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ABSTRACT 
 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide in 

males (XY) and females (XX). Prior to menopause, females have a relative protection 

against serious cardiac pathologies compared to age-matched males. This phenomenon is 

widely attributed to the ovarian hormone estrogen. Unfortunately, hormone replacement 

therapy to maintain estrogen levels in postmenopausal females has overall adverse 

effects, and it is not recommended for long-term use or as a preventative measure for 

eCVDs. A major driver of CVDs, specifically heart failure, is cardiac fibrosis: the 

continued buildup of scar tissue that reduces the heart’s ability to pump. There are 

currently no FDA-approved therapies to specifically target cardiac fibrosis, and the five-

year survival rate for patients diagnosed with heart failure is typically under 50%. 

 Recent studies exhibit the potential of estrogen to decrease the fibrotic response 

of cardiac fibroblasts, the cells responsible for the progression of fibrosis. However, most 

of these studies were conducted on tissue culture plastic (TCP) and/or with pooled male 

and female neonate rat CFs, limiting their clinical relevance. The goal of this dissertation 

is to expand our understanding of the sex-specific signaling of estrogen within CFs using 

in vitro and in silico techniques to identify potential sex-specific dimorphisms in 

regulatory signaling that will allow for the creation of novel treatments of cardiac fibrosis 

that mimic estrogen’s therapeutic abilities while negating its adverse systemic effects.  

 Biological sex impacts the presentation, prognosis, and severity of many 

conditions. Yet, females have been historically underrepresented in clinical trials and 

experimental studies, resulting in health inequities that disproportionately affect women. 
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Literature has shown that women are more likely to include female samples in their study 

design and report sex-disaggregated data. However, they have been consistently 

underrepresented in STEM fields. Increasing the number of female scientists will aid in 

shrinking the gender data gap, which will help elucidate our understanding of the sex-

specific differences of various diseases and biological functions. In addition to my in 

vitro and in silico initiatives, I have developed in classroom techniques utilizing inclusive 

pedagogy strategies that specially target female students with an aim to increase their 

STEM self-efficacy and identity. These in vitro, in silico, and in classroom techniques are 

designed with the intention of fostering a more inclusive and equitable approach to 

healthcare.  
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 Study Significance  

Cardiovascular disease is the leading cause of death in both males (XY) and females 

(XX). However, it has been widely observed that females have a relative protection against 

serious cardiac problems prior to menopause, likely due to the ovarian hormone estrogen. 

One of the leading contributors to heart failure is cardiac fibrosis, a continued buildup of 

extracellular matrix driven by cardiac fibroblasts (CFs) in response to both biochemical and 

biomechanical stimuli. There are currently no therapies approved to specifically target 

cardiac fibrosis, but there have been many studies that exhibit the potential of estrogen to 

decrease the fibrotic response of CFs. Notably, hormone replacement therapy (HRT) has 

been correlated to a decrease in mortality due to fibrotic-induced heart failure in 

postmenopausal females. Unfortunately, studies also show that HRT can elevate other risk 

factors, including cancer and stroke, and is currently not recommended for long-term use. 

 Recent literature has elucidated the role of estrogen in CF signaling in responses to 

biochemical stimuli; however, the majority of these studies were conducted on tissue 

culture plastic (TCP) and/or with pooled male and female neonate rat CFs. The goal of this 

dissertation is to expand our understanding of the sex-specific signaling of estrogen within 

CFs using in vitro and in silico techniques to identify potential sex-specific treatment 

recommendations for cardiac fibrosis that mimic estrogen’s therapeutic sec abilities while 

negating its adverse systemic effects.  

 An additional aim of this dissertation is to increase the female-specific data in the 

literature related to cardiovascular diseases (CVDs). Biological sex is known to impact the 

presentation, prognosis, and severity of many conditions, including CVDs. Unfortunately, 
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females have been historically underrepresented in clinical trials and experimental studies. 

This has resulted in many health inequities that disproportionately affect women, including 

adverse drug responses occurring at double the rate in females than in males. As there is a 

push to develop artificial intelligence that enables patient-specific diagnostic and treatment 

recommendations through precision medicine, it is imperative to increase the amount of 

female data in the literature to have robust sex-disaggregated data sets to train and validate 

these algorithms.  

  Literature has shown that female-specific data is more likely to be considered and 

reported if either the first or last author of a manuscript is female. Increasing the number of 

female scientists will aid in expediting the understanding of female-specific data in the 

literature and our overall understanding of the sex-specific differences of various diseases 

and biological functions. In addition to my in vitro and in silico initiatives, I have also 

developed in classroom techniques that specially target females who have been historically 

underrepresented in STEM with an aim to increase their self-efficacy of computational 

methods and STEM identity. The in vitro, in silico, and in classroom techniques outlined 

below are designed with the intention of fostering a more inclusive and equitable approach 

to healthcare.  

1.2 Specific Aims 

Aim 1: Test the Effects of Sex and 17 β-Estradiol on Cardiac Fibroblast Morphology and 

Signaling Activities In Vitro 

Several studies have demonstrated estrogen’s cardioprotective abilities in decreasing 

the fibrotic response of cardiac fibroblasts (CFs). However, the majority of these studies are 

not sex-specific, and those at the cellular level utilize tissue culture plastic, a substrate with 

a much higher stiffness than physiological conditions. Understanding the intrinsic 
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differences between male and female CFs under more physiologically “healthy” conditions 

will help to elucidate the divergences in their complex signaling networks. We aimed to do 

this by conducting a sex-disaggregated analysis of changes in cellular morphology and 

relative levels of profibrotic signaling proteins in CFs cultured on 8 kPa stiffness plates with 

and without 17 β-estradiol (E2). Cyclic immunofluorescent analysis indicated that there was 

a negligible change in cellular morphology due to sex and E2 treatment and that the 

differences between male and female CFs occur at a biochemical rather than structural 

level. Several proteins corresponding to profibrotic activity had various sex-specific 

responses with and without E2 treatment. Single-cell correlation analysis exhibited varied 

protein-protein interactions across experimental conditions. These findings demonstrate the 

need for further research into the dimorphisms of male and female CFs to develop better 

tailored sex-informed prevention and treatment interventions for cardiac fibrosis. 

Aim 2: Screen for Sex-Specific Drug Effects in a Fibroblast Network Model Integrated with 
Estrogen Signaling  

A previously developed large-scale signaling network model (SNM) of cardiac 

fibroblasts was updated to include estrogen signaling. Male, female, and averaged pooled 

SNMs were developed by varying the weighting of estrogen stimulation of its three primary 

receptors. These models were validated against over peer-reviewed studies and found to be 

77% accurate in matching simulation predictions to experimental outcomes in the literature. 

Additionally, sex-specific drug screens of 36 unique drug targets in the model were 

conducted with three experimental conditions: male, female post-menopausal, and female 

pre-menopausal. The cardioprotective effect of estrogen in the female pre-menopausal 

condition was evident; however, sex-specific differences between the male and female post-

menopausal screens were much more subtle. Several regulatory pathways were identified 

that warrant further study in understanding the divergences in male and female cardiac 
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fibroblasts signaling. Additionally, we recommend the inclusion of more patient-specific 

parameters (i.e., genomic and transcriptomic data) in future model advancement to enhance 

its ability to make sex-specific predictions.  

Aim 3: Development of Systems Biology Education Modules Utilizing Inclusive Pedagogy 

Strategies   

There has been a persistent gender and racial gap in STEM. Recruitment and 

retention of these historically marginalized individuals are crucial to ensuring that there are 

diverse design teams as a way to combat inequities in healthcare. Five systems biology 

education modules were developed with inclusive pedagogy strategies designed to foster 

STEM identity and self-efficacy regardless of previous computational experience. Each 

module lesson plan is grounded in active learning techniques and consists of an unplugged 

activity, a model tutorial, and an open-ended model advancement exercise. Modules are 

focused on various biological and disease phenomena (e.g., tumor growth, viral spread, 

allergic reaction, gene regulation, and the menstrual cycle). The modules are available on 

the lab GitHub and will be piloted with the summer 2022 cohort of Clemson’s Emerging 

Scholars program. During the piloting, we aim to assess student reception of the modules 

and investigate the use of representative problem statements (i.e., female students asked to 

model the menstrual cycle) on STEM identity, self-efficacy, and team dynamics.  

1.3 Sex and Gender Terminology 

 Health disparities due to sex and gender are often integrally related. In this 

manuscript, sex refers to biological differences due to chromosomal genetic makeup (i.e., 

male=XY and female=XX). Gender refers to the societal and behavioral factors that 

influence a human’s identity and actions (i.e., man/men= identify using he/him pronouns 

and woman/women= identify using she/her pronouns). Sex and gender will often be 
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referred to as a dichotomy throughout this manuscript. Still, we also acknowledge that for 

many patients, they are a spectrum that can result in additional complexities related to 

health care. 
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CHAPTER TWO 
 

A REVIEW OF THE LITERATURE  
2.1 Heart failure in cardiovascular diseases  

2.1.1 Current trends and statistics  

 Cardiovascular diseases (CVDs) are consistently the world’s leading cause of death, 

accounting for 1/3 of deaths worldwide1. In the United States (U.S.), an estimated 659,000 

people die of CVDs each year2. CVDs include a multitude of pathologies, including stroke, 

coronary artery disease, arrhythmia, high blood pressure, heart failure, and myocardial 

infarction (MI). Stroke and MI are typically the deadliest of these pathologies as their 

sudden onset can result in death within hours without medical treatment. However, as 

knowledge of warning signs has increased over the past several decades in the U.S., there 

have been substantial increases in patient survival rates, especially for a MI3,4. If patients are 

hospitalized and receive treatment for an initial MI, survival rates are generally reported at 

or above 90%5.  

However, the long-term survival remains low, with 1-year survival rates dropping 

by about 10%  and consistently declining in subsequent years due to the development and 

progression of heart failure (HF)- a pathologic condition in which the heart is not able to 

adequately supply blood to the rest of the body5,6. Currently, the five-year survival rate of 

HF is most often reported as 50% or less7. HF presently afflicts about 6.2 million 

Americans and was considered a cause of death in 13.4% of all deaths in 20188. Due to 

these continued increases in short-term survival rate after an initial MI coupled with rising 

rates of CVDs, rates of HF are also expected to continue to increase by 43% by 20309.  

2.1.2 Cardiac fibrosis disease progression and treatment 
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HF occurs after an initial MI due to the deposition of collagens and other 

extracellular matrix (ECM) proteins that are necessary to maintain structural stability in the 

infarct region. However, even after scar tissue has formed in the infarct area, this collagen 

deposition can continue uncontrolled resulting in excessive cardiac fibrosis. Fibrosis is 

defined as the development of fibrous connective tissue or “scar tissue” in regions that 

intrude on healthy tissue10. It most often occurs in the lungs (i.e., cystic fibrosis and 

pulmonary fibrosis), the liver (cirrhosis), the kidneys (renal fibrosis), and the heart (cardiac 

fibrosis)11. When it occurs in the heart, it can result in reduced ejection fraction because of 

left ventricle thickening and arrhythmia due to interruptions in electrical signaling due to 

the excess scar tissue12. As conditions become more pathologic, the heart must work harder 

to pump blood to the rest of the body, exacerbating fibrotic conditions.  

There are currently no FDA-approved treatments to directly target cardiac fibrosis13. 

Patients diagnosed with HF are often prescribed a cocktail of angiotensin-converting 

enzyme (ACE) inhibitors and beta-blockers which can lower blood pressure and help 

control cardiac signaling14. Although these drugs can mitigate HF symptoms, which can 

slow the progression of fibrosis, they will not reverse or completely stop continued fibrosis.  

This is especially troubling because HF can be difficult to diagnose. Although patients who 

have suffered an initial MI are routinely put on preventive treatments to slow the 

progression of HF, not all HF results from a MI. Coronary artery disease (CAD), high blood 

pressure, viral-induced myocarditis, and congenital heart defects are also common causes of 

HF. A diagnosis of HF usually requires a multitude of tests, including an electrocardiogram 

(ECG), blood test, chest X-Ray, and stress test that are often not conducted until the disease 

has advanced to a stage where symptoms are interfering with a patient’s everyday life.  
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It can be challenging to predict which patients are most at risk of developing severe HF. 

Common risk factors include smoking and alcohol abuse, diabetes, a diagnosis of another 

cardiac pathology, and obesity. However, HF due to congenital heart defects and viral-

induced myocarditis can remain undetected for decades before diagnosis. Recently, viral-

induced myocarditis has become an area of increased interest due to the COVID-19 

pandemic15. Initial research has exhibited a fraction of patients develop inflamed cardiac 

tissue after infection with COVID-1916. However, it is currently impossible to predict which 

patients are the most at risk for this complication and what lasting effects this may have.  

 There is a clinical need to develop new diagnostic and treatment mechanisms for 

cardiac fibrosis. In addition to the millions of patients worldwide suffering from the disease, 

HF’s healthcare-related costs typically surpass $30 billion annually. This number is 

expected to double by 2030 if interventions are not taken17. Many researchers are focused 

on developing novel treatments and more accurate diagnostic capabilities. Still, remedies 

remain elusive due to the complexity of the disease, including the various biochemical and 

biomechanical factors that fuel it. In addition, it is believed that biological sex likely plays a 

role in the development of cardiac fibrosis. Yet, minimal research has focused on the sex-

specific hormonal and genetic mechanisms that contribute to the development of cardiac 

fibrosis.  

2.2 The effect of biological sex on cardiovascular disease 

2.2.1 Historical context  

 Biological sex and gender can significantly impact the presentation, diagnosis, and 

treatment of many diseases, including CVDs. The most notable instance of this is the 

misconception that chest pain is the hallmark symptom of a heart attack. While this is true 

for males and even some females, it is more likely for females to experience more subtle 
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symptoms such as chest pressure, neck pain, and nausea18. This phenomenon, named the 

Yentl Syndrome, has resulted in misdiagnosis and ineffective treatment of heart attacks in 

female patients due to their different symptoms than male patients19. This misunderstanding 

has resulted from decades of underrepresentation of female data in research and clinical 

trials, which has compounded into a poor understanding of the differences between male 

and female cardiovascular health, resulting in inaccuracies in the diagnosis and treatment of 

CVDs that disproportionally affect women.  

Until recently, heart disease was misconstrued as a “man’s disease.” This is best 

illustrated by the media, which often portrayed and targeted men as the most likely victims 

of a heart attack20,21. As CVDs are also the leading cause of death in women, this is 

inaccurate and a harmful serotype to women’s health. It is true, however, that females 

typically develop CVDs 7-10 years later in life than males22. This is primarily thought to be 

due to the cardioprotective role of the ovarian hormone estrogen23. Premenopausal females 

have higher estrogen levels, which reduces their risk of developing cardiac pathologies. 

However, once they have undergone menopause and the resulting decrease in estrogen 

production, this cardioprotection subsides. Because of this, hormone replacement therapy 

(HRT) which maintains estrogen levels in menopausal females, was believed to be the 

solution for a brief time24. However, after randomized clinical trials in 2002 by the 

Women’s Health Initiative (WHI), HRT was found to elevate the risk of stroke, cancers, 

and even heart attack and therefore is not recommended for long-term use to prevent 

CVDs25.  

Clinically, there have been many sex-specific findings related to cardiac fibrosis. 

Females are typically observed to have less fibrotic tissue than age-matched males in 

healthy and diseased contexts23. In a longitudinal study of patients aged 45-84 who enrolled 
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without CVDs, it was found that focal myocardial scarring was 5xs higher in males versus 

females by the ten-year mark. In addition, these patients typically presented with increased 

concentricity and preserved ejection in females and greater left ventricular dilation and 

reduced ejection fraction in males, indicating a sex-specific correlation in fibrotic 

remodeling26. These trends in a sex-specific correlation of fibrotic remodeling are also 

observed in other organs which can undergo pathologic fibrosis, such as the lungs, liver, 

and kidneys11. Just as estrogen is believed to impact overall cardiovascular health, several 

studies have reported that post-menopausal females have increased fibrosis markers 

compared to males, indicating that gonadal hormones likely play a role in these sex-specific 

trends related to fibrosis11,23,27.  

1.2.2 Estrogen mitigates cardiac fibrosis  

 Even though estrogen is not currently approved as a cardioprotective agent, there 

have been several notable instances clinically and in the lab since the 2002 WHI trials 

where it has shown evidence in reducing the severity of HF. In a retrospective 2003 study 

by Lindenfield et al., it was found that female patients who took beta-blockers in 

conjunction with HRT showed a significant reduction in mortality in females with 

nonischemic HF compared to those just taking beta blockers28. Currently, researchers 

hypothesize that the timing of HRT may play a role in its efficacy. Recent studies have 

shown that when females take HRT earlier in life, closer to the time they undergo 

menopause, it effectively reduces CVDs29,30.  

These findings are supported by a multitude of in vivo and in vitro studies that report 

decreases in HF markers after estrogen treatment. For example, Pedram et al. demonstrated 

reductions in angiotensin II (AngII) induced increases in collagens and alpha-smooth 

muscle actin (α-SMA) upon treatment of 17-β estradiol (E2). This was confirmed via an ex 
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vivo analysis of AngII and E2 treated ovariectomized (OVX) mice. Mice who had received 

E2 treatment had hearts that were notability smaller than the hearts of just AngII treated 

mice, indicating preserved left ventricle wall thickness and lower markers of fibrosis in 

histology in the E2 treated mice31. Additionally, Iorga et al. found that estrogen therapy 

restored ejection fraction in male and female mice with pressure-overloaded induced HF32. 

These findings demonstrate the need for further study of estrogen’s role in CVDs to 

possibly find a way to mimic estrogen’s therapeutic abilities while mitigating its harmful 

effects.   

2.2.3 Other sex-specific biologically relevant influences  

 Hormonal differences between male and female hearts are often not observed before 

puberty. There are only slight differences in male and female overall body size at birth and 

until their preteen years. However, after puberty, on average, males grow larger than 

females; these differences in body proportions are also reflected in heart mass, with adult 

female hearts being 1/4th smaller than adult male hearts33. Because of their different heart 

sizes, there are functional differences between male and female hearts, such as rhythms and 

rates. For example, males typically have a resting heart rate of 70-72 beats per minute 

(BPM), and females have one of 78-82 BMP to attain similar blood volume outputs34.   

However, not all of the physiological differences between male and female hearts 

and CVDs are believed to be solely due to hormones. Recent literature has also suggested 

genetic differences that persist regardless of gonadal hormones are also likely contributing 

to the dimorphisms in CVDs in males and females. At the macro level, male and female 

hearts often have different ratios of the cell types which make up the heart (e.g., myocytes, 

fibroblasts, smooth muscle cells, endothelial cells, valve cells, and macrophages)35. It is 

currently unclear how these different ratios may contribute to physiological differences that 
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affect cardiovascular health. At the microlevel, each cell is believed to have a sex associated 

with the chromosomal genotype (i.e., male cells= XY and female cells= XX). Gene 

ontology within the multiple cell types of the heart has also shown differences in the 

expressed genes between male and female cells, indicating that there are intrinsic sex 

differences that could contribute to the sex-specific differences in CVDs35. For example, in 

a recent study by Aguado et al., it was found that genes that escape X-chromosome 

inactivation were responsible for regulating some of the sex-specific differences observed in 

aortic valve stenosis, a pathology similar to cardiac fibrosis36. More research needs to be 

conducted to fully understand how these genetic differences combined with hormonal 

differences affect CVDs.  

2.2.4 Sex-disaggregated data reporting  

Much of this current lack of understanding of the sex-specific differences in CVDs 

can be attributed to the historical lack of representation of female data in clinical trials and 

the literature. We also want to acknowledge that although we are focused on the gender gap, 

this lack of representation is only further compounded if considering factors such as race, 

ethnicity, and socioeconomic background. Although current guidelines by the Food and 

Drug Administration (FDA), National Institutes of Health (NIH), and American Heart 

Association (AHA) require female samples/participants in experimental design, this is a 

recent development. Males, typically Caucasian, have been formally and informally 

considered the “norm” for medical research for centuries37,38. This has been exacerbated by 

systemic issues such as medical distrust and the misconception that female hormones are 

unpredictable and can skew experimental results. From 1977 to 1993, the FDA actively 

excluded women of childbearing age from participating in clinical trials in response to fetal 

malformations caused by thalidomide39.  Additionally, it was not until 1998 that the FDA 
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required gender-based reporting of their phase II drug applications40. And although the NIH 

publicly supported the inclusion of women in clinical research since the 1990s, it was not 

until 2016 that the NIH implemented a guideline requiring the use of both sexes in 

vertebrate animal research41. These decades lacking female representation have resulted in 

many clinical trials and published literature skewed toward male data. Even in studies that 

use male and female samples, unless they are specifically investigating the effect of 

estrogen or sex, most published literature on in vivo and in vitro studies do not report results 

in a sex-disaggregated manner. This lack of representative data has resulted in many health 

disparities affecting women. The first FDA-approved artificial heart was designed only for a 

male build42. Additionally, adverse drug reactions occur at double the rate in females 

compared to males43.  

2.2.5 Experimental models to study sex-specific effects 

Part of the reason for this lack of sex-disaggregated data in the literature is a result 

of poor experimental models to study hormonal-based differences. As humans and whales 

are the only mammals to undergo menopause, there are no good animal models to 

completely replicate the gradual onset of menopause and its implications for women’s 

health44. As I briefly discussed earlier, it is believed that premenopausal females have a 

relative cardioprotection compared to age-matched men, so this is especially relevant to 

CVDs. In an in vitro setting, researchers typically treat cells with 17-beta estradiol to 

evaluate hormonal sex differences23,45–48. Few studies investigate how other sex hormones, 

including testosterone and progesterone, can also modulate sex-specific disease responses. 

Many commercially available human fibroblast cell lines are pooled and/or do not report the 

cell sex. For in vivo and ex vivo studies focused on hormonal differences, ovariectomized 

(OVX) mice or rats are often used49. However, this model is more representative of sudden 
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menopause (i.e., a hysterectomy) rather than the gradual perimenopausal state females are 

in for several years. Knockout animal lines have also been developed to study the specific 

effect of a particular estrogen receptor50.  

