods are being applied with success across a broad spectrum of fields [47]. Historically, the two

key challenges to using a data-driven approach have been a lack of data and computation resources.

However, due to the proliferation of Advanced Metering Infrastructure (AMI), [48], as well as high-

end sensor technologies such as micropmus [49], there is now an abundance of data. Power system

operators are challenged to find ways to use these data in an intelligent manner [50]. The other key

challenge, which is finding the computational power requirement, is becoming inconsequential due

to the increasing accessibility of distributed computing resources [51]. The main barriers to data-

driven modeling of the distribution grid are decreasing. These supporting technologies are predicted

to grow exponentially, strengthening the opportunity to use data-driven modeling techniques even

further.

The Distributed Energy Resource Management Systems (DERMS) are used to ensure op-

timal, reliable, and resilient control and operation of the distribution grid. DERMS applications
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require high-fidelity models. The coarse models available through physical modeling are not ideally

suited to be used in these highly sensitive control applications [52]. A physical model is static by

nature, and it is inappropriate to be used in such an environment. To reap the best value out

of DERMS, the modeling should be fully automated, the model should adapt automatically, and

the model should be able to learn even minute variations in the systems. A data-driven modeling

approach provides a salient framework to realize these requirements.

Another increasingly prominent aspect is the need to conserve the security and privacy of the

sensitive information of the distribution system since it is an interdependent critical infrastructure.

If a physical model is used, the approach needs to be centralized, and the information about every

part of the system is needed centrally for the modeling and simulation process. On the other hand,

a data-driven model could be set up to secure all sensitive system information since it will not

include explicit system information. Additionally, when a distributed approach is used, the usage

of topological and parameter information can be limited to the location of interest with a minimal

amount of global information exchange. This will make the grid more secure. If an anonymized

model that is disaggregated from the vulnerable network data can be provided, it will open up more

opportunities to openly exchange grid models. This will provide the opportunity for external service

providers to be involved in system optimization and control activities [53].

A majority of the power distribution system power flow computations are currently based on

centralized physical modeling approaches. However, there is a growing need for more accurate and

faster computation. This requirement merits the investigation of the possibility of using a distributed

approach for modeling and simulation. The work presented in [54] provides a comprehensive frame-

work to accomplish decentralized computation. However, this approach is still based on a physical

model, and the decentralization is implemented only on a computational level, leveraging parallel

processing to speed up the computation.

Data-driven black-box-based modeling can be implemented as a centralized model, but the

requirement for asynchronous learning and computational and data constraints limits the application

space. The nature of the distribution system calls for a distributed solution, ideally where the

learning is asynchronous and distributed.

These factors make the distributed data-driven approach an attractive network modeling

option for distribution systems. The power of data-driven modeling is optimum when it is used side

by side with a physics-based model. This will help keep the data-driven robust in regions where
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historical data is minimal while increasing the situational awareness of the distribution system

operator.

The main contributions of this chapter are,

� designing a data-driven distributed (D3M) framework to model a power distribution system

based on CCN

� demonstrating the framework on the modified IEEE 34 bus test system

� demonstrating the ability of the framework to ensure privacy and security of sensitive utility

and user data

The chapter is organized as follows: Section 2 gives an overview of the problem statement,

Section 3 describes the methodology in detail, and Section 4 describes the simulations used to

demonstrate the framework. Section 5 shares the results and the insights attained through the

results. Section 6 concludes the chapter.

3.2 Problem formulation

Consider a radial power distribution system topologically represented by the tree graph,

T , consisting of the set of nodes collected in the set N , with N = {0, 1, ..., N} (point of common

coupling (root) is denoted by node 0).

Let the power injection at node k ∈ S be represented by Sk, where S ∈ C1·M . Let all the

power injections be collected in set S, where Sk ∈ S. Let the complex voltage of node k be denoted

by Vk be collected in set V, where V ∈ C1·N .

Let there exist a mapping function f where f : S 7→ V. The problem then resolves to

function estimation, finding an estimate for f , given by f̂ , when a set of m values of the f mapping

is known. The general function class for this mapping is denoted by F , and f̂ ∈ F . There should

exist in F a choice for f̂ that can accurately reproduce a given V in the output space. Different

types of systems will have a different general function class F since each system has a set of unique

characteristics [55]. Therefore, the problem can be formulated as the minimization problem stated

in (3.1).
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min
f̂∈F

1

M

M∑

i=1

(f(S)− (f̂(S))2 (3.1)

3.2.1 The power flow problem

The conventional approach to solving for power flow is based on the power flow equations

[56]. There is a prerequisite to identifying the network parameters and topology in this approach.

The system bus admittance matrix, Y , can be derived using well-known approaches if the topology

and parameters of the system components are known [57]. This set of equations described in (3.2)

represents the entire power flow problem. For any given S, the solution of these equations will

provide the corresponding V. The solution is called the power flow solution, and it describes the

steady-state characteristics of the network.

Sp
k = V p

k · I
p
k
′

= V p
k

n∑

i=1

pn∑

m=1

(Y pm
ki · V

m
i )′ (3.2)

Here, the nodal power injection at node n, n ∈ N , is given by pn + jqn. The nodal voltage

vn ∈ V constitutes of voltage magnitude |v| and voltage angle δ and represents value of vn in polar

form by vn = |vn|∠δn. Complex power injection at bus k phase p (Sk) is given by (3.2), in terms

of busbar voltages at all n nodes. The set of active power injections are collected in P and the set

of reactive power injections are collected in Q. pn is the maximum number of phases in the system

and Y is the system admittance matrix. Once V is calculated, it can be used to directly calculate

the branch power flows.

The solution set of this power flow problem is highly non-linear. The physical model-based

solution requires accurate knowledge of the system component parameters and topology. For a

transmission system, this modeling approach can be effectively used due to the assets being critical,

less in number, and static. However, developing and maintaining an accurate model based on the

above framework for a distribution system becomes an extremely challenging task.
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3.3 The Distributed Data-Driven Modelling (D3M) frame-

work

3.3.1 Overview

The proposed power flow solution framework is referred to as D3M and is based on Cellular

Computational Networks (CCN). CCN is a framework that can be used for distributed asynchronous

learning and modeling of networked systems [58]. It was first introduced in 2009 [59], and since then,

it has been applied in many power system applications [60] [61] [62] spanning the last decade.

A Cellular Computational Network (CCN) consists of a network of connected cells mim-

icking the spatial connection of the physical network. The spatial connections represent the point

of exchange of boundary variables. Each cell consists of a unique computational unit that uses a

learning unit to learn the system asynchronously. This approach opens up the possibility for asyn-

chronous and distributed learning. It is this unique attribute of CCN that sets it apart from Graph

Neural networks (GNN) [63], that was proposed in parallel to CCN.

A distribution network shown in the black layer in Fig. 3.2 is a tree graph. It starts with a

root node and spreads across nodes with a parent-child relationship. In Fig. 3.2 Cell i is the parent

of Cell j and Cell k, and the child of Cell h. Cell k is called a leaf node (it does not have a child

node). The D3M formulation uses the knowledge of this unique structure of the distribution system.

As shown in the light blue layer of Fig. 3.2, the nodes of a distribution system are clustered into

cells. The boundary variables that are exchanged between the cells are cell to cell power flow and

parent cell boundary voltage.

In combination with local data, the exchanged data are communicated to the CCN layer

(blue layer), which processes this data and uses it to learn the system power flow. The data could

be collected from the AMI data at each consumer, as well as from network devices such as reclosers,

disconnectors, and voltage regulators. As shown in Fig. 3.2 each of these cells is distributed and,

therefore, provides the ability to be installed in separate hardware platforms stationed in localized

geographic areas. For example, the Cell k could be installed in a small embedded Internet of Things

(IoT) platform inside the geographic area of Cell k. This cell consumes only local data and transfers

the boundary data to its parent cell. This approach minimizes bandwidth requirements and ensures

the privacy of the data in Cell k. If an external data stream becomes unavailable, it can still operate
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if a reasonable estimate of the unavailable boundary variable is available.

A generic cell consists of a data manager, a learning unit, and a computational unit, as

shown in Fig. 3.2. The learning unit processes the data streamed from the physical layer and

provides the correct inputs to the learning and computational unit. The learning unit, when active,

uses this data to tune the computational unit to ensure that model accuracy is maintained within

the required tolerance limits. The learning unit supports asynchronous operation, meaning all cells

don’t need to learn simultaneously. Instead, the cells can learn when necessary. The computational

unit uses the input data to estimate the boundary variables that are provided as inputs to the child

cells in regular operation.

The top layer is the application layer, which consists of local and system-wide applications

of the distribution system model. The local application could be installed inside the local geographic

region and provide modeling inputs to local DERMS applications such as situational awareness, local

energy management, volt-var control, and other local optimization applications. On the other hand,

the system-wide D3M outputs can be used for system-wide DERMS applications. From a hardware

perspective, it is possible for each component in the CCN layer and application layer to be set up in

a different IoT platform. If such an approach is used, the D3M will contribute towards reinforcing

the security, reliability, and resiliency of the distribution system.

3.3.2 Methodology

The design of a D3M consists of four steps. The first step is identifying the cell model,

where an appropriate model for the computational unit is identified. The second step is cell structure

identification, where the internal characteristics of the chosen computation unit are identified. The

third step is system decomposition and cell learning. Here, the appropriate inputs and outputs,

and values of the computational unit parameters for each cell are identified. In the fourth and final

step, the individual models are fused to create a single D3M model. Based on this network, CCN

is executed till convergence, which estimates the local and global power flow solution.

3.3.2.1 Model learning

As detailed in Section 3.2, the power flow problem given by (3.2) is a highly non-linear static

Multiple Input Multiple Output (MIMO) mapping. In order to capture the complex non-linearities,

a more refined structure than a linear structure is required.
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Figure 3.2: The system overview showing the generic (D3M) framework applied to a distribution
system.

A Multi-Layer Perceptron (MLP), which is a class of feedforward artificial neural network

(ANN), is well suited for approximating a highly non-linear static MIMO mapping [64]. The Stone-

Weierstrass theorem [65] has shown that an MLP with one hidden layer can be used as universal

approximator [66] under the constraint that a sufficient number of neurons are included in the hidden

layer [67] [68].

Based on these insights, a multi-layer perceptron (MLP) with a single hidden layer is chosen

as the fundamental building block for the proposed framework. The MLP, F , has the structure shown

in Fig. 3.9 and is a shallow network since it has only one hidden layer. This network is structurally

suited to learning the input-output relationship of the system under study since it can operate as a

universal approximator. The activation function on the input and output layers are linear functions

and the activation function hidden layer is a hyperbolic tangent (tanh) function. The input layer

includes a bias. Since the core structure is fixed, the function F depends only on the number of

hidden layer neurons (F(nh) = f).

