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ABSTRACT

Entamoeba histolytica is a protozoan parasite that causes amebic dysentery and amoebic liver
abscess. This pathogen possesses a two-stage life cycle consisting of an environmentally stable
latent cyst and a pathogenic amoeboid trophozoite. Since infection is acquired by ingestion of
cysts from contaminated food and water, this parasite is prevalent in underdeveloped countries.
A reptilian pathogen, Entamoeba invadens, which can encyst in culture, has long-served as a
surrogate to study stage conversion. Much remains unclear about stage conversion and the stress
response in these parasites and current treatments for amoebiasis are lacking, as they cause
severe side effects. Ultimately new therapeutic strategies are needed and the parasite stress
response and stage conversion mechanisms may represent targetable vulnerabilities. To gain
insight into these cellular processes, we characterized two hypothetical proteins, EIN_059080 (in
E. invadens), and EHI_056700 (in E. histolytica). We also characterized two putative elF2 alpha
kinases in E. invadens. In all cases, we used an RNAi-based silencing system to reduce
expression of the genes. Reduction of EIN_059080 expression resulted in a decreased rate of
encystation and an increased rate of erythrophagocytosis, an important virulence function.
Additionally, these mutants were more susceptible to oxidative stress. Similarly, reduction of
EHI_056700 resulted in increased susceptibility to oxidative stress and glucose deprivation, but
not to nitrosative stress. Interestingly, parasites with decreased expression of EHI_056700 also
exhibited decreased erythrophagocytosis and adhesion to host cells. We authenticated the two
elF2a kinases using a heterologous yeast system. Parasites with decreased kinase expression
exhibited decreased phosphorylation of elF2a and increased sensitivity to oxidative stress.
Diminished kinase expression also correlated with an increased rate of encystation, a decreased
the rate of excystation, and an increase in several virulence functions, erythrophagocytosis and

adhesion to host cells. Taken together, these data suggest that these hypothetical proteins and



kinases may play a role in various aspects of stage conversion, virulence, and the response to

stress.
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CHAPTER ONE

LITERATURE REVIEW

l. Introduction

Entamoeba histolytica is the causative agent of amebic dysentery and amebic liver
abscess. In the late 1990’s the World Health Organization (WHO) estimated that 50 million people
worldwide were infected with E. histolytica, which causes over 100,000 deaths annually (1).
Infection occurs when the infectious cyst form of the organism (see Figure 1.1) is ingested from
contaminated food and water. According to a 2020 report published by the WHO, approximately
2 billion people lacked access to safely managed drinking water services, while 670 million people
lacked access to hand washing stations. Four hundred and ninety-four million people continue to
defecate in the open (2) . In 2015,10% of the world’s population consumed crops that had been
irrigated with contaminated water. Therefore, there is considerable global risk for acquiring
infection and it is not surprising that this disease is prevalent in developing countries where
sanitation is substandard, such as the middle east and sub-Saharan Africa (3).

This pathogen not only affects indigenous populations, but also poses great risks to
American travelers, soldiers, and aid-workers (4,5). In March 2018, USA Today reported that
American soldiers were deployed in countries where this parasite is highly prevalent, including
Afghanistan, Iraq, Syria, Niger, Yemen, and Somalia (6). E. histolytica is classified as a category

B bioterrorism pathogen by the National Institute of Allergy and



Figure 1.1: Life Cycle of Entamoeba Histolytica
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The infective stage of the parasite is the latent cyst, which can persist in the environment for
extended periods of time. Quadrinucleated cysts are ingested through contaminated food or
water. As the cysts pass through the digestive system unharmed, unknown signals trigger
excystation in the small intestine, where each cyst can release 8 mature trophozoites. The motile
trophozoites travel to the large intestine, where trophozoites feed on the mucosal lining or on
natural gut flora. Unknown cues trigger encystation of a small percentage of trophozoites, and
cysts and trophozoites are passed back into the environment through feces. Trophozoites are
vulnerable outside of their human host, while the cysts can persist and continue the life cycle.
Image modified from the Centers of Disease Control, 2019.



Infectious Disease for several reasons. First, the organism can be manipulated genetically. Thus,
it is conceivable that a hyper-virulent strain of the parasite could be developed. Second, the cysts
can persist in harsh environments for long periods of time due to their chitinous cell wall. For
example, this form of the parasite is resistant to heat, desiccation, low pH, and disinfectants, such
as chlorine (5,7). Third, infection can be acquired by ingesting a relatively low dose of cysts (5).
Fourth, symptoms mimic those of other enteric infections making diagnosis difficult. Ultimately, E.
histolytica continues to pose a considerable threat to public health.

Life Cycle

This microaerophilic parasite has a simple two-stage lifecycle (See Figure 1.1), comprised
of the infective latent cyst and the pathogenic trophozoite. Cysts can persist in harsh conditions
for long periods of time due to its chitinous cyst wall. Once ingested, quadrinucleated cysts travel
through the digestive system, where unknown cues trigger excystation in the small intestine. Each
cyst can release 8 mature trophozoites. Motile trophozoites travel to the colon and adhere to the
protective mucin layer via a galactose and N-acetyl-D-galactosamine (Gal/GalNAc)-specific
lectin, which resides on the surface of the parasite (8). In the large intestine, infection proceeds
via two non-mutually exclusive routes: trophozoites can either feed on the mucosal lining and
natural gut flora, establishing an asymptomatic infection or trophozoites can degrade the mucin

and invade the underlying intestinal epithelium, establishing an invasive infection.

During symptomatic infection, trophozoites may completely degrade the intestinal
epithelium and enter the bloodstream, allowing the parasite to establish extra-intestinal infections
in organs such as the liver, lungs, and rarely, the brain (9,10). In both types of infections,
trophozoites reproduce by binary fission and continue feeding on host cells and gut-dwelling
bacteria until unknown signals trigger trophozoite aggregation and subsequent encystation.
Mature trophozoites and cysts are then passed through the feces and back into the environment

(1). Recently, encystation of E. histolytica has been observed in vitro in cultures lacking glucose



and seeded at high densities (50,000 cells/mL) (11) Entamoeba invadens, a parasite that causes
amebiasis in reptiles, is routinely used as a model organism. Synchronous encystation of E.
invadens can be triggered in vitro by a combination of glucose starvation, serum starvation, and

osmotic shock (12).

Treatment

Current treatment for amebiasis is metronidazole, an antibiotic from a class of drugs
known as nitroimidazoles. These drugs function by passively diffusing into anaerobic cells as an
inactive prodrug. Once in the cytoplasm, the drug is reduced into a short-lived nitroso free radical,
which damages DNA, ultimately leading to cell death. This drug has been used to successfully
treat amebiasis, trichomoniasis, giardiasis, and anaerobic bacterial infections for over 55 years
(13). However, high toxicity and severe side effects have been observed when treating amebiasis.
Metronidazole is highly absorbed in the small intestine and E. histolytica colonizes the large
intestine. Therefore, treatment of amebiasis typically requires a high dosage of metronidazole,
which in turn, leads to side effects like liver toxicity (14,15). Additionally, there are concerns that
the parasite could quickly develop drug resistance. While drug resistance is not prevalent in E.
histolytica, occasional reports of metronidazole failures, not attributable to patient non-
compliance, suggest the possibility for the development of clinical resistance (16-18).
Furthermore, metronidazole-resistant strains have been produced in the laboratory (18). One way
in which resistance could occur is through re-oxidation of the drug in the presence of molecular
oxygen, converting the drug back to its inactive form (13). Finally, metronidazole is thought to be
carcinogenic (19). Since metronidazole is presently the only treatment for invasive amebiasis,

there is an urgent need to develop a more efficient drug or a vaccine (5).

Il. Stress Response in Entamoeba histolytica



Beside the environmental stresses experienced by the cyst form of the parasite, the
amoeba encounters harsh conditions in the host. These include low pH (as the parasite passes
through the stomach) heat shock (due to fever), and glucose starvation (in the large intestine),
and immune modulators such as reactive oxygen and reactive nitrogen species produced by
neutrophils and macrophages (10). It has been hypothesized that nitrosative stress may also
induce endoplasmic reticulum (ER) stress in this parasite (20). ER stress is characterized by a
buildup of misfolded proteins and disturbances in ER function. Despite facing these various
stressors while invading its human host, E. histolytica can ultimately persist and establish infection
(21). Therefore, this amoeba must be able to adapt to its ever-changing environment. Exploring

the stress response of this pathogen could be critical in revealing new drug targets.

Heat shock

Heat shock for any organism can be caused by a temperature change of just a few
degrees, as proteins and cellular enzymes are highly temperature-dependent. Minor temperature
changes can induce protein unfolding, entanglement, and aggregation, which ultimately perturbs
cellular organization, nuclear processes, and cell cycle. Since a change in protein homeostasis is
detrimental to the cell, unfolded proteins are an indicator for needed counter measures (22). Most
organisms have developed sophisticated stress response mechanisms to combat unfolded
proteins caused by heat stress, known as the heat shock response, which is managed by 7
classes of heat shock proteins (Hsp) (22). The heat shock response is a rapid and transient gene
expression program that is modulated by molecular chaperones, proteolytic enzymes, RNA- and
DNA-modifying enzymes, metabolic enzymes (most variation between species here), regulatory
proteins such as transcription factors and kinases, cytoskeleton maintenance proteins, and lastly,
transport, detoxifying, and membrane-modulating proteins, which are required for restoring
membrane stability (22). Heat shock proteins are recruited in response to heat stress and other

stresses that induce protein damage (23).



To invade and colonize the human host and withstand various external environments, E.
histolytica must be able to respond to heat shock. E. histolytica possesses conserved homologs
of several Hsp and molecular chaperones. Microarray analysis of E. histolytica parasites exposed
to heat stress (42°C for 4 hours), showed that of 1,131 unique transcripts, 471 were
downregulated, while 40 were upregulated. Downregulated genes included proteins of unknown
function (29%) and virulence-related genes, such as Gal/GalNAc lectin subunits, amoebapore C,
and cysteine proteases. Upregulated transcripts included Hsps and some of their co-chaperones

(24).

In eukaryotic pathogens, Hsps have been shown to play roles in virulence, differentiation,
and parasite development, which makes them interesting vaccine candidates (23). BiP, a 70-kDa
Hsp, and Hsp70 are conserved in the Entamoebae, and were shown to be upregulated during
heat shock in E. invadens, along with encystation-specific genes, chitinase, and Jacob,
suggesting that heat shock and encystation are related in this parasite (25). Additionally,
expression of an atypical protein arginine methyltrasferase (EhPRMTA), found in E. histolytica is
increased by 2.5-fold after incubation at 42°C for 60 minutes. Similarly, expression of this gene
was observed after incubating parasites with human red blood cells. Hsp 70 is known to aid in the
refolding of denatured and misfolded proteins, and translocation of secretory proteins. E.
histolytica Hsp70 (EhHsp70) is essential for the resistance of the parasite to oxidative stress, the
formation of liver abscess, and its levels are also upregulated during heat shock (26). This is
significant as the amoebic Hsp70 isoforms have key structural motifs that are different from those
in the human homolog (27). These data suggest that the heat shock response and virulence are
related in E. histolytica (28). Thus, exploring the mechanisms and proteins required to navigate

this stress may represent novel drug targets.

Oxidative Stress



While reactive oxygen species (ROS) are byproducts of cellular respiration and are used
as second messengers for several biological processes, ROS damages proteins, lipids, and
nucleic acids, while leading to fragmentation of the endoplasmic reticulum; all of which can trigger
cell death (26). Most organisms have complex antioxidant defenses to maintain a delicate balance
(29). As E. histolytica trophozoites colonize the large intestine and invade colonic epithelium, they
may face tissue oxygen concentrations between 4-14% pO; (27). Additionally, upon invasion of
host tissues, neutrophils and macrophages are recruited to infection sites and release high levels
ROS to combat parasites (23, 28). Hydrogen peroxide (H.O.) damages proteins by interacting

with thiol groups, present in cysteine side chains and metal cofactors (26).

To survive this, E. histolytica possesses an effective O reduction pathway, which
functions through reductive intermediaries and is mediated by L-cysteine, a major thiol (26, 29).
E. histolytica in a microaerophilic organism that breaks down glucose as is main energy source
via glycosylation, which requires the Fe—S enzyme, pyruvate:ferredoxin oxidoreductase (PFOR).
The reductive intermediaries used in this glycolytic pathway are essential for ATP production, as
well as the parasites antioxidant defense. The amoebic PFOR is extremely susceptible to ROS
and inhibition leads to decreased ATP production (30). Experiments show that when parasites
are cultured in the absence of L-cysteine, intracellular levels of ROS increase by 3-fold,
suggesting that this amino acid is also required for the parasite’s antioxidant defense pathway

(30).

Initial studies showed a general upregulation of genes relevant to oxidative stress
responses, including thiol-dependent peroxidase, superoxide dismutase, cysteine proteinase 5,
G protein, Hsp70, and peptidylprolyl isomerase. Furthermore, comparison of the transcriptomes
of the virulent E. histolytica strain (HM1: IMSS) with the nonvirulent (Rahman) strain, showed that,
upon exposure oxidative or nitrosative stress, the virulent strain upregulated genes encoding for

heat shock proteins, ubiquitin-conjugating enzymes, protein kinases, and small GTPases.



Moreover, studies of virulent and nonvirulent trophozoites demonstrate that nonvirulent parasites
are unable to establish amoebic liver abscesses and are more susceptible to oxidative stress (30).
Analyses of the parasite’s transcriptome in response to oxidative stress demonstrated E.
histolytica copes by modulating a broad set of genes encoding proteins that are involved in protein
folding Hsps), amino acid catabolism, signaling/regulatory pathways, and those involved in DNA
damage repair and metabolism (26). Ultimately, these data suggest that virulence is highly

dependent on the parasite’s ability to respond to oxidative stress.

While this parasite relies on reductive intermediaries and gene expression modulation to
combat oxidative stress, E. histolytica also acquires assistance from the host gut microbiota.
Recently, researchers have demonstrated that microbiome metabolites affect pathogenicity of E.
histolytica parasites (31,32). Exposure of parasites to live Escherichia coliincreased the parasites
ability to withstand oxidative stress imparted by hydrogen peroxide (H202). Upon further
investigation, this effect was contributed to this bacteria’s production of oxaloacetate, and this
compound’s ability to scavenge H.O- (32). Additionally, queuosine, a naturally occurring modified
ribonucleoside found in the first position of the anticodon of the transfer RNAs for certain amino
acids, is produced by gut bacteria and leads to tRNA modifications at the anticodon loops of
specific tRNAs. Exposure of E. histolytica parasites to queuine, the nucleobase precursor to
queuosine, causes upregulation of gene expression involved in the oxidative stress response,
while simultaneously, downregulating genes involved in virulence. (31). Since bacterially-derived
products are critical in shaping the stress response and virulence of the parasite, further insight

into these mechanisms may reveal new treatment strategies.
Nitrosative Stress

As trophozoites degrade the mucus layer of the large intestine, intestinal epithelial cells
release proinflammatory factors including interleukin-1, interleukin-8, and tumor necrosis factor-

a, which recruit macrophages, natural killer cells, and neutrophils to the site of invasion. The
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primary response of these immune effector cells is to release reactive nitrogen species (RNS) in
micromolar concentrations (10). The effect of RNS on target cells has been termed nitrosative
stress. (26). RNS attack cell components, such as proteins, lipids, and nucleic acids, of invading
organisms. RNS lead to the S-nitrosylation of proteinsl, which is the covalent attachment of an
NO group to the thiol side chain of cysteine residues. This modification leads to aberrant protein
activity by inducing conformation changes. Thus, S-nitrosylation of proteins can also lead to an
accumulation of misfolded proteins, which may induce ER stress (26,33). S-nitrosylation of key
glycosylation enzymes in this parasite results in inhibition of glycolysis (18) and fragmentation of
the ER, triggering cell death (34). Furthermore, nitrosative stress inhibits protein synthesis by
inducing cleavage of ribosomal proteins (35). Finally, S-nitrosylation of cysteine proteases results
in decreased amoebic virulence because these enzymes are responsible for the parasite’s

destruction of the mucus layer of the colon (26).

E. histolytica possesses detoxification enzymes and repair systems that cope with
nitrosative stress (36). One such mechanism involves a DNA methyltransferase, Dnmt2, which is
part of the canonical methyltranserfase family of proteins that include Dnmt1 and Dnmt3. In
support of this, when mutant cells overexpressing Dnmt2 were subjected to nitrosative stress, the
transgenic cells exhibited higher viabilities than wildtype control parasites (35). In E. histolytica,
Dnmt2 catalyzes tRNA”* methylation, which maintains protein synthesis, by protecting the tRNAs
from degradation during protein synthesis. The depletion of specific tRNAs may cause ribosomes
to stall or fall off the mRNA during translation, leading to reduced protein synthesis. Additionally,
tRNA cleavage that results from unmethylated tRNAs have been proposed to inhibit translation
initiation, by displacing eukaryotic initiation factor 4F (elF4F) from capped mRNAs (37) .
Therefore, methylation of tRNAs maintains protein translation, which can aid in countering

damage induced during nitrosative stress (35).



Another way in which E. histolytica circumvents host defense is by inhibiting macrophages
from releasing RNS by producing prostaglandin E2 (PGE), a principle mediator of inflammation.
PGE prevents RNS synthesis by triggering the protein kinase C pathway. The parasite also
produces monocyte locomotion inhibitory factor (MLIF), an anti-inflammatory factor, that prevents
immune effector cells from producing RNS. E. histolytica can also quickly destroy host immune
cells by inducing apoptosis or simply by phagocytosis. In one in vitro study, one trophozoite was

able to kill 3000 neutrophils in 22 hours (10).

There is also evidence to suggest that E. histolytica adapts to nanomolar levels of RNS
because nitric oxide appears to be a homeostatic regulator of the gastrointestinal muscosa.
Studies show that nitric oxide influences microvascular and epithelial permeability and maintains
adequate perfusion in the cells of the large intestine. So, there are homeostatic concentrations of
nitric oxide, which could prepare invading parasites to withstand a larger RNS released by

immune effector cells (38).

While E. histolytica possesses mechanisms to counter nitrosative stress, and may also
adapt to nanomolar levels of RNS, nitrosative stress still results in high parasite mortality.
Therefore, there is much more to learn about how this parasite responds to this stressor. To
further evaluate this mechanism, transcriptomic studies have been conducted with parasites that
were exposed to nitrosative stress. Santi-Rocca, et al. (20) and Vicente, et al. (36) found that
when this organism was exposed to RNS, several heat shock proteins (Hsp) were upregulated
by 2 or 4-fold, respectively, compared to unstressed trophozoites. Hsp are molecular chaperones
that aid in protein folding and degradation. Therefore, the protective function of these Hsp may
be overwhelmed by the increase in misfolded proteins (34,36). Vicente, et al. (36) found that the
largest group of genes upregulated were signaling proteins such as protein kinases,
phosphatases, and acetyltransferases. Other genes that were upregulated in these studies

encoded proteins involved in metabolism, and nucleic acid repair (36). The exact mechanisms of
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how these upregulated genes counter nitrosative stress are currently unknown. More studies are

needed to further illuminate this stress response pathway.

Endoplasmic Reticulum Stress

In mammalian cells, the endoplasmic reticulum (ER) is a membrane-bound organelle that
is responsible for calcium storage and the synthesis, modification, and folding of secretory
proteins (20,33). E. histolytica lacks many organelles that are found in mammalian cells, such as
mitochondria and peroxisomes. Additionally, this amoeba has no recognizable Golgi apparatus
or rough ER but possesses a simple endomembrane system. In 2008, Teixeira, et al.
demonstrated the presence of a continuous ER in E. histolytica by using a green fluorescent
protein (GFP) tagged N-terminal signal sequence, a FLAG epitope, and C-terminal ER retention
peptide, KDEL. KDEL is a specific sequence of amino acids, lysine (K), aspartic acid (D), glutamic
acid (E), and leucine (L), that retains a protein to the ER. By using immunofluorescence and
confocal microscopy, this group showed that the GFP-tagged protein resided within a continuous
compartment, that was responsible for N-linked glycosylation of membrane proteins that also
contained the conserved KDEL signal. These data support the idea that the molecular
mechanisms regulating basic vesicle trafficking are conserved in this parasite. Prior to this study,

it was thought that these protein modifications occurred in cytoplasmic vesicles (33,39).

ER stress is caused by an accumulation of misfolded proteins in the ER, and is induced
by various physiological and pathological stresses, including glucose deprivation, hypoxia,
oxidative stress, inflammatory cytokines, and an increase in protein folding demand. In
mammalian cells, ER stress can also be induced by mutant protein expression or by using
pharmacological reagents, such as Brefeldin A, dithiothreitol, and tunicamycin. These reagents
induce the buildup of proteins within the ER. For example, Brefeldin A inhibits transport of proteins
from the ER to the Golgi Apparatus, while simultaneously inducing the retrograde transport of

proteins from the Golgi to the ER. Dithiothrietol disrupts the formation of disulfide bonds and
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tunicamycin inhibits N-linked glycosylation of proteins. (33,40). Since E. histolytica experiences
harsh environments while invading the host, it is likely to encounter stressors that are known to
induce ER stress. However, data supporting this hypothesis are limited. Several studies on E.
histolytica show that stress (e.g., overexpression of mutant proteins, exposure to RNS) induces

morphological changes in the ER, such as fragmentation and dispersal into vesicles. (20,41).

In higher eukaryotes, ER stress activates a mechanism known as the unfolded protein
response (UPR), an evolutionary conserved adaptive response, which functions to alleviate stress
and restore the ER to homeostasis. The UPR is a signaling cascade that consists of three main
signaling proteins: Inositol Requiring Enzyme 1 (IRE1), PKR-like ER kinase (PERK), and
Activating Transcription Factor 6 (ATF6). Under normal conditions, these ER-resident
transmembrane proteins are rendered inactive by ER-bound Hsp, immunoglobin binding protein
(BiP). BiP senses misfolded proteins and subsequently dissociates from each of these proteins.
Once free, IRE1, ATF6, and PERK initiate complex signaling cascades that ultimately reduce ER

stress by altering gene expression (33).

Microarray analysis of trophozoites exposed to RNS showed that there was a marked
increase in Hsp, upregulation of DNA repair and redox gene expression, and an upregulation of
glycosylation-related gene expression. While it has been shown that E. histolytica experiences
ER stress, the exact mechanism by which this parasite is able to counter this stress, remains

largely unknown. Therefore, more studies are needed to elucidate this mechanism.

Glucose Starvation

Once mature cysts are ingested via contaminated food and water, unknown cues trigger
the excystation of trophozoites in the small intestine. As parasites traverse the small intestine and
travel to the colon, they experience a large decrease in environmental glucose. Since E.

histolytica relies solely on glycolysis to breakdown glucose as its primary energy source, the
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parasite must be able to adapt to glucose starvation as it colonizes the large intestine (42). To do
this, E. histolytica and E. invadens down-regulate expression of glycolysis related genes, while
simultaneously upregulating genes needed to catabolize amino acids. Additionally, these
pathogens use stored glycogen reserves when in a glucose-poor environment. Various
transcriptomic studies show that during glucose starvation, virulence-related genes, such as the
Gal/GalNAc lectins, cysteine proteases, and amoebapore-A are upregulated, which is expected
since E. histolytica colonizes and subsequently may degrade the intestinal epithelium of the colon

(42).