These models are limited in scope as they primarily study hormonal differences; it is 

also essential to discern intrinsic biological differences. Much of the current literature on 

HF either uses pooled neonatal cells, male cells, or cell sex is entirely unreported. There 

needs to be a shift in reporting practices to fully capture which sex-specific disease 

responses are due to intrinsic biological differences, which are due to hormones, and which 

are due to a combination. This will first require a greater understanding of the complex 

signaling pathways in cardiac fibroblasts.  

2.3 Cardiac Fibroblast Signaling  

2.3.1 Biochemical signaling  

 Cardiac fibroblasts are the cells responsible for the extracellular matrix (ECM) 

deposition in the heart. In a healthy myocardium, they contribute to the biomechanical, 

biochemical, and electrical homeostasis of the heart primarily through their regulation of 

collagen turnover. In a pathologic environment, such as immediately after a myocardial 

infarction (MI), they maintain structural stability by rapidly secreting collagens and other 

ECM proteins to create scar tissue to patch together the infarct region. However, this ECM 

deposition can continue uncontrolled resulting in fibrosis due to the disruptions in normal 

cell biochemical and biomechanical signaling.  

 The primary biochemical pathways involved in cardiac fibroblast signaling include 

inflammatory cytokines, growth factors, and paracrine signaling. Upon cardiac injury, 

immune cells induce a pro-inflammatory response by releasing cytokines such as tumor 

necrosis factor-α (TNFα), interleukin 1(IL-1), and interleukin 6 (IL-6), which can induce 
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the secretion of metalloproteinases (MMPs) to clear necrotic tissue51,52. Latent transforming 

growth factor-beta (TGFβ) is present in the ECM and can be activated and induce 

proliferation and ECM deposition, causing a significant downstream response in pathways 

involving SMAD3 and MAPK53. Collagen 1 and Collagen III (col-I and col-III) are secreted 

by fibroblasts as the main component of the infarct scar.  Hormonal agonists angiotensin II 

(AngII), norepinephrine (NE), natriuretic peptides (NPs), and endothelin-1 (ET-1) are also 

activated during the post-inflammatory response and can continue to alter ECM related gene 

expression during the remodeling phase of the scar creation54.  

2.3.2 Biomechanical signaling  

Like most cells, cardiac fibroblasts respond not only to chemical stimuli but also to 

mechanical stimuli. In a post-MI environment, the heart undergoes structural changes that 

affect the strain, stress, pressure, and stiffness that cardiac fibroblasts experience. These 

biochemical changes can cause intracellular responses via mechanotransduction. A cardiac 

fibroblast can sense changes to its biomechanical microenvironment through receptors on 

the plasma membrane, cytoskeleton, and nucleus and convert these to a biochemical 

response. Integrins form focal adhesion complexes on the plasma membrane that connects 

to the intracellular actin skeleton and can directly respond to biomechanical cues. For 

example, focal adhesion kinase (FAK) responds to increases in stiffness to activate the 

MAPK pathway55. In the cytoskeleton, increases in mechanical stress can cause the 

transformation of G-actin, which is typically present in low tension environments, to F-

actin56. This releases myocardin-related transcription factors (MRTF) and allows them to 

enter the nucleus, where it can alter gene expression. Linker of the nucleoskeleton and 

cytoskeleton (LINC) is primarily responsible for the direct nucleus responses to 
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mechanotransduction by connecting the cytoskeleton to the nucleus and controlling 

chromatin packaging55.  

Understanding a cardiac fibroblast’s response to its mechanical environment is 

fundamental. The majority of in vitro research investigating cardiac fibroblasts is conducted 

on tissue culture plastic (TCP), which has a stiffness magnitudes higher than in vivo 

stiffness, even a fibrotic one. The acknowledgment of mechanical stimulation as an 

essential consideration in cardiac fibroblast research is becoming more accepted, and softer 

polydimethylsiloxane (PDMS) and polyacrylamide (PA) substrates are becoming more 

widely used. However, the default is often still TCP which can make translating more 

complex signaling mechanisms of cardiac fibroblast signaling to an in vivo context difficult.  

2.3.3 Estrogen signaling  

One such complexity is estrogen signaling within cardiac fibroblasts. I mentioned 

briefly earlier (section 2.2.5 Experimental models to study sex-specific effects) that most 

estrogen signaling studies within a cardiac fibroblast context were conducted with neonatal 

cells. However, this pools male and female cells together, so a sex-disaggregated analysis is 

impossible. Compounding this, nearly all of the few studies that conducted a sex-

disaggregated analysis are done on TCP, so it is difficult to fully ascertain how male and 

female cardiac fibroblasts are inherently different under physiological conditions23.  

Like other biomolecules, estrogen is integrated into the cell via receptors located on 

the plasma membrane. Male and female cardiac fibroblasts are known to have different 

levels of the three primary estrogen receptors: estrogen receptor alpha (ER-α), estrogen 

receptor beta (ER-β), and G-protein coupled estrogen receptor (GPR30)57,58. This translates 

to divergences in intracellular signaling pathways that impact the progression of fibrosis in 

a sex-specific manner. Westphal et al. found that treating with an ER-α agonist reduced 
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signs of fibrosis in mice who had undergone transverse aortic contraction in female OVX 

mice59. Additionally, it was found that ER-α downregulates collagen I and III in female rat 

cardiac fibroblasts upon estrogen treatment, while ER-β can upregulate collagen I and III in 

male rat cardiac fibroblasts upon estrogen treatment45.   

Several studies have begun to elucidate the mechanism of the pathways downstream 

of these estrogen receptors in cardiac fibroblasts. For example, Pedram et al. showed that 

estrogen treatment competitively inhibited angiotensin II and endothelin 1 profibrotic 

activity by blocking TGFB induced SMAD activation downstream of ER-β31. GPR30 was 

found to attenuate cardiac fibroblasts proliferation via inhibiting Cyclin Beta 1 and CDK1 

pathways60.  

Medzikovic et al. reviewed the current understanding of estrogen signaling within 

cardiac fibroblasts (see Figure 2.1)23. Although this review includes many downstream 

pathways and some sex-disaggregated results, no biomechanical cues are included in the 

schematic. Studies investigating estrogen’s involvement in biomechanical pathways have, 

to our knowledge, only been published in regards to osteoporosis or other bone contexts61–

63. Future studies must consider how biomechanical cues may affect estrogen signaling 

pathways within cardiac fibroblasts to fully leverage estrogen's cardioprotective abilities 

while mitigating its harmful effects. 
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Figure 2.1 Current understanding of downstream estrogen signaling within cardiac fibroblasts. 
 
2.4 Systems Modeling  

2.4.1 Systems modeling of cardiac fibroblasts  

 One way to facilitate the understanding of complex signaling pathways is using 

computational models. In silico experiments are generally cheaper and faster than trial and 

error wet-lab experiments alone. In particular, signaling network models can be a handy 

tool for understanding complex systems-level biology. Such models have been around for 

decades and have provided essential insights further validated in vitro/in vivo64,65.  Recently, 

computational models have been applied to identify potential new drug targets and 

diagnostic tools.  

A computational signaling network model of cardiac fibroblasts was developed and 

published previously by Ziegler and Richardson et al. and included 10 signaling pathways 

comprised of 91 nodes and 134 reactions66. This model was validated and predicted to 

match the input/outputs of 80% of 82 independent published experiments. The model 

functions via a series of logic-based ODE representing different activation and intracellular 
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inhibitory reactions through AND and OR gates. The first iteration of this model only 

included one mechanical input and did not include mechanotransduction reactions. Our lab 

(Rogers et al.) updated the model to include mechanosensitive pathways (109 nodes and 

174 reactions)54,67. One major limitation of this updated model is that it is not sex-specific 

and consists of no gonadal hormones, both of which are essential considerations in the 

disease progression of cardiac fibrosis (see section 2.3.3 Estrogen signaling).    

2.4.2 Sex-specific systems modeling  

Sex-specific computational models have been created in a variety of disease contexts. 

Ahmeed et al. created a sex-specific model of blood pressure regulation68. Chen et al. 

developed a sex-specific model of renal activity to study nitric oxide bioavailability69. 

However, to our knowledge, no sex-specific disease models have been created to investigate 

cardiac fibrosis. There has been a push to make patient-specific models through precision 

medicine techniques. Our lab’s cardiac fibroblast model has been used to make personalized 

patient predictions after integrating transcriptomic data from patient sera70. However, a 

concern with this technique is that the data used to create and validate these seemingly 

gender-neutral patient-specific models is often skewed toward male data. As discussed 

previously (section 2.2.4 Sex-disaggregated data reporting), female data have been 

historically lacking in clinical and experimental research. The papers used to validate the 

current cardiac fibroblast model were 30% male and 0% female (70% were pooled neonates 

or unreported). These models will likely be more accurate for male patients than female 

patients unless female data is intentionally incorporated to train and validate the models.   

2.4.3 Systems modeling for drug discovery  

 Many signaling network models are designed to aid in drug discovery, making it 

imperative that female data be considered during their design and validation. Currently, 
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adverse drug responses (ADRs) occur at double the rate in females compared to males, most 

likely due to their underrepresentation in clinical trials43. In a review of 9 significant heart 

failure drug trials, women made up only 24% of the patients enrolled in the trials71. 

Interestingly, literature has suggested that many ADRs occur in a sex-specific manner. In a 

study that investigated the pharmacokinetics (PK) of 86 FDA-approved drugs, it was found 

that PK values were correlated to sex, and 96% of drugs with female-biased PKs were 

associated with higher risks of ADRs72. These ADRs typically occur because of differences 

in drug absorption, metabolism, distribution, and elimination between males and females. 

For example, Warfarin protein binding is known to be influenced by estrogen and 

testosterone71. Despite higher plasma levels in females, beta-blockers were found to be less 

effective at lowering heart rate in females compared to males71. 

Unfortunately, many drug trials do not report sex-disaggregated data on ADRs, so 

an understanding of the sex-specific risks is only beginning to be understood. A recent 

study that investigated the sex-specific ADR reporting on common HF medications (e.g., 

angiotensin-converting enzyme inhibitors, β-blockers, angiotensin II receptor blockers, 

mineralocorticoid receptor antagonists, ivabradine, and digoxin), of the 155 records 

investigated only 7% reported ADR separately for males and females43. Much of this data 

will be very difficult to reproduce retroactively without additional clinical trials. However, 

sex-specific drug screens using in silico models could hasten this process by identifying 

drugs on the market that are most influenced by biological sex.   

 A collaborator recently conducted a large-scale drug screen with our cardiac 

fibroblast model73. This drug screen resulted in a few recommendations (i.e., Galunisertib) 

of potential drug targets for developing a therapeutic for cardiac fibrosis. However, this 

screen was not sex-specific. There are currently no sex-specific treatment recommendations 
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for the management or treatment of cardiac fibrosis. However, as disease presentation and 

progression of cardiac fibrosis can occur in a sex-specific manner, it is an essential 

consideration for future research.    

2.5 Gender Gap in Education  

 Evidence has shown that papers are more likely to report sex-specific findings if the 

first or last author is female74. However, many science, technology, engineering, and math 

(STEM) fields remain predominately male-dominated. Women make up only about 15% of 

the engineering workforce75. And although this trend is less severe for life science related 

fields such as biomedical engineering, which is more female-dominated (47% of the 

workforce) than many other engineering disciplines, this is not the case for computational 

areas76. Women make up only 20% computational biology workforce77. Because of these 

trends, design teams are often heavily male-dominated, which can unintentionally lead to 

health disparities. For example, crash test and CPR dummies are typically a male build78,79. 

These disparities are further exacerbated when considering race and ethnicity. One way to 

mitigate these biases and make healthcare more equitable is to have diverse representative 

design teams.  

 Although many systemic issues can contribute to this gender/racial gap in the 

workforce, one contributor is the lack of women and other historically marginalized 

individuals choosing to major and graduate with a STEM degree. Although women 

outnumber men on the many college campuses, they make up only 36% of graduates with a 

STEM degree. Literature suggests that this is partly due to developing and maintaining a 

STEM identity80.  

 STEM identity is one’s ability to acknowledge their knowledge and contribution to 

STEM and has a sense of belonging in the field81. It can be influenced by many things such 
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as educational experiences, representative role models, parental and societal expectations, 

and STEM self-efficacy82,83. Self-efficacy is a well-established term used in education and 

psychology literature to describe how well one believes one can complete a certain task84. It 

can be influenced by experiences in the classroom, especially negative ones, as historically 

marginalized communities are typically more sensitive to failures. One way to mitigate the 

gender and racial gap in STEM is to recruit and retain more females and other marginalized 

individuals by creating more inclusive classroom environments.  
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CHAPTER THREE 
 

AIM ONE: TEST THE EFFECTS OF SEX AND 17 Β-ESTRADIOL ON CARDIAC 
FIBROBLAST MORPHOLOGY AND SIGNALING ACTIVITIES IN VITRO 

 
3.1 Introduction 

The prevalence of heart failure (HF) continues to rise, currently afflicting over 6.2 

million Americans in roughly equal proportions among men and women1,2. What is not 

equal is the diagnosis, prognosis, treatment, and overall understanding of HF on the basis of 

biological sex2–5. Female data are underrepresented in animal studies and clinical trials, so 

recommended treatment is not sex-specific, and adverse drug reactions occur at double the 

rate in females than in males4. Notably, premenopausal females have a relative protection 

against HF compared to age-matched males which subsides after menopause2,6. This 

phenomenon has been studied extensively and is largely thought to be because of the 

ovarian hormone estrogen3,4,7. Hormone replacement therapy (HRT) to maintain estrogen 

levels in postmenopausal females was even considered cardioprotective for several 

decades8,9. However, following randomized clinical studies, HRT was shown to have 

overall adverse trends, increasing the risk of stroke, breast cancer, and heart attack in 

postmenopausal females, and is not recommended for long-term use or as a preventive 

measure for cardiovascular diseases6,8.  

Although complete HRT is not a viable option to treat or prevent cardiac 

pathologies, 17-β estradiol (E2) has exhibited promise in reducing cardiac fibrosis - an 

accumulation of collagens and other extracellular matrix components that reduces pump and 

electrical function7,10–12. After an initial myocardial infarction, a fibrotic response is 

necessary to maintain structural stability but can continue uncontrolled resulting in chronic 

HF13. There are currently no FDA-approved therapeutics to specifically target and control 
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cardiac fibrosis13. In many in vitro studies, E2 treatment has been linked to a decreased 

fibrotic response of cardiac fibroblasts (CFs), indicating its potential as a therapeutic10–12,14–

16. It is important to note, many of these studies were done with neonatal rat CFs, pooling 

male and female cells together, so sex-specific effects of estrogen treatment were, for the 

most part, not investigated. Understanding how estrogen interacts with male and female 

cells at the molecular level is imperative in order to leverage estrogen’s therapeutic effects 

while minimizing potential adverse responses.  

The few studies that do use sex-disaggregated analysis at the cellular level, nearly all 

used tissue culture plastic (TCP) as the experimental platform. TCP has a stiffness that is 

magnitudes higher than physiologic conditions, even a fibrotic environment. CFs are 

extremely sensitive to their microenvironment, and when cultured on stiff substrates, many 

proteins become activated due to mechanotransduction pathways that can make cells 

profibrotic17–19. Additionally, a recent in vivo study by the Pinto group demonstrated the sex 

dimorphic response of the regulation of several genes within CFs due to angiotensin II 

stimulation20. Furthering our understanding of the intrinsic differences between male and 

female CFs under physiologically “healthy” conditions is a necessary first step to 

understanding the divergence of their intricate signaling pathways related to fibrosis. A 

substrate stiffness of 8kPa was chosen for experiments because it is comparable to the 

stiffness of healthy myocardium and has been used to mimic a non-fibrotic environment in 

several other studies21–25.  

Expanding our knowledge of how estrogen interacts with both male and female CFs 

could aid in the discovery of novel treatment options for cardiac fibrosis that leverage 

estrogen’s cardioprotective properties while mitigating its harmful effects. In this study, we 

used cyclic immunofluorescence to investigate potential morphological changes, cellular 
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localization, and activity levels of 12 proteins known to be heavily involved in estrogen 

and/or profibrotic signaling within CFs. This allowed for a sex-disaggregated analysis of 

not only each individual protein’s response to estrogen but also single-cell cross-correlation 

analysis, which could uncover protein to protein crosstalk that could be potential sites to 

target for regulation of cardiac fibrosis.  

3.2. Materials and Methods 

3.2.1 Cell Isolation and Culture 

Adult Sprague Dawley rats (n=8 male: 8 wks, 265 grams; and n=8 female: 12 wks, 

255 grams) were euthanized, and hearts were removed and collected in Krebs-Henseleit 

buffer (Sigma, St. Louis, MO). All procedures were performed with approval from Clemson 

University’s Institutional Animal Care and Use Committee. Ventricles were minced and 

digested to isolate CFs according to previously reported protocols25,26. Liberase TM (Roche, 

Indianapolis, IN) was used in each of the six successive enzymatic digestions at 37 C. 

Supernatants from each digestion were collected and centrifuged at 300 g and 4 C and 

resuspended in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma) containing 10% 

fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA), 100 U/mL penicillin 

G, 100 µg/mL streptomycin, and 1 ng/mL amphotericin B (all Sigma). Following isolation, 

cells were plated in T-25 culture flasks and incubated at 37 C and 5% CO2 for 4 h, after 

which media was changed and thereafter was changed every 72 h until the serum starvation. 

3.2.2 Collagen Coated Culture Plates  

Prior to cell plating, 8 kPa 24-well CytoSoft® plates (Advanced BioMatrix, San 

Diego, CA) were coated with Telocol-3 bovine collagen (Advanced BioMatrix). Collagen 

solution was made at a 1:30 ratio of Telocol-3 in Phosphate Buffered Saline (PBS, Sigma). 

1 mL of solution was pipetted into each of the 24 wells and allowed to polymerize at room 
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temperature for 1 h. Excess solution was removed, and the wells were washed with PBS 

twice. 

3.2.3 Estrogen Treatment 

Male and female CFs were passaged one time (P1) with 0.25% trypsin (Fisher) at a 

1:3 dilution before use in experiments. Once the CFs had reached ~75% confluence after 

the first passage, DMEM containing 10% FBS was removed, and flasks were washed with 

PBS. A 24 h serum starvation was started with phenol-free DMEM (Fisher) + 2 mM L-

glutamine (Fisher) and 2.5% charcoal-stripped FBS (GE Health, Chicago, IL) incubated at 

37 C and 5% CO2. After 24 h, CFs were passaged (P2) and plated onto the CytoSoft® 

plates at 10,000 cells/well. CFs were divided into 4 experimental groups across two 

conditions: male vs. female and with or without 17-β Estradiol (E2, Sigma). The 24-well 

plates allowed for two biological replicates with three technical replicates (wells) per 

experimental condition. All wells were filled with 1 mL of phenol-free DMEM + 2 mM L-

glutamine and 10% charcoal-stripped FBS. E2 was dissolved in ethanol at 10 mM, and 10 

nM of E2 was added to wells designated for E2 treatment. An ethanol vehicle control of 10 

nM was used as a control for all non E2 treated wells. Plates were incubated at 37 C and 5% 

CO2 for 24 h. Following incubation, all wells were fixed with 4% paraformaldehyde (PFA, 

Sigma) for 30 mins and 99.9% methanol (Fisher) for 10 mins. Immediately after fixation, 

plates were filled with PBS, wrapped in parafilm, and stored at 4 C until use in cyclic 

immunofluorescence (CycIF).  

3.2.4 Cyclic Immunofluorescence  

Wells were washed with Odyssey blocking buffer (Fisher) for 1 h at room 

temperature on a rocker prior to antibody staining. Antibodies were purchased for the 

following proteins of interest: alpha-smooth muscle actin (α-SMA), filamentous actin (F-
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Actin), mothers against decapentaplegic homolog 3 (SMAD3), myocardin-related 

transcription factor (MRTF), nuclear factor of activated T Cells (NFAT), nuclear factor 

kappa-light-chain-enhancer of activated B Cells (NF-kB), phosphorylated extracellular 

signal-regulated kinase (p-ERK),  phosphorylated focal adhesion kinase (p-FAK), 

phosphorylated jun n-terminal kinase (p-JNK), phosphorylated protein kinase B (p-Akt), 

phosphorylated p38 mitogen-activated protein kinase (p-p38), and rho-associated protein 

kinase (ROCK). Each antibody was individually optimized to determine unique staining 

dilutions and microscope gain, exposure, and light settings. Appendix A Table 1 outlines 

where each antibody was purchased, Alexa Fluor conjugation, staining dilution, and 

microscope settings for each protein of interest. The order of CycIF and protocol were 

determined according to published recommendations27. 

Four consecutive rounds of CycIF were conducted with three proteins of interest 

each round: (1) p-p38, NFAT, SMAD3, (2) MRTF, ROCK1, NF-kB, (3) p-JNK, p-Akt, α-

SMA, and (4) F-Actin, p-ERK, p-FAK (Figure 3.1). Primary and Alexa Fluor conjugated 

antibodies were applied and rocked overnight at 4 C. A secondary mouse-anti-rabbit IgG 

PE-Cy7 antibody for SMAD3, NF-kB, α-SMAD, and p-FAK was applied for 1 h at room 

temperature while rocking. A Hoechst nuclear stain was rocked for ten minutes at room 

temperature for each Cyc-IF round. All wells were washed four times with PBS between 

staining and imaging. Alexa Fluor light cubes GFP, TxRed, Cy7, and DAPI, were used for 

rounds 1 and 4 of CycIF;  RFP, Cy-5, Cy-7, and DAPI light cubes were used for rounds 2 

and 3. The ThermoFisher Fluorescence Spectra Viewer was used to ensure minimal spectra 

overlap between channels28. An EVOS fluorescent microscope at 10x objective was used to 

take ten images per well, and beacons were saved to return to that position in consecutive 

CycIF rounds. Following each round of imaging, fluorophore inactivation was achieved by 
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treating with 4.5% H2O2 (Fisher) in PBS plus 25 mM NaOH (Sigma) for 2 h under an LED 

light. Inactivation was confirmed visually with the EVOS before moving on to the next 

round of CycIF. Wells were washed with PBS four times after destaining and before the 

next round of CycIF. All images were saved as 8-bit TIFF files, which were imported into 

CellProfilerTM for post-image processing29.  

