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ABSTRACT

Nonwoven fibrous materials represent a platform of flexible material substrates. Nonwo-

vens are widely used in the production of napkins, paper, filters, wound covers and face

masks. In addition, for many applications, nonwoven materials interact with fluids. For

example, in filtration applications, nonwoven materials are used to clean fluids contain-

ing solid particles or emulsified droplets. The filtration performance is affected not only

by the geometrical arrangement of fibers in non-woven materials but also wettability of

fibers. Understanding the transport properties of nonwoven materials and interactions be-

tween the dispersed droplets and solid substrate is crucial for the design and optimization

of filter media. The present work is focused on: (1) obtaining pore space information from

3D structure in nonwoven media and 2) predicting the liquid transport properties in fibrous

materials, including permeability and tortuosity (3) investigating droplet morphology on

fibers.

Chapters 1-3 provide the basis of fiber-liquid interactions and introduce the lattice

Boltzmann method (LBM). Chapter 4 deals with characterization of microstructures gen-

erated from 3D reconstructed plywood and random oriented fibrous media. An algorithm

based on watershed segmentation is utilized to extract pore network information including:

pore diameter, throat diameter and connectivity. The effect of fiber overlapping arrange-

ments, fiber radius and porosity on the pore space morphology was explored by statistical

pore-network analysis. A thorough analysis of the correlation between effective geometri-

cal properties and mean pore size, demonstrated that randomness on microscopic level can
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have a significant effect on the macroscopic properties of the fibrous media.

In Chapter 5, simulations on pore-scale single phase fluid flow through fibrous media

using the lattice Boltzmann method were performed. From the simulated flow field, per-

meability and tortuosity of nonwoven fibrous materials can be evaluated over a wide range

of porosity 0.1 < φ < 0.9. The validity of Darcy’s law which describes the flow behavior

through a porous medium was confirmed in the studied porosity regime. The simulation

results were used to test the accuracy of semi-empirical scaling relations, that enabled pre-

dictions in trans-plane permeability and tortuosity based on porosity and specific surface

area.

Chapter 6 deals with the wetting and capillarity effects of droplets deposited on a single

fiber. A multicomponent pseudopotential lattice Boltzmann model was applied to study

the interface dynamics of droplets and wetting/dewetting behavior. By adopting differ-

ent initial droplet configurations, we studied the stability of barrel-shaped and clam-shell

droplets on a single fiber for contact angles ranging from 10° to 68°. The simulated barrel

drop profile was validated with experimental results. The morphology diagram established

from simulations showed that both barrel and clam-shell configurations are stable in coex-

istence.

Dr. Ulf Schiller introduced me to the LBM, and guided my research described in Chap-

ter 3-5. These chapters are based on publications [1, 2, 3], but significantly modified to in-

clude additional materials that has never been published. Chapter 6 has been developed to

explain recent experimental results obtained in Dr. Kornev’s group. The developed simula-

tion protocol revealed new physics related to the classical problem of fiber-drop interactions

and a new diagram of morphological transitions of droplets on fibers was determined. The

numerical simulations and data analysis were carried out on Palmetto high-performance

computing (HPC) cluster.
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CHAPTER 1

INTRODUCTION

1.1 Background

Due to the significance of predicting the macroscopic transport properties of porous media

in nature and technical applications, many attempts have been devoted to characterize the

porous materials in this respect. For example, in fuel cell engineering, a considerable re-

search has been conducted to study the permeation of gas phases and produced liquid water

transport in porous gas diffusion layers(GDL), leading to the critical questions about water

transport mechanism and measurement of relative permeabilities, which play an important

role on maintaining the high performance of fuel cells [4, 5, 6]. For liquid filters, separation

of finely dispersed water droplet in diesel fuel is an important step to avoid corrosion of

engine components and suppress microbial growth. The various structure parameters, such

as filter thickness, porosity, fiber radius, fiber orientation, and pore size have been shown to

affect the capture mechanism of water droplets on the fibers and the coalescence of drops .

In addition to the geometrical features of fiber webs, the surface wettability of fibers is

also an important parameter that determines the overall separation efficiency of filters. The

droplet capture mechanism strongly depends on wettability of the fiber materials. Forma-

tion of liquid film on the front/rear face of fibrous filters due to accumulated droplets may

cause filter clogging and notable rise of pressure drop. The background information about

pore structure, transport properties and wetting phenomena are discussed in the flowing
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subsections.

1.1.1 Characteristics of porous materials and pore network

Porous materials are defined as a type of two-phase ordered/disordered materials, which

are occupied by solid matrix and void space. For example, one type of natural inorganic

materials, such as soil, rock, sediments and cemented sandstone, are highly heterogeneous

and made up of particle aggregates. The other type of manufactured porous media, such

as paper, organic tissue, and filters, are homogeneous and made up of fibers[7]. In these

materials, the pores are interconnected and hence allow a fluid to flow from one side of

the sample to the other side. The unique feature of these porous materials is the three-

dimensional pore network which can be modeled by a bundle of capillary tubes with varied

shape, diameter and orientation. Despite the centuries-long effort in characterizing the pore

structure and transport processes in porous materials using both experiments and modeling

approach, it remains a complex task to include the features of 3D structures at micro-level

description in these attempts. The fibrous materials are usually highly porous and the pores

are continuous, leading to the challenge in separating pores from throats in the network.

At the macroscopic level, the most import parameter of porous media is the poros-

ity φ , defined as the ratio of volume of voids of a sample to the volume of a sample,

φ =Vvoid/Vsample. Porosity can be easily evaluated by using the incremental weight method

when the sample is weighted before and after saturation with a wetting fluid. Character-

ization of the pore structure and surface area is a more difficult task. Owing to the rapid

development of imaging techniques, image-based network models are gaining its popular-

ity. The 3D representation of a porous material can be built-up from a series of 2D cross-

sectional micro-CT images. Once the 3D reconstructed geometry is obtained, the image

analysis techniques are employed to acquire the real pore space topology which contains

the major information of network elements including: pore shape, pore and throat diameter,
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pore size distribution, connectivity and specific surface area. These parameters are affected

by the solid structure properties, such as granular particle size, particle size distribution,

fiber shape, fiber diameter and orientation.

Figure 1.1: 2D schematic illustration of a pore body, pore-throat, pore radius Rp in granular
(left) and fibrous (right) porous media.

To extract the networks from pore space images, the standard process includes: 1) re-

moving noise and ring artifacts during the acquisition by filtering, 2) image segmentation

based on thresholding algorithm, 3) separate the continuous pore space into discrete net-

work elements which represent pore-throats region. In the fibrous medium, the flow is

assumed perpendicular to the page. Observe that the pore throats are not defined in this

core. Therefore, it is clear that the pore network is non-unique and depends on the fea-

tures of porous media and investigator subjectivity. The pore bodies are the larger voids

in the porous media and connected by narrow pathways called throats [8]. Connectivity is

defined as coordinate number, which is the number of neighboring pores adjacent to one

single pore. Fig. 1.1 is a 2D schematic illustration of pores and throats identified in gran-

ular and fibrous porous media. There are several approaches that have been employed to

determine the size of pores and throats. One is based on erosion and dilation operation that
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can be used to find the central skeleton or medial axis as shown in Fig. 1.1 which connects

the center of pores and throats [8, 9]. The branching points of the medial axis are identified

as centers of pore bodies. Another approach is based on maximal ball algorithm [10]. The

balls centered on void voxels are grown until they are inscribed with the solid surface and

pore diameter is determined by the maximal ball diameter.

1.1.2 Transport properties of porous media

With the advancement of computing power, modeling of fluid flow through porous media

at pore-scale level becomes possible. This approach allows us to capture the inherent pore

heterogeneity and density, pressure and velocity of fluid inside pores. However, to trans-

form the microscopic modeling with limited domain size into a macroscopic description,

one needs to select the appropriate size of representative elementary volume (REV), such

that the porous medium domain can be regarded as a continuum and the average over REV

can represent the properties of a macroscopic material.

The fundamental equation governing the motion of fluid in a porous medium is de-

scribed by the mass balance equation and momentum balance equation. For the incom-

pressible, Newtonian fluid , the governing equations can be written as:

∇ ⋅u = 0, (1.1a)

ρ(∂u
∂ t

+u ⋅ ∇u) = −∇p+η∇
2u+ρg, (1.1b)

where u is velocity vector, ρ the fluid density, η the dynamic viscosity, g the acceleration

due to gravity, and t is time. When inertial forces in a conduit of characteristic side L, are

much weaker than the viscous forces, so that the Reynolds number is small Re = ρuL
µ

≪ 1,

the inertial term can be neglected and the Navier-Stokes equation (1.1b) reduces to the
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Stokes equation:

−∇p+η∇
2u+ρg = 0, (1.2)

Considering porous material at the scales much greater than the pore size, one can think

about it as of a continuum. In such a case, the details of flow through the pores can be

ignored and one can talk about average velocity u⃗. The average flow velocity u⃗ is related to

flux q⃗ by the porosity φ and can be expressed as u⃗ = q⃗/φ . Assuming the viscous resistance

force is linear with the velocity, we can introduce Darcy’s law as:

q = −
κ

η
(∇p−ρg), (1.3)

where κ is permeability, and pressure p is introduced as an average pressure over REV. This

constitutive equation governs the single phase fluid flow in a porous medium. Although

Darcy’s law is phenomenologically derived by Henry Darcy in 1856 [11] from analysis of

seepage flow in the vertical sand column experiment, it can be derived from the Stokes

equation (1.1a) and (1.2). The permeability κ describes the ability of a porous medium to

allow fluid to pass through it and strongly depends on the geometrical parameters of pore

space in solid matrix.

The pore space in a porous medium can be regarded as a bundle of capillary tubes.

Consider the Hagen-Poiseuille flow that describes fully developed laminar flow through a

long cylindrical tube of constant cross section. The mean velocity U of such a flow is:

U =
D2

32η
⋅
∆p
L
, (1.4)

where D and L are the diameter and length of capillary tube. Comparing Eq. (1.4) with
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Figure 1.2: Capillary tubes in woven (top) and non-woven (bottom) fibrous media. Dh is
the hydraulic diameter and ⟨λ ⟩ is the average length of flow path.

(1.3) and taking into account g = 0, ∇p = ∆p/L, we find

κ = φ
D2

32
. (1.5)

Fig. 1.2 illustrates the possible orientation of capillary tube in woven and non-woven fi-

brous materials. In reality, the flow path is tortuous due to the random orientation of fibers,

and the stream tube cross section can be non-circular. Therefore, the concept of hydraulic

radius Rh and tortuosity τ is introduced [12]. Hydraulic radius Rh is introduced through
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specific surface area S and porosity as:

S =
Ap

Vsolid
, (1.6)

Rh =
Vp

Ap
=

φ

S(1−φ ) , (1.7)

where the specific surface area S is the ratio of total surface area of pores Ap and volume

of solid matrix. Substituting the hydraulic radius (1.7) into Eq. (1.5), the semi-empirical

Kozeny-Carman equation which predicts the permeability of porous materials using the

specific surface area and porosity can be obtained [13, 14, 15],

κ =
φ

3

CkS2(1−φ )2
, (1.8)

For the Hagen-Poiseuille model, Eq. (1.8) is applied with Ck=8. In the general case, the

constant Ck is called the Kozeny constant. Tortuosity τ = ⟨λ ⟩/L measures the length of

average flow path ⟨λ ⟩ relative to the distance L traveled in the direction of the pressure

gradient. Carman pointed out that the average flow velocity U through the tortuous path

should be corrected by U
φ
⋅
⟨λ ⟩
L [14, 16]. Therefore, the Kozeny constant Ck is replaced by

the Kozeny-Carman coefficient Ckc = Ckτ
2. From the above equations, permeability of a

porous medium shows a complex dependence on fiber arrangement and pore structure at

the micro-scale characterized by specific surface area, porosity, fiber orientation and pore

diameter.

1.1.3 Droplet wetting and spreading

The droplet spreading on and wetting of a solid substrate is of primary importance in ev-

eryday life. For example, the water absorption and diffusion in the void spaces of hair

due to capillary effect, water droplet rolling over the superhydrophobic Lotus leaves, liquid
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retention in textiles. For explanation of these effects, the interaction at liquid/liquid and

liquid/gas interfaces are important. Interfacial tension γαβ between a pair of substances α

and β is defined as the work required to increase their interface by a unit area. Therefore,

γαβ is measured in J/m2, i.e. it is the energy density.

Figure 1.3: Illustration of different contact angles of droplet deposited on a flat surface: a)
force balance yields the Young’s equation. A contact angle is less than 90° , (b) contact
angle is larger than 90° , (c) contact angle is 0°(complete wetting), (d) contact angle is
180°(complete non-wetting).

When two immiscible fluids are in contact with a solid, the equilibrium shape of liquid

body is determined by the force density at the line of contact. In Fig. 1.3, we schemati-

cally show a drop sitting on a solid substrate. Due to interfacial tension between each two

substances, three forces act at the three phase contact line, each being directed along the

tangent to the interface between adjacent phases. The magnitude of each force, per unit

length of the contact line, equals to the corresponding interfacial tension, γsl , γsg and γlg.

The force balance along the contact line:

γsg = γsl + γlg cosθ , (1.9)
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defines the equilibrium contact angle θ . Eq. (1.9) is called the Young’s equation. If γsg > γsl ,

the contact angles are smaller than 90° and the surface is defined as wettable. For an aque-

ous system, it is hydrophilic or high surface energy surface. In the opposite situation when

γsg < γsl , the contact angles are greater than 90° and the surface is defined as non-wettable.

For an aqueous system, it is hydrophobic or low surface energy surface. If (γsg−γsl)/γlg > 1,

the liquid will spontaneously spread into a thin film on the solid surface. The spreading

coefficient S defined as S = γsg − (γsl + γlg) is positive in such a case[17]. Fig.1.3 illus-

trates four different wetting scenarios: completely wetting, partial wetting and completely

non-wetting. For the liquid droplet deposited on curved surface, its equilibrium shape is

determined by the force balance and described by the Laplace equation of capillarity:

pc = pα − pβ = γ( 1
R1

+
1

R2
), (1.10)

where subscripts α and β denote two immiscible phases, R1 and R2 are the two principal

radii of curvature of the interface. The above equation relates the equilibrium pressure

difference between the two fluids, capillary pressure pc, to the principal radii of curvature

of the interface.

1.2 Motivation for study

Fiber mats are a unique class of porous materials and are widely used in filtration and sep-

aration applications. The geometric properties of fibrous media and fiber wettability play a

crucial role in designing fibrous filters with optimal performance. With the development of

modern imaging techniques, numerous research has been conducted to predict the transport

properties of materials using fully resolved 3D geometry at relevant scale. However, the

available resolution and image quality often limit the accuracy of the pore space analysis,

and random heterogeneities and connectivity information have rarely been accounted for
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in previous analyses. Therefore, the first part of this thesis is aimed at reducing the gap

between experimental characterization methods and statistical analysis of pore network.

The second challenge we are addressing in this thesis is the effect of surface properties

of fibrous media on droplet spreading behavior. Although there have been large amount of

publications on droplet interaction with solid surface [18, 19, 20, 21, 22, 23, 24, 25], the

effect of surface properties and geometrical structure of fibrous membrane on the dynamics

of droplet spreading has not been thoroughly studied and needs to be explored in greater

details.

Lattice Boltzmann method is a versatile alternative to traditional Computational Fluid

Dynamics (CFD) approaches. Owing to its mesoscopic nature and implement of Bounce-

back boundary conditions, LBM has the advantage of easy handling of complex geometries

and capability of simulating multi-phase flow by using Shan-Chen model without tracking

the interface [26]. The single phase flow in porous media has been well studied by using

the LBM to verify the validity of the Kozeny-Carman model for the prediction of the per-

meability of fibrous media [27, 28]. By introducing surface tension and wettability charac-

teristics, the features of multi-phase and multi-component flow can be simulated. Through

a quantitative analysis of the shape transitions of liquid droplets on fibers, we hope to in-

troduced a simulation protocol that allows one to study the morphological transition and

provide an insight to design fiber materials for filtration and separation of liquids.
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CHAPTER 2

LITERATURE REVIEW

2.1 Fibrous network and its engineering applications

As shown in Fig.2.1, fiber membranes has a long history of applications in a wide range of

technologies including wastewater decontamination [29, 30], drug release [31], fuel cells

[32, 33], medical textiles [34] and tissue engineering [35]. Water pollution are caused

by complex contaminants, including heavy metals, suspended particles and organic com-

ponents. The multifunctional nanofiber network is an efficient candidate to eliminate the

above ingredients because it can show filtration, photocatalytic and antibacterial proper-

ties simultaneously with proper selection of materials fabrication processes [29]. One the

other hand, the separation of water-in-oil emulsion by fibrous filter is a popular method

in diesel engine operation [36]. Fibrous porous media stand out as soft porous materials

with a large range of possible porosities, high surface-to-volume ratio, and tunable surface

functionality.

Nonwoven fibrous membranes fabricated by melt-blowing processes are common ma-

terials for air and water filters. Fiber membranes produced by electrospinning [38, 36] have

shown great potential for filtration owing to smaller fiber diameters and higher surface-to-

volume ratios, promising improved efficiency for filtration [37]. Electrospun fiber mem-

branes can be produced with large porosity beyond 80% and specific surface areas in the

range of 10−500 m2/g. The interconnected pore space is fully accessible, enabling higher
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Figure 2.1: Applications of fiber membranes in wastewater decontamination, tissue engi-
neering, coalescence filtration of water-in-diesel (reproduced from Ref. [29, 35, 37] with
permission), and medical textiles (from https://www.technicaltextile.net
/articles/nonwovens-as-medical-textiles-3693).

flow rates while reducing the energy consumption during filtration. In addition, the electro-

spinning method can be used with advanced fiber materials such as ceramic scintillators to

produce functional porous membranes for detection of ionizing radiation in flowing fluids

[38].

Ever since the emergence of COVID-19 outbreak and subsequent global spread in 2019,

the use of N95 respirators, which is composed of multilayers of polypropylene (PP) nonwo-

ven fabrics, has become the best protective method to limit the spread of virus and protect

humans from viral infection. The fiber diameter and pore size in the outer spunbonded PP

layer are typically up to 20µm and 100µm, respectively. While in the middle meltblown

layer, the fiber diameter is in the range of 1-10µm and the pore size is around 20µm[39].

Prior studies haven been conducted to investigate the droplet transmission through and
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around a face mask [40], the re-usability of N95 respirator after different decontamina-

tion treatments[39, 41, 42, 43, 44], and the performance of home-made mask compared

to commercial medical masks[45]. Dbouk et al. performed a fluid dynamics study on the

transmission of respiratory droplet around face mask filters using the open-source computa-

tional fluid dynamics code OpenFOAM[40]. Their study included three types of interaction

mode between droplets and filter surface: stick, splash/rebound and penetrate. The inter-

action mode as a function of critical droplet diameter and splash kinetic energy depends

on the geometrical properties of fibrous filter, e.g.,fibrous porous microstructure, pore di-

ameter, porosity and fiber orientation. Saini et al. investigated the impact of vaporized

hydrogen peroxide (VHP) treatment on microscopic face mask integrity and droplet per-

meability through the filter [44]. The liquid permeation test results showed no significant

influence on droplet permeability for N95 masks after multiple cycles VHP treatment. And

there is no discernable changes observed for fiber morphological features in terms of fiber

width.

Fluid flow and diffusion in fibrous media depend on the geometrical structure of the

pore space, which provides unique solutions to filtration and separation applications [46,

47]. Therefore, the hydraulic response of fibrous media to an applied pressure gradient has

been extensively studied in the past, going back to the seminal experimental work of Darcy

[11].

The pressure-driven fluid flow through a fibrous material is determined by the perme-

ability, a tensor quantity that measures the fluid conductivity of pore network. The per-

meability depends on the geometrical properties of the pore space, most notably, the pore

size and porosity, i.e., the volume fraction of voids in the solid material. It has been a

long-lasting challenge to predict the intrinsic permeability of porous media. For example,

in proton exchange membrane fuel cells (PEMFC), the gas diffusion layer (GDL) where

reactant gas transfer to catalyst layer and the product water is accumulated, is of primary
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interest to materials engineers. The current density is influenced by the mass transfer rate

of reactant and product, making permeability of GDL a critical parameter for the evaluation

of performance [48]. In spite of the extensive experimental research, no exact expressions

for the permeability are available so far, and predictions of the fluid flow through differ-

ent porous materials rely on phenomenological expressions such as the Kozeny-Carman

formula [13, 14].

In contrast to long-standing research on granular porous media such as soil, rocks[49,

50, 51], and cement [52], the flow through fibrous porous media has only recently been

studied more actively [53, 54, 55]. While progress has been made to determine the flow

through fiber networks, the specific dependency of the permeability on the geometrical

structure of the pore space remains poorly understood [54, 56]. The existing phenomeno-

logical expressions for permeability do not take into account the intrinsic disorder of fiber

placement and local heterogeneity in real fibrous materials. These may significantly al-

ter the flow characteristics including the tortuosity which measures the relative length of a

flow path compared to the straight distance in the direction of the pressure gradient. The

complex geometry of the pore space is the result of variations of fiber diameter, fiber ori-

entation, and fiber overlapping during processing. Few attempts have been made to quan-

tify the effect of random irregularities in size, shape, and connectivity of the pores. For

consistent performance and quality control of filter materials, it is crucial to gain a better

understanding how the random features of the pore space affect permeability of fibrous

porous media.

Reconstructed porous geometries from experiments can be used for computational mod-

eling of flow through porous media [56, 57, 58]. The simulations allow to predict per-

meability and determine the scaling exponents that appear in the empirical permeability

expressions [14, 54, 59, 60, 61]. Early efforts based on the work of Fatt [62] employed

pore-network models that represent the pore space as a network of idealized pores con-
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nected by capillary throats of varying diameter. The fluid flow is described by a discretized

Laplace equation using the known permeability for the cylindrical capillaries. For fibrous

porous media, however, the high porosity and irregular shape of the pore space make the

identification of pores and throats more difficult [56]. The connectivity of the pores is thus

ambiguous and limits the applicability of pore-network models to fibrous porous media.

Nowadays, the 3D microstructure resolved simulations of fluid flow in porous media are

possible. The microstructure resolved simulations are suited to investigate the flow char-

acteristics in porous media at the pore scale [63]. Roberts et al. [64] used reconstructed

geometries of lithium-cobalt-oxide electrodes to perform finite-element simulations of cou-

pled electrochemical-fluid transport in lithium ion batteries. They also performed an anal-

ysis of the representative spatial scale of heterogeneities in the sample. Gueven et al. [65]

used a voxelized representation of sintered glass beads and performed lattice Boltzmann

simulations to determine the permeability of different domains of the sample. The results

showed that microstructure resolved simulations can reproduce the local variation in per-

meability with good accuracy, provided a representative sample size is used.

