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Abstract

The objective of this research is to model the relationship between force, sound, and motion

signals in manual assembly environments through a wearable sensor glove and the resultant quality

of vehicle connections made on the assembly line.

Many tasks in production assembly are still completed manually due to the intuition needed

by the associate, complex automation steps, or time constraints. This is largely observed in auto-

motive assembly environments. With the amount of variability in manually completed processes,

the possibility for error increases. These processes include hose and electrical connections which can

loosen over time after passing initial quality testing, resulting in costly, time-consuming rework and

a diminished brand image.

It is the intent of this work to utilize multidimensional operator force signatures and move-

ments exhibited to understand the primary forces acting in the direction of the connector locking

and additional measured forces acting in other directions. The sensor signals feed into the clas-

sification algorithm for rapid postprocessing to enable real-time feedback indicating a completed

connection or a connection that needs further investigation. These classifications can later act as

a steppingstone for automating manually completed manufacturing processes by implementing the

findings into autonomous systems to yield an automatic verification of the process.

This research captured data physically exerted by the operator as a means of accountable

process quality evaluation where there are limited marketable products and research. The work

also introduced a sensor glove system capable of capturing operator applied shear force in a robust

and durable way fit for a manufacturing environment. Marketed products and research shear force

sensing are extremely limited in breadth, and force sensing gloves are unsuitable for an assembly

environment due to cost, measurement capabilities, durability, and/or operator encroachment. The

sensing system developed in this research is coupled with a classification algorithm capable of dis-
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cerning incomplete or rework connections from successful ones demonstrated on an OEM assembly

line.

The developed sensor glove capable of capturing shear and normal force, acceleration, and

gyroscopic information was successfully tested on an OEM assembly line for 250+ vehicles of work.

This includes the completion of hard plastic connections, tool usage, and tasks completed outside of

the takt. Five classification models using the gathered data yielded accuracies of 91% or above using

a 60/40 train/test split. The best performing model, Näıve Bayes, achieved a balanced accuracy of

97.6%.
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Chapter 1

Introduction

1.1 Research Objective and plan

The goal of this study is to provide accountable measures from assembly line operatives to

a manufacturer for process quality improvement in manually completed tasks.

The objective of this research is to model the relationship between force, sound, motion and

other sensed signals in manual assembly environments and the resultant quality of connections made.

The approach entails augmenting the associate with various sensing forms to describe the response

of the system as a measurement of quality to minimize defects without overextending process times.

To test this hypothesis, this work will investigate various sensing systems and methods to

repeatably gather operator task data, then analyze using a classification algorithm for objective

determination of quality. The measurement of process quality will be relayed to the operator. This

will assist the manufacturing line in completing work accurately the first time, mitigating rework in

the plant, at the distributor, or with the consumer. The coupled system will also provide a level of

recordable accountability to the manufacturer.

To test this theory, data were collected in conjunction with BMW Group Plant Spartanburg.

This included a series of successfully completed and purposefully improper connections on which

data were collected for classification evaluation. A commercial solution that is capable of capturing

operator behaviors on the assembly line and evaluating said processes does not currently exist.

Investigated sensing solutions that may be capable of capturing operator activation successfully are
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not robust and durable enough for a harsh manufacturing environment. Therefore, this research can

lead to a practical solution that can have economic impact in manufacturing environments.

1.2 Motivation

The automotive industry is a large contributor to global innovation and economic prosperity.

This is largely due to the competitiveness between Original equipment manufacturers (OEMs) to

produce the highest quality product to their targeted audience at a given price point. Therefore,

OEMs and suppliers are constantly investigating new methods to streamline processes, maximize

quality, and improve worker safety. For this reason, many innovations look towards automation.

This could allow a manufacturer to instrument a lights-out manufacturing approach to achieve

safer production with little human involvement. Currently, operators are utilized in many parts of

manufacturing in the automotive industry, but their predominate commonplace is in final assembly.

This can be problematic to final product quality as it is estimated that operators account for 40%

of failures resulting in a stoppage of the system from an improper action [1].

Vehicle connections such as electrical, gas, ventilation, or coolant connections are some

of the most frequent errors observed in manufacturing at automotive OEMs and suppliers. Due to

the process flexibility needed, many connection operations in final assembly are performed manually,

introducing the possibility of error while completing and checking the connections. Manual assembly

offers a flexible format that can benefit from the associate’s reasoning and logic, increasing the

potential of what the assembly line worker can determine [2]. Thus, operators are needed to complete

these actions where automation is not yet fiscally or technologically feasible. The value of humans in

the workplace has been reinforced in recent years when excessive automation has been observed. One

of the most notable instances of over-automation is Tesla when they tried and failed at completely

automating the Tesla Model 3 assembly line. This was a result of ”too much technology all at once”

that came from a ”complex network of conveyor belts [that] was not working, so [they] got rid of

whole thing” [3].

Failure to properly perform connections or validation checks can result in missed or incom-

plete connections, causing rework if the error is found during product testing or potential warranty

issues if the product ultimately fails in the field. This may result in extensive rework costs and a

diminished brand image.
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It is the intent of this work to utilize multidimensional operator force signatures and move-

ments to understand the primary forces acting in the direction of the connector locking and additional

measured forces acting in other directions. This feeds into the classification algorithm for rapid post-

processing to enable real-time feedback indicating a completed connection or a connection that needs

further investigation. These classifications can later act as a stepping stone for automating manually

completed manufacturing processes by implementing the findings into autonomous systems to yield

an automatic verification of the process.
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Chapter 2

Related Work

2.1 Operator/Machine Collaboration

Human error in manufacturing systems is the source for many defects and rework in a

final product. This is caused by qualities such as inconsistencies in operator approach, improper

tool use, or degradation of the quality of work as the workers get farther into their shift. An

experiment was conducted using historical data on non-compliance (rejected items and rework offline)

directly attributed to man, with findings showing human error probability of 2-16% dependent on

the task and elapsed time into the worker’s shift [4]. As a result of human error, cost, and efficiency,

recent efforts in manufacturing are moving towards the automation of repetitive tasks, providing

an opportunity to create a societal change in manufacturing, ”. . . improving the quality of life,

raising productivity and earnings; making work less dirty, dangerous, physically punishing, and

dull; and increasing the value of thinking, creativity, and expertise.” [5]. Societal changes shape the

automation of repetitive, manually completed tasks performed by workers in automotive production.

However, many of these tasks are too complex to automate with existing robot technologies. Current

robot designs do not perform well in varying, unstructured environments with people and existing

technology [5]. This is due to the knowledge gaps in robotics’ adaptability and control when deviating

from a programmed function. Robotics lack the flexibility to perform various manual processes

because manipulation, mobility, and computation of current robotic technologies are customarily

used only for fixed processes [2]. Fixed processes meaning that robots are typically carefully designed
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and specified by fixed programming methods that cannot handle the process variability of manual

automotive assembly.

Manual assembly offers a flexible format that allows for reasoning and logic, increasing the

potential of what the assembly line worker can determine [2]. This flexibility in workers’ roles can

help ensure that variations from an ideal configuration in a production line do not majorly disrupt

the production flow or lead to an incomplete or dysfunctional product. In automotive production,

common manual tasks include hose connections, wire routing, and subsystem assembly. Much of the

value-added work in automotive production line assembly is performed by an operator, generating

the possibility of inconsistent or incomplete work. The transforming relations between operator and

cyber-physical systems (CPS) resulting from automating the production chain poses the question of

where operators will be most effective in a manufacturing environment [6].

The dynamic nature and behaviors exhibited by operators call for proper interfacing be-

tween the two elements determined by the environment, performed operation, and the data exchange

[6]. This will yield a greater understanding of the product, process, and work system environment

engaged in manually conducted helping to bridge the gap between manual work to collaborative

manufacturing and collaborative to autonomy [7]. Quantifying characteristics in manual assembly

requires perception and intelligent data interpretation [5, 8, 9]. In addition, further investigation

in device- and worker-connected environment as well as human-automation symbiosis to aptly ac-

commodate to the employee’s skill level. In the current market, a diverse group ranging from

long-standing employees to new-hires require various levels on introduction and training to the CPS

and machine entities [10]. These advancements can be achieved through greater sensing, vision, and

cognition technologies [11]. To provide the necessary inputs for these technological advancements,

parametrization and characterization of the manual work are needed. These parametrizations are

also utilized for the calibration of solutions such as wearable sensing for automotive assembly. Such

solutions will provide the operator with feedback on the process as it is completed, ensuring all steps

and verification of each step were completed.

Data about worker abilities, limitations, and variability must be quantified and applied to

the design to improve compatibility between workers and product assembly [12]. The stronger the

compatibility between the worker and the product being assembled, the greater the understanding of

how the process is completed. Part of the solution to manual task classification is understanding the

cycle of manual production processes through feedback of information on critical forces [13]. Active
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force readings based on the operator can yield the status of manually completed work in real-time.

A fast-growing technology such as an augmented reality (AR) interface could provide instructive

information to the operator enhancing the quality of decision making performed on the assembly

line. This will provide a greater connection between the operator and machine while also creating a

platform for remote monitoring. AR implementation will require additional information on the task

at hand, objects in play, and how intelligence is to be generated [14].

Example applications demonstrated in this paper are hose connections and subsequent ver-

ification testing of connectors. These force readings can then be used to provide feedback to an

operator or a robot giving subjective analytical contact detection [15]. As connections are man-

ually completed, the operator applies a combination of normal and shear force to one half of the

connector to join the two parts, with shear being the driving factor towards completing the connec-

tion. These force measurements can then be parameterized by creating target force windows and

sample-based statistical probability to numerically prove the outcome of a connection. This yields

the categorization of the connections and manual checks for review by the worker. Connectors cat-

egorized as incomplete can be reinvestigated, ensuring the components are assembled correctly in

initial assembly, minimizing future rework after leaving production rework and field failures.

2.2 Quality Assurance for Assembly Connections

Assemblies are simply groupings of systems or components with connections. These con-

nections are critical to functionality as they are the mating components that transfer power, fluids,

etc., and as a result, must be completed properly to have a fully functioning system without defects.

Product quality in an assembly environment is a critical consideration for a manufacturer. Greater

product quality and yield lead to increased competitiveness and capability in a market. Thus,

monitoring and assessment tool implementation and research are growing in popularity amongst

manufacturers [16]. Methods towards increase product quality range from preventative to correc-

tive in nature. Examples of a preventative ideologies include Design for Manufacturing, Design for

Assembly, Design for Manufacturing and Assembly, Poka-Yoke, and Six Sigma. A corrective ide-

ology example is after assembly functional testing. Example methods that fall in between include

Augmented Reality (AR) and sensor evaluation systems.
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These tools are utilized in both automated and manually completed processes. However,

they are objectively more critical when the process is completed manually by a worker. There are

many tasks completed in manufacturing that are currently completed by operators due to the intu-

ition needed by associates, complex automation steps, or time constraints. This becomes especially

evident when observing the automotive industry. Final assembly is predominately completed by

operators because of what they can achieve in a timely manner. Companies such as Tesla learned

the value of humans in manufacturing when they experienced ”excessive automation” the manufac-

turing process [17]. Common tasks completed in final assembly with a more frequent failure rate are

connection completions. This includes electrical, venting, gas, and coolant connections. Each of the

previously mentioned monitoring and assessment tools will be discussed in with connection defects.

Design for Manufacturing (DFM) is based on the ideology of creating a part or product

with manufacturing in mind, merging the design requirements with production methods. This helps

to minimize costs and defects with the resulting product. Design for Assembly (DFA) follows a

similar premise but focuses on an effective design for ease of assembly. This also progresses towards

minimized cost and defects in the part or product. Since the two design methods follow many of the

same principles, they are often considered together and referred to as Design for Manufacturing and

Assembly (DFMA) [18]. In regards to connection in the automotive industry, these techniques often

fall short due to excessive costs. Due to the abundant amount of connections seen on, for example,

an assembled vehicle, automotive OEMs and supplier abstain from the use of more expensive, yet

more effective, connector types. The price difference may be marginal dissociated from the final

product ($0.01-$0.02/connector) but quickly add up in mass production.

A preventative and corrective concept developed by Shigeo Shingo is Poka-yoke. Poka-

yoke is a simple concept attempting to mistake-proof a process. It involves avoiding problems by

correcting the process making it impossible for errors to occur or ensuring they are obvious when

they do occur [19]. Poka-yoke is more of a method and ideology rather than a direct solution. Some

studies have shown that this method may only be applicable to simple assemblies [20]. A common

example of an implemented Poka-yoke system is a simple electrical plug that can only be connected

to its mating pair in one orientation as shown in Fig. 2.1. However, even basic concepts such as the

unidirectional electrical connection can be misused and plugged in unsuitable orientations. Thus, a

more robust solution for capturing operator physical data is warranted.

7



Figure 2.1: Poka-yoke principle applied to an electrical plug [21]

Six Sigma presents a management style to improve an organization’s products, services, and

processes by continually reducing defects [22]. This minimization of defects statistically equates

to less than 3.4 defects per million opportunities or a success rate of 99.9997% [16]. Tools within

Six Sigma to eliminate defect causing factors include DMAIC and DFSS. DMAIC stands for de-

fine, measure, analyze, improve, and control. This method is a closed-loop process that eliminates

unproductive steps, often focuses on new measurements, and applies technology for continuous im-

provement. This method has a focus on integrating specific tools into each step as a means of

problem solving [23]. DFSS, Design for Six Sigma, focuses on the design of processes and products

to eliminate corrective steps towards achieving Six Sigma quality levels. This is achieved through

tools, training, and measurements [23]. This ideology has proven to be beneficial for a number of

companies despite its similarities to previous management approaches. However, this method re-

quires tools for defect mitigation. The management style can benefit a manufacturer as a whole but

is less applicable for single process improvement. Thus, an accompanying robust tool is needed for

a successful implementation.