 
Figure 3.1. An example of a set of images for each of the proteins of interest for four rounds of 
CycIF.  GFP, TxRed, and Cy7 (green, orange, and red) light cubes were used in rounds 1 and 4. RFP, 
Cy5, and Cy7 (yellow, pink, and red) light cubes were used in rounds 2 and 3. A Hoechst nuclear stain 
and DAPI light cube (blue) were used for all rounds. 
 
3.2.5 Post-Image Processing 

In CellProfilerTM, the lower quartile intensity background was subtracted from each 

image. Images from consecutive rounds of CycIF were aligned with each other to account 

for small changes in the field of view that occurred over multiple rounds. The Hoechst 

nuclear stain images were used to identify Primary Objects (the nuclei), which were then 

used to identify Secondary Objects (cellular outlines) (Figure 3.2.a). Morphological 
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measurements of the total cell area, nucleus area and location, and minor and major axis 

lengths were measured for each cell. To account for errors in automated cell identification, 

an upper bound of 10000 µm2 and a lower bound of 1000 µm2 was set for acceptable cell 

areas. Integrated, mean, and median intensities were also recorded for each image channel 

(protein). 

3.2.6 Statistical Analysis  

Nearly 20,000 cells (~5,000/experimental condition) were identified across the 

images taken from the 8 male and female biological replicates and used to analyze 

morphological and protein-level data. Cell density was calculated per image across 

experimental conditions, and there was no significant difference in cell viability in regards 

to sex or estrogen treatment (p>0.05, 3.2.b).   The median cell/nucleus area and elongation 

for each biological replicate were determined per experimental condition. To account for 

variability in fluorescent intensity among biological and technical replicates, normalization 

was conducted by dividing the channel (protein) intensity in each cell by the median of that 

channel intensity from all the cells on the entire plate (1 plate = 2 male and 2 female 

biological replicates). This allowed for comparison of relative protein levels across 

experimental conditions. MATLAB’s anova2 function was used to run a two-way ANOVA 

to determine if a statistically significant (α=0.05) difference existed between or within 

groups of sex (male vs. female) and estrogen treatment (baseline and +E2). Box and 

whisker plots which show the median, 25th, and 75th percentiles of the 8 biological 

replicates per experimental condition were generated. When there were instances of 

statistical significance it is denoted on the graph, and all p-values are reported in Appendix 

A Table 2. Single-cell correlation coefficients for each protein-protein and protein-

morphology interaction were also calculated using MATLAB’s built-in corrcoef function.  
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Figure 3.2. Sample CellProfilerTM outlines of nuclei (green) and cells (purple) (a). A two-way ANOVA 
was used to determine if there was any significant interaction (α=0.05) between sex (male=blue & 
female=black) and estrogen treatment (baseline=open dots to represent median of biological replicates 
and +E2=closed dots) on cell viability. No significant difference existed within groups or interaction 
between groups for the mean cells/cm2 for each image (b). 
 

3.3 Results 

3.3.1 Sex-disaggregated analysis of CF morphology  

Microscopic image analysis demonstrated no change in cell area across experimental 

conditions (p>0.05, Figure 3.3.a). Likewise, cell elongation (p>0.05, Figure 3.3.b), which 

was calculated by determining each cell’s aspect ratio (major/minor axis), was also not 

affected by sex or estrogen treatment. Nuclear area and aspect ratio were observed and 

determined not to be dependent on sex or estrogen treatment (p>0.05, Figure 3.3.c-d). F-

Actin and α-SMA’s relative protein concentrations (p>0.05, Figure 3.3.e-f) did not vary 

among experimental conditions, indicating that under physiological conditions, the structure 

and morphological presentation of male and female CFs do not differ significantly.  

3.3.2 Relative levels of fibrotic related signaling proteins 

Relative protein levels were determined by comparing normalized median cell 

intensities for each protein of interest. p-ERK had a statistically significant interaction 

between sex and E2 treatment, with the female baseline being higher than all other 

experimental conditions (p<0.05, Figure 3.4.a). p-p38 and ROCK1 were found to be 

statistically different due to sex, with male cells having higher levels of both p-p38 and 
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ROCK1 in the baseline and E2 treated cells compared to female cells with or without E2 

(p<0.05, Figure 3.4b-c). p-FAK showed a statistically significant downregulation of the 

relative levels of p-FAK in both male and female cells when E2 was present (p<0.05, Figure 

2.4.d). No statistically significant change existed across experimental conditions for the 

relative protein levels of p-JNK and p-Akt (p>0.05, Figure 3.4e-h). 

3.3.3 Nuclear localization of mechanosensitive proteins  

Many profibrotic proteins in CFs are in their most activated form when they have 

translocated to the nucleus, which allows them to act as transcription factors to influence 

gene regulation. In our study, MRTF, NFAT, NF-κB, and SMAD3 are all most activated in 

the nucleus. Therefore, instead of measuring their total cell intensity, we calculated the ratio 

of the intensity within the nucleus vs. the cytoplasm (normalized mean nuclear intensity/ 

normalized mean cytoplasm intensity). While MRTF, NFAT, NF-κB, and SMAD3 all had 

ratios greater than 1 for each experimental condition indicating that more was present in the 

nucleus than in the cytoplasm, only the levels of NFAT were different across experimental 

groups (p>0.05, Figure 3.5.a-c). Male cells had NFAT levels in the nucleus that were higher 

than both the baseline and E2 treated female cells (p<0.05, Figure 3.5.d). 
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Figure 3.3. A two-way ANOVA was used to determine if there was any significant interaction (α=0.05) 
between sex and estrogen on morphological factors. No significant difference existed within groups or 
interaction between groups for total cell area and elongation (a and b), nor nucleus area and elongation 
(c and d).  F-Actin and α-SMA relative protein levels did not significantly change between experimental 
conditions (e and f). 
 
3.3.4 Correlation analysis of protein-protein interactions  

An advantage of cyclic-IF analysis for protein quantification is that it enables single-

cell measurements, which can be tested for protein-protein and protein-morphology 

relationships. The Pearson’s correlation coefficients of the normalized relative protein-

protein levels and protein-morphology interactions were calculated along with their 

corresponding p-values. These data were used to create dot plots (Figure 3.6), which allow 

for the comparison of changes in protein-protein/protein-morphology interactions between 

experimental conditions. The most striking difference is that there was a much stronger 

correlation of protein-protein interactions for female CFs treated with estrogen (indicated by 

large orange and yellow dots) than for male CFs treated with estrogen. Similarly, male CFs 

without E2 demonstrated several strong and significant correlations, which were dampened 

in the presence of E2. Female CFs experienced similarly correlated relationships with and 

without E2 treatment.  
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Figure 3.4. A two-way ANOVA was used to determine if any significant interaction (α=0.05) existed 
between sex and estrogen treatment on the normalized median intensity of profibrotic proteins. p-ERK 
showed a significant interaction between sex and E2 treatment (p<0.05, a). The median intensity of 
ROCK1 and p-p38 was significantly different due to biological sex (p<0.05, b and c). E2 treatment 
caused a significant difference in median intensity for p-FAK (p<0.05, d). No significant interactions 
between or within groups existed for p-JNK or p-AKT (p>0.05, e and f). 
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Figure 3.5.  A two-way ANOVA was used to determine if any significant interactions existed between 
sex and estrogen treatment of translocation of profibrotic proteins to the nucleus. The median nucleus: 
cytoplasm ratio of NFAT was significantly different due to biological sex (p<0.05, a). There were no 
significant interactions between or within groups for NF-κB, SMAD3, or MRTF (p>0.05, b-d).  
 

 
Figure 3.6. Dot plots of correlation coefficients and their corresponding p-values for analysis of protein-
protein and protein-morphology interactions. 
 

3.4. Discussion 

Although many studies note the phenotypic differences between male and female 

cardiac fibroblasts, very few have investigated if these phenotypic changes result in 
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observable morphological differences in cell size and elongation. At a macro level, male 

and female morphology are dimorphic, with male hearts and their components, including 

the left ventricle, often being larger than female hearts from the same species30,31. As 

fibrosis progresses, CFs undergo morphological changes, elongating and covering a larger 

area due to interactions with their changing microenvironment24. This can also cause 

nuclear morphologic changes mediated by LINC19. To fully understand the differences in 

how male and female CFs interact with and respond to changes in their mechanochemical 

environment during fibrosis progression, it is necessary to know if any morphological 

differences are present in physiologically “healthy” environments. Our results indicate that 

on a stiffness that mimics physiological conditions, there are no changes in cell and nuclear 

morphology due to sex and estrogen treatment. This indicates that while male and female 

cells may be phenotypically different at an intracellular level, these changes are more likely 

to present biochemically rather than structurally. Our finding of no significant difference in 

α-SMA and F-Actin relative protein levels due to sex and estrogen treatment also supports 

this theory, as elevated α-SMA and F-Actin levels are both indicative of increased cell 

contractility which can cause changes in cell morphology32. 

Of the 12 proteins investigated, NFAT, p-p38, and ROCK1 were found to be more 

elevated in male cells than female cells regardless of E2 treatment. Each of these proteins is 

typically more elevated in a profibrotic environment19. This indicates that even in a 

physiologically “healthy” environment, male CFs may be more sensitive to chemical 

changes and prone to fibrotic behavior than female CFs. Sex disaggregated literature of the 

behavior of these proteins in relation to fibrosis in CFs is extremely sparse. One in vivo 

mouse study found that female mice underwent p-38- induced ventricular hypertrophy and 

mortality at a slower rate than male mice33. Future research should investigate potential 
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intrinsic differences of NFAT, p-p38, ROCK1, and other downstream proteins in male and 

female CFs to clarify the divergence of male and female signaling pathways. This could 

support development of sex-specific prevention and treatment methods for cardiac fibrosis.  

CFs are very susceptible to changes in their microenvironment. A major way they sense and 

translate these signals within the cell is through integrins and adhesion receptors on the cell 

membrane. One highly studied CF adhesion receptor is focal adhesion kinase (FAK), which 

can be activated (p-FAK) by interactions with the extracellular matrix24. In numerous 

studies, FAK inhibition has been shown to stop adverse cardiac remodeling 34,35. Our results 

showed that upon treatment with E2, both male and female CFs had reduced expression of 

p-FAK, indicating its promise as a potential regulation pathway that mimics estrogen’s 

cardioprotective effect. To our knowledge, no other studies investigate the effect of estrogen 

on FAK in cardiac fibroblasts. However, there are a few studies that demonstrate how E2 

treatment can actually activate FAK in breast cancer cells36,37. The microenvironment of a 

breast cancer tumor is likely much stiffer than the 8kPa physiological like stiffness used in 

our study, so it is possible that there is a complex interaction of mechanical cues and 

hormone signaling, which affect FAK activation. FAK has many proteins downstream of it, 

which are also considered profibrotic factors, so FAK’s pathways are a promising source of 

potential regulation if more research is conducted to understand its response to combined 

estrogen treatment and mechanical stimulus.   

Not all of our proteins of interest had statistically significant differences between 

experimental conditions (SMAD3, NF-κB, p-JNK, and p-Akt). This finding was slightly 

surprising in regards to SMAD3 and p-JNK, because of past literature that cites the ability 

of estrogen to downregulate SMAD3 and p-JNK activity in CFs7. These contradictory 

findings are not unusual - a recent review of the limited research of sex differences and 
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estrogen signaling in CFs notes additional discrepancies among various other peer-reviewed 

studies 7. There are many differences in experimental setup, including in vivo vs. in vitro 

design, pooled male and female cells vs. sex-disaggregated analysis, and neonatal vs. adult 

cells. Our study adds an additional variable, substrate stiffness. Nearly all previous in vitro 

studies of sex or estrogen signaling in CFs were done on TCP, which has an unrealistically 

high stiffness (>1000 fold stiffer than myocardium). It is imperative to conduct further 

sex/E2 focused studies within CFs controlling for individual variables before it is possible 

to synthesize the results from multiple studies into a broader understanding of sex-specific 

and estrogen-induced signaling in CFs.  

In our study, the only protein of interest that had a statistically significant interaction 

between sex and E2 treatment was p-ERK. Baseline levels of p-ERK in female CFs were 

higher than in any other experimental condition; however, upon E2 treatment, female CFs 

had levels similar to male CFs. There was a negligible difference between male baseline 

and male +E2 relative protein levels of p-ERK. We hypothesize that this difference among 

experimental conditions may related be to β-Adrenergic receptors (β-ARs), which are 

believed to increase fibrotic activity through ERK(1/2) related pathways38. Many studies 

have observed crosstalk in β-ARs and estrogen signaling39. Additionally, a recent study 

outlined the sex dimorphic response in CFs due to β-AR stimulation40. As β-blockers are 

already an FDA-approved treatment for many cardiovascular pathologies, including high 

blood pressure and heart failure, this connection offers a promising avenue of potential 

regulation of uncontrolled fibrosis that warrants further investigation.  

Limitations of our study include that it was simply an in vitro monolayer culture 

analysis with a serum starvation used to induce the baseline lack of estrogen condition. In 

the future, enhanced in vitro platforms that utilize (1) a coculture of the multiple cell types 
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present in the myocardium, (2) a 3D cell culture platform such as hydrogels, (3) and 

applying cyclic stretch could all be used to better mimic a healthy cardiac environment25,41–

46. We also want to acknowledge that α-SMA expression remained elevated in our cells 

during the short experimental period. This is likely due to mechanical memory wherein cells 

become activated during initial plating on TCP and then maintain some of that activity even 

after reseeding onto softer substrates47. Future studies will either be conducted for a longer 

time course or cultured on softer substrates immediately after cell isolation. Additionally, an 

in vivo study with OVX mice could be used to truly mimic the changes in estrogen levels 

due to menopause and other differences that are difficult to capture with an in vitro 

platform. We also chose to use immunofluorescence to capture any potential morphological 

and nuclear translocation of profibrotic factors intrinsic to male and female CFs with and 

without estrogen treatment. Our analysis indicated that no significant structural differences 

existed between male and female CFs on a physiologically similar stiffness of 8kPa, and 

only NFAT expressed different levels of translocation to the nucleus among experimental 

conditions. In future research, we would recommend that analysis could be done with 

methods that could allow for a more robust signaling analysis, such as flow cytometry, 

western blotting, or RNA-seq.  

A more robust data set would provide the opportunity to conduct in silico 

experiments, which could further elucidate our understanding of the complex signaling 

networks of CFs. Our study was primarily focused on how mechanically activated signaling 

pathways in CFs are impacted by estrogen and biological sex. There are other profibrotic 

and proinflammatory pathways (i.e., DAMPs) in CFs independent of mechanical 

stimulation that may be affected by biological sex and/or estrogen, which warrant study48. 

In addition, the downstream response to estrogen stimulation can be affected by the 
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presence of estrogen receptors (ER-α, ER-β, and GPR30)49,50. Future studies should utilize a 

sex-disaggregated analysis to uncover possible differences in estrogen receptor expression 

and regulation under physiologically “healthy” conditions. A computational approach will 

facilitate the synthesis of findings from many independent experiments into a network of 

the complex interactions of cardiac fibroblast signaling.  

3.5. Conclusions 

Our results support existing literature that cites male and female CFs are sexually 

dimorphic, even under physiologically “healthy” conditions, and should be treated as such 

when designing experiments to allow for sex-disaggregated analysis to determine how 

biological sex may be affecting response to treatment interventions. Future research could 

be directed toward uncovering the complex signaling interactions related to biological sex, 

E2, and profibrotic signaling pathways. One way to hasten this investigation could be 

through the use of sex-specific computational disease models. Existing disease models such 

as the signaling network model of cardiac fibroblasts’ response to mechano-chemo 

signaling could be improved by incorporating biological sex and hormone pathways51,52. 

Large-scale sex-specific network modeling could greatly accelerate the pace and reduce the 

costs of identifying important interactions involved in the regulation of fibrosis rather than 

trial and error experiments alone.  
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CHAPTER FOUR 
 

AIM TWO: SCREEN FOR SEX-SPECIFIC DRUG EFFECTS IN A FIBROBLAST 
NETWORK MODEL INTEGRATED WITH ESTROGEN SIGNALING 

 
4.1 Introduction  

Heart failure (HF) currently afflicts roughly 6.2 million Americans and has a five-

year survival rate of only 50%1. Cardiac fibrosis, the uncontrolled accumulation of ECM 

proteins, can exacerbate the progression of HF2–4. This deposition of ECM proteins is 

crucial to a patient’s initial survival of myocardial infarction (MI) to form the scar tissue 

that maintains the structural stability of the infarct region5. However, when it continues 

uncontrolled, it becomes pathologic by reducing ejection fraction via thickening of the left 

ventricle wall and causing a greater chance of arrhythmia due to disruptions in electrical 

stimulus caused by collagen buildup6,7.  

The current treatment regimen for patients suffering from HF includes drugs such as 

angiotensin-converting enzyme (ACE) inhibitors and beta-blockers to reduce their blood 

pressure and slow their heart rate, which reduces stress on the heart in an attempt to slow 

the progression of HF8. However, no current FDA-approved treatments directly target 

cardiac fibrosis9. Ongoing research focuses on developing a drug to directly inhibit cardiac 

fibrosis or even reverse it10. Despite gains in understanding the complex signaling networks 

of cardiac fibroblasts- the drivers of cardiac fibrosis- like most drug development, it is 

expensive, slow going, and often found to have low efficacy rates upon clinical trials11.  

The use of the computational models to conduct in silico experiments has been used 

in a variety of ways to accelerate drug discovery12–15. Currently, these models are limited in 

scope and, at best, can narrow down a pool of potential drug candidates for further study. 

As the field of precision medicine grows, it is likely that the accuracy and predictive power 
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of these models will also improve. However, in order to fully leverage the predictive power 

of these models, it is imperative that the data used to create them is robust. Unfortunately, 

experimental studies and clinical trials are historically skewed to male data. For several 

decades women of childbearing age were banned from participating in clinical trials16. Even 

after this ban was reversed in the early 90s, it was not until 2016 that the NIH required the 

use of both male and female animals in preclinical studies17. This has resulted in several 

FDA-approved drugs having double the adverse drug response (ADR) rate in women.   

Biological sex is an essential factor when considering cardiovascular health18–21. 

Most notably, premenopausal females are less likely to suffer from MI compared to age-

matched men-primarily thought to be due to the cardioprotective role of the ovarian 

hormone estrogen (E2)19. However, these discrepancies in cardiovascular health are not just 

the result of hormones; there has also been research to show that genetic sexual 

dimorphisms can also contribute to cardiovascular disease presentation and severity22. 

Additionally, the literature suggests that many ADRs in both males and females occur in a 

sex-specific manner23. Including sex hormones into computational models could help 

correct for the dearth of sex-disaggregated studies available in the literature and make 

precision medicine more accurate for patients.  

In this study, we aim to make a previously published signaling network model of 

cardiac fibroblasts sex-specific by incorporating E2. We then conducted a sex disaggregated 

drug screen to analyze divergences in drug response between males and females.   

4.2 Methods 

4.2.1 Integration of estrogen into cardiac fibroblasts signaling network  

A previously published signaling network model (SNM) of cardiac fibroblast was 

expanded to include the ovarian hormone estrogen (E2). The previous model was created 
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via a manual literature search of ~300 papers and included 109 nodes (i.e., proteins, 

integrins, cellular receptors, and transcription factors) and 174 edges (reactions)24,25. 

Specifically, this model was comprised of 11 biochemical and biomechanical inputs, 

including transforming growth factor beta (TGFβ), angiotensin II (AngII), endothelin 1 (ET 

1), and tension; downstream reactions of these inputs culminated in 22 cellular outputs, 

including alpha-smooth muscle actin (α-SMA), procollagen I & III (proCI and proCIII), 

several pro-matrix metalloproteinases and tissue inhibitors of metalloproteinases (proMMPs 

and TIMPs), and proliferation. New nodes and/or reactions were added to the SNM if two 

independent studies reported activation of inhibition of another node downstream of 

estrogen signaling. At least one of these two papers used for model advancement was from 

experiments conducted with cardiac fibroblasts; the second paper, if not from cardiac 

fibroblasts, typically reported results from experiments from other cardiac or fibroblast cell 

types. Nearly all of the papers used for model updates used neonate rat cardiac fibroblasts, 

pooling male and female cells together, as their cell type. 

As previously described, the reactions of the SNM are governed by logic-based 

ODEs modeled as a system of Hill equations to capture node activity level24–26.  Logical 

NOT, AND, and OR gates were used for inhibitory and complex signaling interactions by 

applying logical operations: fINHIB(x)= 1- f(x), fand(x1, x2) = f(x1)f(x2), and for(x1,x2) = 

f(x1)+f(x2) - f(x1)f(x2). Differential equations were constructed using the open-source 

software Netflux (https://github.com/saucermanlab/Netflux) for MATLAB (Mathworks, 

Natwick, MA)27. Cytoscape was used to create all SNM visualizations included in this 

paper28. All additional validation, perturbation, and drug screen simulations were conducted 

using MATLAB; finalized codes used in the analysis will be made available on 

SysMechBioLab GitHub (https://github.com/SysMechBioLab).  

https://github.com/saucermanlab/Netflux
https://github.com/SysMechBioLab
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4.2.2 Sex-Specific Model Creation  

 Sex-specific models were created by varying the weighting of the three estrogen 

receptors added to the model to mimic the physiological difference of varied expression and 

activity levels of estrogen receptors in male and female cells29.  The reactions of E2 to the 

three estrogen receptors were weighted as 0.5 (50% of maximum stimulation) and 1 (100% 

of maximum stimulation in the male and female SNM respectively. Additionally, a pooled 

SNM with a weighting of 0.75 for E2 stimulation of the three receptors was created to 

validate studies conducted with pooled male and female neonate cells.  