Numerical simulations relating to fibrous media have considered fluid flow through

random arrays of parallel cylinders and regular 3D fiber membranes [66, 67, 68]. How-

ever, these idealized models do not include the local variation of pore space features that

is present in real fiber membranes. Recently, Koponen et al. [56] have considered exper-

imental samples of foam-deposited and water-deposited pulp sheets and analyzed X-ray

tomographic images to determine the local thickness of the pore space. They further per-

formed lattice Boltzmann simulations of fluid flow through the reconstructed porous sheets

and determined an expression for the permeability that depends on the thickness distribu-

tion. Due to the small number of samples considered within a narrow range of porosity,

it remains an open question whether this expression applies to fibrous porous media in

general, in particular for denser membranes with overlapping fibers.
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2.2 Pore network characteristics

Due to the significant influence of pore structure on final performance of filter, many re-

searches have been performed to study pore structure and measure pore characteristics in

nonwoven media[69, 70, 71]. The most common experiment techniques to evaluate the

pore include bubble point, extrusion porosimetry and mercury intrusion porosimetry. The

main pore characteristics of fibrous media include connectivity, pore diameter, pore size

distribution, specific surface area, pore volume and pore shape. Connectivity is defined as

coordinate number, which is the number of neighboring pores adjacent to one single pore.

And the specific surface area is the ratio of the total surface area of pores and solid vol-

ume. Pores in nonwoven media with low porosity can be regarded as a network of many

connected capillaries. While capillary network consists of many elements with the same

diameters, the pores in fibrous media have irregular diameter. Due to the complexity of

pore structure, the diameter of capillary is considered as the pore diameter in almost all

available measurement approaches [69, 72]. Pore volume is defined as the voids volume of

the porous materials. The measured pore volume varies using different techniques because

pore size is not identical in each technique. For high porosity media, pore regions are more

packed, overlapped and there are many voids within the structure.

Theoretical approaches are developed by assuming the 3D structure consisting of layers

of fibers oriented in certain direction. Different parameters can affect pore structure in a

fibrous materials. These parameters include porosity, fiber orientation and fiber diameter.

Faure et al. developed a model to predict the pore size distribution based on Poissonian

polyhedra model [73]. Fibers are considered as the Poisson line networks and the inter-

fiber space consists of irregular polygons. The cumulative frequencies of pore diameter is

obtained by inscribing spheres between polygons, which is given by,
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F(d) = 1−[
1+χ(d/2+R f )

1+χR f
exp(−χd)]

Tg/2R f

, (2.1)

where χ is the specific length, i.e., the total length of fiber lines per unit area, d is the

diameter of inscribed circle in one layer of fibers, R f the fiber radius, and Tg the thickness of

a fibrous medium. Lombard et al. [74] derived a similar expression by taking the effective

layer thickness to be twice the fiber diameter rather than the bare fiber diameter as in the

Faure model. The cumulative frequencies of pore diameters are then given by

F(d) = 1−[(χ
2d2

4
+χd +1)exp(−χd)]

Tg/(4R f )

. (2.2)

Another modification was introduced by Rawal [69] by considering a gamma distribution

of the inscribed spheres that takes into account the fiber orientation distribution in the form

of a directional parameter K j. This leads to the cumulative frequency of pore diameters

given by

F(d) = 1−[(ω
2d2

2
+ωd +1)exp(−ωd)]

Tg/(4R f )

, (2.3)

where ω =
2(1−φ )K j

πR f
is the coverage parameter that represents the dimension and shape of

pores.

The image analysis techniques to characterize the pore structure is an important com-

ponent of porous media research to obtain the structure information from the tomographic

images. For example, computed tomography (CT) images provide microscale resolved rep-

resentations of porous media that can be used to characterize the microscopic structure of

the pore space. CT image stacks can be digitized and segmented to create a 3D registration

that allows to analyze the distribution of pore and throat sizes and their topology. Gueven

et al. [65] have conducted an analysis of XRCT images of sintered glass beads, and Huang
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et al. [54] have analyzed the local thickness distribution of sintered sheet of metallic fibers.

Local thickness of pore space is an important metric of porous media. The crucial step in

extracting the pore network from a three-dimensional representation is the identification of

pores and throats based on the local thickness of the pore space.

The local thickness at a point p⃗ is defined as the maximum diameter of a sphere that

contains p⃗ and is completely inside the pore space Ω

d(p⃗) = max{d ∣ p⃗ ∈ Sd(p⃗0), Sd(p⃗0) ∈ Ω} , (2.4)

where Sd(p⃗0) is a sphere of diameter d centered at the point p⃗0. In contrast to the surface-

based methods, this definition of local thickness is independent of pore shape and orienta-

tion, and can be calculated for each voxel in the binary 3D representation. Algorithms for

extracting the pore network from the local distance map are typically based on the maxi-

mal ball algorithm introduced by Silin and Patzek [10] and subsequently refined by Blunt

et al. [75, 76].

To identify pores and their connectivity, watershed segmentation can be employed to

find the basins around local peaks in the distance map [77, 78]. Fig. 2.2 is a 2D illustration

of watershed segmentation algorithm. Firstly, the binary image matrix is obtained from the

input image where the solid pixel is represented by 0 and the void pixel by 1, as shown in

Fig. 2.2 (a). Next, the distance transform operator is applied to replace the void region by

their Euclidean distance to the nearest pixel with zero intensity. After the corresponding

distance transform matrix is obtained, the local minima in the inverted distance map yield

catchment basins and are passed as markers in the watershed function as shown in Fig.

2.2 (c). Finally, the flooding of basins from such markers separates the image into several

regions along the watershed lines. Watersheds are the elevated areas that divide the different

catchment basins as shown in Fig. 2.2 (d) [79, 80].
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Figure 2.2: 2D illustration of watershed segmentation algorithm: (a) binary map matrix of
input image, (b) distance transform matrix, (c) find catchment basins for the topographical
representation of the image, (d) find watershed lines which are the boundaries between the
partitions. Adapted from Ref. [80] with permission.

In fibrous porous media, the pore space has a relatively homogeneous distance map

with spurious peaks leading to an oversegmented watershed, which makes the identifica-

tion of pores and throats ambiguous. An improved algorithm for watershed segmentation

was proposed by Gostick [81] to generate pore networks for high-porosity media. The

algorithm can be summarized in the following steps: 1) Compute the distance transform

of the binary image, which is the distance from every voxel to the nearest nonzero-value

voxel; 2) Apply a maximum filter with spherical structure of radius R to find where the

value in the filtered image are equal to the distance map. The maximum filter replaces each

voxel value of the image with the maximum value of its neighbor voxels window (i.e., the

value of the brightest voxel). The center of spheres are the local brightness peaks and are

passed as makers in maker-based watershed algorithm, then find the basin of distance map.
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So the segmented image with each voxel labeled according to the pores it belongs to can

be obtained; 3) The information of pores, throats and connectivity can be obtained from

the image by finding the region that the pore is adjacent to. The connectivity can be found

by scanning the labels of neighboring pores for each individual pore. By dilating the pore

regions, the throat size can be determined from the cross section of the overlapping region

between dilated pore with its neighbors.

Figure 2.3: 2D illustration of connectivity, pore and throat size. (a) Labeled pore regions.
(b) Peaks in the distance map is indicated by black box. (c) Overlapping of neighboring
pores using global distance map. (d) Inscribed and extended pore diameter are determined
from local distance map and global distance map, respectively. Adapted from Ref. [81]
with permission of APS.

Fig. 2.3 illustrates the calculation of pore size, throat size and connectivity for the

pore of interest. Pore 7 is adjacent to pores 11, 67, and 64, hence the connectivity is

3. The pore diameter can be defined by the inscribed diameter or the extended diameter.
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As shown in Fig. 2.3 (d), the inscribed diameter is the maximum value of local distance

map obtained within the pore, where the pore body is confined entirely inside the pore

region. While the extended diameter is defined based on the global distance map. Throat

diameter is determined from maxima of global distance transform. Gostick eliminates the

spurious peaks that lies on the saddles and plateaus of the distance map by identifying

and analyzing them individually with an iterative procedure, producing a subnetwork of

the oversegmented watershed (SNOW). The algorithm is simple, efficient and can extract

reliable networks from both high- and low-porosity fibrous media. The removal of spurious

peaks prior to the segmentation will eliminate thin regions and join bisected pores, thus

leading to a more representative size distribution of the pore space.

The digital processing of experimental images is non-trivial and requires sophisticated

filtering and segmentation techniques. The available resolution and image quality limit the

accuracy of pore space analysis. Local heterogeneity and connectivity information have

not been accounted for in previous analyses. In addition, the experimental procedures for

sample preparation and image acquisition are costly and time consuming, thus typically

limiting the statistical analysis to a small number of samples. An ability to generate a

lager number of realistic samples is thus desirable to improve the statistical analysis of

random pore structures. In particular, it would enable analysis of local heterogeneity and

connectivity information that have not been accounted for in previous analyses.

2.3 Wetting of substrate with complex geometries

2.3.1 Curved surface

Wetting and spreading of droplet on curved surface are of key importance in many new

or existing industrial applications. A broad body of literature has been published on the

wetting phenomena on curved surfaces including cylindrical fibers [82, 83, 84, 85, 86, 87,
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Figure 2.4: Droplet morphologies on spherical particles and fiber rails. Reproduced from
Ref. [90, 95, 85, 100] with permission.

88, 89, 90], ribbon-like fibers[91, 92], and spherical beads [93, 94, 95, 96, 97, 90, 98,

99]. The equilibrium configuration of droplet on curved surface is not only affected by the

wettability of solid substrate but also its curvature. Example of droplet configuration on

spheres and cylindrical fibers are shown in Fig. 2.4.

Droplet wetting of spherical particles is often encountered in industrial process and na-

ture, such as spray coating of nanoparticles[101], fluid catalytic cracking process[99], and

raindrops on spherical fruit surface. Eral et al. studied the equilibrium morphology of

droplet on a stainless steel particle coated with a dielectric layer [90]. The water contact

angle of the particle was controlled by electric field. They calculated the effective interfa-

cial energy difference between “completely engulfing” and “partial engulfing” morphology

analytically, and compared the calculation results with experiment data. Their calculation

showed that the “partial engulfing” is energetically favorable as the absolute effective in-

terfacial energy of the completely engulfing morphology is greater. Interfacial energies of

the two morphology are only identical for vanishing contact angle.

22



The mixture of certain amount of water with a granular material such as dry sand and

soil leads to sufficient increase of stiffness and mechanical stability of the materials, which

allows to sculpture sand castles. The underlying principle of this phenomena is the cap-

illary adhesion. The water forms a network of capillary bridges that spans between the

grains, which causes strong cohesive force to allow the sand resist deformation due to

gravity [93]. The morphology of liquid interface in a granular media is of extraordinary

complexity and affected by the liquid volume. Scheel et al. carried out X-ray microto-

mography experiments to study the liquid distribution in grain packing geometry using

spherical glass beads [93]. Their results showed that the mechanical parameters including

tensile strength and yield stress are independent of liquid fraction. When the liquid frac-

tion is over a critical value, the neighboring capillary bridges on the same sphere tends to

coalesce and form a trimer , which levels off the Laplace pressure.

The wetting morphological transition on fibers controls a broad range of natural and en-

gineering phenomena: film coating of fibers, shape and manipulation of liquid in microflu-

idic channel and clogging of filters during coalescence filtration. In the textile industry, the

wicking of finish liquid into the interfiber space leads to filament cohesion and affect the

mechanical properties of yarn surface. For the typical coalescence filter used in water-in-

diesel fuel filtration, the increase of pressure drop during steady operation is attributed to

the liquid droplets trapped on the surface of a filter [102].

The capillary effect of cylindrical filament remained an active field of research since

the pioneering work by Princen [103], who has investigated the equilibrium configuration

of small amount of liquid on two horizontal fibers and developed analytical model to in-

vestigate the conditions of equilibrium of a long liquid column . Carroll [104] described

a method for determining the accurate contact angle on fibers from a barrel drop profile

. Due to the challenges of measuring Laplace excess pressure of small volume drop, the

fundamental understanding of morphological transition between barrel-shaped drop and
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clamshell like drop configuration still remains an open question.

With appearance of Brakke’s Evolver, a solver for Laplace equation of capillarity based

on Finite Element Method for minimization of surface area at fixed volume, this research

moved forward. Several attempts to study drop configurations on fiber rails include pub-

lications by Wu et al. [105, 88] who used Surface Evolver to calculate the droplet surface

energy with varying drop volume. The experimental work by Protiere [86] reports the mor-

phology diagram for deroplet on fiber rails in the parameter space of droplet volume and

inter-fiber distance. The recent work by Aziz et al. focuses on the force balance analysis

of droplet-bridge on two parallel fibers by both experiment and Surface Evolver simulation

[82]. Their results shows an asymmetric shape of liquid bridge when the fiber spacing is

small, leading to the droplet morphology transition.

From the previous experiment work, we know that small amount of liquid can spread

into long column between parallel fibers when the inter-fiber distance is below a critical

value [103, 86]. The drop tends to stay barrel shape to completely wrap up fibers when

the drop volume is large. The critical inter-fiber distance is calculated analytically for a

broad range of contact angles and validated in the experiments for perfectly wetting. An

interesting phenomena observed in the experiments is the hysteresis of transition from the

barrel shaped drop to a long column as the fibers are bringing together. The hysteresis loop

is affected by the drop volume and contact angle. Using Surface Evolver, Wu et al.[88]

showed a third configuration of droplet-bridge that partial wrap the two fibers . However,

the droplet bridge configuration is not considered in experiments due to the difficulty in

visualizing the difference between micro-structure of barrel-shaped drop and liquid bridge.

The comparison between the surface energy of barrel-shaped droplet and droplet bridge

determined the more stable morphology for a given drop volume.

The bistability of small liquid drops wetting solid surface has been widely studied

for many years. The absolute stability and metastability of asymmetric clam-shell confor-
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mation of droplet on single fiber has been studied by McHale et al. [106]. The Surface

Evolver results illustrate the absolute stability condition for barrel-shaped drop denoted by

the lower surface energy compared to clam-shell drop. The existence of the free energy

barrier between unduloid and long column configuration was first put forward by Princen

[103]. Experiments conducted by Protiere [86] further confirmed this assumption.

Despite the extensive researches on analysis of equilibrium shapes of droplets, the dy-

namics of wetting on fibers has not been explored in details. Specifically, the free energy

landscape corresponding to morphological transition of liquid bodies has not been studied

in these works.

2.3.2 Structured surface

The exploration of morphological transition of droplet on topographically structured sur-

face has attracted great attention: striped surface [107, 108], micropost arrays[109, 110,

111, 112, 113], wedge geometry[114, 115], and triangular grooves [116, 117] were studied

due to the potential application in microfluid devices.

In particular, morphological transition of droplets in rectangular domain has been well

studied experimentally and numerically. The experimental work by Gau et al. showed that

the droplets on hydrophilic stripes undergo a transition to the state with a single bulge when

the liquid volume exceeds a critical amount. Ferraro et al. [118] reported the discontinu-

ous morphological transition of water confined to the hydrophilic top of long rectangular

posts, where the droplet shape is calculated numerically using Surface Evolver software.

They determined the stability boundaries by energy minimization. Sartori et al. [119]

constructed an energy landscape of a drop on the rectangular post, and showed that there

exists a saddle point between two local minima, corresponding to the smallest work that is

needed to transform one morphology to another.

The complex structured surfaces have drawn considerable interest because of their abil-
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Figure 2.5: Wetting state of droplet on micro-textured surfaces. Reproduced from Ref.
[120] with permission of AIP.

ity to achieve more effective and flexible control of wetting properties. The nanoscale sur-

face roughness/texture due to micropillar arrays can be utilized to achieve superhydropho-

bicity (contact angle greater than 150°) of the solid surface.

The wetting transition between Cassie and Wenzel state is commonly invoked to explain

the superhydrophobicity of the textured surface. Cassie-Baxter state (CB) state is known

as a wetting state that shows superhydrophobicity by allowing air to be trapped under the

droplet and the substrate surface, resulting in much larger contact angle than the smooth

surface. The Wenzel state stands for the state where no trapped air remains and the drop

directly contacts the substrate surface. Fig. 2.5 shows the various wetting state of a water

droplet deposited on a textured surface.

Considerable efforts have been directed towards understanding of the critical condition

for the Cassie-Wenzel transition [110, 120, 121, 122, 123, 124]. Yu et al. employed the

high spatial resolution synchrotron X-ray radiography to visualize and define the wetting

state for a droplet placed on micro-textured surfaces where the surface condition is clearly

quantified by roughness ratio, diameter of micro-pillars, and spacing between micro-pillars
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[120]. An analytical model with intrinsic contact angle and surface roughness ratio was

developed to estimate the wetting state and tested against the experimental results. Zheng

et al. [121] numerically simulated the Cassie-Wenzel transition for a periodic structure

with irregular pillar cross section, and determined the critical hydraulic pressure that drives

the transition. Fang et al. [124] performed a water droplet squeeze test by bringing two

plates together to compress a droplet and drive the droplet in Cassie wetting state transit

into a full Wenzel state. The force-displacement curve is obtained in the experiments and

used to calculate the critical pressure of the Cassie-Wenzel transition. Han et al. [122]

demonstrated the possibility of controlling the transition between Cassie state and Wen-

zel state on a nanostructured surface composed by arrays of carbon nanotubes by utilizing

eletrowetting technique. The contact angle decreases as the applied potential increases. At

the critical contact angle (θV ≈ 142°), the Cassie-to-Wenzel transition was observed, cor-

responding to a much faster response of the contact angle to the applied potential due to

the larger capacitance of Wenzel state. Ren et al. [123] used the string method to numer-

ically simulate the Cassie-Wenzel transition on a hydrophobic textured surface consisted

of square pillar arrays. From the numerical simulation, the transition can be observed to

initiate with infiltration of liquid in a single cavity, and followed by lateral propagation of

liquid to the neighboring cavity layer by layer. They calculated the energy barriers and

minimum energy path during the wetting transition, which reveals the mechanism of the

wetting process.

2.4 Modeling of wetting on solid substrates

Computational modeling is an effective way to determine the static droplet shape on solid

substrate. The equilibrium contact angle θ between a liquid interface and a solid substrate

is controlled by three surface tensions, solid-liquid γsl , solid-gas γsg, and liquid-gas γlg. The
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three surface tension and interfacial area determine the overall surface free energy E as:

E = γlgAlg + (γsl − γsg)Asl, (2.5)

where Alg and Asl are the liquid-gas and solid-liquid interfacial areas. To determine the

equilibrium morphology, the surface energy has to be minimized subject to given con-

straints such as constant liquid volume and substrate geometry, e.g., fiber surfaces. Explicit

solutions are only available for simple situations such as a spherical droplet on a flat sur-

face, an axisymmetric droplet on a fiber [104], or liquid column on a fiber rail [86]. In

general, the solutions to the nonlinear problem require numerical procedures.

A host of numerical approaches have been used to describe the wetting phenomena

and dynamics of droplet on solid substrates, such as finite element method for Laplace

equation with Surface Evolver [106, 88, 82], molecular dynamics [125, 126], phase field

method [127], and mesoscopic lattice Boltzmann method [128, 129, 130, 114]. Finite ele-

ment based method is an discretization approach to find the numerical solution of Young-

Laplace equation and solve for the stable liquid configuration by minimization of the sur-

face energy. In a stable configuration, the excess Laplace pressure is constant everywhere

across the droplet surface. Such a configuration is metastable if its surface energy is higher

than another stable morphology with the same volume. A morphological transition is thus

associated with an energy barrier that is needed to move equilibrium droplet from one

configuration to the other. Since measuring excess pressure for small liquid volumes is

challenging, the connection between the surface energy landscape and capillary pressure in

the context of morphological transitions has not been investigated in detail in the previous

works.

Several authors have presented numerical solution of the Laplace equation for liquid

bridges between two fibers to predict the capillary forces as a function of fiber distance
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[131, 88, 105, 82]. Virozub et al. employed the Surface Evolver package to minimize

numerically the surface free energy per unit length of each liquid body. They used an

analytical expression to calculate the resultant forces, energies, and torques exerted by the

liquid bridge on the fibers. The results suggest that stable symmetric bridges are favored at

small fiber distance, whereas larger contact angles lead to coexistence of stable asymmetric

and unstable symmetric configurations. The region of stability and transitions between

these shapes were not further discussed.

Aziz and Tafreshi [82] reported experiments and numerical calculations of the mechan-

ical forces between two fibers connected by a liquid bridge. The dependence of the force

on fiber spacing was studied for parallel and orthogonal fiber configurations, and the de-

tachment force of a pendant bridge was determined as a function of liquid volume. The nu-

merical simulations always started with a cuboid-shaped droplet and the column to droplet

transition was thus not observed in this setup.

Wu et al. [88] and Bedarkar et al. [105] extended the surface energy formulation

by McHale and coworkers to the case fiber rails and also employed the Surface Evolver

package to investigate the wetting morphology of droplet for varying liquid volume, fiber

spacing, and contact angle. The results indicate that the dependence of the wetting length

on the contact angle is strongly affected by the droplet morphology. Wu at al. [88] consid-

ered an additional bridge state, where the droplet shape does not engulf the fibers but only

partially wraps the outside surfaces. The critical droplet volume and the surface energy of

an engulfing barrel shape and the partially wrapping droplet bridge were determined using

Surface Evolver. The numerical minimization of the surface energy allows to express the

critical condition for absolute stability as a family of characteristic wetting curves in the

volume-distance parameter space. The partially wrapping bridge state, which can exist for

larger fiber distances, is different from the liquid column observed in experiments [132, 86].

Therefore, the wetting curves obtained by energy minimization do not necessarily capture
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the absolute minimum morphology. The transitions between different liquid configurations

and the associated hysteresis thus remain incompletely understood.
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CHAPTER 3

LATTICE BOLTZMANN METHOD

3.1 Lattice Boltzmann equation

Compared to the conventional CFD approach which solve the continuity equation and the

Navier-Stokes equation using discrete schemes, lattice Boltzmann method stands out as

a simplified mesoscopic description of fluid behavior by solving the linear lattice Boltz-

mann equation. The physics is more general in LBM without the need of complex physical

model in traditional CFD. Owing to the mescoscale nature, LBM still contains the essential

micro-physics and can achieve the desired macroscopic fluid flow behavior. In LBM, the

fluid is described by a collection of particles which is represented by a distribution func-

tion. And the fluid motion can be tracked in the collision and streaming of these particles.

Therefore, LBM can be regarded as an implicit solver for Navier-Stokes equation. The

computation in LBM is local and can be adapted to fully parallel computing. Another ad-

vantage of LBM relies on the relative easy treatment of boundary condition of complex

objects with arbitrary geometries. It has been widely applied to the simulation of mass-

conserving flow in porous media since it is developed in the late 1980s[133]. A wide range

of multiphase/multicomponent models has been proposed in LBM. These models belong to

the class of diffuse interface methods, where the interfacial layer between immiscible fluid

components has a finite width and the concentration of fluid components varies continu-

ously at the interface. The width of the interface introduces a length scale that can take over
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the role of the slip length, making it well suited to handling moving boundaries problems.