The parasite’s response to glucose deprivation could also be regulated, in part, by
epigenetic modifications, such as tRNA methylation, as seen in Escherichia coli (42) during iron
deprivation and Saccharomyces cerevisiae (42) when exposed to chemical toxicants, where
alterations in tRNA modifications lead to stress-specific protein translation. Enmeth, a Dmnt2-type
methyltransferase, catalyzes the cytosine-38 tRNAasp methylation in E. histolytica, and has been
shown to interact with accumulated enolase in the nuclei of glucose-starved parasites. This
interaction leads to an inhibition of Ehmeth and subsequent increased sensitivity of glucose-
starved trophozoites to oxidative stress. Furthermore, overexpression of Ehmeth leads to
resistance to oxidative and nitrosative stresses (42). The mechanism by which tRNA modifications
and the stress response are related remain enigmatic and warrant further investigation. Gaining
additional insight into the mechanism by which E. histolytica regulates its response to changes in

environmental glucose concentration will inform future drug and virulence studies.

Translation Regulation via elF-2a Kinases and how they are found in other eukaryotic

pathogens.
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While many of the countermeasures described above aim to neutralize the stress that a
cell is experiencing, eukaryotic cells have also developed methods of countering stress, by
decreasing global protein translation. This mechanism involves the eukaryotic initiation factor 2
(elF-2) pathway. Not only does the elF-2 mechanism result in decreased protein translation, but
it facilitates an increase in the expression of a subset of stress-specific genes (25).

elF-2 is a multi-subunit protein complex, that initiates protein translation in a GTP-
dependent manner, by delivering the Met-tRNA; to the ribosomal initiation complex. elF-2 is
composed of alpha, beta, and gamma subunits. Under normal conditions, elF-2 is bound to GTP
(active), and associates with Met-tRNA;, delivering it to the 40S ribosomal subunit of the initiation
complex. To release the Met-tRNA,, elF-2 must hydrolyze its bound GTP, resulting in an inactive
elF-2-GDP complex. To be reactivated, elF-2 requires a guanine nucleotide exchange factor
(GEF), elF-2B, to exchange its bound GDP for GTP (43). Under stressful conditions, elf-2a
kinases are activated in a stress-specific manner and interact with elF-2. This interaction induces
a conformational change of elF-2, exposing serine 51 of the alpha subunit (elF-2a). Once
exposed, elF-2a is phosphorylated on serine 51 and becomes an inhibitor of its own GEF, elF2B.
Therefore, the elF-2 complex becomes inactive, ultimately reducing general protein translation.

Simultaneous to a reduction in general protein synthesis, translation of select mRNAs is,
paradoxically, initiated. The resulting proteins are needed for the stress response, and include
activating transcription factor 4 (ATF4), activating transcription factor 3 (AFT3), and cationic amino
acid transporter-1 (CAT-1) (44). During unstressed conditions, the translation of these stress-
specific genes is inhibited by the presence of upstream short open reading frames (ORFs), which
attract ribosomes to translate short peptides, preventing the flow of scanning ribosomes, to the
genuine stress-specific gene sequence. Phosphorylated elF-2a not only significantly decreases
global translation, but also limits the number of ribosomal complexes, which promotes the

translation of these genes (45).
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Translation initiation is the rate limiting step of protein synthesis and is the central control
point (46), and small increases in phosphorylated elF-2a profoundly inhibits global protein
translation (47). This reduction in protein synthesis allows the cell to direct gene expression to
counter damage accrued during stress (23). This mechanism of translational control has been
demonstrated extensively in yeast (48,49) and mammalian cells (43), and has also been
demonstrated human pathogens: Toxoplasma gondii (50,51), Plasmodium (52), and Leishmania
(53).

This system is also conserved in E. histolytica (21). Genomic data revealed that E.
histolytica possesses elF2a (EhelF2a) with a conserved phosphorylatable serine at position 59
(Ser®®). Hendrick et al. (21) exposed cells to different stress conditions and measured the level of
total and phospho-EhelF2a. Long-term serum starvation, long-term heat shock, and oxidative
stress increased the level of phospho-EhelF2a, while short-term serum starvation, short-term
heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease
in polyribosome abundance, which is in accordance with the role of this protein complex in protein
translation. Additionally, Walters et al. (54) exposed wildtype parasites to nitrosative stress and
endoplasmic reticulum stress and measured levels of phospho-EhelF2a and general protein
translation. These data demonstrate that ER stress induces phosphorylation of EhelF2a while
nitrosative stress does not. Interestingly, both ER stress and nitrosative stress resulted in a
general decrease in protein translation, suggesting that E. histolytica may possess an alternate
stress response pathway, independent of the elF2 mechanism (54).

Hendrick et al. (21) also generated transgenic cells that overexpress wildtype EhelF2a, a
non-phosphorylatable variant of elF2a in which Ser®® was mutated to alanine (EhelF2a-S59A),
and a phosphomimetic variant of elF2a in which Ser®® was mutated to aspartic acid (EhelF2a-
S59D). Consistent with the known functions of elF2a, cells expressing wildtype or EhelF2a-S59D
exhibited increased or decreased ftranslation, respectively. Surprisingly, cells expressing
EhelF2a-S59A also exhibited reduced translation. Cells expressing EhelF2a-S59D were more
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resistant to long-term serum starvation underscoring the significance of EhelF2a phosphorylation
in managing stress. Finally, phospho-elF2a accumulated during encystation in E. invadens, a
model encystation system. Together, these data demonstrate that the elF2a-dependent stress
response system is operational in Entamoeba species. Phosphorylation of elF-2a is facilitated by

specific kinases. Four mammalian elF-2a kinases have been identified (55) (See Figure 1.2).
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(36).
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Heme regulated inhibitor (HRI)

HRI, also known as EIF2AK1, is an elF-2a kinase expressed in erythrocytes,
macrophages, and hepatocytes (56). This kinase has two roles during development: to couple
the synthesis of globin genes to the amount of heme present and to promote survival of erythroid
cells when intracellular iron levels are low. Additionally, HRI has been implicated in the stress
response in proteasome inhibition and also during signaling for erythroid differentiation. When
HRI is synthesized, the protein is bound by heme, which triggers autophosphorylation, stabilizing
it against aggregation and generating an HRI dimer. The HRI dimer senses heme concentrations.
When levels are high, heme binds to the kinase, where it inhibits any further autophosphorylation.
When low levels of heme are detected, the kinase is activated by multiple autophosphorylations,

and then it phosphorylates elF-2a (56).

This decrease in global protein translation in erythrocytes coordinates globin mRNA
translation with available iron, preventing accumulation of misfolded globin proteins in the
absence of heme. Furthermore, in the liver, HRI activation negatively regulates enzymes involved
in the metabolism of L-tryptophan, and in murine macrophages, HRI is required for maturation

(56).

dsRNA-dependent Protein Kinase (PKR)

PKR, also known as EIF2AK2, is located within the nucleus and cytosol of various cell
types. Its transcription is induced by interferon, an antiviral protein that is secreted in response to
viral infections. When bound to dsRNA, PKR dimerizes, autophosphorylates, and becomes active.
Once active, PKR is able to phosphorylate elF-2a. This phosphorylation results in reduced
translation of viral mMRNAs and can lead to apoptosis if the viral infection cannot be controlled.
Moreover, PKR is involved in several signaling pathways and can be activated independently of

dsRNA, by oxidative stress, ER stress, and protein activator (PACT). Upon activation, PKR can
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phosphorylate p53, facilitate activation of STAT transcription factors and MAPK, and mediate NF-
KB activation (56,57).
Pancreatic elF-2a Kinase/PKR like ER kinase (PEK/PERK)

PERK or EIF2K3 is a transmembrane ER protein and represents one major arm of the
unfolded protein response. PERK’s regulatory region is located within the ER lumen, and the
kinase domains lies in the cytosol. The luminal domain senses misfolded proteins within the ER.
During unstressed conditions, the luminal domain of PERK is bound by ER chaperone,
BiP/GRP78, which renders the kinase inactive. Within minutes of sensing ER stress, BiP/GRP78
dissociates, and PERK is free to oligomerize and autophosphorylate. Once active, the cytosolic
kinase domain phosphorylates elF-2a, to reduce global protein translation. This decrease in
protein synthesis slows the flow of newly synthesized proteins into the ER, ultimately allowing the
cell time to refold proteins or degrade any critically misfolded proteins (43).

PERK can also be activated by calcium fluctuations in the ER, oxidative stress, and
hypoxia. In some studies, PERK has been implicated in cancer. It is known that solid tumors tend
to grow in hypoxic areas and are invasive and chemoresistant. Since PERK can be activated by
hypoxia, its activation is correlated with increased tumor size, vascularization, and cell survival.
Additionally, it was found that tumors deficient in PERK were smaller than their wildtype
counterparts, and cancer cells that were PERK-deficient were stalled in the cell cycle because of
ROS-induced damaged. Finally, PERK has also been implicated in Wolcott—Rallison syndrome
in humans, which is a disease characterized by lifelong diabetes, as well as skeletal and

pancreatic defects (56).

General Control non-inducible-2 (GCN2)

Also known as EIF2K4, GCN2 is an elF-2a kinase that is activated by amino acid
starvation, UV irradiation, and viral infections (43). In yeast and mammals, GCN2 is also activated
by glucose starvation. During amino acid starvation, uncharged tRNAs accumulate and bind to
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the histidyl-tRNA synthase-like domain on GCN2, which results in allosteric rearrangements and
dimerization. Subsequent autophosphorylation allows GCN2 to phosphorylate elF-2a. While
phosphorylated elF-2a results in decreased protein translation, it also prompts translation of
specific mMRNAs, such as ATF4, which is critical in the stress response, as it induces the
expression of amino acid biosynthetic enzymes and amino acid transporters (45,58).

This kinase is present in most eukaryotes and is involved in major biological processes.
In mammals, this kinase is crucial for long-term memory formation, feeding behavior and immune
system regulation. Evidence for this comes from studies that showed that the accumulation of
uncharged tRNAs lead mice to reject diets low in amino acids, while mutant mice lacking
functional GCN2, did not discriminate between amino acid-rich and amino acid-deficient foods. It
was also found that when wildtype mice were fed diets deficient in amino acids, lipid metabolism

was affected, leading to decreased liver mass and adipose tissue (45,56,58).

Conservation of elF-2a kinases in lower eukaryotes

Translation regulation via elF-2a phosphorylation is necessary to counter various stresses
and is an evolutionary conserved mechanism in eukaryotes. In Plasmodium falciparum, the
causative agent of malaria in humans, PPK4 resembles mammalian HRI and is also inhibited by
heme. Zhang, et al. (52) showed that PfPK4 is required for development of Plasmodium blood
stage development and regulates protein translation by phosphorylating elF-2a in trophozoites,
schizonts, and gametocytes(23,52). Another parasite, Toxoplasma gondii has four putative elF-
2a kinases, two of which most closely resemble GCN2. TglF2K-A, the most extensively
characterized, appears to be a transmembrane ER protein, like PERK, and phosphorylates elF-
2a when exposed to ER stress. TglF2K-B has no orthologs but is a true elF-2a kinase (50).
Furthermore, Trypanosoma brucei, the causative agent of African sleeping sickness, has three
putative kinases. TbelF2K2 is a confirmed elF-2a kinase, ThelF2K1 is a GCN2 ortholog, while no
clear homology has been determined for ThelF2k3 (23). Genome data demonstrate that there
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are 2 putative elF-2a kinases in E. histolytica (EHI_035950 and EHI_109700) and 2 putative elF-
2a kinases in E. invadens (EIN_052050 and EIN_096010). However, these have not been

authenticated.

V. Potential drug targets in the Entamoebae

Kinases

Kinases are responsible for cell signaling cascades that regulate many cellular processes,
including vital gene expression programs, such as the elF2a kinase family and their dysregulation
have been implicated in many human pathologies including cancer (43), diabetes (59), and
neurodegenerative disorders (60). Therefore, this kinase family has been the subject of intense
study because they represent logical targets for the design of therapies. For instance,
overactivation of PERK has been associated with neurological disorders such as Parkinson’s
Disease and Alzheimer’s Disease (61). It has been found that the compound, LDN-0060609,
significantly inhibits PERK-mediated phosphorylation of elF2a in rat astrocytes, which suggests
that it may be a suitable drug for the treatment of neurological diseases (61). Targeting the elF2a-
based regulation of translation in protozoan parasites is also underway. For example,
pharmacological inhibition of PK4 in P. falciparum with the PERK inhibitor, GSK2606414, blocks
parasite differentiation and reduces artemisinin-induced latency (62). Inhibition of PERK-like elF2
kinase, TglIF2K-A, in T. gondii, with the same inhibitor, blocked multiple steps of the tachyzoite
Iytic cycle and lowered the rate of bradyzoite differentiation (63). Finally, GSK2606414 reduced
Leishmania amazonensis infection of macrophages (64). Therefore, it is conceivable that if

authentic, the Entamoeba elF2a kinases may serve as novel targets for drug inhibition.
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Hypothetical Proteins

Moreover, the genomes of the Entamoebae remain enigmatic as approximately 54% of E.
histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins (HPs)
(65) and one third of the E. histolytica genome is not conserved within the human host (66). Thus,
HPs also represent potential drug targets for the treatment of amoebiasis.

Recently, investigation of HPs and proteins of unknown function have become the center
of investigation as potential drug targets for the treatment of various human diseases, including
tuberculosis (67), and infections with chlamydia (68), adenoviruses (69), and E. coli (70). For
example, antibiotic-resistant Mycobacterium tuberculosis strains are increasingly prevalent and
are a threat to public health. Studies suggested that overexpression of HPs may be responsible
for drug-resistance and emerging proteomic and bioinformatic analyses can serve as major
analytical tools for identification and characterization of such proteins (67). Using SSEalign, a
novel algorithm employing structural information, Yang and colleagues (2019) annotated 823 out
of 1051 HPs in M. tuberculosis, while also identifying 6 of them as favorable drug targets (71).
Similarly, Naqvi et al. (2016) assigned functions to 89 HPs, in the bacterium, Chlamydia
trachomatis, 24 of which are essential proteins for virulence and pathogenesis, suggesting that
these HPs would serve as encouraging drug targets (68). Likewise, the function of 6 HPs of
human adenovirus were predicted via various sequence and structure-based bioinformatics tools,
with the goal of identifying novel drug targets (69). The proteome of hypervirulent E. coli strain,
CFTO073, contains 992 HPs, 6 of which were found to be therapeutically targetable proteins (70).
Ultimately, these studies suggest that investigating hypothetical proteins in the Entamoebae may

reveal novel drug targets for the treatment of amoebiasis.
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V. Summary

E. histolytica faces numerous stressors as it travels through the host digestive system and
other tissues. These include changes in pH, glucose deprivation, osmotic shock, heat shock, and
immune pressure, which could impart oxidative and nitrosative stresses (21,30). To be a
successful pathogen, E. histolytica must employ mechanisms that counter these stresses. In
many species, response to these types of stressors involves translational control by
phosphorylating elF-2a. It has been demonstrated that long-term serum deprivation, long-term
heat shock, oxidative stress, and endoplasmic reticulum stress induce phosphorylation of EhelF2-
a (21,54) . However, no elF2a kinases have been identified in the Entamoebae. Additionally,
over half of the Entamoebae genomes are annotated as hypothetical proteins and over one-third
of the E. histolytica genome has no homologs in the human host. Further investigation of these
stress response mechanisms and hypothetical proteins these parasites may reveal novel

pathways for drug or vaccine development.

Therefore, the aims of this study are as follows:

Aim 1: To authenticate and characterize two putative elF2a kinases in the reptilian

protozoan parasite, Entamoeba invadens.

In Aim 1, we identified two elF2a kinases in E. invadens, EilF2K-A and EilF2K-B. Their
identity as elF2a kinases was validated using a heterologous yeast system. We used an RNAi
Trigger-mediated silencing system to reduce expression of EilF2K-A, which also reduced
expression of EilF2K-B. Parasites with decreased kinase expression exhibited decreased
phosphorylation of elF2a and increased sensitivity to oxidative stress. Diminished kinase

expression also correlates with an increased rate of encystation, a decreased the rate of
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excystation, and an increase of several virulence functions, erythrophagocytosis and adhesion to
host cells. Taken together, these data suggest that EilF2K-A and EilF2K-B are authentic elF2a

kinases that may regulate the Entamoeba stress response.

Aim 2: To characterize two hypothetical proteins in the Entamoebae and investigate their
role in the Entamoebae stress response.

In Aim 2, we identified and characterized a hypothetical protein in E. invadens,
EIN_059080, which has an ortholog in E. histolytica (EHI_056700), but no homolog in the human
host. We used an RNAi-based silencing system to reduce expression of EIN_059080 in E.
invadens and EHI_056700 in E. histolytica. We found that loss of EIN_059080 resulted in
decreased rates of encystation and increased erythrophagocytosis, an important virulence
function. Additionally, mutant parasites were less viable when exposed to oxidative Interestingly,
loss of EHI_056700 in E. histolytica trophozoites resulted in decreased erythrophagocytosis and
adhesion. Mutant E. histolytica parasites were also less viable when exposed to oxidative stress
and glucose deprivation Taken together, these data suggest that these hypothetical proteins play

a role in stage conversion, virulence, and the stress response in the Entamoeba.
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l. Abstract

Entamoeba histolytica is a protozoan parasite that causes amebic dysentery and amoebic
liver abscess. This pathogen possesses a two-stage life cycle consisting of an environmentally
stable latent cyst and a pathogenic amoeboid trophozoite. Since infection is acquired by ingestion
of cysts from contaminated food and water, this parasite is prevalent in underdeveloped countries.
A reptilian pathogen, Entamoeba invadens, which can encyst in culture, has long-served as a
surrogate to study stage conversion. In the host, the Entamoebae must manage stress including
nutrient deprivation and stress imposed by the host immune response. In many systems, the
stress response is characterized by down-regulation of translation, which is initiated by the
phosphorylation of eukaryotic initiation factor-2 alpha (elF2a). In mammalian cells, this
phosphorylation is carried out by a family of elF2a kinases. A canonical elF2a translational control
system exists in the Entamoebae; however, no elF2a kinases have been characterized. In this
study, we identified two elF2a kinases in E. invadens, EilF2K-A and EilF2K-B. Their identity as
elF2a kinases was validated using a heterologous yeast system. We used an RNAIi Trigger-
mediated silencing system to reduce expression of EilF2K-A, which also reduced expression of
EilF2K-B. Parasites with decreased kinase expression exhibited decreased phosphorylation of
elF2a and increased sensitivity to oxidative stress. Diminished kinase expression also correlated
with an increased rate of encystation, a decreased the rate of excystation, and an increase in
several virulence functions, erythrophagocytosis and adhesion to host cells. Taken together,
these data suggest that EilF2K-A and EilF2K-B are authentic elF2a kinases that may regulate

the Entamoeba stress response.
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Il. Introduction

Entamoeba histolytica is a human pathogen that causes amoebiasis and amoebic liver
abscess, affecting millions of people worldwide and causing an estimated 55,000 deaths annually
(1). E. histolytica has a two-stage life cycle: the infectious cyst and the pathogenic amoeboid
trophozoite. Latent cysts are ingested from fecally-contaminated food or water; thus, this parasite
is prevalent in underdeveloped countries, where sanitation and other infrastructure is
substandard. In 2015, 663 million people lacked access to clean drinking water and almost 1
billion people still practiced open defecation (2). Additionally, amoebiasis is the leading cause of
diarrheal disease in travelers returning to the US (1). Considered together, these characteristics
demonstrate that E. histolytica constitutes a significant global health problem.

After ingestion, cysts traverse the stomach and enter the small intestine, where unknown
cues trigger the excystation of mature trophozoites. The amoebae travel to the colon where
infection can progress along several non-mutually exclusive routes. The trophozoites may
establish a noninvasive infection, feeding on natural gut flora or host cells by phagocytosis. The
parasites may also adhere to and degrade the gut epithelial lining, causing a diarrheal disease
known as amoebic dysentery. Occasionally, the parasites breach the intestinal wall, enter the
bloodstream, and establish extraintestinal infection in the liver (amoebic liver abscess), or more
rarely, in the lungs and brain. In the large intestine, unknown signals trigger aggregation and
encystation of trophozoites, which generate environmentally-stable mature cysts that are shed
into the environment to facilitate host-to-host spread (3). While navigating the human host, E.
histolytica faces numerous stresses, such as nutrient deprivation, oxidative stress, nitrosative

stress, and heat shock (4,5). To survive, the parasite must surmount these damaging conditions.
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E. invadens, a reptilian parasite, has been a long-standing model to study stage
conversion in this genus, because it readily encysts and excysts in culture (6,7,8). Stage
conversion is thought to be a response to stress encountered in the colon, and many of the
features of the stress response overlap with those of stage conversion. For example, both heat
shock proteins and cyst wall proteins are upregulated during heat shock in E. invadens (9).
Additionally, a eukaryotic type IIA topoisomerase Il is upregulated during oxidative stress, heat
shock, and encystation (10). Given the importance of stress management during the parasite’s
life cycle, stress response pathways may represent a novel targetable vulnerability. Thus, it is
crucial to understand the molecular mechanisms that regulate the parasite stress response. Such
information would provide significant insight into Entamoeba pathogenicity and would inform

future studies focused on anti-parasitic drug design.

In most organisms, one branch of the stress response is characterized by the
phosphorylation of a conserved serine residue in the alpha subunit of eukaryotic initiation factor-
2 (elF2a). elF2a is a component of a ternary complex with GTP and the initiator methionyl transfer
RNA (Met-tRNAI). This ternary complex binds the 40S ribosomal subunit, delivering Met-tRNAi
for translation initiation. Phosphorylation of elF2a during stress inhibits this activity, causing a
sharp decline in global protein synthesis and preferential translation of a subset of mRNAs that
encode stress-related factors. This process of translational control allows cells to conserve
resources and reconfigure gene expression to effectively counter stress. In mammalian cells,
phosphorylation of elF2a is regulated by a family of four elF2a kinases (GCN2, PKR, PERK, HRI)
that are activated in a stress-specific manner. GCN2 is activated by nutrient starvation, PKR is
activated in response to viral infections, PERK is activated by misfolded proteins, and HRI is
activated by heme starvation (11). Although translational control, via elF2a phosphorylation, was
shown to exists in E. histolytica (4,5), no elF2a kinases have been characterized in the
Entamoebae.
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In this study, we identified two putative elF2a kinases, EilF2K-A and EilF2K-B in E.
invadens. We used a heterologous yeast system (12,13) to confirm that EilF2K-A and EilF2K-B
are bona fide elF2a kinases. We used a Trigger-mediated silencing approach (14) to knock down
expression of EilF2K-A, which simultaneously reduced expression of EilF2K-B. Parasites with
reduced expression of both kinases exhibited decreased levels of phosphorylated elF2a, a
diminished ability to surmount oxidative stress, and altered rates of stage conversion.
Furthermore, decreased kinase expression was correlated with an increase of two virulence
functions, erythrophagocytosis and adhesion. Taken together, these data show that EilF2K-A and
EilF2K-B are authentic elF2a kinases that may be involved in the parasite stress response, stage

conversion, and virulence.