Power flow can be approximated to a linear mapping with certain assumptions [23]. Sim-

ilarly, the chosen function, F , can be converted to a linear mapping by appropriately selecting its

parameter values. This provides further confidence in using F as the estimator.
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This network with c inputs and d outputs is described in (3.3) using matrix-vector notation.

Y = V · σ(W ·X + B) (3.3)

Here, X ∈ Rc is the input and Y ∈ Rd is the output. The number of hidden layer neurons,

which is a hyper parameter and fixed for f , is given by nh. The weights matrices are W ∈ Rc×nh ,

V ∈ Rnh×d, and B ∈ Rnh . The activation function for the hidden layer neurons is given by σ.

The next step is model training which is set up as an optimization problem with the objective

of minimizing the mean squared error (mse) across a dataset of M points. Therefore, model training

problem is defined as finding the set of weights, W , V , and B, such that:

min
1

M

M∑

i=1

(f(X)2 − Y 2) (3.4)

3.3.2.2 Cell structure optimization

Cell structure optimization refers to selecting the optimal number of hidden layer neurons to

represent the system input-output mapping. With this being a data-driven approach, the selected

model structure should have the ability to learn the mapping using available data. It should be

complex enough to capture all significant characteristics of the mapping. It should also be able to

capture any reasonable changes to the underlying physical system by adapting its parameters since

real-world systems are bound to change with time. Finally, it should have a straightforward structure

so that the learning is fast, generalizable, and can be guided by a minimal data set. Having more

than the required parameters results in slower training and increased computational requirements.

It also increases the risk of over-fitting. The ideal structure should be the best possible fit with a

minimum number of parameters [69].

Therefore, a cell structure identification process is proposed, where cell structure identifica-

tion refers to finding the optimal nh which represents function f (f = F(nh)). The identification of

the optimal nh is carried out intelligently by using the particle swarm optimization (PSO) algorithm

[70]. This helps to develop the optimal cell structure to model this system.

Each particle in the swarm represents a potential solution, which is a nh value that is an

input to the utility function calculation shown in Fig. 3.3. The objective function value represents

the quality of a particle. The evaluation of the objective function plays a significant role in the
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structure identification process.

The input from PSO is used to create a model structure, Net0, and it is initialized with

random weights. Next, the process flow enters a training loop where the current version of the

model, Netp, is trained using a fixed training dataset, DT , for one epoch. The resulting network,

Netp+1, is then checked for the stop criteria. This stop criteria consists of meeting either α, which is

the minimum training error, ET , or reaching, pmax, which is the maximum number of iterations. If

it is not reached, the network is updated with the new values for weights, and the training continues.

The utility of a particle, Unh (Unh = FIT ), defined in (3.5), was used to evaluate the quality

of the particles. FIT represents the structural model error [71] across M data points. Here Ȳ is the

mean value of the dataset (Y ).

FIT = Unh
= 1−

√√√√√√√√

N∑
k=1

(Y −Netp+1(X))2

N∑
k=1

(Y − Ȳ )2
(3.5)

The cell training accelerated by coarsely selecting a suitably high value for α. This approach

is appropriate since the sole objective is cell structure identification. The utility value is representa-

tive of the ability of a given solution to approximate the output of the independent testing dataset,

DTE . Once the stop criteria are reached, the resulting neural network is used to calculate the FIT

value, the objective value corresponding to particle nh used in the PSO function.

In order to ensure the quality of the structure identification process, the chosen solution

space for optimization should be structurally rich. Additionally, the dataset for training and testing

should be reasonably representative of approximated operational space. The selected cell structure

is then used in model learning detailed in section 3.3.2.1. This process uses a larger dataset and is

trained to a higher level of accuracy. This step enhances the preciseness of the power flow estimations

calculated using the CCN network.

3.3.2.3 System decomposition

Due to the nature of the problem (radial distribution network), each of the cells can be

represented by a Thevenin equivalent, as shown in the generalized cell in Fig. 3.4 (a). A cell k will

have parent and child cells that it is connected to. The only cell that will not have a connection to

the parent cell is the root cell that includes the slack bus, and the only cells that will not have a
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Figure 3.3: The flowchart for calculation of objective function for cell structure identification.

connection to a child cell are the cells that include an end node of a branch of the graph (leaf cell).

Natural geometric boundaries can be used as the basis to form the cells.

The CCN formed for the case study, shown in Fig. 3.7, is an example of how the nodes

can be grouped into cells. The number of nodes in a cell and connections to neighboring cells

define the number of inputs and outputs, which define the total number of weights that need to be

trained. The maximum number of nodes (cell size) that can be encapsulated in one cell depends

on both the characteristics of the modeled cell and the hardware resource constraints. If the cell

characteristics include a more comprehensive range of non-linearities or a more significant number

of nodes, it would require more hardware resources for cell training. Therefore, it is recommended

to heuristically determine the maximum number of nodes before the CCN is designed. It is possible

to choose the cell size lower than the maximum based on other design requirements.

Fig. 3.4 (b) shows the circuit equivalent of a generalized cell. Here, Vp is the parent voltage,

and the dotted boundary creates a Kirchoff’s supernode. If the parent voltage, Vp, internal cell loads,

Scellk , child branch flow LFP , and the internal network parameters are known, the system can be

solved using Kirchoff’s and Ohm’s laws to find the outputs for any given set inputs shown in Fig. 3.4

(c). Therefore, cell identification only depends on the network parameters. The internal structure

of the computational unit can take any form, including the neural network approach proposed in
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this study or a more conventional physical model-based computational structure.

3.3.2.4 System learning

The cell learning process consists of 3 stages; the data acquisition stage, the data processing

stage, and the computational unit tuning stage.

The data acquisition stage aims to acquire the boundary variable data from the neighbor

cells based on the CCN formulation. This stage could be implemented in a centralized approach or a

decentralized approach. In a centralized approach, first, the data from all the cells will be transferred

to a central database, and then the central database will segment and share the relevant formatted

datasets with each cell. This requires that all cells be connected to the central data acquisition

system. The cells will poll for required boundary data from neighboring cells and acquire only the

required data segments in a decentralized approach. For this to be possible, the cells need a physical

communication link with their neighbors. A centralized approach requires more communication

infrastructure, bandwidth, and storage than the decentralized approach, where only the minimum

set of information (required boundary data) is shared locally between neighboring cells. Irrespective

of this choice, the communication between cells within the learning process is limited to the data

acquisition phase.

The data acquisition system of the cell then processes the remote and local data into a

form suitable for utilization by the computational unit. If a decentralized approach was used in the

data acquisition stage, the boundary data would be appended with the local data to form the final

dataset.

Finally, the learning unit operates on the cell computational unit by adjusting the neural

network weights till the required estimation accuracy criteria are satisfied. Each cell computational

unit takes the form shown in Fig. 3.4 (c) and (d). These computational units learn using the method

described in Section 3.3.2.1. Even though each cell requires boundary data from neighboring cells

to create the training data set, the cells are trained offline, and the cells learn asynchronously

independently of the other cells.

3.3.2.5 Model Fusion

Model fusion is when the independently trained cells connect to form the interdependent

CCN and iteratively exchange information to provide the power flow estimation for the modeled
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Figure 3.4: (a) The single generic cell single line diagram (b) electrical equivalent circuit (c) cell
input-output relationship if cell k has a child cell (d) corresponding cell input-output relationship if
cell k is a leaf node.

system.

The framework uses two types of variables. The first type is defined as CCN variables

(XCCN ) and constitutes of variables that integrate the cells together and transfer across cell bound-

aries. This set of variables is shown in Fig. 3.4 (c) and (d). The second type of variables are the

internal state variables of interest (Xcell), and they are the internal cell variables of interest (inter-

nal cell node voltages). They are not a direct part of the CCN framework and are independently

estimated on a secondary layer, using the solution results obtained from the CCN-based estimation.

The flow chart for model fusion is shown in Fig. 3.5. The process starts with the initialization

of values for inputs in the set of CCN variables XCCN . Out of the two types of boundary variables,

the voltages are typically initialized with available field data, while the load flows are initialized

by summation of the node load values. If any data is missing, then the boundary variables are

initialized by a flat start. A flat start refers to the initialization condition that uses rated voltage

and load values. Then the cells are operated with available inputs and the XCCN values are updated

XCCN,k(i+ 1) = Cellk(XCCN,k(i)). At each iteration, the updated boundary variables replace the

last estimate, and the cell inputs and outputs are based on the CCN data flow diagram. An example
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Figure 3.5: Model fusion flowchart showing the iterative algorithm used to solve for the D3M
solution. Here X refers to XCCN . The load flow estimation is for the nodal load dataset given by
LD.

data flow diagram that elucidates how the communication occurs, the data flow sequence, as well

as the dependency between interconnected cells is shown in Fig. 3.8. The process is iterated till

either all the XCCN values converge to ε (XCCN (i + 1) − XCCN (i) =< ε), or the max number of

iterations are reached. Once the final CCN solution is available, these values are used as input, and

a separately trained neural network is used to calculate the Xcell values.

In implementing the model fusion for this study, communication was functionally separated

from the cell computation but was implemented on the same hardware platform. The information

exchange was executed as an internal data exchange inside the model fusion program. If the cells are

located in physically separate hardware platforms, they will depend on an external communication

medium to exchange values. An appropriate state-of-the-art communication framework, such as

TCP/IP on Ethernet, can be used to satisfy this requirement since the boundary data flow is a

small subset of the cell data stream.

3.4 Case Study

This section describes the application of the proposed framework to model a distribution

system. The IEEE 34 bus test system [72], which was based on a long radial rural feeder in Arizona,

is used as the sample system. It has a total of 95 single-phase nodes and 134 single-phase loads.
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Figure 3.6: A generic model of a prosumer node used in the study. The active and reactive power
for each prosumer lies within the boundary shown in red. The cross represents key extreme data
points.

The network and loads are unbalanced and include single-phase, three-phase, and two-phase loads

and transmission lines. Loads of the IEEE test system are modified by converting the loads to

prosumers as shown in Fig. 3.6. Each node of the distribution system can include electric vehicles,

battery storage, and distributed energy sources, apart from conventional loads. The prosumer power

characteristic operates on four quadrants, as shown in Fig. 3.6. The prosumer connection is moni-

tored using AMI, and the information is transmitted to the cell IoT platform via a communication

network. Each prosumer has an installed capacity equal to the apparent power rating of the original

load. Note that this system can represent 100% prosumer capability in both the number of instal-

lations as well as installed capacity. This means that the applied case study can easily represent a

distribution grid with high penetrations of renewables.

3.4.1 System modelling

The system model shown in Fig. 3.7 describes the development of the CCN model of the

system. Each branch is required to be on at least one cell; multiple cells in one branch are also

possible. The size of each cell is based on the computation resources available. For a reasonable
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IoT-based cell solution, the thumb rule limits the maximum number of nodes to 5. The data and

computation resource requirements decrease when smaller cell size is used. The connection between

each cell is based on the parent and child voltage and boundary load flow. Unlike the other cells,

the root cell MC1 does not have a parent. The SC1, SC2, SC3, and SC4 cells are leaf nodes and do

not have a child cell.