3.1.1 Kinetic theory

The physics of fluid at the microscopic scale is essentially relied on the interaction between

individual molecules, while for the macroscopic approach, the fluid is described in terms

of measurable quantities in an arbitrary volume like density ρ , fluid velocity u, pressure

p and temperature T . Kinetic theory is an intermediate scale that considers the statistic

distribution of gas particles. The distribution function f (x,ξ , t) of particles is introduced to

represent the probability of finding a particle at a given position x and time t with the micro-

scopic velocity ξ within REV. The macroscopic variables are connected to the distribution

function by its moments as

ρ(x, t) = ∫ f (x,ξ , t)d3
ξ , (3.1)

ρ(x, t)u(x, t) = ∫ ξ f (x,ξ , t)d3
ξ , (3.2)

ρ(x, t)E(x, t) = 1
2
∫ ∣ξ ∣2 f (x,ξ , t)d3

ξ , (3.3)

where E is the total energy density including the internal energy due to thermal motion and

the kinetic energy due to the bulk motion. When the gas particles are left alone for suffi-

cient time and can be considered to reach an equilibrium distribution, velocity of particles

tends to vary around the mean velocity u. The equilibrium distribution function follows

Maxwell–Boltzmann distribution function

f eq(x,v, t) = ρ

(2πRT )3/2
e−

v2

2RT , (3.4)

where v is the relative velocity, v(x, t) = ξ (x, t)− u(x, t), R is the gas constant. Ludwig

Boltzmann introduced the Boltzmann equation to describe the evolution of distribution
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function in time d f /dt. The number of particles at the control volume dx and velocity

range dξ may change due to the collision of particles. Therefore, we obtain the following

Boltzmann equation by using the common collision operator Ω( f ) = d f /dt as a source term

∂ f
∂ t

+ξα

∂ f
∂xα

+
Fα

ρ

∂ f
∂ξα

= Ω( f ), (3.5)

where Fα/ρ = dξα/dt is the acceleration due to external force. The first two terms of the

above equation are the advection of particles with a velocity ξ . The most commonly used

BGK collision operator is put forward by Bhatnagar, Gross and Krook [134] as a simple

approximation to the collision operator

Ω( f ) = −
1
τ
( f − f eq). (3.6)

The collision of particles leads to the relaxation of the distribution function f towards local

equilibrium f eq. And the relaxation time τ is a constant that controls the speed to reach

equilibrium. It is directly connected to the viscosity and thermal diffusivity in the transport

phenomena.

3.1.2 From Boltzmann Kinetics to Navier-Stokes Equations

We can get the governing equations of continuum mechanics by taking moments of the

Boltzmann Equation (3.5). Mass conservation equation can be obtained from the zeroth

moment of Boltzmann Equation by directly integrating Eq. (3.5) over the velocity space

d3
ξ :

∂

∂ t
∫ f d3

ξ +
∂

∂xα

∫ ξα f d3
ξ +

Fα

ρ
∫ ∂ f

∂ξα

d3
ξ = ∫ Ω( f )d3

ξ . (3.7)

The RHS vanishes because the collision operator conserves the quantities of mass and

momentum. The force term also vanishes assuming that the REV is much smaller than the
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volume of flowing fluid and at the REV scale, f → 0 as ξ → ±∞. Therefore, the above

equation reduces to continuity equation according to the moments in Eq. (3.1) and (3.2):

∂ρ

∂ t
+

∂ (ρuα )
∂xα

= 0. (3.8)

Similarly, we can take the first moment of Boltzmann equation by multiplying it by ξβ

and integrating over velocity space,

∂

∂ t
∫ ξβ f d3

ξ +
∂

∂xα

∫ ξαξβ f d3
ξ +

Fα

ρ
∫ ξβ

∂ f
∂ξα

d3
ξ = ∫ ξβ Ω( f )d3

ξ . (3.9)

The first term can be resolved according to Eq. (3.2). By splitting the particle velocity

ξ = u+v, the second term can be decomposed to

∂

∂xα

∫ ξαξβ f d3
ξ = ρuαuβ +∫ vαvβ f d3

ξ . (3.10)

The force term can be evaluated by making use of ξβ

∂ f
∂ξα

=
∂ (ξα f )

∂ξβ

− f and the fact that

ξα f → 0 as ξα → ±∞. Thus, Eq. (3.9) simplifies to the Cauchy momentum equation:

∂ (ρuβ )
∂ t

+
∂ (ρuαuβ )

∂xα

=
∂σαβ

∂xα

+Fα , (3.11)

where σαβ = −∫ vαvβ f d3
ξ is a stress tensor. If the stress tensor takes the form of constitu-

tive equation of Newtonian fluid, then Navier–Stokes momentum equation can be derived

from Eq. (3.11).

3.1.3 Lattice Boltzmann equation

Although it is known that the lattice Boltzmann method is evolved from the lattice gas

model proposed by Hardy, Pomeau, and de Pazzis in 1973 [135], here in this section,
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we discuss the derivation of lattice Boltzmann equation following the discretization of

Boltzmann-BGK equation in velocity space, time and physical space. The main objective

is to simplify the equilibrium distribution function and show that a finite discrete velocity

set is sufficient to obtain the correct mass, momentum and energy conservation law. The

equilibrium distribution function in Eq. (3.4) can be rewritten in the non-dimensional form

as

f eq(ρ,u,θ ,ξ ) = ρ

(2πθ )3/2
e−

(ξ−u)2
2θ , (3.12)

where θ = c2
s = RT is the non-dimensional temperature, and cs is the speed of sound in

the gas. T is the temperature and R is the gas constant. For the case ∣ξ ∣, ∣u∣ ≪
√

θ , the

equilibrium distribution function can be expanded in Taylor series approximately up to the

second order as

f eq(ρ,u,θ ,ξ ) = ρ

(2πθ )3/2
exp(− ξ

2

2θ
)[1+

ξ ⋅u
θ

+
(ξ ⋅u)2

2θ 2
−

u2

2θ
]+O(Ma3). (3.13)

The associated hydrodynamic moments Ψ is calculated by the summation of all the

distribution functions,

Ψ = ∫ ψ(ξ ) f eqdξ , (3.14)

where ψ(ξ ) is the microscopic variable. The microscopic velocity and mean velocity is

now rescaled by the thermal velocity c by ξ =
√

2θc and u =
√

2θu∗. Using the Gaussian-

Hermite quadrature for approximating the integrals in Eq. (3.14) and combining with Eq.

(3.13) yields

Ψ ≈

n

∑
i=1

wiψ(ci)
√

2θ

(2πθ )3/2
[1+2ci ⋅u

∗
+ (ci ⋅u

∗)2 −u∗2] , (3.15)

where wi is the weight coefficient of the quadrature, and n is the number of discrete velocity.
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It can be seen from the above equation that the continuous velocity ξ has been replaced by

a set of discrete velocity ci. The discrete equilibrium distribution function is written as:

f eq
i = wiρ (1+ ci ⋅u

c2
s

+
(ci ⋅u)2

2c4
s

−
u2

2c2
s
) . (3.16)

The choice of discrete velocity set in LBM is not unique, but needs to be sufficiently

well-resolved to obtain consistent solutions for Navier-Stokes equation, and also maintain a

reasonable numerical computation cost [136]. The most often used velocity sets are D2Q9

(9 discrete velocities in 2D) and D3Q19 (19 discrete velocities in 3D). Here we take D3Q19

velocity set as an example. Fig. 3.1 show the discrete velocity set in D3Q19 lattice model.

It has one rest velocity c0 = 0, 6 nearest velocity with length ∣c1−6∣ = 1, and 12 next nearest

velocity with length ∣c7−18∣ =
√

2. The velocity set ci is

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0,0) i = 0

(±1,0,0), (0,±1,0), (0,0,±1) i = 1−6

(±1,±1,0), (±1,0,±1), (0,±1,±1) i = 7−18

(3.17)

The weight wi of the velocity set should satisfy two requirements. First one is to obey the

mass and momentum conservation, and the second one is that the lattice velocity moments

should be isotropic up to the fifth order. Therefore, the weight coefficient for D3Q19 lattice

can be derived as [137]:

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3 i = 0

1/18 i = 1−6

1/36 i = 7−18

(3.18)

The equilibrium macroscopic moments can be obtained from the finite sum of Eq. (3.16)
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Figure 3.1: D3Q19 lattice model

and the isotropic condition of weight coefficient as

ρ =∑
i

fi(x, t) =∑
i

f eq
i (x, t), (3.19)

ρu =∑
i

ci fi(x, t) =∑
i

ci f eq
i (x, t), (3.20)

ρuu+ pI =∑
i

cici fi(x, t) =∑
i

cici f eq
i (x, t), (3.21)

where the equation of state in LBM is p = ρc2
s , and I is the identity matrix. We noticed that

so far only velocity space is discretized in the above discussion. The discretization in time

and physical space will be performed in the next step. Without the external force, Eq. (3.5)

can be rewritten with the discretized velocity set as

∂ fi

∂ t
+ ciα

∂ fi

∂xα

= Ω( fi). (3.22)
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Integrating the above equation along a trajectory x = x0 + hci, where h is a discrete time

step, and x0 is an arbitrary constant, the lattice Boltzmann equation (LBE) can be obtained

in the form:

fi(x+hci, t +h) = fi(x, t)+hΩi(x, t). (3.23)

Now the BGK collision operator can be incorporated in the LBE:

fi(x+hci, t +h) = fi(x, t)−
h
τ
[ fi(x, t)− f eq

i (x, t)], (3.24)

with a redefined relaxation time τ̄ = τ + h/2, the above LBGK equation can be shown to

achieve a second-order accuracy in time [138]. The LBGK equation actually consists of

two steps. In the collision step, the distribution function after collision f ∗i (x, t) is expressed

as

f ∗i (x, t) = fi(x, t)−
h
τ
[ fi(x, t)− f eq

i (x, t)]. (3.25)

The computation of f ∗i (x, t) is restricted to within nodes x, therefore, it is purely local. This

step describes the variation of distribution function due to collisions at each lattice site. In

the streaming step, the particles after collision stream along the discrete velocity set to the

neighboring sites, given by:

fi(x+hci, t +h) = f ∗i (x, t). (3.26)

The streaming step describes the interaction between neighboring nodes by the shift of

particles, which is a non-local but linear operation. The kinematic viscosity of the fluid is

dependent on the relaxation time τ and given by:

ν = c2
s (τ −

1
2
)h. (3.27)
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To maintain a positive viscosity and numerical stability, τ/h ≥ 1/2 must be satisfied. The

macroscopic hydrodynamic variables, density ρ and fluid velocity u are obtained as the

moments of distribution funciton, i.e.

ρ(x, t) =∑
i

fi(x, t),

ρu(x, t) =∑
i

ci fi(x, t).
(3.28)

3.1.4 From Lattice Boltzmann to Navier-Stokes

In order to use the discrete LBE to simulate the behavior of fluid flow, we will show that

the macroscopic continuity and Navier-Stokes momentum equation can be recovered via

the multiscale Chapman-Enskog expansion. We define the Knudsen number Kn = ε as

the ratio of molecular mean free path to the characteristic length scale Kn = lmfp/l. Using

the Knudsen number Kn as the expansion parameter, the distribution function fi can be

expanded around the equilibrium distribution f eq
i as

fi = f eq
i + ε f (1)i + ε

2 f (2)i + ..., ε = Kn. (3.29)

In this perturbation analyses, the two lowest orders can provide sufficient accuracy to find

Navier-Stokes equation. The expansion of spatial and time derivative can be written in a

similar way:

∇ = ε∇
(1)
, (3.30)

∂

∂ t
= ε

∂

∂ t(1)
+ ε

2 ∂

∂ t(2)
+ ..., (3.31)

The different components in ∂/∂ t are the terms corresponding to the different orders of Kn,

and the summation of them equals to the time derivative. The first step of the Chapman-
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Enskog expansion for the LBE is the Taylor expansion of Eq. (3.24), written as

h( ∂

∂ t
+ ci ⋅ ∇) fi +

h2

2
( ∂

∂ t
+ ci ⋅ ∇)2 fi +O(h3) = −

h
τ

f neq
i , (3.32)

which is identical to Eq. (3.22), apart from the higher-order derivative terms. We can find

the following equation by separating the above equation into terms of the two lowest orders

in Kn:

ε ∶
∂ f eq

i

∂ t(1)
+ ci ⋅ ∇

(1) f eq
i = −

1
τ

f (1)i , (3.33)

ε
2
∶

∂ f eq
i

∂ t(2)
+ ( ∂

∂ t(1)
+ ci ⋅ ∇

(1))(1− h
2τ

) f (1)i = −
1
τ

f (2)i . (3.34)

Taking the zeroth moments of the above equations by summing over i, we can find:

∂ρ

∂ t(1)
+∇

(1)
⋅ (ρu) = 0, (3.35)

∂ρ

∂ t(2)
= 0, (3.36)

In the first order in Kn, Eq. (3.35) represents the continuity equation. Taking the first

moments of Eq. (3.33) and (3.34) by multiplying by ci, we can find:

∂ρu

∂ t(1)
+∇

(1)
⋅Π

(0)
= 0, (3.37)

∂ρu

∂ t(2)
+∇

(1)(1− h
2τ

) ⋅Π(1)
= 0, (3.38)
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where Π are the general notation of moments [136]

Π
(0)

=∑ f eq
i cici = ρuu+ρc2

s I, (3.39)

Π
(1)

=∑ f (1)i cici = −ρc2
s τ∇u+ τ∇(ρuuu). (3.40)

The error term τ∇(ρuuu) can be neglected if u2
≪ c2

s , when the Mach number is much

less than one (Ma = u/cs ≪ 1). Thus, LBM is considered to be valid for weakly compress-

ible fluids. Summing up Eq. (3.37) and (3.38) for momentum from their O(ε) and O(ε2)

components, we obtain:

(ε ∂

∂ t(1)
+ ε

2 ∂

∂ t(2)
) (ρu)+ ε∇

(1)
⋅Π

(0)
= −ε

2
∇
(1)(1− h

2τ
) ⋅Π(1)

. (3.41)

Substituting Eq. (3.39) and (3.40) back to Eq. (3.41) and reserving the spatial and time

derivative expansion from Eq. (3.30) and (3.31), the Navier-Stokes momentum equation

can be derived as:
∂ρu
∂ t

+∇ ⋅ (ρuu) = −∇p+∇ ⋅ (η∇u), (3.42)

where the pressure p = ρc2
s , η = ρc2

s (τ − h/2) is the dynamic viscosity. As seen in the

expression for shear viscosity, the relaxation time τ/h must be greater than 1/2 in order to

have a positive viscosity.

3.2 Multiple relaxation time (MRT) scheme

It can be found in the previous section that the relaxation time only enters the first moment

of Eq. (3.34) Π
(1) for LBGK model, while the multiple relaxation time (MRT) collision

operator allows independent relaxation rate towards equilibrium for each moment [139],

directly corresponding to the hydrodynamic moments. In order to overcome the stability

(low viscosity, i.e. τ close to 1/2) and accuracy (large velocity magnitude) issue in LBGK
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model, MRT scheme has been constructed with more degrees of freedom to achieve better

stability and accuracy. Instead of using a single relaxation time τ in LBGK model, the

collision term is relaxed by a collision matrix Λi j

fi(x+hci, t +h)− fi(x, t) = −∑
j

Λi j [ f j(x, t)− f eq
j (ρ,u)] . (3.43)

The collision is performed in the moments space rather than the distribution function. Mo-

ments space is mapped to the distribution function fi through a transformation matrix M

by

m = Mf, (3.44)

where f is the vector of all the distribution functions for the lattice site, i.e. ( f0, f1, f2, ... fn)T ,

m is the moment vector, m = (m0,m1,m2, ...mn)T . For D3Q19 lattice, the moment vector is

arranged as

m = (ρ,e,ε, jx,qx, jy,qy, jz,qz,3pxx,3τxx, pww,τxx, pxy, pyz, pxz,mx,my,mz)T . (3.45)

These correspond to the mass density ρ , kinetic energy e, kinetic energy square ε , mo-

mentum jx, jy, jz, the energy flux independent of the mass flux qx,qy,qz, the symmetric

traceless viscous stress tensor pi j, with pxx + pyy + pzz = 0 and pww = pyy − pzz [139]. The

additional moments are higher-order moments, which do not affect hydrodynamics. The

moment vectors define the transformation matrix M for D3Q19 lattice model as
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M=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 −4 4 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 −1 1 −1 1
0 0 0 0 0 −4 4 0 0 1 −1 1 −1 0 0 −1 1 −1 1
0 2 2 −1 −1 −1 −1 1 1 1 1 −2 −2 1 1 1 1 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 −2 −2 1 1 1 1 −2 −2
0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 1 1 −1 −1 0 0
0 0 0 −2 −2 2 2 1 1 −1 −1 0 0 1 1 −1 −1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0 0 1 −1 1 −1 0 0 1 −1
0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The individual moments mk can be obtained from the distribution function fi as

mk =∑
i

Mki fi. (3.46)

Hence, the collision term in Eq. 3.43 can be transformed into the moment space as

fi(x+hci, t +h)− fi(x, t) = −M−1S[m(x, t)−meq(x, t)], (3.47)

where the equilibrium moment vector meq
= Mfeq, and S is a diagonal matrix of collision

parameters S = diag(s1,s2,s3, ...sn). The relaxation matrix S contains individual relaxation

time for every moment τi = s−1
i . A common choice for the collision matrix of the D3Q19

lattice is diag{si} = diag(0,1/τbulk,1.4,0,1.2,0,1.2,0,1.2,1/τ,1.4,1/τ,1.4,1/τ,1/τ,1/τ,

1.98,1.98,1.98), where τbulk controls the bulk viscosity by ηB =
1
9 (2τbulk −1) [139].

In the collision step, the moments m and meq are calculated directly. The post-collision
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moments m∗
i are determined in a BGK manner:

m∗
i (x, t) = mi(x, t)− si[mi(x, t)−meq(x, t)]. (3.48)

To transform back from moment space to population space, the distribution function after

collision f ∗i can be obtained by multiplying the inverse of transformation matrix:

f ∗i (x, t) =∑
k

m∗
k (x, t)M

−1
ik . (3.49)

Finally, the streaming step is carried out in the distribution function space, same as in

LBGK model:

fi(x+hci, t +h) = f ∗i (x, t). (3.50)

Implying that the distribution function fi at position x+hci and time moment t +h is calcu-

lated from the known function f ∗i taken at position x and time moment t.

3.3 Boundary conditions

The formulation of boundary condition in LBM is non-trivial but needs special treatment

in order to ensure the numerical accuracy of calculated flow field. Instead of imposing

boundary condition through the macroscopic properties ρ and u at boundary nodes, the

boundary conditions are applied to the distribution function fi in LBM. Therefore, it is

required to determine fi from the macroscopic information.

3.3.1 Periodic boundary condition

The simplest boundary condition can be applied to domain boundaries is the periodic

boundary condition (PBC). It can be used when the flow is periodic or the bulk fluid is

far away from the boundaries so that the influence of boundaries can be ignored. Periodic
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boundary condition in LBM is straightforward. At the boundary nodes, the unknown in-

coming population fi(x, t) are given by those leaving the simulation domain at the other

side, namely

fi(x, t) = fi(x+L, t). (3.51)

3.3.2 Bounce back boundary condition

Bounce back method is the most common used boundary condition for fluid-solid interface

due to its simplicity in handling complex boundaries. No-slip condition can be achieved

using the bounce back scheme. The term “bounce back” means the density hitting a rigid

wall be reflected back to where it comes from, as illustrated in Fig. 3.2 for xz plane in

D3Q19 lattice. For the standard bounce back method, the boundary nodes are located

on the solid nodes, introducing a first-order accuracy [140]. In this scheme, the collision

process does not occur. The unknown populations propagated from the solid sites at time

t +h is replaced by the populations moving towards the boundary wall at time t, i.e.

f5(x, t +h) = f6(x, t),

f13(x, t +h) = f10(x, t),

f9(x, t +h) = f14(x, t).

(3.52)

It can be written in a general form:

f−i(x, t +h) = fi(x, t), (3.53)

where −i is the conjugate link to i, c−i = ci. For the mid-link bounce back method, the

boundary is located at the midway between solid and liquid nodes, making the method

second-order accurate [141]. Fig. 3.2b illustrates the explicit scheme of mid-link bounce

back method. In the streaming step, the unknown populations are replaced by the post-
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Figure 3.2: Schematic plot of projection of D3Q19 model in y-direction. (a) Standard
bounce back boundary condition, where the boundary is located on the solid nodes. (b)
Mid-link bounce back boundary condition, where the boundary is located midway between
solid (solid circles) and fluid nodes (open circles). The bottom grey region represents the
solid region and the top region is fluid region.

collision populations f ∗i , i.e.

f5(x, t +h) = f ∗6 (x, t),

f13(x, t +h) = f ∗10(x, t),

f9(x, t +h) = f ∗14(x, t).

(3.54)

The general form of mid-link bounce back scheme is:

f−i(x, t +h) = f ∗i (x, t). (3.55)

3.3.3 Pressure and velocity boundary condition

Zou and He proposed a method to specify the pressure and velocity at planar boundaries

for D2Q9 and D3Q15 lattice[142]. Their method is based on the idea of bounce-back of

the non-equilibrium part. Hecht and Harting extended this approach to D3Q19 lattice[143].

According to the continuity equation ∂ρ

∂ t +∇ ⋅ (ρu) = 0, three out of four variables need to
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be specified on the boundary.

The pressure boundary condition, in which the density is imposed, is applied as follows.

For D3Q19 model in Fig. 3.1, suppose that the inlet is on the bottom plane (z = 0) with

a specified density ρ0 and tangential velocity ux,uy. The components pointing into the

system, f5, f9, f13, f15 and f17 are undetermined. Firstly, Eq. 3.28 is applied on the inlet as

ρ0 =

19

∑
i

fi, (3.56)

ρ0ux = f1 + f7 + f8 + f9 + f10 − ( f2 + f11 + f12 + f13 + f14), (3.57)

ρ0uy = f3 + f7 + f11 + f15 + f16 − ( f4 + f8 + f12 + f17 + f18), (3.58)

ρ0uz = f5 + f9 + f13 + f15 + f17 − ( f6 + f10 + f14 + f16 + f18), (3.59)

From Eq. 3.56 and 3.59, the unknown velocity component uz can be calculated as

uz = 1−
1
ρ0

[ f1+ f2+ f3+ f4+ f7+ f8+ f11+ f12+ f19+2( f6+ f10+ f14+ f16+ f18)]. (3.60)

In the above equation systems, we need to determine five unknowns ( f5, f9, f13, f15 and

f17). More constraints are added to solve the equations by assuming that the bounce-back

rule is still valid for the non-equilibrium part f ∗i at the boundary [142]:

f ∗i = fi − f eq
i . (3.61)
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This condition can be written explicitly in z direction as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f5 − f eq
5 = f6 − f eq

6 ,

f9 − f eq
9 = f14 − f eq

14 ,

f13 − f eq
13 = f10 − f eq

10 ,

f15 − f eq
15 = f18 − f eq

18 ,

f17 − f eq
17 = f16 − f eq

16 .