Il. Material and Methods

Protein Alignment and phylogenetic analysis

The kinase domain sequences of the four putative Enfamoebae kinases were obtained
from UniProt (38). Sequences were also analyzed using ScanProsite (39) to identify the kinase
domains and to search for other possible domains and motifs. The catalytic domains of the four
putative kinases were aligned with the kinase domains of previously characterized elF2a kinases,
using the Clustal W algorithm with the standard parameters with SnapGene (Version 5.2.1; GSL
Biotech, LLC., San Diego, CA, USA). The software, Jalview (40), was used to remove the inserts
with high length variability for clearer visualization. A phylogenetic analysis was performed using
the unedited alignment and the website Méthodes et Algorithmes pour la Bio-informatique LIRMM
(http://www.phylogeny.fr/index.cgi) (41). The Newick format of the phylogeny was imported into
the Interactive Tree of Life (iTOL) (itol.embl.de) (42) to generate the visual tree. All webpages and
applications were used with the standard settings for each step. The tree was rooted to the more

distantly related sequence of the pool (CDK1).
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Strains and Culture conditions

Entamoeba invadens (strain IP-1) was cultured axenically in TYI-S-33 medium in 15 mL
glass screw cap tubes or 25 cm? culture flasks at 25°C (44). Parasites were passaged into fresh
media every 7 days. Chinese hamster ovary (CHO) cells were cultured in DMEM supplemented
with 10% (v/v) fetal bovine serum (FBS), PenStrep, and HEPES in 25 cm? culture flasks at 37°C.
To generate a plasmid to reduce expression of EilF2K-A, PCR was employed to amplify the
kinase domain of EilF2K-A using genomic DNA as a template and gene-specific primers (Table
2.1). The primers also added Avrll restriction sites to the 3’ and 5 ends, which facilitated
subcloning into the Trigger plasmid (4) (kind gift of Dr. Upinder Singh, Stanford University).
Successful subcloning was confirmed by sequencing.

E. invadens was transfected by electroporation as described (43), with minor
modifications. Briefly, two 25 cm? flasks containing 100% confluent log-phase trophozoites were
iced for 15 min to release adherent parasites. The parasites were collected by centrifugation at
500 x g for 5 min and washed with 20 mL ZM phosphate buffered saline (PBS) buffer (132 mM
NaCl, 8 mM KCI, 8 mM NaPO., 1.5 mM KH2PO.). Parasites were pelleted by centrifugation at
500 x g for 5 mins and resuspended in 1.6 mL complete ZM PBS buffer (ZM PBS with 0.5 mM
Mg(CHsCOO), « 4H,0 and 0.09 mM CaCl,). Eight hundred pL of parasite suspension was
combined with 150 ug plasmid DNA and electroporated in a 0.4 cm cuvette with two pulses at 1.2
kV and 25 pF using a BioRad Gene Pulser II. Parasites were transferred to 15 mL culture tubes
containing 13 mL TYI-S-33 and allowed to recover for 48 h. Neomycin selection was added initially
at 5 ug/ml and gradually increased by 5 pg/mL each week until a concentration of 50 pg/mL was
reached.

To assess expression of EilF2K-A and EilF2K-B, RNA was extracted from trophozoites or cysts
using TRIZOL (ThermoFisher; Waltham, MA). Two g of total RNA was treated with RQ1 DNase
enzyme (Promega; Madison, WI) per manufacturer’s instructions. Treated RNA was used to
synthesize cDNA using the Invitrogen Superscript Il First Stand Synthesis kit per the
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manufacturer’s instruction. (ThermoFisher). One uL of cDNA was used as template and PCR was
carried out using EilF2K-A specific primers or EilF2K-B gene specific primers (Table 2.1). We
confirmed that these primers do not cross-react to amplify both genes. EIN_327460 was used as
an internal load control for analysis of gene expression in trophozoites and EIN_162500 was used

as an internal load control for analysis of gene expression in cysts (see Table 2.1).

Analysis of elF2 kinase function in yeast

The coding sequence of the kinase domain of EilF2K-A (1313 bp) and EilF2K-B (1397 bp)
was synthesized and ligated into the pYES-NT/C plasmid (ThermoFisher, kind gift of Dr. William
Marcotte, Clemson University) by Genscript (Piscataway, NJ USA), using the restriction enzyme
sites BamHI and Notl. The resulting construct contained the kinase domains in-frame with a N-
terminal poly-histidine tag, which was confirmed by sequencing. To generate an inactive kinase,
the conserved lysine in kinase subdomain Il (EilF2K-A, position 43 and EilF2K-B, position 45),
was mutated to arginine using the Phusion Site Directed mutagenesis kit (Thermo-Fisher) and
mutagenic primers (Table 2.1). Successful mutagenesis was confirmed by sequencing. Live and
dead human PKR kinase domains in yeast expression plasmid pYES2 were kind gifts from Dr.
Ronald Wek (Indiana University School of Medicine).

The pYES-NT/C or pYES2 plasmids encoding the active or dead kinase domain, or no
gene product (empty pYES-NT/C), were introduced into Saccharyomyces cerevisiae strain H1894
(MATa ura3-52 leu2-3 leu2-112 gnc2A trp1 A-63), which lacks the sole yeast elF2a kinase, GNC2
(12,16). Yeast was cultured at 30°C on YPAD agar plates containing 2% (w/v) glucose prior to
transformation. Yeast transformation was carried out as described (17). Since pYES-NT/C
confers uracil prototrophy to transformants, selection was carried out by plating transformed yeast
cells on agar plates containing synthetic dropout medium (SD) (Sigma-Aldrich St. Louis, MO,

USA) (without uracil), and 2% (w/v) glucose, and growing them overnight at 30°C.
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To induce expression of exogenous protein, cells from each transformed yeast strain were
inoculated into liquid SD medium containing 2% (w/v) raffinose and 10% (w/v) galactose (13) and

grown overnight at 30°C prior to western blotting.

Western blotting

Western blotting of whole cell lysates was used to assess the expression of kinases in
yeast or the level of total and phosphorylated elF2a in yeast or in E. invadens. For yeast, cell
lysates were prepared as described (44). Briefly, 1.89 x 107 yeast cells were pelleted by
centrifugation at 3,000 x g for 5 min. To prepare yeast for lysis, cells were resuspended in 0.5 mL
2 M lithium acetate (Sigma-Aldrich) and incubated on ice for 5 min. Cells were pelleted by
centrifugation at 500 x g, 5 min, resuspended in 0.5 mL 0.4 M NaOH, and incubated on ice 5 min.
For E. invadens, trophozoites or encysting parasites (3x10°) were pelleted by centrifugation at
500 x g for 5 min. Both yeast cells and E. invadens parasites were resuspended in NUPAGE LDS
sample buffer (Life Technologies; Carlsbad, CA, USA). An additional step was required to lyse E.
invadens cysts. Cysts (in NUPAGE LDS buffer) were also exposed to three cycles of freeze/thaw
in liquid nitrogen. All samples were heated for 5 min at 100°C and loaded onto a precast NUPAGE
12% Bis-Tris Gel (Life Technologies; Carlsbad, CA). The gels were electrophoresed at 180V for
60 min and proteins were transferred to PVDF membranes (Life Technologies) at 12V for 1.5 h in
Towbin transfer buffer (25 mM Tris, 192 mM glycine, 20% (v/v) methanol). Prior to blocking,
membranes were stained with Ponceau S reagent (Sigma-Aldrich) to record protein load. The
membranes were blocked with 5% (w/v) Blotting Grade powdered milk blocker (Bio-Rad

Laboratories, Hercules, CA) and 0.5% (w/v) bovine gelatin (Sigma-Aldrich) in TBST (50 mM Tris,
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Table 2.1: Primers used in this study

Primer Name

Sequence

Cloning Primers
EilF2K-A-Avrll-F (EIN_052052)
EilF2K-A-Avrll-R (EIN_052052)

5-CCCCTAGGATGTCCGTCAC-3’
5-CCCCTAGGTTAGTCGGACGGAG-3’

RT PCR primers

EilF2K-A-F (EIN_052050)

EilF2K-A-R (EIN_052050)

EilF2K-B-F (EIN_096010)

EilF2K-B-R (EIN_096010)

Trophozoite Internal control-F (EIN_327460)
Trophozoite Internal control-R (EIN_327460)
Cyst Internal Control-F (EIN_162500)

Cyst Internal Control-R (EIN_162500)

5’-CGAAGACGAGATGGGTTCTTT-3’
5-CGAAGTGGAGTTCACGATTCT-3'
5-GAAGGCCAACGAGTGAGGAA-3’
5-CTCACTTCTCCGCCACACAT-3’
5’-CCGACAGCAGAAGAACAAGA-3
5-GGAGATGAGTAAGCGAAGAACA-3’
5-ACCAGCCGAGGTCAAGAAAG-3’
5-TCTTCGGGTGTGGCTTTACC-3’

Mutagenic Primers
Dead-EilF2K-A-F (EIN_052050)
Dead-EilF2K-A-R (EIN_052050)

5’- AGAAGTACGCAATCAgGGTATTAATTGTGTC-3’
5-TCTTATCGTCTTTTCTAATACCACTGTAGAC-3”
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150mM NaCl, 0.5% (v/v) Tween 20) for 35 min at 37°C. Membranes were incubated overnight at
4°C in primary antibodies (diluted 1:1000 in TBST). For yeast, the primary antibodies were horse
radish peroxidase-conjugated a-poly-histidine tag antibody (Sigma Aldrich; St. Louis, MO; kind
gift of Dr. Michael Sehorn, Clemson University), yeast-specific a-phosphorylated elF2a antibody
(Thermo-Fisher), or yeast-specific a-total elF2a antibody (gift of Dr. Thomas Dever, NIH). For E.
invadens, the primary antibodies were Entamoeba-specific a-phosphorylated elF2a antibody (4)
or a-total elF2a antibody (4). The membranes were washed in TBST for 45 min with 6 buffer
changes. Membranes were incubated in commercially available horseradish peroxidase-
conjugated goat anti-rabbit antibody (Thermo-Fisher, diluted 1:5000 in TBST) for 1 h at room
temperature and extensively washed as described above. All blots were developed using a
commercially available Enhanced ChemiLuminescence Western Blotting Detection system
(ThermoScientific) according to the manufacturer's instructions. Protein bands were quantified

using scanning densitometry and Image J software (Version 1.51, NIH).

Induction of Stage Conversion

To induce encystation, control and mutant trophozoites (6.5x10°) were pelleted by
centrifugation at 500 x g for 5 min and resuspended in 47% (w/v) low glucose/serum free/high
osmolarity encystation medium (4,7), supplemented with 50 mg/mL neomycin. Parasites were
incubated at 25°C for either 48 h or 72 h and encystation was tracked by staining with Congo Red

(Amresco; Solon, OH) and flow cytometry (19).

Excystation was induced as described (8) Briefly, Trig Luc and EilF2K-KD trophozoites
were induced to encyst for 72 h. Parasites were then incubated in 13 mL ddH.O at 4°C overnight
to lyse unencysted trophozoites. Cysts were enumerated using a Luna Automated
Hemocytometer (Logos Biosystems), pelleted by centrifugation at 500 x g for 5 min, and
resuspended in 13 mL TYI-S-33 medium, 1 mg/mL bile salts (Sigma-Aldrich), and 40 mM
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NaHCOg3;, and incubated at 25°C for 2 h or 8 h. After incubation, cultures were iced for 8 min to
detach any trophozoites from the glass culture tubes, pelleted by centrifugation at 500 x g for 5
min, resuspended in 1 mL of 1% (v/v) sarkosyl in PBS and incubated on ice for 30 min to lyse any
trophozoites or immature cysts. The remaining detergent-resistant cysts were enumerated and
the percent excystation was calculated by comparing total cysts remaining to the starting number

of cysts.

Phagocytosis Assays

Phagocytosis assays were carried as previously described (20) with minor changes.
Briefly, control or mutant trophozoites were rinsed once in PBS (GE Life Sciences) and twice in
serum free TYI-S-33 medium (SFM). Trophozoites (2x10°) were resuspended in 150 yL SFM.
Freshly isolated human red blood cells (RRBCS) were pelleted by centrifugation (2000 x g for 1
min) and rinsed once with PBS and twice with SFM and were resuspended at a concentration of
4x10° cells/uL in SFM. hRBCs (2x107) were added to the trophozoites and incubated at 25°C for
10 min. Samples were pelleted by centrifugation (2000 x g for 1 min), and undigested hRBCs
were hypotonically lysed by washing twice with 1 mL of ice-cold ddH»O. Parasites were washed
with 1mL ice-cold PBS, collected by centrifugation (2000 x g for 1 min) and lysed with 200 pL
concentrated formic acid (Fisher). Phagocytosis was measured as the absorbance of heme in the

lysate at 405 nm. Sample values were corrected for the formic acid blank.

Adhesion Assays

Adhesion assays were carried as previously described (21) with minor changes. Briefly,
Chinese hamster ovary (CHO) cells (1.5x10°) were seeded into a 96-well plate and grown at 37°C
for 24 h. CHO monolayers were fixed by incubating with 4% (v/v) paraformaldehyde in PBS for
10 min at 37°C. To inactivate paraformaldehyde, the CHO monolayer was incubated with 200 uL
of 250 mM glycine for 15 min. Glycine was removed by rinsing with PBS. Control and mutant
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parasites were incubated with calcein-AM (Invitrogen) (5 ug/mL) for 30 min at 25°C. Calcein-AM
labeled parasites were washed once with room temperature SFM and 5x10* parasites were
seeded onto the fixed monolayer of CHO cells. Parasites were incubated with fixed CHO cells in
SFM for 30 min at 25°C. The media was carefully aspirated, and the cell layer was gently rinsed
twice with room temperature PBS. The number adherent parasites was determined by measuring
fluorescence at excitation and emission wavelengths of 495 and 525 nm, respectively, with a

fluorimeter/plate reader (Model FLX800, BioTek Instruments, Winooski, VT).

Induction of Oxidative stress
Control or mutant parasites were incubated with 4 mM or 1M H2O-for 1 h at 25°C. Viability
was assessed using trypan blue exclusion and quantified by a Luna Automated Hemocytometer

(Logos Biosystems).

Statistical Analysis

All values are presented as means + standard error of at least 3 separate trials. Means
of treated groups were compared against the appropriate control and statistical analyses were
performed using Graph Pad prism 9 (v9.0.0, San Diego, CA, US) with a one-way analysis of
variance (ANOVA). P values of less than 0.05 were considered statistically significant. P values

less than 0.01 or 0.001 were considered highly statistically significant.

Ethics Statement
Whole blood was donated by a healthy adult volunteer, who provided oral consent, at
Clemson University. The collection was approved by Clemson's Institutional Biosafety Committee

under safety protocol #1BC2018-12.
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V. Results

The E. invadens and E. histolytica genomes each encode two putative elF2a kinases

Using the amino acid sequences of the four human elF2a kinases, we searched the E. invadens
genome (Amoebadb.org) for candidate sequences that contained hallmarks of elF2a kinases
(15). We found two presumptive E. invadens elF2a kinases, which we named EilF2K-A
(EIN_052050, formerly labeled EIN_033330) and EilF2K-B (EIN_096010, formerly labeled
EIN_059080), which share ~33.5% identity and ~48.1% similarity with each other within their
kinase domains (Table 2.2). According to RNA sequencing data, reported as transcript
abundance in transcripts per million (TPM) (Amoebadb.org), these kinases exhibit stage-specific
expression. EilF2K-A is predominantly expressed in trophozoites and at 48 h into encystation,
while EilF2K-B is only expressed during stage conversion, at low levels during encystation, and
at higher levels during excystation (8) Like the genome of E. invadens, the genome of the human
pathogen, E. histolytica, also possessed two putative elF2a kinases, which we named EhIF2K-A
(EHI_035950) and EhIF2K-B (EHI_109700). The kinase domain of EilF2K-A shares ~49.9%
identity (~64.6% similarity) and ~28.1% identity (~43.9% similarity) with the kinase domains of
EhIF2K-A and EhIF2K-B, respectively (Table 2.2). The kinase domain of EilF2K-B shares ~31.1%
identity (~45% similarity) and ~48.4% identity (~64.9% similarity) with the kinase domains
EhIF2K-A and EhIF2K-B, respectively (Table 2.2). The kinase domains of EilF2K-A and EilF2K-
B also share at least 16.57% identify and at least 28.57% similarity with the human elF2a kinases

(Table 2.2).

We aligned the putative Entamoeba kinases with other known elF2a kinases, as well as
with a control kinase, human CDK1, which does not belong to the family of elF2a kinases. For
clarity, only kinase subdomain Il is shown (Fig 2.1). The Entamoeba kinases possess all eleven

subdomains characteristic of the elF2a kinase family, with highly conserved residues making
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them more closely related to elF2a kinases than to the control kinase, CDK1 (Fig 2.1). The
Entamoeba kinases share little homology with other members of this kinase family beyond the
kinase domains. A phylogenetic analysis of elF2a kinases showed that both EilF2K-A and EilF2K-
B were more closely related to each other and to their E. histolytica counterparts (EhIF2K-A and
EhIF2K-B) than to any of the other kinases. Additionally, the Entamoeba kinases were more
closely related to PKR- and PERK-related kinases than to GCN2- or HRI-related kinases (Fig

2.2).

EilF2K-A and EilF2K-B regulate phosphorylation of elF2a in a heterologous system

To validate EilF2K-A and EilF2K-B as elF2a kinases, we utilized a yeast model system
that uses the Saccharomyces cerevisiae strain, H1894, in which the sole endogenous elF2a
kinase is deleted. Exogenous expression of authentic elF2a kinases in this yeast strain results in
phosphorylation of endogenous elF2a. (12,13,16). A truncated cDNA encoding the catalytic
domain of EilF2K-A or EilF2K-B, was inserted into the yeast expression vector, pYES-NT/C,
which confers uracil prototrophy and allows for galactose-inducible expression of exogenous
genes (13). The pYES-NT/C plasmid also adds a polyhistidine tag to the N-terminus of the
expressed protein. A pYES-NT/C vector lacking an insert (empty pYES) was used as a control
plasmid and pYES2 plasmid harboring the active kinase domain of human PKR was used as a
positive control (13) A standard transformation protocol (17) was used to introduce the expression
vectors into the H1894 strain and transformants were selected by growth on media that lacked

uracil.
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Figure 2.1: Alignment of kinase domains. Clustal W alignment
of the kinase subdomain Il of different elF2a kinases. The grey
scale bars represent level of residue conservation. Dashes
represent gaps in the sequences that were used to maximize the
alignment. The numbers between the dashes indicate the size of
each insert removed. NCBI Accession numbers: Entamoebae;

EilF2K-A  (XP_004259781.1), EilF2K-B (XP_004254115.1),

EhIF2K-A (XP_648932.2), EhIF2K-B (XP_652189.2).

Dictiostelium discoideum; Dd iFKA (Q558U1.1), Dd_iFKB

(Q550L8), Dd_iFKC (Q75JN1). Acanthamoeba castellani;

Ac_GCN2-like (L8HJ53). Saccharomyces cerevisiae; Sc_ GCN2

(P15442). Human; Hs_GCN2 (Q9P2K8.3), Hs_HRI (Q9BQI3),

Hs_PKR  (P19525), Hs PERK (Q9NZzJ5), Hs_CDK1

(NP_203698). Mouse; Mm_GCN2 (NP_001171277.1), Mm_HRI

(Q9Z2R9), Mm_PKR (Q03963), Mm_PERK (Q9Z2B5).

Plasmodium falciparum; Pf_IF2K1 (XP_001348597.1), Pf_IFK2

(Q81265). Toxoplasma gondii; Tg_IF2KA (S8F350), TglF2K-

B(ACA62938), Tg_IF2KC (AHM92904), Tg_IF2KD (AED01979.1).
Leishmania donovani; Ld_eK2 (AOAOF7CYG9), Ld LdeK
(A9YF35); Mouse; Mm GCN2 (NP_001171277.1), Mm HRI
(Q9Z2R9), Mm PKR (Q03963), Mm_PERK (Q9Z2B5).
Plasmodium falciparum; Pf IF2K1 (XP_001348597.1), Pf IFK2
(Q81265). Toxoplasma gondii; Tg IF2KA (S8F350), Tg IF2K-B
(ACA62938) Tg IF2KC (AHM92904), Tg IF2KD (AED01979.1).

Leishmania donovani; Ld eK2 (AOAOF7CYG9), Ld LdeK (A9YF35).
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Tree scale: 0.1 jr—p—]

Figure 2.2: Phylogenetic tree of elF2a kinases. The alignment of the catalytic domains of known elF2a
kinases and putative Entamoebae kinases was used to propose phylogenetic relationships by generating a
tree. NCBI Accession numbers: Entamoebae; EilF2K-A (XP_004259781.1), EilF2K-B (XP_004254115.1),
EhIF2K-A (XP_648932.2), EhIF2K-B (XP_652189.2). Dictiostelium discoideum; Dd iFKA (Q558U1.1), Dd
iFKB (Q550L8), Dd iFKC (Q75JN1). Acanthamoeba castellani; Ac GCN2-like (L8HJ53). Saccharomyces
cerevisiae; Sc GCN2 (P15442). Human; Hs GCN2 (Q9P2K8.3), Hs HRI (Q9BQI3), Hs PKR (P19525), Hs
PERK (Q9NZzJ5), Hs CDK1 (NP_203698). Mouse; Mm GCN2 (NP_001171277.1), Mm HRI (Q9Z2R9), Mm
PKR (Q03963), Mm_PERK (Q9Z2B5). Plasmodium falciparum; Pf IF2K1 (XP_001348597.1), Pf IFK2

(Q81265). Toxoplasma gondii; Tg IF2KA (S8F350), Tg IF2K-B (ACA62938) Tg IF2KC (AHM92904), Tg IF2KD

Hs_CDK1

_I

Tg_IF2KA

Mm_PKR
r—HsiPKR
Mm_PERK
Hs_PERK

_: Eh IF2K-A
Ei_IF2K-A

|Eh_IF2K-B
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—Dd_iFKC
- Mm_GCN2
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Ac_GCN2-like

Tg_IF2KC

—] Pf_IF2K1

(AED01979.1). Leishmania donovani, Ld eK2 (AOAOF7CYG9), Ld LdeK (A9YF35).
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Expression of exogenous protein was induced by plating yeast cells on galactose-
containing medium. Western blot analysis using an a-polyhistidine antibody demonstrated
successful induction of exogenous protein expression with little to no expression prior to exposure
to galactose (Fig 2.3A). We used western blot to assess the level of phosphorylated and total
elF2a in the transgenic yeast strains expressing EilF2K-A, EilF2K-B, empty pYES, or human
PKR. All 3 kinases could phosphorylate endogenous yeast elF2a (Fig 2.3B) demonstrating that
EilF2K-A and EilF2K-B have elF2a kinase activity. EilF2K-A and EilF2K-B possess the conserved
lysine in kinase subdomain Il (Fig 2.1) that is critical for catalytic activity (18). As a control, we
mutated this key lysine residue to arginine and expressed these “dead” kinase domains in the
H1894 yeast strain. Western blotting confirmed that dead kinases were incapable of
phosphorylating yeast elF2a (Fig 2.3B). These findings further support the notion that EilF2K-A
and EilF2K-B are authentic elF2a kinases.