The cell SC1 provides the load flow to its parent cell MC1 and receives the information of

the PCC voltage from it. The same applies to cell SC2. The cell MC2 provides its load flow to

parent cell MC1 and gets the PCC voltage as an input from the parent cell. The same applies to

cell MC3. The relationships that D3M is based on are shown in the system block diagram in Fig.

3.8.

3.4.2 Dataset generation

A random prosumer load dataset of 86400 data points, representing a day of data gathered

at a resolution of 1 second, is used to generate the dataset. The modified IEEE 34 test case is

modeled in OpenDSS [18], and the system is simulated with the generated inputs to create the

synthetic measurement dataset.

Figure 3.7: The D3M based cell formulation for the modified IEEE 34 network. The chosen cells
and boundary variables are shown on the single line diagram.
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3.4.3 Model development and learning

The D3M model uses a limited amount of topological information about the network. It

requires knowledge about some parts of the network graph to develop the model and map the

appropriate measurements to network information. However, the amount of information required is

minimal compared to any other alternate option. The CCN formulation could be based on natural

geographic boundaries such as a street or neighborhood. If needed, it is also possible to fragment

a more extensive geographic unit into smaller sub-cells. For example, the MC5 and SC4 cells are

formed as two cells, even though they can be formulated as one cell.

Choosing the base number of nodes in the hidden layer is performed based on PSO, and

model performance is compared. The identified optimal values are included in Table 3.1.

The internal variables are not included in the CCN model. Instead, separate internal models

that use the solved values of boundary variables as the input are used to solve for internal variables

of interest.

The models are trained asynchronously based on the earlier identified optimal MLP struc-

ture. This study uses the Levenberg-Marquadt method for training. However, any suitable learning

algorithm can be used.

Figure 3.8: The information flow diagram for structure fusion. The cells are initialized using field
data or rated load and voltage values. The information is exchanged and cell outputs are computed
till the output converged to the required accuracy.

42



hidden layerinput layer output layer

1

[V][W]

[B]

Y

∑
σ

∑
σ

∑
σ

∑
σ

SPCC MC4

V 824

SMC3

SPCC MC3

V 854
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3.4.4 CCN in Operation

The modified IEEE 34 bus system is operated based on Fig. 3.8. The D3M variables are

required to be iterated following the flow chart described in the generic framework till stop criteria

are reached. The boundary variable error convergences after a maximum of 15 iterations for the

system understudy.

3.5 Results and Discussion

The different parameters that are applied in the design of the D3M are given in Table 3.1.

Here, nhH is the geometric mean of the neural network’s number of inputs and outputs. It is a typical

heuristic used to determine the number of hidden layer neurons. The nho value is the intelligently

determining optimal number of hidden layer neurons. The values are different, highlighting the

importance of determining the hidden layer in an intelligent manner in this application. The Id.

time parameter is the time required to identify nHo and has a maximum of 2 hours. The Tr. time

refers to the training time of the individual cells and is also less than 2 hours for the whole group

of cells. The maximum number of weights that have to be learned is 4803. The training of D3M

models was executed on an Intel Core i7 8700 computer with 16GB of RAM.

The neural network given as *Onenet results when the system model is represented by one

large network. The number of weights in this network is almost 16 times that of the largest network in

the D3M solution. The network training failed with the heuristic applied earlier. Therefore, another

heuristic, which selects the number of hidden layer neurons equal to twice the number of inputs,

43



Cell nhH nhO Id. Time (s) Tr. time(s) ni no Wn

SC1 5 9 1238 1035 10 2 117
SC2 7 35 4265 2903 8 6 525
SC3 13 12 6582 2903 26 6 396
SC4 13 50 1962 2903 26 6 1650

MC1 Vm 9 29 1724 1928 22 3 754
MC1 Vd 9 12 3607 3291 22 3 312

MC2 S 15 36 3850 3905 36 6 1548
MC2 Vm 11 34 1243 4879 36 3 1360
MC2 Vd 11 15 3384 3381 36 3 600

MC3 S 15 50 6536 2906 34 6 2050
MC3 Vm 15 38 2369 1356 34 6 1558
MC3 Vd 15 52 2571 3020 34 6 2132

MC4 S 15 55 2272 2906 58 6 3575
MC4 Vm 14 34 7263 3020 58 3 2108
MC4 Vd 14 36 2677 5020 58 3 2232

MC5 S 15 31 2272 2906 58 6 2015
MC5 Vm 14 59 1103 3356 58 3 3658
MC5 Vd 14 43 7263 3020 58 3 2666
*Onenet 272 NA NA 5020 136 80 59024

Table 3.1: Parameters of the neural networks used for D3M of the power flow.

had to be used. The computational system could not run the training due to memory constraints.

As a result, a Dell C4130 Intel Xeon E5-2680v3 processor from the palmetto cluster with 125GB

had to be used to train this network. In order to provide a reasonable comparison, the run time

for learning was limited to the maximum run time of the D3M (5020s). The centralized training

fails to even run on a standard computational platform. It is clear that the system decomposition

and asynchronous learning both allow for optimal learning, using fewer data points and practical

computational resources.

The method is first validated using a random data set of 1000 points. The random values

are drawn from inside the prosumer curve shown in Fig. 3.6. The results for random validation in

the form of a box plot are shown in Fig. 3.10. The Absolute Percentage Error (APE) is used as the

index to compare the accuracy of the output.

The results show that the system performs well for a random dataset. For every solution,

the maximum APE is less than 0.036%, the mean APE is less than 0.05%, and the third quartile

is less than 0.006%. The APE boxplot of the inter-cell power flow variables is tested on the same

dataset and shown in Fig. 3.14. The maximum APE has increased to 0.37%, but the mean and the

third quartile are 0.05% or lower.
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Figure 3.10: Statistical distribution of the D3M solution for boundary voltage magnitude absolute
percentage error for a dataset of 1000 random validation data points. The x-axis represents the
voltage magnitude variables that are extracted from the solution.

The internal cell voltages of SC1 and SC2 are shown in Fig. 3.11. The APE of the estimates

for SC1 and SC2 has an upper bound of 0.6%, which is rather high but still reasonable for typical

applications. The APE of the estimates for MC1 and MC2 are shown in Fig. 3.12 and 3.13. When

compared together, they have an upper bound comparable to SC1 and SC2. MC1 has an upper

bound of 0.14%, and MC2 has an upper bound of 0.6%. These are comparably high but still

reasonable for typical applications. However, the mean and the third quartile for these two output

distributions are lower than SC1 and SC2. These statistical indices show that the proposed approach

provides reasonable accuracy.

The same dataset is used to assess the performance of the *Onenet. The results show that

the Onenet has APE outliers in the range of 12%, 3rd quartile in the range of 6%, and an upper

bound of the mean of 6%. These values are comparatively higher than the results from D3. The

advantage of this network is that it is not required to iterate to find the solution. Therefore, the run

time per solution will be lower.
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Figure 3.11: Statistical distribution of the SC1 and SC2 internal node voltage magnitude absolute
percentage error.

Even if the D3M model is accurate for random data, it is also essential to be accurate at

the extreme data points. Therefore, the D3M performance is next tested at extreme boundaries.

The extreme data validation is carried out across eight data points that lie on the circumference and

are marked with a circle-cross in Fig. 3.10. The output of the simulation of this extreme data set

is shown in Fig. 3.16. The maximum APE of the output of this data set has increased to 0.06%,

which is a 170% increase. However, the box plot shows that the mean is still less than 0.01% for all

variables, while the third quartile is less than 0.02%. These values are acceptable for distribution

system power flow applications, especially considering this dataset only includes extreme data. This

points out the ability of the proposed computational cell to generalize over the entire state space.

3.6 Summary

The analysis presented for the study system shows the ability of the proposed D3M frame-

work to solve the power flow in a distributed and data-driven manner with a high level of accuracy.

The proposed method is straightforward and powerful. The modeling is highly automated and re-
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Figure 3.12: Statistical distribution of the MC1 cell internal node voltage magnitude absolute per-
centage error.

quires minimal manual intervention. The framework additionally ensures the privacy and security

of sensitive utility information.

An AI-based computational unit is used in the presented work, and it provides an excellent

ability to learn from the system data. It is clear from the results that the D3M can operate at a

high level of accuracy. Physical models can be less accurate due to approximations used in modeling

and system changes between model creation and operation.

Gradual degradation due to normal decay, as well as problems such as cable splice failure,

breaker contact degradation, and transformer insulation failure [73] cause significant changes in the

distribution system power flow. The proposed approach can adapt the model to system changes.

Assuming that the degradation is occurring over time, D3M can learn and estimate the physical

system’s performance. With a physical model, it is impossible to adapt on-the-go, since the changes

need to be measured, parameters have to be recalculated, and the simulation must be updated for

the changes to come into effect.

The application of a CCN-based power flow model on the sample test case shows the suitabil-
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Figure 3.13: Statistical distribution of the MC3 cell internal node voltage magnitude absolute per-
centage error.

ity of the new approach in modeling distribution systems and its enhanced performance compared

to the centralized modeling approach.
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Figure 3.14: Statistical distribution of the D3M solution for inter-cell power flow absolute percentage
error for a dataset of 1000 random validation data points. The x-axis represents different power flow
variables.
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Figure 3.15: Statistical distribution of the D3M solution for boundary voltage magnitude absolute
percentage error for the power flow estimation using the Onenet network. The same training dataset
and validation dataset are applied for network training and validation across all networks.
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Figure 3.16: Statistical distribution of the D3M solution for boundary voltage magnitude absolute
percentage error for a dataset of 8 extreme validation data points chosen on the circumference of
the prosumer power curve. The x-axis represents the voltage magnitude variables that are extracted
from the solution.
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Chapter 4

Distributed Volt-Var Curve

Optimization Using a Cellular

Computational Network

Representation

This chapter introduces the state of the art of power distribution system control, its chal-

lenges, and how they can be addressed using the proposed electric distribution system operation and

control framework. The proposed framework for optimizing the power distribution systems is based

on cellular computational networks and builds upon the data-driven modeling framework presented

in the last chapter.

The distribution system did not historically have ways to measure voltage or communicate

with other entities. Adding this functionality across thousand of small nodes was not cost-effective.

However, the proliferation of different technologies such as DER and IoT has created a cyber-layer

covering the power distribution system. The wide availability of sensing and communication with

minimal marginal cost has enhanced the distribution system operation and control system design

options. Voltage control in modern electric power distribution systems has become challenging due

to the increasing penetration of distributed energy resources (DER). The current state-of-the-art
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voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do

not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control

problem in a power system with a large number of DER. This paper presents a simple, scalable,

and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed

framework allows for data-driven distributed voltage optimization in a power distribution system.