Corrective practices are commonly utilized in manufacturing. These corrective approaches

normally begin with functional validation testing which may take the form of an electrical test,

pressure test, etc.. These tools are used to ensure the product can perform its intended duty without

error from assembly or creation. This is an effective method for detecting the vast majority of errors,

but can miss critical defects. In regards to connections in manufacturing, a common error that is
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overlooked by these corrective processes is a partial connection. This partial connection can pass

validation testing, then later loosen causing expensive and timely rework. The longer the partial

connection goes unnoticed, the more detrimental to the company. This is due to the additional

disassembly necessary to access the dis-functional connector and the person(s) in possession at the

time of fault. A manufacturer can experience a diminished brand image due to a preventable error

if the product fails in the distributor’s or consumer’s possession. These partial connections can

be avoided, but are continuing to be a challenge that plagues the manufacturing industry. This

is largely due to the lack of a adaptable solution capable of detecting incomplete connections or

processes.

AR has become more common in the manufacturing industry over the recent years. This

technology enable the mediation of information in spatial relation to the environmental context [24].

Mainly, this implies adding digital objects and information to a user’s real-world view, enabling

direct interaction with information which has a direct spatial relation to the real environment. This

readily interpretable data can be advantageous in informing the operator of critical information and

to facilitate training without waste [25]. While this technology can offer intuitive to the user, it is

less applicable to evaluate the status of connectors in manufacturing assembly. It could be used as a

supporting system to indicate incomplete connections, but this would inject unwarranted costs into

the system. Simpler indication methods can be used.

There are numerous sensing approaches for validation currently marketed. Vision systems

and sound recognition are two practices currently leveraged in industry. Companies such as Detect-It

and Clarifai offer forms of artificial intelligence as a means of object/defect recognition. Software such

as these can train computer algorithms to digitally recognize faults in a system such as an incomplete

connection using vision detection. This would require a vast number of images (if visually based) to

indicate a complete versus partial connection to the computer. Systems such as these also require

strategically placed sensors that may be disrupted by the noisy manufacturing environment if audio

based or disruptions from moving parts if visual based. As the processes grow in complexity, the

number of sensors required grows, and their may not be viable locations available to accurately

observe the connections [26, 27, 28].

Wearable systems are another approach to monitor, evaluate, or capture operator actions.

This technology involves sensing directly affixed/on the operator. This will be further discussed in

the next section.
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2.3 Wearable Sensing for Process Confirmation

To enable Industry 4.0 approaches, many researchers and companies are exploring the realm

of increased sensing capabilities for process monitoring. This varies in application with integration

options including sensors on the machine, operator, or in the environment. The processes utilize the

captured data to ensure the process is being completed correctly, perform predictive maintenance,

and inspire a level of accountability through saved data [29].

Sensors incorporated onto the operator have a growing popularity due to their ability to

measure what was previously subjective due to the need for operator intuition, the eased workload

on the operator, provide critical information for preservation of the operator, and enable a human-

machine symbiosis [30, 31, 32]. With the changing tides in manufacturing, operators are being

recognized as a manufacturing capability that possess the intuitive and flexible nature that creates

value over a robotic counterpart [33]. Thus, wearable sensing platforms are increasing in research and

implementation, but they are not always successful. This often stems from worker flow and human

factors related shortcomings. Tools and programs developed for manufacturing workers can perform

their function with high accuracy but forgo necessary human factors considerations to promote usage

of the tool or process. The tool or process should be easy to use and not interrupt workflow to ensure

the quality improvement measure maintains its place in production.

Research conducted by Schönig et al. creates a decentralized production environment that

offers control and support to the workers through stored and acquired production data. This allows

the workers to access user-specific information and subsidies as desired [34]. The data exchange

platforms empowered through wearable process monitoring sensing can be captured through a wide

array of devices such as gloves, smartwatches, prosthesis, and more detailed by Muzny et al. [31].

This collection can then be delivered in equally as many ways through most often visual, audible,

and tactile feedback loops. Examples of these technologies include wearable scanners such as the

ProGlove and Bosch iGlove [35, 36], health monitoring devices such as smart watches, body worn

motion sensing [37], and inner body activation such as tendon monitoring for loading evaluation [38].

Another technology, shown in Fig. 2.2, is the GM-NASA produced force augmenting glove which

amplifies operator gripping capabilities [39]; this is one of the few models that incorporate actuation

augmentation together with sensing.
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Figure 2.2: GM-Nasa Robo-Glove: Wearable technology that reduces the force needed to operate

tools

Analysis of the large quantities of data generated through the use of such sensors has bene-

fited from recent and rapid advances in the capability and accessibility of machine learning technolo-

gies [40]. This application helps expedite the processing of collected data in controlled experiments

[41], in addition to enabling analysis supporting the real-time monitoring of workers’ ergonomics

[37, 42].

2.4 Force and Pressure Sensing Gloves

Throughout manufacturing, operators play a critical role in final assembly, and often times

they wear gloves for added protection, comfort, or utility. This offers a seamless opportunity to

introduce process monitoring technologies directly on or in the glove that the associates already

wear. A handful of products have been released targeting the market of force sensing gloves. Many

rely on different operating principles than the glove proposed in this research. Most marketed

solutions utilize pressure sensors to measure pressure distribution or activation forces where the glove

presented in this paper offers shear and normal force measurement capabilities [43, 44, 45, 46, 47].

These solutions can provide valuable feedback in a research environment, but they are unfit for the

wear and tear introduced by a production environment. This is due to their limited robustness in
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durability and constrained data processing circuit for general applications. Further discussions on

marketed and research oriented products are found below.

The Grip Pressure Sensor Glove from Tactilus can display pressure profiles through a series

of pressure sensors located along all five fingers. These piezoresistive sensors can each measure up to

100 psi at a maximum of 1000 Hz. The sensor glove offers a repeatability of ±4% and an accuracy

of ±10%. However, the greatest flaw of this sensor glove are the invasive sensor leads. The glove

has fives sensors for each finger and 4 for the thumb. This is a total of 24 sensors with long leads

that interferes with natural operator movement. This renders the sensor glove unfit for an assembly

environment as the leads could easily be snagged during operation [48]. The sensor glove is shown

below in Fig. 2.3.

Figure 2.3: Tactilus grip pressure sensor glove with 24 sensors

Tactilus offers another version of their Grip Pressure Sensor Glove, shown in Fig. 2.4, that

utilizes only one sensor on the index, middle, ring, and pinky fingers. The sensor glove boasts the

same measurement range, scan speed, and repeatability. It does not provide an accuracy measure.

The sensor glove can take a maximum of 9.04 lbs (4.1 kg) and claims to be waterproof. This sensor

glove is unfit for most assembly environments due to the limited endurable force and measurement

capability (limited to normal force alone). The sensor glove is advertised for recreational use [49].
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Figure 2.4: Tactilus grip pressure sensor glove with 4 sensors

Pressure Profile Systems (PPS) offers full hand pressure measurements with the addition

of normal force measurements. The sensor has low measurement capabilities (0.1oz/3g) and can

measure up to 80 psi with its 65 sensing elements. The sensor glove can record wirelessly but cannot

display results until connected to a computer. The sensor glove is advertised for manufacturing

safety and worker’s comp assessments. Applications extend to assisting with ergonomic product

design. This product is useful in a controlled environment such as research or the applications listed

beforehand. The glove is unfit for manufacturing production because of its high price tag ($25,000)

and limited durability [44]. The sensor glove is shown in Fig. 2.5
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Figure 2.5: PPS TactileGlove - hand pressure and force measurement a) fully assembly glove b)

inner glove lining with sensors affixed

Novel.de offers a similar solution to PPS with their Pliance Glove Sensor as shown in Fig. 2.6.

This minimally invasive also collects full hand pressure measurements. 256 Sensors are applied to

each fingertip and a larger sheet to the palm. This data is recorded onto an SD card for later

processing or analyzing in their Pliance software. Possible applications are also limited to controlled

environments, mainly research. The sensor glove is unfit for manufacturing production because of

their high price tag ($20,000) and limited durability [46].
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Figure 2.6: Novel.de Pliance glove sensor

The Hoggan Scientific ergoPAK ergoGlove, shown in Fig. 2.7 offers a more reasonable price

at $4,795. The sensor glove is composed of up to 8 normal force sensors with a wrist mounted

collection unit that can measure up to 100 lbs. Sensors are not directly affixed to the glove. The

manufacturer provides latex finger cots to hold the sensors in place. The sensor glove must also

be within 25 feet of the operating computer to collect data. This sensor glove has glaring issues

with durability as the sensors are not fixed to the glove in a secure way. The measurement is also

limited to normal force alone. Cost is still relatively high to be implemented in a harsh assembly

environment even though it is a fraction of the other solutions. [45, 50].
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Figure 2.7: Hoggan Scientific ergoPAK ergoGlove

An overview of marketed sensor glove products included advantages and shortcomings can

be found in Table 2.1 below. BMW assembly line workers reported using anywhere from two pairs

of gloves per day to one pair lasting a week. This is takt dependent. With the frequency being

relatively high, this further validates the need for a cost-effective, durable solution.
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Table 2.1: Marketed force and pressure sensing glove overview

Glove Advantages Shortcomings

Tactilus Grip Pressure

Sensor Glove – Research

High accuracy and repeatability,

large measurement area

Invasive sensor leads, durability,

fine measurements, only normal

force

Tactilus Grip Pressure

Sensor Glove – Recreational

High accuracy and repeatability,

waterproof, durable, minimally

invasive

Accuracy, low measurement

capability, only normal force

Pressure Profile Systems

(PPS) pressure sensor glove

Full hand measurement, fine

measurements, wireless

recording, minimally invasive

Only pressure/normal force,

durability, high price tag

($25,000), research

environment use

Novel.de pliance sensor

glove

Full hand measurement,

wireless recording, minimally

invasive

Only pressure/normal force,

durability, high price tag

($25,000), research

environment use

Hoggan Scientific ergoPAK

ergoGlove

More reasonable price ($4,795),

high measurement range,

wireless recording

Only normal force, sensors

not directly affixed to glove,

durability, limited wireless

range (25 ft), repeatability,

still a high price

Research done by Hammond III et al. on a soft sensor embedded pressure system is mini-

mally invasive and captures motion and tactile data from the operator’s finger [43]. The finger glove,

shown in Fig. 2.8, is composed of three strain sensors to measure joint motion and three pressure

sensors to measure interaction dynamics. The system is designed for use in a research environment

to understand gesturing and grasping mechanics. The sensors are cast liquid-metal embedded elas-

tomer. The research claims to be able to capture hundreds of Newtons and maintain repeatability.

However, the finger glove is vulnerable to hazards in production (sharp corners, excessive forces).

The researchers reported interference with grasp acquisition and sensor failure under high loads [43].

17



Figure 2.8: Finger glove sensor system developed by Hammond III et al.

Research by Yin et al. investigates what is needed to create a high performing wearable

system that presents flexibility and stretchability to connect the user to machines in the environment

[51]. Their application focuses on the integration with Human Machine Interaction (HMI) devices.

These HMI wearables enable real-time acquisition of physiology and surrounding signals through

accurate and flexible sensors. The research provides a breakdown of sensing systems, formats, and

communication methods for HMI development [51]. Shown below is an example use of a proposed

HMI wearable device by Yin et al. in Fig. 2.9.

Figure 2.9: Robot hand gesturing control through sensor glove by Yin et al. [52]
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Research conducted by Lin et al. investigated a sensor glove with 18 IMUs and 5 force

sensing resistors affixed to the fingertips [53]. The IMUs were place across the hand with a focus

on the fingers. One IMU is place on the wrist portion of the glove. The combined sensors measure

hand kinematics and fingertip force. The glove utilized 3D printed disks to focus the force onto the

Flexiforce resistive sensors. The force sensors were linear and relatively accurate to actual applied

force with a mean absolute error of 1.47 N. While the sensor glove was noted as highly accurate for

joint angle and applied force estimation by the authors, the durability and invasion of the glove is

problematic. This final form is not suitable outside of a controlled environment [53]. The developed

sensor glove is shown in Fig. 2.10

Figure 2.10: Developed force and motion sensing glove by Lin et al.

In this work, Austin et al. created a force sensing glove using 14 Flexiforce sensors affixed

to the 5 fingers is shown in Fig. 2.11 [54]. This research investigates forces required for common

daily activities for eventual actuator sourcing for prosthetics, exoskeletons, and orthotics. The use of

commercial sensors yielded stable and repeatable results. The sensor glove experienced issues with

activation during the recorded tasks because of the sensor placements and small measurement area

of each sensor. The sensor leads all run across the palm side of the hand leaving them vulnerable to

damage. This makes the sensor glove more suitable for controlled research environments [54].
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Figure 2.11: Normal force sensing glove from the research conducted by Austin et al. a) uncovered

sensor lead view b) covered sensor lead view [54]

Similar to the work conducted by Yin et al., Meng et al. investigated a sensor glove for use in

HMI. A screen printed flexible electrode based force sensor is paired with a Functional Liquid Metal

(FLM) strain sensor as shown in Fig. 2.12 [55]. The research claims the screen printed sensor to

measure both normal and tangential forces. The tangential force refers to the shear force discussed in

this thesis work. Both sensors offer linear measurements, high sensitivity, and a low cost. However,

the sensor glove lacks in durability and measurement range. It is sufficient for an HMI application

of movement replication, but not for an assembly line where higher forces are achieved around

potentially damaging edges and tools [55].