Generation of E. invadens parasites with reduced expression of EilF2K-A and EilF2K-B

We used a RNAI Trigger-mediated gene silencing approach to reduce the expression of
EilF2K-A (14). Since the coding sequence of EilF2K-A is large (2727 nucleotides), we subcloned
a partial cDNA encoding amino acids 1-267, which contains the kinase domain, into the gene
silencing Trigger plasmid (14). Complete cDNAs are not required for efficient knockdown using
this system (14). Stable transfectants (EilF2K-KD) were selected for and maintained by growth in
the presence of neomycin. Parasites harboring the Trigger plasmid, with an insert encoding
luciferase, an irrelevant protein, was used as a control (Trig Luc). Using this approach, we
obtained substantial knockdown of EilF2K-A mRNA levels in trophozoites as assessed by RT-
PCR analysis (Fig 2.4). Additionally, we measured EilF2K-A expression during stage conversion

in control and knockdown parasites.
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Figure 2.3: Expression of EilF2K-A and EilF2K-B kinase domains in a heterologous yeast system demonstrates

kinase activity.

Yeast strain H1894, which contains a genetic deletion of its sole elF2a kinase, was transformed with the galactose-
inducible pYES expression vector (empty pYES) or the same vector harboring wildtype (live) or mutated (dead) coding
sequences for EilF2K-A or EilF2K-B kinase domains. For the dead kinases, a conserved lysine in each kinase

subdomain Il was mutated to arginine to create an inactive kinase. (A) Western blot, using anti-polyhistidine tag antibody,

confirmed galactose-inducible protein expression. “-“ symbol represents strains grown on glucose as a carbon source,

while “+” symbol represents strains grown on galactose as a carbon source. Expression of the EilF2K-A or EilF2K-B
kinase domains (live or dead) was only evident when cells were grown on galactose. (B) Western blot showing the level

of phosphorylated elF2a and total elF2a in H1894 yeast strain harboring empty pYES, a control elF2a kinase, human

PKR (pYES-PKR (live or dead) [13]), pYES-EilF2K-A (live or dead), or pYES-EilF2K-B (live or dead).

Hyperphosphorylation of elF2a was only observed in the yeast expressing live kinase domains. Ponceau red staining of

membranes (red) indicate load.
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We found EilF2K-A mRNA is undetectable in control and knockdown parasites at 24 h
(Fig 2.4) and 48 h (Fig 2.4C) into encystation. EilF2K-A mRNA was expressed at low levels in the
control Trig Luc parasites at 2 h into excystation but was undetectable in the EilF2K-KD parasites
(Fig 2.4D). Since closely related genes may simultaneously be silenced by RNAi approaches (14),
it was necessary to also measure expression of EilF2K-B during growth and stage conversion.
EilF2K-A and EilF2K-B share 32.64% identity within the kinase domain (Table 2.2). Consistent
with published transcriptomic data (8), expression of EilF2K-B was undetectable in control or
mutant trophozoites growing in nutrient-rich medium (Fig 2.4A). On the other hand, the level of
EilF2K-B mRNA was reduced during both encystation (Fig 2.4B) and excystation (Fig 2.4D) in
the EilF2K-KD parasites compared to the Trig Luc control parasites, suggesting that reducing
expression of EilF2K-A caused simultaneous reduced expression of EilF2K-B during stage
conversion.

Since the trigger plasmid containing the kinase domain of EilF2K-A (5’ segment), was
sufficient to reduce expression of both kinases, simultaneously, we assembled two new trigger
constructs, containing the 3’ end of EilF2K-A (last 909 bp) or EilF2K-B (last 861 bp), to attempt
to knock down genes individually. Electroporation of parasites with the new trigger-EilF2K-A
plasmid failed and as we never obtained neomycin-resistant parasites. On the other hand, we
successfully transformed parasites harboring the Trigger-EilF2K-B-3’ plasmid and obtained
neomycin-resistant parasites. RT-PCR with EilF2K-B or EilF2K-A specific primers (Table 1)
demonstrated that EilF2K-B expression was reduced in EilF2K-B-KD trophozoites, at 24 hr
encystation, and at 2 hr excystation, compared to Trig Luc control parasites. Surprisingly, the
Trigger-EilF2K-B-3’ plasmid was also sufficient to reduce expression of EilF2K-A in EilF2K-B-KD
trophozoites and 2 hr excysting parasites, compared to Trigger Luc parasites (Fig 2.5). Therefore,

we only characterized our original EilF2K-KD cell line.
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Figure 2.4: Trigger-mediated knockdown of EilF2K-A and EilF2K-B expression during growth and

stage conversion

RT-PCR was used to measure the level of EilF2K-A or EilF2K-B mRNA in transfected parasites harboring
the Trigger-EilF2K-A plasmid (EilF2K-KD) or the Trigger-Luc control plasmid (Trig Luc). (A) EilF2K-A mRNA
is undetectable in trophozoites harboring Trigger-EilF2K-A plasmid. EilF2K-B mRNA is undetectable in Trig
Luc and EilF2K-KD trophozoites. (B) EilF2K-A mRNA is undetectable in Trig Luc or EilF2K-KD parasites at
24 h encystation, while there is a decrease in EilF2K-B mRNA in the EilF2K-KD parasites line compared to
the Trig Luc control at 24 h into encystation. (C) EilF2K-A mRNA is undetectable at 48 h into encystation.
(D) Low levels of EilF2K-A and EilF2K-B mRNA are detectable at 2 h into excystation in Trig Luc parasites,
but not in EilF2K-KD parasites. EIN_192230 and EIN_162500 served as load controls for trophozoites or
encysting cells, respectively. No RT reactions eliminated reverse transcriptase to confirm that there was no
genomic (gDNA) contamination in cDNA samples. Panels labeled “ddH.O” represent reactions in which

ddH-O was used as template. A lack of product confirms no gDNA contamination in the reagents.
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Figure 2.5: Trigger-mediated knockdown of EilF2K-A and EilF2K-B expression during growth and

stage conversion in EilF2K-B-KD parasites

RT-PCR was used to measure the level of EilF2K-A or EilF2K-B mRNA in transfected parasites harboring
the Trigger-EilF2K-B-3’ plasmid (EilF2KB-KD) or the Trigger-Luc control plasmid (Trig Luc). (A) EilF2K-B
mMRNA is slightly detectable in trophozoites harboring Trigger-EilF2K-B-3’ plasmid. EilF2K-A mRNA is
undetectable in EilF2KB-KD trophozoites. (B) EilF2K-B mRNA expression is reduced in EilF2K-B-KD
parasites at 24 h encystation compared to Trig Luc parasites. (C) EilF2K-A and EilF2K-B mRNA expression
are both reducted at 2 h into excystation in EilF2K-B-KD parasites compared to Trig Luc parasites.
EIN_192230 and EIN_162500 served as load controls for trophozoites or encysting cells, respectively. No
RT reactions eliminated reverse transcriptase to confirm that there was no genomic (gDNA) contamination
in cDNA samples. Panels labeled “ddH2O” represent reactions in which ddH>O was used as template. A

lack of product confirms no gDNA contamination in the reagents.
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EilF2K-KD parasites exhibit lower phospho-elF2a levels and altered growth in nutrient-rich

media than control parasites

Previously, we showed that E. histolytica parasites possess a basal level of
phosphorylated elF2a, which increases after exposure to a subset of stressful conditions (4,5)
and during encystation (4). Therefore, we measured the level of phosphorylated elF2a relative to
total elF2a in both trophozoites and encysting control and EilF2K-KD parasites (Fig 2.6). In
agreement with previously published data (4) Trig Luc control parasites exhibited a basal level of
phosphorylated elF2a, which increased at 48 and 72 h into encystation (Fig 2.6A, B). In contrast,
parasites with diminished kinase expression displayed decreased, albeit slightly variable, levels
of phosphorylated elF2a in trophozoites and in encysting parasites. The most dramatic decrease
in phosphorylation of elF2a was observed in the mutant at 48 h into the stage conversion program.
While mRNA levels of EilF2K-A and EilF2K-B are undetectable by RT-PCR in our knockdown cell
line (Fig 2.4), there must be some remaining level of kinase MRNA expression as we see some
phosphorylation of elF2a in EilF2K-KD parasites (Fig 2.6A, B). Overall, these data demonstrate
that EilF2K-KD parasites have a reduced capacity for phosphorylating elF2a, supporting the

identity of EilF2K-A and EilF2K-B as elF2a kinases.

We also measured the growth rate of Trig Luc and EilF2K-KD parasites in both standard
nutrient-rich medium and nutrient-poor/low osmolarity encystation medium for up to 72 h post-
inoculation (Fig 2.6). EilF2K-KD parasites exhibited a lag in growth when seeded into nutrient-
rich medium, but eventually exhibited a higher rate of growth than control parasites (Fig 2.6C).
This growth phenotype, exhibited by EilF2K-KD parasites in nutrient-rich medium, is likely the

result of reduced EilF2K-A expression as it is the only kinase expressed in trophozoites.
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Figure 2.6: EilF2K-KD parasites exhibit reduced phosphorylation of elF2a and reduced growth in nutrient-rich
medium.

The level of phosphorylated and total elF2a in Trig Luc and EilF2K-KD parasites was measured during growth and
encystation by western blotting using antibodies specific for phosphorylated or total or elF2a. Levels of protein were
quantified using scanning densitometry of bands on the same blot (Image J) and the ratio of phosphorylated elF2a to total
elF2a was calculated after correcting for load. (A) Representative western blots for control (Trig Luc) or knockdown (EilF2K-
KD) trophozoites and encysting parasites. (B) Ratio of phosphorylated elF2a to total elF2a for Trig Luc or EilF2K-KD
trophozoites (blue), or 48-h cysts (purple), and 72-h cysts (black). The ratio for Trig Luc trophozoites was arbitrarily set to
1.0 and was used as the basis for comparison. During encystation, the ratio of phosphorylated elF2a to total elF2a increases
in Trig Luc parasites (P<0.05). In all stages of the life cycle, the ratio of phosphorylated elF2a to total elF2a was generally
decreased in EilF2K-KD parasites compared to Trig Luc parasites. The most dramatic decrease in the ratio of
phosphorylated:total elF2a in was observed in the mutant at 48 h into the encystation program (P<0.05). (ns, not statistically
significant). Data represent the mean +* standard error of at least 5 separate trials. Trophozoites were seeded into standard
nutrient-rich culture media (1x108 initial inoculum) (C) or into encystation media (6.5x108 initial inoculum) (D) for 48 or 72 h.
At each time point, parasites were enumerated using trypan blue exclusion and light microscopy. (C) EilF2K-KD parasites

exhibit an initial lag in growth when seeded into nutrient-rich medium, but eventually show an increased growth rate between
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On the other hand, there was no difference in the growth kinetics of the mutant in encystation
medium when compared to that of the control parasites (Fig 2.6D). The decrease in parasite
number during incubation in encystation medium (Fig 2.6C, D) is typical as a fraction of the

population loses viability instead of encysting.

EilF2K-KD parasites have altered rates of stage conversion

To elucidate the role of the kinases in stage conversion, we measured the rate of encystation and
excystation in both Trig Luc and EilF2K-KD parasites. Encystation was induced by inoculating
parasites into nutrient-poor/low osmolarity encystation media. Hallmarks of encystation include
the accumulation of a chitin-rich cell wall and a reduction in cell size (19). To assess encystation,
we used flow cytometry (19) and Congo Red staining to track the accrual of chitin as well as
changes in cell size. In the EilF2K-KD parasites, the percent of parasites that had encysted was
significantly higher at 48 h post inoculation, but not at 72 h post inoculation, when compared to
control parasites (Fig 2.7A). This suggests that the rate, but not the overall efficiency, of
encystation is higher in parasites with diminished kinase expression. Since both kinases are
expressed during encystation, we cannot discern if the encystation phenotype is due to loss of
one or both kinases. To induce excystation, cysts were incubated in excystation media, which
restores nutrients and osmolarity and contains bile salts to mimic passage through the host
digestive system (8). EilF2K-KD parasites exhibited a significantly lower rate of excystation
compared to control parasites at 2 h and 8 h into the excystation program (Fig 2.7B). Since
EilF2K-B is the only kinase expressed during excystation, we posit that reduced EilF2K-B

expression may be solely responsible for the excystation phenotype.
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Figure 2.7: The rate of encystation is increased and the rate of excystation is
decreased in EilF2K-KD parasites

(A) Trig Luc and EilF2K-KD parasites were induced to encyst for either 48 or 72 h. Mature
cysts were stained with Congo Red and quantified using flow cytometry. A higher percent of
EilF2K-KD parasites encysted by 48 h and at 72 h compared to Trig Luc parasites. However,
the increase was only statistically significant at 48 h (P<0.01), suggesting that the mutants
have a higher initial rate of encystation but not a higher efficiency of encystation. (B) Trig Luc
cells and EilF2K-KD cysts were induced to excyst by incubation in excystation media for 2 or
8 h. The number of mature cysts was quantified before and after excystation and the
decrease in the number of cysts represented the fraction (percent) of parasites that had
excysted. The excystation rate of EilF2K-KD was significantly (P<0.001) lower than that of
Trig Luc parasites at both 2 and 8 h. Data represent the mean + standard error of at least 3

separate trials.
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EilF2K-KD trophozoites are more susceptible to oxidative stress

Previously, we demonstrated that E. histolytica phosphorylates elF2a in response to
several different stressful conditions including oxidative stress (4) As such, EilF2K-A, the sole
kinase expressed in trophozoites, may be responsible for countering oxidative stress. Suresh et
al., (2016) demonstrated that exposing E. invadens parasites to 4 mM H20- for 1 h induced
oxidative stress, as evidenced by detachment and rounding of parasites, while maintaining 290%
viability (14). However, the level of phospho-elF2a in H.O-treated E. invadens trophozoites has
not been examined. Therefore, we exposed wildtype (WT) E. invadens trophozoites to ddH.O
(diluent) or 4 mM H20: for 1 h at 25°C and measured levels of total and phosphorylated elF2a by
western blotting (Fig 2.8A?). Phosphorylation increased in parasites treated with 4 mM H20:
compared to the unstressed control. To ascertain if EilF2K-A regulates the response to oxidative
stress in trophozoites, we measured the viability of WT, Trig Luc, and EilF2K-KD parasites
exposed to 4 mM H20;; however, we observed no difference in viability (Fig 2.8B7?). Therefore,
we used a higher concentration of H.O- that could reduce viability of WT E. invadens parasites.
WT, Trig Luc, and EilF2K-KD parasites were exposed to 1 M H>O- for 1 h at 37°C. This treatment
caused approximately 30% parasite death in WT parasites, 40% parasite death in Trig Luc
parasites (Fig 2.9A?) and approximately 65% parasite death in EilF2K-KD parasites. The
statistically significant reduction in viability in EilF2K-KD parasites supports the notion that EilF2K-
A may regulate the response to oxidative stress in E. invadens trophozoites.

EilF2K-KD parasites may be more susceptible to oxidative stress because of their reduced
capacity to phosphorylate elF2a. Thus, we used western blotting to measure the levels of
phosphorylated and total elF2a in control and EilF2K-KD parasites exposed to H20». The ratio of
phosphorylated elF2a to total elF2a increased significantly in stressed Trig Luc parasites, but not

in EilF2K-KD parasites (Fig 2.9B, C). There is a slight increase in phosphorylation of elF2a in
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Figure 2.8: Phosphorylation of elF2a and viability of parasites in response to 4 mM

H.0:

(A) Wildtype (WT) parasites were exposed to ddH>O (diluent) or 4 mM H;O:for 1 h at 25°C
and the levels of total and phosphorylated elF2a were measured by western blotting. There
is a basal level of phosphorylated elF2a, which increased after treatment with H2O..
Coomassie stained gel bands demonstrate equal load. (B) We exposed WT, Trig Luc, and
EilF2K-KD parasites to 4 mM H;O:for 1 h at 25°C and measured viability using trypan blue
exclusion and an Automated Luna Hemocytometer. There is no difference in viability among

cell lines. Data represent the mean + standard error of at least 3 separate trials.
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Figure 2.9: EilF2K-KD trophozoites are more susceptible to oxidative stress

Wildtype (WT), Trig Luc, or EilF2K-KD trophozoites were exposed to 1M H>O5 for 1 h at 25°C.
(A) Viability was assessed using trypan blue exclusion and a Luna Automated
Hemocytometer. EilF2K-KD parasites were significantly less viable when exposed to
oxidative stress compared to WT and Trig Luc parasites (P<0.05). (B) Representative
western blot showing the level of phosphorylated and total elF2a in Trig Luc or EilF2-KD cells
before (-) and after (+) H.Oz-treatment. (C) Western blotting was used to measure levels of
total and phosphorylated elF2a in parasites exposed to ddH-O or 1 M H>O- for 1 h at 25°C.
Levels of protein were quantified using scanning densitometry of bands on the same blot
(Image J) and the ratio of phosphorylated elF2a to total elF2a was calculated after correcting
for load. Trig Luc parasites exposed to 1 M H202 exhibited significantly higher (P<0.01) levels
of phosphorylated elF2a compared to controls, while EilF2K-KD parasites exposed to the
same conditions did not exhibit significantly increased levels of phosphorylated elF2a. Data

represent the mean + standard error of at least 3 separate trials.
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EilF2K-KD parasites treated with 1M H.O, compared to those parasites treated with ddH.O.
Currently, there are no methods to knockout genes in the Entamoebae. Therefore, there remains
some level of kinase expression in our EilF2K-KD parasites, which may respond to stress.
Overall, these data support the identity of EilF2K-A as an authentic kinase and emphasize the

importance of the elF2a mechanism in parasite stress management.

EilF2K-KD trophozoites exhibit increased virulence functions

To discern the effect of decreased EilF2K-A expression on parasite virulence, we measured
two key virulence functions: erythrophagocytosis and adhesion to host cells. Trig Luc and
EilF2K-KD trophozoites were exposed to human red blood cells (hRBCs) for 10 min, after which
uptake of heme was quantified spectrophotometrically (20). Adhesion was measured by
quantifying the degree to which fluorescently-labeled parasites could adhere to a fixed
monolayer of Chinese hamster ovary (CHO) cells (21). EilF2K-KD parasites exhibited
significantly increased phagocytosis (Fig 2.10A) and adhesion (Fig 2.10B), which suggests that
EilF2K-A may directly or indirectly modulates virulence functions because EilF2K-A is the only
elF2a kinase expressed in trophozoites.

V. Discussion

This is the first study to characterize elF2a kinases in the Entamoebae. We used a
heterologous yeast system to show that EilF2K-A and EilF2K-B are authentic elF2a kinases.
Using an established RNA. silencing approach (14), we knocked down both kinases using a
single Trigger-EilF2K-A plasmid. We found that EilF2K-KD parasites were more susceptible to
oxidative stress and exhibited increased virulence functions (erythrophagocytosis and parasite-
host cell adhesion). We also observed an increased rate of encystation and decreased rate of
excystation in EilF2K-KD parasites. Due to the stage-specific expression patterns of these

kinases, we posit that EilF2K-A may regulate phenotypes observed in trophozoites, while the
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Figure 2.10: Erythrophagocytosis and adhesion are increased in EilF2K-KD parasites
(A) Trig Luc or EilF2K-KD parasites were incubated with human red blood cells (hRBCs:
amoeba ratio; 100:1) for 10 min, lysed, and spectrophotometrically analyzed for internalized
heme at 405 nm. Amoebae with reduced expression of EilF2K-A exhibited increased
phagocytosis of hRBCs. The data represent the mean * standard error. of at least 3 separate
trials (P<0.05). (B) Calcein AM-stained control or mutant parasites were incubated with fixed
monolayers of Chinese Hamster Ovary (CHO) cells for 30 min. Unadhered parasites were
rinsed off the monolayer of CHO cells and the level of adhesion (calcein-AM fluorescence)
was measured by spectrofluorimetry using an excitation wavelength of 485 nm and an
emission wavelength of 528 nm. EilF2K-KD trophozoites exhibited significantly higher
adhesion to host cells than Trig Luc trophozoites (P<0.05). Data represent the mean %

standard error of at least 3 separate trials.
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excystation phenotype may be due to the loss of EilF2K-B. Furthermore, we attempted to obtain
individual knockdown of each elF2a kinase using trigger plasmids containing the 3’ end of the
kinase genes and found that Trigger-EilF2K-B-3’ plasmid is also sufficient to reduce expression
of both kinases. Overall, this study advances our knowledge about the stress response and stage
conversion in Entamoeba species, as well as highlights the urgent need for more sophisticated

gene modifying tools in the Entamoebae.

In mammalian cells, phosphorylation of elF2a is regulated by a family of four elF2a
kinases that are activated in a stress-specific manner. The ability of the kinases to respond to
various stresses rely on regulatory domains. Interestingly, in several protozoan parasites (13, 22,
23, 24), the elF2a kinases possess divergent regulatory domains, suggesting that protozoan
elF2a kinases may respond differently to environmental stress than their mammalian counterparts
(11). Currently, it is not possible to predict, by sequence-analysis, the types of stresses to which

the Entamoeba kinases will respond.

Nevertheless, we demonstrate that trophozoites with reduced EilF2K-A expression are
more susceptible to at least one stressful condition, oxidative stress. EilF2K-KD parasites were
less viable in the presence of high concentrations of H.O» and possessed decreased levels of
phosphorylated elF2a when compared to control parasites (Fig 2.9A). This is not surprising since
Hendrick et al. (4) demonstrated that oxidative stress induces the phosphorylation of elF2a in E.
histolytica. Likewise, Augusto et al. (25) knocked out an elF2a kinase, TglF2K-B, in T. gondii, and
found that null parasites had an impaired response to oxidative stress. To further illuminate the
stress-specific response of this kinase, it will be necessary to assess the ability of the EilF2K-KD
cells to survive other stressful conditions. Additionally, examining the transcriptome and
translatome of EilF2K-KD and control parasites under oxidative stress would help determine if
these elF2a kinases directly regulate the stress response of E. histolytica.
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EilF2K-KD parasites exhibited no growth phenotype in encystation medium and a
transient lag in growth in nutrient-rich medium (Fig 2.6C,D). This is unlike Trypanosoma cruzi
parasites lacking the elF2a kinase, TcK2, which exhibit a growth deficiency (26). However, the E.
invadens phenotype is similar that of Leishmania donovani parasites expressing a dominant
negative version of a GCN2-like kinase, which do not exhibit a growth defect (22). It is possible
that in L. donovani, multiple elF2a kinases share redundant functions and the loss of one kinase
is compensated by other related kinases. However, in E. invadens, EilF2K-A is the only elF2a
kinase expressed in trophozoites ((8) and the current study). Thus, compensation by related

kinases may not be possible in the trophozoite stage of this parasite.

EilF2K-A is expressed in trophozoites and decreases during initial encystation (8). Since
decreased EilF2K-A expression correlates with initiation of encystation, it is conceivable that
EilF2K-KD parasites are primed to encyst. In support of this, the encystation rate of the EilF2K-
KD parasites was significantly higher than that of control parasites at 48 h (Fig 2.7A). If EilF2K-
KD parasites are primed to encyst, they may exhibit early expression of encystation-specific
genes, which, in turn, could lead to an increased rate of encystation, but not necessarily an
increased efficiency. To gain further insight into the relationship between elF2a kinase expression
and encystation, it will be necessary to define the cyst-specific translatome, perhaps by ribosome-

profiling (Ribo-seq) (27), in EilF2K-KD trophozoites.