This method enhances voltage control by optimizing volt-var curve parameters of inverters in a

distributed manner based on the power distribution system’s cellular computational network (CCN)

representation. The cellular optimization approach enables system-wide optimization. The cells

to be optimized may be prioritized, and two methods, namely, graph and impact-based methods,

are studied. The impact-based method requires extra initial computational efforts but thereafter

provides better computational throughput than the graph-based method. The DOF is illustrated

on a modified standard distribution test case with several DERs. The results from the test case

demonstrate that the DOF-based volt-var optimization results in consistently better performance

than the state-of-the-art volt-var control.

4.1 Introduction

The electric power system is undergoing a rapid transition from a fossil fuel-based, central

system to a renewable distributed energy resource-based distributed system due to the need to

enhance the security of supply, reduce cost, enhance sustainability, and battle climate change [74].

The bulk of this transformation is a result of the rise of the prosumager, a consumer that also

produces and stores energy [75]. All consumers who have installed distributed energy resources such

as solar PV and storage are prosumagers, and they are at the center of the energy transition. A bulk

of the prosumagers are connected to the power distribution system. Unfortunately, the distribution

grid infrastructure has been one of the most neglected infrastructures worldwide. It is the least

prepared to serve the rapidly transforming needs of the energy sector. For example, in some places

in the United States, the average age for the distribution of assets are between fifty to seventy years,

thus past the expected lifetime of thirty years [76].

Climate change combined with digitization has accelerated the decarbonization of the energy

sector, causing rapid electrification of multiple facets of human society [77]. The quality of life and

the functioning of society at large is increasing in dependency on electricity. The distribution grid
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is at the epicenter of transformation. Therefore, while there has been weak historic investment in

the distribution grid, the highest level of quality of service, resilience, and reliability is required at

the distribution grid. For example, it is critical to maintaining a high-quality voltage profile, at

all times, because of the sensitivity of the customer equipment, regulatory requirements, as well as

financial requirements to minimize losses in the distribution grid [78]. The need for performance is

the highest at the weakest link of the power system.

The multi-directional power flow needs to be supported by an aging distribution infras-

tructure initially designed for unidirectional power flow, which further escalates the complexity of

the problem. The stress on the distribution system and the need to improve the quality of service

delivered at the distribution system have increased simultaneously, highlighting the need to address

both of these challenges. Developing technologies will hasten the energy sector’s transition towards

a sustainable, cost-efficient, and secure future.

It is increasingly clear that ensuring voltage quality is one of the distribution system’s most

significant challenges. The main drivers of this voltage control challenge are the multi-directional

power flow from intermittent generation and new loads with considerable magnitude and low diver-

sity, such as Electric Vehicles. Voltage control is implemented using regulators and capacitor banks

in a traditional distribution system. Since the conventional distribution system consists of unidirec-

tional, top-down power flow with slow changes in demand, this method can be effectively used to

regulate voltage in a traditional distribution grid. However, with the rise of the prosumagers, where

solar PV dominates production, the variability of solar irradiation causes significant fluctuations

in the power flow resulting in a degraded voltage profile [79]. Unfortunately, traditional voltage

regulators are not fast enough to counter this problem since they depend on slow devices such as

mechanical tap changers [80]. Further, the cost associated with an increasing number of tap changing

will be significant to the operator due to the degradation of the equipment lifetime.

4.1.1 Optimization

Optimization can be executed in numerous ways. The classification of optimization based on

framework, implementation, objective function, and the solution is shown in Fig. 4.1 and described

below.

� Centralized versus Decentralized: The framework for optimization is centralized if data from
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Figure 4.1: The classification of optimization based on framework, implementation, objective func-
tion, and solution.

all the nodes/buses is communicated to a central point; on the other hand, it is decentralized

if the data is consumed locally. Therefore, both communication and sensing are limited to the

local node.

� System versus Cell versus Node: An objective function can be formulated in many ways. This

formulation (for a N node system) can be for system-wide optimization (all nodes), cell-wide

(a set of nodes/sub-system), or node optimization (local optimization).

– System-wide optimization (one objective function for the system) is executed in a cen-

tralized or decentralized manner. The ideal approach is to run it in a centralized way. A

decentralized approach does not guarantee a system-wide global optimal solution.

– Node optimization (N Objective functions), where each node has a unique objective

function, can be executed in a centralized or decentralized manner. The best approach

is a decentralized execution. A centralized approach does not guarantee a node-level

optimal solution.

– Cell-wide optimization (between 1 and N objective functions) refers to having one objec-

tive function per cell (sub-system). This is a decentralized approach, but decentralization

is lower than node optimization.

� Global versus Local: During any optimization, based on the problem being optimized, there
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could be multiple local minima and a global minimum. Local optimization seeks to find the

local minimum appropriate in a local search space. Global optimization seeks to find the lowest

minimum of all local minima in a global search space.

� Sequential versus Parallel: The optimization implementation is sequential if executed in a

sequential computing environment using a sequential algorithm. If performed in a distributed

environment using a parallel computing platform, it is parallel.

Different combinations of these approaches can be selected to satisfy the requirements of an

application. A distributed optimization framework is advantageous when a system-wide optimization

is sought while not having access to all data at a central location. The DOF decomposes the objective

function at the system level into many objective functions that can be solved independently, seeking

a globally optimal solution.

4.1.2 State-of-the-art

The distribution system operators solved the voltage quality challenges of the distribution

system by installing tap changers and capacitor banks. Whereas these conventional solutions are

still in use, the modern state-of-the-art solutions are centered around power electronics devices such

as d-statcom [81], edge of network grid optimizer [82] and dynamic voltage restorer [83]. However,

these components are costly to install and maintain while needing support infrastructure that might

not even be available to the DSO.

Instead of installing additional devices, this study navigates the possibility of optimally

leveraging the flexibility of using the prosumager-owned electronic power inverter to control the

distribution system voltage. This study assumes that the inverter’s idling reactive power capacity

is available to support voltage control [84]. The prosumagers can be compensated for this ancillary

service.

All optimization variants rooted in a centralized framework operate where a central unit will

process the measurements, perform necessary computation, and dispatch the appropriate operation

setpoints to a local controller. The local controller controls the prosumager. Each local node needs

to be directly connected to the central controller. The advantage of this approach is that the central

controller will have access to local measurements. Therefore, assuming perfect optimization, it

has the potential to operate at global optimality. The disadvantage of this approach is that the
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central controller will have to process multiple input and output data streams and solve for a large

number of variables. This approach can be applied for both real-time control [85] and optimal

power flow based operation [86] [87] [88]. Efforts to optimize the local reactive power control over

a lengthy time horizon have also been presented in the past [89]. However, the large magnitude of

optimization parameters and difficulty producing granular forecasts at the required accuracy make

the central approach infeasible for most use-cases. Additionally, a failure in the communication

link or the central controller would result in catastrophic failure, pointing to reliability challenges

associated with these single points of failure. Therefore, this approach is not robust nor scalable

and is constrained by the requirement to communicate large amounts of data and optimize at high

speeds. Consequently, this approach comes with untenable implementation challenges.

All optimization variants rooted in a decentralized framework rely only on local measure-

ments. Each node in the system will have its unique, and decisions will be taken only based on local

measurements. Therefore, this does not require computation and optimization on large data sets

or communication infrastructure. Consequently, local optimization is robust. However, since the

local optimizer is only aware of its local environment, the results will likely be sub-optimal. This

method has been extensively analyzed [79] [90] and forms the basis for the widely implemented state

of the art voltage control defined in the IEEE 1547-2018 standard [91]. However, since it is a local

framework, the synergies of the connected resources will not be leveraged to gain local and global

optimization, and the contributions will be highly skewed based on the spatial distribution of the

prosumers in the distribution feeder.

For example, in the distributed optimization framework presented in this paper, there is

limited communication between nodes, and optimization is executed across a sub-set of the nodes.

Similar approaches have been investigated in recent studies such as [92] [93] [94]. However, these

approaches do not have a cell-wide objective function. Therefore, the number of iterations required

for each solution, the assumptions for system modeling, and the constraints on the maximum possible

prosumers limit their applicability.

4.1.3 Contributions

This paper proposes a method to optimize multiple volt-var curves of DERs in a power

distribution system with distributed cell-based optimization to address the challenges mentioned

above. The main contributions of this paper are:
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� A scalable distributed optimization framework has been developed for concurrent multiple

volt-var curve optimization. This method is based on creating a cellular computation network

representation of the electric power distribution system with DERs, which allows for distributed

data-driven modeling and optimization of the distribution system.

� A ranking method for cell prioritization for optimization has been developed. Cell prioritization

for optimization based on a formulated impact ranking criteria improves the computational

throughput for determining optimal volt-var curve parameters. Two methods, namely, graph

and impact-based methods, are studied.

� The application of DOF on a modified IEEE 34 bus test system with 100% DER penetration

has been illustrated. The operational results obtained with volt-var curves optimized using

the DOF consistently outperform those obtained state-of-the-art volt-var curves.

The study is organized as follows: section 4.2 formulates the problem statement, section 4.3

describes the framework for distributed VVC optimization, and section 4.4 describes the simulations

used to demonstrate the framework. Section 4.5 shares the results, as well as the insights attained

through the results. Section 4.6 concludes the study.

4.2 Problem formulation

Given a power distribution system with N nodes/buses the net power injection at bus i,

Sinj,i, is given by,

Sinj,i = Sinv,i − Sdem,i = fi(V, δ) (4.1)

Where, Sinv,i = (Pinv,i+jQinv,i), represents inverter power injection at bus i and Sdem,i = (Pdem,i+

jQdem,i), represents load power consumption at bus i. P , Q, denote active power and reactive power

respectively. V and δ represents the vector of all node voltage magnitudes, and voltage angles. The

N simultaneous equations generated by applying (4.1) for all N nodes define the power flow of the

system. The droop function at the bus i, gi, which defines the inverter reactive power dispatch at

time, t+ δt, is written as,

Qinv,i(t+ δt) = gi(Vi(t)) (4.2)
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V2 = V1 + dV1

V3 = V2 + dV2

V4 = V3 + dV3

(4.3)

The function gi is the piece-wise linear curve shown in Fig. 4.2 and defined below.The

controllable variable for one inverter, xi, has a dimension of six as given in (4.4). The vector xi

defines the VVC of the node i.

gi (Vi) =





Q1 Vi ≤ V1

− Q1

V2 − V1
(Vi − V2) V1 < Vi ≤ V2

0 V2 < Vi ≤ V3
Q2

V4 − V3
(Vi − V3) V3 < Vi ≤ V4

Q2 V1 ≤ Vi

xi = {Qi,1, Qi,2, Vi,1, dVi,1, dVi,2, dVi,3} (4.4)

The optimization problem is formulated as follows:

min
x∈S

Usys =
1

T

T∑

i=1

(
1

N

N∑

i=1

(Vi − Vrated,i)2)0.5 (4.5)

subject to the constraints given by (4.6).