(3.62)

We can obtain the following equations by substituting the equilibrium distribution function

in Eq. (3.16)

f5 = f6 +
2w5

c2
s

ρ0uz, (3.63)

f9 = f14 +
2w9

c2
s

ρ0(uz +ux), (3.64)

f13 = f10 +
2w13

c2
s

ρ0(uz −ux), (3.65)

f15 = f18 +
2w15

c2
s

ρ0(uz +uy), (3.66)

f17 = f16 +
2w17

c2
s

ρ0(uz −uy). (3.67)

These equation, together with Eq. (3.56) to (3.59) overdetermines the system of equations.

Hecht et al. [143] introduced two transversal momentum corrections on the z−boundary

for distribution propagating in x and y direction, Nz
x and Nz

y , which are not zero if there are
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velocity gradients. The above equations are corrected by Nz
x and Nz

y as follows:

f9 = f14 +
2w9

c2
s

ρ0(uz +ux)−Nz
x , (3.68)

f13 = f10 +
2w13

c2
s

ρ0(uz −ux)+Nz
x , (3.69)

f15 = f18 +
2w15

c2
s

ρ0(uz +uy)−Nz
y , (3.70)

f17 = f16 +
2w17

c2
s

ρ0(uz −uy)+Nz
y . (3.71)

Substituting Eq. (3.68)-(3.71) into Eq. (3.57) and (3.58), we obtain the solution for Nz
x and

Nz
y :

Nz
x =

1
2
[ f1 + f7 + f8 − ( f2 + f11 + f12)]−

1
3

ρux, (3.72)

Nz
y =

1
2
[ f3 + f7 + f11 − ( f4 + f8 + f12)]−

1
3

ρuy. (3.73)

Inserting Eq. (3.72) into Eq. (3.68) gives the distribution functions of unknowns. Similarly,

three velocity components can be specified for the velocity boundary condition, and the

unknown density ρ and distribution function can be determined.

3.4 Multiphase multi-component models

LBM has emerged as an efficient alternative to the traditional computation fluid dynam-

ics (CFD) in the simulation of multiphase multi-component flow through complex porous

media [145, 146, 147, 148, 149]. Owing to the mesoscale nature of LBM, it is capa-

ble of capturing both the microscale droplet dynamics and macroscopic fluid displace-

ment features in the porous media. In the CFD simulations, the particulate character

of fluid is neglected, hence the multiphase flow models are solved using coupled meth-

ods for free moving boundary problem. And molecular dynamics (MD) simulations for
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Figure 3.3: Conceptual framework for multiphase/multi-component LBM model. Repro-
duced from Ref. [144] with permission of Springer.

multiphase flow require high computation cost [150]. There are a number of multiphase

multi-component LBM models that have been proposed to describe the evolution of inter-

facial dynamics [26, 151, 152, 153, 154]. The simulation of multiphase/multi-component

system is distinguished from single homogeneous phase fluid by including the interaction

between different phases or components. Fig. 3.3 illustrates the conceptual framework of

multiphase/multi-component LBM model [144]. The single phase system involves only

one fluid component which is not subjected to any long-range interaction force. Adding

the long-range attractive interaction to the single phase system allows phase separation into

liquid and vapor phase. If a second fluid component is added into the system, we can simu-

late the miscible fluids in the absence of long range interaction, and immiscible fluids when

there exists a repulsive interaction between the different components.

The earliest one of these methods is the color-gradient model [155, 156] based on

Rothman-Keller multiphase lattice gas model [157]. The advantage of color-gradient model

is that viscosity ratio and surface tension can be controlled separately [158]. However, the

maximum density ratio is limited to the order of O(10) [159]. While the pseudopotential
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Shan-Chen (SC) model has received more attention since it is developed in 1993 [151].

SC single component multiphase model (SCMP) can also be applied for the density ratio

of order O(102) [160]. The free energy model is proposed by Swift et al. in 1995 [152],

starting from the free-energy functional that is always thermodynamically consistent.

3.4.1 The Shan-Chen model: a “bottom-up” approach

Pseudopotential model developed by Shan and Chen is one of the most widely used multi-

phase and multicomponent model to describe the surface interaction of immiscible fluids by

incorporating an interaction force into LBE [26, 151, 161]. It starts with the microscopic

interaction between neighboring particles and leads to the macroscopic phase separation

behavior. Therefore, it is called a “bottom-up” approach.

Multiple fluid components can be incorporated in the lattice Boltzmann method by

using multiple sets of populations f σ

i for each component, where σ = 1,2, ...N indexes the

components, and f σ

i is the distribution function of the component σ . Following Shan and

Chen [151, 26], the effective force acting on the σ th components owing to the nearest-

neighbors has the following form:

Fσ (x, t) = −ψσ (x, t)∑
σ̄

gσσ̄ ∑
x′

wiψσ̄ (x′, t)(x′−x), (3.74)

where gσσ̄ determines the interaction strength between fluid component σ and σ̄ . A

positive value of gσσ̄ corresponds to repulsive interactions that lead to demixing. The sum

over x′ runs over the neighboring lattice sites that are connected to x by a discrete velocity

vector x′ − x = hci. The effective mass ψσ of component σ is a monotonous function of

density ρσ (x, t), given by

ψσ (x, t) = ψ[ρσ (x, t)] = 1− exp[−ρσ (x, t)/ρ0], (3.75)
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with a reference density ρ0.

In the implementation used in this Thesis, in order to describe the dynamic forces, the

SC forces are incorporated in the collision operator by adding the shift velocity to the fluid

velocity . Accordingly, the hydrodynamic velocity u(x, t) is given by

u(x, t) = 1
ρ(x, t)∑

σ

[∑
i

fi(x, t)ci +
h
2

Fσ (x, t)] . (3.76)

The introduction of interaction forces leads to a correction of the ideal equation of state

p = ρc2
s for a gas of density ρ , thus the pressure tensor Pi j(x) is computed as: [162]

Pi j(x) =∑
σ

∑
k

ρσ (x)(cki −ui(x))(ck j −u j(x))+
1
4
∑
σ ,σ̄

gσσ̄ ∑
x′
[ψσ (x)ψσ̄ (x′)

+ψσ̄ (x)ψσ (x′)](x−x′)2.
(3.77)

where cki is the Cartesian component of k-th velocity vector ck, k = 0, ...,18 for D3Q19

lattice model. The interfacial tension γσσ̄ between the two components σ and σ̄ , for exam-

ple, water and oil is the integral of the difference between normal pressure tensor Pn and

the transversal pressure tensor Pt across the flat interface. For a planar interface developed

along the z-axis, where Pn = Pzz and Pt = Pxx = Pyy, the interfacial tension γσσ̄ is given by

γσσ̄ = ∫ [Pzz(z)−Pxx(z)]dz, (3.78)

It can be calibrated to a desired value by adjusting the interaction strength gσσ̄ . From Eq.

(3.77) and (3.78), it is noted that the interfacial tension is an emergent result of interaction

force, hence depends on the density ρ and interaction strength gσσ̄ . It cannot be adjusted

independently of density [162]. This is the main disadvantage of the Shan-Chen model.

To describe the liquid-solid interactions, it is convenient to treat the solid as a virtual

component and introduce a liquid-solid interaction force analogous to the liquid-liquid in-
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teraction force as [163]

Fσ

s (x, t) = −gs,σ ψσ (x, t)∑
x′

ψ(ρσ

s )(x′−x)s(x′, t), (3.79)

where s(x′, t) is 1 if x is a solid site and 0 if it is a fluid site, gs,σ is the interaction strength

between fluid component σ and the solid wall, and ρ
σ

s is a virtual wall density. ρ
σ

s is a

tunable parameter to specify the wettability of the solid substrate. ρ
σ

s = 0 corresponds to a

neutral wetting condition. A negative ρ
σ

s is the wettable condition for σ component, and

positive value is non-wettable. The Young’s equation can be written in the form [164]

cosθ =
gs,σ (ρσ

s −ρ
σ )−gs,σ̄ (ρ σ̄

s −ρ
σ̄ )

gσσ̄ (ρσ −ρ σ̄ )
. (3.80)

This provides a convenient way to adjust the contact angle through the virtual wall density.

If the same interaction strength is used for fluid-fluid and fluid-solid interactions gs,σ =

gs,σ̄ = gσσ̄ , the estimated contact angle depends only on the density ratio [163]

cosθ =
ρ

σ

s −ρ
σ̄

s

ρσ −ρ σ̄
−1. (3.81)

The contact angle can be calibrated through the measurements of a droplet on flat substrate

or in a duct [164].

One of the limitation of Shan-Chen model is the large spurious current around the

interface of a droplet. The Shan-Chen force Fσ can be rewritten in the following form

using Taylor expansion of the effective mass ψσ̄ (x+hci):

Fσ (x, t) = −ψσ (x, t)∑
σ̄

gσσ̄ ∑
i

wicih[ψσ̄ (x, t)+ cih∇ψσ̄ (x, t)

+
1
2

cicih
2
∇

2
ψσ̄ (x, t)+

1
6

cicicih
3
∇∆ψσ̄ (x, t)+ ...],

(3.82)
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Figure 3.4: 2D illustration of different orders of isotropy in calculating the Shan-Chen
force. Reproduced from Ref. [160] with permission of APS.

Figure 3.5: Spurious velocity of a steady droplet with isotropic order of (a) 4 and (b) 8.
Reproduced from Ref. [165] with permission of Elsevier.

For most of the applications of Shan-Chen model, only the nearest and next-nearest

lattice sites are considered in calculating the interaction force, leading to the insufficient

isotropy of the discrete gradient operator in Eq. (3.82). The tangential force component

gives rise to the spurious current. For a steady droplet, the velocity is expected to be zero

everywhere. However, due to the insufficient isotropy of the discrete gradient operator, a

small but finite amplitude circulating flow near the interface can be observed when simu-
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lating a stationary droplet. A large spurious velocity may lead to numerical instability. As

the density ratio increases, the magnitude of spurious velocity also goes up, which limits

the maximum density ratio achievable. By expanding the layers of lattice sites used to cal-

culate the Shan-Chen force, higher order of isotropy can be achieved as illustrated in Fig.

3.4, hence decreases the spurious current. Fig. 3.5 shows the spurious velocity of a steady

droplet in a vapor phase with different isotropic order of 4 and 8 [165].

The magnitude of spurious velocity decrease with high order of isotropy. Sbragaglia et

al. proposed an extended pseudopotential model that allows the use of different equation

of state, high grid refinement and high order of isotropy, which significantly reduced the

spurious current [160].

3.4.2 Numerical simulation of droplet

Surface tension

For LBM simulation of the droplet interaction with fibers using the Shan-Chen model, one

needs to calibrate the interfacial tension and contact angle . Therefore, we performed the

Laplace test to study the effect of coupling strength gbr on the interfacial tension between

the two fluid components. gbr determines the interaction strength between two fluid com-

ponents r and b. Low value of gbr causes a low interaction force and thus a more diffuse

interface. The simulation were conducted in a square domain of size 240×240×240 lattice

units. Periodic boundary condition is applied to the domain boundaries. Initially, a droplet

with a specified radius Ri is placed in the center of computation domain. As described in

the previous section, the density ratio in the SCMP Shan-Chen model can be up to O(102)

when simulating liquid-gas system, while for the MCMP model, the density ratio between

the two fluid components is often neglected because it is controlled the coupling strength.

Therefore, in our simulation using MCMP Shan-Chen model, the initial density of the two
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fluid component, ρb and ρr, is chosen to be ρb = 1 and ρr = 0 inside the droplet, and ρr = 1

and ρb = 0 outside the droplet. To achieve the desired dynamic viscosity M between fluids,

the kinematic viscosity ratio can be tuned to match M, given by[166]

M =
ηb
ηr

=
ρbνb
ρrνr

, (3.83)

where ηb and ηr are the dynamic viscosity ratio of components b and r, and νb and νr are

the kinematic viscosity of b and r. Throughout this work, we chose the relaxation time

of the two components as τb = τr = 1.0, leading to the kinematic viscosity ratio of 1. The

simulations are initiated with a sharp interface, where the densities ρb and ρr change from

1 to 0 across the interface. The pressure difference across the interface pc = 2γ/R, where

γ is the surface tension and R is the drop radius, is monitored during the simulation until

it reaches a steady state. Fig. 3.6 shows the time evolution of capillary pressure pc and

drop radius for droplet with different initial radii. It can be observed that the shrinkage of

droplet is larger for smaller droplet due to the diffusion of interface and increase of capillary

pressure. For gbr = 0, the fluid mixture is completely miscible. With increasing gbr above

a critical value, the two components separate and the interface becomes thinner until the

numerical instability occurs due to the increased spurious velocities.

In Fig. 3.7, the density profile of the two fluid components across the interface is shown

for three gbr values of 0.12, 0.14 and 0.16. The interface layer is where the density changes

gradually from 1 to 0. And the exact interface position used for determining the droplet

radius R is defined at where the order parameter φ = ρr −ρb = 0. To measure the droplet

radius R, we calculated the order parameter φ from ρr and ρb , and the Euclidean distance

R j from the center of droplet to the position where φ = 0 in the computation domain. The

drop radius R is determined as the average of R j. As shown in the plot, the thickness of

interface layer is reduced with increasing gbr from around 6 lattice sites to 4 lattice sites.
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Figure 3.6: Time evolution of capillary pressure pc and drop radius for droplet with differ-
ent initial radius in the Laplace test.

Figure 3.7: Density profile of two fluid components across the interface of a steady droplet
along x−axis.
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Figure 3.8: Left: pressure difference across the interface is proportional to the inverse of
drop radius. Right: surface tension as a function of interaction strength.

Fig. 3.8 shows the linear correlation between pressure difference across the interface

and inverse of the droplet radius obtained using the least-square-fit for gbr from 0.12 to 0.16.

The fitting parameters are shown in Fig. 3.8. This behavior is consistent with Laplace’s

law. The surface tension is determined from the linear fitting parameter and increases with

gbr.

Contact angle

In order to study the effect of pseudo wall density of a flat substrate and coupling strength

on the resultant contact angle, simulations were conducted in a cubic domain of size 240a×

240a×240a. A solid wall of 3 lattice sites thick is placed on the bottom plane (z = 0). In

order to calculate the adhesion force between solid and liquid, the thickness of wall should

be at least 2 lattice site. A droplet as a spherical cap is initialized on the solid surface.

The wetting condition is completely controlled by the pseudo wall density ρwall. Negative

value of ρwall leads to contact angle θ < 90° and positive value of ρwall gives contact angle
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θ > 90°.

Figure 3.9: Geometric parameters of a sessile drop, h the drop heights, R the drop radius, b
the drop base, and θ is contact angle.

Fig. 3.9 shows the cross section of a droplet sitting on hydrophobic surface from LBM

simulation, where the contact angle can be measured geometrically via

θ = π − arctan
b/2

h−R
, (3.84)

where the drop radius is given by R =
4h2+b2

8h . The time evolution of drop shape on flat

substrate is shown in Fig. 3.10 for ρwall = −0.5 and 0.5, corresponding to the equilibrium

contact angle of 14.3° and 158.2°, respectively. Mid-link bounce back boundary condition

is applied on the bottom plane and periodic boundary condition is applied on other domain

boundaries. The width of the interface introduces a length scale that can take over the

role of the slip length, thus allowing the contact line motion over a no-slip wall through

diffusion between two immiscible liquids [167]. The evolution of contact angle is plotted

in Fig. 3.11 until it reaches the equilibrium state. In Fig. 3.12, we varied the pseudo
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wall density from -0.5 to 0.5 at fixed gbr = 0.14, and compared the contact angle obtained

from geometrical measurement with the analytical expression of Huang’s approach in Eq.

(3.80). The contact angles calculated from Eq. (3.80) agree well with the measured ones.

Figure 3.10: Time evolution of droplet shape on the flat substrates with virtual wall density
(a) ηwall = −0.5 and (b) 0.5.

Figure 3.11: Time evolution of contact angle for virtual wall density ηwall = −0.5 and 0.5.
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Figure 3.12: The dependency of contact angle on the value of virtual wall density ρwall
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CHAPTER 4

PORE-NETWORK EXTRACTION AND MORPHOLOGICAL ANALYSIS OF

FIBROUS MEDIA

4.1 Generation of 3D random fibrous media

In this study, we use computationally generated nonwoven fibrous media with layers of

both plywood and randomly oriented fibers [2]. These digital samples are generated to

mimic the properties of electrospun fiber membranes [38]. The plywood geometry consists

of layers of parallel fibers, where each layer is rotated by 90 degrees around the normal

axis. The orientation of the fibers in each layer is thus orthogonal to the orientation in ad-

jacent layers in Fig. 4.1(a). The parameters used for generation of the plywood geometry

are the box size L, the radius R f of the fibers, the distance d between the centerline of the

fibers, and the spacing h between the layers. A plywood fibrous geometry is shown in Fig.

4.1(a). The advantage of using ordered fiber arrays is that the flow pattern is periodic so

that a clear relationship between normalized permeability and fiber diameter can be ob-

tained [168]. It is worth noting that our plywood geometry with alternating orientation of

the fibers differs from the unidirectional regular arrays [66, 169] and isotropic networks

[68] that have been considered in the literature. Random fibrous membranes were cre-

ated with the Digital Material Laboratory Software GeoDict [170]. We used the FiberGeo

module of GeoDict to generate nonwoven fibrous membranes with random placement and

orientation of fibers. When infinitely long fibers are placed and oriented randomly in each
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Figure 4.1: Digital representations of fibrous porous media were generated as layered ar-
rangements of fibers with (a) plywood and ((b) and (c)) random in-plane orientation dis-
tributions. The geometries with random fiber arrangements were generated with (b) non-
overlapping fibers for porosity φ ≥ 0.7 and (c) overlapping fibers for lower porosity φ < 0.7.
Adapted from Ref. [2] with permission of APS.

plane without constraints, they will typically intersect the other fibers. In this work, we re-

fer to the fiber networks with and without intersections as overlapping and non-overlapping

fiber geometries, respectively.

Fiber networks with a well-defined fiber orientation and without fiber overlap can also

be created with the FiberGeo module. Structural parameters for the fibers can be defined for

different fiber types, including fiber shape and size. Here we used straight cylindrical fibers

of varying fiber radius R f . The global parameters include the domain size, resolution, target

Solid Volume Percentage (SVP = 1− φ , where φ is the porosity, SVP =
Volume of fibers

Total volume of cell )

and overlap mode. We used a cubic domain of size L and a resolution of a = 1 µm. The

resolution is defined as the voxel length, a = L/N, where N is the number of voxles along

each side.

To create laminated anisotropic fibrous media, we set the main axis of the fibers parallel
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to the xy-plane with a uniform in-plane angle distribution between 0° and 180°. In this case,

the fibers lay on the xy-plane and their main axis orientation in relation to the x-direction

follows a uniform distribution in the interval [0°,180°]. During the generation phase, the

fibers are randomly placed in the domain and oriented randomly in the xy-plane according

to the specified distribution, until the target solid volume percentage is reached (stopping

criterion). The fibers extend through the entire domain. Therefore, the fiber length depends

on its position in the cell and in-plane orientation. The maximum possible length is
√

2L,

corresponding to the diagonal of the square L×L. The typical fiber length is on the order of

the domain size. The corresponding diameter/length ratios depend on the fiber radius and

range from ≈ 0.07 at R f = 7a to ≈ 0.15 at R f = 15a in a domain of size L = 200a.

To generate the non-overlapping fibrous structures, any existing overlaps are removed

after the generation phase. This is accomplished by shifting and rotating the fibers until no

overlaps remain. The maximum rotation angle can be specified to make sure the orientation

of fibers is slightly out of the xy-plane. The touching of fibers can be allowed. With the

non-overlapping mode, it was possible to generate non-overlapping fibrous membranes

with porosities down to around 70%. Further decrease of porosity leads to long run-time to

shift and rotate the fibers in a large domain.

For smaller values of porosity, the random placement of the fibers becomes excessively

time consuming due to the increasing number of constraints. The constraints can be loos-

ened by allowing the fibers to overlap, and we used overlapping fibers to generate fibrous

membranes with porosities down to 10%. The overlapping of the fibers may change the

characteristics of the pore space, however, we found that this effect appears to be negli-

gible. In our generated geometries, the fibers are randomly oriented but straight, leading

to nonwoven structures in contrast to the fiber webs considered by Koponen et al. [56].

The random fibrous structures created here model fibrous membranes produced by melt-

blowing or electrospinning processes [38]. Two examples of random fiber arrangements
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without and with overlaps are shown in Fig. 4.1(b) and (c).
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Figure 4.2: (a) Schematic illustration of fiber orientation angle θ . (b) Nematic order pa-
rameter S of the generated random fiber geometries.

To quantify the anisotropy and fiber orientation in the generated plywood and random

fiber mats, we employ the 2D nematic order parameter S, defined as,

S = ⟨cos(2θ )⟩, (4.1)

where θ is fiber orientation with respect to x−direction, θ ∈ [0,π), as illustrated in Fig.

4.2(a). The brackets denote the average over all fibers. For a unidirectional fiber mat

along x−direction, the order parameter is 1. If the fiber angle distribution is uniform, the

corresponding nematic order parameter is zero. For the random fiber mats, it can been

in Fig. 4.2(b) that the order parameter fluctuates around zero due to the specified uniform

distribution of fiber orientation. The small deviation can be attributed to the limited number

of fibers.
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Figure 4.3: Segmented pore space ((a) and (b)) and pore network representation ((c) and
(d)) of fibrous porous media. The colored regions in (a) and (b) indicate the SNOW basins
corresponding to each retained peak in the local distance transform. Each basin is assigned
an integer value represented by a different color. The pore networks in (c) and (d) represent
the inscribed spheres of the basins as pores that are connected by throat channels. The
colors of the spheres represent the size of the pores. The ordered fiber arrangements ((a)
and (c)) yield a plywood periodic pore network whereas the random fiber arrangements
((b) and (d)) yield a complex pore network. Reproduced from Ref. [2] with permission of
APS.
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4.2 Pore space segmentation and microstructure analysis

We use the subnetwork of the over-segmented watershed (SNOW) algorithm from the

OpenPNM package [171] to extract the pore network from both plywood and random fi-

brous geometries. A Gaussian blur filter was applied to the distance transform, where a

standard deviation of 0.35 was chosen for the convolution kernel. The Gaussian blur filter

is a measure of similarity between two position x and x′. It evalues to 1 if the x and x′ are

identical, and approaches 0 as x and x′ move further apart. It can be defined as

K(x,x′) = exp(− ∣∣x−x′∣∣2

2σ2
) , (4.2)

where ∣∣x−x′∣∣ is the Euclidean distance between x and x′, and σ is the standard deviation

of the Gaussian distribution. The Gaussian blur filter is applied to remove the extra peaks

in the distance map [171]. Subsequently, a spherical maximum filter with a radius of 4 was

applied. The maximum filter replaces each voxel value of the image with the maximum

value of its neighbor voxels window, i.e., dst(x) = max(src(x′)), where dst is the output

image, src is the input image, and x′ is the points in a spherical element with radius of R

and centered at x. When R is too small, many spurious maxima are found. If R is too large,

some maxima are missed.