The excystation rate of EilF2K-KD parasites was significantly decreased (Fig 2.7B).
EilF2K-B is expressed at low levels during encystation, and at high levels during excystation (8).
Therefore, we hypothesize that the excystation phenotype may be due to the loss of EilF2K-B, as
it is the only elF2a kinase expressed during excystation. At present, we cannot determine if the
encystation phenotype is due to loss of EilF2K-A, EilF2K-B, or both. To understand the exact
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roles of EilF2K-A and EilF2K-B in stage conversion, it will be essential to knock down each gene

individually and evaluate stage conversion.

Previously, we demonstrated that the level of phosphorylated elF2a increases significantly
during encystation (4). Thus, it was not surprising that EilF2K-A and/or EilF2K-B may play a role
in stage conversion in E. invadens. Likewise, elF2a kinases play roles in stage conversion in other
protozoa. For instance, phosphorylation of elF2a increases during stage conversion or
differentiation of T. cruzi (26, 28), T. gondii (29), and Plasmodium falciparum (23). It was
unanticipated that reduced phosphorylation of elF2a would correlate with an increased rate of
encystation in E. invadens. Perhaps in the Entamoebae, precise timing of translation is necessary
to control the rate of encystation in such a way as to guarantee the accurate conversion of
trophozoites into environmentally-stable cysts. Without the kinases that control phosphorylation
of elF2a, the rate of translation becomes unbridled, and the rate of encystation becomes
unregulated. Defining the transcriptome and translatome, perhaps by Ribo-seq (27), during stage
conversion in EilF2K-KD parasites will provide additional insight into the roles of these kinases

during stage conversion.

EilF2K-KD parasites exhibited increased erythrophagocytosis and adhesion to host cells,
which are two important virulence functions (Fig 2.10). These data suggest that EilF2K-A, the
only elF2a kinase expressed in trophozoites (8), may directly or indirectly regulate
erythrophagocytosis and adhesion. Similarly, T. gondii parasites lacking one elF2a kinase,
TglF2K-B, were more virulent in vivo (25). Given the role of elF2a kinases in the management of
translation, one explanation for increased parasite virulence functions is dysregulated translation
of genes that control virulence. To establish a causal relationship between decreased kinase
expression and increased virulence phenotypes, we must define the translatome and
transcriptome of EilF2K-KD and control parasites.
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It may be argued that an increase in virulence functions or the rate of encystation in the
EilF2K-KD parasites implies that this kinase is not a suitable target for anti-parasitic drug design.
However, increased sensitivity to oxidative stress in the EilF2K-KD parasites supports its potential
as a drug target. The Entamoebae are microaerophilic. Therefore, to survive in the host, these
parasites must preserve intracellular hypoxia within oxygenated host tissues, such as the liver,
and surmount attacks on cellular homeostasis by reactive oxygen species originating from the
host immune response (30). Thus, it is conceivable that disabling EilF2K-A would simultaneously
restrict the ability of the pathogen to endure in the host. In support of this, genetic loss of the
elF2a kinases, PERK and GCN2, in immortalized mouse fibroblasts and human tumor cells

increases their susceptibility to oxidative stress (31).

The elF2a kinases are also implicated in human pathologies including cancer (32),
diabetes (33), and neurodegenerative disorders (34) and are the subject of intense study because
they represent logical targets for the design of therapies. For instance, overactivation of PERK
has been associated with neurological disorders such as Parkinson’s Disease and Alzheimer’s
Disease (34). It has been found that the compound, LDN-0060609, significantly inhibits PERK-
mediated phosphorylation of elF2a in rat astrocytes, which suggests that it may be a suitable drug
for the treatment of neurological diseases (35). Targeting the elF2a-based regulation of
translation in protozoan parasites is also underway. For example, pharmacological inhibition of
PK4 in P. falciparum with the PERK inhibitor, GSK2606414, blocks parasite differentiation and
reduces artemisinin-induced latency (36). Inhibition of PERK-like elF2 kinase, TgIF2K-A, in T.
gondii, with the same inhibitor, blocked multiple steps of the tachyzoite lytic cycle and lowered the
rate of bradyzoite differentiation (37). Finally, GSK2606414 reduced Leishmania amazonensis
infection of macrophages (38). Together, with the data presented in this study, these encouraging
results in other pathogens support the potential for the Enfamoeba elF2a kinases to serve as
targets for drug inhibition.
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ABSTRACT

Entamoeba histolytica is a protozoan parasite that causes amebic dysentery and amoebic
liver abscess in humans, affecting millions of people worldwide. This pathogen possesses a two-
stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid
trophozoite. As cysts can be ingested from contaminated food and water, this parasite is prevalent
in underdeveloped countries and poses a significant health burden. Until recently there was no
reliable method for inducing synchronous stage conversion in E. histolytica in vitro. As such, the
reptilian pathogen, Entamoeba invadens, has often served as a surrogate. Much remains unclear
about stage conversion in these parasites and current treatments for amoebiasis are lacking, as
they cause severe side effects. Therefore, new therapeutic strategies are needed. The genomes
of these parasites remain enigmatic as approximately 54% of E. histolytica genes and 66% of E.
invadens genes are annotated as hypothetical proteins. In this study, we characterized two
hypothetical proteins in the Entamoeba species, EIN 059080, in E. invadens, and its homolog,
EHI_056700, in the human pathogen, E. histolytica. EHI-056700 has no homolog in the human
host. We used an RNAi-based silencing system to reduce expression of these genes in E.
invadens and E. histolytica trophozoites. Loss of EIN_059080 resulted in a decreased rate of
encystation and an increased rate of erythrophagocytosis, an important virulence function.
Additionally, mutant parasites were more susceptible to oxidative stress. Similarly, loss of
EHI_056700 in E. histolytica trophozoites resulted in increased susceptibility to oxidative stress
and glucose deprivation, but not to nitrosative stress. Interestingly, parasites with decreased
expression of EHI_056700 exhibited a decreased rate of erythrophagocytosis of and adhesion to
host cells. Taken together, these data suggest that these hypothetical proteins play a role in stage
conversion, virulence, and the response to stress in the Entamoebae. This supports the idea that

hypothetical proteins may be promising therapeutic targets for the treatment of amoebiasis.
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Il. Introduction

Entamoeba histolytica is an enteric parasite which causes amoebic dysentery and amoebic
liver abscess in humans and nonhuman primates. This parasite has a two-stage life cycle,
consisting of the infective, environmentally-stable cyst form and the pathogenic trophozoite form.
E. histolytica cysts are transmitted via fecally-contaminated food and water, making this disease
prevalent in sub-Saharan Africa and southern Asia, where sanitation is substandard (Shirley et
al., 2018). As of 2020, 489 million people worldwide utilized unprotected drinking water sources,
including wells, springs, and surface water. Additionally, 494 million people continue to practice
open defecation (WHO & UNICEF, 2021). Thus, there is considerable risk for the spread of this
disease. Globally, more than 50 million people become infected with the parasite, with over

100,000 deaths annually (Shirley et al., 2018).

E. histolytica is ingested as a latent cyst and travels through the digestive system until
unknown cues trigger the excystation of trophozoites in the small intestine. Trophozoites colonize
the large intestine where they feed on the natural gut flora and mucosal cells that compose the
endothelial lining. In some cases, trophozoites will degrade the mucosal layer and enter the blood
stream where they cause extra-intestinal infections in the liver, lungs, or, rarely, the brain (Konig
et al.,, 2021). In the large intestine, unknown signals trigger aggregation and encystation of
trophozoites, which generate environmentally stable cysts that are shed into the environment to
facilitate host-to-host spread (Bercu et al., 2007). Until recently (Wesel et al., 2021)., there was
no method for inducing efficient and synchronous stage conversion of E. histolytica in vitro (Wesel
et al., 2021)However, in vitro stage conversion is easily achievable for Entamoeba invadens;
therefore, this reptilian parasite is routinely used as a model organism (Avron et al., 1986; Coppi
and Eichinger, 1999).

The molecular mechanisms governing stage conversion and virulence in the Entamoeba

species remains unclear. Furthermore, metronidazole, the current treatment for amoebiasis, is
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associated with high toxicity and severe side effects (Cherian et al., 2015; Ralston and Petri,
2011). Thus, there is a need to further characterize the cellular processes underlying the lifecycle
of E. histolytica so that novel therapeutic targets can be identified. Hypothetical proteins are
proteins that are predicted to be expressed, but for which there is no experimental evidence of
translation (ljaq et al., 2015). Hypothetical proteins have been explored as drug targets for several
communicable diseases including, chlamydia (Turab Naqvi et al., 2017), tuberculosis (Yang et
al., 2019), and shigellosis (Sen and Verma, 2020).

Unique hypothetical proteins may also present a promising source of potential new targets for
the treatment of E. histolytica infection. According to AmoebaDB (amoebadba.org) the genomes
of E. invadens and E. histolytica are predominately comprised of hypothetical proteins, (i.e.,
proteins with unknown functions). In a study of the proteomic profiles of E. histolytica trophozoites,
cysts, and cyst-like structures, Luna-Nacar et al., (2016) found that the cyst proteome was
different from that of trophozoites, where almost 40% of the cyst proteome was annotated as
hypothetical proteins (Luna-Nacar et al., 2016). Similarly, a quantitative proteomics analysis of
membrane proteins between avirulent and virulent strains of E. histolytica, strain HM-1:IMSS,
found that 19 hypothetical proteins were upregulated, while 18 hypothetical proteins were
downregulated in the virulent strain (Ng et al.,, 2018). Furthermore, Koénig and colleagues
compared the genomes of pathogenic amoebae, E. histolytica and E. nuttali (the macaque
pathogen) to the nonpathogenic amoeba, E. dispar, to elucidate virulence mechanisms (Konig et
al., 2021). One hundred seventy-five proteins were found to be unique to E. histolytica, most of
which were annotated as hypothetical proteins. E. histolytica trophozoites possessed 67 unique
genes that had homologs in E. nuttalli but not in E. dispar, many of which were also hypothetical
proteins (Kdnig et al., 2021). Furthermore, Matthiesen et al., (2019) silenced hypothetical protein,
EHI_127670 in E. histolytica trophozoites and found that parasites with reduced expression of

EHI_127670 were less able to form amoebic liver abscesses (ALAs) in mice. Alternatively,
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overexpression of EHI_127670 in nonpathogenic amoebae lead to restoration of ALA formation
ability (Matthiesen et al., 2019).

Luna-Nacar and colleagues (2016) identified 4 hypothetical cyst-specific proteins that could
represent promising drug or vaccine targets as they were highly antigenic (Luna-Nacar et al.,
2016). According to a review by Marchat and colleagues (2020), a third of the E. histolytica
genome is not found within the human host, further indicating that many of these hypothetical
proteins may be worthy drug targets (Marchat et al., 2020). Ultimately, the genomes of E.
histolytica and E. invadens remain highly enigmatic and this represents a vast gap in knowledge.
Therefore, the goal of this study was to characterize two hypothetical proteins in the Entamoeba
species.

Using an RNAI silencing approach, we reduced expression of two such proteins,
EIN_059080 in E. invadens, and EHI_056700 in E. histolytica. E. invadens parasites with reduced
expression of EIN_059080 (EIN_059080-KD) possessed a significantly decreased rate of
encystation, an increased rate of phagocytosis. These mutants were also significantly less viable
than control parasites when exposed to oxidative stress. E. histolytica parasites with reduced
expression of EHI_056700 (EHI_056700-KD) exhibited significantly lower rates of adhesion and
erythrophagocytosis and were significantly less viable when exposed to oxidative stress and
glucose deprivation. This study suggests that hypothetical proteins play important roles in stage

conversion, virulence, and the stress response in the Entamoeba species.

. MATERIALS AND METHODS
Strains and Culture conditions
Entamoeba invadens trophozoites (strain IP-1) were cultured axenically in TYI-S-33
medium in 15 mL glass screw cap tubes or 25 cm? culture flasks at 25°C (Singh et al., 2012).

Parasites were passaged into fresh media every 7 days. E. histolytica trophozoites (strain HM-
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1:1MSS) were cultured axenically in TYI-S33 medium at 37°C. Cells were passaged into fresh
media every 72 to 96 h and were grown in 15 mL glass screw cap culture tubes (Diamond et al.,
1978). Chinese hamster ovary (CHO) cells were cultured in DMEM supplemented with 10% FBS,
PenStrep, and HEPES in 25 cm? treated tissue culture flasks at 37°C in 5% CO; and passaged

into new flasks every 5 days.

To generate a plasmid to reduce expression of EIN_059080, PCR was employed to
amplify a gene fragment using genomic DNA as a template and gene-specific primers (Table 3.1).
The primers also added Auvrll restriction sites to the 3’ and 5’ ends, which facilitated subcloning
into the Trigger plasmid (Ehrenkaufer and Singh, 2012) (kind gift of Dr. Upinder Singh; Stanford
University). Successful subcloning was confirmed by sequencing. To generate a plasmid to
reduce expression of EHI_056700, PCR was used to amplify a gene fragment using genomic
DNA as template and gene-specific primers (Table 3.1). The primers also added Bglll and Xhol
cutsites to the 3’ and 5’ ends, to facilitate subcloning into the pEhEx-04-trigger vector containing
a 142-bp trigger region (EHI_048660) silencing plasmid (kind gift of Dr. Nozaki; University of

Tokyo) (Nagaraja et al., 2021).

E. invadens was transfected by electroporation as described (Singh et al., 2012), with
minor modifications. Briefly, two 25 cm? flasks containing log-phase trophozoites were iced for 15
min to release adherent parasites. The parasites were collected by centrifugation at 500 x g for 5
min and washed with 20 mL ZM phosphate buffered saline (PBS) buffer (132 mM NaCl, 8 mM
KCI, 8 mM NaPO., 1.5 mM KH2PO.). Parasites were pelleted by centrifugation at 500 x g for 5
mins and resuspended in 1.6 mL complete ZM PBS buffer (ZM PBS with 0.5 mM Mg(CH3;COO);
* 4H,0 and 0.09 mM CaCly). Eight hundred pL of parasite suspension was combined with 150 ug
plasmid DNA and electroporated in a 0.4 cm cuvette with two pulses at 1.2 kV and 25 pF using a
BioRad Gene Pulser Il. Parasites were transferred to 15 mL culture tubes containing 13 mL TYI-
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Table 3.1: Primers used in this study

Primer Name Sequence Anneal
Temperature

Cloning Primers
EIN_059080-Avrll-F 5- CCCCTAGGATGTCCGTCAC -3 52°C
EIN_059080-Avrll-R 5'- CCGCTAGCATGTCCGTCAC -3 52°C
EHI_056700-Bglll-F 5-CCAGATCTGCCTGAACATACTAGT-3 60°C
EHI_056700-Xhol-R 5-CCCTCGAGCTGGTCGTGTTAC-3 60°C
RT PCR primers
EIN_059080-RT-F 5’- CCCAACACTCCCAGAGTTAAA -3 59°C
EIN_059080-RT-R 5'- GGAGGTAAACTGCCAACTGAA -3 59°C
EHI_056700-RT-F 5-GCACCTCAACCTCGTAGACC -3 54°C
EHI_056700-RT-R 5- ACTGGTGGTGGAGAAGCAAC -3 54°C
E. invadens Internal control-F | 5-CCGACAGCAGAAGAACAAGA-3’ 59°C
(EIN_327460)
E. invadens Internal control-R | 5-GGAGATGAGTAAGCGAAGAACA-3’ 59°C
(EIN_327460)
E. histolytica Internal Control-F | 5-AGGCGCGTAAATTACCCACTTTCG-3 59°C
(X61116)
E. histolytica Internal Control- | 5- AGACGCATGCACCACTACCCAATA-3 | 59°C

R (X61116)
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S-33 and allowed to recover for 48 h. Neomycin selection was added gradually at 5 ug/mL each

week until a concentration of 50 ug/mL was reached.

Lipofectamine 3000 (ThermoFisher) was used to transfect E. histolytica trophozoites as
described by (Manich et al., 2018). Briefly, 2x10° trophozoites were seeded into a 6-well plate in
12 mL complete media and grown overnight until 80% confluency was reached. Fresh plasmid
DNA (4 ug) was diluted in sterile transfection media (final volume 30 uL) (10 mL Opti-mem
(ThermoFisher) containing 10 mg ascorbic acid and 50 mg L-cysteine, pH to 6.8), mixed with 15
uL Lipofectamine 3000 reagent (ThermoFisher) and incubated at room temperature for 15 min.
After incubation, 960 uL of warm transfection media (37°C) was added to DNA/lipofectamine 3000
mixture. Media was removed by pipetting from the E. histolytica monolayer and the monolayer
was washed twice with warm transfection media. One mL transfection mixture or control mixture
(no DNA) was added to the parasite monolayer and incubated under anaerobic conditions for 3 h
at 37°C. Trophozoites were removed by scraping and transferred to 15 mL glass screw cap tubes
containing 12 mL prewarmed complete media and incubated overnight at 37°C. Control or
transfected parasites were harvested by centrifugation at 500 x g for 5 min and resuspended in
13 mL fresh complete media and incubated at 37°C for 24 h. Parasites harboring the plasmid were
selected for by adding 3 ug/mL neomycin. Once confluent, neomycin was increased to 6 yg/mL.
Transfected parasites were cultured in 6 ug/mL neomycin for 6 weeks. Selection was then

removed, and parasites were cultured in complete medium for all experiments.

To assess expression of EIN_059080 and EHI_ 056700, RNA was extracted from E.
invadens or E. histolytica trophozoites using TRIZOL (ThermoFisher; Waltham, MA). Two ug of
total RNA was treated with RQ1 DNase enzyme (Promega; Madison, WI) per manufacturer’s
instructions. Treated RNA was used to synthesize cDNA using the Invitrogen Superscript Ill First
Stand Synthesis kit per the manufacturer’s instruction. (ThermoFisher). One uL of cDNA was
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used as template and PCR was carried out using EIN_059080 gene-specific primers or
EHI_056700 gene-specific primers (Table 3.1). In all cases, 35 cycles were used to amplify PCR
products, which were resolved and visualized by electrophoresis on 1% (w/v) agarose gels. We
also confirmed that these primers do not cross-react to amplify both genes. EIN_327460 was
used as an internal load control for analysis of gene expression in E. invadens trophozoites and
X61116 was used as internal load control for analysis of gene expression in E. histolytica (see
Table 3.1). In all experiments, EIN_059080-KD parasites were compared to Trig Luc parasites as

a control and EHI_056700-KD parasites were compared to WT E. histolytica parasites.

Induction of Stage Conversion

To induce encystation of E. invadens parasites, control and mutant trophozoites (6.5x10°)
were pelleted by centrifugation at 500 x g for 5 min and resuspended in 13 mL 47% (w/v) low
glucose/serum free/high osmolarity encystation medium (Coppi and Eichinger, 1999; Hendrick et
al., 2016), supplemented with 50 mg/mL neomycin. Parasites were incubated at 25°C for either
48 h or 72 h and encystation was tracked by staining with Congo Red (Amresco, Solon, OH).
Briefly, encysting E. invadens cells were collected over time, stained with the fluorescent chitin
stain, Congo Red, fixed with 4% (v/v) paraformaldehyde, and analyzed by collecting 10,000
individual events using a BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA). To
evaluate information about cell size/shape and chitin simultaneously, all data were analyzed using

forward scatter (FSC) data versus fluorescence density plots.

Excystation of E. invadens parasites was induced as described (Ehrenkaufer et al., 2013).
Briefly, Trig Luc and EilF2K-KD trophozoites were induced to encyst for 72 h. Parasites were then
incubated in 13 mL ddH.O at 4°C overnight to lyse unencysted trophozoites. Cysts were
enumerated using a Luna Automated Cell Counter (Logos Biosystems, Annandale, VA), pelleted
by centrifugation at 500 x g for 5 min, and resuspended in 13 mL TYI-S-33 medium, 1 mg/mL bile
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salts (Sigma-Aldrich), and 40 mM NaHCO;, and incubated at 25°C for 2 h or 8 h. After incubation,
cultures were iced for 8 min to detach any trophozoites from the glass culture tubes, pelleted by
centrifugation at 500 x g for 5 min, resuspended in 1 mL of 1% (v/v) sarkosyl in PBS and incubated
on ice for 30 min to lyse any trophozoites or immature cysts. The remaining detergent-resistant
cysts were enumerated and the percent excystation was calculated by comparing total cysts

remaining to the starting number of cells.

Phagocytosis Assays

Phagocytosis assays were carried as previously described (King et al., 2012) with minor
changes. Briefly, control or mutant trophozoites were rinsed once in PBS (GE Life Sciences) and
twice in serum free TYI-S-33 medium (SFM). Trophozoites (2x10°) were resuspended in 150 L
SFM. Freshly isolated human red blood cells (nRBCS) were pelleted by centrifugation (2000 x g
for 1 min) and rinsed once with PBS and twice with SFM and were resuspended at a concentration
of 4x10° cells/pL in SFM. hRBCs (2x107) were added to the trophozoites and incubated at 25°C
for 10 min. Samples were pelleted by centrifugation (2000 x g for 1 min), and undigested hRBCs
were hypotonically lysed by washing twice with 1 mL of ice-cold ddH»O. Parasites were washed
with 1 mL ice-cold PBS, collected by centrifugation (2000 x g for 1 min) and lysed with 1 mL
concentrated formic acid (Fisher). Phagocytosis was measured as the absorbance of heme in the
lysate at 405 nm, with a fluorimeter/plate reader (Synergy HTX, BioTek Instruments, Winooski,

VT). Sample values were corrected using a formic acid blank.

Adhesion Assays

Adhesion assays were carried as previously described (Powell et al., 2006) with minor
changes. Briefly, control and mutant parasites were incubated with calcein-AM (Invitrogen) (5
uL/mL) for 30 min at 25°C. CHO cells (1.5x10°) were seeded into a 96-well plate and grown at
37°C for 24 h. CHO monolayers were fixed by incubating with 4% (v/v) paraformaldehyde in PBS
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for 10 min at 37°C. To inactivate paraformaldehyde, the CHO monolayer was incubated with 200
uL of 250 mM glycine for 15 min. Glycine was removed by rinsing with PBS. Calcein-AM labeled
parasites were washed once with room temperature SFM and 5x10* parasites were seeded onto
the fixed monolayer of CHO cells. Parasites were incubated with fixed CHO cells in SFM for 30
min at 25°C. The media was carefully aspirated, and the cell layer was gently rinsed twice with
room temperature PBS. The number adherent parasites was determined by measuring
fluorescence at excitation and emission wavelengths of 495 and 525 nm, respectively, with a

fluorimeter/plate reader (Synergy HTX, BioTek Instruments, Winooski, VT).

Statistical Analysis

All values are presented as means + standard error of at least 3 separate trials. Means
of treated groups were compared against the appropriate control and statistical analyses were
performed using Graph Pad prism 9 (v9.0.0, San Diego, CA, US) with students T-Test. P values
of less than 0.05 were considered statistically significant. P values less than 0.01 or 0.001 were

considered highly statistically significant.

Ethics Statement
Whole blood was donated by a healthy adult volunteer, who provided oral consent, at Clemson
University. The collection was approved by Clemson's Institutional Biosafety Committee under

safety protocol #IBC2018-12.