4.2.3 Model Validation  

Previous model validation of the cardiac fibroblast SNM conducted with 47 

independent papers of direct measurement of model intermediate and output nodes found 

the SNM to be 81.8% accurate in predicting experimental activity levels of input-outputs 

(i.e., AngII treatment on proCIoutput) and input-intermediates (i.e., AngII treatment out 

ERK activity level) found in the literature24. In total these 47 papers accounted for 120 

perturbations of input-outputs/intermediates validated by comparing literature experimental 

results to model predictions according to their change in activity level as ‘Upregulation’ (Δ 

Activity ≥5%), ‘Downregulation (Δ Activity ≤ -5%), or ‘No Change’ ( -5% < Δ Activity < 

5%). Of these 120 perturbation experiments, 29 were counted in pooled neonates, 46 in 

male cells, and 41 cell sex was unreported; no paper used in prior validation reported results 

in a sex-disaggregated manner than included female data, and validation was not done in a 

sex-desegregated manner.  

To conduct a sex-desegregated validation of the updated model, 6 new papers were 

added to the validation set to account for estrogen and female-specific data. Each of the 

papers used for validation measured direct output secretion or intermediate signaling 
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response (i.e., ELISA, Western Blot, or PCR) to a single input stimulus in fibroblasts. 

Validation perturbations were grouped by experiments reporting results in pooled neonates, 

male, and female cells. Prediction accuracy was calculated using the same Δ Activity 

bounds described above using either the pooled, male, or female SNM. Model simulation 

predictions were generated in MATLAB as previously described (simulating basal 

conditions for 80 hrs, followed by simulating single input stimuli (w=0.9) for 240 hr, 

tension weight= 0.6)24. Ideal EC50 and n values were determined for each SNM through 

multiple perturbations (Appendix C). 

As the validation set was comprised of studies conducted on TCP, an additional 

validation was conducted to compare model predictions to the results of my Aim 1 study 

conducted on 8 kPa gels with both male and female cells. All parameters were kept 

consistent with the above validation simulation, except a tension weight of 0.1 was used 

instead of 0.6 to mimic the lower stiffness.  

Additional validation was conducted to determine the accuracy of estrogen 

involvement in signaling pathways by comparing a combination of simultaneous treatments 

to experimental results. A tension weight of 0.6 and dosing weights of 0.9 for AngII, ET 1, 

and E2 were simulated to compare experimental results from Pedram et al. that reported E2 

effect on AngII and ET 1 stimulation on α-SMA, fibronectin, proCI, and proCII  in pooled 

neonate cardiac fibroblasts30. A negative control simulation of input weights of 0.1 was 

generated by simulating basal conditions for 80 hrs, followed by simulating the treatment 

conditions (AngII, ET-1, AngII + E2, ET-1 +E2, and E2) for an additional 240 hrs.  

4.2.4 Network Perturbation Analysis  

A network perturbation analysis was conducted in MATLAB as previously 

described to identify influential signaling nodes under different estrogen conditions24. The 
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input reaction weight of estrogen was attenuated, and all other input weights were kept at 

0.1 for 80 hrs to simulate basal conditions. A Ymax=0.1 knockdown of individual nodes for 

240 hrs was used to identify sensitive nodes by calculating Δ Activity for each node as the 

sum of all knockdown simulation activity subtracted by basal conditions. Three perturbation 

conditions were conducted: 1) male (male SNM, E2 input w=0.25), 2) female post-

menopausal (female SNM, E2 input w=0.25), and 3) female pre-menopausal (female SNM, 

E2 input w=0.9). Heat maps of the total knockdown effect on the SNM nodes were created, 

as well as heat maps of the top ten influential and sensitive nods.  

4.2.5 Drug Screen  

 A drug screen was applied to the cardiac fibroblast model as previously described12. 

In this prior study, 121 drugs were identified from DrugBank to connect with nodes in the 

model, totaling 36 unique drug-target interactions12,31. A sex-specific drug screen was 

conducted using the same three experimental conditions used for the perturbation analysis 

(male, female post-menopausal, and female pre-menopausal). A static application of drug 

administration (w=0.85) on individual and paired profibrotic stimuli (w=0.6) for each of the 

three experimental conditions. The effect of these simulations on proCI, EDFAN, α-SMA, 

and MMPs was measured.  

4.3 Results 

4.3.1 Integration of estrogen into cardiac fibroblasts signaling network  

We expanded the model to integrate E2 into the previously published model of 

cardiac fibroblast signaling via a manual literature search of over 20 peer-reviewed 

manuscripts to add 23 nodes and 29 edges (Figure 4.1). In addition, 6 already present 

reactions were altered to include direct estrogen receptor inhibition activity. The nodes 

added include E2 and its three primary receptors: estrogen receptor alpha (ERα), estrogen 
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receptor beta (ERβ), and g-protein coupled receptor (GPR30)29,32. Additionally, cyclin beta 

1 (Cyclinβ1) and cyclin-dependent kinase 1 (CDK1) were added downstream of GPR30 as 

they were not already included in the fibroblast SNM33.  The total network now consists of 

132 nodes and 203 edges. The complete model, including all species (nodes), reactions, and 

default parameter settings, can be found in Appendix B. In summary default parameter 

settings included: reaction weights (w) as normalized activity levels between 0-1, Hill 

coefficient (n)=1.25, EC50=0.6, yint=0, ymax=1, and time constant (τ)= 1, 0.1, or 10 for 

signaling reactions, transcription reactions, and translation reactions respectively.  

 

Figure 4.1. The updated SNM integrated with estrogen (E2) and its three receptors.  
 
4.3.2 Model accuracy remains high after integration of E2  

 Accuracy of the model was maintained after the integration of E2 in the SNM. 

When compared with 53 independent studies, 77% (94/122 simulations) of model 

predictions matched results in the literature. Model predictions of estrogen treatment 

specifically were 88% (15/17 simulations) accurate across experimental conditions. To 

assess if model accuracy was influenced by sex, a sex-disaggregated analysis was 
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conducted (Figs. 4.2 and 4.3) using the sex-specific SNMs for model simulations compared 

with sex-disaggregated reporting in the literature. Model predictions were the most accurate 

for the male SNM (81%, 46/57 simulations) and least accurate for the female SNM (67%, 

2/3 simulations). The pooled SNM was 74% accurate (46/62 simulations). It is important to 

note that the female SNM model validation was only conducted with 3 simulations and 

compared with 2 papers. This is because very few papers report female-specific data for 

cardiac fibroblasts.  

For the most part, E2 stimulation without any other profibrotic stimulation (besides 

tension) has relatively little effect on cellular signaling activity, which the model accurately 

predicted. However, the model was accurate in predicting the divergent effect of estrogen 

treatment on male and female proCI and proCIII production, with E2 treatment increasing 

collagen production in males and decreasing it in females34. Additionally, the inclusion of 

E2 into the model did not impact the accuracy of model predictions for other major cellular 

inputs, including AngII and TGFB. The lower accuracy of the model in predicting 

interleukin 1 (IL1), interleukin 6 (IL6), and neutrophil elastase (NE) effect on cellular 

outputs is consistent with the previously published SNM’s limitations35.  
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Figure 4.2. Model validation of the pooled neonate SNM created by altering weighting of estrogen 
stimulation of its three receptors. 
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Figure 4.3. Model validation of  male (A), and female (B) SNMs created by altering weighting of 
estrogen stimulation of its three receptors. 
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4.3.3 Model is accurate in predicting cellular outputs in varied experimental contexts  
 

The experiments used in the validation set were nearly all on an analysis of a 

singular stimulus on cardiac fibroblasts plated on tissue culture plastic (TCP). To determine 

if the models were accurate in predicting outcomes in various experimental contexts, model 

predictions were validated against results from two additional peer-reviewed studies. The 

first, Watts et al., were the results from my first aim in which I measured the effect of 

estrogen on male and female cardiac fibroblasts plated on a soft stiffness of 8 kPa36. The 

male and female SNMs were used to conduct sex-specific predictions of E2 treatment on 

the 12 proteins of interest (Fig. 4.4). In total, the model was 79% accurate in matching the 

experimental findings from my first aim. These results, combined with the validation set 

above, provide evidence to support that E2 alone has a relatively limited effect on 

downstream signaling activities within cardiac fibroblasts. However, when E2 treatment is 

combined with fibrotic agonists effect on downstream signaling is more pronounced.  

 
Figure 4.4. Model predictions compared to results of Watts et al. of the effect of estrogen treatment on 
male and female cardiac fibroblasts plated on an 8kPa substrate36. 
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 Additionally, the model was validated by a paper from Pedram et al. that 

investigated the effect of estrogen in conjunction with the fibrotic agonists AngII and ET 1 

on pooled neonate cardiac fibroblasts (Fig 4.4)30. The model predictions were consistent 

with in vitro results of the study, accurately predicting an increase in α-SMA, fibronectin, 

collagen 1, and collagen II production when stimulated with AngII or ET 1. Likewise, when 

these fibrotic agonists are paired with E2, the model predicts a return to control level values 

of the measured outputs. E2 treatment alone also produced similar outcomes to control level 

predictions similar to experimental results. The effect of E2 on collagen 1 and collagen III 

was slightly more extreme in our model predictions than experimentally overserved outputs.  

 

Figure 4.5. Model validation of the effect of estrogen (E2) in conjunction with fibrotic agonists. E2 
maintained (or reduced) levels of the profibrotic cellular outputs in the model similar to in vitro 
findings30.  
 
4.3.3 Perturbation Analysis  

The role of estrogen in cardiac fibroblast signaling is poorly understood, especially 

in a sex-disaggregated context. A perturbation analysis was conducted to computationally 
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uncover the downstream effect of estrogen treatment on a variety of experimental 

conditions (Fig. 4.5). These conditions had input weights of 0.6 of all 10 fibrotic agonists’ 

model inputs. The male and female post-menopausal condition had an estrogen input weight 

of 0.25, and the female pre-menopausal condition had an estrogen input weight of 0.9. The 

top ten influential and sensitive nodes were also calculated for each condition. There were 

many shared top influential nodes among each condition (tensionin, AT1R, ROS, NOX, and 

AKT). Only the male SNM had P13K and NFKB as top influential nodes. In addition to the 

top influential nodes the female SNM simulations shared with the male SNM, the female 

conditions also shared E2 as expected. Only the female post-menopausal condition had CBP 

and GPR30 as top influential nodes. The female pre-menopausal condition has ERB, ERX, 

and PKA as unique top influential nodes. There were no shared top sensitive nodes among 

all experimental conditions, indicating many points of divergences in downstream signaling 

activity.

 

Figure 4.6. Perturbation analysis of downstream signaling activities due to estrogen treatment.   
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4.3.4 Drug Simulation  

 A sex-disaggregated drug screen was conducted by dosing with 36 unique drug 

targets (Appendix D) connected to nodes in the model (Fig. 4.7). The effect of the drugs on 

fibrotic factors was analyzed when stimulated with various input stimuli with the same 

experimental conditions used in the perturbation analysis. The most apparent impact is that 

in the female pre-menopausal condition, the drugs’ effects on the model outputs of interests 

(proCI, proliferation, EDFAN, proMMPs 1, 2, and 9) were significantly reduced. This is 

likely because E2 is playing a cardioprotective role that is overshadowing the effect of the 

drugs. The differences between the male condition and the female post-menopausal 

conditions are much more subtle. In several cases (i.e., drugs targeting TNFα), it appears 

that the up and down regulatory intensity of the drugs are influenced in a sex-specific 

manner. There are only a few instances in which the drug has an entirely opposite effect in 

the male vs. female post-menopausal screen. A notable example is the effect of drugs 

targeting BAR and IL1RI on MMP1 that have been stimulated with TGFB and ET 1.  
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Figure 4.7. Sex-specific drug screen of 36 unique targets for male, female post-menopausal, and female 
pre-menopausal conditions. 

 4.4 Discussion  

 Developing a therapeutic to target and inhibit cardiac fibrosis has remained elusive 

due to the complex signaling mechanisms of cardiac fibroblasts, which can be influenced by 

biochemical factors, mechanical forces, and cellular sex. Very few studies investigate the 

combined effect of all three of these influences on cardiac fibroblast signaling. In this study, 

we aimed to develop sex-specific signaling network models (SNMs) of cardiac fibroblasts 

by integrating estrogen signaling into a previously published SNM of cardiac fibroblasts to 
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understand sex-specific divergences in fibrotic signaling networks. Additionally, we 

conducted a sex-specific drug screen to determine if we could make sex-specific treatment 

recommendations for cardiac fibrosis.  

 Integration of estrogen into the SNM did not negatively alter its previously high 

predictive power in simulating experiments from the literature. Unsurprisingly, the male 

SNM was the most accurate as the previously published versions of the model were built 

and validated using experiments from papers that were overwhelmingly conducted using 

only male cells25,35. It was difficult to fully validate the accuracy of the female SNM as 

almost no studies report the effect of fibrotic agonists on female cardiac fibroblasts outside 

the context of estrogen. Therefore, it was difficult to fully assess if the female SNM 

accurately predicted the effect of the other model inputs such as AngII and TGFB on 

outputs and intermediates. In the future, we recommend sex-disaggregated reporting to help 

fill in the gaps of our understanding of sex-specific fibrotic signaling.  

 The results of the perturbation analysis uncovered potential regulatory nodes that 

warrant further study. Two nodes that were in the top influencers of the male SNM and the 

female post menopause SNM were NOX and mTORC2. However, in the female pre-

menopause SNM, these nodes do not make the list as top influencers, indicating that at 

higher estrogen levels, their effects are dampened. Neither NOX nor mTORC2 was directly 

involved in reactions that were added or adjusted when integrating estrogen into the model. 

Inhibition of NOX has been linked to decreases in collagen deposition37. Likewise, 

mTORC2 has been reported to play a role in cellular contractility38. Targeting NOX and 

mTORC2 could be a way to mimic the cardioprotective effect of E2 signaling.  

 The sex-disaggregated drug screen clearly exhibited the cardioprotective role of E2 

in the female pre-menopause SNM. However, the differences between the male and female 
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post-menopause SNMs were much more subtle. Although there were slight differences in 

the intensity of the effect of the drugs in up or downregulating fibrotic factors in a sex-

specific manner, the results did not provide enough evidence to elucidate mechanisms that 

account for the ADRs that are more likely to occur in females compared to men. It is 

possible that the integration of estrogen signaling alone was not enough to account for the 

sex-specific differences in fibrotic response to different therapeutics. Future studies could 

address this by integrating genomic or transcriptomic data into the model to account for 

additional differences due to biological sex in addition to gonadal hormones. 

4.5 Limitations and Future Directions   

 Many of the limitations of the sex-specific models designed in this study are due to 

the lack of sex-specific data, particularly female data, available to build and validate the 

model with, as discussed above. An additional major limitation of the current models is 

their lack of quantitative data to infer input parameter values. Without these inputs, the 

models can only make semiquantitative predictions that can be qualitatively compared to 

experimental literature but have little clinical significance. Because of this constraint, the 

model was only validated with estrogen levels of high (pre-menopausal) and low (male and 

post-menopausal). However, like other hormones, estrogen levels can fluctuate from person 

to person and throughout life. These attenuations were not accounted for and would likely 

play a role in the downstream signaling response. Future studies could address this by 

testing with more levels of estrogen and integrating feedback loops for estrogen and its 

receptors.  

4.6 Conclusion  

 We were able to successfully integrate estrogen signaling into a cardiac fibroblast 

SNM in order to make sex-specific models of cardiac fibrosis. These models were validated 
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to be ~80% accurate in predicting experimental outcomes from the literature, making it a 

valuable tool to further study the sex dimorphisms in cardiac fibroblasts signaling caused by 

estrogen. Estrogen’s cardioprotective effects were evident in the drug screen of the pre-

menopausal SNM. Nuanced differences between the male and female premenopausal 

conditions perturbation analysis and drug screen indicate several potential regulatory 

mechanisms that warrant further study. Future research should focus on incorporating more 

sex-specific data into the model itself and validation set to further enhance its capabilities in 

making sex-specific predictions related to cardiac fibrosis.  
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CHAPTER FIVE 
 

AIM THREE: DEVELOPMENT OF SYSTEMS BIOLOGY EDUCATION MODULES 
UTILIZING INCLUSIVE PEDAGOGY STRATEGIES   

 
5.1 Introduction  

In my first two aims, I investigated how biological sex affected the development of 

cardiac fibrosis and discussed the need for further research due to the poor understanding of 

sex as a biological variable. I intentionally framed my analysis around only biological sex 

and not gender because I was primarily focused on the cellular level. However, at the macro 

level, gender and biological sex can intersect to result in additional health disparities. The 

male body has been historically considered the “standard,” and technologies are designed as 

one size fits all to accommodate it. This has resulted in surgical tools being developed for 

larger hands, crash test and CPR dummies having a male build, and the first FDA-approved 

artificial hearts being too large for the average female patient1–3. These biases are likely due 

partly to the lack of representation in the workforce, which also contributes to healthcare 

inequities due to race and ethnicity. For example, recently, software designed to identify 

skin cancer was found to only be accurate for those with white skin4. One way to mitigate 

these biases and make healthcare more equitable is to have diverse representative design 

teams.  

Women and racial and ethnic minorities remain underrepresented in science, 

technology, engineering, and math (STEM). On average, women make up roughly 50% of 

the population and hold only a fraction of the engineering and computer workforce jobs 

(15% and 25%, respectively)5. Likewise, historically marginalized communities, including 

Blacks/African Americans, Hispanics/Latinos, and American Indians, collectively make up 

about 31% of the US workforce but only 20% of STEM jobs5. Not only are these gender 
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and racial/ethnic gaps leading to inequitable designs, but they are also limiting the ability of 

the US to compete in the global science and engineering market6. Having an increased 

number of women and racial and ethnic minorities enter the workforce would allow the US 

to keep pace with the growing number of STEM jobs and lead to more productive and 

creative teams that create equitable technology7,8.  

To achieve a more diverse STEM workforce, the recruitment and retention of these 

historically marginalized communities in postsecondary education will also need to 

increase. Although women outnumber men on college campuses, they are less likely to 

major and graduate with STEM degrees9. Likewise, Black and Latinx students who have 

declared a STEM major are more likely to change majors or drop out than their White 

peers10. These trends are often attributed to the formation of STEM identity, which can be 

influenced by numerous factors, including middle and high school preparation, societal 

expectations and stereotypes, university and workplace culture, representative role models, 

and STEM self-efficacy11,12. Many informal education and mentoring programs have been 

created to target underrepresented individuals in an attempt to counteract negative 

influences and increase STEM identity. However, trends have remained relatively stagnant 

or even dropped over recent years, indicating that more research needs to address the gender 

and racial/ethnic gap in STEM13.  

Recently the lens has turned to pedagogy and how creating a more inclusive 

classroom environment can foster STEM identity in previously marginalized 

communities14. It is well established that nearly all students benefit from a more active 

learning environment than traditional lectures15,16. These techniques allow students to learn 

by doing rather than passively listening. Literature has shown that in a classroom that 

utilizes active learning techniques, students are less likely to fail the course, which in turn, 
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can lead to higher rates of retention rates17,18. However, even in settings that utilize some 

active learning techniques such as flipped classrooms and problem-based learning, there can 

still be additional barriers that impact student performance. For example, in computational 

classes, previous coding experience can be a predictor of perceived self-efficacy throughout 

the course19,20. This affects those from under-resourced schools and others (like women and 

racial/ethnic minorities) who do not typically partake in such activities even if they were an 

option.  

To address the growing need for computational skills in the workforce and higher 

education, computational thinking and literacy have become part of the core curriculum in 

recent years. Because the majority of K-12 teachers do not have a lot of previous coding 

experience, researchers and practitioners have been investigating the use of unplugged 

activities to facilitate the teaching of computational skills21,22. Unplugged activities facilitate 

the learning of computational thinking skills through hands-on or role-playing activities in 

lieu of technology or coding22–24. This technique has been shown to be effective in 

increasing the computational literacy of primary school students, but little research has been 

done on how this technique can also benefit older students with limited prior coding 

experience to increase their self-efficacy in computational methods24. Using unplugged 

activities in conjunction with traditional coding in computational settings could help level 

the playing field for previously marginalized communities.  

Additionally, it is well established that representative role models can increase 

STEM self-efficacy for students from underrepresented populations. However, little 

research has been done on how representative problem statements (i.e., gender or race-

specific) in problem-based learning could also increase self-efficacy. Framing problems as 

gender or race specific to target underrepresented student populations may provide them 
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with additional motivation and interest and increase their STEM self-efficacy and identity 

formation.  

Problem-based learning is often paired with team-based learning in STEM 

classrooms as a powerful tool to increase motivation and overall learning gains25,26. 

However, this presents issues for marginalized communities. Stereotypes can be leveraged 

against them, and task allocation for the technical aspects of a project is not always equal27. 

We are interested in studying if representative problem statements (i.e., gender or race-

specific) would also impact team dynamics such as task allocation, team interactions, team 

contributions, and having relevant knowledge, skills, and abilities by providing students 

from underrepresented populations with the additional agency to take the lead.  

This work focuses on the development of computational biology education modules 

designed to promote an inclusive learning environment by (1) utilizing a hybrid of 

unplugged activities with coded simulation and (2) a female-oriented problem statement. 

Additionally, I will discuss plans to investigate these interventions’ effects on STEM self-

efficacy and team dynamics. Our research questions are:  

1. What effect does pairing unplugged learning activities with traditional coding have 

on the computational literacy of high school students?  

2. To what extent does a female-centered computational biology problem statement 

impact high school girls' STEM self-efficacy and identity?  

3. How are team dynamics such as task allocation and contribution affected when 

working on a female-focused problem? 