The result of the watershed segmentation of the pore space and the pore-networks ex-

tracted with SNOW are shown in Fig. 4.3. The local maxima in the distance map are

passed as markers to the marker-based watershed algorithm, which finds the basins of the

distance map, yielding the segmentation of each pore region as shown in Fig. 4.3(a) and

(b). Fig. 4.3(a) and (b) shows the cross section of segmented pore space perpendicular to

y−direction. Each pore region is represented by different colors. The overlaid structure of

plywood and random fiber arrangements with the SNOW extracted pore-network can be
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seen in Fig. 4.3(c) and (d). Fig. 4.4(a) and (b) compare the stick-and-ball representation of

SNOW pore networks of plywood and random fibrous materials in a cubic domain of size

L = 200a. The pore networks of different porosities φ in a cubic domain of size L = 400a

are shown in Fig. 4.4(c)-(d).

Figure 4.4: The stick and ball representation of the SNOW network of (a) plywood and
(b) random fibrous materials in a cubic domain of size L = 200a. The pore networks of
porosity (a) φ = 0.81 (b) φ = 0.70 and (c) φ = 0.60 in a cubic domain of size L = 400a.

From the pore network representation, we obtain the distribution of pore diameters Dp,

throat diameters Dt and lengths Lt , and coordination numbers nc. Dp and Dt is illustrated

in a unit cell of pore-throat in Fig. 4.5. The length of throat Lt is defined by the Euclidean

distance between the centroids of two pores minus the radius of each neighboring pore. The

coordination number nc is defined as the number of pores connected each individual pore.

In addition, we estimate the specific surface area S0 of the fibers from the pore and throat

areas. The specific surface area is defined as S0 = Asurf/Vsolid, where Asurf is the surface area

of pore region and Vsolid is the solid volume. It can be estimated in the SNOW algorithm by

assuming pore bodies as spheres, then subtracts the areas of neighboring throats, namely,
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Asurf = ∑i(4πR2
i,p −∑ j πR2

j,t), where Ri,p is the radius of pore i, and R j,t is the radius of

neighboring throat j. For the plywood geometries, Asurf can be calculated directly from the

surface area of fibers as Asurf = 2πR f LN, where R f is the fiber radius, L the domain size

and N the number of cylindrical fibers. The pore network of the plywood geometries also

served as a validation of the estimate for S0 by comparing with analytical calculations in

section 4.3.

Figure 4.5: Unit cell of pore-throat.

Nonwoven fibrous media were computationally generated using layered arrangements

with plywood and random fiber orientations, as explained in section 4.1. An example of

a plywood fibrous geometry is shown in Fig. 4.1(a). Random fibrous media were gener-

ated with GeoDict using the same fiber radius and a random fiber orientation distribution

within each layer of the sample. In the porosity range 0.7 ≤ φ ≤ 0.9 we used both the

non-overlapping and overlapping mode in FiberGeo to investigate the effect of overlapping

arrangements on the morphological and transport properties. Two examples of random

fiber arrangements with and without overlaps, respectively, are shown in Fig. 4.1(b) and

(c). The SNOW algorithm available in OpenPNM [171] was employed to extract the pore

network from the generated fibrous media as shown in Fig. 4.3. We analyze the statistical

distributions obtained from the pore-network and compare them to theoretical models for

layered fibrous media (see Appendix A).
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Figure 4.6: Dependence of the pore size distribution on the fiber radius for porosities of
φ = 0.60 (a), φ = 0.70 (b), and φ = 0.80 (c). Solid lines represent a gamma distribution
fitted to the histograms. The peak of the pore size distribution decreases with increasing
fiber radius while the width of the distributions slightly widens. Reproduced from Ref. [2]
with permission of APS.
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Figure 4.7: Influence of the fiber radius on the mean pore size (a) and the mean connectiv-
ity (b) for different porosities. The dashed lines represent linear fits to the data. The mean
pore diameter increases linearly with the fiber radius while the connectivity decreases. Re-
produced from Ref. [2] with permission of APS.
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Figure 4.8: Effect of fiber overlapping on the pore size distribution in fibrous media with
porosities φ = 0.70 (a), φ = 0.76 (b), and φ = 0.80 (c). Solid lines represent a gamma
distribution fitted to the histograms. The number of small pores is reduced in geometries
with overlapping fibers. Reproduced from Ref. [2] with permission of APS.
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Figure 4.9: Influence of fiber overlapping on the mean pore diameter (a) and mean con-
nectivity (b) for porosities in the range 0.70 ≤ φ ≤ 0.90. Reproduced from Ref. [2] with
permission of APS.
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4.2.1 Dependence on fiber radius and overlap

For real fibrous membranes, it is important to understand the impact of manufacturing

parameters on the pore space morphology. Among the controllable factors are the fiber

structural characteristics such as fiber diameter and fiber shape, and the amount of overlap-

ping that results from the manufacturing process. Therefore, we generated random fibrous

media using different fiber radius between R f = 7a and R f = 15a and the possibility of

overlapping, as described in section 4.1.

The dependence of the pore size distribution on the fiber radius is shown in Fig. 4.6

for three different porosities. The histograms show that the frequency of smaller pores

decreases with increasing fiber diameter, while the distribution broadens. Therefore, the

mean pore diameter increases with increasing fiber diameter. The dependence of the mean

pore diameter on the fiber radius is shown in Fig. 4.7. The mean pore diameter follows

a linear increase with similar slope for the considered porosities. Conversely, the mean

connectivity decreases as the fiber radius increases, which indicates that the complexity of

the pore network is reduced.

The effect of allowing the fibers in the random arrangements to overlap is shown in

Fig. 4.8 for three different porosities. For non-overlapping arrangements, the fibers are

placed more homogeneously throughout the medium, leading to a narrower distribution of

pore sizes. Vice-versa, the pore size distribution broadens for overlapping arrangements.As

shown in Fig. 4.9, the mean connectivity of overlapping fiber arrangements is slightly

lower than that of non-overlapping fiber structures for porosities ≲ 0.82. However, the

mean connectivity is comparable at higher porosity, and the overlapping has no pronounced

effect on the mean pore size. We thus expect that the non-overlapping and overlapping fiber

arrangements have similar effective properties.
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Figure 4.10: Dependence of specific surface area (a) and geometric hydraulic radius (b) on
the porosity for plywood and random fibrous media. The dashed lines represent analytical
predictions for plywood fiber arrangements. Reproduced from Ref. [2] with permission of
APS.

4.3 Effective geometric pore space properties

The first step in connecting macroscopic properties of porous media to their microscopic

morphology is the calculation of effective pore space properties. Here, it is of particular

interest how the properties vary between plywood and random fiber arrangements. Two

important geometric properties of porous media are the specific surface area S0 = Ap/Vsolid

and the hydraulic radius Rh = Vp/Ap, where Ap is the surface area of the pore space, and

Vsolid and Vp are the solid volume and the pore volume, respectively. The hydraulic radius

can be expressed in terms of specific surface area and porosity as Rh = φ/(S0(1−φ )). The

specific surface area can be calculated from the pore-network extracted with the SNOW

algorithm. The pores are assumed to be spherical and their interfacial area is calculated by

subtracting the cross-sectional area of the connected throats. The throat surface areas are

calculated for arbitrary shape by integrating the throat perimeter along the length, which
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is more accurate than assuming straight cylinders. The total surface area of the pores and

throats is divided by the total volume of the fibers to give S0. The pore-network based

calculation of the specific surface area was used for both non-overlapping and overlapping

fiber arrangements. For the plywood fiber arrangements, where all fibers have the same

length and no overlaps, the specific surface area S0 = 2/R f is controlled by the fiber radius

R f = L
√
(1−φ )/(πN f ), and the hydraulic radius is thus expected to scale with the porosity

as Rh ∝ φ/
√
(1−φ ).

Fig. 4.10(a) shows the specific surface area of the fibrous media as a function of poros-

ity, which is commonly considered the main determining factor of macroscopic properties.

For the plywood geometries, the values calculated from the pore-networks are in good

agreement with the theoretical scaling, as shown by the dashed lines. This indicates that

the pore network yields a good approximation of the surface area and volume of the pore

space in spite of the assumption of spherical pores and tube-like throats. For random fiber

arrangements, the calculated values for the specific surface area and hydraulic radius de-

viate from the plywood geometries scaling because the exposed surface area of the fibers

varies due to random orientation and overlaps. This reflects the more complex structure

of the pore space where the geometric properties are affected by the size distribution of

pores and throats. We compared the specific surface area of the random fibrous media to

the values obtained in Ref. [56] for samples of foam- and water-deposited pulp sheets,

which were calculated using a marching-cube algorithm. For pulp sheets with porosities

between 82% and 91%, the reported values of the specific surface area S0 range from 0.52

to 0.67. These values are in good agreement with the specific surface areas S0 = 0.46−0.70

for our generated fibrous media, which indicates that our approach generates representative

samples of realistic fibrous membranes.

The differences between plywood and random fiber arrangements suggests to inves-

tigate the dependence of the effective geometric properties on the microstructure of the
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Figure 4.11: Dependence of porosity (a), specific surface area (b), and geometric hydraulic
radius (c) on the mean pore size in plywood and random fibrous media. The dashed lines
represent linear fits to the data. Adapted from Ref. [2] with permission of APS.

pore space and the statistical pore size distribution. Fig. 4.11 shows the dependence of

the porosity, specific surface area, hydraulic radius, and constriction factor on the mean

pore size of plywood and random fibrous media. The porosity increases with pore size

approaching φ = 1.0 asymptotically. As shown in the inset of Fig. 4.11(a), the increase is

well described by a logarithmic scaling − ln(1−φ )∝ ⟨Dp⟩. This is an interesting observa-

tion as it suggests that any quantity depending logarithmically on the porosity will scale

linearly with the mean pore size ⟨Dp⟩. Such logarithmic relations have been proposed for

the tortuosity of porous media [172, 173].

As observed before, the specific surface area in Fig. 4.11(b) shows a marked difference

between plywood and random fiber arrangements. While the plywood geometries exhibit a

superlinear increase with the pore size, the specific surface area of the random geometries

appears to increase linearly with the mean pore size. This is intriguing since the fiber

surface area scales with R2
f which was shown to be linearly related to the mean pore size

squared, cf. Fig. 4.7(a). It suggests that only a fraction of the fiber surface area is exposed to

the pore space, while the remaining area represents contacts between fibers. These contacts

are a result of the layering of the fibers in the non-woven structure, where each fiber belongs

75



to a layer with random fiber orientations within the layer, such that the fibers lay across

fibers in the adjacent layers thereby reducing the pore-exposed fiber surface.

The plot in Fig. 4.11(c) shows the dependence of the geometric hydraulic radius on the

mean pore size. The hydraulic radius Rh = φ/(S0(1−φ )) combines the influence of the mean

pore size on the porosity and the specific surface area. From the observation ln(1− φ ) ∼

−p⟨Dp⟩ with a small coefficient p, we expect φ ∼ p⟨Dp⟩ and Rh ∼ p⟨Dp⟩/
√

1− p⟨Dp⟩. To

leading order in p⟨Dp⟩, we hence expect a linear scaling between Rh and ⟨Dp⟩ for both ply-

wood and random fiber arrangements. This is confirmed by the dashed lines in Fig. 4.11(c)

that represent a linear fit to the data. The linear correlation between the hydraulic radius

and the mean pore size establishes a link between effective pore space properties and the

statistical mean of the pore size distribution. This opens up possibilities to express macro-

scopic transport properties of porous media in terms of statistical properties of the pore

space. For example, it will enable us to quantify the influence of pore space microstructure

on the permeability and tortuosity of porous media, where the mean pore size corresponds

to a characteristic hydraulic length in lieu of the hydraulic radius. A detailed investigation

of microstructure effects on fluid transport in plywood and random fibrous media will be

reported elsewhere.

4.4 Conclusions

We have presented a computational framework for characterizing the microstructure of

nonwoven fibrous media by means of statistical analysis of the pore space properties ob-

tained from segmented pore networks. Randomly generated three-dimensional fiber ar-

rangements served as realistic models of fibrous porous membranes. We utilized a water-

shed segmentation algorithm [77, 78, 171, 81] to extract pore-networks from both ordered

and disordered fibrous media.

The nonwoven fibrous media considered in this work were generated with the Fiber-
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Geo module of the GeoDict software [170]. Using the solid volume fraction as a stopping

criterion, we were able to generate random fiber arrangements with a prescribed porosity

down to 70%. To generate fibrous media with lower porosity, it was necessary to allow

the fibers to overlap. While this may in principle affect the geometric characteristics of the

pore space, we found that it did not have a significant effect on the properties we analyzed.

The nonwoven fiber networks are representative for fibrous membranes produced by melt-

blowing or electrospinning [174, 175, 176, 38, 177, 178, 179, 180] and are different from,

e.g., the fiber webs considered by Koponen et al. [181]. We only generated systems with

straight fibers and a monodisperse fiber radius. Electrospinning and melt-blowing are ap-

plicable to a wide range of fiber materials, and in some cases such as polymeric submicron

fibers the flexibility of the fibers may affect the structure and properties of nonwoven mats.

Silberstein et al. [182] characterized fiber mats electrospun from amorphous polyamide and

reported that fibers of submicron diameter tend to deviate increasingly from being straight

and rod-like with decreasing diameter. The relatively low bending stiffness of fibers is an

important feature for mechanical deformation of fiber mats under load. For a combination

of sol-gel processing and electrospinning of ceramic fibers, Chen et al. [38] observed that

almost straight cylindrical fibers can be produced at low relative humidity ( 30%), whereas

the fiber shape deviated from straight cylindrical shape at high relative humidity levels

( 50%).

Pourdeyhimi et al. [183] have presented an algorithm to generate nonwoven structures

in which the fibers may bend around contact points with other fibers. This algorithm could

in principle be used to generate fibrous media with curved fibers, however the pore-space

characterization of such media is beyond the scope of the current work. While the results

of our study only apply to straight fibers, the general framework can be extended to in-

clude fibrous media with polydisperse fiber diameters or other specific features relevant to

manufacturing processes for fibrous membranes.
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For the morphological analysis of the generated structures, we employed the SNOW

algorithm implemented in the OpenPNM package, which uses a watershed segmentation

of the local distance transform to extract the pore network [171]. By analyzing the standard

deviation of the mean properties of 27 samples, we ensured that the size of the generated

geometries is sufficiently large to capture the representative volume element (RVE) [54,

184]. We compared the cumulative distribution of pore sizes to theoretical models based

on gamma distribution [74, 73, 69], and found that it is important to take into account the

non-uniform fiber orientation distribution to accurately predict the cumulative pore size

distribution. At higher porosity, the theoretical model underpredicts the frequency of small

pores which limits the accuracy of macroscopic transport properties predicted from these

models. It is worth noting that the identification of pores and throats in the segmented pore

space is prone to ambiguity, which may affect the results of the morphological analysis.

Alternative algorithms to extract the pore network from the segmentation could be explored

to investigate the impact of specific definitions of pore and throat sizes based on the local

distance transform of the pore space [171].

We further investigated the influence of the mean pore size on effective pore space

properties such as porosity, specific surface area, and geometric hydraulic radius. The de-

pendence reveals the differences between random and plywood fiber arrangements, leading

to a different scaling of these properties as a function of porosity, which is often used to

establish phenomenological relationships for porous media. For prediction of macroscopic

properties of fibrous media, it is thus important to characterize the microstructure of the

pore space in terms of statistical properties.

In conclusion, the statistical analysis of pore network properties of nonwoven fibrous

media provides insights into the dependence of morphological variation on characteristic

parameters such as fiber radius and overlapping. The finding that the effective proper-

ties show a dependence on the mean pore size that is different between plywood and ran-
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dom fiber arrangements indicates that the randomness on the microscopic level can have

a significant effect on macroscopic properties of porous media and their scaling behavior.

Determining the statistical distribution of pores and throats in the pore network and their

sizes enables us to connect the macroscopic properties to pore-scale features of specific

fibrous samples. While we have used computationally generated fibrous porous media, the

segmentation approach is applicable to microstructure representations of real porous me-

dia that can be obtained using experimental imaging techniques such as X-ray computed

tomography or scanning electron microscopy. Our framework thus provides a basis for pre-

dicting effective properties from real microstructure images. In addition, the insights into

the influence of experimentally controllable parameters, such as the fiber radius and orien-

tation, can aid in adjusting manufacturing processes for fibrous membranes with tailored

properties for filtration and separation applications.

The data and code used to generate the figures in this chapter can be accessed and

executed through Code Ocean [185].
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CHAPTER 5

MICROSTRUCTURE EFFECTS ON TRANSPORT PROPERTIES OF FIBROUS

MEDIA

We performed the lattice Boltzmann simulations of single-phase fluid flow through the

fibrous porous media to study the steady-state velocity field u(x) in the pore space for

varying applied pressure gradient ∂ p/∂ z [3].

The D3Q19 model with 19 discrete velocities ci and the lattice speed of sound cs =
1√
3

a
h

is employed in this work, where a is the lattice unit for length, and h is the time unit

in LBM. A common choice for the collision matrix of the D3Q19 lattice is diag{γk} =

diag(0,γb,1.4,0,1.2,0,1.2,0,1.2,γs,1.4,γs,1.4,γs,γs,γs, 1.98,1.98,1.98), where γb controls

the bulk viscosity [139]. This D3Q19-MRT model is implemented in the parallel lattice

Boltzmann code LB3D [186]. LB3D allows to load complex geometries from a file con-

taining information about the location of solid and fluid sites on the lattice. Within the

lattice Boltzmann method, the lattice links that are intersected by the solid surface must be

handled by boundary conditions. Here, we used the standard bounce back (SBB) scheme

that realizes a no-slip boundary condition with the first order accuracy. To reduce viscosity-

dependent boundary effects [140], we used a multi-relaxation time collision operator with

γs = 1/(0.8h) and γbulk = 1/(0.84h). This choice follows a calibration study by Narvaez et

al. [187, 188], where the relative error of measured permeability was evaluated, and the

choice of relaxation parameters was shown to produce very accurate results for Poiseuille

flow in circular, quadratic, and triangular pipes. To simulate a pressure driven flow through
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porous media, we employed on-site pressure boundary conditions [143] by setting the mass

densities at the inlet and outlet to ρin and ρout, respectively. The fluid density in the pore

space is initialized with a linear gradient by interpolating ρin and ρout. These densities

are kept fixed at the inlet and outlet during the simulation to impose the pressure gradient

∂ p/∂ z. The different density at inlet and outlet is applied to provide a pressure gradient

and driving force of the flow, as described in Section. 3.3.3 using the pressure boundary

condition. The total fluid density is measured during simulation to make sure mass conser-

vation. We also calculated the Mach number of the flow by Ma = umax/cs < 0.1 to satisfy

the incompressible fluid constraint. The coordinate axes were chosen such that the flow is

driven in the z direction. Since a random porous geometry is not compatible with periodic

boundary conditions, the four sides of the simulation parallel to the flow are enclosed with

solid boundaries. This effectively encloses the porous medium in a square channel, which

enables us to use the permeability of an empty channel as a reference value.

To load the generated geometries into LB3D, the output files from GeoDict were con-

verted to ASCII files containing the coordinates of solid voxels using an in-house Python

script. The voxelized fiber geometries were loaded into a cubic lattice domain of L3 lattice

sites. All simulations were run until the system reached a steady state,where convergence

was assumed when the relative change of the mass flux mz in the direction of the pres-

sure gradient fell below 10−5 between measurements recorded every 1000 timesteps, i.e.,

∣1−mz(t)/mz(t−1000h)∣ < 10−5. The simulations were carried out on Clemson University’s

Palmetto cluster using 4 computer nodes, each with 16 Intel Xeon E5-26xx CPU cores. The

elapsed real time to reach steady state depends on the porosity and was in the range 8-30

hours. The data and code used to generate the figures in this chapter can be accessed and

executed through Code Ocean [185].
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5.1 Code validation

The simulation setup was first validated by considering the classic flow through an empty

square channel. A single phase flow is modeled in a square channel of size 200×200×200

lattices, shown as the schematics in Fig. 5.1(a). Mid-link bounce back boundary condition

is applied to the channel walls. The general solution of fully developed flow in a b× b

square channel is given by [189, 143]:

uz(x,y) = u0 [1− (y
b
)2 +4

∞

∑
k=1

(−1)k

a3
k

cosh(akx
b )

cosh(ak)
cos(aky

b
)] , (5.1)

where u0 =
(2b)2∆p

8ηL , αk = (2k−1)π/2, k=1,2,..., η is the dynamic viscosity, ∆p is the pressure

difference, and L is the length of the channel. The steady-state flow profile was compared

to the analytical solution in Fig.5.2. Here, the infinite sum in Eq. (5.1) is truncated at

100 terms and compared to the numerical results for the velocity profile along x−axis at

y = L/8,L/4 and L/2. The velocity field in steady state obtained from LB simulation is

shown in Fig. 5.1(b). We find excellent agreement between numerical results and analytical

solution in Fig. 5.2.

Figure 5.1: (a) Schematics of single phase flow through a square channel. (b) The cross
section of velocity field in steady state.

In the lattice Boltzmann simulations, we determined the trans-plane permeability κ
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Figure 5.2: Velocity profile in a square channel as a function of the position along x-axis at
y = L/8,L/4 and L/2.

based on Darcy’s law Eq. (1.3) by using the mass flux mz = ρ⟨uz⟩ measured in simulations

q = ⟨uz⟩ = −
κ

η

∆p
L
. (5.2)

where ⟨uz⟩ is the averaged velocity, and the pressure gradient is determined from the density

difference between inlet and outlet ∆p/L = c2
s ∆ρ/L. Thus, the trans-plane permeability κ

is given by:

κ = −η
q

∂ p
∂ z

= ( 1
γs
−

h
2
) mzL

∆ρ
, (5.3)

where mz is the mass flux in the direction of the pressure gradient, ∆ρ = ρin −ρout, L is the

sample thickness, and η = ρc2
s ( 1

γs
− 1

2 ) is the dynamic viscosity. The measured flow rate q

shows the expected linear dependence on the applied pressure gradient ∆p. There exists an

analytical expression for the permeability of a square channel with cross-section L×L in

the form of an infinite series[190]

κ =
L2

4
[1

3
−

64
π5

∞

∑
n=0

tanh((2n+1)π/2)
(2n+1)5

] ≈ L2

4
⋅0.140577. (5.4)
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Figure 5.3: Time evolution of mass flux and measured trans-plane permeability κ of square
channel of size L = 100,200 and 400.

We determined the conductance of the square channel of side length 100, 200 and 400

lattices, both from the slope of the q−∆p curve and directly from Darcy’s law, The results

are in excellent agreement with the analytical prediction, as shown in Fig. 5.3.

In addition, we checked that the chosen lattice spacing a was sufficiently small to avoid

effects due to finite grid resolution. Discretization errors in the LBM are mainly caused by

the bounce-back boundary conditions and by Knudsen effects in small pores [191, 192].

The Knudsen number can be tuned by viscosity according to the definition: Kn = lmfp/D =

µ/(csD), where D is the width of channel in pore region. The width of channel decreases in

small pores, leading to higher Kn. These effects may lead to a viscosity dependent error in

the permeability of a porous medium. We performed simulations of flow in random fibrous

geometries with porosities between 24% and 97% with resolution of a = 1 µm and a =

0.5 µm, respectively, corresponding to simulation domains of 2003 and 4003 lattice sites.