V. RESULTS
Identification of hypothetical proteins EHI_056700 and EIN_059080
According to AmoebaDB (amoebadba.org), over half of the Entamoeba genomes are
annotated as hypothetical proteins. E. histolytica possesses 8,308 genes with 53% (4,483/8,308)
annotated as hypothetical proteins. Similarly, E. invadens possesses 11,997 protein coding genes
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with 66% (7,876/11,997) annotated as hypothetical proteins (Fig 3.1A). To identify a candidate
hypothetical protein for study, we looked for such proteins that were differentially expressed
between virulent and aviurlent strains. Hypothetical protein EHI_056700 is upregulated in
pathogenic E. histolytica strain, HM-1:IMSS, when compared to nonpathogenic, Rahman, strain.
A homolog in E. invadens (EIN_059080) was identified by protein blast (NCBI). Protein alignment
using the Clustal Omega tool from Uniprot (uniport.org) shows that the amino acid sequences of
EHI_056700 and EIN_059080 share 23% identity (Fig 3.1B). According to Predict Protein
(predictprotein.org), both proteins are predicted to have several DNA binding sites and be

localized the nucleus.

Generation of E. invadens and E. histolytica parasites with reduced expression of
EIN_059080 or EHI_0567000

We used a RNAI Trigger-mediated gene silencing approach to reduce the expression of
EHI_056700 in E. histolytica trophozoites or EIN_059080 in E. invadens trophozoites. We
subcloned partial cDNAs of EIN_059080 or EHI_056700 into an E. invadens specific (Suresh et
al., 2016) or E. histolytica specific gene silencing Trigger plasmids (Nagarajaet al., 2021). The
Trigger plasmids facilitate the production of small interfering RNAs to the fused gene fragment,
which binds to and targets the endogenous mRNA leading to mRNA degradation via the dicer
pathway (Morf et al., 2013; Suresh et al.,, 2016). EIN_059080-Trigger plasmid DNA was
transfected into wildtype E. invadens parasites via electroporation and stable transfectants
(EIN_059080-KD) were selected for and maintained by growth in the presence of neomycin. E.
invadens parasites harboring the Trigger plasmid, with an insert encoding luciferase, an irrelevant
protein, was used as a control (Trig Luc). Using this approach, we obtained substantial
knockdown of EIN_059080 mRNA levels in trophozoites as assessed by RT-PCR analysis (Fig
3.2A). The EHI_056700-Trigger plasmid DNA was transfected into E. histolytica parasites using
Lipofectamine 3000 and stable transfectants were selected for using neomycin. After confirming
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Fig 3.1: Large portions of the Entamoeba genomes are annotated as hypothetical
proteins

Annotated genes for Entamoeba histolytica and Entamoeba invadens were downloaded from
AmoebaDB (amoebadba.org). A) 66% of annotated E. invadens genes (7,876/11,998) and 54%
of annotated E. histolytica genes (4,483/8,308) are annotated as hypothetical proteins. B)
Uniprot Clustal Omega alignment of EHI_056700 and EIN_059080. Asterisks (*) represent
identical residues, colons (:) represent conserved substitutions and periods (.) represent semi-

conserved substitutions.
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Fig 3.2: Knockdown of hypothetical proteins in Entamoeba species

RT-PCR was used to measure the level of EIN_059080 or EHI_056700 mRNA in transfected
parasites. A) EIN_059080 mRNA is undetectable in E. invadens trophozoites harboring the
Trigger-EIN_059080 plasmid (EIN_059080-KD), compared to control trophozoites harboring
Trigger-Luciferase plasmid (Trig Luc). B) EHI_056700 mRNA is undetectable in E. histolytica
trophozoites harboring Trigger-EHI_056700 plasmid (EHI_056700-KD) compared to control
wildtype (WT) trophozoites. After confirmation of gene knockdown, antibiotic selection was
removed from EHI_056700-KD parasites to directly compare mutant parasites to WT parasites.
EIN_327460, (previously identified as EIN_192230) and X61116 served as load controls for E.
invadens or E. histolytica trophozoites, respectively. “No RT” represents reactions without
reverse transcriptase to confirm that there was no genomic (gDNA) contamination in cDNA
samples. Panels labeled “ddH20” represent reactions in which ddH.O was used as template. A

lack of product confirms no gDNA contamination in the reagents.
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knockdown of EHI_056700 in EHI_056700-KD parasites (Fig 3.2B), neomycin selection was
removed. Knockdown (as compared to expression in WT cells) was monitored every 4 weeks
(Nagaraja et al., 2021).

We measured growth rates of mutant and control parasites over the course of 96 h to
ensure differences observed between control and mutant parasites were authentic phenotypes,
and not due to differences in growth. No significant difference in growth was observed between

knockdown and control parasites (Fig 3.3).

E. invadens parasites with reduced expression of EIN_059080 exhibit an altered rate of
stage conversion compared to control parasites

To determine if EIN_059080 plays a role in stage conversion, we measured encystation
and excystation in EIN_059080-KD and control parasites. Encystation of E. invadens parasites
was induced by inoculating parasites at high density into low glucose/high osmolality media and
incubated for 48 or 72 h. Hallmarks of encystation include the accumulation of a chitin-rich cell
wall and a reduction in cell size (Welter et al., 2017). To assess encystation, we used flow
cytometry (Welter et al., 2017) and Congo Red staining to track the accrual of chitin as well as
changes in cell size. In the EIN_059080-KD parasites, the percent of parasites that had encysted
was significantly lower at 48 h and 72 h post inoculation, when compared to control parasites (Fig
3.4A). To induce excystation, cysts were incubated in excystation media, which restores nutrients
and osmolarity and contains bile salts to mimic passage through the host digestive system
(Ehrenkaufer et al., 2013). EIN_059080-KD parasites exhibited a slightly higher rate of

excystation compared to control parasites at 2 h and 8 h into the excystation program (Fig 3.4B).

Virulence functions are significantly altered in mutant parasites
To further elucidate the function of these hypothetical proteins, we measured two key
virulence functions, erythrophagocytosis and adhesion to host cells. Parasites were incubated
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Fig 3.3: Mutant trophozoites exhibit no growth defect compared to control trophozoites

A) Growth of Trig Luc (control) and EIN_059080-KD E. invadens parasites was assessed by

inoculating 1,000,000 parasites into 13 mL of standard media. Parasites were enumerated after

24, 48, 72, and 96 h using an automated hemocytometer and Trypan blue exclusion. There is

no significant difference in growth at any time point. B) After confirmation of gene knockdown,

antibiotic selection was removed from EHI_056700-KD parasites to directly compare mutant

parasites to WT parasites. Growth of WT and EHI_056700-KD E. histolytica parasites was

assessed by inoculating 100,000 parasites into 13 mL of standard media. Parasites were

enumerated after 24, 48, 72, and 96 h using an automated hemocytometer and Trypan blue

exclusion. There is no significant difference in growth at any time point. Data represent the

mean + standard error of at least 3 separate trials (ns, P>0.05).
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Fig 3.4: Encystation is significantly reduced in EIN_059080-KD parasites, while
excystation is slightly increased.

A) Trig Luc (control) and EIN_059080-KD parasites were induced to encyst for either 48 or 72
h. Mature cysts were stained with Congo Red and quantified using flow cytometry. A significantly
lower (*P<0.05; **P<0.01)) percent of EIN_059080-KD parasites encysted by 48 h and at 72 h
compared to Trig Luc parasites. B) Trig Luc cells and EIN_059080-KD cysts were induced to
excyst by incubation in excystation media for 2 or 8 h. The number of mature cysts was
quantified before and after excystation and the decrease in the number of cysts represented the
fraction (percent) of parasites that had excysted. The excystation rate of EIN_059080-KD was
slightly (ns, P>0.05) higher than that of Trig Luc parasites at both 2 and 8 h. Data represent the

mean + standard error of at least 3 separate trials.
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with human red blood cells (hRRBCs) for 10 min, excess hRBCs were washed away, and parasites
were lysed with formic acid. Heme was then measured spectrophotometrically (Powell et al.,
2006). Compared to control parasites, EIN_059080-KD parasites possessed a significantly higher
(P<0.05) rate of erythrophagocytosis (Fig 3.5A), while EHI_056700-KD parasites exhibited a
significantly lower (P<0.05) rate of erythrophagocytosis (Fig 3.5B). To measure adhesion to host
cells, Calcien-AM labeled parasites were incubated on a fixed monolayer of CHO cells for 30 min.
Unadhered parasites were then washed away, and adhesion to host cells was measured
spectrophotometrically (Powell et al., 2006). While adhesion to host cells was slightly higher
(P>0.05) in EIN_059080-KD parasites compared to control cells (Fig 3.5C), adhesion was
significantly lower (P<0.01) in EHI_056700 parasites compared to WT control parasites (Fig

3.5D).

Hypothetical proteins are involved in the stress response in E. histolytica and E. invadens
In the human host, E. histolytica experiences stress brought on by nutrient deprivation and
the host immune response. To be a successful parasite, E. histolytica must counter the stress;
therefore, understanding the stress response may uncover new drug targets. To determine if
these hypothetical proteins are involved in the stress response, we exposed control and mutant
E. invadens parasites to 1 M H20; or diluent for 1 h (Walters et al., 2022) and viability was
assessed using Trypan blue exclusion and an automated hemocytometer. The difference in
viability between control and treatment was then calculated. Parasites with reduced expression
of EIN_059080 were significantly less viable than Trig Luc parasites when undergoing oxidative
stress (Fig 5A). Mutants of the human pathogen were also exposed to oxidative stress (5 mM
H,O, for 3 h (Santos et al., 2020)) and viability was assessed. Like the E. invadens mutant,
EHI_056700-KD parasites were more sensitive than control cells to oxidative stress (Fig. 3.6B).
We also exposed the E. histolytica mutants to additional physiologically relevant stress conditions,
nitrosative stress, or glucose deprivation. Control and mutant E. histolytica trophozoites were
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Fig 3.5: Virulence functions are increased in EIN_059080-KD parasites, while they are decreased
in EHI_056700-KD parasites.
A,B) Control or mutant parasites were incubated with human red blood cells (hRRBCs: amoeba ratio;
100:1) for 10 min, lysed, and spectrophotometrically analyzed for internalized heme at 405 nm. E.
invadens amoebae with reduced expression of EIN_059080 (A) exhibited increased phagocytosis of
hRBCs, while E. histolytica amoebae with reduced expression of EHI_056700 (B) exhibited reduced
phagocytosis of hRBCs. The data represent the mean + standard error of at least 3 separate trials
(*P<0.05). C,D) Calcein AM-stained control or mutant parasites were incubated with fixed monolayers of
Chinese Hamster Ovary (CHO) cells for 30 min. Unadhered parasites were rinsed off the monolayer of
CHO cells and the level of adhesion (calcein-AM fluorescence) was measured by spectrofluorimetry using
an excitation wavelength of 485 nm and an emission wavelength of 528 nm. EIN_059080-KD trophozoites
exhibited a slightly higher adhesion to CHO cells than Trig Luc trophozoites (control) (ns, P>0.05), while
EHI_056700-KD trophozoites exhibited significantly lower adhesion to CHO cells (**P<0.01). Data

represent the mean * standard error of at least 3 separate trials.
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Fig 3.6: Mutant E. invadens and E. histolytica trophozoites are more susceptible to stress
A) Trig Luc (control) or EIN_059080-KD trophozoites were exposed to 1M H;O. (oxidative
stress) or ddH»O (diluent) for 1 h at 25°C. Viability was assessed using Trypan blue exclusion
and a Luna Automated Cell Counter. The percent drop in viability was calculated for each cell
line by subtracting each H.O; viability from the control viability (ddH.O). EIN_059080-KD
parasites exhibited a significantly higher decrease in viability when exposed to oxidative stress
compared to those mutant parasites exposed to vehicle control, meaning EIN_059080-KD
parasites were more sensitive to oxidative stress compared to control parasites (**P<0.01). B)
After confirmation of gene knockdown, antibiotic selection was removed from EHI_056700-KD
parasites to directly compare mutant parasites to WT parasites. WT or EHI_056700-KD
parasites were exposed to 5mM H20; or ddH.O (diluent) for 3 h at 37°C or, 5 mM sodium
nitroprusside (SNP) (nitrosative stress) or ddH»O (diluent) for 3 h at 37°C or ddH:0O, or glucose
deprivation for 24 h. Viability was assessed as described above. EHI_056700-KD parasites
were more sensitive to oxidative stress and glucose deprivation when compared to control
(*P<0.05). There was no significant difference (ns, P>0.05) in viability for control or mutant
parasites when exposed to nitrosative stress. Data represent the mean + standard error of at

least 3 separate trials.
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exposed to 5mm H;O, (Santos et al., 2020) 5 mM sodium nitroprusside (SNP) for 3 h
(Santos et al., 2020), or glucose deprivation for 24 h (Tovy et al., 2011), and viability was assessed
as described above. EHI_056700-KD parasites were more sensitive than control cells to glucose

deprivation, but not to nitrosative stress (Fig 3.6B).

V. DISCUSSION

In this study, we characterized two hypothetical proteins in the Entamoeba species to
highlight their potential as drug targets. Compared to control parasites, E. invadens mutants with
reduced expression of hypothetical protein, EIN_059080 had significantly reduced rates of
encystation and erythrophagocytosis, and exhibited lower viability when exposed to oxidative
stress, compared to control parasites. Interestingly, E. histolytica parasites with reduced
expression of hypothetical protein EHI_057600 exhibited significantly increased rates of
erythrophagocytosis and adhesion and were exhibited significantly less viable when exposed to
oxidative stress and glucose deprivation. These data suggest that careful characterization of
hypothetical proteins in the Entamoeba species will provide insight into mechanisms of stage
conversion, virulence, and the stress response, which is critical for future drug development.

Hypothetical proteins present a promising reservoir of novel mediators of cellular
processes critical to mediating the lifecycle of eukaryotic pathogens. Approximately 54% of E.
histolytica genes and 66% of E. invadens genes are annotated as hypothetical proteins (Fig 3.1)
(amoebadba.org). Similarly, substantial portions of the genome are unclearly annotated or
annotated as hypothetical proteins for Leishmania donovani (65%)(Ravooru et al., 2014),
Toxoplasma gondii (strain ME49; 48.6%)(Croken et al., 2014), and Plasmodium falciparum
(30%)(Singh and Gupta, 2022).

Our data demonstrate that reduced expression of EIN_059080 correlates with significantly
reduced encystation in E. invadens parasites (Fig 3.4A). This is not surprising as hypothetical
proteins have previously been implicated in stage conversion in the Entamoeba (Manna et al.,
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2018). RNA-Seq data showed the hypothetical proteins EIN_083100 and EIN_024000 are
developmentally regulated in E. invadens and are enriched in cysts (Manna et al., 2018).
However, excystation was slightly increased in EIN_059080-KD parasites (Fig 3.4B). These
results are interesting as EIN_059080 is primarily expressed at 2 h into the excystation program
(Ehrenkaufer et al., 2013). Similarly, Mony et al., (2014) identified three hypothetical proteins as
regulators of stumpy formation in Trypanosoma brucei (Mony et al., 2014). To gain further insight
into the role of EHI_057600 in stage conversion, it will be necessary to characterize this process
in EHI_056700-KD E. histolytica parasites. If reduced expression of EHI_056700 correlates with
reduced encystation or excystation, it will support the idea that EHI_056700 represents an
attractive drug target.

Erythrophagocytosis and adhesion to host cells, two important virulence functions, were
found to be altered in EIN_059080-KD and EHI_057600-KD parasites (Fig 3.5). E. invadens
parasites with decreased expression of EIN_059080 exhibited significantly increased
phagocytosis of hRBCs, while adhesion to CHO cells was only slightly increased. Interestingly,
E. histolytica parasites with decreased expression of EHI_056700 possessed significantly lower
rates of phagocytosis and adhesion. Similarly, a Trichomonas vaginalis hypothetical protein
TVAG_157210 (TvAD1) was found to play an integral role in parasite adherence to host cells
(Molgora et al., 2021). Hypothetical proteins have been implicated in virulence in other protozoa
as well. In silico analyses of hypothetical proteins from P. falciparum (Singh and Gupta, 2022),
Trypanosoma cruzi (Silber and Pereira, 2012), and Leishmania spp. (Chavez-Fumagalli et al.,
2017; Ravooru et al., 2014) are required for parasite virulence.

To be successful parasites, the Entamoeba species must be able to withstand stress
within the reptilian and human hosts. To determine if hypothetical proteins play a role in the stress
response, we exposed mutant E. invadens and E. histolytica parasites to various stresses.
Parasites with reduced expression of EIN_059080 were significantly more susceptible to oxidative
stress compared to control parasites. Additionally, EHI_056700-KD parasites were significantly
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more susceptible to oxidative stress and glucose deprivation, but not to nitrosative stress.
According to Rastew et al., (2013), most genes upregulated during oxidative and nitrosative stress
are annotated as hypothetical proteins (Rastew et al., 2012). Since mutant parasites are more
sensitive to physiologically relevant stress conditions such as oxidative stress and glucose

deprivation, EHI_056700, may represent a potential drug target for the treatment of amoebiasis.

Hypothetical proteins are gaining attention as prospective targets for the treatment of other
parasitic diseases. Leishmania infantum hypothetical protein, LiHyV, was identified as an antigen
present in both promastigote and amastigote stages by an immunoproteomic approach (Martins
et al., 2015). In a recent study by Aguttu et al., (2021) three hypothetical proteins were identified
using computational methods and experimentally verified as a likely vaccine candidate against P.
falciparum (Aguttu et al., 2021). Ultimately, our study underscores the importance of
investigating and experimentally determining the function of hypothetical proteins in the

Entamoeba species as they represent a novel pool of prospective drug targets.
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l. Abstract

Protozoan parasites are single-celled eukaryotic organisms that cause significant human
disease and pose a substantial health and socioeconomic burden worldwide. They are
responsible for at least 1 million deaths, annually. The treatment of such diseases is hindered by
the ability of parasites to form latent cysts, develop drug resistance, or be transmitted by insect
vectors. Additionally, these pathogens have developed complex mechanisms to alter host gene
expression. The prevalence of these diseases is predicted to increase as climate change leads
to the augmentation of ambient temperatures, insect ranges, and warm water reservoirs.
Therefore, the discovery of novel treatments is necessary. Transcription factors (TFs) lie at the
junction of multiple signaling pathways in eukaryotes and aberrant TF function contributes to the
progression of numerous human diseases, including cancer, diabetes, inflammatory disorders
and cardiovascular disease. TFs were previously thought to be undruggable. However, due to
recent advances, TFs now represent appealing drug targets. It is conceivable that TFs, and the
pathways they regulate, may also serve as targets for anti-parasitic drug design. Here, we review
TFs and transcriptional modulators of protozoan parasites and discuss how they may be useful
in drug discovery. We also provide information on TFs that play a role in stage conversion of
parasites, TATA box-binding proteins, and TFs and cofactors that participate with RNA
polymerases |, Il and lll. We also highlight a significant gap in knowledge in that the TFs of some
of parasites have been under investigated. Understanding parasite transcriptional pathways and

how parasites alter host gene expression will be essential in discovering innovative drug targets.

Il. Introduction
Protozoan parasites are single-celled eukaryotic organisms that cause a variety of human
diseases and pose a substantial health and socioeconomic burden worldwide (Burgess, 2017).
Such pathogens (Table 4.1) are responsible for at least 1 million deaths, annually (Canon et al.,
2018). Since these organisms are transmitted by insect vectors, or by contaminated food or
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water, they present the highest burden in tropical and resource-poor countries that lack proper
sanitation. Furthermore, climate change is increasing the endemic range of insect-vectors, thus
increasing the spread of parasitic diseases to developed areas (Short et al., 2017). The World
Health Organization (WHO) classifies some of the diseases caused by parasites (e.g.,
leishmaniasis, trypanosomiasis) as neglected tropical diseases, which cause severe illness in
over 1 billion people. At least one of these diseases (i.e., cryptosporidiosis) is categorized as a
class B bioterrorism agent by the Centers for Disease Control (CDC) and the National Institutes
of Health (NIH). It is well-established that these diseases are difficult to treat due to evolved drug
resistance and the ability of parasites to form latent, resistant cysts or oocysts (Schapp and
Schilde, 2018). Overall, there is an urgent need to develop new therapeutics for this class of

pathogens.

Drug resistance, latency, and virulence rely on exquisitely-controlled transcriptional
programs in the parasite and sometimes, in the host. Thus, targeting transcription and the factors
that regulate transcription is an attractive prospect in anti-parasitic drug design. Transcription
factors (TFs) were once thought to be undruggable (Lambert et al., 2018). However,

methodological advances including chromatin IP (ChlP)-
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seq, RNA-seq, and genome editing, have moved TFs to the forefront of drug discovery
(Papavassiliou and Papavassiliou, 2016; Lambert et al., 2018). This is important because TFs are
implicated in numerous pathologies. For example, TFs represent 20% of identified oncogenes in
cancer (Lambert et al., 2018). Additionally, dysregulation of GATA TFs are implicated in cardiac
disease, aberrant levels of heat shock TF 1 (HSF1) are linked to several neurogenerative
diseases, and upregulation of NF-kB is associated with inflammation disorders (Papavassiliou

and Papavassiliou, 2016).

Therefore, targeting TFs may also be a viable approach to treat parasitic disease. Numerous
ways to target transcription have been conceived (Lambert et al., 2018) (Figure 4.1). For example,
small molecules can be used to physically block DNA-protein (Figure 4.1B) and protein-protein
interactions (Figure 4.1C), TFs may also be targeted for degradation by ubiquitination or
sumoylation (Figure 4.1D) or their expression can be controlled by blocking their own
transcriptional modulators. (Figure 4.1E). The outcome of these approaches is a block in

transcription of one or more essential genes.

This review summarizes the most recent data (< 5 years) on TFs in extracellular and
intracellular parasites (Table 4.1). Indeed, each of these classes of parasites present different
challenges when investigating drug targets. Given that both parasite and host transcription are
important in virulence, we also discuss parasite-derived transcriptional modulators that alter host

gene expression to promote parasite survival. Interestingly,
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Figure 4.1: Mechanisms of Targeting Transcription Factors

A. A general representation of transcription is provided. TF is activated, binds to consensus sequence,
recruits cofactors and RNA pol, resulting in transcription of the target gene. Mechanisms for targeting
TFs include B. Inhibiting TF/DNA interactions using specific small molecules to block DNA-binding
pockets within TF or using alkylating/intercalating agents or small molecule that binds to DNA
consensus sequence, distorting shape or physically blocking TF binding C. Inhibiting TF/protein
interactions using small molecules to block protein-protein binding sites. D. Marking TFs or necessary
cofactors for degradation via ubiquitination or sumoylation. E. Controlling expression of TFs by inhibiting
their own transcriptional modulators. Examples of TF targeting drugs include Ecteinasciden 743, which
alkylates the minor groove of DNA, blocking NF-Y binding (Method B) (Lambert et al., 2018), triptolide,
a plant-derived natural product, which blocks the assembly of TFIIIB with necessary cofactors (Method
C) (Liang et al., 2019), mebendazole, which induces degradation of the TF, MYB (Method D) (Lambert
et al., 2018), and vorinostat, an HDAC inhibitor, which is used to control overexpression of c-Myc in T-
cell acute lymphoblastic leukemia (Method E) (Lambert et al., 2018). This illustration was created using
BioRender (Toronto, Canada).
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there is a paucity of recent information on transcriptional regulation in and by Naegleria fowleri,
Balamuthia mandrillaris, and Acanthamoeba castellani. We further discuss this gap in knowledge
in the conclusion. Finally, as a guide to the reader we include several tables. Table 4.1 provides
an overview of protozoan parasites, prevalence, and TFs or modulators discussed. Table 4.2
describes parasite TFs, recently discovered, but reviewed elsewhere. Table 4.3 describes
parasite modulators that act on host transcription that are also reviewed elsewhere. Finally, Table
4.4 summarizes the available evidence supporting the potential of these parasite TFs as drug

targets.