Vrated,i is the ideal value for voltage magnitude at node i and T is the time period, and S is

the solution space of the problem. The overall goal is to optimize voltage quality over a time period

of T . Therefore, the average root mean squared value of the voltage magnitude, defined in (4.5),

was chosen as the objective function.
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Reactive power (pu)

Voltage (pu)

Q1

Q2

V1 dV1

dV2 dV3

Figure 4.2: The volt-var curve as defined in IEEE 1547 standard. The curve is optimized by changing
the six variables shown on this plot. The x values of the VVC is given by (4.3).

Q1,min < Qi,1 < Q1,max

Q2,max < Qi,2 < Q2,max

V1,min < Vi,1 < V1,max

dV1,min < dVi,1 < dV1,max

dV2,min < dVi,2 < dV2,max

dV3,min < dVi,3 < dV3,max

(4.6)

The optimal solution, x, is a N × 6 matrix and takes the form given in (4.7).

x =




x1
...

xi
...

xN




=




Q1,1 Q1,2 V1,1 dV1,1 dV1,2 dV1,3
...

...
. . .

...

Qi,1 Qi,2 Vi,1 dVi,1 dVi,2 dVi,3
...

...
. . .

...

QN,1 QN,2 VN,1 dVN,1 dVN,2 dVN,3




(4.7)
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Figure 4.3: Overview of the proposed DOF.

4.3 Distributed optimization framework (DOF)

The structural overview of the framework is shown in Fig. 4.3. The developed implemen-

tation of the DOF has a decentralized execution, cell-wide objective function formulation, a global

solution, and is implemented sequentially.

In the first step of the proposed framework, the CCN representation of the EPDS is de-

veloped based on [13]. Next, the CCN representation is used for distributed optimization based on

three structural levels: node, cell, and system. The inverter devices are physically located at the

nodes, and they contribute to the distributed optimization by sharing local measurements with the

cell level operator and by adapting the volt-var curves based on cell operator signals.

The optimal volt-var curves for all nodes are evaluated at the cell level of the distributed

optimization process. The utility function for optimization is limited to local optimization, and

therefore, the optimization variables are the set of x vectors for local volt-var curves. The system-

level iterative optimization algorithm uses the CCN representation to drive cell optimization.

61



4.3.1 CCN representation of the EPDS

The developed framework optimizes the volt-var curve of the inverters connected to the

power distribution system, using the CCN representation of the EPDS in a distributed manner.

In general, a cellular computational network consists of interconnected cells that interact with each

other to realize a common goal. This approach has been used for distributed modeling, optimization,

and control of power systems [95] [96] in the past. This study utilizes the cellular computational

network representation for a power distribution system that was developed in [13] and applies it

for distributed optimization of voltage control. The main advantage of this approach in comparison

to other methods such as [89][93] is that it allows for the collection of nodes into a cell structure

for efficient distributed optimization across a near-future time horizon. Based on available compu-

tational resources and the design goals, the designer has the flexibility in deciding on the level of

optimization that needs to be carried out.

4.3.2 Node level control

The overview of the node-level control is shown in Fig. 4.4. In this method, the state-of-the-

art VVC is extended by appending the ability to change the volt-var curve parameters dynamically.

Therefore, the parameters of the volt-var curve (x) are an external input to the inverter controller.

The external information is provided by the cell-level optimization function and requires a commu-

nication channel. The distribution system modeling method presented in [13] is used in the selection

of the cells to form the CCN representation. Since the DOF additionally requires modeling of the

impact of the DER, [13] is extended to include DER control.

4.3.2.1 DER modeling

The model applied for DERs in this study assumes that the consumer generation is based

on solar PV plants. As described in the introduction, solar PV is the dominant DER in distribution

systems, and it is expected to grow exponentially in the next few decades. If the primary energy

source is changed from PV, it is still possible to use the presented approach to model any other DER

by changing the generation model.

The source of energy is solar radiation which the PV cells convert to electricity [97]. Based

on the PV characteristics, the maximum power dc power output from the PV plant at time t, PDC(t),
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Figure 4.4: The overview of the prosumer based PV inverter control system. The volt-var curve
parameters (x) is changed by the cell operator. This is the node level optimization of the DOF.

can be determined by (4.8). Here, Ppv,rated is the maximum power from the PV array, Irrad(t) is the

irradiation level at time t, and Td(t) is the temperature derating factor from the power temperature

characteristic curve. Here, PDC is assumed to vary linearly with irradiation.

PDC(t) = Ppv,rated · Irrad(t) · Td(t) (4.8)

The model of the inverter is given in Fig. 4.4. Typically the power setpoint for the inverter

is based on an MPPT algorithm. For the time step of interest, it is assumed that MPPT-based

reference value is equal to Pref . The setpoint for reactive power, Qref , is determined based on the

control loop shown in Fig. 4.4. The Qref is determined based on the inverter capability curve,

the user selected priority (operation) mode (active power or reactive power priority), and the droop

function (volt-var curve).

Assuming the only inverter capability constraint is current carrying capacity and inverter

reactive power priority operation mode, the maximum reactive power that is available for dispatch,
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Qmax, is given by,

Qmax =
√

(Smax)2 − (P ref )2 (4.9)

The value of Qmax is an input to the limiter function, and it changes with solar irradiance.

The function g, which defines the volt-var characteristics of the active DER, shown in Fig. 4.2 has six

independent parameters. The first two parameters define the maximum reactive power contribution

(y-axis), and the last four determine the voltage for the reactive power contributions. The limiter

considers the constraints and user-selected operation mode and provides the setpoints to the power

electronic converter.

4.3.3 Cell optimization

The algorithm used for the optimization of cell k is shown in Fig. 4.5. An optimizer optimizes

the selected cell. A time-series simulation that uses both the system model and expected operational

data serves as an input to the optimizer. The operational data, the data set of independent load flow

variables (loads and generation) for the optimized time window T , could be a near-future forecast, a

persistent forecast, or a sliding window average data set. The optimizer computes the best possible

set of optimization variables for the cell, xcell(k). This value is then updated in the system model.

The objective function for the optimization is the cell utility (Ucell). Ucell takes into account

the set of internal cell voltages and the boundary node voltage of the neighboring cells. The cell

utility function, Ucell, is the root mean squared voltage and is given by (4.5). Here, m includes nodes

belonging to cell k and the immediate neighbor nodes of cell k.

Ucell =
1

T

T∑

i=1

(
1

m

m∑

i=1

(Vi(x)− Vrated)2)0.5 (4.10)

If a hypothetical distribution system consists of n cells, each of which has equal m volt-var

curves, central optimization will require n×m×6 variables to be optimized. However, the proposed

distributed approach will only need m× 6 parameters to be concurrently optimized. Therefore, the

DOF significantly decreases the dimension of the optimization problem. The cell optimizer could

be placed on a computing platform in the distribution system control center or placed on multiple
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Figure 4.5: The implemented algorithm for cell level optimization.

spatially separated physical devices.

4.3.4 System optimization

The system-level optimization is carried out by iteratively optimizing the cells. The priority

for selecting cells for system optimization is based on an index defined as the cell rank, from the

lowest to the highest CR. Two approaches for choosing the cell rank are presented in this study.

The algorithm used for the optimization of cell k is shown in Fig. 4.6. The first step for system

optimization is to develop the CR table. This provides the sequential order for cell optimization.

Next, cell-level optimization of the cell with the current lowest priority (of non-optimized cells) is

carried out. In the next step, the system objective function, Usys, is evaluated, and a decision is

made to iterate again or to stop the system optimization based on the stop criteria. The stop criteria

for system optimization are either reaching maximum cell iterations or the required minimum value

for system utility.

4.3.4.1 Graph-based cell rank evaluation

In the graph-based approach, the CR is based on the graph structure of the CCN. The

topology is processed, and the CR is given based on the tree traversal order from the furthermost

leaf cell to the root, covering every cell in the graph. The furthermost leaf cell is given the lowest

CR and will have the highest priority in system optimization. This approach is simple and only
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Figure 4.6: The implemented algorithm for system level optimization.

requires topology information.

4.3.4.2 Impact-based cell rank evaluation

The objective of proposing the impact factor-based approach is to increase the performance

of the iterative optimization. In this approach, the CR is based on a calculated impact factor that

considers the ability of any cell to contribute to the optimization of the system voltage. The impact

factor evaluates the combined effect of the system voltage sensitivity to reactive power and the

reactive power injection capability of a cell.

The first step in the process is to find each cell’s total apparent power capability. Next,

the available reactive and active power are assembled to create a cellular virtual power plant rep-

resentation. Each cell has a virtual reactive (Qcell) and active power load and generation. This

step requires central information gathering and is used only to prioritize the optimization. Next,

an artificial reactive power generation of δQ is injected into each cell. The δQ is distributed across

the nodes proportional to the installed capacity of the generation. The Usys sensitivity to this δQ is

next evaluated by running an independent power flow and calculating the
∂Usys

∂Qcell
value of each cell.
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The impact factor (IF ) of all the cells is then calculated by using (4.11). If the operating system

point changes significantly, then a new impact factor calculation needs to be carried out since the

impact factor is dependent on the power flow Jacobian, and the power flow Jacobian varies with the

operating point.

IF = Qcell ·
∂Usys

∂Qcell
(4.11)

4.4 Case study

The case study is based on a modified IEEE 34 distribution system given in Fig. 4.7. It is

a medium-sized long radial distribution system that originally existed in Arizona and had voltage

control challenges due to its length. The system has 95 nodes and 68 loads. This system was modified

by adding 28 PV inverters shown in Table 4.1. The system includes twenty-two three-phase PVs

and eight single-phase PVs distributed across the feeder. The active power generation is limited

to the load active power consumption. Therefore, this modified test case describes a system with

approximately 100% DER penetration. The solar inverters are assumed to be rated for 120% of the

rating of the connected PV. The irradiance curves are assigned to ensure the spatial correlation of

solar irradiation and are based on four solar irradiation curves for the PVs given by Fig. 4.8. The

loads are all set to four time-varying, and unique load curves are shown in Fig. 4.9. The loadshapes

are assigned randomly to the loads. They are based on load time series data extracted from [98].

The PV irradiation shapes are assigned based on spatial information. The assignment of different

loadshapes to power conversion components is given in Table 4.2. These time-variant loadshapes

are the source of dynamics in this system. A Particle Swarm Optimization [99] based optimizer is

selected for the cell optimization.