Figure 2.12: Strain sensors integrated onto the back of the finger with force sensors integrated to

the finger tips from Meng et al. [55]
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Borik et al. focuses on the measurement of hand press force (grip forces) with their proposed

sensor glove. This sensor glove utilized force sensing resistors placed at the locations shown in

Fig. 2.13 [56]. When measuring up to 50 N, an observable error of ±5 N. Higher force show less

error with the minimum suggested force being 12 N. Therefore, the glove is not suitable for fine tool

manipulation. A final version of the sensor glove is not shown in the research suggesting that there

is much more development needed to use the sensor glove outside of a research environment [56].

Figure 2.13: Force sensing resistor placement on the hand for Borik et al. [56]

Park et al. created a force sensor glove that utilizes a capacitive approach rather than

resistive [57]. This sensor glove is meant to capture grasping and manipulation from the operator.

Sensors are affixed to the thumb, index, and middle fingers as shown in Fig. 2.14. This sensor

glove utilizes an open-pad structure which leaves a small portion of skin open for tactile feel. This

resulted in lower grip forces exerted from the operators to perform the same function. Two capacitive

sensors are placed on the sides of the fingers to allow for this open-pad structure. Capacitive sensor

were selected for their high sensitivity, high measurement range, and low hysterisis. Durability

concerns arose from the authors with the side mounted capacitive sensors. They also specified a

wide dynamic range, but only achieved up to 15 N of force. This is below the necessary threshold

for an automotive environment. The open-pad structure is also not ideal for an assembly line as the

gloves were originally introduced as a means of protection [57].
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Figure 2.14: Park et al. capacitive force sensor glove a) back of the thumb view, b) side of the

thumb view, and c) palm up view [57]

An overview of research sensor glove products included advantages and shortcomings can

be found in Table 2.2 below.
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Table 2.2: Research force and pressure sensing glove overview

Researchers (et al.) Advantages Shortcomings

Frank Hammond III

Minimally invasive, motion and

force, high measurement range,

repeatable

Only normal force, durability,

research environment, delicate

production process

Ruiyang Yin
Real-time acquisition, high

accuracy

Focus on Human-machine

interaction use, durability,

only normal force, research

environment

Bor-Shing Lin
Motion and force measurement,

high accuracy

Limited measurement area,

durability, invasive, research

environment

Edward Austin
High accuracy and repeatability,

measures all five fingers

Only normal force, invasive

sensor leads, durability, sensor

activation issues, research

environment

Xingyou Meng

Normal and shear force

measurement, linear

measurement, high sensitivity

Focus on Human-machine

interaction use, durability,

measurement range, research

environment

Stefan Borik
Grip force measurement,

measurement area

Low accuracy, measurement

range, only normal force,

durability, underdeveloped,

research environment

Junghoon Park

Allows for tactile feel, promotes

lower force utilization, high

accuracy

Measurement range, limited

protection, durability, research

environment
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2.5 Operator Applied Shear Force Sensing

Marketed solutions and conducted research on shear force sensing is rather limited. This

becomes even more apparent when searching for shear force sensing solutions capable of measuring

operator outputs. Solutions that are presented are bulky, fragile, not flexible, have directional

limitations, or have small measurement ranges [58, 59, 60, 61, 62].

In manufacturing, force sensors are encountered in machine monitoring, assembly line pro-

duction, and quality testing. Force sensing wearables can improve training and development, enhance

communication, reduce rework and push informed decision-making to line employees [63]. For ex-

ample, force sensors can be found on machining equipment to detect when the machine, tool, or

workpiece may be deviating from expected behavior. On the assembly line specifically, manufactur-

ers are implementing sensing technologies into the operator-driven tasks to increase the operator’s

physical, sensing, and cognitive capabilities [64]. Commonly force sensing is commonly utilized,

providing feedback such as finger activation and area of contact for the force [65]. This sensing can

provide real-time data for the operator, decreasing human errors in the final product [63].

Sensor types developed for operator tactile sensing can be classified as invasive and non-

invasive forms. Invasive forms could be extreme, like a physical implant incorporated into a worker,

or more moderate, like physical augmentative technology such as wearable sensing [66]. Non-invasive

technology can also be a form of motion capture or audible signatures [13, 67].

Many sensors for augmenting operator abilities utilized in manufacturing are capable of

measuring normal force through capacitive or resistive materials. Relatively few sensors have docu-

mented findings showing the ability to measure shear force. Work has been conducted to develop and

research sensor capabilities and applications with a recent focus on reducing sensor size and thick-

ness for a less invasive solution, optimizing cost, and making the sensors more tractable [59, 43, 58].

There have been successful efforts in reducing sensor profiles, but the work is incomplete. Many

efforts have looked towards the implementation of force sensing into a wearable sensing platform.

Formats include a glove worn by the user to allow them to continue to perform work with minimal

interference or inconvenience [13, 15, 59, 43, 68].

Advancements in the realm of measuring shear force acting between multiple surfaces or

bodies effectively are much less complete than normal force sensing. Shear force sensors have been

developed offering compact size, variable measurement, linear readings, and high sensitivity, but one
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that encompasses all attributes to a high degree does not exist [59]. Applications for these shear

force sensors vary widely as well. A multi-axis sensor was developed to evaluate car seat comfort,

which had a linear measurement with good sensitivity [69]. However, this design is not compact or

thin enough for a glove application. Piezoresistive sensors have also been developed, which provide

a highly sensitive measurement and quick response times, but fabrication techniques are costly [70].

3D printed shear force sensors are another researched variation. Applications include thin, almost

2D designs or 3D layouts [71]. There is a need for a shear force sensor that can be used in a wearable

format, that is minimally invasive to avoid disruption to workers and possesses an acceptable working

range and sensitivity.

2.6 Data Classification Approaches

The growing presence of technology in industry and academia has enabled the likes of In-

dustry 4.0 and Industry 5.0 to provide a new perspective on traditional methods. As a result, there

is a more significant of background computing, monitoring, and evaluation of machines, processes,

and persons. This is to minimize disruptions from stoppages or breakdowns through preventative

and predictive measures. A common accompaniment to these background enterprises is the likes of

a machine learning, artificial intelligence, or deep learning entity. These tools can be leveraged to

perform duties and even provide judgement at rates and accuracies higher than traditional meth-

ods. One prevalent use of these tools is a classification approach. These output a probabilistic

interpretation rather than a deterministic guess.

Classification algorithms have a seemingly endless number of configurations through the use

of established tool packs or unique coding from scratch. There are also many methods in which

a user can evaluate the classification. These methods can be more basic such as utilizing images

versus sensory input, or they can be more detailed like the kernel type or learning rate. Research

completed by Wang et al., Yen et al., and others show the evaluation of multiple learning methods

[72, 73, 74]. These papers create the baseline code, then enable tools which have been proven to

work to evaluate their system. This is a common practice as it is relatively easy to implement and is

an effective way to find the learning method which is best at predicting for the data set. Commercial

tools can also be implemented effectively, such as Watson from IBM, which received its claim to

fame from participating against the best contestants on Jeopardy [75].
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Countless research papers investigate machine monitoring. Studies have been conducted

to measure various parameters sourced from the tool, workpiece, or machine. Most are done to

minimize the use of a worn or broken machine to mitigate failure or insufficient products [76, 77,

78, 79, 80]. There are also opportunities in industry for classification algorithms to provide an extra

level of protection or reinforcement to the expert’s analysis. For example, the research conducted

by Abhilash and Chakradhar investigated a wire EDM process to address issues that could not be

corrected through process opmtimization [77].

The use of classification measures such as the ones discussed previously require some form

of data stream. This could be historical data or a continuous stream of data. Nevertheless, gathered

data can require significant amounts of storage. This also means that it can require a substantial

amount of computing time. To alleviate storage and processing times, data reduction methods

are used, such as joint dimension reduction, linear discriminant analysis, and principal component

analysis [81, 73, 82].

One study conducted by Nishino et al. emphasized the use of a method, Taguchi’s T-

method, to enable data analysis early into a project. This paper showed that there can be an

adequate amount of data to run a diagnosis with few datapoints. This means that analysis can

begin sooner than normally conducted, helping to establish a baseline before significant amounts of

data are acquired [83].

Other interesting and uncommon approaches are the works conducted by Rohani et al. and

Kazunori et al.. Rohani’s research team built a Gaussian process classifier that used probabilistic

modeling and variational Bayesian inference. Unlike most, they utilized utilized samples with missing

features rather than discarding them for training [84]. Kazunori’s team highlighted the development

by Toshiba Group where they used two types of deep learning methods. One was weakly supervised

and the other was a transfer learning method to reduce deterioration of classification performance

when reliable labeled data are lacking. This helped them to automatically classify each defect in

scanning electron microscope images [85].

2.7 Chapter Summary

The literature review encompasses an understanding of current methodologies and tools

utilized for quality assurance or operator activation measurements. The proposed research problem
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involves incomplete vehicle connections in automotive assembly. Wearable force sensing was deter-

mined to be a valid approach towards overcoming incomplete connections. The current marketed

products and research endeavors for wearable force sensing gloves yield an insufficient platform fit

for use in a manufacturing environment. Thus, a new or improved development is required. An

example classification algorithm is proposed later in this research. The classification review was

utilized for model selection and algorithm approaches.
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Chapter 3

Experimental Design

This research investigates multimodal sensing on the objective determination of connection

quality of three BMW connector types utilized in joining engine hose components used as venting,

vacuum, or fluid transfer lines are shown in Fig. 3.1. These connectors are referred to as Type 1,

Type 2, and Type 3 throughout this research. Each connector type has a locking mechanism that

engages upon full completion of the two mating connector halves. This prevents the connector halves

from separating under use.

Figure 3.1: Investigated BMW connectors for quality, left) vent line 1 (Type 1), middle) vent line 2

(Type 2), and right) vacuum line (Type 3)
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Evaluation data is collected through a sensor glove system for real-time feedback of assembly

line connection quality. Development of said sensor glove is detailed in the successive chapter.

Sensors are implemented to measure a combined loading of worker applied shear and normal force

coupled with acceleration and gyroscopic information. It is important to differentiate that the shear

loading discussed in this research occurs across a planar motion as shown in Fig. 3.2 rather than

a torsional motion. To measure forces in the shear plane a variable resistance approach is utilized

for the sensor. The sensor glove system will be implemented in critical production operations that

currently utilize subjective measures dependent on the operator to verify connection success. This

verification testing may not indicate an incomplete connection if insufficient force is used or the

operation is not completed.

Figure 3.2: Applied shear force visual representation

The sensor glove will augment the operators in their critical role as much of final assembly

in automotive manufacturing requires operator intuition and dexterity to achieve a level of efficiency

and complete complex processes. The multimodal sensing will increase the confidence level of the

feedback provided to the operator, ensuring the connection are successfully evaluated. This is

achieved through multiple sensors requiring accountable targets before outputting the successful

connection prompt.

Throughout the proposed research, a series of test methodologies and studies were conducted

to ensure the investigated processes were warranted, create a better understanding of working prin-

ciples, and aid in the development of the glove system. Test setups were created to understand

the forces applied by the associate by mimicking movements seen on the assembly line. The test

fixtures were designed to isolate applied forces and control movements exhibited when completing a

connection. Types of tests completed are detailed in this section.
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3.1 Process Failure Mode Effects Analysis

The first development was the creation of a Process Failure Mode Effects Analysis (PFMEA)

spreadsheet for the connection process at BMW. This identified the critical failure modes that were

needed to investigate each connector type. This analysis yielded a Risk Priority Number (RPN)

which indicated the relative risk ranking of the failure modes. Higher numbers indicated higher

risk. The RPN is calculated using severity, occurrence, and detection rankings as shown in Eq. 3.1.

RPN is not a linear measurement as it is relative to each PFMEA. Thus, numbers should only be

compared within the same failure mode analysis.

RPN = Severity ∗Occurrence ∗Detection (3.1)

Two critical failure modes that were common across the board were an insufficient applied

force and a misalignment while making the connection as shown in Fig. 3.3. The angular misalign-

ment failure mode involves a sufficient amount of force that is not applied in the direction of the

connection. The force is applied at an angle. The linear offset failure mode is similar, but rather

than the force being applied at an angle, it is applied at a point not concentric with the connec-

tor. Of the two misalignment cases, the angular misalignment was deemed more probable on the

assembly line. Connector Type 1 had a special failure case since its locking mechanism was a plastic

clip on the female end which could cause a defect if it were loose when the connection was made.