[l Encystation- or Stage-Specific Transcription

Many parasites have a complex-multistage life cycle. Entamoeba histolytica (Manna et al.,
2018), Giardia intestinalis (Sun et al., 2020), and Cryptosporidium spp. (Ming et al., 2018) have
two-stage life cycles, consisting of infective, environmentally stable cyst forms and pathogenic
parasites. Specifically, these three pathogens encyst in the Gl tract and are shed back into the
environment. On the other hand, Toxoplasma gondii has both a sexual phase in the feline
definitive host and an asexual phase in the human host (Hong et al., 2017). In the asexual phase,
T. gondii tachyzoites, which are actively dividing, form cysts (bradyzoites) within muscle and brain
tissue. This allows T. gondii to establish chronic infections (Hong et al., 2017). For all of these
parasites, stage conversion is crucial for disease transmission and parasite pathogenesis.
Understanding the transcriptional pathways that govern these mechanisms would significantly

inform drug development (Schapp and Schilde, 2018).
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Table 4.2: Transcription factors reviewed elsewhere. Parasitic transcription factors (TFs), which
were described in the last 5 years, but are not reviewed here because they have been reviewed
elsewhere. The table also includes a brief description of function and pertinent references.

Parasite Transcription Function Reference
factor
Toxoplasma gondii AP2IX-4 Loss of AP2IX-4 Bing et al., (2018);

Plasmodium falciparum

AP2IV-3 and AP2IX-
9

TgAP2XI-5 and
TgAP2X-5

AP2 TFs-ap2-02,
ap2-03, ap2-04,ap2-
sp2, and ap2-sp3.5

AP2-FG

PfAP2Tel

108

results in a modest
virulence defect and
reduced cyst burden,
regulates bradyzoite-
specific genes

Tissue cyst
formation decreased
by disruption of the
AP2IX-9 gene and
enhanced by
deletion of the
AP21V-3 gene,
demonstrating that
these factors have
opposite functions in
bradyzoite
development

Cooperatively
regulate virulence
gene expression

TFs required for
parasite
transmission via
mosquitos.
Responsible for

female-specific gene
regulation, AP2-FG
null parasites
generate early
females

AP2 DNA-binding
domain that binds to
telomeres could be
responsible for

reviewed in Jeninga
et al. (2019)

Reviewed in Jeninga
et al. (2019)

Reviewed in Jeninga
et al. (2019)

Reviewed in Josling
et al. (2018).

Yuda et al. (2020)

Sierra-Miranda et al.

(2017).



chromosome Reviewed in Jeninga
integrity et al. (2019)

AP2-exp Regulates clonally Martins et al. (2017)

variant genes _ _ _
Reviewed in Jeninga

et al. (2019)

Plasmodium berghei ApiAP2 Critical parasite Akkaya et al. (2020)
virulence factor

Table 4.3: Transcriptional modulators reviewed elsewhere. Parasitic transcriptional modulators
that alter host gene expression, which were described in the last 5 years, but are not reviewed
here because they have recently been reviewed elsewhere. The table also includes a brief
description of function and pertinent references.

Parasite Modulator Function Reference
Toxoplasma gondii ROP16 Phosphorylates and  Chen et al. (2020)
inhibits host STAT32
and STAT6?, Reviewed in Hakimi

resulting in activated et al- (2017)
macrophages (M2)

that are less able to

control parasite load

TgIST Required in all to Olias et al. (2016);
block host IFN-y?
mediated STAT12 reviewed in Hakimi
transcription in

mouse and human etal. (2017)
cells
MYR1 Required to deliver Franco et al. (2016);

secreted effectors _ _ L
into the host celland  "eviewed in Hakimi
is required for

. et al. (2017)
virulence
GRA24 Interacts with host Pellegrini et al.
MAP? kinase,

promoting nuclear (2017); reviewed in

translocation and

. . Hakimi et al. (2017)
triggering a pro-
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Plasmodium falciparum PfEMP1

inflammatory
response

Expressed on Sampaio et al.
infected host RBC? (2018)
surface, represses

host cell immune

response by

repressing NF-kB?;

already used as

vaccine target

@Abbreviations: STAT: Signal Transducer And Activator Of Transcription; IFN-y: interferon-y;
MAP-mitogen activated protein; RBC: red blood cell; NF-kB: Nuclear factor-kB
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Manna et al., (2018) identified ERM-BP (Encystation Regulatory Motif Binding Protein)
that regulates encystation in the reptilian parasite, E. invadens. This parasite can encyst in culture
and serves as a surrogate for the human pathogen, which cannot be induced to encyst in the
laboratory. ERM-BP is conserved in all the Entamoebae. ERM-BP was identified by its ability to
bind a consensus promoter motif in cyst-specific genes. It was demonstrated that ERM-BP
resides in the nucleus and controls encystation in a NAD+-inducible fashion. Overexpression of
ERM-BP led to increased encystation, while knocking down ERM-BP expression resulted in
decreased encystation. Additionally, cysts that were produced in the ERM-BP knockdown cell line
exhibited altered morphology suggesting that there was a defect in cyst wall synthesis. In support
of this, the expression of cyst wall markers, chitinase and Jessie-3, was reduced in the knockdown
cell line, suggesting that ERM-BP regulates a subset of cyst-wall specific genes. ERM-BP has no
obvious canonical DNA-binding domain and additional structural analyses will be necessary to
identify the DNA-binding pocket. Since this protein does not exist in the human host, small
molecule inhibition at the DNA-binding region (Figure 4.1, Strategy B) may represent a novel

therapy for amoebiasis, as blocking encystation would ultimately block transmission.

Topoisomerases (type | and Il) are involved in cell growth and differentiation and are
essential to overcome topological problems experienced by chromosomes during DNA
replication, transcription, recombination, and mitosis (Sun et al., 2020). Sun and colleagues
(2020) characterized G. intestinalis TOP33, a type |IA DNA topoisomerase. It was shown that the
Giardia TOP3B homolog shared 28.73% identity and 41.32% similarity with the human
counterpart. TOP3B expression increased during encystation and immunoprecipitation showed
that TOP3p interacted with the promoters of cyst wall protein-1 (CWP-1) and MYB2 during stage
conversion. The MYBs are a large family of functionally diverse TFs found in all eukaryotes.

Overexpression of TOP3 led to increases in encystation and the expression of CWP and MYB2
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genes (Sun et al., 2020). Conversely, mutation of the TOP33 protein led to cell lines that exhibited
decreased encystation rates and significantly lower expression of both CWP and MYB2 genes.
The authors also found that the topoisomerase inhibitor, norfloxacin, inhibited G. intestinalis
growth and encystation. However, norfloxacin also inhibits human type |A topoisomerases.
Therefore, a Giardia-specific norfloxacin alternative will be necessary if Giardia TOP3p is to be

targeted for the treatment of giardiasis (Sun et al., 2020).

The MYB family of TFs, itself, has been implicated in stage conversion in the
Entamoebae (Ehrenkaufer et al., 2009), Giardia (Sun et al., 2002), and Plasmodium (Gissot et
al., 2005). In Trichomonas vaginalis, which is a parasite that lacks a latent stage, MYB-like TFs
regulate expression of adhesion proteins that are critical for parasite-host interaction (Chu et al.,
2018). More recently, a MYB-like protein, BFD1, which controls the switch between active
tachyzoite to latent bradyzoite in T. gondii, has been described (Waldman et al., 2020). After
invasion of host cells, tachyzoites replicate within the parasitophorous vacuole. During
differentiation into bradyzoites (cysts), the parasitophorous vacuole is modified into a heavily
glycosylated cyst wall, containing stage-specific proteins of unknown function. Stage conversion
can be induced in vitro by various stimuli (alkaline pH, heat shock, or nutrient starvation), but
mechanisms underlying this transition are largely unknown (Waldman et al., 2020). Waldman and
colleagues (2020) demonstrated that BFD1 is a MYB-like TF that is necessary for differentiation
in vitro and in mouse models of infection.

Using CRISPR-mediated technology, a knockout strain of T. gondii was generated
(ABFD1). ABFD1 parasites did not differentiate and failed to form cysts in the brains of mice.
However, the mortality and morbidity of mice infected ABFD1 was the same as those infected
with wild-type or complemented parasites. Thus, BFD1 seems to be dispensable for the acute
stage of the disease. In vitro, ABFD1 parasites developed normally throughout the tachyzoite
cycle but failed to initiate bradyzoite gene expression and died under stress, instead of forming
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latent cysts. Furthermore, overexpression of BFD1 was sufficient to induce stage conversion in
60% of parasites in vitro. Lastly, the authors found BFD1-binding sites near start sites of several
bradyzoite-specific genes, including BFD1, itself. The authors stated that BFD1 could be the basis
of therapeutics, as disrupting stage conversion would allow more effective immune clearance of

tachyzoites (Waldman et al., 2020).

V. TATA-box binding proteins (TBPs)

TATA-box binding protein (TBP), a subunit of TFIID, is a general TF that is involved in
transcription by multiple RNA polymerases including RNA polymerases Il (RNA Pol Il) and Il
(RNA Pol Ill) (Han and He, 2016) (Figure 4.2A, B). TBP binds to the canonical TATA box
sequence (TATAWAW, where W represents either an A or T), which is found in many eukaryotic
promoter elements (Han and He, 2016). TBP is also involved in transcription of genes that do not

possess the TATA-box element (Para-Marrin et al.,
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Figure 4.2: RNA Polymerases and their Cofactors

The illustrations are not inclusive of all known cofactors and their interactions. For clarity, only those
proteins described in this review are incorporated in the diagrams. A. RNA Pol Ill transcribes short,
abundant nonprotein-coding RNA transcripts such as tRNAs, 5S rRNAs, and other essential small
RNAs. Recruitment of RNA Pol lll to the DNA relies on proteins, which make up a pre-initiation
complex. Among the proteins in this complex is TFIIIB, which consists of three subunits, the TATA-
box binding protein (TBP), B Double Prime 1 (Bdp1), and Brf1. RNA Pol lll transcription can be
inhibited by Maf1. B. RNA Pol Il transcribes precursor mMRNAs, microRNAs and a majority of small
nuclear RNAs (snRNAs). Like RNA Pol Ill, RNA Pol Il also relies on TBP for promoter binding.
However, TBP-related factors (TRFs) can also fill the role of TBP (not shown). TBP function also
depends on TBP-associated factors (TAFs), which may be determinants of promoter selectivity.
Transcription of genes by RNA Pol |l also requires the protein complexes TFIIA, TFIIB, and TFIIF.
The TFIIF complex binds to RNA Pol Il and the TFIIB complex. The a and 3 subunits of TFIIF further
interact with the transcription machinery by binding PC4, which interacts with Nuclear Factor Y (NF-
Y). Nuclear Factor-Y (NF-Y) is a heterotrimeric TF, composed of three subunits. The A subunit
interacts with PC4 and the B and C subunits interact with TBP. RNA Pol Il transcription may be
negatively regulated by NC2. C. RNA Pol transcribes all the rRNA genes except 5S rRNA. Upstream
binding factor (UBF) adheres to the promoters of rDNA, which triggers the SL-1 binding. RNA Pol I,
connected to TIF-1A, binds to the UBF/SL-1 complex. Finally, TIF-1A facilitates the interaction
between RNA Pol | and SL-1, forming the pre-initiation complex. This figure was created using
BioRender (Toronto, Canada).

115



2019). Human TBP possesses two domains: a divergent N-terminal sequence and a conserved
180 amino acid C-terminal DNA-binding domain, composed of two structural region repeats
flanking a highly basic segment. This confers a saddle-like shape to the protein. The concave
“straddles the DNA”, whereas the convex surface is analogous to the “seat” of the saddle where

TBP interacts with general TFs and other cofactors (Kim et al., 1993).

TBP is a key element that is indispensable to transcription and disrupting any of its
interactions with other proteins, or blocking its function, could potentially lead to a lethal decrease
in transcription (Figure 4.1, Strategy B and C). Given its fundamental requirement, TBP also has
a low mutation rate. Therefore, the chance of acquiring resistance to TBP-targeting drugs is low
(Santiago et al., 2019). TBPs have been identified in E. histolytica (Narayanasamy et al., 2018;
Santiago et al., 2019), Plasmodium falciparum (Santiago et al., 2019), A. castellani (Chen et al.,
2004), Leishmania major (Ivens et al., 2005), Trypanosoma brucei (Ibrahim, et al., 2009), C.
parvum (Millership et al., 2004), T. vaginalis (Parra-Marrin et al., 2019), and G. intestinalis (Best

et al., 2004).

Two TBPs exist in E. histolytica (EhTBP1 and EhTBP2), EhTBP2 is 100% identical to
EhTBP1 and is endogenously silenced. EnTBP1 possesses the conserved TBP saddle like-
structure and binds TATA-box promoter element and TATA-variants, which are noncanonical
TBP-binding sites. Narayanasamy et al. (2018) found that EnTBP not only binds the TATA-box
and TATA-variants, but also binds the GAAC-box, which is an unusual and novel core promoter
found in 56% of E. histolytica genes. Knocking down expression of EnTBP1 (Verma et al., 2019;
Narayanasamy et al., 2018) resulted in reduced phagocytosis and decreased expression of Hgl,
a cell surface adhesin that controls parasite-host interaction. Although phagocytosis and parasite-
host adhesion are important virulence functions, pathogenicity of the EnTBP1 knockdown strain
has not been examined in an in vivo model of infection.
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Using computational methods, Santiago et al. (2019) showed that P. falciparum TBP
(PfTBP) and E. histolytica TBP (EhTBP) exhibited unique features that may be exploited for drug
design. These features were specific to TBP’s role in RNA Pol lI-based transcription (Figure 4.2B).
For example, the TFlIA-binding cavity was more open in PfTBP than in human TBP (hsaTBP),
while the same domain in EnTBP was less open. A more open TFIIA binding site is potentially
druggable because molecules (drugs) that fit into the PfTBP TFIIA binding domain, would not
necessarily fit into hsaTBP. Computational modeling also showed that EhTBP and PfTBP
possessed less-conserved and more open negative cofactor-2 (NC-2) binding sites compared to
that of hsaTBP. NC-2 is a negative regulator of TBP. It binds to TBP and prevents the recruitment
of TFIIA and TFIIB. Thus, the NC-2 binding site is another promising target (Santiago et al., 2019)
(Figure 4.1, strategy B and C). In other systems, the strategy to target TBP has been to block its
DNA-binding activity (Lambert et al., 2018). Currently, there are no known drugs that bind in the
TFIIA- or NC-2-pocket of TBP. Given the uniqueness of these sites in the parasites, discovering

and designing such drugs would be a novel and attractive line of research.

Parra-Marin et al. (2019) characterized two TBP proteins in T. vaginalis. TvTBP1 and
TvTBP2 are 45.16% identical to each other and are both actively expressed in the parasite. GST-
pull down assays showed that TvTBP1 interacts with IBP39, a protein exclusive to T. vaginalis
that is part of the pre-initiation complex. Typical TATA-box sequences have not been identified in
the T. vaginalis genome, but electrophoretic mobility shift assays (EMSAs) showed that both
TvTBPs bind to the promoters of genes that are transcribed by multiple RNA polymerases. This
was not surprising since P. falciparum and E. histolytica TBPs are known to also bind TATA-
variants (Narayanasamy et al., 2018; Santiago et al., 2019). Furthermore, TvTBPs possessed the
conserved saddle-like tertiary structure and the canonical carboxy-terminal domain of the TBP
superfamily. HsaTBP contains four phenylalanine residues that are required for TATA-box
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binding. Parra-Marin et al. (2019) showed thatin TvTBP1, two of the phenylalanine residues were
substituted with tyrosine residues and in TvTBPZ2, one of the phenylalanine residues was replaced
with isoleucine. If such amino acid substitutions alter DNA-binding pocket shape or openness,
compared to that of hsaTBP, the TvTBP DNA-binding sites may serve as drug targets.
Importantly, TvTBP1 does not complement a S. cerevisiae strain lacking TBP, suggesting that it

may contain sufficiently divergent structure, which would be ideal for drug targeting.

E. histolytica also possesses EhTBP-associated factor 1 (EhTAF1) (Avendano-
Borromeo et al.,, 2019) and TBP-related factor 1 (EhTRF1) (Narayanasamy et al., 2018). In
humans, TAF1 binds TBP and has been shown to have a central role in gene expression
(Avendafio-Borromeo et al., 2019). A human homolog of TRF1 does not seem to exist; however,
in Drosophila melanogaster, TRF1 regulates a subset of specialized genes involved in
embryogenesis. In humans TRF2 selectively regulates TATA-less promoters (Narayanasamy et
al., 2018). Avendano-Borromeo and colleagues (2019) found that EhTAF1 coprecipitates with
EhTBP and EhTRF1. Interestingly, EnTAF1 does not have an apparent TBP-binding domain or a
zinc knuckle domain, which is involved in DNA binding (Avendafio-Borromeo et al., 2019). Since
the structure of EhTAF1 differs from the structure of the human counterpart, disrupting the
association of EhTBP with EhTAF1, by targeting a unique domain within EnTAF1, could be a
valuable therapeutic strategy (Figure 4.1, Strategy C). A similar strategy could be used for
EhTRF1, especially since a human homolog does not seem to exist and the authors were not

able to knock down TRF1 gene expression in parasites (Narayanasamy et al., 2018).

V. RNA Polymerase IIl Cofactors
RNA Pol Il is specialized for transcribing short, abundant nonprotein-coding RNA
transcripts such as tRNAs, 5S rRNAs, and other essential small RNAs (reviewed in Turowski and
Tollervey, 2016). Recruitment of RNA Pol Il to the DNA relies on proteins, which make up a pre-
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initiation complex. Among the proteins in this complex is TFIIIB, which consists of three subunits,
the TATA-box binding protein (TBP), B Double Prime 1 (Bdp1), and Brf1 (Figure 4.2A). RNA Pol
Il transcription can be inhibited by Maf1, which blocks the interaction between TFIIIB and the
polymerase, itself. Homologs to many of these RNA Pol Il transcription partners have been

identified in parasites.

B Double Prime 1 (Bdp1)

Bdp1 contains a SANT domain, which is a highly conserved 50 amino acid sequence present in
proteins involved in transcriptional regulation (Ferrari et al., 2004; Roman-Carraro et al., 2019).
Roman-Carraro and colleagues (2019) identified and characterized a Bdp1 homolog in
Leishmania major (LmBdp1). Sequence alignment of LmBdp1 with other Bdp1 homologs
demonstrated that LmBdp1 contains an extended SANT domain (characterized by 5 a-helices),
flanked by an N-linker region and a long arm. Interestingly, the long arm is predicted to occur in
all Bdp1 orthologues, except the human protein. The N-linker region is required for interacting

with the minor groove of DNA, while the long arm interacts with Brf1 (Roman-Carraro et al., 2019).

When attempting to produce a double knockout of LmBdp1, using targeted gene
replacement, Roman-Carraro and colleagues (2019) found that L. major possesses a third copy
of the LmBdp1 gene. In this mutant, known as DKO+1, LmBdp1 expression was reduced by 70%
and growth was reduced compared to single knockout and wild type parasites. This suggests that
LmBdp1 is an essential gene. Transcription by RNA Pol Il was also decreased in DKO+1 cells.
ChIP assays revealed that LmBdp1 binds to Pol lll promoters, such as those that drive expression
of U2, U4, and some snRNAs (Roman-carraro et al., 2019). Since LmBdp1 appears to be
essential for TFIlIB-based recruitment of RNA Pol Ill and differs structurally from the human
homolog, LmBdp1 may be a suitable target for drug development.
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Maf1

Maf1 is a negative regulator of TFIIIB and acts by associating with the C160 subunit of
RNA Pol Il and with the third subunit of TFIIIB, Brf1. Ultimately, this interaction prevents
recruitment of TBP and represses transcription. Romero-Meza et al. (2017) identified a Maf1
homolog in T. brucei (TbMaf1) which is encoded by two genes, whose products share 95.8%
identity. While TbMaft and human Maf1 shared only 15% amino acid identity, they both
possessed three conserved domains of unknown function, named: A, B, and C. The linker region
between domains A and B was not conserved and was specific to each species. Since domains
A, B, and C are conserved, TbMaf1 is predicted to possess the same tertiary structure as human
Maf1, suggesting that they have similar functions. Romero-Meza et al. (2017) showed that
TbMaf1 localizes to the nucleus, controls cell growth, and is a negative regulator of transcription.
However, altering levels of TbMaf1 expression did not affect the levels of TbTBP, as seen in

mammalian cells (Romero-Meza et al., 2017).

V. RNA Polymerase |l Cofactors
RNA polymerase Il (RNA Pol Il) is required for the synthesis of precursor mMRNAs, microRNAs
and a majority of small nuclear RNAs (snRNAs). Like RNA Pol Ill, RNA Pol Il also relies on TBP
for promoter binding. However, TBP-related factors (TRFs) can also fill the role of TBP in a tissue-
specific fashion (Narayanasamy et al., 2018). TBP function also depends on TBP-associated
factors (TAFs), which may be determinants of promoter selectivity. Transcription of genes by RNA
Pol Il also requires the protein complexes TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH. The TFIIF
complex binds to RNA pol Il and the TFIIB complex, as illustrated in Figure 4.2B (Schweikhard et
al., 2014). The a and B subunits of TFIIF further interact with the transcription machinery by
binding PC4 (Akimoto et al., 2014) a single-strand DNA binding protein, which also interacts with
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Nuclear Factor Y (NF-Y). Nuclear Factor-Y (NF-Y) is a heterotrimeric TF, composed of three
subunits: A, B, and C) (Manna et al., 2019). The A subunit interacts with PC4 and the B and C

subunits interact with TBP. RNA Pol Il transcription may be negatively regulated by NC2.

Nuclear Factor Y

Lima and colleagues (2017) characterized P. falciparum NF-YB (PfNF-YB). P. falciparum
merozoites invade red blood cells (RBCs) and develop asexually through ring, trophozoite, and
schizont stages. PINF-YB was expressed mainly in the schizont stage. Chromatin IP (ChIP)
identified 297 target genes that were putatively regulated by PfNF-YB. These genes were known
to play roles in protein translation, protein folding, intracellular transport, cell redox homeostasis
and metabolism. A conserved CCAAT motif was found in 140 of the Pf NF-YB-regulated genes.
Of the other 157 putative target gene promoters, 45 exhibited at least 80% homology in a motif
consisting of 5 bases upstream and downstream of the CCAAT core. The authors proposed 5
PfNF-YB-binding consensus sequences; however, the interaction of PfNF-YB with these
sequences was not specifically tested. Overall, these data suggest that PfNF-YB may represent

an anti-malarial candidate, which would specifically act on the schizont stage (Lima et al., 2017).