4.5 Results and discussion

Simulations are conducted for the two cell ranking strategies, and the results are compared

with the state-of-the-art approach. Fig. 4.10 compares the utility between CCN optimized and

standard VVC across a time frame of 1 minute. The utility value for the standard VVC is significantly

higher than any of the two CCN optimized values across the time frame. The impact factor-based
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Figure 4.7: The CCN representation of the IEEE 34 bus system used for distributed optimization

Figure 4.8: Solar irradiation variation across the one minute time frame of interest

approach shows better performance when compared to the graph-based approach. The difference

in performance is comparatively significant in terms of the speed of optimization based on the
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Table 4.1: DER connected to the test case.
Node Inverter size (kVA)

802 60
806 60
808 32
810 32
816 10
818 68
820 342
822 274
824 90
826 80
828 14
830 51
834 248
836 97
838 56
840 83
842 19
844 661
846 96
848 135
852 8
854 8
856 8
858 39
860 392
862 56
864 4
890 604

Table 4.2: Assignment of different loadshapes to power conversion components in the case study.
Dynamic shape Power conversion component
Solar 1 PV 802, 806, 808, 816, 824, 810, 818
Solar 2 PV 820, 822, 856, 826, 828, 830, 832
Solar 3 PV 864, 844, 848, 854, 858, 834, 836
Solar 4 PV 838, 860, 862, 840, 842, 846, 890
Load shape 1 Load 844, 802, 828, 854, 858, 836, 862
Load shape 2 Load 860, 830, 808, 824, 832, 838
Load shape 3 Load 890, 834, 836, 840, 864, 856
Load shape 4 Load 848, 806, 818, 820, 822, 816, 826

results shown in Table 4.3 and Table 4.4. The impact factor calculation requires an extra step of

computation, as shown in Table 4.5. However, the additional computation step results in the impact

factor requiring four fewer steps to arrive at the utility value of 0.0218 and therefore is well justified.

Fig. 4.11 compares the corresponding mean voltage across the feeder. As expected, the mean voltage
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Figure 4.9: Load variation across the optimized one minute time frame

Table 4.3: Sequentially optimized utility values
No Cell U.sys Unet.MC1 Unet.MC2 Unet.MC3 Unet.MC4 Unet.MC5 Unet.SC1 Unet.SC2 Unet.SC3 Unet.SC4
NA wo VVC 0.0720 0.0567 0.0628 0.0725 0.0791 0.0830 0.0600 0.0802 0.0834 0.0831
0 Std VVC 0.0327 0.0396 0.0291 0.0289 0.0284 0.0306 0.0247 0.0227 0.0307 0.0302
1 SC4 0.0300 0.0394 0.0284 0.0259 0.0234 0.0243 0.0246 0.0187 0.0244 0.0240
2 MC5 0.0232 0.0368 0.0217 0.0150 0.0094 0.0077 0.0186 0.0088 0.0078 0.0073
3 SC3 0.0220 0.0359 0.0192 0.0116 0.0063 0.0047 0.0163 0.0070 0.0047 0.0047
4 MC4 0.0218 0.0358 0.0187 0.0110 0.0060 0.0047 0.0159 0.0068 0.0047 0.0048
5 SC2 0.0218 0.0357 0.0186 0.0109 0.0060 0.0049 0.0158 0.0061 0.0049 0.0050
6 MC3 0.0214 0.0353 0.0173 0.0096 0.0057 0.0052 0.0147 0.0061 0.0052 0.0053
7 MC2 0.0210 0.0344 0.0151 0.0080 0.0058 0.0058 0.0136 0.0067 0.0058 0.0063
8 SC1 0.0210 0.0342 0.0144 0.0083 0.0074 0.0074 0.0101 0.0078 0.0074 0.0075
9 MC1 0.0209 0.0339 0.0142 0.0083 0.0075 0.0075 0.0099 0.0079 0.0075 0.0077

of the CCN-based approach is significantly lower than the standard VVC. The calculated optimal

power setpoints define the operation point to which the volt-var curves are shifted. The results

clearly show that the local static volt-var control is insufficient to ensure optimal operation. This is

due to the nature of droop-based control, where it is impossible to address the inherent steady-state

error.

Figs. 4.8 and 4.9 show the source of the dynamics in the system that were applied to the

loads and the PV plants. Fig. 4.12 compares the corresponding voltages of three randomly selected

nodes in the system. The voltage of the CCN-based approaches is higher in quality and close to
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Figure 4.10: Comparison of Utility across the optimized one minute time frame

Table 4.4: Impact factor based priority based CCN: calculated utility function values for system and
cells

No Cell U.sys Unet.MC1 Unet.MC2 Unet.MC3 Unet.MC4 Unet.MC5 Unet.SC1 Unet.SC2 Unet.SC3 Unet.SC4
0 Std VVC 0.0327 0.0396 0.0291 0.0289 0.0284 0.0306 0.0247 0.0227 0.0307 0.0302
1 SC3 0.0217 0.0355 0.0182 0.0107 0.0059 0.0047 0.0159 0.0071 0.0047 0.0051
2 SC2 0.0216 0.0354 0.0180 0.0105 0.0061 0.0048 0.0157 0.0068 0.0047 0.0051
3 MC5 0.0216 0.0355 0.0184 0.0111 0.0063 0.0045 0.0160 0.0066 0.0045 0.0046
4 SC4 0.0216 0.0356 0.0184 0.0111 0.0059 0.0037 0.0159 0.0059 0.0037 0.0035
5 MC2 0.0212 0.0347 0.0163 0.0095 0.0061 0.0047 0.0147 0.0070 0.0047 0.0050
6 SC1 0.0212 0.0346 0.0156 0.0096 0.0072 0.0061 0.0110 0.0079 0.0061 0.0061
7 MC3 0.0209 0.0341 0.0144 0.0085 0.0070 0.0062 0.0100 0.0080 0.0062 0.0062
8 MC4 0.0209 0.0342 0.0146 0.0086 0.0068 0.0059 0.0102 0.0078 0.0059 0.0060
9 MC1 0.0208 0.0339 0.0144 0.0086 0.0069 0.0062 0.0101 0.0080 0.0061 0.0062

the desired value of 1 pu. Fig. 4.13 compares the performance of the graph-based method with

the impact factor-based approach. The results show that the computation time per optimized cell

is comparable for both methods, whereas the utility decreases much faster for the impact factor-

based approach. Therefore, the impact factor-based approach performs better than the graph-based

approach.

Fig. 4.14 compares the volt-var curves for the three operation conditions. Based on Table

4.4, SC3 is the first cell to be optimized in the impact-based method. From the volt-var curve, it

is observed that node 844 has significant reactive power absorption in comparison to the other two
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Table 4.5: Result from the impact factor evaluation based on available reactive power resources and
Usys for cell reactive power injection

Cell dUsys/dQ Q Q.dUsys/dQ Sequence
SC3 0.0000300 2730 0.0819 1
SC2 0.0000333 1811 0.0603 2
MC5 0.0000299 1921 0.0575 3
SC4 0.0000300 765 0.0230 4
MC2 0.0000191 541 0.0103 5
SC1 0.0000149 684 0.0102 6
MC3 0.0000239 228 0.0054 7
MC4 0.0000293 161 0.0047 8
MC1 0.0000068 555 0.0037 9

Figure 4.11: Comparison of voltage across the optimized one minute time frame

methods. Since 844 is the largest DER, it is clear that cell SC3 is facing an overvoltage condition,

which is compensated by selecting the volt-var curve such that SC3 is absorbing reactive power.

Instead of the adaptive optimization, if standard VVC was used, the cell’s potential to contribute

to voltage control of the system would have been unused. Additionally, the impact factor-based

approach can accelerate system optimization since it optimizes in merit order.
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Figure 4.12: Comparison of voltage of 3 randomly selected nodes across the optimized one minute
time frame

4.6 Summary

Due to the increasing penetration of distributed energy resources (DER), Voltage control

in modern electric power distribution systems has become challenging. The current state-of-the-art

voltage control is based on static and pre-set DER volt-var curves and do not provide sufficient

flexibility to address the dynamic aspects of the voltage control problem in a power distribution

system.

This study has presented a distributed optimization framework for volt-var curves of DERs

in electric power distribution systems. The DOF is based on a cellular computational network

representation of the electric power distribution system. The proposed method enhanced the system

voltage control by optimizing multiple volt-var curve parameters concurrently. The method had

three functional levels, node, cell, and system. The node-level used the adaptive VVC setpoints

generated by the cell level. The cell level optimized the utility for the cell and generated the VVC

set points for the nodes. The system-level iteratively called on cells based on the cell ranking and

converged the cell parameters towards near-global optimality.

The cellular optimization approach enabled system-wide optimization. The cell optimization

was prioritized using two methods, graph, and impact-based methods. The impact-based method
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Figure 4.13: Comparison of optimization performance. Here Tgraph and Timpactfactor represents
the cumulative time for each iteration, where time is given in the right y axis, and the Ugraph and
UImpactfactor gives the Utility value for each iteration, where utility is shown in the left y axis.

Figure 4.14: The volt-var curves for cell SC3

required extra initial computational efforts but thereafter provided better computational throughput

than the graph-based method. The DOF was illustrated on a modified standard distribution test

case with several DERs. The results from the test case demonstrated that the DOF-based volt-var
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optimization results in consistently better performance than the state-of-the-art volt-var control.

The proposed approach needed less computation and allowed for distributed scalable optimization

of a power distribution system. A potential future study is to extend cell DOF from sequential to

parallel implementation to allow for accelerated performance.
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Chapter 5

A Real-Time Distribution System

Simulation Laboratory Testbed

This chapter describes the design of an innovative testbed to demonstrate the real-time

simulation of a distribution system. In the current state-of-the-art, studies are usually executed

offline using software such as PSCAD [100], Matpower, OpenDSS, and CYME [101]. Offline studies

are a vital component of power distribution system design. Still, it cannot reproduce some realistic

scenarios. It does not provide the functionality to test features that need to be considered in

modern power system design, such as connected grid-edge devices, communication, human-machine

interfaces, and control. Demonstrating an operation and control method on a real-time system is

the closest to real-world implementation. Successful implementation on a real-time system builds

confidence in the field implementation. It allows for testing the operation in untested scenarios when

simulated in a non-real-time system.

When conducting real-time simulations, it is important to relevant data of device charac-

teristics to ensure that realistic scenarios close to the real world system are captured. Ideally, if

an operator is trying to understand the behavior of the system by modeling the part of the system

owned by the operator, it is important to be able to model, capture and integrate the characteristics

of the devices that are outside of the ownership and control of the owner. In addition the emulated

external device characteristics need to include spatial and temporal correlation.

The contribution of the work presented in this chapter includes the design and implementa-
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tion of a comprehensive cyber-physical testbed for power distribution system real-time simulations,

as well as a method that allows capturing the dynamics of devices in a real system, even if they are

not controllable. In a deregulated power system, only parts of the distribution system are typically

operated by a single operator. Based on the data-in-the-loop method introduced in this chapter,

an operator can simulate the operation of their distribution system more realistically by projecting

the real-time characteristics of the uncontrollable devices that are potentially owned, controlled,

and operated by other operators. Using the data-in-the-loop approach presented in the chapter, the

quality of the simulations, and the insights obtained, will be more realistic.