The secondary locking clip which is engaged by the associate after mating the two connector halves

could even obstruct the opening of the connector. Another issue that could arise is misplaced force

that could exhibit the push-pull-push, but it is not applied in the correct place to complete the

connection. To test these failure modes, multiple participants performed tests for each connector

and failure mode combination. All the tests were done manually so that test conditions could be

as close as possible to the real-world application. To see all the failure modes investigated for each

investigated connector type and the tools utilized for evaluation, reference the PFMEA spreadsheet

in Appendix A.
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Figure 3.3: PFMEA examples with angular misalignment (left) and linear offset (right) shown

3.2 Insertion Force Fixture

Testing on the insertion force fixture began with bench top testing utilizing a servo motor

before moving into manually completed connections by lab members. To measure applied forces from

the sensor, the insertion force fixture secured the male half of the investigated BMW connectors to

a sliding aluminium block that restricted motion in all directions except the x-direction, as seen

in Fig. 3.4. This allows the aluminium block to slide freely with the force sensor, recording the

force in the x-direction while completing the connection. To prepare for the testing, connectors were

separated from hoses and collets were 3D printed to hold them in place in the fixture. To understand

the predominant shear force, the data is first collected with the insertion force fixture in a direction

aligned with the connection axis. The insertion force needed to complete each connection can then

be applied towards correlating the shear force necessary. The force sensor used in the study was a

Mark-10 series 5i force indicator and series MR01-100 transducer with a dynamic range from 0.5 N

to 10 kN ± 0.15% of full scale [86].
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Figure 3.4: Normal force fixture setup acting in the x-direction

Tests began with a series of controlled speed tests were conducted across all three BMW

connector types with three replications of testing, using a new connector for each replication. The

testing began with completing the connections using controlled speeds via a servo motor at 2, 10, and

50 mm/s. The low speeds were selected to provide a controlled and precise connection. 50 mm/s

was selected to mimic the speed at which the assembler completes the connection. An example

force profile during a 50 mm/s connection is shown in Fig. 3.5. The controlled speed tests yielded

activation forces necessary to successfully complete each connector type.The servo motor utilized

in testing is the Applied Motion Products TSM23S-3RG with velocity control [87]. This allowed

for the establishment of a controlled baseline parameters for the force necessary to complete each

connector type and a curve profile for each. Samples were collected through MATLAB at a sample

rate of 250 Hz to provide sufficient data that captured critical points in the observed force profiles.
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Figure 3.5: Force plots for motor driven connection at 50mm/s for connector Type 2

Later testing utilized lab participants to complete connections of the insertion force fixture

without use of the servo motor or the slider referenced in 3.4. Here, participants tried to mimic the

movements, speed, and timing of a BMW production line associate. The manual connections were

used to establish the initial push and characterize the connection push-pull-push check. To complete

all tests, including the push-pull-push check, the aluminum block in the normal force fixture was

secured to one side of the force sensor. The other end of the block was fixed, restricting movement

in all directions. This allowed for the force sensor to flex and record forces acting on the connector

and for a relative pushing and pulling motion to be completed.

As the operator grips the hose or connectors, a normal force is applied perpendicular to

the x-direction, which keeps the fingers from slipping. The shear force is applied in the x-direction,

which is the same direction that the force sensor measures data. As the associate grips the half of

the connector that is not secured, they utilize a grip that exhibits the shear force mentioned earlier,

as seen in Fig. 3.6. The associate force acting on the connector is translated to the force sensor and

recorded. This force is later used in conjunction with the developed shear force sensor understand

the working principles of the sensor glove.
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Figure 3.6: Finger engagement demonstrating the utilization of shear force in grip

3.3 Shear Force Fixture

To accurately quantify the shear force and allow for calibrating initial sensor designs, the

go/no-go and deconstructed variable resistance sensors, a shear force fixture was developed. This

fixture design was used in the beginning phases of development before the intact soft potentiometer

was used in the sensor glove, such as the one seen on the fixture in the bottom image of Fig. 3.7.

This fixture isolated the applied shear force by applying a force only in the x-direction on a thin

sensor design. The sliding part of the fixture (orange and green, which are fixed together) moves

along the blue plate and applies a known force to the block via a cord attached to the eyelet, as

shown in Fig. 3.7. Friction between the two surfaces was minimized by using shims on the guide

rails to decrease the contact patch. This cord was drawn over the pulley only to act parallel to the

relative motion and weights are applied to the cord’s end to impart known forces. The displacement

was also recorded to determine the operating range of initial sensor designs.
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Figure 3.7: Shear force fixture setup acting in the x-direction

The shear sensor prototype was adhered fully to the bottom rail surface and was attached

to the slide by an adhesive area of 5 mm diameter as shown in Fig. 3.8. An Arduino Uno board was

used to collect displacement data and display sensor output by connecting to a PC.
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Figure 3.8: Assembled prototype placed on shear force test fixture

Testing done on the fixture focused on two areas, the repeatability of the prototype design

and calibrating activation forces to inter electrode distances. Fixture components are shown in

Fig. 3.9. The fixture was also utilized to determine activation forces for the go/no-go sensor. These

results can be found in section 4.1.1 Go/no-go Sensor.

Figure 3.9: Shear force fixture data collection components
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3.4 Shear-Normal Fixture

The shear-normal fixture was developed to understand how the sensor system reacts under

a combined shear and normal loading. This helped to develop best fit curves for production line

prediction and calibration measures for coupling with a robust feedback method. The concept of

the fixture is similar to that of the shear force fixture. the main difference is where the relative

movement takes place. On the shear force fixture, the top plate moves which allows for controlled

shear forces, but applied normal forces cannot accurately be measured for the variable resistance

sensor that uses the intact soft potentiometer. This is due to the small area on the puck in which

the force is applied. Normal forces applied on the puck cause rocking motions and the upper green

plate from Fig. 3.7 to rest on surfaces other than the puck. Therefore, the full applied normal force

is not translated onto the sensor. The shear-normal fixture uses relative motion of the bottom plate

to counteract this.

The developed fixture isolates the applied forces to allow monitoring of the sensor signal

responses. Normal force is applied via weights placed on a platform which is then transferred in

the y-direction to a guided unthreaded bolt which sits on the puck of the stacked sensor. At the

bottom of the unthreaded bolt is another plate that allows relative movement of the puck while still

applying the full normal force. 300FN Kapton material is placed on the underside of the bottom

plate and on top of the puck to mitigate error due to friction. The fixture is shown in Fig. 3.10

Figure 3.10: Shear and normal force isolating fixture

37



The stacked sensor is affixed to a guided plate with roller bearings that moves in the x-

direction. An eye-bolt connected to the plate holds the cable which runs over the pulleys to apply

the shear loading. A closer look at the stacked sensor placement relative to the applied normal force

is shown in Fig. 3.11.

Figure 3.11: Stacked sensor placement in shear-normal fixture

The data collected from the Shear-Normal Fixture was used as a means of calibration the

stacked sensor. The results from this experiment can be found in the Calibration chapter under

Fixture Isolating Calibration. The physical fixture is shown in Fig. 3.12.
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Figure 3.12: Constructed shear and normal force isolating fixture with weights applied

3.5 Sensor Location Study

Multiple line visits observing associates on the BMW assembly line completing the investi-

gated connectors were conducted. These efforts were to develop viable locations for implementation

of the developed force sensor to measure the forces exhibited by the associate. It also helped to

understand the approaches the associates use when making connections so they could be replicated

in the lab. All three BMW connector types being completed were observed at various areas of

assembly, also indicating various locations of the connectors on the vehicle.

The finger and hand engagement for each connector type is shown below in Fig. 3.13. Finger

and hand engagement is dependent on the associate and the location of the connector. For initial

testing of the sensor, a common point of engagement was used. Once initial testing with the sensor

was verified, further research efforts could be conducted to determine how to adapt the sensor and
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glove implementation to measure forces at the other engagement areas. This allowed opportunities

to apply the sensor glove to other processes in final assembly as well.

Figure 3.13: Finger and hand engagement for each connector type from line observations

A more detailed breakdown of the results from the study are depicted in Table 3.1. Here, the

operator approach and hand/finger engagement for each connector type is detailed. This indicates

how the highlighted regions from the previous figure are activated as connections are completed.

Common engagement across all three connector types is the thumbprint utilization.
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Table 3.1: Type 1, 2, and 3 verbal representation of finger and hand engagement when completing

connections

Type 1

Approach Head and waist height, directly in front of associate

Primary hand Right dominant, left used when associate pushes both sides of connector

Finger engagement Primarily thumb and pointer

Parts of finger Primarily thumbprint, and side of pointer

Type 2

Approach Waist height, reaching towards right rear of engine bay

Primary hand Left

Finger engagement Thumb and other finger tips

Parts of finger Thumbprint and other finger prints

Type 3

Approach Top and right side of engine

Primary hand Right dominant, left used when associate pushes both sides of connector

Finger engagement Primarily thumb and pointer, some palm

Parts of finger Primarily thumbprint, some pointer print and side

3.6 Chapter Summary

The experimental work began with a PFMEA to identify critical failure modes of the in-

vestigated vehicle connectors. This yielded two main failure modes of linear offset and angular

misalignment which are used later for testing and the collection of purposeful failure data on the

assembly line.

A series of fixtures were developed to understand the developed sensors and investigated

connectors. The insertion force fixture was used to determine connection force required, connector

degradation, and repeatability. The shear force fixture helped to determine working principles

and operating ranges. The shear-normal fixture isolated applied shear and normal forces under a

combined loading and was used for calibration efforts.
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A sensor location study which took place on the BMW assembly was conducted to un-

derstand operator activation with each connector type and location. These observations were also

translated to the lab environment for recreating operator approach during experimentation and

testing.
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Chapter 4

Design of the Sensor Glove

The Sensor Evolution section within this chapter details stages of the sensor development.

This is followed by the progress with the proposed printed shear force sensor. Lastly, is the evolution

of the coupling wrist unit which houses the circuitry for collecting the glove data. The resistive sensor

showed more promise than the go/no-go when the commercial soft potentiometer was used in its

original form (intact) for shear force sensing. The printed sensor shows promise, but requires further

development to achieve a robustness and durability fit for an assembly environment.

4.1 Sensor Evolution

4.1.1 Go/no-go Sensor

Go/no-go is a simple type of force sensor which can measure if the applied force has crossed

a certain threshold value. It is primarily measuring displacement achieved on the application of

a particular amount of force. The preliminary concept developed for this type of sensor had a

construction as shown below. The working concept for the go/no-go sensor is shown in Fig. 4.1.

43



Figure 4.1: Go/no-go sensor working principle

The sensor has two electrodes which are a specific distance apart from each other. This

inter-electrode distance can be set based upon the threshold force of the application. The electrodes

are attached to two separate layers of Kapton material. Kapton was selected due to its dimensional

stability and repeatability. The two layers of Kapton are joined together by means of an adhesive

which provides flexibility for displacement of the layers in a shear direction. When the displacement

reaches or exceeds the threshold amount, the electrodes make contact, completing the circuit and

transmitting output to the DAQ system. Parameters of the sensor prototype used are in Table 4.1.

Table 4.1: Go/no-go prototype parameters

Attribute Description

Sensor top and bottom layer material Kapton HS

Electrode material Aluminum tape

Sensor thickness 1 mm

Sensor surface area 45 mm x 20 mm

For the repeatability test, a single prototype was tested 20 times. The inter-electrode

distance was kept as 0.2mm. Force was applied incrementally, and each test cycle was performed

after an interval of 2 minutes after completion of the previous cycle. The data obtained showed

that the average maximum displacement achieved for the 20 tests for a force of 18.6N was 0.943 mm

with a standard deviation of 0.038 mm. No drift or trend was observed when looking at the data

sequentially. A visual representation is shown in Fig. 4.2.
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Figure 4.2: Variation in activation force across inter electrode distance, go/no-go Sensor test

To learn more about the force threshold’s relationship with inter-electrode distance, a series

of tests were conducted with prototypes having various inter-electrode distances starting from 0.1mm

up to 0.7mm. Force was applied incrementally until the force threshold was reached. We were able

to reach up to 88.2 N threshold force for the sample having 0.7mm inter-electrode distance. A visual

representation is shown in Fig. 4.3.

Figure 4.3: Repeatability tests for 0.2mm inter-electrode distance, go/no-go sensor test

4.1.2 Deconstructed Variable Resistance Sensor

While the Go - No Go type sensor is simple in construction, it is limited in its functional

scope. It can only confirm whether the applied force crosses the set threshold but does not provide

any kind of qualitative data. Thus, there was a requirement for a sensor that can overcome that

limitation. The variable resistance shear force sensor changes its resistance output based on the input
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force. Thus, it can be used to get continuous force data to study any process and characterize force.

There are multiple variable resistance force sensors available in the market for forces in the normal

direction but not many viable options for shear force measurement. Options that were investigated

are shown in Fig. 4.4. The basic design of a variable resistance sensor has a resistive element which

is in contact with a contact or wiper. The relative motion between these, changes resistance of the

sensor circuit. An alternative design uses a flexible conductive material like conductive fabric. The

flexing of fabric changes its resistance. However, flexible conductive fabrics tested were found to

have poor stability and hence were not suitable for our application. A variety of resistive elements

were tested including wire wound track, rotary potentiometer track and soft linear potentiometer

track. A constantan foil track was tested for performance as a resistive element, but it had poor

resolution. It was found to have about 1.5 per mm change in resistance. Resistive track from a

linear potentiometer made by Spectra Symbol was found suitable for our application as it provided

stable output and offered a good resolution of 12.9 k across a 26.71 cm strip ( 48 per mm). The

rotary potentiometer track performed similarly ( 43 per mm) but would be difficult to implement

for measuring forces in the shear direction.

Figure 4.4: Resistive elements tested in order from left to right: rotary potentiometer, linear poten-

tiometer, constantan foil, and conductive fabric

Once it was decided to use the resistive track from the Spectra Symbol sensor, the prototype

design for the variable resistance sensor was developed. The design used Kapton sheets to hold all

the sensor elements. The top layer of Kapton had the wiper attached to it while the bottom layer

of Kapton held the resistive track. The Kapton pieces are held together by adhesive applied on

their periphery which also provides elasticity for motion between the two layers. Once assembled,

the wiper and track will be in contact with each other. When force in the shear direction is applied

to the sensor, a relative motion between the wiper and resistive track will occur which will change
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resistance of the circuit. The variable resistance sensor prototype and component description are

shown in Fig. 4.5.