5.2 Module Development 

5.2.1 Module Development  
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We have created five systems biology education modules for high school students 

focused on various physiological processes and diseases. These modules will be piloted in 

collaboration with Clemson’s Emerging Scholars program in July 2022. All modules 

include three major components:  

• Unplugged Activities: To advance computational thinking and ease students and 

teachers into modeling, the lesson plans start with a short active learning activity to 

provide a hands-on or role-playing approach to the phenomena being modeled (i.e., 

a modified card game to model uncontrolled tumor growth). Each lesson plan also 

includes recommended discussion questions to connect the unplugged activity with 

computational concepts.  

• Computational Model Tutorial: Following the unplugged activity, students will 

work through a guided tutorial to model the biological or disease phenomena. This 

tutorial is designed to be conducted on a chrome book or similar device with the 

open-source software NetLogo (see Figure 5.1)28. NetLogo was chosen as the 

platform for model development because of its use of drag and drop coding paired 

with traditional script coding, which we believe is best for our target audience of 

high school students with limited previous coding experience.  

• Computational Model Advancement: The last component of our educational 

modules is a deliverable in which students create their own virtual model by 

modifying the model they created in the tutorial. The lesson plan provides guided 

questions as suggestions for model improvement (e.g., What if the patient took a 

drug that inhibited X, Y, or Z?) and encourages students to develop their own 

questions. This last component allows educators to assess gains in their students’ 

computational abilities. 
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Each of the five lesson plans created can be found in Appendix E. In addition to the 

tutorial and model advancement questions given to students, each lesson plan contains an 

overview page for instructors with learning objectives, definitions of applicable terms, a 

time to complete estimation, and a guide to the unplugged activity with suggested follow-up 

discussion questions. All modules are designed to be completed in 2-4 hours each. The 

unplugged activities are intended to be completed in a group setting. The coding part of 

each module could be completed individually or as a team. Because they are intended for 

students with minimal coding experience, the modules build off each other and are 

developed to be completed in sequence except for Modules 4 and 5, which cover very 

similar computational concepts. Students will only complete either Module 4 or Module 5 

in our pilot study, but in theory, they could complete both if they wanted extra practice on 

independent module development. Completed NetLogo models can be found on the 

Richardson Systems Mechanobiology Lab GitHub: (https://github.com/SysMechBioLab). 

We plan to disseminate the modules publicly via journal publication after the completion of 

the pilot study. 

 
Figure 5.1. NetLogo interfaces with drag and drop buttons and coded script. 
 
5.2.2 Modules Created 

https://github.com/SysMechBioLab
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All of the modules created are centered around common biological phenomena. The 

first two modules build upon NetLogo’s built-in Tumor and Virus models to ease students 

into the computational software. Modules 3-5 were independently created and require 

students to develop a model from scratch (with a guided tutorial). The five modules 

designed are detailed below and in Figure 5.2: 

• Tumor Growth: This module employs a built-in NetLogo ‘Tumor’ model as a way 

to get students acclimated with the environment before asking them to code in it29. It 

simulates a growing tumor and intervention techniques to stop the growth. 

Biologically, students will observe the progression and treatment of a tumor from a 

cellular level. Computationally, students will gain experience in using a model to 

test predictions and identify model limitations. The unplugged activity tasks students 

with playing a modified game of UNO, which simulates the behavior of the model 

by showing how even if you are down to one card (i.e., a cancer cell), there is still 

the possibility of regrowth. The model tutorial guides students through interacting 

with the NetLogo interface. In the model advancement, students are asked to answer 

questions about the model’s limitations and make suggestions for improvements.   

• Virus Prevention: This module modifies the built-in NetLogo ‘Virus’ model to 

introduce additional parameters that model an intervention to slow the spread of a 

virus within a population30. Biologically, students will examine population dynamics 

and viral spread. Computationally, students will research and test the effect of input 

parameters on a model. The unplugged activity guides students through a role-

playing game that uses logic comparable to the probability functions which guide 

the simulation. In the model tutorial, students are shown how to introduce a new 

variable to the model, ‘mask compliance.’ In the model advancement, students are 
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asked to search the literature to find potential input parameters to model the spread 

of a virus of their choosing.  

• Immune Reaction: This module will guide students through a tutorial to code a 

NetLogo model from scratch that simulates an allergic reaction. Biologically, 

students will consider how different cells and molecules interact to elicit an immune 

response. Computationally, students will define rules and make assumptions to 

create an agent-based model. The unplugged activity asks students to design the 

rules for their own game, similar to how they will be defining rules for the 

simulation. The model tutorial guides students in setting up the input parameters and 

all of the agents needed for the model (e.g., mast cells, allergen, and histamines). 

However, the tutorial does not end with a completed model; the agents do not 

interact with each other. In the model advancement, students are tasked with 

defining rules for their model and coding them to finish the simulation.  

• Gene Regulation: This module will guide students through a tutorial to code a 

NetLogo model from scratch that uses Boolean Logic to create a simulation of the 

lac operon genetic regulation system. Biologically, students will be exposed to a 

standard model of gene regulation. Computationally, students will define rules using 

Boolean logic and analyze model outputs to identify a system’s emergent 

phenomena. The unplugged activity will lead students through a game of If and If 

Else Simon Says as a way to familiarize them with Boolean logic. The model 

tutorial will guide students through the beginning steps of creating a model with 

many interactive parts from scratch. As this simulation is more challenging than the 

other modules, students will work in teams during the model advancement to finish 

the simulation and identify the model’s emergent phenomena.   
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• The Menstrual Cycle: This module will guide students through a tutorial to code a 

NetLogo model from scratch that uses Boolean Logic to create a simulation of the 

menstrual cycle. Biologically, students will be exposed to the hormones involved in 

the menstrual cycle. Computationally, students will define rules using Boolean logic 

and analyze model outputs to identify a system’s emergent phenomena. This module 

was designed intentionally to mirror module 4 and will be used to test the use of a 

female-focused problem statement vs. a generic problem statement on female self-

efficacy and team dynamics. The unplugged activity, model tutorial, and model 

advancement utilize similar concepts, and the end simulations are guided by similar 

logic.  

 

Figure 5.2. Five computational biology modules were created. All students will complete modules 1-3 in 
sequence and then complete modules 4 or 5. 
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5.3 Plan to Pilot 

5.3.1 Clemson’s Emerging Scholars Program 
 

We plan to pilot the modules with the summer 2022 cohort of Clemson’s Emerging 

Scholars program. This program invites rising high school sophomores-seniors from some 

of South Carolina’s most under-resourced schools to Clemson’s campus for several weeks 

to aid in college preparation. The program helps students prepare for their college 

applications and has them take classes to expose them to different skills to prepare them for 

college. I will be teaching a course on computational biology as part of this program from 

July 6- 16, 2022, using the learning modules developed.  

 The students accepted in the Emerging Scholars program are most likely to be 

female and or African American/Black, both of which are currently underrepresented in 

STEM, providing an ideal population to study how the inclusive learning techniques 

incorporated in the modules impact the self-efficacy team dynamics. We anticipate that 

there will be about 60 students in the cohort this summer that will be divided up into three 

classes of ~20 students. The course will be seven 1.5 hr sessions long per class. All research 

will be conducted in accordance with Clemson’s IRB office and Protocol IRB2022-0059. 

5.3.2 Quasi-Experimental Intervention  
 
 We will use a quasi-experimental approach to measure the effect of the modules on 

students assigned to groups who either complete module 4 or module 31. All students will be 

asked to complete modules 1-3 individually. For the final module, students will be split up 

into a team of 4, with at least two female students per team. Half of the teams will be asked 

to complete Module 4: Gene Regulation and Stability Using Boolean Logic; the other half 

will be given Module 5: The Menstrual Cycle Using Boolean Logic. All teams may not be 
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used in the analysis if there is an uneven number of students or not enough male and female 

students.  

5.3.3 Exit Survey  
 
 To measure any changes in self-efficacy, I will deploy an exit survey on the last day 

of the program to all students. This survey will ask students to rate their pre-and post-

understanding of computational and biological concepts using a 1-10 Likert scale. The 

concepts they will be rating will be taken from the learning objectives of the lesson plans. I 

will conduct a sex-disaggregated analysis on whether there are similar self-efficacy changes 

for individuals on teams who completed the lac operon or the menstrual cycle modules.  

 Additionally, the exit survey will ask students to rate their satisfaction with various 

module components, including the unplugged module activities. There will also be open-

ended questions to allow students to provide more depth to their answers. Results from the 

exit survey will be used to (1) evaluate students’ overall satisfaction with the modules, (2) 

determine if students believed the unplugged activities affected student their perceived self-

efficacy in completing computational tasks, and (3) determine if a female-focused problem 

affected student’s perceived self-efficacy in completing computational tasks. The exit 

survey can be found in Appendix F.  

5.3.4 CATME Survey  
 
 I will use the Purdue CATME survey to measure team dynamics, allowing students 

to rate their teammates on various facets, including contributions, interactions, knowledge, 

and skills32. This survey will be used to determine if a female-focused problem affected 

team dynamics. The Purdue CATME survey can be found in Appendix G.  

5.3.5 Interviews 
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 I will also conduct 5-10 follow-up interviews with students to ask them more in-

depth questions about their satisfaction with the modules, perceived self-efficacy, and team 

dynamics. The sample interview protocol can be found in Figure 5.3.  

 
Figure 5.3. Interview protocol that will be used with 5-10 students. 

5.4 Conclusion  

 The learning modules developed allow for the teaching of computational techniques 

through the use of unplugged activities paired with coded simulation. We anticipate that this 

will enable students with limited prior computational experience to feel more comfortable 

and able to complete tasks, thereby increasing their self-efficacy. A significant limitation of 

our study is that while we hope these modules will improve recruitment and retention of 

underrepresented students to STEM degrees and careers, we do not currently have plans to 

run a longitudinal study to see if they have long-term effects. Additionally, we are only 

conducting a one-week course as part of the pilot study. Future studies could investigate the 

use of these pedagogies throughout a semester-long course and conduct follow-up studies 

on major retention and degree attainment to truly determine the long-term effect of these 

strategies.   
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These modules could be a useful tool for practitioners who teach computational 

courses at the high school or early college level who instruct students with varied coding 

experience. Additionally, our analysis of the use of a female problem statement on female 

self-efficacy and team dynamics will provide potential evidence of the efficacy of 

representative problem statements targeted at underrepresented student populations. We 

believe such problem statements could be developed to address a variety of contexts across 

STEM disciplines and other fields to foster an inclusive learning environment.  
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CHAPTER SIX 
 

CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS  
 
6.1 Summary of Findings 

 Multiple strategies were used to address the gender data gap in healthcare. In Aims 1 

and 2, I discussed the lack of female data and understanding of estrogen signaling in 

relation to cardiac fibrosis. We found that the effects of sex and biological sex have a varied 

impact on profibrotic factors in cardiac fibroblast. Although morphologically we did not 

observe differences in a physiological stiffness of 8 kPa in vitro, different proteins reacted 

in various ways to estrogen treatment occasionally in a sex-specific manner. When done in 

silico, we were able to accurately integrate estrogen signaling into a previously created 

signaling network model of cardiac fibroblasts to develop sex-specific models. After 

perturbation analysis and drug screens with the sex-specific models, we were able to 

identify several regulatory pathways that warrant further study to elucidate their 

involvement in the sex dimorphisms of cardiovascular health. Finally, in Aim 3, five 

systems biology education modules were developed with inclusive pedagogy strategies, 

including unplugged activities and representative problem statements to target 

underrepresented individuals. The plan to pilot these modules to investigate the effect on 

STEM identity, self-efficacy, and team dynamics were also outlined. These in vitro, in 

silico, and in classroom strategies could be further advanced by addressing some of their 

significant limitations.  

6.2 Study Limitations 

6.2.1 Aim 1 Limitations 

Limitations for Aim 1 include that it was an in vitro monolayer culture of 

fibroblasts, only treated with estrogen (E2), alpha-smooth muscle actin (α-SMA) remained 
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elevated, and that it was a limited analysis of protein-protein interactions. We used an in 

vitro monolayer culture of cells for the experimental platform because we were primarily 

interested in the effect of sex differences and E2 treatment on a physiological similar 

stiffness. However, in the future, to further mimic physiological conditions, a coculture of 

multiple cell types of the heart (i.e., cardiomyocytes)  could be used1. Additionally, a 3-D 

culture platform such as spheroids or hydrogels could be developed if a more advanced 

analysis was desired2,3. Because the heart is an organ that dynamically beats, it could also 

be interesting to apply cyclic stretch or mechanical stimulus to mimic this phenomenon in 

vitro to investigate its effect on sex and E24. Estrogen is one of many gonadal hormones in 

the body that play a role in cellular processes. In future experiments, other gonadal 

hormones such as progesterone and testosterone could be dosed in addition to estrogen 

when studying sex-specific effects. Additionally, in order to more accurately mimic 

menopause, an in vivo study with ovariectomized (OVX) mice could be conducted5. An 

unexpected result of Aim 1 was that α-SMA expression remained elevated even on 8 kPa 

stiffness plates. This was surprising as there are other studies that report minimal to no α-

SMA expression on low stiffnesses6. Recent literature suggests that cells can maintain a 

mechanical memory after being plated on tissue culture plastic (TCP). In the future, we 

would recommend plating cells on softer substrates immediately after isolation when 

conducting stiffness analyses or for conducting experiments for more extended time points 

(as opposed to 24 hrs) to allow cells to get reacclimated to their new environment7. Finally, 

in Aim 1, we only conducted a limited analysis of protein-protein interactions. This 

limitation was addressed in Aim 2 with the fibroblast signaling network model.   

6.2.2 Aim 2 Limitations 
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 A significant limitation of the sex-specific SNMs of cardiac fibrosis developed in 

Aim 2 was that they have little physiological relevance in their current state. The models 

would need to be updated with more robust input parameters in order to have quantifiable 

outputs that could be used for diagnosis and treatment initiatives. Additionally, the female 

SNM needs to be further validated. There were insufficient female-specific data in the 

literature to provide a substantial validation set to ensure our confidence in the female SNM 

model’s predictions. Finally, the results of the drug screen revealed very subtle differences 

between the male and female post-menopausal conditions. It is likely that estrogen signaling 

alone is not enough to account for the sex-specific trends in drug response and adverse 

reactions, and in the inclusion of other biologically relevant factors such as genomics, 

transcriptomics, or other hormones could added to future iterations of the model.  

6.2.3 Aim 3 Limitations 

 A significant limitation of the learning modules developed in Aim 3 is that due to 

the COVID-19 pandemic, our plans were postponed until summer 2022, so we do not have 

any preliminary data on their efficacy and reception. Additionally, although our goal is that 

the inclusive pedological strategies utilized in the module lesson plans will increase the 

recruitment and retention of historically marginalized individuals to STEM fields, we do not 

plan to conduct a longitudinal study to truly investigate the long-term effect of such 

strategies. In the future, we would recommend integration of these strategies in a longer 

time frame (i.e., a semester-long course) with follow-up studies to directly investigate the 

effect on retention of underrepresented individuals.   

6.3 Future Directions  

 As discussed throughout this manuscript, female data are widely underrepresented in 

the literature and clinical trials, which are significant contributors to healthcare inequities. 
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Although many funding agencies state they are now requiring the inclusion of female 

samples to receive funding, this is not always reflected in studies that continued to be 

published using only male samples. In the future, I believe journal editors and reviewers 

could have one of the most significant influences the to make inclusion of female and/or 

sex-disaggregated data an expectation, not just a bonus, of peer-reviewed studies. 

Additionally, bootstring representation of women in STEM could help to increase the 

studies which incorporate female samples into their studies.  

The overarching goal of this dissertation was to address the gender data gap that 

exists in healthcare through various strategies in and out of the lab. However, there are 

many other contributors to healthcare inequities beyond the lack of female data. 

Race/ethnicity, socioeconomic status, sexual orientation, and gender identity are all also 

significantly understudied influences on the care patients receive. Additionally, although 

they were often treated as a dichotomy throughout this dissertation, for many individuals, 

sex and gender are on a spectrum that is not stagnant throughout life. These are all factors 

that need to be adequately investigated and addressed, especially as precision medicine 

techniques become more widely used to ensure that diagnostic and treatment interventions 

are accurate for all patients.  
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Appendix A 

Table A1:  

 
Table A2: 
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Appendix B 

Species information 
module ID name Yinit Ymax  tau 
g-coupled AngII angiotensin II  0 1 1 
g-coupled AngIIin ang II input  0 1 1 
g-coupled AngIIfb ang II feedback  0 1 1 
g-coupled AT1R angiotensin II receptor type 1  0 1 0.1 
g-coupled AGT angiotensinogen  0 1 10 
g-coupled ACE angiotensin converting enzym  0 1 0.1 
g-coupled NOX NAD(P)H oxidase  0 1 0.1 
g-coupled ROS reactive oxygen species  0 1 0.1 
g-coupled ET1 endothelin 1  0 1 1 
g-coupled ET1in endothelin 1 input  0 1 1 
g-coupled ET1fb endothelin 1 feedback  0 1 1 
g-coupled ETAR endothelin 1 receptor A  0 1 0.1 
g-coupled DAG diacyl-glycerol  0 1 0.1 
g-coupled PKC protein kinase C  0 1 0.1 
tension TRPC transient receptor potential ca  0 1 0.1 
g-coupled NE norepinephrine  0 1 1 
g-coupled NEin norepinephrine input  0 1 1 
g-coupled BAR beta adrenergic receptor 1 or  0 1 0.1 
g-coupled AC adenylate cyclase  0 1 0.1 
g-coupled cAMP cyclic adenosine monophosp  0 1 0.1 
g-coupled PKA protein kinase A  0 1 0.1 
g-coupled CREB cAMP response-element bind  0 1 0.1 
g-coupled CBP CREB - binding protein  0 1 0.1 
growth factor TGFB transforming growth factor b  0 1 1 
growth factor TGFBin transforming growth factor b  0 1 1 
growth factor TGFBfb transforming growth factor b  0 1 1 
growth factor TGFB1R TGFB receptor  0 1 0.1 
growth factor smad3 small mothers against decape  0 1 0.1 
growth factor smad7   0 1 10 
growth factor latentTGFB TGFB1 with latent protein co  0 1 10 
growth factor BAMBI BMP and activin bound inhib  0 1 0.1 
growth factor PDGF platelet derived growth factor  0 1 1 
growth factor PDGFin platelet derived growth factor  0 1 1 
growth factor PDGFR platelet derived growth factor  0 1 0.1 
g-coupled NP natriuretic peptide  0 1 1 
g-coupled NPin natriuretic peptide input  0 1 1 
g-coupled NPRA natriuretic peptide receptor  0 1 0.1 
g-coupled cGMP cyclic guanosine monophosp  0 1 0.1 
g-coupled PKG protein kinase G  0 1 0.1 
tension tension membrane or adhesion tensio  0 1 1 
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tension tensionin tension input 0 1 1 
tension tensionfb tension feedback 0 1 1 
tension B1int beta 1 integrin 0 1 0.1 
tension Rho a Rho-dependent GTPase 0 1 0.1 
tension ROCK rho associated protein kinase 0 1 0.1 
tension Ca calcium 0 1 0.1 
tension calcineurin calcineurin 0 1 0.1 
tension NFAT nuclear factor of activated T- 0 1 0.1 
cytokine IL6 interleukin-6 0 1 1 
cytokine IL6in interleukin-6 input 0 1 1 
cytokine IL6fb interleukin-6 feedback 0 1 1 
cytokine gp130 IL-6 receptor complexed to g 0 1 0.1 
cytokine STAT signal transducers and activat 0 1 0.1 
cytokine IL1 interleukin-1 alpha and beta 0 1 1 
cytokine IL1in interleukin-1 input 0 1 1 
cytokine IL1RI IL1 receptor type I 0 1 0.1 
cytokine TNFa tissue necrosis factor alpha 0 1 1 
cytokine TNFain tissue necrosis factor alpha in 0 1 1 
cytokine TNFaR TNF alpha receptor 0 1 0.1 
cytokine NFKB nuclear factor kappa-light-ch 0 1 0.1 
cytokine PI3K phosphoinositide 3-kinase 0 1 0.1 
cytokine Akt protein kinase B 0 1 0.1 
MAPK p38 a MAP kinase 0 1 0.1 
MAPK TRAF tnf receptor associated factor 0 1 0.1 
MAPK ASK1 apoptosis signal related kinas 0 1 0.1 
MAPK MKK3 mitogen activated protein kin 0 1 0.1 
MAPK PP1 protein phosphatase 1 0 1 0.1 
MAPK JNK a MAP kinase 0 1 0.1 
MAPK abl abl tyrosine kinase 0 1 0.1 
MAPK Rac1 a Rho-dependent GTPase 0 1 0.1 
MAPK MEKK1 a MAP3K associated with p3 0 1 0.1 
MAPK MKK4 a MAP2K associated with p3 0 1 0.1 
MAPK ERK a MAP kinase 0 1 0.1 
MAPK Ras representing the family of GT 0 1 0.1 
MAPK Raf family of raf protein serine/th 0 1 0.1 
MAPK MEK1 a MAP2K mainly specific to 0 1 0.1 
adhesion FAK focal adhesion kinase 0 1 0.1 
g-coupled epac exchange protein activated by 0 1 0.1 
adhesion Factin polymerized actin 0 1 1 
adhesion FA stabilization of focal adhesio 0 1 1 
growth cmyc myc transcription factor 0 1 0.1 
growth CTGF connective tissue growth fact 0 1 0.1 