Manna et al. (2019) identified all three NF-Y subunits in E. invadens (EiNF-Y) and found
that it regulates stage conversion. While divergent from human homologs, all three subunits
exhibited conservation in domains necessary for DNA-binding and subunit interactions. For
example, human NF-YC specifically interacts with TBP and this region was conserved in the
Entamoeba counterpart. However, E. invadens NF-YC also contained a unique N-terminal
sequence. Expression analyses revealed EiNF-YA was constitutively expressed in trophozoites
and cysts, while NF-YB and NF-YC were only expressed during encystation. Both EiNF-YA and
EiNF-YC bound the CCAAT consensus motif and were localized to cyst nuclei. Importantly, when
expression of EINF-YC was knocked down, encystation efficiency was decreased. Reduction of
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EiNF-YC expression did not alter the level of NF-YA protein, but instead caused mislocalization
of NF-YA. Thus, correct localization of EiNF-YA seems to depend on EiNF-YC (Manna et al.,

2019). A search of AmoebaDB (www.amoebadb.org) reveals that the human pathogen, E.

histolytica, also possesses all three subunits (NF-YA: EHI_054140, NF-YB: EHI_168220, NF-
YC:EHI_076830), which seem to be equally expressed in both trophozoites and cysts. Thus, E.
histolytica NF-Y is likely to play an important role in transcription throughout the entire life cycle

of this parasite, making it an attractive drug target.

Positive Cofactor 4 (PC4)

A homolog of PC4 was identified in E. histolytica (EhPC4) (de la Cruz et al., 2016). EhPC4
contains a conserved DNA-binding domain and is predicted to fold into a tertiary structure
containing four B-sheets and one a-helix, which is similar to the human ortholog. Overexpression
of wild type EhPC4 led to a significant increase in cell proliferation and DNA replication, without
a decrease in viability. de la Cruz et al. (2016) also found that EhPC4-overexpressing cells
contained multiple giant nuclei and only 10% of the mutant cells completed cytokinesis compared
to 80% of control cells. Transcriptomic analysis revealed that 328 genes were significantly
modulated in the transgenic cells; these genes were predicted to be involved in cellular processes
such as metabolism, cell division, and signal transduction. A previous study (de la Cruz et al.,
2014) demonstrated that EhPC4 facilitated parasite migration and destruction of colonic
epithelium. Taken together, these two studies suggest that this TF may be vital for parasite

viability and virulence, and ultimately, may represent a valuable drug target.

Transcription factor Il F (TFIIF)
Srivastava et al. (2018) identified two TFIIF-like RNA Pol ll-binding proteins in T. brucei,

named TFL1 and TFL2 (TFIIF-like). These two proteins shared little sequence similarity with other
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known TFIIF proteins. Modeling determined that these proteins contain a winged helix domain,
like that of mammalian TFIIF, and conditional silencing of either TFL1 or TFL2 halted cell growth
after 48 hours of induction. The authors also showed TFL1 and TFL2 are localized to the nucleus

and interact with each other to form a heteromeric TFL complex.

Trypanosome genomes contain arrays of tandemly linked genes that are transcribed
polycistronically by RNA Pol Il. Pre-mRNAs are modified by trans splicing of a spliced leader
RNA (SLRNA) and polyadenylation. TFL1 or TFL2 silencing reduced SLRNA transcription in vitro,
SLRNA abundance in vivo, and the formation of the preinitiation complex at SLRNA promoters in
vivo (Srivastava et al., 2018). Thus, it is conceivable that blocking TFL complex-DNA interactions
(Figure 4.1, Strategy B), or blocking TFL1-TFL2 interactions (Figure 4.1, Strategy C) may serve
to counter trypanosomiasis.

VI. RNA Polymerase | Cofactors

RNA polymerase | (RNA Pol 1) is responsible for transcribing all the rRNA genes except 5S
rRNA, which is synthesized by RNA Pol lll (see above). It accounts for over 50% of the total RNA
synthesized in a cell (Russel and Zomerdijk, 2006). Three initial steps are critical for pre-rRNA
synthesis (reviewed in Jin and Wou, 2016). First, an upstream binding factor (UBF) adheres to
the promoters of rDNA, which triggers the subsequent recruitment of SL-1, also known as TIF-
1B. Second, RNA Pol |, connected to TIF-1A, binds to the UBF/SL-1 complex. Finally, TIF-1A
facilitates the interaction between RNA Pol | and SL-1, forming the pre-initiation complex (Figure
4.2C.). The phosphorylation status of TIF-1A determines its ability to interact with the transcription

machinery.

Transcription Initiation Factor IA (TIF-1A)
TIF-1A, which is essential to RNA Pol | function, has been described in E. histolytica
(Srivastava et al., 2016) and A. castellani (Gogain and Paule, 2005). Both EhTIF-1A and AcTIF-
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1A were shown to bind RNA Pol I. EhTIF-1A has the expected nucleolar localization and,
phosphorylation of AcTIF-1A regulates its function. Together, these studies support the
authenticity of TIF-1A homologs and the conservation of the rRNA transcription machinery in
these parasites (Gogain and Paule, 2005; Srivastava et al., 2016). While some RNA pol | subunits
have been identified in T. brucei (Srivastava et al., 2016), TIF-IA has yet to be identified in this
parasite.
VIIl.  Modulation of Host Transcription

Hijacking host cells and controlling the immune response ensures parasite survival. To

achieve this, several parasites possess transcriptional modulators that alter host transcription.

Accordingly, this is another way in which transcription may be targeted for anti-parasitic therapy.

Manipulation of host NF-kB

NF-kB is a family of conserved dimeric TFs that include such subunits as p65, Rel B,
c-Rel, p50, or p52. NF-kB can exist as different forms including transcription-activating (e.g., p65-
p50) or transcription-repressing (e.g., p50-50) dimers. Inactive NF- kB exists as a dimer in the
cytoplasm bound to IkB. Stress from such stimuli as free radicals, pathogens, or UV radiation,
results in phosphorylation of IkB, which causes the release of the NF-kB dimer. NF- kB
subsequently moves to the nucleus, where it binds to promoters and affects the transcription of
genes associated with immunity, cellular growth, and apoptosis. NF-kB is also important in
controlling parasitic infections since it also controls the production of nitric oxide (NO) by

macrophages (Calegari-Silva et al., 2018; Kumar et al., 2018).

Leishmania amazonensis is the causative agent of cutaneous and diffuse cutaneous
leishmaniasis. After invasion of macrophages, the parasite can induce IFN1-B expression and
inhibit NO production in the host cell via suppression of NF-kB. L. amazonensis also induces
expression of superoxide dismutase (SOD-1), which favors parasite growth, by protecting it from

124



oxidative stress. Dias-Teixeira et al., (2016) discovered that endoplasmic reticulum (ER) stress
makes macrophages more susceptible to L. amazonensis infection through the activation of the

host TF, X-box binding protein-1 (XBP-1).

In mammalian cells, the integrated ER stress response consists of 3 signaling pathways
that work to restore cell homeostasis during stress. These include the transcription factor, ATF-6,
the ER-resident transmembrane nuclease, IRE1, and a PKR-like ER kinase (PERK). Once
activated by ER stress, IRE1 splices an intron from cytoplasmic XBP-1-encoding mRNA, which
is subsequently translated to produce active XBP-1. Active XBP-1 translocates to the nucleus and
induces the expression of inflammatory molecules such as IL-6, IL-13, and IFN-1(3 (Dias-Teixeira
et al., 2016). Macrophages that were treated with thapsagargin, an inducer of ER stress, exhibited

increased L. amazonensis burden compared to untreated control cells.

gPCR showed L. amazonensis infection induces expression and nuclear translocation
of host XBP-1 and chromatin immunoprecipitation (ChlP) demonstrated that XBP-1 binds to the
promoter of IFB1-B. When expression of XBP-1 was knocked down in macrophages, intracellular
levels of NO were significantly increased, and L. amazonensis infection was significantly reduced.
Furthermore, when XBP-1 knockdown cells were treated with an antioxidant, parasite growth was
significantly increased. Taken together, these data indicate that infection of macrophages with L.
amazonensis activates host cell XBP-1, which plays a critical role in infection by increasing host
IFB1-B expression and by protecting the parasites from oxidative stress (Dias-Teixeira et al.,

2016). However, the mechanism by which L. amazonensis activates XBP-1 remains unclear.

Another research group demonstrated that L. amazonensis suppresses NO production
via another mechanism, namely upregulation of histone deacetylase-1 (HDAC-1) (Calegari-Silva
et al., 2018). Changes in gene expression can occur post-translationally by modification of
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histones. NF-kB subunits are known to interact with histone acetylases (HATs) and HDACs, which
in turn modify local histones leading to alterations in gene expression. Previous studies have
shown that NF-kB recruits HDAC-1 to repress expression of pro-inflammatory genes (Williams et
al., 2006; Elsharkawy et al., 2010; and Collins et al., 2014) Calegari-Silva et al. (2018) found L.
amazonensis infection induces upregulation of macrophage HDAC-1 expression in cell culture
and in human clinical samples. Furthermore, the authors showed that HDAC-1 is recruited to the
iINOS promoter, forms a complex with NF- kB, and ultimately represses macrophage production
of NO, which, in turn, increases parasite survival. Additionally, Calegari-Silva et al. (2018) silenced
HDAC-1 in host macrophages prior to infection with L. amazonensis and observed decreased
parasite load, compared to controls. The mechanism by which L. amazonensis upregulates

HDAC-1 in host cells is unclear.

L. donovani, the causative agent of visceral leishmaniasis, also affects host NF-kB.
During infection of host cells, the parasite activates host hypoxia inducible factor-1a (HIF-1a), a
hypoxia-induced TF, and induces a 2.8-fold increase in host microRNA (miRNA), miR-210. This
ultimately downregulates host NF-kB activity (Kumar et al., 2018). Silencing of HIF-1a in
macrophages and subsequent infection with L. donovani led to a significant decrease of miRNA-
210 expression, suggesting that miRNA-210 expression is HIF-1a-dependent. Parasite infectivity
and parasite load were also significantly decreased in HIF-1a-silenced and miRNA-silenced
macrophages compared to control macrophages, suggesting these effectors are critical for

parasite survival (Kumar et al., 2018).

Importantly, miRNA-210 appeared to be a negative regulator of NF-kB activation. The
level of NF-kB p50-p65 dimer was equivalent in both the cytoplasm and nucleus of macrophages
before and after L. donovani infection. However, in miRNA-210-silenced cells, L. donovani
infection induced the translocation of p50-p65 into the nucleus. Additionally, proinflammatory
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cytokines were significantly increased and anti-inflammatory cytokines were significantly
decreased in infected miRNA-210-silenced macrophages compared to infected control
macrophages. Oxidative and nitrosative species were also increased in infected miRNA-210-
silenced macrophages compared to infected control macrophages. Taken together, these data
imply that L. donovani infection induces expression of HIF-1a in host macrophages via an
unknown mechanism, which induces expression of miRNA-210, and subsequently inhibits
activation of NF-kB and the production of pro-inflammatory cytokines. Ultimately, this allows L.

donovani to survive and successfully establish infection (Kumar et al., 2018).

T. gondii is also able to manipulate host NF-kB controlled genes by releasing effectors.
There are two types of T. gondii secreted effectors, those secreted from the apical rhoptry
organelle (ROP proteins) and those secreted from dense granules (GRA proteins). Both types of
effectors rewire host gene expression to promote parasite survival (Braun et al., 2019). One such
GRA is TEEGR (Toxoplasma E2F4 associated EZH2 inducing Gene Regulator) (Braun et al.,
2019). Host cells infected with a knockout (Ateegr) strain of T. gondii exhibited upregulation of
784 genes (human fibroblasts, HFFs) or 1529 genes (human astrocytes) when compared to host
cells infected with the wildtype strain. Once exported into the host cell, TEEGR localizes to the
host nucleus, forms a complex with host E2F3 and E2F4 TFs, and upregulates E2F4- and E2F3-
dependent gene expression. One such upregulated host gene, EZH2, is a subunit of Polycomb
repressive complex 2, which mediates epigenetic silencing of host gene expression. Once
expressed, EZH2 represses transcription of a subset of NF-kB-regulated cytokines, thereby
strongly contributing to the host immune response and promoting parasite persistence in mice

(Braun et al., 2019).

G. intestinalis is another pathogen that can modulate host NF-kB signaling to avoid the
host inflammatory response. It is well-established that NF-kB regulates transcription of
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inflammatory genes, such as nitric oxide synthase (NOS) and cyclooxygenase 2 (COX-2) during
infection (Faria et al., 2020). G. intestinalis may counter the inflammatory response through the
action of proteases (Faria et al., 2020). Macrophages were exposed to Giardia and then to
lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, which induces an
NF-kB-mediated inflammatory response. Pretreatment with Giardia led to a diminished LPS-
induced production of NOS and COX-2. The effect seemed to be mediated by Giardia-induced
proteolytic cleavage of the NF-kB subunit, p65, because protease inhibitors nullified the effect.
Furthermore, the effect seemed to be contact-mediated since it was diminished when Giardia
trophozoites were prevented from directly interacting with the macrophages using a transwell co-
culture system. Since Giardia is an extracellular pathogen, the authors posited that Giardia
proteases were likely delivered to the host cell by extracellular vesicles (Faria et al., 2020). Thus,
Giardia may modulate the host inflammatory response by inhibiting NF-kB, which, in turn, would

inhibit important signaling pathways of the host innate immune response.

Manipulation of host c-Myc

c-Myc is a eukaryotic TF that regulates many genes involved in cell growth and cell
cycle progression and is activated by mitogenic signals such as serum starvation or epidermal
growth factor (Dominguez-Sola et al, 2007; Miller et al., 2012). L. donovani can enhance its own
survival by upregulating host c-Myc expression, which subsequently represses host miRNA
expression (Colineau et al., 2018). Colineau and colleagues (2018) infected human monocyte-
derived macrophages with L. donovani and measured miRNA expression. Forty-six total miRNAs
were detected in infected cells and 19 of these were significantly downregulated compared to
those in uninfected macrophages. Dicer and Drosha are miRNA processing proteins (Li and Patel,
2016). Expression of Drosha was upregulated at 48 hours post L. donovani infection (Colineau et
al., 2018). Reduced expression of the 19 miRNAs depended on host c-Myc, since c-Myc silencing
or pharmacological inhibition of c-Myc reversed the phenotype. c-Myc silencing also reduced
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intracellular survival of L. donovani, demonstrating that c-Myc is essential for parasite
pathogenesis. How c-Myc is upregulated by L. donovani remains elusive. However, given the
plethora of genes regulated by c-Myc, L. donovani could modulate the expression of many host

genes to its advantage (Colineau et al., 2018).

Manipulation of other host pathways

While in the human bloodstream, T. brucei parasites import high levels of host
tryptophan and phenylalanine, which are required for many cellular functions including energy
production, cell cycle progression, cell bioenergetics, and differentiation (Marchese et al., 2018).
McGettrick and colleagues (2016) showed that once imported into the parasites, amino acids are
metabolized by transamination. A byproduct of this transamination is the aromatic ketoacid,
indolepyruvate. T. brucei excretes high levels of this ketoacid into the host bloodstream.
Indolepyruvate inhibits host HIF-1a, decreasing expression of IL-1(3, allowing the parasite to
evade immune clearance (McGettrick et al., 2016). Transamination is facilitated by the T. brucei
cytoplasmic aspartate aminotransferase, TbcASAT. RNAi-based silencing of TbcASAT
expression resulted in a decrease in aromatic ketoacid secretion and reduced growth of the
parasite. This further supports the role of ketoacids in manipulation of host transcription and

parasite virulence.

In addition to using metabolites to affect host transcription, parasites can also use RNA.
C. parvum is an intracellular parasite that invades host intestinal epithelial cells. At the onset of
infection, epithelial cells release chemokines, which recruit immune cells. These immune cells
release NO and antimicrobial peptides, such as DEFB1, which can kill the parasite or inhibit
parasite growth. Ming and colleagues (2018) found that delivery of the parasite RNA,
Cdg7_FLc_1000, to the host nucleus, downregulates DEFB1 gene expression in host cells.
Transgenic host cells expressing Cdg7_FLc 1000 or C. parvum-infected cells exhibited
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decreased levels of DEFB1, compared to untransfected or uninfected cells. Treating host cells
with Cdg7_FLc_1000 siRNAs, prior to C. parvum infection, reversed the effect on DEFB1
expression. Furthermore, parasite burden was decreased in cells where expression of
Cdg7_FLc_1000 was reduced. Overall, the data show that Cdg7_FLc 1000 is an important
secreted effector of C. parvum that may serve as a target for anti-cryptosporidiosis therapy (Ming

et al., 2018).

Another RNA delivered into host cell nuclei by C. parvum is Cdg2_FLc_0220. Zhao and
colleagues (2018) found that 46 host genes were upregulated, and 8 host genes were
downregulated in parasite-infected human intestinal epithelium (INT) cells. Similar changes in
gene expression were seen when Cdg2_FLc_ 0220 was exogenously expressed in INT cells. The
upregulated gene set included interleukins, their receptors, and inflammatory response
mediators. DAZ-interacting zinc finger protein 1 (DZIP1) was the most significantly downregulated
host gene. Not much is known about the function of DZIP1L, but it has been shown to localize to
centrioles and interact with septin2, a protein implicated in cytoskeleton function. To clarify the
mechanism by which C. parvum uses Cdg2_FLc_0220 to suppress host gene expression, Zhao
et al. (2018) measured G9a enrichment near the DZIP1L gene locus. G9a is a histone
methyltransferase that mediates transcriptional repression of human genes and has previously
been implicated in C. parvum suppression of host gene expression (Artal-Martinez de Narvajas
et al., 2013; Tong et al.,, 2013; Fan et al., 2015). G9a was enriched near the DZIP1L gene.
Silencing of G9a in host cells reduced the effect of infection on DZIP1L expression. Lastly, pull
down assays showed that Cdg2 FLc 0220 physically associates with G9a. These data suggest
that parasite suppression of host DZIP1L is dependent on delivery of Cdg2_FLc_ 0220 and its

interaction with host G9a.

IX. Concluding Remarks and Future Perspectives
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In this review, we have highlighted a number of TFs that regulate parasite transcription
and we have described mechanisms by which parasites regulate host transcription (Table 4.1).
Additional TFs and transcriptional modulators, not discussed here, have been reviewed
elsewhere (Tables 4.2, 4.3). The idea of targeting transcription and TFs for drug therapy was long
considered a “Sysyphean task” (Papavassiliou and Papavassiliou, 2016). However, recent
methodological advances have revealed that TFs are, indeed, targetable. Thus, the TFs and
transcriptional modulators of protozoan parasites represent attractive drug targets as they are
vital in parasitic virulence. The empirical and modelling data discussed within this review (and
summarized in Table 4.4) support the idea that targeting these TFs and transcriptional modulators

may be a viable treatment approach.

Many components of the transcription machinery described in this review have already
been explored as targets for drug design in other systems (Figure 4.1). For example, inhibition of
human NF-kB has been explored for the treatment of osteoarthritis (reviewed Rigoglou and
Papavassiliou, 2013). Additionally, the guanine alkylating anti-neoplastic drug, pluramycin
(Lambert et al., 2018), and the kinase inhibitors, Hypericin, Rottlerin, and SP600125 (Schug,
2011), have been used to inhibit TBP. Ecteinascidin 743 (Et743; trabectedin, Yondelis), a DNA
minor groove alkylating drug, has been used to block NF-Y DNA binding (Lambert et al., 2018)
and ftriptolide, a plant-derived natural product, blocks assembly of TFIIIB (Liang et al., 2019).
Vorinostat, an HDAC inhibitor, could be used to control overexpression of c-Myc in T-cell acute
lymphoblastic leukemia (Lambert et al., 2018). Lastly, the small molecule, AG-1031 inhibits PC4
(Zhang et al., 2020). Given that parasites are eukaryotes, many of the TFs described in this review
are, to some extent, homologous to those in the human host (Table 4.4). Therefore, it is
conceivable that existing TF-targeting drugs may be re-purposed for the treatment of parasitic

infections.
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A common and important readout in drug screens is inhibition of parasite growth.
However, it is easy to envision high throughput screens that specifically target certain cellular
functions. For instance, Ahyong and colleagues (2016) used the MMV Malaria box to screen for
drugs that inhibit translation in P. falciparum (Ahyong et al., 2016). Perhaps similar high
throughput approaches may be used to screen small molecule libraries to find drugs that interrupt
TF-DNA or TF-cofactor binding. Indeed, such a high throughput screen was used to identify drugs
that inhibit the interaction between the human TF, ERG, and its cofactor, EWS (Nicholas et al.,
2020). Computer modeling, such as that done for E. histolytica and P. falciparum TBP (Santiago

et al., 2019), will accelerate such high throughput approaches.

That parasites are eukaryotes also complicates drug discovery because it is necessary
that drugs maximally inhibit the parasite, while minimally affecting the host. Therefore, it is
imperative that state-of-the-art technology be used to identify novel domains, functions, and
structural features in conserved parasite TFs or evolutionarily divergent TFs. We highlighted
several TFs (e.g., EnTBP, PfNF-Y, TgBFD1, TbMAF1) that were homologous to host TFs, but
nevertheless, possessed unique regions or unique functions. An example of an evolutionary
divergent class of TFs are the AP2 TFs. These are found in apicomplexan parasites and are so
named because they contain a Apetala2 DNA binding domain (Jeninga, et al., 2019). While
weakly similar proteins have been identified in plants, homologs do not exist in the human host.
Apicomplexan AP2 TFs can either bind DNA promoters directly or bind and influence chromatin
modifiers. The T. gondii genome contains 67 AP2 TFs, P. falciparum contains 27, and
Cryptosporidium spp. possess 17. These TFs control vital processes within these pathogenic
parasites and their unique DNA binding domains make them an attractive drug target as they are
not found within the human host. AP2 TFs have recently been reviewed in detail (Jeninga et al.,

2019). Therefore, they are not further discussed in this review.
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It is notable that there was a scarcity of recent studies on TFs or effectors from
Naegleria fowleri, Balamuthia mandrillaris, or Acanthamoeba castellani. While infections with
these amoebae are rare, incidence is increasing (Mungroo et al., 2019), as a result of escalation
of global temperatures and an increase in warm water reservoirs. These parasitic amoeba cause
devasting and mostly fatal (90%) brain infections (Mungroo et al., 2019). Therefore, the lack of
data on a potential drug target, namely TFs, is alarming and represents a significant gap in

knowledge.

Since targeting TFs is a novel treatment approach for parasitic infections, three-dimensional
modeling, and tests for small molecule binding (summarized in Table 4.4), have yet to be
conducted for most parasite TFs. Thus, this field of research is wide-open and should yield new
and interesting drug targets. As the information about TFs and other transcriptional effectors
grows, especially for those that regulate virulence, their value as drug targets should become
more evident. To maximize the discovery of drugs for any potential target, it will be necessary to
identify DNA-binding pockets (if applicable), target DNA sequences (if applicable), cofactors, and
the relationship between structure and function. Such knowledge will drive the development of

novel anti-parasitic agents that are so desperately needed today.
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