Figure 4.5: Prototype design for variable resistance sensor

There were many iterations of the deconstructed soft potentiometer variable resistance sen-

sor. The evolution of the sensor is shown in Fig. 4.6. There were many stability issues with this

sensor type. In general, fairly stable measurements were recorded when the sensors first start being

uses, but they deteriorate quickly to unreadable data. Many efforts were taken to attempt to fix

this issue including, creating hardline terminals, decreasing the wiper size, decreasing the resistive

track width, and changing the wiper material.

Figure 4.6: Variable resistance sensor with deconstructed soft potentiometer evolution (left to right)

When the sensors were tested on the insertion force fixture, the setup with the sensor on

the glove is what is depicted in Fig. 4.7.
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Figure 4.7: Deconstructed soft potentiometer sensor on glove for testing

The initial tests on the prototype showed a linear performance across a displacement of ¿

3mm. This was tested on multiple prototypes. The testing was carried on the shear force fixture

which had been used previously for the go/no-go sensor. An example of a test with a fresh sensor

is shown in Fig. 4.8. Multiple prototypes were tested to investigate parameters like width of the

wiper, adhesive to use for assembling and size of Kapton layers housing the sensor elements. Once

the parameters were decided, the sensor was attached to the thumb of a nitrile dipped work glove to

be used for testing by an operator. The sensor was fixed to the glove by means of hot melt adhesive

to have a temporary bond and easy swapping of samples. To test the accuracy of the sensor output,

a test fixture containing a force transducer was used. The fixture was developed to generate force

characterization data on a set of hose connectors. The male end of the connector pair was placed

on the fixture while female end was held in the hand of the lab member.
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Figure 4.8: Example of output achieved from aluminum foil wiper (left) and the shear sensor output

overlayed on force transducer output (right)

Even with sometime promising outputs initially, the sensors always deteriorated to output

unstable measurements. Thus, an investigation was conducted to determine the cause of this. After

examining microscope images, it was found that the wiper material was gouging and scratching

the resistive track. This creates discontinuities on the track, skewing the measured resistance.

Microscope images are shown in Fig. 4.9. The left image shows a new resistive track, and the right

image is after the wiper material moved across the track.

Figure 4.9: Microscope images (20x) of unused resistive track (left) and scratching on resistive track

from wiper material after use (right)
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4.1.3 Variable Resistance Guided Rail Sensor

Previous design iterations utilized relative movement between a resistive track from a soft

potentiometer and an aluminum wiper to measure voltage change under a shear load. The developed

sensor could successfully capture the applied shear force under controlled conditions, but the sensor

lacked robustness, repeatability, and durability. The sensor rapidly deteriorated with each test

creating more instability due to the aluminum wiper abrading the resistive track. The sensor was

unfit for the harsh assembly environment of automotive production due to the geometry of the upper

and lower Kapton layers required to achieve a significant relative movement [88].

Another proposed design for the variable resistance sensor was to use the commercial linear

potentiometer intact and having a mechanism such that it can measure shear forces. The sensor

prototype is shown in Fig. 4.10. This is done by mounting a tab over the soft potentiometer track

which makes contact with the sensor as normal and shear forces are applied. The tab will have its

motion regulated by means of a rail and end stop. In the prototype created to test the concept, we

used a plastic rail, a Spectra Symbol soft potentiometer, a plastic tab and PDMS end stops. The

tab was secured in place using some thread temporarily.

Figure 4.10: Orange rail sensor prototype with commercial soft potentiometer intact

One more alternate design was explored which used a layer of elastic/deformable material in

between two layers of Kapton in our original design along with a puck on top as shown in Fig. 4.11.

The puck helped activate the sensor only when actual force was being applied by the user. The

elastic layer provided the motion in shear direction required to measure forces. To test the design

out, multiple mix ratios of PDMS and multiple durometer hardness silicone rubber sheets were

tested. The materials tested were not able to provide the magnitude of displacement required in the

shear direction. This design inspired future printing designs.
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Figure 4.11: Alternate sensor design having puck and elastic layer

4.1.4 Stacked Sensor

The new sensor design eliminated the resistive track with a conductive wiper. This old

design was troublesome because the wiping action between the two layers scored and scratched the

resistive track creating inconsistencies in measurements or continuity errors disrupting any measur-

able resistive output. It followed a similar concept to the orange rail sensor, but without all the

extra components except for the puck. This provided the same functional output.

The focus then moved towards utilizing a commercial linear soft potentiometer from Spectra

Symbol (SP-L-0012-103-1%-RH). When a small puck was placed on the outer surface of the poten-

tiometer, the sensor reacted when under shear force. It operated similar to the old design with a

changing contact patch moving along the length of the sensor, but forewent the wiping action with

its enclosed design.

One issue with the soft potentiometer was its ability to measure both shear and normal

force. This created issues of trying to discern the signals to equate them to their shear and normal

force components. To counteract this, a Flexiforce normal sensor (a201) was added in line with the

soft potentiometer. This sensor reacted only to normal forces which allowed for the filtering out the

shear component from the soft potentiometer. It ultimately ended up matching the expected output

(when compared to the load cell in the insertion force fixture) when completing a connection of a

median of 95% as well. This means that the normal force sensor can predict shear force applied in

some scenarios due to the fluctuating normal force as shear is applied.
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To complete the stacked sensor, an outer layer material to protect the sensors and provide

grip was affixed. This material initially started as a 3M adhesive foam to provide exceptional short-

term grip ensuring there is no slip when applying shear force. The layers of the stacked sensor can

be seen below in Fig. 4.12.

Figure 4.12: Prototype 1 stacked sensor layers

More images of the first prototype of the stacked sensor are shown below in Fig. 4.13. The

sensor gloves were constructed by assembling the layers then using a thread and needle to sew the

stack onto the glove. During assembly, all sensor leads and measurement areas were carefully avoided

to ensure a proper reading.
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Figure 4.13: Prototype 1 of the stacked sensor affixed to the glove

The second stacked sensor prototype followed a similar format to the first one with a few

substitutions and additions highlighted in green in Fig. 4.14. The Setex material provides enhanced

grip for the associate when completing connections ensuring the measured shear force was accurate.

The flexible plastic ring helps to protect the Setex material from tearing. The sensor terminals were

also rerouted to the back of the hand using printed sensor leads.
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Figure 4.14: Prototype 2 stacked sensor layers

The second stacked sensor affixed to the glove is shown in Fig. 4.15. Assembly was the same

as stated previously for Fig. 4.13. The thread went through the thin plastic ring to protect the soft

rubber Setex material from tearing.

Figure 4.15: Stacked sensor glove prototype 2

The third iteration of the stacked sensor utilized the same Setex material and flexible ring,

but it forewent the terminal rerouting to provide increased durability as the leads from the second
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prototype tore when tested on the assembly line. The normal force sensor is also angled so the lead

has a reduced risk of snagging or bending. The glove sensor prototype is shown in Fig. 4.16.

Figure 4.16: Stacked sensor glove prototype 3

4.2 Printed Sensor Development

The printed sensor was designed to operate similar to the commercial soft potentiometer,

but it can measure shear force applied in any direction rather than being restricted to one axis. This

is done by measuring the change in resistance from the original center to any point in the resistive

circle to the outer silver trace. The silver trace has zero resistance and carries the signal back to the

sensor terminal. As a greater shear force is applied, the contact patch will draw closer to the outer

edge of the circle (and closer to the silver trace), decreasing the resistive output. The schematic

for the printed sensor layers is shown in Fig. 4.17. The final printed sensor with the black being

resistive ink and silver being silver, non-resistive, ink is shown below in Fig. 4.18.
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Figure 4.17: Printed sensor drawing with dimensions

Figure 4.18: Printed sensor material layers

The first iteration for assembly of the printed sensor is shown in Fig. 4.19. It has a middle

layer with a small thickness to provide spacing between the two layers, so there is no resistance

reading when the two layers are not activated (not in contact). There is also a small cutout from

the middle layer to allow for displacement of the air inside when under load.
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Figure 4.19: Printed sensor prototype 1

The second iteration of the printed sensor utilized a thicker middle layer to provide a sepa-

ration between the two layers, increasing the probability of the materials separating when not under

a load. The outer layer materials were also formed into a thicker substrate by using clear tape to

also increase spring-back when not under a load. The second prototype is shown in Fig. 4.20. While

the separation problems were solved, the resistance reading when under a shear load was not what

was expected. The output from the sensor remained relatively constant. This was likely due to the

contact patch between the two layers being relatively large and the low measurement range of the

resistive ink.
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Figure 4.20: Printed sensor prototype 2

For the third printed sensor prototype, another layer of the resistive ink was printed onto

the existing sensors. This can be seen in Fig. 4.21. This was done because upon further investigation

of commercial sensors, the resistive ink is printed on top of the silver ink rather than underneath.

Figure 4.21: Printed resistive half top (left) and bottom (right)

The printed sensors were tested for measurement range as shown in Fig. 4.22. The center

reading output has a higher resistance than the outer edges, which is expected. As the sensor is

under a shear load, the contact patch will reach closer to the outer edges of the circle decreasing the

resistance measurement, allowing shear to be measure in any direction. However, even though the

resistive ink used show initial promise, it does not have a sufficient measurement range to give an
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adequate reading that could be equated to force as shear loading changes. This could be corrected

with a higher resistive ink.

Figure 4.22: Resistive working range for printed sensor: center reading under normal force alone

(top), edge reading under shear load simulating push (bottom left), and edge reading under shear

load simulating pull (bottom right)

Sensors were assembled with the new double layer prints. The sensors shown in Fig. 4.23

were assembled the same way with a thicker outer substrate and middle layer, but two sizes were

created. The diameters of the overlap between the silver top layer and resistive bottom layer are 11

mm and 15 mm for the two separate sensors. The sensors reacted as expected, but with the current

geometry and materials used, they did not perform well enough for glove testing. Modifications

need to be made to the sensor which may include, but are not limited to, utilizing a higher resistive

ink, controlling the contact patch between the two layers, utilizing a sealed enclosure with air or
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dielectric grease within, and changing the geometries of the middle layer before affixing the sensor

to the glove. This is included in the future work of the printed sensor

Figure 4.23: Printed sensor prototype 3 (left in pictures) 15 mm diameter and sensor prototype 4

(right in pictures) 11 mm diameter

An example geometry that will control the contact patch and still allow for multidirectional

measurement is shown in Fig. 4.24. The sensor currently used a 3D layer with adhesives that borders

the outer black resistive ring. The proposed new design will utilize the same border middle layer

will an additional geometry overlayed on the resistive ink. In the figure, this proposed geometry is

highlighted in blue. This example will allow for measurement along 3 axes on a horizontal plane as

show by the green arrows. This will also reduce the contact patch since there will be less overhang

between the two sensor layers to lay on top of each other.
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Figure 4.24: Middle layer adjustments to control contact patch between two layers and allow for

multidirectional measurement: Before on the left, adjusted on the right

4.3 Wrist Unit Development

Once a working glove prototype was developed, efforts were put towards preparing for testing

on the assembly line. To accomplish this, a new sensor glove was made along with a control module

to collect and save data.

The control module is a circuit comprised of a Teensy 3.2 board, an accelerometer, and

a Precision RTC. The Teensy board is how the system connects to an outside computer for data

collection and saving. This is also where power is drawn to excite the other components in the

control module. Data is fed from the shear and normal sensors to the analog inputs of the Teensy

board.

The accelerometer provides both acceleration data in x, y, and z and gyroscopic data around

those axes. This can be used as a reinforcement for determining when a connection is completed so

the real-time feedback can be supplied to the associate.

The Precision RTC is a real-time clock that is used to record a timestamp with each data

collection point so it can be matched with the data labeling system used on the iPad. The data

labeling system was our method of indicating which type of connection was completed at which

time. We later parsed through the data and added the respective label to each dataset. The entire

module is shown in Fig. 4.25.
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Overall, the control module coupled with the sensor glove recorded voltage differences, which

were equated to resistance changes from the shear and normal force sensors, acceleration in x, y,

and z, gyro readings in x, y, and z, and the date and time the measurement took place.

Figure 4.25: Sensor glove control module for data collection and saving

The control module was designed to fit into a forearm sleeve like the existing BMW thumb

unit sensor system. The complete setup which was worn by the associate during line testing is shown

in Fig. 4.26.

Figure 4.26: Complete sensor system used for line testing with sensor glove

62



After the first round of testing, adjustments detailed below were made to the hardware and

software to create a better experience for the associate and create an easier process for the data

analysis. A new sensor glove prototype was made, making this the third prototype. This adjusted

positioning of the sensors and utilized the outer layer material. The sensor control module also

received some upgrades, utilizing an amplifying circuit to achieve a greater measurement range for

both sensors, but for the normal force sensor in particular. The previous working range for the

normal force sensor was rather small, being approximately 75-88 analog points. The new internals

for the control module are shown below in Fig. 4.27. The third iteration of the sensor glove is

reiterated below in Fig. 4.28.

Figure 4.27: Second iteration of sensor glove control module
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Figure 4.28: Stacked sensor glove prototype 3

The working principle of the sensor glove system is shown in Fig. 4.29. This indicates the

delivery of the circuit components to the Teensy, which then flows into a student computer. As

noted previously, the data is currently saved on a laptop while collecting data on the assembly line.