When plotted over the porosity, the measured permeabilities are virtually indistinguishable

between the two resolutions. The relative error δκ = ∣κ200/κ400 − 1∣ between the high-
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Figure 5.4: Linear correlation between pressure gradient and mass flux for random fibrous
media of porosity 0.97 and 0.15.

resolution permeability κ400 and the low-resolution permeability κ200 is less than 4% in all

cases. The relative error of the measured tortuosity is even lower (<0.5%). These results

indicate that the higher resolution does not increase the accuracy here. All results below

are thus reported for simulations using a cubic lattice of size (200a)3.

Finally, we checked that the measured flow rate in the fibrous media obey linear rela-

tionship for the range of applied pressure gradients. We validated the linear relationship

between q and ∆P/L at both the upper limit of 97% porosity and the lower limit of 15%

porosity in Fig. 5.4. The Reynolds number Re = u⟨Dp⟩/ν calculated based on the measured

mean flow velocity u and mean pore diameter Dp in the fibrous media is in the range of

1.6× 10−7 to 1.4× 10−1. In very low porosity media, local countercurrents may lead to a

threshold hydraulic gradient below which no macroscopic flow occurs [7]. This pre-Darcy

regime, that has been reported in experimental studies [193, 194], is outside the scope of

the current work. The results of the simulations validate that the averaged flow rate is in

the linear relationship with the pressure difference for the range of porosities and applied
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pressure gradients considered here.

The steady-state velocity fields in a plywood and a random fibrous medium are shown

in Fig. 5.5. The flow in the random geometry is more complex and heterogeneous than in

the plywood geometry. While the plywood geometry exhibits straight flow paths between

interconnected pores throughout the thickness, the random geometry requires the flow path

to curve around the fibers leading to a higher tortuosity. In addition, due to the hetero-

geneous pore sizes the velocity varies considerably between different regions of the pore

space. In the following, these features and their impact on the permeability and tortuosity

are analyzed in detail.
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(a)

(b)

Figure 5.5: Velocity fields in (a) plywood and (b) random media obtained from lattice
Boltzmann simulations of hydraulic flow. The flow patterns are more complex in random
fibrous media, where a few larger stream tubes contribute an increased mass flow. Repro-
duced from Ref. [3] with permission of APS.
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5.2 Tortuosity of nonwoven fibrous media

In this work, the hydraulic tortuosity τ = ⟨λ ⟩/L can be extracted from the streamlines of

flow in complex geometries. Generally, the average can be written in the form

τ =
1
L
∑i wiλi

∑i wi
, (5.5)

where λi is the length of the ith discrete streamline and wi is a weight. However, some

ambiguity exists with regard to the definition of the weights wi. A practical definition was

proposed by Matyka et al. [195] and weighs the streamline length λ (x) by the local flux

u⊥(x) across an arbitrary surface A

τ =
1
L
∫A λ (x)u⊥(x)d2r⃗

∫A u⊥(x)d2x
. (5.6)

It was shown [196] that the surface integral can be written as a volume integral

τ =
∫V u(x)d3x

∫V u∥(x)d3x
, (5.7)

where u∥(x) is the velocity component parallel to the flow direction. This leads to the

particularly simple expression for the flux-weighed tortuosity [196, 197]

τ =
⟨∣u∣⟩
⟨u∥⟩

, (5.8)

where the spatial average is taken over the pore space. In the lattice Boltzmann method, the

flux-weighed tortuosity can be computed directly from the velocity field by evaluating Eq.

(5.8) using the local steady-state velocities u(x). The computed results for the tortuosity

as function of the porosity of the generated samples are shown in Fig. 5.6.
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Figure 5.6: Tortuosity as a function of porosity in plywood-type and random fibrous me-
dia. The curves show fit results to several common tortuosity expressions for porous media.
The tortuosity is significantly increased in random fiber arrangements compared to plywood
arrangements, where the flow paths are only slightly elongated even at low porosities. Re-
produced from Ref. [3] with permission of APS.

Table 5.1: Results of curve fitting the tortuosity measured in simulations to several com-
mon tortuosity expressions, including Archie’s law [198], a logarithmic expression used by
Mauret and Renauld [173], and a more general expression used by Weissberg [172] and
others. Reproduced from Ref. [3] with permission of APS.

Porous structure Reference τ −φ relation Parameters r2

Granular beds Archie (1942) [198] τ = φ
−γ Plywood γ = 0.1238±0.0088 0.5851

Random γ = 0.3655±0.0054 0.9029
Packed beds Mauret & Renauld (1997) [173] τ −1 = p lnφ Plywood p = 0.1321±0.0092 0.6377

Random p = 0.4834±0.0080 0.9260
Freely overlapping Weissberg (1963) [172] τ −1 = p(1−φ )γ Plywood p = 0.1621±0.0016, γ = 0.7118±0.0104 0.9982

obstacles Ho (1982) [199] Random p = 1.0871±0.0374, γ = 1.6085±0.0781 0.9083
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The tortuosity is often assumed to follow Archie’s law φ/τ
2 ∝ φ

m [198], where m is

referred to as the cementation factor [59], i.e.,

τ = pφ
−γ
, (5.9)

where p is a constant and γ =
m−1

2 . More generally, the scaling relation for the tortuosity

can be written in the power law form as [172, 199]

τ −1 = p(1−φ )γ . (5.10)

Various conjectures have been made in the literature on the relationship between tortuosity

and porosity, and propositions for parameters in (5.10) are based on different theoretical

arguments and fitting results. For diffusional transport in porous media, Weissberg [172]

argued that

τ −1 = −p ln(φ ), (5.11)

with p = 1/2, implying a lower bound −1
2 lnφ ≈

1
2 (1 − φ ) with γ = 1. The logarithmic

relation (5.11) was also used in a study on the hydraulic tortuosity of fiber mats by Mauret

and Renauld [173].

The curve fitting results for the tortuosity of the random fibrous media considered here

are shown in Table 5.1 and plotted in Fig. 5.6. The fit of Archie’s law yields the exponents

γ = 0.124± 0.009 for plywood geometries and γ = 0.365± 0.005 for random geometries.

The values are significantly smaller than γ = 1 showing the slow increase of tortuosity

with decreasing porosity. The coefficient of determination is relatively low for plywood

geometries. This is because the plywood arrangement of the fibers allows straight paths

through the rectangular areas between the crossing points of fibers in different layers. The

flow along these paths can permeate the entire mat without deflections even at very low
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porosities.

The generalized expression in Eq. (5.10) yields a better fit to the tortuosity data. The

fit parameters are p = 0.162± 0.002 and γ = 0.71± 0.01 for the plywood geometries, and

p = 1.087± 0.037 and γ = 1.61± 0.08 for the random geometries. Both the exponent and

the prefactor are lower for plywood fiber arrangements as a result of the minor impact of

porosity on the tortuosity.

For the logarithmic relation Eq. (5.11) of Mauret and Renauld [173], we find a coeffi-

cient p = 0.132± 0.009 for the plywood geometries and p = 0.483± 0.008 for the random

geometries. The latter value is similar to the value p = 1/2 found for systems of overlapping

spheres [172, 199] but different from the values p = 1 or p = 2/3 found for arrangements

of cylinders [200]. This shows that the tortuosity of fibrous membranes is not as strongly

dependent on the porosity as in other porous media. Nevertheless, the logarithmic relation

gives the best fit to the data for random fibrous geometries, which is in line with the finding

of Matyka et al. [195] for flow simulations in a system of freely overlapping squares.

Based on the curve fitting results, we cannot single out a specific one of the various

tortuosity expressions that describes the τ − φ relationship in the fibrous porous media

considered here. In contrast to arrangements of small obstacles that are often used to model

porous media, fibers span the whole system and the streamlines cannot split and merge

along the fiber axis. This may lead to a qualitatively different streamline pattern in the

fibrous medium and affect the tortuosity calculation based on the velocity field. The slow

increase of the tortuosity with decreasing porosity suggests that even in relatively dense

fiber arrangements the flow paths are not significantly elongated. This may be a result of

the layered structure, where the projections of pores along the flow direction may overlap

between layers, such that the streamlines can traverse several layers without deflection.

This is obvious in the plywood geometries, where the rectangular overlay pattern always

allows straight paths through the entire system. The random fiber orientations reduce the
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number of straight paths but do not generate as many streamline distortions as in granular

porous media.

An interesting observation is the difference between the Archie exponent γ and the

exponent m found by fitting Costa’s permeability expression in the next section. These

exponents are related by γ = (m− 1)/2, however, the separate fits to the porosity and the

tortuosity confirm this relation neither for the plywood geometries nor for the random ge-

ometries. This indicates that lumping the averaged structural properties τ and φ into general

expressions does not capture the effects of the local pore-space structure accurately.

5.3 Trans-plane permeability of nonwoven fibrous media

The permeability measures the hydraulic conductivity, and the functional form of its de-

pendence on the various characteristics of porous materials is a-priori unknown. Here we

only consider the scalar permeability. The Kozeny-Carman relation described in Section

1.1.2 was re-examined by Costa [59] by considering the pore space as a random fractal

with no symmetry axes, which leads to the expression

κ =Cc
φ

m

1−φ
, (5.12)

with a semi-empirical coefficient dimensional Cc.

Although these κ − φ relations have been found to describe various classes of porous

media well, the Kozeny model does not always yield quantitative agreement, in particular

at high porosities φ → 1. Hence various other relations have been proposed for porous

media including fibrous materials. Gebart [201] theoretically and numerically analyzed the
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flow through ordered arrays of fibers and arrived at the relation

κ =C
⎛
⎜
⎝

√
1−φc

1−φ
−1

⎞
⎟
⎠

5
2

, (5.13)

where φc is the percolation threshold of porosity below which no flow occurs, and C is a

dimensional parameter. The derivation is based on the assumption that the permeability of

flow perpendicular to the fiber axis is dominated by the throats formed between the fibers at

their closest distance, which mainly holds for close-packed arrangements of fibers. Other

studies have reported an exponential dependence of the permeability on the porosity [202,

181]. However, the data used to fit the exponential relation did not cover porosities near

the percolation threshold φc. Nabovati et al. [60] included a wide range of porosities from

near the percolation threshold to dilute systems and found that good fitting results can be

obtained with a generalized version of Gebart’s expression (5.13)

κ =C1
⎛
⎜
⎝

√
1−φc

1−φ
−1

⎞
⎟
⎠

C2

. (5.14)

However, they only considered isotropic 3D fibrous media The validity of these relations

for 2D nonwoven fibrous media is thus an open question. Unlike the porosity and specific

surface area, the tortuosity is not easily accessible in experimental measurements. In many

cases, only the combined value of Ckck = Ckτ
2 can be extracted from the permeability

relations (1.8), leaving the Kozeny-Carman coefficient and the tortuosity undetermined.

Moreover, the precise notion of tortuosity depends on the transport mechanism and several

specific definitions have been discussed in the literature[203].
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Figure 5.7: Dimensionless permeability as a function of porosity in (a) plywood and (b)
random fibrous media. The curves show the fit results to several common permeability
expressions for porous media. The logarithmic scale (inset) shows appreciable differences
at low porosities for Kozeny-Carman type permeability expressions. Adapted from Ref.
[3] with permission of APS.

Table 5.2: Results of curve fitting the permeability measured in simulations to several
common permeability expressions including the Kozeny-Carman relation [13, 14], random
fractals with no symmetry axis (Costa [59]), random overlapping fibers (Nabovati et al.
[60], and a microstructure-based relation by Koponen et al. [56]. Reproduced from Ref.
[3] with permission of APS.

Fibrous medium Reference κ −φ relation Parameters r2

Kozeny-Carman Kozeny (1927) [13] κ =
1

Cτ2S2
0

φ
3

(1−φ )2 Plywood C = 5.0936±0.1171 0.9865

Carman (1937) [14] Random C = 1.8568±0.0260 0.9962

Pulp sheets Koponen et al. (2017) [56] κ =
1

Cτ2S2
φ

3

(1−φ )2
⟨D4

p⟩⟨Dp⟩2

2⟨D2
p⟩3

Plywood ct = 2.5479±0.0587 0.9865

Random ct = 1.5844±0.0605 0.9726

Fiber mats Costa (2006) [59] κ =Cc
φ

m

1−φ
Plywood Cc/a2

= 5.7394±0.3025, m = 0.9672±0.3480 0.9760

Random Cc/a2
= 23.4039±0.3564, m = 3.0641±0.2270 0.9984

Overlapping Nabovati et al. (2009) [60] κ =C1 (
√

1−φc
1−φ

−1)
C2

Plywood C1/a2
= 0.2826±0.0191, C2 = 2.2755±0.0291 0.9997

fibers φc = 0.2299±0.0219

Random C1/a2
= 0.3761±0.1256, C2 = 1.7550±0.0956 0.9981

φc = 0.1496±0.1647

The flow field from LBM simulations were used to determine the trans-plane perme-
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ability of nonwoven fibrous media. The computed results for the permeability as a function

of the porosity of generated samples are shown in Fig. 5.7. As expected, the random fi-

brous samples show a considerably lower permeability than the plywood fiber geometries.

We also compared the LBM simulation results with the transversal permeability determined

from Monte Carlo simulations from Ref. [204]. The porous media used in Monte Carlo

simulations is derived from the classical site percolation, in which the grid is occupied by

solid or liquid randomly in each square lattice of size a. The squares which are occupied

by the solid phase are prolongated in solid bundles, along the longitudinal direction. The

porous media generated using this approach is different from fibrous media where the cur-

vature of fibers play a key role in the porous structure. The simulation is performed on a

2D lattice with Nc ×Nc squares of size a. Fig. 5.7 shows that the transversal permeability

measured in Monte Carlo simulations is slightly lower than LBM simulation results in the

porosity range 0.6−0.9.

We evaluated the accuracy of the permeability expressions (1.8), (5.12), and (5.14) for

plywood fibrous media. The curve-fitting results are shown in Table 5.2 and plotted in Fig.

5.7. We report the fit values obtained with the curve fit function in SciPy along with the

variance of the parameter estimate and the coefficient of determination r2. All relationships

yield a good fit with a coefficient of determination r2
> 0.97. However, plotting the curves

on a logarithmic scale as shown in the inset axes in Fig. 5.7 reveals that the Kozeny–

Carman type expressions (1.8) and (5.12) overestimate the permeability at lower porosities

φ < 0.5.

The fitted Kozeny-Carman coefficient is Ckc = 5.09± 0.12 for the plywood geometries

and Ckc = 1.86± 0.03 for the random geometries. The value for plywood geometries is in

good agreement with the value of Ckc ≈ 5 that has been found for porous beds of spherical

and nonspherical particles [14, 205]. The significant difference between random and ply-

wood fiber arrangements indicates that the Kozeny-Carman coefficient for fibrous porous
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media is non-universal and depends on the microstructure of the pore space. The random-

ness of the fiber orientations reduces the permeability by a factor greater than 2.5.

The coefficient Cc in Costa’s expression [59] is a dimensional parameter that incorpo-

rates the pore cross-sectional area. We obtain the fitted values of Cc/a2
= 5.74±0.3 for the

plywood fiber geometries and Cc/a2
= 23.4± 0.36 for the random fiber geometries. The

tortuosity factor is m = 0.97±0.35 for the plywood fiber geometries and m = 3.06±0.23 for

random fiber geometries. The value for random fiber mats is close to the value 3.48 found

by Costa for sisal and jute fiber mats [59]. The difference of m between plywood fiber

geometries and random fiber mats indicates that the scaling of the tortuosity is significantly

altered by the random fiber orientation. Costa’s expression for the permeability is based on

the assumption of a fractal fragmented system, and the appreciable difference for plywood

fiber geometries at lower porosities owes to the fact that the plywood arrangement of the

fibers does not represent a random fractal with no axes of symmetry.

The permeability expression by Nabovati et al. [60] is based on Gebart’s analytical

treatment of flow through narrow slots between close-packed fibers and includes three fit-

ting parameters C1, C2, and φc. We obtain C1/a2
= 0.28 ± 0.02, C2 = 2.28 ± 0.03, and

φc = 0.23±0.02 for the plywood fiber geometries, and C1/a2
= 0.38±0.13, C2 = 1.76±0.10,

and φc = 0.15±0.16 for random fiber mats. The close values of the coefficient C1 and the

exponent C2 for both geometries and the improved quality of the fit to the data suggest

that the permeability expression [60] is more applicable to fibrous porous media . The

improvement stems from the inclusion of the critical porosity below which no percolating

paths exist and no permeating flow occurs. The critical porosity is higher for the random

fiber arrangements because this random orientation of the fibers leads to more isolated

pores that are not connected to the open pore space.

Overall, we conclude that the Kozeny-Carman type permeability expressions do not

fully capture the effect of fiber microstructure on the permeability for low-porosity fibrous
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mats with random fiber distribution. This may be explained by the presence of isolated

pores that do not contribute to fluid transport, leading to a reduction of the number of

percolating paths through the pore space when the packing density of the fibers is large.

This effect is taken into account by the model of Ref. [60] which therefore leads to a more

accurate prediction of the permeability of fibrous media with closely packed fibers.

5.4 Microstructure effects of fibrous media

The κ-φ and τ-φ relations hide the microstructure of the porous medium in the parametric

coefficients and exponents. It is therefore interesting to investigate the dependence of these

parameters on the structural properties of the pore network. In our randomly generated

fibrous media, the main parameters are the fiber diameter and the allowance of overlaps.

The effects of these factors are reported here.

5.4.1 Effect of fiber radius

The fiber radius is one of the parameters that can be tuned in the production process of

fiber membranes, and it has a major effect on the porosity and the microstructure of the

pore space. Since the permeability has units of length squared, it is commonly normalized

by the square of a characteristic length scale. For the fibrous media, a suitable length scale

is the fiber radius R f . To study the individual effect of fiber diameter on the permeability,

we have plotted the permeability as a function of fiber diameter at constant porosity in

Fig. 5.8. Empirical models have been established to relate the in-plane and trans-plane

permeability to the measurable structural properties, porosity and fiber radius [206, 207],

which suggest a quadratic dependence of the permeability on the fiber diameter. Our data

clearly shows the validity of these assumptions. Since the specific surface area decreases

as the inverse fiber radius, the quadratic increase of the permeability implies a R−1/2
f scaling

of the tortuosity. The fitted lines in Fig. 5.8 suggest that the computed tortuosity follows
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Figure 5.8: Influence of the fiber radius on the permeability ((a) and (b)) and tortuosity
((c) and (d)) of plywood ((a) and (c)) and random ((b) and (d)) fibrous media. The lines
represent linear fits to the data. The permeability increases quadratically with the fiber
radius which confirms the fiber radius as a characteristic length scale. The square of the
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Figure 5.9: Influence of fiber overlapping on (a) permeability and (b) tortuosity of random
fibrous media with porosities in the range 0.70 ≤ φ ≤ 0.90. Reproduced from Ref. [3] with
permission of APS.

this scaling to a reasonable degree.

5.4.2 Effect of fiber overlapping

We investigated the effect of fiber overlapping on the hydraulic properties of fibrous media.

As explained above, we allowed the fibers to overlap in order to generate geometries with

lower porosities which cannot be obtained with non-overlapping fiber arrangements. In

Fig. 5.9, we compare the permeability and tortuosity of overlapping and non-overlapping

fiber geometries. Previous results by Sousa [208] suggest that the effect of overlapping is

to decrease the permeability in low porosity media, while it is negligible for porous media

with φ > 0.85. In the investigated porosity regime, our results show no significant differ-

ence between the permeability of non-overlapping and overlapping fiber arrangements .

Overall, allowing the fibers to overlap has no pronounced influence on the trans-plane per-
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meability of nonwoven fibrous media. This fact may be used to strengthen the mechanical

properties of filter materials without affecting their hydraulic properties.

5.5 Conclusions

We have presented a computational analysis of the dependence of trans-plane permeability

on the microscopic pore-space properties of nonwoven fibrous porous media. Randomly

generated three-dimensional fiber arrangements served as realistic models of fibrous porous

mats. We employed the lattice Boltzmann method to simulate fluid flow through nonwo-

ven fibrous media and obtained the permeability and tortuosity from the simulated flow

field. The results reveal the dependence of permeability and tortuosity on the pore-space

morphology of nonwoven fibrous media. We have performed curve-fitting of several of

the most common expressions to the values of permeability and tortuosity obtained from

the simulations. These formulas are summarized in Tabel 5.1 and 5.2. Our results re-

veal that the classical Kozeny-Carman type expressions overestimate the permeability of

low-porosity fibrous media, and a semi-empirical expression in Ref. [60] yields better

agreement with our data. The improvement can be ascribed to the inclusion of a critical

porosity below which no flow occurs, and the fitting results indicate that the critical poros-

ity is higher in random fibrous media due to an increased number of small unconnected

pores. In general, we found that the Kozeny-Carman coefficient can vary substantially

with porosity.
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CHAPTER 6

DROPLET SURFACE MORPHOLOGY TRANSITION ON FIBER

6.1 Introduction

N95 respirator, which is composed of multilayers of polypropylene (PP) nonwoven fab-

rics, has become the best protective method since the outbreak of COVID-19 pandemic.

Numerous researches have been conducted to make masks more efficient and understand

the efficiency metric. We focus on one side of this problem asking what is the criterion for

capturing aerosol droplets by a single fiber in a fibrous mask. These droplets are small and

hence inertial forces are not important in the process of drop attachment to the fiber. There-

fore, the wetting properties of fibers and the fiber diameter become the crucial parameters

in the mask design. This topic is of fundamental interest to materials science as it provides

insight on phenomena of wetting and adhesion to fibrous materials.

When a small droplet is placed on a cylindrical fiber of definite radius, its equilibrium

shape is determined by the contact angle, fiber radius and drop volume [104, 209, 17, 106].

For the case of small contact angle and large drop volume, the drop takes an axisymmetric

barrel shape. When the contact angle is sufficiently large and drop volume is small, non-

axisymmetric clam-shell drops are observed. The axisymmetric droplet is typically firmly

adhered to the fiber and hence can be considered as being captured in a fibrous mask. The

clamshell droplets are easy to shade off and hence the materials properties of the fibers that

lead to clamshell droplets are considered undesirable.
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In the absence of gravity, the Laplace excess pressure ∆p across the droplet surface is

constant when the droplet is in equilibrium, i.e.,

∆P = γ ( 1
R1

+
1

R2
) = contant, (6.1)

where R1 and R2 are the principal radii of curvature , γ is the surface tension. In general, R1

and R2 vary along the drop surface. The barrel shaped drop can be modeled by an unduloid

[104]. Carrol [209] presented an experimental study on the movement of a droplet off a

cylindrical fiber as the droplet volume increased. The critical volume for the transition

were determined prior to the roll-up event.