 106 

 
growth proliferation proliferation 0 1 10 
adhesion SRF serum response factor 0 1 0.1 
ECM EDAFN extra domain A of fibronectin 0 1 10 
adhesion aSMA alpha-smooth muscle actin 0 1 10 
MAPK AP1 activator protein 1 0 1 0.1 
ECM TIMP1 tissue inhibitor of metallopro 0 1 10 
ECM TIMP2 tissue inhibitor of metallopro 0 1 10 
ECM PAI1 plasminogen activator inhibit 0 1 10 
ECM proMMP14 inactive MMP14 0 1 10 
ECM proMMP1 inactive MMP1 0 1 10 
ECM proMMP2 inactive MMP2 0 1 10 
ECM proMMP9 inactive MMP9 0 1 10 
ECM fibronectin fibronectin 0 1 10 
ECM periostin periostin 0 1 10 
ECM proCI procollagen I 0 1 10 
ECM proCIII procollagen III 0 1 10 
tension B3int beta 3 integrin 0 1 0.1 
adhesion Src proto-oncogene tyrosine-prot 0 1 0.1 
MAPK Grb2 growth factor receptor-bound 0 1 0.1 
adhesion p130Cas breast cancer anti-estrogen re 0 1 0.1 
tension YAP yes-associated protein 1 0 1 0.1 
adhesion MRTF myocardin-related transcripti 0 1 0.1 
adhesion Gactin monomeric actin 0 1 1 
ECM TNC tenascin-c 0 1 10 
growth mTORC1 mammalian target of rapamy 0 1 0.1 
growth mTORC2 mammalian target of rapamy 0 1 0.1 
growth p70S6K p70-S6 kinase 1 0 1 0.1 
growth EBP1 eukaryotic translation initiati 0 1 0.1 
tension syndecan4 syndecan 4 0 1 0.1 
ECM proMMP3 inactive MMP3 0 1 10 
ECM proMMP8 inactive MMP8 0 1 10 
ECM proMMP12 inactive MMP12 0 1 10 
ECM thrombospon thrombospondin 4 0 1 10 
ECM osteopontin osteopontin 0 1 10 
tension contractility intracellular tension 0 1 1 
tension RhoGEF a Rho guanine nucleotide exc 0 1 0.1 
tension RhoGDI a Rho GDP-dissociation inhi 0 1 0.1 
adhesion talin talin 1 0 1 0.1 
adhesion vinculin vinculin 0 1 0.1 
adhesion paxillin paxillin 0 1 0.1 
adhesion MLC myosin regulatory light chain 0 1 0.1 
g-coupled AT2R angiotensin II receptor type 2 0 1 0.1 
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estrogen E2 17-beta estradiol (estrogen 2) 0 1 1 
estrogen E2in 17-beta estradiol (estrogen 2) 0 1 1 
estrogen ERX estrogen receptor alpha 0 1 0.1 
estrogen ERB estrogen receptor beta 0 1 0.1 
estrogen GPR30 G protein-protein coupled est 0 1 0.1 
estrogen CyclinB1 cyclin beta 1 0 1 0.1 
estrogen CDK1 cyclin-dependant-kinase 1 0 1 0.1 
ECM LOX lysyl oxidase 0 1 10 
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Reaction Information 

module ID Rule Weight n EC50 
input i1 => AngIIin 0.1 1.25 0.6 
input i2 => TGFBin 0.1 1.25 0.6 
input i3 => tensionin 0.1 1.25 0.6 
input i4 => IL6in 0.1 1.25 0.6 
input i5 => IL1in 0.1 1.25 0.6 
input i6 => TNFain 0.1 1.25 0.6 
input i7 => NEin 0.1 1.25 0.6 
input i8 => PDGFin 0.1 1.25 0.6 
input i9 => ET1in 0.1 1.25 0.6 
input i10 => NPin 0.1 1.25 0.6 
input i11 => E2in 0.1 1.25 0.6 
input i12 AngIIin => AngII 1 1.01 0.5 
input i13 TGFBin => TGFB 1 1.01 0.5 
input i14 tensionin => tension 1 1.01 0.5 
input i15 IL6in => IL6 1 1.01 0.5 
input i16 IL1in => IL1 1 1.01 0.5 
input i17 TNFain => TNFa 1 1.01 0.5 
input i18 NEin => NE 1 1.01 0.5 
input i19 PDGFin => PDGF 1 1.01 0.5 
input i20 ET1in => ET1 1 1.01 0.5 
input i21 NPin => NP 1 1.01 0.5 
input i22 E2in => E2 1 1.01 0.5 
middle r1 AngII & !ERB => AT1R 1 1.25 0.6 
middle r2 AT1R => NOX 1 1.25 0.6 
middle r3 NOX => ROS 1 1.25 0.6 
middle r4 IL6 => gp130 1 1.25 0.6 
middle r5 ROS => p38 1 1.25 0.6 
middle r6 ROS => JNK 1 1.25 0.6 
middle r7 IL1RI & !ERX => NFKB 1 1.25 0.6 
middle r8 gp130 => STAT 1 1.25 0.6 
middle r9 TNFaR => PI3K 1 1.25 0.6 
middle r10 TGFB1R & !PKG & !smad7 & !ERB => smad3 1 1.25 0.6 
middle r11 ERK & !ERX => NFKB 1 1.25 0.6 
middle r12 p38 &!ERX => NFKB 1 1.25 0.6 
middle r13 ETAR => ROS 1 1.25 0.6 
middle r14 ERK => AP1 1 1.25 0.6 
middle r15 cAMP => PKA 1 1.25 0.6 
middle r16 !smad3 => CBP 1 1.25 0.6 
middle r17 !CREB => CBP 1 1.25 0.6 
middle r18 TGFB1R => ACE 1 1.25 0.6 
middle r19 TGFB & !BAMBI => TGFB1R 1 1.25 0.6 
middle r20 PKA => CREB 1 1.25 0.6 
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middle r21 NE => BAR 1 1.25 0.6 
middle r22 ET1 => ETAR 1 1.25 0.6 
middle r23 IL1 => IL1RI 1 1.25 0.6 
middle r24 PDGF => PDGFR 1 1.25 0.6 
middle r25 BAR => AC 1 1.25 0.6 
middle r26 BAR & AT1R => AC 1 1.25 0.6 
middle r27 AC => cAMP 1 1.25 0.6 
middle r28 FAK =>MEKK1 1 1.25 0.6 
middle r29 cAMP => epac 1 1.25 0.6 
middle r30 Rho => ROCK 1 1.25 0.6 
middle r31 TNFa => TNFaR 1 1.25 0.6 
middle r32 NP => NPRA 1 1.25 0.6 
middle r33 NPRA => cGMP 1 1.25 0.6 
middle r34 cGMP => PKG 1 1.25 0.6 
middle r35 Ras => Raf 1 1.25 0.6 
middle r36 Raf & !ERK => MEK1 1 1.25 0.6 
middle r37 MEK1 & !PP1=> ERK 1 1.25 0.6 
middle r38 p38 => PP1 1 1.25 0.6 
middle r39 MKK3 => p38 1 1.25 0.6 
middle r40 TGFB1R => TRAF 1 1.25 0.6 
middle r41 Rac1 => MEKK1 1 1.25 0.6 
middle r42 MEKK1 => MKK4 1 1.25 0.6 
middle r43 MKK4 & !NFKB => JNK 1 1.25 0.6 
middle r44 PDGFR => abl 1 1.25 0.6 
middle r45 abl => Rac1 1 1.25 0.6 
middle r46 JNK => cmyc 1 1.25 0.6 
middle r47 TNFaR => TRAF 1 1.25 0.6 
middle r48 TRAF => ASK1 1 1.25 0.6 
middle r49 ASK1 => MKK3 1 1.25 0.6 
middle r50 ASK1 => MKK4 1 1.25 0.6 
middle r51 IL1RI => ASK1 1 1.25 0.6 
middle r52 Ras => p38 1 1.25 0.6 
middle r53 TGFB1R => PI3K 1 1.25 0.6 
middle r54 PDGFR => PI3K 1 1.25 0.6 
middle r55 FAK => PI3K 1 1.25 0.6 
middle r56 TGFB1R => NOX 1 1.25 0.6 
middle r57 Akt & !ERX => NFKB 1 1.25 0.6 
middle r58 JNK => AP1 1 1.25 0.6 
middle r59 IL1RI & TGFB => BAMBI 1 1.25 0.6 
middle r60 STAT => smad7 1 1.25 0.6 
middle r61 Rho & !Rac1 => p38 1 1.25 0.6 
middle r62 MKK4 & !Rho => JNK 1 1.25 0.6 
middle r63 TGFB1R => Rho 1 1.25 0.6 
middle r64 AT1R => Ras 1 1.25 0.6 
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middle r65 ETAR => DAG 1 1.25 0.6 
middle r66 AT1R => DAG 1 1.25 0.6 
middle r67 DAG => TRPC 1 1.25 0.6 
middle r68 TRPC => Ca 1 1.25 0.6 
middle r69 Ca => calcineurin 1 1.25 0.6 
middle r70 calcineurin => NFAT 1 1.25 0.6 
middle r71 PDGFR => Src 1 1.25 0.6 
middle r72 Akt => mTORC1 1 1.25 0.6 
middle r73 mTORC1 => p70S6K 1 1.25 0.6 
middle r74 !mTORC1 => EBP1 1 1.25 0.6 
middle r75 Akt => smad3 1 1.25 0.6 
middle r76 !p70S6K => mTORC2 1 1.25 0.6 
middle r77 mTORC2 & PI3K => Akt 1 1.25 0.6 
middle r78 mTORC2 & DAG => PKC 1 1.25 0.6 
middle r79 AP1 & !YAP => smad7 1 1.25 0.6 
middle r80 AT1R => YAP 1 1.25 0.6 
middle r81 AngII => AT2R 1 1.25 0.6 
middle r82 ROS & !AT2R => ERK 1 1.25 0.6 
middle r83 tension => B1int 1 1.25 0.6 
middle r84 PKC & tension => B1int 1 1.25 0.6 
middle r85 tension & Src => p130Cas 1 1.25 0.6 
middle r86 tension => TRPC 1 1.25 0.6 
middle r87 tension => AT1R 1 1.25 0.6 
middle r88 B3int => Src 1 1.25 0.6 
middle r89 B1int => FAK 1 1.25 0.6 
middle r90 FAK & Src => Grb2 1 1.25 0.6 
middle r91 Grb2 => Ras 1 1.25 0.6 
middle r92 FAK & Src => RhoGEF 1 1.25 0.6 
middle r93 !Src => RhoGDI 1 1.25 0.6 
middle r94 FAK & Src => p130Cas 1 1.25 0.6 
middle r95 p130Cas & abl => Rac1 1 1.25 0.6 
middle r96 Factin => YAP 1 1.25 0.6 
middle r97 PKA => RhoGDI 1 1.25 0.6 
middle r98 RhoGEF & !RhoGDI & !PKG => Rho 1 1.25 0.6 
middle r99 syndecan4 => PKC 1 1.25 0.6 
middle r100 !PKC => RhoGDI 1 1.25 0.6 
middle r101 NFAT & !Gactin => MRTF 1 1.25 0.6 
middle r102 ROCK & Gactin => Factin 1 1.25 0.6 
middle r103 !Factin => Gactin 1 1.25 0.6 
middle r104 MRTF => SRF 1 1.25 0.6 
middle r105 FAK & Src & MLC => paxillin 1 1.25 0.6 
middle r106 B1int => talin 1 1.25 0.6 
middle r107 B3int => talin 1 1.25 0.6 
middle r108 vinculin & CDK1 & !paxillin => FA 1 1.25 0.6 
middle r109 ROCK => MLC 1 1.25 0.6 
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middle r110 E2=> ERX 1 1.25 0.6 
middle r111 E2=> ERB 1 1.25 0.6 
middle r112 E2=> GPR30 1 1.25 0.6 
middle r113 ERB=> cAMP 1 1.25 0.6 
middle r114 ERB=> PKA 1 1.25 0.6 
middle r115 ERX=> Akt 1 1.25 0.6 
middle r116 !GPR30=> CyclinB1 1 1.25 0.6 
middle r117 CyclinB1 & AngII => CDK1 1 1.25 0.6 
middle r118 AT1R & !CDK1=>TGFB 0 1.25 0.6 
middle r119 GPR30=>Akt 1 1.25 0.6 
output r120 CDK1=> proliferation 1 1.25 0.6 
output r121 AP1 => proliferation 1 1.25 0.6 
output r122 CREB => proliferation 1 1.25 0.6 
output r123 CTGF => proliferation 1 1.25 0.6 
output r124 PKC => proliferation 1 1.25 0.6 
output r125 !EBP1 & p70S6K => proliferation 1 1.25 0.6 
output r126 cmyc => proliferation 1 1.25 0.6 
output r127 NFKB & AP1 & !smad3 => proMMP1 1 1.25 0.6 
output r128 AP1 => proMMP2 1 1.25 0.6 
output r129 STAT => proMMP2 1 1.25 0.6 
output r130 STAT => proMMP9 1 1.25 0.6 
output r131 AP1 & NFKB => proMMP9 1 1.25 0.6 
output r132 AP1 => proMMP14 1 1.25 0.6 
output r133 NFKB => proMMP14 1 1.25 0.6 
output r134 NFKB & AP1 & !smad3 => proMMP8 1 1.25 0.6 
output r135 NFKB & AP1 & !smad3 => proMMP3 1 1.25 0.6 
output r136 CREB => proMMP12 1 1.25 0.6 
output r137 AP1 => TIMP1 1 1.25 0.6 
output r138 AP1 => TIMP2 1 1.25 0.6 
output r139 smad3 => PAI1 1 1.25 0.6 
output r140 YAP => PAI1 1 1.25 0.6 
output r141 SRF => proCI 1 1.25 0.6 
output r142 SRF => proCIII 1 1.25 0.6 
output r143 smad3 & CBP & !epac=> proCI 1 1.25 0.6 
output r144 smad3 & CBP & !epac=> proCIII 1 1.25 0.6 
output r145 smad3 & CBP => fibronectin 1 1.25 0.6 
output r146 NFKB => fibronectin 1 1.25 0.6 
output r147 NFAT => EDAFN 1 1.25 0.6 
output r148 smad3 & CBP => periostin 1 1.25 0.6 
output r149 CREB & CBP => periostin 1 1.25 0.6 
output r150 NFKB => TNC 1 1.25 0.6 
output r151 MRTF => TNC 1 1.25 0.6 
output r152 smad3 => thrombospondin4 1 1.25 0.6 
output r153 AP1 => osteopontin 1 1.25 0.6 
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output r154 smad3 & CBP & ERK => CTGF 1 1.25 0.6 
output r155 YAP => CTGF 1 1.25 0.6 
output r156 Akt => LOX 1 1.25 0.6 
output r157 YAP => aSMA 1 1.25 0.6 
output r158 smad3 & CBP => aSMA 1 1.25 0.6 
output r159 SRF=> aSMA 1 1.25 0.6 
fback r160 AP1 => latentTGFB 1 1.25 0.6 
fback r161 proMMP9 & latentTGFB => TGFBfb 1 1.25 0.6 
fback r162 proMMP2 & latentTGFB => TGFBfb 1 1.25 0.6 
fback r163 tension & latentTGFB => TGFBfb 1 1.25 0.6 
fback r164 !AT1R & !JNK & p38 => AGT 1 1.25 0.6 
fback r165 ACE & AGT => AngIIfb 1 1.25 0.6 
fback r166 CREB + CBP => IL6fb 1 1.25 0.6 
fback r167 NFKB => IL6fb 1 1.25 0.6 
fback r168 AP1 => IL6fb 1 1.25 0.6 
fback r169 AP1 => ET1fb 1 1.25 0.6 
fback r170 Factin & MLC => contractility 1 1.25 0.6 
fback r171 aSMA & MLC => contractility 1 1.25 0.6 
fback r172 !thrombospondin4 & tension => B3int 1 1.25 0.6 
fback r173 osteopontin => B3int 1 1.25 0.6 
fback r174 !TNC & tension => syndecan4 1 1.25 0.6 
fback r175 talin & contractility => vinculin 1 1.25 0.6 
fback r176 contractility & FA => tensionfb 1 1.25 0.6 
fback r177 TGFBfb => TGFB 0.25 1.01 0.5 
fback r178 AngIIfb => AngII 0.25 1.01 0.5 
fback r179 IL6fb => IL6 0.25 1.01 0.5 
fback r180 ET1fb => ET1 0.25 1.01 0.5 
fback r181 tensionfb => tension 0.25 1.01 0.5 
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Appendix D 

Drug name Binding Action Target 
Bosutinib Non-Competitive Antagonist abl 
Dasatinib Non-Competitive Antagonist abl 
Nilotinib Non-Competitive Antagonist abl 
Ponatinib Non-Competitive Antagonist abl 
Benazepril Competitive Antagonist ACE 
Captopril Competitive Antagonist ACE 
Cilazapril Competitive Antagonist ACE 
Enalapril Competitive Antagonist ACE 
Fosinopril Competitive Antagonist ACE 
Lisinopril Competitive Antagonist ACE 
Moexipril Competitive Antagonist ACE 
Perindopril Competitive Antagonist ACE 
Quinapril Competitive Antagonist ACE 
Ramipril Competitive Antagonist ACE 
Rescinnamine Competitive Antagonist ACE 
Spirapril Competitive Antagonist ACE 
Trandolapril Competitive Antagonist ACE 
Arsenic trioxide Competitive Agonist AP1; ERK 
Azilsartan medoxomil Competitive Antagonist AT1R 
Candesartan Competitive Antagonist AT1R 
Eprosartan Competitive Antagonist AT1R 
Forasartan Competitive Antagonist AT1R 
Irbesartan Competitive Antagonist AT1R 
Olmesartan Competitive Antagonist AT1R 
Tasosartan Competitive Antagonist AT1R 
Telmisartan Competitive Antagonist AT1R 
Valsartan Competitive Antagonist AT1R 
Losartan Non-Competitive Antagonist AT1R 
Saprisartan Non-Competitive Antagonist AT1R 

A.T. Globulin Non-Competitive Antagonist B1int 
Arbutamine Competitive Agonist BAR 

Arformoterol Competitive Agonist BAR 
Bambuterol Competitive Agonist BAR 
Clenbuterol Competitive Agonist BAR 
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Dipivefrin Competitive Agonist BAR 
Dobutamine Competitive Agonist BAR 

Droxidopa Competitive Agonist BAR 
Ephedra Competitive Agonist BAR 
Epinephrine Competitive Agonist BAR 
Fenoterol Competitive Agonist BAR 
Formoterol Competitive Agonist BAR 
Indacaterol Competitive Agonist BAR 
Isoetarine Competitive Agonist BAR 
Isoprenaline Competitive Agonist BAR 
Norepinephrine Competitive Agonist BAR 
Olodaterol Competitive Agonist BAR 
Orciprenaline Competitive Agonist BAR 
Pirbuterol Competitive Agonist BAR 
Procaterol Competitive Agonist BAR 
Ritodrine Competitive Agonist BAR 
Salbutamol Competitive Agonist BAR 
Salmeterol Competitive Agonist BAR 
Terbutaline Competitive Agonist BAR 
Vilanterol Competitive Agonist BAR 
Acebutolol Competitive Antagonist BAR 
Alprenolol Competitive Antagonist BAR 
Atenolol Competitive Antagonist BAR 
Betaxolol Competitive Antagonist BAR 
Bevantolol Competitive Antagonist BAR 
Bisoprolol Competitive Antagonist BAR 
Bopindolol Competitive Antagonist BAR 
Bupranolol Competitive Antagonist BAR 
Carteolol Competitive Antagonist BAR 
Carvedilol Competitive Antagonist BAR 
Celiprolol Competitive Antagonist BAR 
Esmolol Competitive Antagonist BAR 
Labetalol Competitive Antagonist BAR 
Levobunolol Competitive Antagonist BAR 
Metipranolol Competitive Antagonist BAR 
Metoprolol Competitive Antagonist BAR 
Nadolol Competitive Antagonist BAR 
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Nebivolol Competitive Antagonist BAR 
Oxprenolol Competitive Antagonist BAR 
Penbutolol Competitive Antagonist BAR 
Pindolol Competitive Antagonist BAR 
Practolol Competitive Antagonist BAR 
Propranolol Competitive Antagonist BAR 
    
Sotalol Competitive Antagonist BAR 
Timolol Competitive Antagonist BAR 
Amiodarone Non-Competitive Antagonist BAR 
Amyl Nitrite Non-Competitive Agonist cGMP 
Erythrityl Tetranitrate Non-Competitive Agonist cGMP 
Isosorbide Dinitrate Non-Competitive Agonist cGMP 
Nitroglycerin Non-Competitive Agonist cGMP 

Nitroprusside Non-Competitive Agonist cGMP 
Ocriplasmin Non-Competitive Antagonist EDAFN 
Ambrisentan Competitive Antagonist ETAR 
Bosentan Competitive Antagonist ETAR 
Maitentan Competitive Antagonist ETAR 
Sitaxentan Competitive Antagonist ETAR 
Tocilizumab Competitive Antagonist gp130 
Canakinumab Competitive Antagonist IL1 
Gallium nitrate Non-Competitive Antagonist IL1 
Anakinra Competitive Antagonist IL1R1 
Siltuximab Competitive Antagonist IL6 
Cobimetinib Competitive Antagonist MEK1 
Trametinib Non-Competitive Antagonist MEK1 
Marimastat Competitive Antagonist MMP1; MMP2; MMP9; 

MMP14 
Glucosamine Non-Competitive Antagonist MMP9 
Triflusal Non-Competitive Antagonist NFKB 
Thalidomide Non-Competitive Antagonist NFKB; TNFa 
Sacubitril Non-Competitive Agonist NP 
Entresto Competitive Both NPRA (Agonist); AT1R 

(Antagonist) 
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Urokinase Non-Competitive Antagonist PAI1 
Becaplermin Competitive Antagonist PDGFR 
Pazopanib Non-Competitive Antagonist PDGFR 
Sunitinib Non-Competitive Antagonist PDGFR 
Sorafenib Non-Competitive Antagonist PDGFR; Raf 
Regorafenib Non-Competitive Antagonist PDGFR; Raf; abl 
Dabrafenib Non-Competitive Antagonist Raf 

Fasudil Competitive Antagonist ROCK 
Ripasudil Competitive Antagonist ROCK 
Galunisertib Non-Competitive Antagonist TGFB1R 
Lucanix Competitive Antagonist TGFBmRNA 
Trabedersen Competitive Antagonist TGFBmRNA 
Adalimumab Non-Competitive Antagonist TNF 
Certolizumab pegol Non-Competitive Antagonist TNF 
Infliximab Non-Competitive Antagonist TNF 
Pomalidomide Non-Competitive Antagonist TNF 
Etanercept Competitive Antagonist TNFa 
Golimumab Competitive Antagonist TNFa 
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Appendix E 

Module 1: Tumor Growth Simulation & Limitations  
Platform: NetLogo 
Following this lesson students should be able to:  

1) Describe basic cancer cell metabolism and migration   
2) Utilize NetLogo’s built-in sample models 
3) Develop and test predictions of therapeutic targets using a tumor 

model 
4) Evaluate a model’s limitations  

Purpose: This module employees a built-in NetLogo tumor model. 
Biologically, students will observe the progression and treatment of a 
disease from a cellular level. Computationally, students will gain 
experience in using a model to test predictions as well as identifying 
model limitations.  
Biological Terms: 

1) Tumor: an abnormal mass of cells   
2) Cancer: the uncontrolled continues replication of cells 
3) Apoptosis: programmed cell death 
4) Metastasis: the spread of cancer cells to other parts of the body  
5) Remission: the disappearance of the symptoms and signs of 

cancer 
Computational Terms: 

1) Computational Model: a mathematical model used to study the 
behavior of a complex system 

2) Systems Biology: the modeling of complex biological systems 
3) Limitations: refers to simplifications or missing details in a model 

that make it unable to capture the full natural phenomena 
4)  Stem Cell: a term in the model referring to original cancer cells 

(blue dots). Can replicate into more stem cells and transitory cells. 
They also can metastasize 

5) Transitory Cell: a term in the model referring to cells derived from 
an original cancer stem cell (red dots). They can divide into more 
cancer transitory cells but will slow (white dots) and undergo 
apoptosis (black dots) after a few replications  
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Time Estimation:  
1) In-Class Activity: 30 minutes  
2) Model Tutorial: 30 minutes  
3) Model Testing and Advancement: 15 minutes 

Total: ~1 hour 15 minutes  
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Part One: In-Class Activity 
Materials: UNO or standard card decks  
Rules: 

1) Split students into groups of ~4-8 
2) Have only half the number of students play at first and the others 

observe 
3) Have them play UNO as normal  
4) After two minutes, have students give green cards (split evenly) to 

spectating students who draw an additional 5 cards and join the 
game (models migration and formation of secondary tumor)  

5) Keep playing UNO as normal  
6) After two more minutes, have students discard any card that is an 

even number (models a treatment of killing transitory cells) 
7) Have them keep playing as normal 
8) After two more minutes, have all students draw a card. If a student 

draws a yellow card then they no longer have to draw cards if they 
don’t have a move for the remainder of the game (models a 
treatment of killing stem cells) 

9) Have them keep playing for an additional five-ten minutes or until 
the game is over 

10)  Discuss observations in small groups or as a class 
Modification for Individual Activity: A single student can deal out hands 
for all “participants” with cards face-up, then proceed through steps 
above while playing all hands. 
 