Figure 4.29: Current sensor system circuit operating principle

The next steps for the sensor system will create an independent system that can collect and

analyze data without augmentation from a student. Further details of the next steps can be found

in the Future Work section. The goal for the next operating principle is shown in Fig. 4.30.
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Figure 4.30: Future sensor system circuit operating principle with internal processing and power

The wiring diagram for the second control module utilized in assembly line testing with the

amplifying circuit is shown below in Fig. 4.31.
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Figure 4.31: Wiring diagram for the second iteration of the sensor glove circuit utilized during lab

and assembly line testing
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Chapter 5

Sensor Glove Calibration

5.1 Calibration

The sensor glove system utilizes a changing voltage output via a variable resistance under

loading for the objective determination of connection quality. These changing resistances can capture

shear and normal forces applied by an associate. Similar marketed standalone sensors are coupled

with a calibration document to equate a voltage output to a given force. Similar tests were conducted

with the developed sensor glove discussed in the paper. However, there is a fundamental issue

preventing the direct correlation of a voltage output to force. This being the capturing of both shear

and normal forces simultaneously. To try and overcome these challenges, three separate calibration

methods were performed. We will refer to the methods as direct calibration, subtractive calibration,

and fixture isolating calibration.

5.1.1 Direct calibration

The first method was a direct calibration. This involved taking the sensor system and

applying known forces in the shear and normal directions. This was completed in the glove format

on a person and with an isolated sensor.

Tests began with attempting to calibrate normal forces first, then shear. Normal forces were

applied to a stacked sensor that was placed on a table. This was done by applying a series of known

weights to the puck on the stacked sensor. Tests were also conducted in the glove format using the
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Mark-10 load cell in the insertion force fixture. The person simply pushed against the load cell until

a desired normal force was achieved. Once voltage outputs were equated to known normal force

values, efforts moved towards doing the same for shear forces. However, to apply a shear force, a

normal force must also be applied to mitigate slip. Further discussions of shear calibration in the

glove format are in section 5.1.2 Subtractive Calibration.

The isolated sensor was placed in the shear force fixture for calibration. The shear force

fixture could apply known shear forces, but the applied normal force were inconsistent due to the

loading mechanism. The top plate of the shear force fixture, highlighted in orange in Fig. 5.1, sat

on top of the puck and guide rails to direct the movement. These guide rails created friction which

influenced the applied shear force. Without the guide rails, the plate was unstable on only the puck,

so the normal forces were inconsistent.
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Figure 5.1: Shear force fixture

A major roadblock preventing the calibration of the shear force sensor was the working

principle of said sensor. The sensor is a resistive track. As a contact patch moved up or down

the resistive track under a shear force, the voltage output increased or decreased. The puck was

put in place to focus force applications onto the centers of each sensor, but this did not eliminate

fluctuation. The shear sensor output under loading was heavily dependent on the starting position
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of the person (the starting contact patch). Once initial contact was made, there was an observable

voltage change as shear was applied.

5.1.2 Subtractive Calibration

We have already discussed how the shear sensor under a normal loading can fluctuate

based on initial contact patch, rendering the voltage output inequitable to an applied normal force

(repeatably). As a result, the normal force sensor was placed in line with the shear force sensor.

This was originally done to become determine the shear component of the combined loading, but

was later kept as a form of multi-modal sensing for increased confidence.

The idea was to calibrate the commercial, off-the-shelf, normal force sensor to normal load-

ings. This calibration data would then be used to ”subtract” the normal component from the shear

sensor to capture the shear component. This practice faltered due to the normal force sensor react-

ing to shear force as well. Therefore, the individual components of the combined loading could not

be determined through the stacked sensor system alone.

5.1.3 Fixture Isolating Calibration

The most recent effort towards calibration the stacked sensor system utilized the shear-

normal fixture. The research consisted of three experiment types: repeated normal loading (Normal

LU), repeated shear loading (Shear LU), and incremental shear loading (Shear Inc). The repeated

normal loading was a series of loading and unloading an applied varying normal force to the sensor.

The repeated shear loading utilized a constant normal force with the loading and unloading of a

varying shear loading. The incremental shear loading maintained a constant normal force and applied

additional shear force without unloading of the previous force. This test was run until failure (i.e.

the roller bearing slide overcame normal force from applied shear and slipped out from underneath

normal loading).

All forces were exerted through weight which were equated into forces. Shear loading was

applied in increments of 0.1 kg or 0.981 N. A breakdown of all 70 experiments are shown in Table 5.1.

Each experiment was repeated 5 times.
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Table 5.1: Shear and normal force fixture experiment breakdown

Experiment Applied Normal (N) Applied Shear (N)

Normal LU

9.81 0

11.77 0

14.72 0

16.68 0

19.62 0

21.58 0

24.53 0

26.49 0

29.43 0

Shear LU

9.81 0 - 4.91

14.72 0 - 5.89

19.62 0 - 7.85

24.53 0 - 7.85

Shear Inc 24.53 0 - 6.87

Based on the behavior of the stacked sensor in the shear-normal fixture, we expect the

stacked sensor in the glove format to follow a similar trend. This being both sensors responding

under shear and normal forces exhibiting a linear response. The linearity in the sensor under separate

normal and shear loading will create a more friendly sensor output for adapting to other processes

and/or people. The normal force response in the shear sensor are detailed in Fig. 5.2 with error bars

indicating repeatability.
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Figure 5.2: Shear sensor sensor output under normal loading a) sensor response and b) sensor

repeatability

The graph shown in Fig. 5.3 gives the sensor outputs of various shear loading under varying

normal forces (Shear LU data). Each line indicates a different applied constant normal force. Each

data point on the line marks a different experimental shear loading. When the shear force overcomes

the applied normal force, causing the roller bearing plate to slip from underneath the normal force

application plate, the testing was stopped. All loadings exhibit a relatively linear trend.

Figure 5.3: Shear sensor sensor output under combined shear and normal loading
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As you can see in the graph, the sensor outputs were not always higher with a greater

shear force or combination of shear and normal. This was again due to the nature of the resistive

track in the shear sensor. The resistive track bottom layer made contact with the silver trace

(approximately zero resistivity) top layer. As the contact patch moved along the track, the resistance,

and therefore output voltage, changed. As a result, the force profiles exhibited in the glove format

became the critical component rather than a force target or threshold alone to determine the quality

of connections completed on the assembly line. Once activated, the sensor showed an increase in

voltage output as shear force increased as shown in Fig. 5.4. The green lines indicate the steady-

state point of each step in the incremental loading. The additional motion and acceleration sensors

also helped to determine the operator approach increasing the confidence of feedback provided to

the operator.

Figure 5.4: Shear sensor sensor output under a constant normal load of 2.5 kg and an incremental

shear load (Shear Inc)

Despite calibration efforts with the fixture, the variability in the sensors under a combined

loading were too high to accurately equate voltage outputs to force. Tests did however prove the

linear relationships within each sensor response. The other sensor in the stacked sensor system was

the normal force sensor, and the manufacturer claims a linear response under normal loading. This

was verified as shown in the sensor output graph of Fig. 5.5.
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Figure 5.5: Normal force sensor linear signal output curve

As a result of the profound variability, the direct voltage output of the sensors was utilized

for signal processing. The live output and the classifier utilized the voltage response.

5.2 Sensor Behavior Over Time

The sensor glove was tested hundreds of times in he lab and on the BMW assembly line.

Tests in the lab were usually isolated to the connection alone. Tests conducted on the assembly line

were worn for the duration of the BMW associate’s work which included other processes within the

takt, such as tool use and plug installation, and other non-work tasks, such as taking a drink or

resting their hand.

Throughout testing at BMW, three sensor gloves were used. The first two sensor gloves were

previous iterations that had functional or durability flaws. These flaws were amended, resulting in

the third glove, and current, iteration for assembly line use. This sensor glove has been tested

on the assembly line for 250+ vehicles. This includes 3+ investigated connections per vehicle and

other accompanying tasks that make up the remainder of the takt time. Throughout testing, the

sensor glove maintained functionality and durability in the physically demanding, harsh environment.

There was no observable degradation in sensor performance and repeatability.
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Repeatability tests were also conducted with the BMW connectors to investigate degrada-

tion in the material and structure which could result in lesser or greater forces being required to

complete each connector type. No observable change was recorded over hundreds of tests. Changes

in connection force were resultant of operator variability.

5.3 Sensor Working Range

The working range of a sensor denotes the range of concentration that can be adequately

determined by the instrument. In simpler terms, it indicates the operating range the sensor is

capable of measuring. The Flexiforce a201 normal sensor from Digi-key offers three measurement

capabilities: 0-4.4 N (1 lb), 0-111 N (25 lb), and 0-445 N (100 lb). Measurements can exceed 445

N as this sensor is said to be capable of measuring up to 4,448 N (1,000 lb) if a lower drive voltage

and lower resistance for the feedback resistor is used. For the intents and purposes of this research,

the middle range, 0-111 N, sensor was selected. This allowed for a greater sensitivity in the normal

operating range for the assembly line workers. In the Python code, this 0-111 N measurement range

was equated to a 0-3300 mV working range.

The shear sensor working range has more variability. This soft potentiometer was adapted

for measuring shear forces, and therefore, the manufacturer did not directly calibrate for this. As

discussed above in the Section 5.1, the voltage output cannot directly be equated to force as the

sensor is sensitive to shear and normal forces, and the output is dependent on the starting contact

point. Therefore, the working range of the shear sensor was given as a voltage output and was driven

by the Python code. Similar to the normal sensor, the measurement range of the sensor was set

to 0-3300 mV in the code. This can be approximated to be a force equated working range with a

minimum of 1-3 N to a maximum of 50-125 N.

75



Chapter 6

Data Collection

All data collected and discussed in the following sections utilize the stacked sensor in the

sensing glove system. The stacked sensor was paired with the first wrist unit design iteration for lab

collected data and the first round of assembly line testing with a BMW associate. Later tests utilized

the second wrist unit iteration for a more dynamic measurement and increased working ranges for

the sensors. Some figures discussed in this chapter are recaps of figures from previous section for

reading convenience.

6.1 Lab Collected Data - BMW Connectors

Lab captured data was completed by 3 Clemson students who were part of the research

project. Lab testing with the sensor glove took place over the course of 2.5 months (mid-February

to April 2021). Two individuals were Master’s students and a postdoctoral research fellow. All lab

participants were part of the research group.

A representation of the assembly line was created in the lab to try and mimic movements,

approaches, and grips of the BMW associates. Tests were completed on the insertion force fixture

by multiple students to create a diverse data set. Tests were completed by mating the female end

of the connector with the male end attached to the fixture.

Initial testing was completed with this stacked sensor glove on the insertion force fixture so

the signals from the two sensors could be compared to the load cell output. An example output of a

normal insertion is shown in Fig. 6.1. A normal insertion indicates that the initial push to complete
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the connection was made without the subsequent pull-push verification testing. Testing parameters

are overlayed on the figure.

Figure 6.1: Normal insertion profile using the first prototype of the stacked sensor glove

Fig. 6.2 is an example plot of a push-pull-push test with the stacked sensor glove. Testing

parameters are also overlayed on the figure. There is also a green dividing line indicating where the

initial push stops and the verification pull-push begins. This is for the regression which is discussed

after the figure.
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Figure 6.2: Push-pull-push profile using the first prototype of the stacked sensor glove

6.2 Regression Analysis - Sensors to Load Cell

The relationship of normal and shear force sensor with Mark 10 was quantified using re-

gression analysis in Minitab. The R-squared value represents how well the normal force sensor and

shear sensor follow the load cell output curve. This is an analysis for a single test to show how well

the sensor outputs match the Mark 10 load cell as the connection is completed against the Mark 10.

Comparisons between multiple tests in the lab, line, and comparing the two settings are discussed

later in Section 7.1.

The normal force sensor shows a better correlation of fitting the load cell curve 90% or more

for most tests. For the example output in Fig. 6.2, the normal curve matches the expected to 95.5%.

However, the soft potentiometer shows greater promise of capturing the inflection for the verification

testing.

Additionally, the lower value of Mallows Cp represents that the model is relatively precise

(has small variance) in estimating the true regression coefficients and predicting future responses.

Mallows Cp is a measure to pick the best regression model and can be calculated as shown in Eq. 6.1.

RSSp is the residual sum of squares for a model with p predictor variables, S2 is the residual mean
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square for the model (estimated by MSE), N is the sample size, and P is the number of predictor

variables [89]. The desired Mallows Cp value is as close to the number of variables as possible (1 for

sensors alone and 2 for both sensors).

Cp = RSSp/S
2–N + 2(P + 1) (6.1)

Utilizing two sensors gives greater confidence for all aspects of the connection completion

and also confidence in the regression with the lower Mallows Cp value. The regression analysis for

Fig. 6.2 can be seen below in Table 6.1.

Table 6.1: Normal insertion regression of shear and normal force sensors compared to the load cell

output

Normal Insertion Regression

Variables R-squared Adjusted Mallows Cp

Normal Sensor 95.5 31.7

Shear Sensor 51.7 2010.1

Normal and Shear Sensors 96.1 3.0

The initial push exemplified the same regression trend as the normal insertion, but the

following pull-push did not. Since we are examining inflection for confirming the verification test

was complete, the poor correlation is allowable. These numbers are reflected in Table 6.2. This

regression analysis further justifies the use of multimodal sensing. The normal force sensor is better

at capturing the response during the initial push, the locking phase of the connection. The shear

sensor is better at capturing the push-pull-push profile to ensure validation checks are completed.