5.1 Introduction

The typical distribution system simulations are based on quasi-static time series analysis,

which assumes that the system reaches a steady-state before the end of each time step. It is also

assumed that there are means to get the measurements from the system, run optimizations, update

field controls, and provide the output to the distribution system components. However, it is vital to

consider the constraint and technology available to measure, communicate, and compute in a natural

system. Additionally, the system performance considering the real-time constraints and operating

conditions in terms of stability and performance degradation need to be considered, and methods

to address these challenges need to be integrated into the system design. A real-time testbed helps

first to understand and then address these challenges. A real-time simulation and testbed bring

out more of these implementation challenges helping to close the gap between academic research to

application in the industrial setting.

If an ideal real-time simulator were to be run alongside the real system, the output of both

systems would match in each instance in time. Additionally, there will be means to measure the

values and connect external devices to the real-time system. The response and interaction with

the external devices would be the same for both the real system and the simulator. The different

components that can be tested for a design using a real-time testbed are shown in Fig. 5.1. The

generic real-time simulator can implement devices with controls inside the simulator yet still perform

in real-time and connect and interface with external devices. The measurements from both external

and internal devices can be communicated via physical communication channels to different external

Internet of Things (IoT) control devices ) connected via a cyber layer. These IoT-based devices will
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Figure 5.1: High level overview of the various types of components/sub-system that can be tested
using a real-time hardware-in-the-loop simulation

communicate with the simulated devices inside the simulator and the actual devices in the course

of system operation. The different types of real-time simulation systems currently available to users

are analog systems [102], which are miniature versions of the simulated real system, and digital

systems [103]. Digital simulators are widely used since they can be easily reconfigured to different

model systems. The integration with natural controls or real hardware is possible by interfacing the

digital simulator using analog to digital and digital to analog converters, among other supporting

signal conditioning devices.

5.2 Real-time power system simulations

For a simulator to be given the ’real-time’ status, the internal computation time for one

simulation point should be less than that of a simulation time step. For a typical real-time simulation

that represents fast dynamics such as electromagnetic transients, the typical time step is in the range

of 50 µs [103] [104]. In the state-of-the-art of the real-time simulators, some simulators can go down

to 50 ns [105], thus having the ability to simulate the fast switching transients associated with

modern power electronic converters.

The bare-bones version of a real-time simulator can only execute a fast power system simula-
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tion. The accelerated performance optimizes the workflow for power system studies [106]. However,

it does not have any other value except for saving time. The next version of a real-time simulator

can interconnect to external devices. These simulators have analog or digital interfaces that can

connect to external devices. However, the simulator functionality is limited to connecting to control

interfaces. This type of simulator is widely used and has a range of use cases, including testing

devices such as protection relays and power system component controllers. The control-in-the-loop-

based real-time simulator can be enhanced by integrating with power amplifiers and providing the

ability to interface power signals/devices with the RTDS and provide the simulator the ability to

test a complete power apparatus. These are highly valued real-time simulators and have a range of

use cases.

Another version of the real-time simulation, which is introduced and proposed in this chap-

ter, is called a data-in-the-loop simulation. Here, data from a live device is interfaced with the real-

time simulation to simulate the real operational conditions of a live field device. The non-availability

of actual system data for real-time simulation has been a significant drawback to understanding the

functional characteristic of a system using simulation, especially when it comes to real-time func-

tionalities. The data-in-the-loop simulation approach addresses this research gap. The objective of

this testbed is to show the validity of the data-in-the-loop approach to integrating live devices and

show the real-time operational capabilities and its practical field implementation.

5.3 Design of real-time distribution system test-bed

The functional overview of the real-time distribution system testbed is shown in Fig. 5.2.

The designed system consists of four different subsystems. The core subsystem is the real-time

simulator which consists of a real-time simulator and has integrated communication modules. The

distribution system is modeled in the real-time simulator. It includes passive components such

as lines, transformers, and active systems such as DER-based power generators and loads. The

measurements taken from the distribution system simulation are communicated via a given protocol

using a communication network to an IoT.

The Internet of Things (IoT) includes a data manager, a cell advanced distribution man-

agement system (C-ADMS), and data storage. The cell archives the system measurements, and

processes, shares the data with the C-ADMS, manages the data visualization, processes and condi-
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tions the data from the field devices, and exchanges information with neighboring cell IoTs. The

C-ADMS runs an optimization algorithm and calculates the setpoints for the power distribution us-

ing the data provided by the data manager. The calculated setpoints are then sent to the simulated

devices in the distribution system via the data manager. The inputs to the C-ADMS also consider

information from the local users, who are allowed to control the local system. The data visualization

is provided via a server hosted on the IoT and managed by the data manager. This allows for remote

access to the cell visualizations. The data for the emulated field devices are also sent to the IoT.

This data stream is conditioned for consumption and shared with the real-time simulator by the

data manager. The overarching design principle revolves around spatially distributed IoT platforms,

and therefore, it does not have a single point of failure or a single control room.

Communication
module(s)

Distribution
System

Data
Visualization

Real-time Simulator

Data 
manager

Storage

IoT

C-ADMS

to other cell IoTs

Field 
devices (data 
in the 
loop) 

set points

System
measurements

Processed
field
data

Figure 5.2: Overview diagram of the real-time simulation testbed.
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5.3.1 Communication

Based on the overview diagram, it is clear that communication plays a significant part in the

testbed. Communication modules are required for information translation at the simulator, at the

data manager, and between the IoTs and the field devices. This requires a reliable communication

network, but the system should also be designed to operate robustly even if a communication link

fails. The network could have a heterogeneous physical layer - with options ranging from Ethernet

to serial protocol and have unique application layer protocols, ranging from a raw TCP socket to

protocols such as IEEE C37, DNP3, and Modbus. The scalability of the communication architecture

is a significant design challenge.

5.3.2 Data-in-the-loop simulation (DIL)

The implemented data-in-the-loop simulation can integrate a distribution network connected

live device to a real-time simulation and recreates realistic operational conditions in a distribution

system simulation. The overview of the data-in-the-loop method is shown in Fig. 5.3. The emulated

field device is connected to a device IoT that measures and converts the measurements to a data

stream. The data is communicated to a remote IoT using a communication network. The remote IoT

parses the protocol and uses a data processor to store the information while re-streaming it to the

real-time simulator using a data reader and protocol parser. The communication (IO-Input/Output)

module of the real-time simulator receives the data from the communication network. The data is

then unpacked, parsed, and passed on to a data model. The data model uses the streaming data

to recreate the impact of the emulated field device and integrates the emulated device as a power

system component into the real-time simulation.

5.4 Implementation of laboratory testbed

The proposed distribution system testbed is set up in the Real-time Power and Intelligent

System (RTPIS) laboratory at the Clemson University and is centered around one of the real-time

digital simulators available in the lab, manufactured by Opal-RT technologies [107]. The hardware

modules are used to create the different interfaces required for interfacing with external components

and integrating both the hardware and the software being tested. The modified IEEE 34 bus system

shown in Fig. 5.4 is implemented in the real-time system. Fig. 5.4 also identifies the different
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Figure 5.3: Overview diagram showing the operation of the data-in-the-loop process.

components that are used to create the testbed. The laboratory setup is used to illustrate the real-

time operation of the testbed. Within the implementation of the testbed, a multitude of Open source

software and platforms, vendor-specific and custom-built software is implemented and installed in

the Clemson RTPIS lab as shown in Fig. 5.5.

5.4.1 Real-time simulator

The Opal-RT technologies OP5607 real-time simulator is the core component of the testbed.

The Artemis solver is used to solve the power distribution system modeled using the Matlab Simulink

Simscape toolbox. An EMTP version of the IEEE 34 test case is modeled using the Artemis toolbox

and is simulated in real-time on the OP5607 using the RTlab software. The IEEE 34 test case is

modified by integrating dynamic elements into it. The Artemis toolbox solver is used to run the
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system at 50µs time steps, and the rack has two cores rated at 3.3 GHz (x86 architecture) to utilize

for the simulation. The Opal-RT is connected to the cell IoT via the Ethernet-based local area

network. The communication to and from the IoT is implemented by creating TCP servers and

clients at the end of the IoT and the Opal-RT simulator.

5.4.2 Implementation of DIL

The R06 PV plant (1 MW capacity) of the Clemson University is interfaced by acquiring

the micropmu data and then conditioning it to match the input to the real-time simulation. The

internal generator in the simulator is controlled to match the real-time output of the R06 by using

a TCP socket communication channel. Similar to the PV plant, the Riggs hall building load is

captured in real-time by the micropmu, and a load is controlled inside the simulation to project the

characteristics of this actual load.

The generic process for data-in-the-loop simulations is given in Fig. 5.3. The voltage and

current are measured via VTs and CTs for both devices emulated in this testbed. A communication

module formats and streams the data in IEEE C37.118.1-2011 protocol via the local area network.

The micropmu [108] that provides this functionality is a Powerside Pqube 3 module. The physical

layer of the connections is Ethernet. The data streams are parsed, processed, and stored at the IoT

using the Openhistorian [109] that runs the IoT platform. The IoT platform is an Intel computer

installed with a Xeon 6234 3.30 GHz processor running on a 64-bit Windows 10 OS. It includes

64GB of RAM and 16GB NVIDIA Quadro RTX 5000 GPU. The Openhistorian also calculates the

active power from the extracted voltage and current phasor angles. The power values are streamed

through a custom-built Python processing engine which serves the functionality of both TCP client

and data access from the Openhistorian. It also performs data conditioning, where the fast data

stream from the PMU is downsampled to match the system requirements. The visualization web

server is a Grafana [110] dashboard that runs on the IoT platform. The Grafana client can be run

either at the local IoT or at a local IoT.

The TCP data stream is received and parsed by TCP Socket servers set up at the IO interface

of the Opal RT system. The data are then connected to the signals in the Simscape simulation and

integrated to the simulation through a data model. An example of the data model is the PV model

that emulates the R06 PV plant. The data model for a PV plant is based on the diagram given in

Fig. 4.4, where the P ref value from the MPPT is substituted by the value received from the IoT.
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The same design method can be used to emulate other types of field devices. The data-in-the-loop

simulation plots shown in Fig. 5.8 verify the accuracy of the simulated power plant by comparing

the output from the PV plant running on the Opal RT real-time simulation with the actual PV

plant power measurements.

5.4.3 IoT

Each cell has a separate interface and optimization engine. This could be either a physical

or virtual separation. The IoT is the cell controller, and optimization is run on this controller.

This also manages cell-level communication. IoTs communicate via TCP sockets, and visualization

is using a Grafana dashboard. An external Grafana client can connect to the Grafana to stream

the visualization across the network. Python scripts control data conditioning, calculation, and

TCP socket-based data communication. The operation and control software will use the provided

information to control and optimize processes and communicate the resulting actions to the physical

and simulated controllers of the distribution system-connected devices.

5.4.4 Other devices

The real-time simulation could also have other devices such as integrated digital switches

and HMI for operators. The system can get the status of different devices such as circuit breakers

via the digital output interfaces of the simulator. The digital inputs can integrate digital controls

such as circuit breaker trip or disconnection of a circuit breaker via a manual or automatic operator.