Modification for standard card deck: The game should be easily modified 
for a standard deck of cards by changing the rules to use suits instead of 
colors and assigning typical UNO rules like “draw 4” or “skip” to face 
cards. 
Suggested Discussion Questions: 

1) Did the students who benefited from the “treatments” run out of 
cards faster?  

2) How is UNO a good model of cancer metabolism and migration? 
3) How is UNO NOT a good model of cancer metabolism and 

migration (i.e. what were the limitations)?  
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Part Two: Model Tutorial 
1) Open NetLogo 
2) Under File choose Model Library 
3) Choose Tumor under Biology>Evolution  
4) Click Setup button 
5) Click Go button and watch as the model very quickly expands into 

a large original tumor and a smaller metastasized tumor. Also note 
that the graph almost immediately levels off. To stop the model, hit 
Go again 

6) Adjust the speed bar so that it is slower (very far left) 
7) Click the Setup button again to reset the model and run it again by 

clicking Go 
a. What type of relationship does the graph appear to have 

now?  
 
 
 

8)  Play around with the interventions (Kill Transitory Cells, Kill 
Moving Stem Cell, and Kill Original Stem Cell).   

a. What happens when you Kill Original Stem Cell immediately 
(before first replication)? 
 
 
 

b. What happens when you Kill Original Stem Cell before the 
tumor has metastasized?  
 
 
 
 

c. What happens when you Kill Original Stem Cell after the 
tumor has metastasized?  
 
 
 
  

d. What happens when you Kill Transitory Cell immediately 
(before first replication)? 
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e. What happens when you Kill Transitory Cell before the 
tumor has metastasized? 

 
 

 
 
 

f. What happens when you Kill Transitory Cell after the tumor 
has metastasized?  
 
 
 
 

g. What happens when you Kill Moving Stem Cell immediately 
(before first replication)? 
 
 
 
 

h. What happens when you Kill Moving Stem Cell before the 
tumor has metastasized? 
 
 
 
 

i. What happens when you Kill Moving Stem Cell after the 
tumor has metastasized?  
 
 
 
 

j. All three interventions achieved remission if applied before 
the first replication, why is this likely not a feasible treatment 
option? 
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k. If you could only apply one intervention, which do you think 
offers the best chance of remission? Does this depend on 
whether the tumor has metastasized already? 
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Part Three: Model Testing and Advancement: 
1) Using your analyses from step 8, predict the best combined 

treatment (i.e. (1) Kill Transitory Cells and Original Stem Cell, (2) 
Kill Transitory Cell and Moving Stem Cell, or (3) Kill Moving Stem 
Cell and Original Stem Cell) for a tumor that has already 
metastasized.  

a. Prediction: 
 
 

2) Test your prediction with the model.  
a. Did your treatment achieve remission? Explain. 

 
 
 
 
 
 

3) Because this model is extremely basic, it has many limitations 
which make it unlikely to ever to be used to decide an actual 
treatment plan.  

a. In your opinion, what are the model’s three biggest 
limitations?  
 

 
 
 

 
 

b.  Choose one of these limitations and describe what you 
think should be added to the model to address this 
limitation. 
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Module 2: Virus Prevention Simulation and Model Inputs 
Platform: NetLogo 
Following this lesson students should be able to:  

1) Describe the factors that can impact a virus’s spread throughout a 
population  

2) Modify a given Netlogo model by adding and deleting buttons from 
the main interface 

3) Research the literature to supply model with input parameters from 
published experimental data 

4) Determine what additional rules and/or variables should be added 
to a model to address its limitations  

Purpose: This module modifies the built-in NetLogo Virus code to 
introduce additional parameters that model an intervention to slow the 
spread of a virus within a population. Biologically, students will examine 
population dynamics and viral spread. Computationally, students will 
research and test the effect of input parameters on a model.  
Biological Terms: 

1) Virus: a microorganism that can only reproduce by infecting living 
cells   

2) Infectiousness: the likelihood (probability) that a contagious 
disease will be transmitted from one person to another   

3) Transmission: the act of spreading a disease, like a virus, form 
organism to another 

4) Immunity: the ability of an organism to fight off an infection. After 
an organism has survived an initial infection of a virus, they often 
have immunity from that same virus for a long period of time 

Computational Terms: 
1) Agents: beings in a model that can follow given instructions 
2) Turtles: agents in NetLogo that can move around in the world 
3) Patches: agents in NetLogo that make up the 2-D space turtles 

move around on 
4) Parameters: a variable included in a model that can be estimated 

from data 
5) Buttons: a feature in NetLogo which allows the user to adjust 

parameters without manipulating the code 
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Time Estimation:  
1) In-Class Activity: 30 minutes  
2) Model Tutorial: 30 minutes  
3) Model Testing and Advancement:  1 hour 

Total: ~2 hours  
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Module 2: In-Class Activity 
Materials: Dice, meter stick, and note cards or stickers to identify 
different student groups 
Rules: 

1) Split the students up into 4 groups in an area where they can walk 
around but not so big that they will be too spread out 

2) Let each group decide input parameters for their group: 
a. Define how many people should be in each subgroup to 

start: Sick-Unmasked ____, Sick-Masked ____, Healthy-
Masked ____, Healthy-Unmasked ____  

b. Define how close in feet students need to be for it to be 
considered “close contact” ____ 

c. Define the infection rate for Mask-Mask contact (i.e. roll a 
two= 1/6) ____ and Mask-Unmask contact (i.e. roll any even 
number= 1/2) ____ if one of the individuals is sick   

3) Have one group perform their simulation at a time while the other 
groups observe 

4) For each simulation, have students walk around randomly and 
stop them after five seconds 

5) If there is a healthy and sick student within the decided distance 
have each close contact roll a die to determine if the virus will 
spread  

6) Repeat steps 3-4 one more time and tell students who were sick to 
start with that they are now immune and cannot get sick again 

7) Repeat steps 3-5, remembering to tell students they are immune 
after two cycles until all students are either healthy or immune  

8) Repeat steps 4-7 for the remaining three groups 
9) Discuss observations in small groups or as a class 

 
Modification for Individual Activity: A single student can cut out small 
squares of paper, label one side of each square “healthy” (or a smiling 
face), and the other side “infected” (or a frowning face, virus picture, 
etc.). Proceed through the steps above. 
Suggested Discussion Questions: 

1) Which input parameter do you think would have had the greatest 
effect? 

2) Did each group’s simulation take about the same about of time to 
finish? Why or why not?  

3) What are some limitations of this model? Would adding/changing 
any of the input parameters address these limitations?  
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Part Two: Model Tutorial 
1) Open NetLogo 
2) Under File choose Model Library 
3) Choose Virus under Biology>Evolution  
4) Click Setup button 
5) Click Go button and observe 
6) To stop the model, hit Go again. This module explains how a virus 

can spread through a population, but it is not detailed enough to 
exhibit or test how we could slow or stop the spread of a virus. 
One proven way to slow the spread of most viruses is to wear 
masks. This is something Asian countries have been doing for 
years, but something that did not become popular in the U.S. until 
the COVID-19 outbreak of 2020 

7) Download the Virus_Mask text file. This file has been modified to 
include variables that allow for the testing of how mask 
compliance in a population can influence the spread of an 
infectious disease 

8) Copy the text from the file and paste it into the code of the Virus 
module 

9) Navigate back to the main interface, you will likely get an error 
message that says certain variables have not been defined which 
is what we will do in the next few steps 

10)  Right click on the button that says Turtle Shape and delete the box 
11)  Press the Button drop down box near the top of the screen and 

choose a Slider to add by clicking on an open area under the 
sliders already in the interface 

12)  In the pop-up menu, name the global variable infectiousness-mask 
and change the units to %. Hint: Make sure to type this and later 
variable names exactly because it directly refers to the code  

13)  Repeat step 10 but call this global variable mask-compliance and 
also change the units to % 

14)  Repeat step 10 but call this global variable sick-people and also 
change the units to %. You should now have 7 sliders (number-
people, infectiousness, chance-recover, duration, infectiousness-
mask, mask-compliance, and sick-people) which allow you to 
manually adjust the model input parameters  

15)  Under Tools, choose Turtles Shapes Editors 
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16)  Scroll down to Person and click Duplicate 
17)  Name the person mask-person 
18)  Use the shape tools to draw a mask on the person and click Okay 

when finished 
19)  Exit out of the Turtles Shapes Editors 
20)  Click Setup, there should no longer be any errors and many 

figures should pop up in the black model screen some of whom 
are healthy (green) and some that are sick (red). The starting 
amount of people can be adjusted with the slider number-people. 
Some of the people should also be wearing masks, the percentage 
of people wearing a mask can be adjusted with the mask-
compliance slider 
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Part Three: Model Testing and Advancement 
1) One important consideration when making a model is to use data 

from the literature for input parameters to increase its accuracy. 
Choose a virus and look-up values for infectiousness (likelihood of 
transmission without mask), infectiousness-mask (likelihood of 
transmission with mask), chance-recover (survival rate), and 
duration (average length of infection). Good resources for this 
include: https://www.cdc.gov/ or https://pubmed.ncbi.nlm.nih.gov/  

a. What values did you find? 
               Infectiousness: 

          Infectiousness mask: 
          Chance recover: 

                     Duration:  
2) Incorporate these values into the model by using the sliders 
3) Now, make a hypothesis about the percentage of mask-compliance 

that would be necessary to eliminate the virus in exactly 6 months 
(0.5 years) if 25% (sick-people) of the population was already 
infected. Hint: To make observation easier, you may need to adjust 
the speed of the model with the speed slider at the top of the 
interface 

a. Hypothesis: 
 
 

4) Test your prediction by running the model until the infection rate 
reaches 0%.  

a. Did you ever reach 0% infection? 
 
 
 

b. How long did it take to reach 0% infection? 
 
 
 

c. If it did not take exactly 6 months, try adjusting your 
prediction for mask-compliance and repeat the model test 
until you get closer to six months. Explain your adjustments 
and outcomes.  

 

https://www.cdc.gov/
https://pubmed.ncbi.nlm.nih.gov/
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5) The main rule governing this model is that if a sick turtle is on the 
same patch as another turtle it determines if the other turtle is (1) 
sick (2) immune and (3) wearing a mask. If the turtle is already sick 
or immune, nothing happens. If the other turtle is not sick or 
immune already, it will determine if the turtle is wearing a mask 
and a random number between 0-100 will be generated and if this 
number is less than the infectiousness rate set by the user for 
each scenario, the other turtle will get sick.  
The code for this is:  

 
A major limitation of this rule is that it does not consider if the sick 
turtle is wearing a mask; the infection rate is solely decided by if 
the other non-sick turtle is wearing a mask.  

a. What other parameters and rules would have to be added to 
the model to address this limitation? Either describe in 
words or attempt a coded notation of what should be added.  

 
 
 
 
 
 
 

 
6) This model is extremely basic and has many limitations which 

make it unlikely to ever to be used to decide an intervention plan  
a. In your opinion, besides the one mentioned above what are 

the model’s three biggest limitations? Hint: you might 
discuss other interventions to slow a virus’s spread besides 
just wearing masks that the current model fails to consider.  
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b. Choose one of these limitations and describe what you think 
should be added to the model to address this limitation. 
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Module 3: Immune Reaction Simulation Rules 
Platform: NetLogo 
Following this lesson students should be able to:  

1) Describe the body’s immune response due to an allergen 
2) Define rules for agents of a model given a biological phenomenon  
3) Code simple rules/commands using NetLogo  
4) Evaluate how assumptions can increase a model’s limitations  

Purpose: This module will guide students through a tutorial to code a 
NetLogo model from scratch that simulates an allergic reaction. 
Biologically, students will consider how different cells and molecules 
interact to elicit an immune response. Computationally, students will 
define rules and make assumptions to create an agent-based model.  
Biological Terms: 

1) Allergen: a substance that when ingested or inhaled can elicit an 
immune response  

2) Antibody: a ‘Y’ shaped protein that recognizes specific antigen 
such as an allergen 

3) Immunoglobulin E (IgE): the type of antibody produced by the body 
after the first encounter with an allergen that will recognize it again 

4) Mast Cells: are coated with IgEs which will recognize a second 
encounter with an allergen and cause the mast cell to release 
granules such as histamines 

5) Histamine: a compound that can interact with white blood cells and 
proteins to cause symptoms of an allergic reaction such as itching 
or sneezing  

Computational Terms: 
1) Agent-based model: a type of modeling governed by agents that 

have been given a set of rules 
2) Rules: the instructions given to an agent that defines its decision-

making process 
3) Assumptions: user-determined simplifications that are intended to 

decrease the complexity of a model  
4) Command: a term used in programming to indicate a coded 

instruction for a program or model to carry out 
5) Breed: a term in NetLogo to define an agent set with distinguished 

characteristics (i.e. size, shape, color, and rules) from other turtles 
in the simulation 
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Time Estimation:  
1) In-Class Activity: 30 minutes  
2) Model Tutorial: 1 hour 
3) Model Testing and Advancement:  1 hour 30 minutes 

Total: 3 hours 
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Part One: Unplugged Activity 
Materials: multicolored beads  
Rules:  

1) Split students into groups of ~4-5 
2) Give each group a bag of multi-colored beads and have them 

devise their own activity to model an allergic reaction using the 
beads. Have students define rules for the activity making sure to 
define what would cause a reaction (e.g., picking a yellow bead), a 
reaction response (e.g., do ten jumping jacks), and what will end 
the activity (e.g., everyone picks 5 beads).  

3) Have students conduct their activities in their groups while the 
other groups observe 

4) Discuss as a class 
Suggested Discussion Questions: 

4) What different rules did students come up with?  
5) Were there certain rules that worked “better” than others to model 

an allergic reaction? 
6) Were there any groups that were not able to conduct their activity 

smoothly because they did have enough rules (or too many)? 
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Part Two: Model Tutorial 
1) Open NetLogo 
2) Instead of using one of the built-in codes, you will be making one 

from scratch today. Click the Code tab to get started 
3) Define the three breeds of variables that will be part of the model: 

allergens, mast cells, and histamines using breed [plural_form 
singular_form] 

 
4) To set up the simulation, make a command called to setup. Under 

the command, type 4 actions (1) clear-all, which will clear all 
variables each time the code is run (2) reset-ticks, which will 
initialize the time to be 0 (3) set-mast-cells, a command which will 
initialize the mast-cells on the main interface (4) set-allergens, a 
command which will initialize the allergens on the main interface. 
Finish the command by typing end 

 
5) To create mast-cells on the main interface, make a command called 

to set-mast-cells. Under the command, define the shape of the 
turtle (variable) by typing set-default-shape turtle “mast cell”. 

6) Because mast cell is not already in the shape catalog for NetLogo, 
you will need to draw your own. Under Tools click Turtles Shapes 
Editor and press New. Name the shape mast cell and once you 
finish drawing click Ok and exit the shapes editor. An example of a 
shape that resembles a mast cell with IgE antibodies attached: 
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7) Under set-default-shape turtled “mast cell” type create-mast-cells 
initial-number-mast-cells which will allow you to initialize the 
number of mast cells manually on the main interface 

8) To define the position, size, and color of the mast cells in the 
simulation, under  
create-mast-cells initial-number-mast-cells type [ followed by (1) 
setxy random-xcor random-ycor which will randomize the 
distribution of mast cells across the screen. (2) set size 5 which 
will make the mast cells larger than the other variables. If you 
would like to try different sizes, try choosing other numbers 
besides 5. (3) set color green which will make the mast cells green, 
like with the size you can customize to any color of your choosing. 
Finish the command by typing ] and end 

 
9) To create allergens on the main interface, make a command called 

to set-allergens. Under the command define the shape of the turtle 
(variable) by typing set-default-shape turtle “circle”.  

10)  Under set-default-shape turtled “circle” type create-allergens 
initial-number-allergens which will allow you to initialize the 
number of allergens manually on the main interface 

11)  To define the position, size, and color of the allergens in the 
simulation, under  
create-allergens initial-number-allergens type [ followed by (1) 
setxy random-xcor random-ycor which will randomize the 
distribution of allergens across the screen. (2) set size .5 which will 
make the allergens smaller than the mast cells (3) set color one-of-
base-colors which will make each of the allergens a random color. 
Finish the command by typing ] and end 
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12)  Navigate back to the main interface by clicking Interface. You 

might receive an error message saying certain variables have not 
been defined but that is what we will do in the next few steps 

13)  Under Button click Button, place it near the top of the white part of 
the main interface, name it setup, and click Ok. This will call back 
to the to setup command you made earlier 

14)  Under Button click Slider, place it the white area of the main 
interface and name it initial-number-mast-cells, and click Ok. This 
will allow you to define the initial number of mast cells in the 
simulation 

15)  Repeat step 14, but name this slider initial-number-allergens 
which will allow you to define the initial number of allergens in the 
simulation  

16)  You should no longer have any error messages. Click the setup 
button which should populate the black screen with number of 
mast cells and allergens indicated on the sliders in the colors, 
sizes, and shapes you defined in the code  

17)  As it is now, the simulation is stagnant and you will need to code 
in movement and interactions. Navigate back to the code by 
clicking Code 

18)  Make a command called to go. Under to go type ask turtles 
[move], followed by tick and end. You will need to also define move 
(step 19) and tick indicates a passage of time in the simulation  
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19)  Make a command called to move. Under the command type (1) rt 

random 100 which will have the turtles turn right at a random 
angle, (2) lt random 100 which will have the turtles turn left at a 
random angle, and (3) fd 1 which will move the turtle forward 1 
patch. Finish the command by typing end 

 
20)  Navigate back to the main interface by clicking Interface. Under 

Button choose Button and add it near the top of the white part of 
the main screen, name it go, check the box that says Forever, and 
click Ok. This will call back to you to go command in the code and 
will allow the simulation to run continuously until go is clicked 
again. You should now see the turtles moving around the black 
screen. They are likely moving very fast, to slow the speed move 
the speed slider near the top of the screen towards the left  

21)  As it is now the turtles do not interact in the simulation. In part 3 
you will code in an interaction between the mast cells and 
allergens which will model an allergic reaction  

 

 

 

 

 



 140 

  Part Three: Model Testing and Advancement: 
1)  To define rules for the agents in the simulation you will need to 

determine what you want the rules to be. Consider what happens 
during an allergic reaction to an allergen and a mast cell. 
Specifically, think about: 

a. How a reaction is initiated (e.g., is direct contact between a 
mast cell and allergen necessary?). 

 
 

b. Are allergens used up during a reaction or can they renter 
the blood steam? 

 
 

c. Are mast cells used up during a reaction? 
 

 
d. Can mast cells recognize multiple different types of 

allergens? 
 

 
e. What products are formed due to an allergen and mast cell 

interaction? [Hint: keep it simple, remember you already 
defined a third breed of turtle that should suffice as your 
products]  
 

 
2)  Using your considerations above determine at least 3 rules that 

you will code into the model. For example:  
a. A reaction will be initiated if a mast cell comes into contact with 

an allergen for which it has a specific IgE antibody  
b.   