McHale et al. [106] employed a numerical approach using finite element method to

solve Eq. (6.1) with Surface Evolver [210] package by evaluating the surface free energy of

both barrel shape and clam-shell droplets. The absolute stable conformation is determined

as the one with lower surface free energy for a given volume and contact angle. McHale

et al. [211, 17] suggested that the inflection point on a barrel shape droplet should be

considered as the criterion for stability between the two conformations. The inflection

point is where one of the radii of curvature change sign. The existence of inflection point

in the profile of a barrel shape drop is necessary to minimize the Laplace excess pressure

in Eq. (6.1). Therefore, the minimal value of reduced thickness nmin has been derived as

follows to satisfy the inflection point condition [211],

nmin =
1+ sinθE

cosθE
. (6.2)

By considering the response of the system to the changes in the Laplace excess pressure, the

metastability condition, which describes the ability of a given shape against perturbations
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of the shape, is given as [209].

2n3 cosθE −3n2
+1 = 0, (6.3)

where θE is the equilibrium contact angle, n = R/R f is the reduced thickness, R and R f are

the thickness of liquid and the fiber radius, respectively.

In the recent work by Chou et al. [212], the coexistence of barrel shaped and clam-shell

droplet for the same droplet volume and contact angle has been shown from experimental

observations and Surface Evolver simulations. By employing two different initial shapes,

Chou et al. [212] reported that one can obtain either barrel or clam-shell for certain range of

droplet volumes and contact angles. The morphology diagram is constructed from Surface

Evolver simulations and it consists of three regimes: barrel only, clam-shell only, and bar-

rel and clam-shell simultaneously. The stability of both conformations in the uncertainty

regime has been verified by applying a shape perturbation. Both conformations can sustain

small perturbations and relax back to their equilibrium conformation.

In this chapter, we use multicomponent pseudopotential LBM model to simulate the

morphological transition of droplet deposited on a fiber. The method has been employed

by Wang et al. [213, 214] to investigate the dynamic spreading and retraction of certain

amount of liquid on parallel fiber rails, which confirms the existence of bistable regions in

the morphology diagram. They constructed the energy landscape associated with droplet

wetting length and probed the energy barrier of shape transformations. In this work, we

adopted two different initial shapes to study the barrel shaped and clam-shell droplets on a

single fiber. The accuracy of LBM simulation is validated by comparing the profile of barrel

shape drop in equilibrium with experimental results and analytical description. We study

the dynamics of wetting behavior of an initially sitting-on and wrapping-around droplet

configurations. Finally, the morphology diagram determined from LBM simulations is
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compared with experimental and analytical results. The code used to generate the figures

in this chapter is modified from Ref. [214].

6.2 Simulation conditions

The numerical simulations of droplet wetting a fiber have been carried out using the parallel

lattice Boltzmann code LB3D [186]. A rectangular domain of size 240a× 240a× 300a

was created and a fiber was placed with its center at x = 120a, y = 120a and z = 150a.

Periodic boundary conditions were applied at all domain boundaries. The fiber diameter

corresponds to 20 lattice sites. A contact angle ranging from 10° to 68° is realized by

varying the pseudo wall density ρwall from −0.5 to −0.15. Mid-link bounce back boundary

condition was employed at the fiber surface to achieve the no-slip conditions. Due to the

diffusion nature of multicomponent LBM model, contact line motion is allowed over the

no-slip walls.

In order to create a droplet in the computation domain, we performed the Laplace test

as described in Sec. 3.4.2. This test allowed us to determine the equilibrium densities

of the two fluid components for the given coupling strength gbr and drop diameter. An

intermediate coupling strength gbr = 0.14ρ0a2/h2 is used throughout this work to achieve

the desired phase separation and maintain the numerical stability. From the linear fitting

of Laplace pressure and inverse of drop radii, the surface tension γ is determined to be

γ = 0.165ρoa3/h2. We chose the BGK relaxation time of the two components as τb = τr =

1h, resulting in a kinematic viscosity ratio of 1.0. As an initial condition, the fluid is set

at rest. The droplet on a fiber can adopt symmetrical barrel-shape or non-axisymmetric

clam-shell shape. To investigate the energetically preferential shape, we use a wrapping-

around conformation that is fully engulfing the fiber as the initial approximation of a barrel-

shaped drop, and a sitting-on conformation that is partially engulfing the fiber as the initial

approximation of a clam-shell drop, as shown in Fig. 6.1(a). Here, we varied the initial
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droplet radius in order to study the effect of drop volume on equilibrium conformation,

thus the initial contact angle is arbitrarily chosen based on the initial droplet radius. During

simulations, we monitored the Laplace excess pressure across the interface until it reaches

the equilibrium state. The Laplace excess pressure is defined by choosing a probe inside

the droplet and another one outside, then calculating the pressure difference ∆P between

the two probes. The droplet is in equilibrium when the Laplace excess pressure satisfies

the criteria
»»»»»»»»
∆P(t)−∆P(t −1000h)

∆P(t)
»»»»»»»»
< 10−5

, (6.4)

where t is the current time-step, and h is the time-step size. The interfacial layer has a

finite width due to the diffusion of the two fluid components. Therefore, we define the

exact position of interface by introducing the order parameter φ = ρb −ρr, which is zero at

the interface. The droplets volume varies slightly during the morphological transition by

using this definition of interface. However, the variation is always less than 3%, and we

can consider the droplets as volume conserved.

In order to determine the critical reduced thickness n = R/R f for the morphology tran-

sition between the barrel-shaped and clam-shell drops, the droplet volume was varied step-

wise for the two different initial configurations until we observe the transition from one

morphology to another. The gravity is not taken into account in the current work. The

fiber surface is smooth enough for the chosen resolution and chemically homogeneous

such that there is no contact angle hysteresis. For comparison with analytical descrip-

tion and experimental results, the variables are scaled by the fiber radius R f . We obtained

the dimensionless drop volume V̄ = V 1/3/R f , droplet radius n = R/R f , and dimensionless

Laplace excess pressure as P̄ =∆P(R f /γ). The time scale and velocity are normalized based

on viscous-capillary scaling, leading to the dimensionless time t = tγ/(ρνR f ) and velocity

u/uvc = ρνu/γ =Ca, which is the Capillary number, Ca.

105



Wrapping

Sitting-on

Spherical Sinusoidal Random (a)

(b) 2Rf

R

R
2Rf

Barrel

Clam-shell

Figure 6.1: (a) The initial droplet configuration on a fiber: the wrapping around ap-
proximation for an axisymmetric barrel drop, and the sitting-on approximation for a non-
axisymmetric clam-shell drop. Sinusoidal and random perturbations are introduced to the
smooth spherical droplet surface. (b) Equilibrium morphology of clam-shell and barrel
droplet from (left) deposition experiments and (right) LB simulations. (Experimental im-
age courtesy of Yueming Sun)

Fig. 6.1(b) compares the experimental picture of a barrel drop and clam-shell with

equilibrium configurations obtained from LB simulations. Two types of experiments were

conducted: drop deposition on a glass fiber and drop formation from a film through fiber

coating using glycerol solution. The deposition process is performed by continuously de-

positing a small drop of diameter around 28 µm on glass fibers with radius R f = 125 and

40 µm. The time period for deposition is 4950 µs. The deposition experiment continues

until the volume of drop is sufficiently large to observe the transition from a clam-shell to

barrel drop. It should be noted that contact angle hysteresis of the fiber used in experiment
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affects the contact line motion, resulting in the asymmetric barrel shape with respect to

fiber axis in the droplet deposition experiments. However, the characteristics of barrel drop

and clam-shell can still be identified and thus distinguish the two morphologies. Moreover,

the maximum Bond number, Bo = ∆ρgR2/γ (where ∆ρ the density difference between the

two phases, g the gravity acceleration, R the drop radius, and γ the surface tension) is

Bo = 0.016, i.e. it is much less than 1, suggesting that the gravitational effect on drop shape

can be neglected. Fig. 6.1(b) shows the clam-shell and barrel drop on fibers with contact

angle of 22.3° and 35.3°, respectively. The reduced thickness n = R/R f is defined with the

geometric parameters in Fig. 6.1(b).

Figure 6.2: (a) Spherical drop with its surface perturbed by Perlin noise. (b) Voxelized
surface mesh.

To study the effects of droplet deviation from spherical shape on its equilibrium droplet

shape, we considered sinusoidal and random noise, as illustrated in Fig. 6.1(a). The sinu-

soidal noise is generated as follows: the drop profile in Cartesian coordinates is given by

x = r sinφ cosθ , y = r sinφ sinθ , z = r cosφ + z′, (6.5)

where r is the fiber radius, φ ∈ [0,π], θ ∈ [0,2π), and z′ = hsin(λθ + α), h, λ and α

are the amplitude, angular speed and phase of the sinusoid, respectively. The random
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noise is generated by using Perlin noise algorithm, which is a type of gradient noise and

provides naturally appearing patterns or textures [215]. Here we apply the Perlin noise on

a sphere using PyVista package [216]. The Perlin noise is generated typically in three

steps: 1) pseudorandom gradient vectors are created on the 8 corners of a given grid in a

3D space, then the distance vectors from a given position (x,y,z) to its surrounding corners

is calculated, 2) by taking the dot product between the gradient vector and the distance

vector, a scalar value is calculated as the influence value to the position (x,y,z), 3) final

value of scalar is obtained by interpolating between the noise values, to construct smooth

patterns within the grid. As illustrated in Fig. 6.2(a), the sphere is warped by the generated

scalar to give some variation in the surface coordinates based on the influence value of the

Perlin noise. Finally, the surface mesh of distorted sphere is voxelized and used as the

initial configuration in LB simulations, shown in Fig. 6.2(b).

6.3 Results and Discussion

6.3.1 Mathematical model of barrel drop

Carroll [104] proposed a method to estimate the contact angle of a fiber by measuring the

wetting length L and reduced thickness n of a barrel-shaped drop. For a small droplet,

where gravity can be neglected, the drop longitudinal is illustrated in Fig. 6.3. Considering

an arbitrary point P(x,z) on the drop surface, the Laplace pressure across the interface is

constant, namely,
1

R1
+

1
R2

= K1, (6.6)

where K1 is a constant. The two principal radii of curvature satisfy the following relations:

R1dφ = dssecφ , R2 = xcosecφ . (6.7)
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Substituting Eq. (6.7) into Eq. (6.6) gives

1
x

d
dx

(xsinφ ) = K1. (6.8)

The integration of Eq. (6.8) gives

xsinφ =
1
2

K1x2
+K2. (6.9)

The two constants K1 and K2 can be determined by applying the boundary conditions, given

by the angle φ between one of the principal radius of curvature at point P and fiber axis,

φ = π/2−θ , x = x1, (6.10)

φ = π/2, x = x2, (6.11)

where θ is the contact angle. Using the relationship dz/dx = − tanφ , Carroll derived the

gradient of the drop profile as [104] ,

dz
dx

=
−(x2 +an)

√
(n2 − x2)(x2 −a2)

, (6.12)

where the reduced coordinates x = x/x1 and z = z/x1 are normalized by fiber radius x1.

n = x2/x1 is the reduced thickness and the parameter a is expressed by

a =
ncosθ −1
n− cosθ

. (6.13)

Integrating Eq. (6.12) with the above boundary condition gives the reduced wetting

length L = L/x1 as,

L = 2[aF(ϕ,k)+nE(ϕ,k)], (6.14)
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Figure 6.3: Schematic illustration of the cross-sectional geometry of a barrel-shaped drop
on a fiber.

where F(ϕ,k) and E(ϕ,k) are elliptic integrals of the first and second kind, respectively.

The parameters of elliptic integral ϕ and k are given by

sin2
ϕ =

n2 −1
n2k2

, k2
=

n2 −a2

n2
. (6.15)

The reduced drop volume V =V/x3
1 can be obtained from the integral of circular cross

section area lying between ±L/2, and subtraction of the fiber volume,

V =
2πn

3
[(2a2

+3an+2n2)E(ϕ,k)−a2F(ϕ,k)+ 1
n

√
(n2 −1)(1−a2)]−πL. (6.16)

Laplace pressure ∆P = ∆P(x1/γ) in the reduced form is calculated by

∆P =
2(n− cosθ )

n2 −1
(6.17)

Therefore, it is possible to evaluate the contact angle θ by measuring drop volume and

wetting length using Eq. (6.14) and (6.16). Unlike the complete wetting on flat substrate,

where the Laplace excess pressure can be reduced to zero by increasing R1 and R2, the two
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Figure 6.4: The normalized droplet radius n as a function of drop volume V measured in
simulations (symbols) agree with the analytical calculation (lines).

radii of curvature cannot be increased simultaneously for the barrel shaped droplet. How-

ever, the Laplace excess pressure in Eq. (6.1) can still be reduced for the barrel shaped drop

by changing the sign of one radius of curvature R2 relative to the other. This indicates that

there exists an inflection point on the profile of barrel drop at where one of radius of curva-

ture changes in sign. The maximum of dz
dx is obtained at the inflection point. According to

Eq. (6.12), the position of dz
dx ∣max is x1,2 = ±

√
an or x = 0. The inflection point must occur

somewhere between x1 and x2, suggesting that x =
√

an > 1. Solving this inequality gives

the minimum value of n [211],

nmin =
1+ sinθ

cosθ
. (6.18)

Fig. 6.4 shows the dependence of reduced thickness n on barrel-shaped drop volume

V . We plot the reduced thickness n calculated from LB simulations along with the ana-
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lytical prediction from Eq. (6.16). The simulation results show excellent agreement with

the theoretical value over the range the liquid volume and fiber contact angle. It can be

seen that the deviation from analytical solution slightly increases for small liquid volume.

This deviation may be due to the fact that inflection angle is not considered in Carroll’s

formulation. The inflection angle is larger than equilibrium contact angle, which implies

an increase in the reduced thickness n.

We compared the contour of barrel droplet obtained from experiments with simulation

results in Fig. 6.5. As we described in the previous section, contact angle hysteresis is

not considered in the numerical simulation due to the smoothness and chemical homogene-

ity of fiber surface. However, the effect of contact angle hysteresis cannot be ignored in

experiments. In Fig. 6.5, the advancing contact angle is θA = 43.8° and the receding con-

tact angle is θR = 33.7°. During the transition from clam-shell to barrel drop, the liquid is

spreading on the bottom and retracting on the top of the fiber. Therefore, the liquid contact

angle on the bottom is the advancing contact angle. Here in Fig. 6.5(a), the equilibrium

contact angle of fiber used in simulation is 43.2°, close to the advancing contact angle. The

droplet morphology obtained from simulation follows the contour (red line) of experimen-

tal result on the bottom of the fiber, suggesting that the droplet shape can be determined

accurately from simulation for the specified contact angle. Owing to the fact that contact

angle hysteresis being ignored in simulation, the simulated barrel drop is always axisym-

metric with respect to the cylinder axis. Thus, it deviates from experimental contour on the

top. In this case, the drop volume in simulation is V = 11.17, larger than that in experiment

V = 10.94. In Fig. 6.5(b), we compare the droplet shape on a fiber of equilibrium contact

angle θ = 33.8° with the experimental image. With the same reduced thickness n = 5.75,

the contact angle formed by the barrel drop is slightly larger than the receding contact an-

gle. We also compared the contour of droplet with the same volume as experiment in Fig.

6.5(c). The fiber contact angle in simulation is the same as advancing contact angle. It can

112



be seen that the reduced thickness n on the bottom part is smaller than that of experiment

due to the asymmetry of experimental result.

Figure 6.5: Comparisons of barrel droplet contour between experiment and simulation. The
fiber radius, drop volume and mean reduced thickness (n = D/2, where D is the barrel drop
diameter) in experiment are R f = 40µm, V = 10.94 and n = 6.21. The droplet contour in
experiments are indicated by red lines. Volume and reduced thickness (V ,n) in simulations
are (a) (11.17,6.67), (b) (9.80,5.75), and (c) (10.95,6.41)

6.3.2 Effect of initial perturbation

To investigate the effect of drop non-sphericity, we consider sinusoidal and random noise on

drop initial shape. Fig. 6.6(a) and (b) shows the simulation snapshots of the time evolution

of droplet shape with sinusoidal noise and Perlin noise, respectively. The initial droplet

radius is 42 lattice sites and fiber contact angle is 24.5°. For the sinusoidal perturbation,

the amplitude h and angular speed λ are 5 and 6, respectively. For the Perlin noise, the

scalar value which characterizes the variation of drop radius is generated in the range of

(−5,5). The three phase contact line motion can be observed in Fig. 6.6. For both types of

perturbations, the deformed droplets have quite different Laplace pressure initially due to

the local variation of radii of curvature, and quickly relax towards an approximate spherical

drop under the Laplace pressure difference, followed by the spreading on the fiber. The

simulation results shows that final equilibrium conformations are not affected by the initial

perturbation. Fig. 6.7 compares the dependency of reduced thickness n on drop volume V

for equilibrium morphology of barrel drop and clam-shell. Drop volume is slightly different
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due to the initial perturbation on drop shape. However, the reduced thickness n is very close

and follows the same trend for both equilibrium morphology.

Figure 6.6: Simulation snapshots of the droplet relaxation towards the smooth surface for
(a) sinusoidal and (b) random perturbation.

Figure 6.7: Comparisons of reduced thickness n in equilibrium between smooth spherical
drop and droplets with sinusoidal and random perturbations. The contact angle is 24.5°.

6.3.3 Transition from barrel-shaped to clam-shell drop

We now focus on the wetting behavior of the wrapping-around droplet during equilibration.

Fig. 6.8 (a) shows a sequence of simulation snapshots for droplet with volume V = 4.13

roll-up on a fiber under the effect of surface tension. The contact angle of the fiber is
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49.5°. Carroll [209] investigated the “roll-up” process of droplets from the experiments of

solubilization of an oil drop attached to a fiber. The transition from barrel drop to clam-shell

was shown during the solubilization of oil drop by an aqueous surfactant, accompanied by

the reduction of drop volume. We observe the similar roll-up process of barrel drop from

time sequence t = 1568.0 to t = 7840.0. The barrel drop becomes non-axisymmetric after

t = 1568.0 and move up to the upper surface of fiber until it finally evolves into a clam-shell

conformation. On the other hand, for the larger droplet with volume V = 5.06, Fig. 6.8(b)

shows the spreading motion of droplet along fiber axis, and it remains the barrel shaped

until reaches the steady state.

Figure 6.8: Simulation snapshots of the time evolution of droplets shape using wrapping
around initial configuration. (a) Transition from a barrel drop to a clam-shell drop. Drop
volume and fiber contact angle are V = 4.13, θ = 49.5. (b) The spherical drop evolves into
a barrel-shaped drop for V = 5.06. The right panel (c) shows the time evolution of reduced
thickness and the Laplace pressure of the droplet. The inserted images show the roll-up
process of droplet with volume V = 4.13 at time t1 and t2.

To explain the roll-up process, we plot the corresponding time evolution of reduced

thickness n and reduced Laplace pressure ∆P(R f /γ) in Fig. 6.8 (c). Due to the spreading

of droplet, n decreases in the early stage. For the relatively small droplets (V = 4.13 and
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4.37), n becomes less than the minimum value nmin = 2.71 determined from Eq. (6.18) at

some moment, indicating that the inflection point vanishes in the profile of a barrel drop.

Therefore, it becomes unstable and starts moving off the fiber, which results in the increase

of n. At the bottom of the fiber, thickness of liquid film reduces and the film breaks in

the time interval between t1 and t2, as illustrated in Fig. 6.8 (c). We notice the sudden

change in Laplace pressure due to the liquid film breakup. Once it approaches a clam-shell

conformation, there is a small reduction in n during the relaxation towards equilibrium.

Figure 6.9: (a) Schematic for the free body diagram analysis. The barrel droplet is mirror
symmetric with respect to plane z = 0 with the z-axis parallel to the fiber axis. By making an
imaginary cut at the droplet symmetric plane perpendicularly to the fiber axis, one part of
the droplet is replaced by an equivalent system of forces acting on the droplet cross-section
at the cut. (b) Time evolution of the total force acting on the cut-plane for droplet of volume
V = 7.57, 5.92 and 5.06.

The equilibration towards a barrel shape can also be illustrated by the force balance

analysis. Fig. 6.9 (a) shows the free body diagram for a barrel drop on a fiber. We can

make an imaginary cut at the droplet center perpendicularly to the fiber, and replace one

part of the droplet with the equivalent forces acting along the z-axis. Based on the free
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body diagram in Fig. 6.9 (a), the total force F in z-direction can be described as,

F = Flg +Fsl −Fp −Fsg, (6.19)

where Fp = ∫A ∆PdA is the pressure resultant acting on the cross-section area enclosed by the

fiber and drop surface. Here, ∆P = Pin −Pout is the pressure difference between each facets

of area dA inside the drop and the pressure outside the drop. Flg = γPd is the force due to the

surface tension at the droplet surface, where Pd = 2πRd is the drop perimeter. Fsl = γslPf is

the force due to surface tension γsl at the solid/liquid interface, where Pf = 2πR f is the fiber

perimeter. Fsg = γsgPf is the force due to surface tension γsg at the solid/gas interface. We

can calculate Fsl −Fsg = −γ cosθPf from Young’s equation. Thus, Eq. (6.19) is rewritten

as:

F = γ(Pd − cosθPf )−∫
A

∆PdA. (6.20)

Fig. 6.9(b) shows the transient net force calculated from Eq. (6.20). The force evolution

exhibits fast rise to a maxima in the early stage, followed by a long, gradual decrease to

zero. The large force corresponds to the quick deformation of droplet in the early stage.

As is evident from Fig. 6.9(b), as the drop volume increases, the magnitude of force also

increases.

6.3.4 Transition from clam-shell to barrel-shaped drop

We next consider the final shape of the drop when a spherical drop is deposited on fiber.

The fiber contact angle θ and drop volume V are varied in the simulation. In Fig. 6.10,

the fiber contact angle is 24.5°. Inspection of the final shape of the drop reveals that both

barrel-shaped drop and clam-shell can be reached, as illustrated in Fig. 6.10 (a) and (b).

The time evolution of drop shape shows a rapid deformation of the menisci driven by the

excess pressure in the initial stage, followed by the downwards motion of the liquid. This
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Figure 6.10: Simulation snapshots of the time evolution of droplets shape using sitting-on
initial configuration. (a) The spherical drop evolves into a clam-shell for V = 5.72. (b)
Transition from the clam-shell to barrel drop. Drop volume and fiber contact angle are
V = 9.68, θ = 24.5. The right panel (c) shows the time evolution of reduced thickness and
the Laplace pressure of the droplet. The inserted images are the bottom view of drop-on-
fiber at time t1 and t2 for V = 9.68.

is illustrated by a decrease of the reduced thickness n and variation of Laplace excess

pressure as shown in Fig. 6.10 (c). For the relatively small droplets (V = 5.72 and 6.73),

the equilibrium state of clam-shell is reached. However, the larger droplets (V = 9.10 and

9.68) can adopt the equilibrium barrel shape, as shown in Fig. 6.10 (b). The transition

between conformations at t = 294.0 and t = 588.0 is of the most interest. The inserted

images in Fig. 6.10 (c) are the bottom view of the droplet at t1 and t2, which shows that the

contact lines separated by the fiber approach each other from the two sides. Eventually, the

contact lines come together, and the droplet can fully wrap the fiber and evolve towards the

axisymmetric barrel shape.