5.5 System demonstration

A sample view from the Grafana dashboard that provides visualization of the entire R06

PV plant active power output and the total Riggs hall load power consumption is shown in Fig.

5.9. The real-time impact of providing active grid support from the PV plant at night time with

no active power generation is shown in Fig. 5.10. In this dashboard view, the Riggs Hall load stays

close to 30 kW, and the PV plant’s active participation is turned on to demonstrate the real-time

performance. The voltage is at a low 0.898 when there is no active reactive power participation. The

voltage increases to a healthy value when the PV plant changes to provide reactive power support.

The system operates with the PV plant turned off time 50 seconds, at which point the PV plant
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is connected. The PV plant vvc operation mode is turned on at 100 seconds. The variation of the

voltage and the power of the PV plant and the load is shown in Fig. 5.10.

In order to demonstrate real-time simulation capabilities over a longer time duration, the

system is simulated between 7 pm and 8 pm on 5/2/2022, and results are plotted in Fig. 5.12. This

plot demonstrates how the cell SC3 changes from a net energy importer to a net energy exporter

as the solar irradiation gradually decreases in the evening. The corresponding performance of the

system with standard vvc shows how the active power injection supports the system voltage to fill

the ancillary service gap opened by the decreasing generation of the solar power plant. During the

simulated time period, the solar energy production steadily decreases, changing the node from a

net power exporter to a net power importer to serve the night load. The system voltage steadily

decreases, but it stays within acceptable quality limits due to the reactive power support.

The system performance is compared with the standard volt var curve control method by

simulating the same dataset for operation without vvc, and the performance is plotted in Fig. 5.13.

This plot demonstrates how the cell SC3 changes from a net energy importer to a net energy exporter

in the evening while the PC plant operates with a fixed power factor of one, in which case the PV

plant is not contributing any ancillary services to the system. During the simulated period, the solar

energy production steadily decreases, thereby changing the node from a net power exporter to a net

power importer to serve the night load. The system voltage steadily drops, and without reactive

power contribution from the inverter, the voltage continues to be outside the typical grid code.

The system performance for optimized operation is compared with the standard volt var

operation by simulating the same dataset for operation with optimized vvc, and the performance is

plotted in Fig. 5.14. This plot demonstrates how the cell SC3 changes from a net energy importer to

a net energy exporter while the PV plant optimally contributes to the ancillary services of the system.

During the simulated period, the solar energy production steadily decreases, thereby changing the

node from a net power exporter to a net power importer to serve the night load. The system

voltage is optimal, even though a slight decrease in voltage is observed with the decreasing solar

power generation as the day changes to night over the short one hour of operation. The real-

time simulation result shows how online optimization can enhance the node voltage beyond what is

possible by using a static and standard volt var curve.
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5.6 Summary

A real-time distribution system testbed is designed and implemented in the RTPIS Lab of

Clemson University. The platform includes a approach to emulating live field devices based on a data-

in-the-loop simulation introduced and implemented in this chapter. The real-time testbed models a

modified IEEE 34 distribution system. The testbed includes external devices and simulated power

system components. The functionalities and the setup of the different components required for the

testbed design are discussed, and specific vendor and custom components used for the development

of the testbed in the lab are presented. The testbed is used to demonstrate the control of a PV

plant. The demonstrations show the ability of this testbed to model and control a power distribution

system in real-time. The testbed can be expanded by integrating Modbus or DNP3 at the TCP/IP

transport layer instead of the generic TCP socket communication architecture that is being used.

The scalability can be addressed by integrating ODBC based control data management system with

an automation architecture based on the IEC 61850 standard [111].
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Data visualization

Opal-RT
Real-time
Simulator

IoT

Clemson R06 parking lot solar PV plant Clemson Riggs hall load

Clemson RTPIS Lab 
Power Distribution System 
Hardware in the loop test bed

Figure 5.5: The overview of the components and software used for implementation of the Clemson
University real-time Power and Intelligent systems lab real-time power distribution hardware-in-the-
loop testbed.

(b)

(a)

Figure 5.6: The actual R06 PV plant generation for 24 hours between 5/1/2022 and 5/2/2022.
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Figure 5.7: The actual Riggs hall building load for 24 hours between 5/1/2022 and 5/2/2022.

time (s)

Power (kW)

Figure 5.8: Verification of the data-in-the-loop real-time simulation in the simulink dashboard. The
reference power is matched by the measured power output from the emulated device.
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(b)

(a)

Figure 5.9: The data visualization platform developed for the Openhistorian data processor based
on a Grafana dashboard.
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0.8981

0.9591

(a)

(b)

Figure 5.10: The real-time simulation output comparison from the simulink dashboard. (a) The
system voltage without active reactive power contribution from the PV plant. (b) The system
voltage with active reactive power contribution from the PV plant.
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Figure 5.11: The real-time simulation output comparison for a 200 second simulation (4.24pm,
5/2/2022) where the IoT changes the operation mode from no PV, PV, and PV with vvc. The top
plot shows the variation the PV node voltage and the bottom plot shows the corresponding variation
in load and PV plant power.
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Figure 5.12: The real-time simulation output comparison from 7 pm to 8 pm on 5/2/2022. Here the
system is operated with standard vvc. The top plot shows the variation the PV node voltage and
the bottom plot shows the corresponding variation in load, PV plant active and reactive power, as
well as the net power import.
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Figure 5.13: The real-time simulation output comparison from 7 pm to 8 pm on 5/2/2022. Here
the system is operated with a fixed power factor of one. The top plot shows the variation in the PV
node voltage, and the bottom plot shows the corresponding variation in load, PV plant active and
reactive power, and the net power import.
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Figure 5.14: The real-time simulation output comparison from 7 pm to 8 pm on 5/2/2022. Here the
system is operated with optimized vvc. The top plot shows the variation the PV node voltage and
the bottom plot shows the corresponding variation in load, PV plant active and reactive power, as
well as the net power import.
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Chapter 6

Conclusions

6.1 Introduction

The exponential growth in the integration of active and dynamic technologies such as Dis-

tributed Energy Resources and grid-edge technologies makes it very challenging to operate the

distribution system reliably while ensuring cost-effectiveness and the quality of service to the pro-

sumers.

The power distribution grid is disorderly in design and implementation, chaotic in operation,

large in scale, and complex in every way possible. Therefore, modeling, operating, and controlling

the distribution system is incredibly challenging. It is required to find solutions to the multitude of

challenges facing the distribution grid to transition towards a just and sustainable energy future for

our society. The key to addressing distribution system challenges lies in unlocking the full potential

of the distribution grid. The work in this dissertation is focused on finding solutions to a few of the

challenges mentioned above.

6.2 Section summaries

The three main sections presented in this dissertation are distributed modeling of power

distribution systems, distributed optimization of controls of power distribution systems, the devel-

opment of a real-time testbed, and the verification of real time optimization by using the developed

hardware, data, and optimization in-the-loop real-time simulation.
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6.2.1 Distribution system modeling

This dissertation develops a new data-driven distributed framework to model power distri-

bution systems. Its performance is validated on an IEEE test case. The results show a significant

enhancement in accuracy and performance compared to the state-of-the-art centralized modeling

approach. The modeling framework allows for distributed modeling of distribution systems using

available user data in a scalable manner while ensuring the privacy and security of the data.

6.2.2 Distribution system volt-var curve optimization

This dissertation presents a framework to optimize multiple volt-var curves of DERs in a

power distribution system with distributed cell-based optimization. The framework is validated for

voltage control on an IEEE test feeder. The results show that the system has improved performance

compared to the state-of-the-art approach. The optimization framework for distributed online op-

timization of the voltage controls allows for robust and enhanced operation of the distribution grid.

This approach increases the quality of service and allows for increasing the capacity to integrate

distributed energy resources into the distribution system.

6.2.3 Distribution system real-time testbed

The dissertation presents the design for real-time testbed that can is then implemented in

the RTPIS lab. A new data-in-the-loop (DIL) method is developed and implemented to integrate

actual loads and distributed generators with the simulator. The testbed is used to validate the

DIL simulation capabilities and active and reactive power capabilities of a PV plant. The real-time

integration assets and sub systems include communication, controls, data, and hardware-in-the-loop

components.

6.3 Future work

There are several ways to expand the contributions of the presented D3M framework. One

option is the implementation of the D3M in more extensive and varied distribution systems. The

presented DOF is illustrated by implementing an IEEE test case representing a medium-sized rural

distribution network. However, the implementation can be expanded to include larger and smaller
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networks with respect to the capacity, as well as distribution grids with different characteristics,

including system design and types of consumers. Another possible expansion is to include the

cyber-physical components of the implementation. This allows for understanding and integrating,

and addressing that relates to communication and computation infrastructure at a more granular

level and helps bring the idea closer to actual implementation in the field.

The presented work can also be expanded to address the fundamental challenges of the

design of the cellular computational network. This portion of the future work can be looking at

the optimal design for a given system and set of hardware and software resources. The other

fundamental challenge is related to increasing computing efficiency. One key advantage of the

cellular computational network-based method is that it allows for parallelization. By fully utilizing

this capability of cellular computational networks, it will be possible to enhance the computational

efficiency of distributed modeling by parallelizing the computation algorithm.

The future work to expand the presented DOF for volt-var curve optimization includes

numerous possibilities. The first possibility is to expand the implementation to more extensive and

more varied distribution systems. The second possibility is to optimize for various utility functions

of interest, such as network losses, fairness for access, voltage variations, or combination. The third

possibility is expanding the type of active components that are included in the study since only PV

is included in the presented work. Examples of potential options that can be integrated include

storage, D-statcom, and grid edge devices. Even though the optimization is presented for volt-var

curve optimization, the framework is designed to be generic, and any local parameters that are

allowed to be optimized have the potential to be optimized based on the methodology developed in

this dissertation. Validating the optimization of different control parameters and ancillary services

is another potential option for future work.

There are numerous possibilities to add to the work conducted on designing and developing

a power distribution system real-time testbed. The system can be expanded by adding power-in-

the-loop components to the simulator, such as actual PV inverters, inverter controllers, and energy

storage. The IoT infrastructure can be extended from one PC to multiple PCs and other assets

in industrial systems such as cyber-security, data management, communication (Modbus and OPC

server), and various types of state-of-the-art embedded hardware. The IoT computational devices

can be expanded to include state-of-the-art embedded computing platforms such as Arduino and

Raspberry-pi, allowing for decreased cost, space and power requirements, and increased scalability.
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The realistic nature of the simulation can be enhanced by adding more DIL components into the

simulation. Additionally, the real-time optimization algorithm can be expanded by increasing the

number of active components.

6.4 Summary

A comprehensive framework for enhancing the capabilities of the power distribution system

to absorb a high level of distributed energy resources while operating at a high level of quality

is presented in this dissertation. The proposed approach is verified using both offline and online

simulation. The online simulation is executed on a new real-time power distribution system testbed.

The presented work contributes to expanding the ability for data driven modeling and optimization

of power distribution systems in a distributed and scalable manner.
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