 
 

c.   
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3)  Identify any assumptions you may want to make in order to 
decrease the complexity of your model. For example, in the tutorial 
the assumption was made that IgE was already present on the 
mast cells and therefore was not included in the simulation. An 
additional assumption based on the rule defined above could be 
that a mast cell will only need to come in contact with one allergen 
to elicit a response.  

a. Explain any additional assumptions: 
 
 
 
 
 

4)  Using these rules, determine the code that will need to be added to 
the model to carry out the rules. Use NetLogo Dictionary 
(http://ccl.northwestern.edu/netlogo/docs/index2.html)  for help on 
syntax and codes that are available. [Hint: the codes hatch, ask, 
and die might be helpful]. An example of a code for the first rule 
would be: 

 
This code essentially asks if any mast cells come into contact with 
a certain colored allergen. If true additional commands (what you 
will write) should follow to simulate the response. It will likely take 
several tries to get a code that works and is in the correct syntax. 
To aid in troubleshooting, click Check at the top of the screen 
which will indicate any errors. Also important, I introduced a new 
variable allergy so if you used my code, you will need to define 
what allergy is or simply change it to a color in the code [Hint: try 
using the buttons in the main interface to allow manual input of a 
color]. Finally, make sure to add have-reaction under the to go 
command in order to initiate it when the simulation is started. 

5)  Once you have a working code, it is important to test that it works. 
For example, to test the code provided, you could slow the 

http://ccl.northwestern.edu/netlogo/docs/index2.html
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simulation down and decrease the number of allergens and mast 
cells in order to be able to watch carefully and ensure that a 
reaction was only initiated when a mast cell came into direct 
contact with an allergen of the color chosen. Come up with at least 
two additional tests that you could perform to determine if your 
code works. [Hint: this can include adding a plot button to measure 
the amount of a certain variable, manipulating variables to see the 
effect on the simulation, or visually watching for something to 
happen].  

a.   
 
 
 
 
 
 
 
b.  

 
 
 
 
 
 
 
 
 

6)  Perform your tests. If your code is not performing how you 
anticipated try troubleshooting or writing a new code and retry 
your test.  
a. Describe the outcome of your tests and troubleshooting 

process.  
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7) This model is extremely basic and has many limitations which do 
not capture the full response of an allergic reaction.  

a. In your opinion, what are the model’s three biggest 
limitations? Especially consider any assumptions that were 
made when answering this question.  

 
 
 
 
 
 
 
 

b. Choose one of these limitations and describe what you think 
should be added to the model to address this limitation. 

 
 
 
 
 
 
 
 
 

 
 

  



 144 

Module 4: Gene Regulation and Stability Using Boolean 
Logic  

Platform: NetLogo 
Following this lesson students should be able to:  

1) Describe the components that make up a lac operon and how it 
functions  

2) Apply Boolean logic to biological phenomena  
3) Identify stability in a biological process and computational system 
4) Evaluate model outputs to determine emergent phenomena  

Purpose: This module will guide students through a tutorial to code a 
NetLogo model from scratch that uses Boolean Logic to create a 
simulation of the lac operon. Biologically, students will be exposed to a 
common model of gene regulation. Computationally, students will define 
rules using Boolean logic and analyze model outputs to identify a 
system’s emergent phenomena.  
Biological Terms: 

1) Lac operon: the set of genes that regulate the creation of enzymes 
to break down lactose 

2) Promotor: the binding site of RNA polymerase  
3) Repressor: a protein that inhibits the transcription of the lac 

operon when lactose is not present  
4) Operator: the binding site of the repressor protein  
5) Lactose: the backup energy source 
6) Glucose: the preferred energy source  
7) Catabolite Activator Protein (CAP): a protein that becomes inactive 

with high levels of glucose 
8) RNA polymerase: the protein that transcribes the lac operon 
9)  CAP Site: the binding site of CAP which speeds up the 

transcription of the lac operon when CAP is inactive 
10)  Transcription: the first step of expressing new proteins from 

genetic material 
Computational Terms: 

1) Boolean Logic: a problem which reports only a True or False value 
2) If: used to carry out a function only when a Boolean problem is 

True 
3) If Else: used to carry out two functions, one when a Boolean 

problem is True and one when it is False 
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4) Emergent phenomena: property that arises from the collective 
behavior of a dynamic system  

5) Stability: the ability to converge to an equilibrium across a range of 
inputs or perturbations (unstable systems do not move toward an 
equilibrium) 

6) Bistability: two states of equilibrium in a dynamic system 
Time Estimation:  

1) In-Class Activity: 30 minutes 
2) Model Tutorial: 1 hour 
3) Model Testing and Advancement:  2 hours 30 minutes 

Total: 4 hours 
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Part One: In Class Activity 
Materials: none 
Rules:  

1) Assign each student (or group of students) a role of the lac operon 
(promotor, repressor, lactose, glucose, CAP, RNA polymerase, 
enzymes) 

2) Have students stand to represent an active state and sit to 
represent an inactive state  

3) Have students decide what must happen for them to reach an 
active state (i.e. if they are the promotor, the repressor will need to 
be sitting) and what will need to happen to reach an inactive state 
(i.e. if they are lactose, enzymes will need to be standing)   

4) Start with an inactive lac operon [Standing CAP and repressor] 
[Sitting: lactose, glucose, RNA polymerase, enzymes] 

5) The lactose and glucose students are the inputs. Play a game of 
Simon Says If and If Else to determine their activation (i.e. If you 
are wearing a red shirt stand, if else remain seated) 

6) After each If/If Else command allow the students to reach stability 
(i.e. no more changing of sitting vs. standing) before introducing 
another command 

7) Keep introducing commands to the lactose and glucose inputs for 
multiple rounds. Make sure to give commands that reach all input 
possibilities at least once [(1) just glucose standing, (2) just 
lactose standing, and (3) both standing] 

Suggested Discussion Questions: 
1) How is sitting or standing a good representation of Boolean logic? 
2) What were the different points of stability reached throughout the 

activity? 
3) Were there any components of the lac operon that Boolean logic 

does not fully cover?  
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Part Two: Model Tutorial 
1) Open NetLogo 
2) Instead of using one of the built-in codes, you will be making one 

from scratch today. Click the Code tab to get started 
3) Define the breeds of variables that will be part of the model using 

breed [plural_form singular_form]. The components of this model 
should include lactose, glucose, promotor, operator, repressor, lac 
genes, RNA polymerase, enzymes, cap, and cap site 

 
4) Define the global variable transcribe? with globals [transcribe?]. 

This variable will use Boolean logic to determine if the conditions 
are met to turn on the lac operon 

 
5) Define the turtle owned global variable age with turtles-own [age]. 

This variable will keep track of the age of the turtles  

 
6) To set up the simulation, make a command called to setup. Under 

the command, type  4 actions (1) clear-all, which will clear all 
variables each time the code is run, (2) reset-ticks, which will 
initialize the time to be 0, (3) make_operon, a command which will 
create the lac operon, and (4) set transcribe? false, a command 
that will set the Boolean logic gate as false at beginning of the 
simulation. Finish the command by typing end 
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7) To create the lac operon, make a command called to make_operon. 

Under the command, create the 7 turtles that comprise the lac 
operon: operator, promotor, repressor, cap site, cap, lac genes, 
and RNA polymerase using the format create-breed 1 [ set color 
____ set shape “____” setxy ____ ____ set size____]. You can 
customize with your own preferences in the ____s and finish the 
command with end 
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8) Navigate to the main interface by clicking Interface and check to 

see if your lac operon was built correctly. Under Button click 
Button, place it near the top of the white part of the main interface, 
name it setup, and click Ok. Click the setup button and your lac 
operon should appear on the screen. If you used the above 
commands, it will give you the lac operon pictured bellow. [Hint: 
circle 3 for the RNA polymerase is not a default shape in the 
NetLogo Turtle Shapes Library and will need to be created] 

 
9) To add glucose to the model, make a command called to add-

glucose. Under the command type create-glucose 10 [set color 
cyan set shape “circle” set size 1 setxy random-xcor random y-cor] 
end.  
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10)  Navigate to the main interface by clicking Interface. Under Button 

click Button, place it near the top of the white part of the main 
interface, name it add-glucose, and click Ok. When this button is 
clicked it will add 10 glucose molecules to the simulation 

11)  Repeat steps 9 & 10 to add lactose to the model in the code and 
with the button. Instead of the color cyan, use magenta 

 
12)  While on the main interface, also add a plot to the screen. Under 

Button click Plot and add it to the bottom of the white part of the 
main screen. Right click on the plot and choose Edit. Name the plot 
Gene Regulation, the x axis label Time, and the y axis label Amount 

13)  Under pen update commands change plot count turtles to plot 
count glucose and change to default color from black to cyan by 
clicking on the black box, choosing cyan, and clicking Ok.  

14)  Click add pen and repeat step 13 by naming the pen command, 
plot count lactose and making the color magenta 

15)  Click add pen and repeat step 13 by naming the pen command, 
plot count enzymes and making the color green. Click Ok to exit 
the plot 

16)  Navigate back to Code. Make a command called to go under the 
command type tick and end 
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17)  Navigate to the main interface by clicking Interface. Under Button 
click Button, place it near the top of the white part of the main 
interface, name it go, and click Ok. When this button is clicked it 
will start the simulation. More commands will need to be added 
under to go and the model to simulate the lac operon which you 
will do in part three 
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Module 4: Gene Regulation and Stability Using Boolean 
Logic 

1)  To define rules for the agents in the simulation you will need to 
determine what you want the rules to be. Consider how the lac 
operon works (https://www.khanacademy.org/science/ap-
biology/gene-expression-and-regulation/regulation-of-gene-
expression-and-cell-specialization/a/the-lac-operon). Specifically 
think about: 

a. When lactose is present what happens to the repressor?  
 
 
 

b. How does the removal of the repressor effect transcription? 
 
 
 

c. When glucose is present what happens to CAP? 
 
 
 

d. How does the removal of CAP affect transcription?  
 
 
 

e. What is produced as a result of transcription? 
 
 
 

f. What parts of the lac operon including its inputs and 
products move? 

 
 

 
2)  Using your considerations from above define the outcomes (rules) 

for the Boolean Logic problems below. The first two have been 
completed as examples  
d. If lactose > 0 

https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/regulation-of-gene-expression-and-cell-specialization/a/the-lac-operon
https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/regulation-of-gene-expression-and-cell-specialization/a/the-lac-operon
https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/regulation-of-gene-expression-and-cell-specialization/a/the-lac-operon
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True: move repressor and start transcription  
                False: nothing 

 
e. If else lactose >= (greater or equal to) glucose 

True: fast transcription  
False: slow transcription  
 
 

f. If glucose > 0 [Hint: what happens to CAP?] 
 
True: 
 
False 
 
 

g. If enzyme > lactose 
 
True: 
 
False: 
 
 

h. If enzyme on lactose [Hint: what is the purpose of the enzymes 
produced by the lac operon?] 
 
True: 
 
False: 

 
 

3)  Identify any assumptions you may want to make in order to 
decrease the complexity of your model. 

a.   
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4)  Using these rules and assumptions, determine the code that will 
need to be added to the model to carry out the rules. Use NetLogo 
Dictionary (http://ccl.northwestern.edu/netlogo/docs/index2.html) 
for help on syntax and codes that are available. [Hint: the codes if 
and ifelse should be very helpful and comprise most of the added 
components. Also count, ask, die, any? and move should be 
helpful] 
 

5)  Once you have a working code, it is important to test that it works. 
Come up with at least 5 tests (one per rule) to determine if your 
simulation is working properly. 

a.   
 
  

b.   
  
 

c.   
 
 

d.   
 
 

e.   
 
 
 

http://ccl.northwestern.edu/netlogo/docs/index2.html
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6) Perform your tests. If your code is not performing how you 
anticipated try troubleshooting or writing a new code and retry your 
test.  
b. Describe the outcome of your tests and the troubleshooting 

process.  
 
 
 
 
 
 

7)  Analyzing how a simulation performs when varying input 
parameters (i.e. changing the amount of lactose or glucose added 
to the simulation) can uncover emergent phenomena of the model. 
An emergence of the lac operon biologically and in this simulation 
is it bistability. Using the Gene Regulation plot from the simulation 
explain how we can make this conclusion.  

a.   
 
 
 
 
 
 
 
 
 
 

8) This model is extremely basic and has many limitations which do 
not capture the full workings of a lac operon.   

a. In your opinion, what are the model’s three biggest 
limitations? Especially consider any assumptions that were 
made when answering this question.  
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b. Choose one of these limitations and describe what you think 
should be added to the model to address this limitation. 
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Module 5: The Menstrual Cycle Using Boolean Logic  
Platform: NetLogo 
Following this lesson students should be able to:  

1) Describe the hormones that contribute to the menstrual cycle and 
how they function  

2) Apply Boolean logic to biological phenomena  
3) Identify stability in a biological process and computational system 
4) Evaluate model outputs to determine emergent phenomena  

Purpose: This module will guide students through a tutorial to code a 
NetLogo model from scratch that uses Boolean Logic to create a 
simulation of the menstrual cycle. Biologically, students will be exposed 
to the hormones involved in the menstrual cycle. Computationally, 
students will define rules using Boolean logic and analyze model outputs 
to identify a system’s emergent phenomena.  
Biological Terms: 

1) Follicular Phase: the period of the menstrual cycle from the first 
day of the period until ovulation. Starts with the release of FSH and 
continues as estrogen slowly builds up 

2) Luteal Phase: the period of the menstrual cycle from the start of 
ovulation until the period starts. Progesterone peaks and then 
drops  

3) Follicle Stimulating Hormone (FSH): released from the pituitary 
gland and stimulates the maturation of an egg in the ovaries  

4) Progesterone: released by the corpus luteum after ovulation. If 
fertilization of an egg does not occur, the corpus luteum dies and 
levels drop 

5) Estrogen: released by the ovaries. Levels rise and fall twice within 
the menstrual cycle 

6) Luteinizing Hormone (LH): released from the pituitary gland due to 
high estrogen levels   

7) Ovulation: the release of an egg. Triggered by a spike in LH  
Computational Terms: 

1) Boolean Logic: a problem which reports only a True or False value 
2) If: used to carry out a function only when a Boolean problem is 

True 
3) If Else: used to carry out two functions, one when a Boolean 

problem is True and one when it is False 
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4) Emergent phenomena: property that arises from the collective 
behavior of a dynamic system  

5) Stability: the ability to converge to an equilibrium across a range of 
inputs or perturbations (unstable systems do not move toward an 
equilibrium) 

Time Estimation:  
1) In-Class Activity: 30 minutes 
2) Model Tutorial: 1 hour 
3) Model Testing and Advancement:  2 hours 30 minutes 

Total: 4 hours 
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Part One: In Class Activity 
Materials: none 
Rules:  

1) Assign each student a component/hormone in the menstrual cycle 
(5 FSH, 5 LH, 5 progesterone, 5 estrogens, 1 egg (ovulation)) 

2) Have students stand to represent an active state and sit to 
represent an inactive state  

3) Have students decide what must happen for each component to 
reach an active state (i.e. all LH stand up if 5 estrogen and 3 FSH 
are standing) and what will need to happen to reach an inactive 
state (i.e. all LH sit if egg is standing)   

4) Start with everyone sitting  
5) Play a game of Simon Says If and If Else to determine their 

activation (i.e. If you are wearing a red shirt stand, if else remain 
seated) 

6) After each If/If Else command allow the students to determine if 
who is standing would be part of the menstrual cycle (i.e. if it 
follows one of the rules outlined in step 3). If so have them cycle 

7) Keep introducing commands until they have cycled at least three 
times  

Suggested Discussion Questions: 
1) How is sitting or standing a good representation of Boolean logic? 
2) What components of the menstrual cycle does Boolean logic does 

not fully cover?  
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Part Two: Model Tutorial 
1) Open NetLogo 
2) Instead of using one of the built-in codes, you will be making one 

from scratch today. Click the Code tab to get started 
3) Define the breeds of variables that will be part of the model using 

breed [plural_form singular_form]. The components of this model 
should include estrogen, progesterone, LH, FSH, ovaries, fallopian 
tubes, uterus, and eggs 

 
4) Define the global variable ovulate? with globals [transcribe?]. This 

variable will use Boolean logic to determine if the conditions are 
met to turn on the lac operon 

 
5) Define the turtle owned global variable age with turtles-own [age]. 

This variable will keep track of the age of the turtles  

 
6) To set up the simulation, make a command called to setup. Under 

the command, type  4 actions (1) clear-all, which will clear all 
variables each time the code is run, (2) reset-ticks, which will 
initialize the time to be 0, (3) make_reproductive-system, a 
command which will create the lac operon, and (4) set ovulate? 
false, a command that will set the Boolean logic gate as false at 
beginning of the simulation. Finish the command by typing end 

 
7) To create the lac operon, make a command called to 

make_reproductive-system. Under the command, create the 7 
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turtles that comprise the beginning of the model: uterus 1, uterus 
2, fallopian tube 1, fallopian tube 2, ovaries x2, and FSH using the 
format create-breed 1 [ set color ____ set shape “____” setxy ____ 
____ set size____]. You can customize with your own preferences 
in the ____s and finish the command with end 

 

  
8) Navigate to the main interface by clicking Interface and check to 

see if your reproductive system was built correctly. Under Button 
click Button, place it near the top of the white part of the main 
interface, name it setup, and click Ok. Click the setup button and 
your lac operon should appear on the screen. If you used the 
above commands, it will give you the reproductive system and FSH 
pictured below. [Hint: uterus, fallopian tube 1 and 2, and ovaries 



 162 

are not a default shape in the NetLogo Turtle Shapes Library and 
will need to be created] 

 
9) Navigate back to the Code and create a command called to 

follicular-phase. Initiate Boolean logic with if not ovulate? This will 
run only if ovulate? is set to FALSE. Create command if count LH= 
0 and if any? FSH on ovaries ask n-of 1 FSH on ovaries to hatch-
eggs and hatch-estrogen and ask n-of 3 FSH [die]. When LH=0 
while ovulate? is FALSE, when FSH is on ovaries, eggs will 
develop and estrogen will be created. Create command ask eggs 
and if age= 100 [set size .5] and if age=500 [set size .75]. This will 
have eggs get larger as they mature 

 
10)  Within to follicular-phase if not ovulate?, create code if count 

estrogen =  20 and hatch-LH 100, hatch-FSH 30, and hatch-
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estrogen 40. This will have LH, FSH, and estrogen spike when 
ovulate? is FALSE and estrogen = 20 

 
11)  Within to follicular-phase if not ovulate?, create code if count 

estrogen =  60 and ask up-to-n-of 9 eggs [die] and set ovulate? 
TRUE. This will have all but 1 egg die and set ovulate? TRUE when 
estrogen= 60 

 
12)  Create command to go and tick, ask turtles [ follicular-phase, 

move, age-up, if ovulate? [luteal-phase]]  

 
13)  Create command to age-up [ask eggs [set age age + 1]. This will 

have eggs age up 

 
14)  Create command to move ask FSH, estrogen, LH, and 

progesterone to randomly move 
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15)  Navigate to the main interface by clicking Interface. Under Button 

click Button, place it near the top of the white part of the main 
interface, name it go, and click Ok. When this button is clicked it 
will start the simulation 

16)  While on the main interface, also add a plot to the screen. Under 
Button click Plot and add it to the bottom of the white part of the 
main screen. Right click on the plot and choose Edit. Name the plot 
Hormone Levels, the x axis label Time, and the y axis label Amount 

17)  Under pen update commands change plot count turtles to plot 
count FSH and change to default color from black to cyan by 
clicking on the black box, choosing cyan, and clicking Ok.  

18)  Click add pen and repeat step 17 by naming the pen command, 
plot count estrogen and making the color yellow 

19)  Click add pen and repeat step 17 by naming the pen command, 
plot count LH and making the color orange. Click Ok to exit the plot 

20)  Click add pen and repeat step 17 by naming the pen command, 
plot count progesterone and making the color red. Click Ok to exit 
the plot 

21)  This tutorial has helped create half the menstrual cycle, you will 
need to create the luteal phase and a way for the model to continue 
cycling. [Hint: setting the time step slower will help] 
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Part Three: Model Advancement and Testing 
1)  To define rules for the luteal phase the simulation you will need to 

determine what you want the rules to be. Consider this graph of 
the hormone levels in the menstrual cycle: 

 
 

a. When does progesterone start to rise?  
 
 
 

b. What happens to LH and FSH during the luteal phase? 
 
 
 

c. What happens to estrogen during the luteal phase? 
 
 
 

d. What happens to the egg during the luteal phase, how does 
it move?  
 
 
 

e. What must occur for the simulation to cycle? 
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2)  Using your considerations from above define at least five 
outcomes (rules) using Boolean Logic. The end goal should be to 
have your graph look very similar to the one provided and for the 
egg to ovulate. Anything else you do to make the model more 
accurate is up to you! [Hint: look through provided code of follicular 
phase for assistance]  

a.  
 
 

b.  
 
 

c.  
 
 

d.  
 
 

e.  
 

 
3)  Identify any assumptions you may want to make in order to 

decrease the complexity of your model. 
a.   
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4)  Using these rules and assumptions, determine the code that will 
need to be added to the model to carry out the rules. Use NetLogo 
Dictionary (http://ccl.northwestern.edu/netlogo/docs/index2.html) 
for help on syntax and codes that are available. [Hint: the codes if 
and ifelse should be very helpful and comprise most of the added 
components. Also count, ask, die, any? and move should be 
helpful. Look at the provided code for the follicular phase for 
assistance] 
 

5)  Once you have a working code, it is important to test that it is 
accurate. Come up with at least 5 tests (one per rule) to determine if 
your simulation is working properly. 

a.   
 
  

b.   
  
 

c.   
 
 

d.   
 
 

e.   
 
 
 

6) Perform your tests. If your code is not performing how you 
anticipated try troubleshooting or writing a new code and retry your 
test.  

http://ccl.northwestern.edu/netlogo/docs/index2.html
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c. Describe the outcome of your tests and the troubleshooting 
process.  

 
 
 
 
 
 

7) This model is extremely basic and has many limitations which do 
not capture the full workings of a lac operon.   

a. In your opinion, what are the model’s three biggest 
limitations? Especially consider any assumptions that were 
made when answering this question.  

 
 
 
 
 
 
 
 

b. Choose one of these limitations and describe what you think 
should be added to the model to address this limitation. 
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Appendix F 
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Appendix G 
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