These coupled with motion sensors can be used to determine operator approach and forces applied

to ensure success of the connection.
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Table 6.2: Push and push-pull-push regression of shear and normal force sensors compared to the

load cell output

Push Regression

Variables R-squared Adjusted Mallows Cp

Normal Sensor 95.6 57.5

Shear Sensor 61.0 716.3

Normal and Shear Sensors 92.9 3.0

Push-Pull-Push Regression

Variables R-squared Adjusted Mallows Cp

Normal Sensor 46.9 2.4

Shear Sensor 44.4 7.0

Normal and Shear Sensors 47.1 3.0

6.3 BMW Assembly Line Collected Data

Assembly line captured data was completed by 7 BMW associates. Assembly line testing

with the sensor glove took place over the course of 16 days in March 2021 and one additional visit

in both April and May of 2021. Three days of assembly line tests took place in March and one in

both April and May. Associates were selected based on their willingness to be a part of the study

and their role at BMW. Associates who normally complete the investigated connector types were

selected. All participants on the assembly line were male. Sensor glove iteration 1, 2, and 3 were

tested on approximately 66, 15, and 250+ vehicles respectively. This included processes outside of

the investigated connections. Two associates took place in the study twice, and the remainder just

once. The sensor glove and wrist unit forearm sleeve were disinfected with Clorox wipes between

use. The testing conducted in the month of April on the BMW assembly line was not utilized in

any data analysis as both force sensors were disconnected from the circuit. This issue was quickly

remedied for future testing. This indicates the need for increased durability of the sensor glove

system before final deployment on the assembly. All studies conducted with participants outside of

the research group were operating under IRB2018-114.
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6.3.1 Testing: Industrial First Phase

The new sensor glove, prototype 2, as mentioned previously in the section 4.1.4 Stacked

Sensor, rerouted the sensor terminals and utilized an outside layer with better gripping strength.

Prototype 2 of the sensor glove is shown below in Fig. 6.3. This was coupled with the first rendition

of the wrist control unit.

Figure 6.3: Stacked sensor prototype 2 recap

On the assembly line, the team worked with the BMW associates to coordinate the data

collection to occur when the investigated connections were being completed. The control module

Teensy board was connected to a laptop. A custom program on the laptop designated when to start

and stop data collection. Another tablet device was used by another member of the Clemson team

to label the data as it was being collected on the laptop. This utilized another custom program

to record the timestamp. The data collection through the control module also had an associated

timestamp, so these values were matched up later to determine which type of connection was being

completed for each data recording.

The associates were asked to complete the work as they normally would so the glove data

would be able to represent a normal work day. Therefore, there was no training involved. The takt

time for data collection was slightly longer than normal due to communication time between the

BMW associate and Clemson team, but the connections were completed in the duration expected

on any given day.

Unfortunately, the sensor leads snagged during testing, ripping the leads from the soft

potentiometer (shear sensor). Therefore, the sensor glove prototype 1 was used in place with the
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control module to continue line testing. An example output from the sensing system from line testing

with the prototype 1 sensing glove is shown in Fig. 6.4.

Figure 6.4: Line testing data collection example (Type 1 connector)

Once the data were collected and labeled, each set was segmented. The segmentation was

conducted to separate the push-pull-push from the rest of the data. We wanted to investigate the

push-pull-push alone to compare tests, classify, and predict connection quality before adding in

noise and outside movements into the data analysis. This segmentation was completed by plotting

all datasets in MATLAB and looking for the inflection of the push-pull-push in the graph. Since

only short spans of data were collected at a time, the inflection was noticeable for the majority of

the line data. The sets that were questionable or indeterminable were kept, but not utilized in the

data analysis.

Below in Fig. 6.5 is the segmented plot from the data collection shown in Fig. 6.4. This

shows where the push-pull-push is completed during testing.
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Figure 6.5: Segmented line testing data collection example (Type 1 connector)

6.3.2 First Phase Testing Lessons

After the first round of testing the sensor glove on the assembly line, adjustments to the

stacked sensor hardware were needed to provide additional durability and ease of use for the asso-

ciate as the second prototype leads tore, rendering the glove unable to collect the data we needed.

Efforts toward simplifying the data collection and labeling would also be beneficial as there was an

intermediate step needed to understand the meaning of the BMW terminology.

The team was able to collect useful data exemplifying completed connections that could be

used for data classification and modeling of the connection quality. It was also determined that the

response from the normal force sensor could use amplification to give a wider measurement range.

This would allow for the associate activation to have a greater sensitivity and increase the confidence

of the connection status based on the force input.
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6.3.3 Testing: Industrial Second Phase

As stated in the Design of the Sensor Glove chapter, adjustments were made to the hardware

and software after the first round of testing. The main differences were the adjusted positioning of

the sensors, the outer layer material, and the circuit amplification which increased measurement

ranges.

Below are the successful connections using the new sensor glove and control module. Fig. 6.6

and Fig. 6.7 show the full and segmented output respectively.

Figure 6.6: Phase two - line testing completed connection example (Type 1 connector)
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Figure 6.7: Segmented phase two - line testing completed connection example (Type 1 connector)

6.3.4 Second Phase Testing - Purposeful Failure

The second round of testing was focused on failed connections. We investigated with the

BMW team some of the failure modes detailed on the PFMEA spreadsheet. The two investigated

were misplaced force and low force. Both of these result in an incomplete connection. Misplaced

force may see the force profile we expect, but since it is not applied on the connector, we can use

motion data to determine if the connection was actually completed.

Example plots of low force and misplaced force are shown in Fig. 6.8 and Fig. 6.9 respectively.

It was observed that associates were more inclined to not complete the push-pull-push verification

testing when applying a misplaced force.
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Figure 6.8: Phase two – purposeful failure, line testing data collection low force example (Type 1

connector)

Figure 6.9: Phase two - segmented line testing data collection example (Type 1 connector)

6.3.5 Second Phase Testing Lessons

The second round of line testing showed a greater response from the sensors with the new

control module than the first iteration. This is due to the amplifying circuit. This was especially
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noticeable for the normal force sensor as the analog measurement range went from approximately

75-88 to 0-3800 with a greater response from the sensor itself.

Feedback from the associates determined that the comfort of the sensor glove setup could

be improved. Associates were asked questions regarding usability and comfort of the device such

as: ”Are there any restrictions to motion?”, ”Did you experience any levels of discomfort during

testing?”, ”Do you believe this device would interrupt your workflow?”, and ”Do you have any im-

provement suggestions?”. One associate noted that the forearm sleeve was itchy after extended use.

Associates did not directly mention that any component, in the sensor glove’s current state, would

interrupt the process other than the wired component to the student laptop. This component will be

eliminated before unmonitored deployment on the assembly line. Another element the associates did

not mention directly but needs to be improved is the terminal routing. Previous efforts in re-routing

the terminals were successful, but they did not maintain the durability of the commercial terminal

locations. The current glove prototype 3 utilizes the commercial terminals as durability was deemed

more important than a slight hindrance to the associate’s movements. This is because the data

collection stability was critical, and the hindrance could be corrected later. Associate feedback did

not state that the terminals blocked them from flexing their hand to the extent that they normally

would.

The “bad” connections yielded useful data that helped determine connection quality and to

classify the connections being made. Further discussions on this are found below in Chapter 7 Data

Analysis.

87



Chapter 7

Data Analysis

Data collected from lab and line tests contain noise due to movements involved other than

making a connection. Output data from the shear and normal sensors were segmented to get desired

data where the actual connection is made, and further repeatability of the sensor verified using the

segmented data. Only the push-pull-push part from the signal is separated by analyzing each signal

manually. Six lab and seven line output data files were selected randomly to check the correlation

between the signals. The linear regression analysis was run on the data. The regression model gives

the quantitative relationship between two variables. It explains how one variable change according

to the change of another variable. Hence, to check the degree of fit between output datasets, two

outputs were compared simultaneously using regression analysis.

7.1 Signal Correlation

While studying the regression analysis of sensor outputs, the following factors were consid-

ered:

• R2 (also called coefficient of determination): R2 value measures the proportion of variability

in the data that the model can explain.

• R2
Adjusted value: R2

Adjusted is a modified version of R2 that has been adjusted for the number

of predictors in the model.

88



• P-Value: P-Value checks whether the model is statistically significant. If the p-value is greater

than 0.05, then the model is not statistically significant at the 5% significance level.

• Root Mean Square Error: RMSE is the standard deviation of the residuals. Residuals are the

difference between the actual value and fitted value which is a measure of how far from the

regression line data points are, where RMSE is a measure of how spread out these residuals

are.

• Akaike’s information criterion (AIC): AIC compares the quality of a set of statistical models

to each other. The AIC will take each model and rank them from best to worst. The “best”

model will be the one that neither under-fits nor over-fits.

• AICc is an Akaike information criterion corrected for the sample size.

RMSE is calculated as shown below in Eq. 7.1. x̂i are predicted values, xi are observed

values, and n is the number of observations [90].

RMSE =

√∑n
i=1 (x̂i − xi)

2

n
(7.1)

AIC is calculated as shown in Eq. 7.2. k is the number of parameters in the model and L̂

is maximum value of the likelihood function for the model [91].

AIC = 2k − 2ln(L̂) (7.2)

The samples from randomly selected output data files of shear and normal sensors are

compared to each other by selecting one of them as a dependent variable and the other one as the

independent variable.

7.1.1 Dynamic Time Warping

Due to segmentation, data files had different sample sizes, and the same sample size is

required to run Regression Analysis. Hence, Dynamic Time Warping function was used to resample

the data by stretching data points to achieve the same sample size without altering the signal output.

The idea is to compare arrays with different lengths in a one-to-one fashion to investigate similarities

in the signals regardless of time. Fig. 7.1 shows the benefit of DTW. The red and blue traces show
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very similar profiles with varying time. If data points were compared using a Euclidean Matching,

the data points would not be synced up which can results in improper results on similarities. DTW

compares like data points by finding the optimal match for troughs and peaks in the signals [92].

Figure 7.1: Euclidean matching vs dynamic time warping for signal comparison [92]

An example output with one signal that has been altered to match another is shown in

Fig. 7.2.
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Figure 7.2: Resampling of data with dynamic time warping function

7.1.2 Lab vs. Lab

7.1.2.1 Shear Sensor

Labs output files are compared with each other for normal and shear sensor output, shown

in Table 7.1. The F-test’s p-value is lower than the α level (0.05) for all the cases, indicating that the

model is statistically significant. R2
Adjusted values are above 89% for all the combinations of output

data files. The following table shows few regression models. Test 4 has R2
Adjusted value equal to 89%

means 89% of the variation in the output from the 5th sample can be explained by the output from

the 1st sample. In simple words, the predictor (sample 5) is 89% accurate to the response (Sample

1).
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Table 7.1: Regression coefficients for shear sensor lab vs lab data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.991625 0.991528 3.83E-92 27.29739 843.157 843.2966

2 1 3 0.971306 0.97105 3.30E-88 44.08063 1188.713 1188.821

3 1 4 0.935868 0.93529 4.84E-68 63.79703 1261.852 1261.961

4 1 5 0.891297 0.890242 1.93E-51 86.72539 1237.135 1237.252

5 1 6 0.915709 0.914831 2.32E-53 81.86453 1143.484 1143.61

The following graph shows R2
Adjusted value for all the Lab vs Lab tests. The R2

Adjusted is

essentially the percentage in which the compared signals match each other. This is reflected in

Fig. 7.3 below and the subsequent regression analysis graphs as well.

Figure 7.3: R2
Adjusted value for shear sensor lab vs lab data

All lab tests show similar output or a better fit with each other.
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7.1.2.2 Normal Sensor

Similarly, for the normal sensor, the F-test’s P-value is lower than the α level (0.05) for all

the cases, indicating that the model is statistically significant. Table 7.2 shows regression model

coefficients for normal sensor output for the first lab sample with all remaining lab samples.

Table 7.2: Regression coefficients for normal sensor lab vs lab data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.9837553 0.983577 3.25E-83 3.072282 474.67099 474.8043

2 1 3 0.9150573 0.914241 1.68E-57 7.220639 721.90788 722.0244

3 1 4 0.9312243 0.930581 5.06E-64 6.209114 709.382 709.4952

4 1 5 0.9329458 0.932232 5.90E-57 5.475754 600.87841 601.0074

5 1 6 0.9066443 0.905692 2.90E-52 6.693992 666.00953 666.1332

The following graph, Fig. 7.4, shows R2
Adjusted value for all the Lab vs Lab tests.

Figure 7.4: R2
Adjusted value for normal sensor lab vs lab data

R2
Adjusted values are above 83% for all the combinations of output data files. Hence, we can

conclude that all lab tests for normal sensors show similar output or a better fit.
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7.1.3 Line vs. Line

7.1.3.1 Shear Sensor

Total seven random shear sensor line output files are compared with each. The F-test’s

p-value is lower than the α level (0.05) for all the cases, indicating that the model is statistically

significant. Table 7.3 shows regression model coefficients for shear sensor output for the first line

sample with all remaining line samples.

Table 7.3: Regression coefficients for shear sensor line vs line data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.852523 0.851738 4.56E-80 78.19076 2197.664 2197.728

2 1 3 0.970897 0.970712 2.88E-123 35.69632 1600.063 1600.139

3 1 4 0.848516 0.847557 1.22E-66 88.94596 1892.217 1892.293

4 1 5 0.943816 0.943489 1.83E-109 52.32218 1872.961 1873.032

5 1 6 0.953805 0.953489 2.21E-99 49.70847 1578.22 1578.303

6 1 7 0.938571 0.93828 8.44E-130 53.93655 2305.265 2305.322

Fig. 7.5 shows R2
Adjusted value for all the Line vs Line tests.
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Figure 7.5: R2
Adjusted value for shear sensor line vs line data

R2
Adjusted values are above 83% for all the combinations of output data files, representing

that line tests output datasets give a better fit with each other.