The similar clamshell-to-barrel transition can be observed in droplet deposition exper-

iments. Fig. 6.11 shows the morphological transition on a fiber with advancing/receding

contact angle of 35.3°/27.1° by increasing the volume of the droplet. During the time in-
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terval of 20 ∼ 40s, the droplet volume exceeds the critical volume for clamshell-to-barrel

transition. Therefore, the transition from clam-shell to barrel can be seen after t = 20s.

Figure 6.11: Snapshots of transition from clam-shell to barrel-shaped drop in the deposi-
tion experiment. Droplet volume increases gradually by depositing small droplets on the
fiber. The advancing/receding contact angle of the fiber is 35.3°/27.1°. (Image courtesy of
Yueming Sun)

To better understand the mechanism driving this morphological transition, we examined

the instantaneous flow field of droplets with volume V = 9.68 and 5.72 in Fig. 6.12 (a) and

(b), respectively. Fig. 6.12 (a) and (b) show the velocity field in xy plane, perpendicular to

the fiber axis z. In the initial stage, droplet spreads along fiber axis (z direction) driven by

capillary pressure, resulting in the motion of fluid particles towards the fiber. At the second

stage, the internal flow in the region near the top of droplet moves changes direction and

particles move upwards. While the contact line connects at the bottom for the larger droplet

(V = 9.68), leading to the net downward velocity of the droplet. However, for the smaller

droplet (V = 5.72), the magnitude of downward velocity is relatively small and the contact

lines do not meet at the bottom. Therefore, we observed the net upward velocity at the

second stage (t = 294.0) in Fig. 6.12 (b). Finally, when the droplet is in equilibrium, the

velocity vanishes everywhere, except for small currents near the interface, which is the

spurious currents in the multi-phase lattice Boltzmann model.
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Figure 6.12: Instantaneous flow field in the xy plane of mirror symmetry for (a) transition
from clam-shell to barrel drop with volume V = 9.68, (b) clam-shell drop remains in its
original shape for V = 5.72. The drop shape is overlaid with the flow field.

6.3.5 Morphology diagram

To determine the critical condition for transitions between the barrel and clam-shell droplets,

in Fig. 6.13 (a) and (b) we summarized the simulation results in the parameter space of re-

duced thickness n and contact angle θ . In Fig. 6.13(a), we decreased the droplet volume

at a fixed contact angle, until it crossed the critical volume and the droplet spontaneously

adopts a clam-shell shape. Fig. 6.13(c) shows the corresponding volume change. As the

volume decreases, the reduced thickness n decreases until a critical value, below which the

clam-shell is obtained. The critical value of n increases with contact angle. The polyno-

mial curve fitting between critical n and contact angle gives the boundary below which no

barrel drop can be found when we start from a pierced sphere. We further compared the

phase boundary evaluated from LB simulation with fiber coating experiments. Due to the

Plateau–Rayleigh instability, the barrel-shaped and clam-shell drops are formed from the

liquid film. The morphological transition starts with the axisymmetric conformation, and is

driven by the same mechanism as barrel-to-clamshell transition in LB simulation. There-

fore, the critical value of n shows good agreement between experiments and simulation,

both aligned with the inflection condition in Eq. (6.18). The critical volume V 1/3/R f for

barrel-to-clamshell transition is indicated by the curve fitting in Fig. 6.13 (c). The limited

condition of spherical drop is considered in Fig. 6.13 (a). If the barrel drop adopts the

spherical surface for a given contact angle, the reduced thickness can be evaluated from the

geometrical relation as,

n =
1

cosθ
. (6.21)
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The drop shape is no longer symmetric with respect to fiber axis below this value, thus

determining the absolute minimum of n, shown as the dotted line in Fig. 6.13 (a).
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Figure 6.13: The initial configuration of (a, c) pierced spherical drop and (b, d) deposited
spherical drop gives the contact angle, critical reduced thickness n, and droplet volume
V 1/3/R f at which a change of conformation of a drop occurs. The symbol □ and ◯ de-
note clam-shell and barrel drop determined from LB simulation. ⧫ denotes the critical n
and volume for barrel-to-clamshell transition determined in fiber coating experiments. ●
denotes the critical n and volume for clamshell-to-barrel transition determined in droplet
deposition experiments. The dashed line is inflection condition and the dotted line shows
the condition when a barrel drop becomes spherical. (e) and (f) The adhesion energy of
equilibrium shape using a initial state of pierced spherical drop and deposited spherical
drop.
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We next focused on the critical condition for clamshell-to-barrel transition in Fig. 6.13

(b) and (d). We placed spherical droplets on a fiber and varied the drop volume incremen-

tally at a given contact angle, until the drop transforms into a barrel-shaped drop. As shown

in Fig. 6.13 (b) and (d), the phase boundary above which no clam-shell can be found is

determined from polynomial curve fitting. We noticed that the phase boundary does not

follow the inflection condition as in Fig. 6.13 (a), which can be explained by the different

mechanism between clamshell-to-barrel and barrel-to-clamshell transition. The critical n

increases significantly with contact angle, so that no barrel drop can be observed for contact

angle larger than 40°. Droplet deposition experiment in Fig. 6.11 shows a similar transi-

tion behavior from clam-shell to barrel drop. The experimental results also give a dramatic

increase of critical n at θ = 43.8°, and no barrel drop can exist beyond this contact angle.

However, the critical value of n is much lower than that determined from simulation for

smaller contact angle (θ < 40°). One possible reason for this deviation is that viscosity

ratio of the two phases are chosen to be 1 in the LB simulation, significantly different from

that of experiments. The speed of contact line motion is affected by the viscosity ratio of

the two fluids, and might have an influence on the coalescence of interface at the bottom of

fiber, as illustrated in the previous section. The effect of viscosity ratio on the dynamics of

morphological transition will be investigated in the future work.

Optimizing the collection efficiency of aerosol droplets by fibers has been the objective

for many researchers and engineers. The morphology adopted by droplets in the fibrous

mats is a key factor for capturing the droplets. The three-phase contact line and contact area

of the droplet is enhanced for the barrel shape configuration and so as the adhesion between

hanging droplets and the fiber, whereas the clam-shell configuration is undesirable due to

the smaller adhesion. The adhesion energy of the droplet-fiber system can be expressed as

W = (γsl − γsg − γlg)Asl, (6.22)

123



where γsl , γsg and γlg are the interfacial tension of solid-liquid, solid-gas and liquid-gas

interface, and Asl is the interfacial area between solid and liquid. The above expression can

be rewritten in the dimensionless form as

W

γR2
f

=
Asl

R2
f

(1+ cosθ ). (6.23)

Here, we calculated the interfacial area Asl for both barrel drop and clam-shell morphology

by extracting the φ = 0 isosurface, and then integrating the lattice data over a cylindrical

clip plane. Fig. 6.13 (e) and (f) show the dependency of adhesion energy on contact angle

using the two initial configurations. The critical value that separates barrel and clam-shell

region is specified by the dashed line. As expected, the adhesion energy of barrel drop is

higher than that of clam-shell, and increases with drop volume. For the initial configuration

of deposited spherical drop, we can observe a gap between clam-shell and barrel drop re-

gion. The gap expands for larger fiber contact angle, implying that higher external energy

is required to transform from clam-shell into the barrel shaped drop. From this point, a high

magnitude of adhesion energy is preferred since it indicates a better resistance of droplet

detachment from fiber surface. This measurement provides new insights into the design of

fibrous filter in terms of the collection efficiency of a single fiber. During the filtration of

aerosol droplets, the liquid volume increases due to the coalescence and accumulation of

small droplets on fiber surface, therefore we can expect the clamshell-to-barrel transition.

And higher contact angle is favored because the adhesion energy of barrel drop is much

larger once the clamshell-to-barrel transition happens. Since this transition cannot be ob-

served for larger contact angle (θ > 45°) without external forces, a contact angle θ ≈ 40°

would be the optimal choice.

As shown in Fig. 6.13 (c) and (d), the droplet morphology changes monotonically with

volume, so we combined the simulation results from these two plots in the morphology
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Figure 6.14: Morphology diagram of drop on a fiber in the parameter space of drop volume
and contact angle.

diagram in Fig. 6.14, using the dimensionless droplet volume and contact angle as the pa-

rameters. The droplet volume is a parameter that can be easily determined in experiments,

and allows us to predict the equilibrium configuration on a fiber. The final equilibrium

shapes observed through the simulations are indicated by symbols (□ for clam-shell, ◯ for

barrel drop). The morphology diagram can be divided into three regions: clam-shell only,

barrel drop only and the coexistence region between clam-shell and barrel drop. In the

clam-shell only region (yellow shaded region), only clam-shell droplets can exist. In the

barrel only region (green shaded region), only barrel drop can be found. In the coexistence

region, both barrel drop and clam-shell can exist, depending on the initial configuration.

The results from coating experiments are presented and show agreement with LB simu-

lation in terms of the phase boundary of clam-shell only region. The sharp increase in

the boundary of barrel drop region indicates that the clam-shell drop on a fiber with large

contact angle tends to remain in its original shape when its volume is gradually increasing.

The boundary between clam-shell only and coexistence region determined by Chou et
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al. [212] follows the inflection condition, and is very close to our LB simulation and exper-

imental results. Surface Evolver (SE) is usually used for solving the static equilibrium fluid

interface. While the MCMP lattice Boltzmann model solves the multi-phase fluid dynamics

equations, and the fluid interface reaches a steady state. The agreement in the phase bound-

ary determined using these two approaches suggests that the barrel-to-clamshell transition

is not time-dependent and only driven by energy minimization. However, the boundary

between barrel only and coexistence region determined using SE simulation (dotted line) is

higher than that of LB simulation and deposition experiment. As we described in the previ-

ous section, the three-phase contact line motion is critical for clamshell-to-barrel transition,

which is not taken into account in SE simulations.

6.4 Conclusions

In this chapter, we performed the numerical simulation of droplets interaction with a fiber

using multi-component lattice Boltzmann methods and compared the results to analytical

model and experimental study. We have mainly focused on the morphological transition

of droplets in the absence of gravity. Droplets on a fiber can take the axisymmetric barrel

shape for the case of larger volume and small contact angle. In contrast to this case, non-

axisymmetric clam-shell shape is preferred when the droplet volume is small or contact

angle is large.

To understand the criterion of transition between the two morphologies, we probed two

different initial drop conformations: a spherical drop pierced by a fiber and a spherical drop

deposited on a fiber. In the first case, the barrel-to-clamshell transition is found by decreas-

ing the drop volume gradually. The roll-up process observed in simulations is analogous to

the formation of clam-shell drop from liquid film in the fiber coating experiments. On the

other hand, the clamshell-to-barrel transition is simulated by placing a spherical drop on a

fiber.
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Although contact angle hysteresis is not considered in the simulations, the profile of the

barrel-shaped drop obtained from simulations shows agreement with experiments for the

given advancing contact angle, thus validate the accuracy of LB simulations. The agree-

ment of critical condition for morphological transitions supports the physical model of

inflection condition. Herein, we developed an integrated experimental, analytical and nu-

merical protocol to probe wetting behavior on fibers. Through the analysis of adhesion

energy and construction of morphological diagram, the stable region of barrel and clam-

shell droplet is determined and can provide guidance to the fibrous filter design in terms of

the fiber surface wettability.
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CHAPTER 7

CONCLUSION REMARKS AND FUTURE WORK

This thesis sought to contribute to the design of fibrous materials in engineering applica-

tions. A computational framework to characterize the transport and wetting properties of

fibrous media is presented.

This study starts with random fiber network reconstruction, characterization of pore

network. We utilized an efficient algorithm to extract the pore network from both ordered

and disordered fibrous media to investigate the relation between the structure properties

and flow behavior. The selected REV size for the inhomogeneous fibrous media is justified

by statistical analysis of pore network properties. We have investigated the reliability of

predicting pore size distribution of nonwovens from analytical model. The effect of mean

pore size on effective pore space properties has been systematically studied.

Next, we present the lattice Boltzmann simulations of pressure driven flow in the gen-

erated fiber mats, where the permeability and tortuosity are measured based on the steady-

state flow field in the porous media. The simulation data are fitted to semi-empirical rela-

tions for permeability and tortuosity as a function of porosity. This allows us to obtain the

values of several empirical coefficients and scaling factors. The workflow employed in the

current work is promising to obtain macroscopic transport properties when dealing with

more complex porous media with polydisperse fiber diameter.

In Chapter 6, we have investigated the morphology transition of droplet deposited on a
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fiber using a pseudopotential lattice Boltzmann model. Quantitative comparison between

simulated drop profile with experimental results and analytical description validates the

accuracy of LBM simulation and demonstrates that LBM simulations can reproduce the

morphological bistability reported by the Surface Evolver simulation. We constructed the

complete morphology diagram in the parameter space of drop volume and fiber contact

angle.

This dissertation sets up the fundamentals for further study of fibrous materials com-

posed by complex-shaped fibers, including theoretical methodology and numerical simu-

lation protocols. The framework developed in this study provides the design principles of

fiber-based filters with controlled transport properties and wettability.

Future work

• The pseudopotential Shan-Chen model used in this work is limited to a viscosity

ratio of about 5, preventing us from comparing the dynamics of wetting/dewetting

phenomena with experiments for water/air system. A few strategies are available to

achieve the large viscosity ratio. For example, using different equation of state to

increase the density contrast, or using MRT for fluid mixtures with large viscosity

ratio.

• The interface width in the Shan-Chen model sets the limitation of minimum droplet

radius that can be simulated. We recommend the implementation of phase-field-

based or free energy lattice Boltzmann method to overcome this drawback.

• The comparison between numerical simulation and experiments could be improved

by introducing the contact angle hysteresis into the multiphase model.

• The Cassie state of droplet deposited on the topographically structured surface con-

sisted of fiber arrays is of interest in the future.
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Boom, R. M. Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped
Microchannel. Langmuir 22, 4144–4152 (2006).

190. Patzek, T. W. & Silin, D. B. Shape factor and hydraulic conductance in noncircular
capillaries. I. One-Phase Creeping Flow. J. Colloid Interface Sci. 236 (2000).

191. Pan, C., Luo, L.-S. & Miller, C. T. An evaluation of lattice Boltzmann schemes
for porous medium flow simulation. Computers & Fluids. Proceedings of the First
International Conference for Mesoscopic Methods in Engineering and Science 35,
898–909 (2006).

192. Toschi, F. & Succi, S. Lattice Boltzmann method at finite Knudsen numbers. EPL
69, 549 (2005).

193. Basak, P. Non-Darcy Flow and its Implications to Seepage Problems. Journal of the
Irrigation and Drainage Division 103, 459–473 (1977).

194. Gavin, L. Pre-Darcy Flow: A Missing Piece of the Improved Oil Recovery Puzzle?
in (Society of Petroleum Engineers, 2004).

195. Matyka, M., Khalili, A. & Koza, Z. Tortuosity-porosity relation in porous media
flow. Phys. Rev. E 78, 026306 (2008).

196. Duda, A., Koza, Z. & Matyka, M. Hydraulic tortuosity in arbitrary porous media
flow. Phys. Rev. E 84, 036319 (2011).

197. Koponen, A., Kataja, M. & Timonen, J. Tortuous flow in porous media. Phys. Rev.
E 54, 406–410 (1996).

198. Archie, G. E. The Electrical Resistivity Log as an Aid in Determining Some Reser-
voir Characteristics. Transactions of the AIME 146, 54–62 (1942).

199. Ho, F.-g. & Striender, W. A variational calculation of the effective surface diffusion
coefficient and tortuosity. Chem. Eng. Sci. 36, 253–258 (1981).

200. Tsai, D. S. & Strieder, W. Effective conductivities of random fiber beds. Chem. Eng.
Commun. 40, 207–218 (1986).

142

https://dx.doi.org/10.24433/CO.6709443.v1


201. Gebart, B. Permeability of Unidirectional Reinforcements for RTM. J. Compos.
Mater. 26, 1100–1133 (1992).

202. Clague, D. S., Kandhai, B. D., Zhang, R. & Sloot, P. M. A. Hydraulic permeability
of (un)bounded fibrous media using the lattice Boltzmann method. Phys. Rev. E 61,
616–625 (2000).

203. Ghanbarian, B., Hunt, A., P. Ewing, R. & Sahimi, M. Tortuosity in Porous Media:
A Critical Review. Soil Sci. Soc. Am. J. 77, 1461 (2013).

204. Adler, P. Fractal porous media III: Transversal Stokes flow through random and
Sierpinski carpets. Transp. Porous Media 3, 185–198 (1988).

205. Happel, J. & Brenner, H. Low Reynolds number hydrodynamics: with special appli-
cations to particulate media (Springer, 2012).

206. Tomadakis, M. M. & Robertson, T. J. Viscous Permeability of Random Fiber Struc-
tures: Comparison of Electrical and Diffusional Estimates with Experimental and
Analytical Results. J. Compos. Mater. 39, 163–188 (2005).

207. Vallabh, R., Banks-Lee, P. & Seyam, A.-F. New Approach for Determining Tortu-
osity in Fibrous Porous Media. Journal of Engineered Fabrics & Fibers (JEFF) 5,
7–15 (2010).

208. Sousa, A. C. M. & Nabovati, A. LBM mesoscale modelling of porous media in Ad-
vanced Computational Methods in Heat Transfer X I (WIT Press, Maribor, Slovenia,
2008), 59–68.

209. Carroll, B. J. Equilibrium conformations of liquid drops on thin cylinders under
forces of capillarity. A theory for the roll-up process. Langmuir 2, 248–250 (1986).

210. Brakke, K. A. The surface evolver. Exp. Math. 1, 141–165 (1992).
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Appendix A

Supporting Information for Chapter 4

This appendix describes the statistical analysis of pore network properties. To investigate

the role of random disorder in fibrous porous media, we characterize the morphology of

nonwoven fiber membranes in terms of the statistical distribution of pore and throat sizes

and their connectivity.

To ensure that the generated geometries are large enough to represent the properties

of macroscopic random porous media, it is important to determine the size of the repre-

sentative volume element (RVE) from the selected geometrical and physical properties. In

previous work, Huang et al. [54] and Brun et al. [184] have determined the RVE size by

setting a threshold of 5% on the relative standard deviation of the local porosity and spe-

cific surface area of fixed-size samples. Here we randomly choose 27 sub-samples with

identical porosity and fiber diameter to calculate the standard deviation of the pore diame-

ter Dp, throat diameter Dt , throat length Lt , and coordination number nc. As seen in Table

A.1, there is a small difference in the mean pore and throat sizes for the different sample

sizes L = 200a and L = 400a. The standard deviation of the mean values between samples

is around 5% for the smaller samples and decreases to about 2% for the larger samples. In

view of the cubic increase of computational demands with system size, we assume that an

RVE of L = 200a is sufficient to reduce the impact of system size on the pore space proper-

ties. This is also supported by the histograms of the pore and throat size distribution shown
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Table A.1: Statistical properties of pore networks extracted from random fibrous media
using the SNOW algorithm. The table lists the mean number of pores ⟨Np⟩, throats ⟨Nt⟩,
connectivity ⟨nc⟩, mean pore diameter ⟨Dp⟩, throat diameter ⟨Dt⟩ and throat length ⟨Lt⟩,
along with the respective standard deviation. Each column shows mean values and standard
deviation over 27 randomly generated samples. Based on the standard deviation, a domain
size of (200a)3 is considered sufficient as a representative volume element.

φ = 0.60 φ = 0.70 φ = 0.80
L = 200a L = 400a L = 200a L = 400a L = 200a L = 400a

⟨Np⟩ 138.52 874.85 98.30 595.30 60.52 346.15
⟨Nt⟩ 355.30 2,652.07 271.52 1,999.85 175.44 1,262.81
⟨nc⟩ 5.15 6.07 5.54 6.72 5.81 7.30

Throat-to-Pore ratio ⟨Nt/Np⟩ 2.56 3.03 2.76 3.36 2.88 3.64
⟨Dp⟩/a 16.12 17.64 18.53 20.99 23.28 25.70
⟨Dt⟩/a 15.34 15.22 19.15 19.20 25.77 25.93
⟨Lt⟩/a 31.86 33.46 36.64 39.23 44.18 49.52

Standard deviation of ⟨nc⟩ [%] 4.02 1.41 3.67 1.82 5.33 3.21
Standard deviation of ⟨Dp⟩ [%] 5.02 2.49 4.96 2.27 4.10 3.16
Standard deviation of ⟨Dt⟩ [%] 4.55 1.79 4.87 2.81 4.68 2.90
Standard deviation of ⟨Lt⟩ [%] 5.67 1.75 4.74 2.18 6.05 2.81
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Figure A.1: Pore size distribution (a) and throat size distribution (b) obtained from the pore
networks of random fibrous media with porosity 0.60, 0.70 and 0.80. Solid lines represent
a gamma distribution fitted to the histograms. The distribution shows a similar shape for
system sizes of 200 a and 400 a.
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Figure A.2: Cumulative pore size distribution in random fibrous media with porosity
φ = 0.60 (a) and φ = 0.70 (b). The cumulative distribution shows good agreement with
theoretical predictions provided the nonuniform distribution of fiber angles (shown in the
insets) is taken into account.

in Fig. A.1, where the system size shows little effect on the measured size distribution.

The statistical properties of the pore-networks extracted using the SNOW algorithm for

the randomly generated fibrous membranes are given in Table A.1. Each column shows the

mean values over 27 different samples and the standard deviation between samples. The

pore-networks comprise about three times as many throats as they have pores, with a slight

increase of the ratio towards higher porosity along with a higher coordination number. In

the SNOW algorithm, throats are found by identifying overlapping regions after dilating

neighboring pores. The similar values of pore and throat diameters indicate that the local

thickness of the pore size does not vary considerably and there are no significant constric-

tions between pores. Indeed, the throat length calculated as the mean distance between

pore centers is approximately twice the mean pore diameter. This suggests that in the fi-

brous porous media considered here, most pores are directly connected to each other and

the distinction between pores and throats is less pronounced compared to other types of
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porous media.

The histograms and the fitted gamma distribution in Fig. A.1 show that increasing the

porosity leads to a broadened distribution of pore and throat sizes. While the most probable

pore size does not vary much, the increased porosity has an effect on the heterogeneity of

the pore space and leads to a larger mean pore size. The gamma distribution fits the pore

size distribution well but overpredicts the frequency of small throats, which is another

indication of the absence of significant restrictions between pores.

Fig. A.2 shows the cumulative distribution of pore sizes for selected porosity and sam-

ple size. The histograms of the fiber orientation angles are shown in the insets. Compari-

son with the theoretical curves calculated from Eq. (2.1) and Eq. (2.2), respectively, show

that the Faure and Lombard model predict a slower increase of the cumulative distribution,

which indicates that in the samples generated by GeoDict, the frequency of smaller pores is

higher than predicted by the models. This can be explained by the non-uniform distribution

of fiber orientation angles. According to Rawal’s model, the specific length increases with

the fiber orientation parameter K j. Using Eq. (2.3), we obtain a more accurate prediction

of the increase of the cumulative frequency of pore sizes. At higher porosities, however,

the model still underpredicts the frequency of small pores in the generated samples which

may affect predictions of macroscopic properties that are sensitive to the actual pore size

distribution in fibrous porous media.
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