7.1.3.2 Normal Sensor

In this case, the F-test’s p-value is lower than the α level (0.05) for all the cases, indicating

that the model is statistically significant. Table 7.4 shows regression model coefficients for normal

sensor output for the first-line sample with all remaining line samples.

Table 7.4: Regression coefficients for normal sensor line vs line data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.8541316 0.853303 1.74E-75 1.113619 545.44172 545.5103

2 1 3 0.9634408 0.963178 9.25E-102 0.515705 215.38042 215.4674

3 1 4 0.9530397 0.952727 1.60E-101 0.594228 275.11428 275.1948

4 1 5 0.9089056 0.908336 3.79E-85 1.029707 471.20862 471.2841

5 1 6 0.6734936 0.671346 8.92E-39 1.931597 641.79096 641.8704

6 1 7 0.9034291 0.902978 1.37E-110 0.792293 514.39189 514.4482
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Fig. 7.6 shows R2
Adjusted value for all the Line vs Line tests.

Figure 7.6: R2
Adjusted value for normal sensor line vs line data

R2
Adjusted values are above 70% for all the combinations of output data files except for tests

5 and 21. This shows that the normal force sensor shows a better fit for almost all the cases, but

few cases have an average percentage of fit.

7.1.4 Lab vs. Line

7.1.4.1 Shear Sensor

Lab and Line output files are compared with each other for normal and shear sensor output.

The F-test’s p-value is lower than the α level (0.05) for all the cases, indicating that the model is

statistically significant. Table 7.5 shows regression model coefficients for shear sensor output for the

first lab sample with all line samples.
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Table 7.5: Regression coefficients for shear sensor lab vs line data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.915345 0.914622 1.42E-64 69.34122 1348.582 1348.685

2 1 3 0.966736 0.966542 2.63E-128 41.86462 1785.058 1785.128

3 1 4 0.909712 0.908966 4.96E-65 71.37986 1400.974 1401.074

4 1 5 0.922371 0.921842 1.79E-83 68.7332 1685.439 1685.522

5 1 6 0.92096 0.920415 8.55E-82 70.3507 1669.681 1669.764

6 1 7 0.895143 0.894355 5.40E-67 78.33279 1562.559 1562.65

7 1 7 0.957662 0.95744 4.20E-133 47.50619 2039.992 2040.055

Fig. 7.7 shows R2
Adjusted value for all the Lab vs Line tests.

Figure 7.7: R2
Adjusted value for shear sensor lab vs line data

R2
Adjusted values are above 70% for all the combinations of output data files except for tests

18 and 25 out of 42 tests. This shows that shear sensor output from lab tests matches better with

almost all the line tests, except few tests show an average fit between lab and line tests.
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7.1.4.2 Normal Sensor

The F-test’s p-value is lower than the α level (0.05) for all the cases, indicating that the

model is statistically significant. Table 7.6 shows regression model coefficients for normal sensor

output for the first lab sample with all line samples.

Table 7.6: Regression coefficients for normal sensor lab vs line data

Regression

test number
Sample

Comparison

sample
Rˆ2

Rˆ2

Adjusted
P-value RMSE AIC AICc

1 1 2 0.5648337 0.562164 2.94E-31 2.622262 788.36982 788.4439

2 1 3 0.4059839 0.403271 1.43E-26 3.454026 1177.0387 1177.094

3 1 4 0.6031959 0.600776 9.66E-35 2.230168 739.36502 739.4386

4 1 5 0.5206095 0.517946 1.50E-30 2.475185 848.38127 848.4483

5 1 6 0.4194545 0.416211 6.66E-23 4.043973 1021.441 1021.508

6 1 7 0.3426734 0.338807 3.35E-17 7.094066 1164.0881 1164.159

7 1 7 0.4872189 0.48498 4.60E-35 2.161028 1013.5507 1013.603

Fig. 7.8 shows R2
Adjusted value for all the Lab vs Line tests.

Figure 7.8: R2
Adjusted value for normal sensor lab vs line data

98



R2
Adjusted values for this model are below 65% for all the combinations of output data files,

indicating that normal sensor performs differently on the line when compared to the lab performance.

7.2 Data Classification

The data classification to evaluate connection quality was separated into multiple binary

go/no-go steps. The overall data classification flow is depicted in Fig. 7.9 and a summary provided

here. Additional detail and results for step 3 and 4 are provided in the subsequent sections.

The measured data are recorded in Step 1 by the wrist worn device and subsequently

segmented and labeled as described in section 6.3. The data were then passed to Step 3 for evaluation

as either a hose connection or not-a-hose connection. The not-a-hose connection class included

measurements of body plugs and bridge connectors that were installed within the same takt as the

hose connections. The primary focus of this work is Step 4 which determined the quality of hose

connections that were attempted. Finally, the hose connection quality evaluation was output as

either a good or rework connection (go/no-go).

Figure 7.9: Data processing approach from sensor measurement (left) to final output (right)

The datasets used were processed entirely offline in this work. By doing so, Step 1 and 2

were completed by the experimenters during the data gathering, segmenting, and labeling activities.

This involved manually investigating each bit of gathered data to segment the data around the

push-pull-push. If the connection were a rework connection, it was segmented around activation

points. Each segmented dataset were labeled as a ”good” or ”rework” connection. The evaluation

methodology was designed with a switch to an online approach in mind, hence the inclusion of Step

1 and 2, which is detailed in the section Scaling of Data Processing. Using Bulling et al. taxonomy

of Human Activity Recognition (HAR), the system characteristics were it will be an offline user-
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independent system that recognizes segmented sporadic using a stateless model [93]. The description

of each characteristic is provided in Table 7.7.

Table 7.7: Design characteristics of classification model using taxonomy by (Bulling et al., 2014)

Type Characteristic Description

Execution Offline
The system records the sensor data first and recognition

is performed afterwards

Generalization
User

independent

The system is optimized to work with a large number

of users

Recognition
Isolated

(Segmented)

The system assumes that the sensor data stream is

segmented at the start and end of a gesture by an oracle.

Each segment is only classified into one class. The oracle

can be an external system or the experimenter

Activities Sporadic
The activity or gesture occurs sporadically, interspersed

with other activities

System Model Stateless

The system does not model the state of the world.

Activities are recognized by spotting specific sensor

signals.

All data preprocessing and modeling was completed using Python 3.8.5, sklearn 0.24.1, scipy

1.6.1, numpy 1.19.2, pandas 1.2.3, seaborn 0.11.1, and matplotlib 3.3.4. The random state variable

for modeling was set to 7 where applicable for repeatability.

7.2.1 Scaling of Data Processing

The two force inputs were checked in Step 2 that the average signal of each exceeds a

specified threshold detection level. Thresholding reduced the amount of data sent for evaluation in

the case that nothing was being held by the associate or only lightly held, indicating that a part

installation was not taking place. If the threshold was exceeded, the data were passed to Step 3 for

evaluation as either a hose connection or not-a-hose connection.
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Figure 7.10: Data processing approach from sensor measurement (left) to final output (right)

7.2.2 Go/no-go classification of connection quality

7.2.2.1 Feature Extraction

Feature extraction was performed on raw data to provide additional derived data that may

have been able to better inform the learning and generalization of the classifier. The features used

were selected based on past literature in characterizing body worn sensors and included the signal

mean, variance, minimum value, maximum value, and for the force sensors only, area under the curve.

Area under the curve was calculated using the composite trapezoidal rule to integrate the signal.

The area under the curve was included to inform the classifier of the amount of “energy” contained

in the force signals. This was hypothesized to assist with differentiating variations in the level of

applied connection force. Each feature was computed across the entire segmented connection event

which varied in duration between samples. A summary of the features used per sensor is included

in Table 7.8.
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Table 7.8: Features used in model training and classification

Sensor Feature

Area under curve

Mean

Variance

Minimum

Normal Force

Shear Force

Maximum

Mean

Variance

Minimum
Accelerometer

Maximum

Mean

Variance

Minimum
Gyroscope

Maximum

The data were further scaled to a 0-1 range based on the known sensor output limits and any

outliers were removed. Scaling the input data better accounts for the varied ranges of input feature

scale from each of the sensors, this preprocessing step was used to match the relative magnitudes

between the features. Depending on the algorithm used, a weight feature with units of kg could

be given a higher weight or bias than one with units of mg due to the common method of using

the Euclidean distance between two data points in an algorithm’s computation. Existing methods

include standardization, scaling, min-max scaling, and unit vector approaches. Scaling was chosen

for this work since the sensor outputs had known limits and the data encompassed the full range

during measurement. An example of scaling was the force sensor output limits ranged from 0-3.3

volts before scaling and after scaling ranged from 0-1.

7.2.3 Data Modeling and Summary Model Description

The data used included 52 segmented connections from both the Vehicle Assembly Center

laboratory and Plant Spartanburg Hall 52 production line. The 30 good connections were gathered

from the laboratory and the 22 rework connections were gathered from the active Hall 52 production
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line. The breakdown in rework connection type is included in Table 7.9. Also collected were 6 bridge

connector signature, but those were left out of the quality classification dataset. This dataset is a

relatively small number of data points but enough to test initial classification performance. A larger

number of connections would be needed to validate classification performance and to classify by

rework connection type rather than a binary go/no-go.

Table 7.9: Dataset class composition

Binary Type Connection Label Count

Good Good Connection 30

Lower Low Force 2

Lower Misplaced Force 2

Upper Low Force 8
Rework

Upper Misplaced Force 10

Multiple model types were trained on the dataset and were selected based on prior literature

and past experiences with modeling body worn sensor data. Classifier modules were simply imported

to output results with minimal extra code and therefore, processing time. Hyperparameters were set

for each classifier module including kernel type, alpha values, gamma values, number of estimators,

etc.. Classifiers were cycled through with corresponding results. Processing time is already rather

quick, but will continue to improve as the window function is further implemented from a live stream

of data rather than importing the data.

The five investigated models are presented in order of performance: Gaussian Näıve Bayes,

Random Forest, Support Vector Machine (SVM) using a Radial Basis Function (RBF) kernel, Gaus-

sian Process Classifier, and Multi-Layer Perceptron classifier. The following is a summary description

of the models. Performance results of the models is discussed further in the next section.

Näıve Bayes classifiers are a group of probabilistic classifiers based around applying Bayes’

theorem with the assumption of strong independence between features. Training of Näıve Bayes

models is done by evaluating a closed-form expression to determine the maximum-likelihood esti-

mation or determining the parameters of a probability distribution that maximize a given likelihood

function using the observed data. Maximum-likelihood estimation takes linear time to solve, com-

pared to more computationally expensive iterative approximation methods used in other types of
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classifiers. Näıve Bayes classifiers are also highly scalable in their application as they require several

parameters linear in the number of variables (features/predictors) in a learning problem.

A random forest estimator fits a number of decision tree classifiers on sub-sets of the total

dataset. A decision tree is a structure of questions where a data instance descends through each

branch, using the features in each level of the tree until reaching a leaf or end node, which contains

the predicted class. Averaging across the resulting decision trees is used to improve predictive

accuracy and control over-fitting.

SVM is a machine learning modeling approach that utilizes algorithms for two-group classi-

fication problems. The model learns from labeled data and returns the class based on a determined

hyperplane. It can do this at very fast rates compared to newer algorithms such as neural networks

and has better performance with smaller data sets [94]. The RBF kernel is commonly used in con-

junction with SVM models and is widely used becuase of its similarity to the Guassian distribution

[95].

The Gaussian Process Classifier is another machine learning algorithm that are a generalized

by the Gaussian distribution. Like SVM, they are a kernel type, but unlike SVM, the Gaussian

Process Classifier can predict highly calibrated class probabilities. Gaussian Process Classifier is a

non-parametric algorithm, and similarly to SVM it can be applied to binary classification tasks [96].

A MLP is a supervised learning algorithm class of feedforward artificial neural network. A

single perceptron is a neuron model that feeds into larger neural networks [97]. The MLP classifier

is trained using gradient descent and the gradients are calculated using backpropagation and the

minimum of the Cross-Entropy loss function. This algorithm utilizes relu, sgd uses adam solver, and

a constant learning rate.

7.2.4 Model Classification Evaluation Metrics and Results

Metrics for evaluating binary HAR and other machine learning algorithms are well estab-

lished. These metrics are based on values measured from testing the model on pre-characterized test

data and are derived from four standard values. Below, the case of binary classification is used to

present the equations, however, these can be expanded to included two or more classes. The below

measures represent the confusion matrix possibilities.

• True Positive (TP): The number of positive instances classified as positive.
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• True Negative (TN): The number of negative instances that were classified as negative.

• False Positive (FP): The number of negative instances that were classified as positive.

• False Negative (FN): The number of positive instances that were classified as negative.

Accuracy (ACC) or the overall classification performance is the ratio between the number

of correctly classified samples over all samples as in Eq. 7.3. Accuracy is a quick way to gauge

model performance and scales easily to non-binary classification. However, in cases of imbalanced

training data where the number of samples in one class is much larger than the number of samples

in the other classes, accuracy is not reliable as it tends to overestimate the ability of the classifier

to predict the majority class or the class with the highest number of samples (Akosa, 2017).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (7.3)

When calculating accuracy of a model on datasets with unequal distributions, the balanced

accuracy (Bal ACC) is commonly used. The balanced accuracy is based on additional metrics

that answer the manufacturing questions “How many truly defective products did I recall?” and

“How many truly non-defective products did I recall?”. When the classes of a training dataset are

imbalanced, it is preferred to use the balanced accuracy over the standard accuracy metric. If the

dataset classes are balanced than the balanced accuracy is equal to the accuracy.

TruePositiveRate(TPR) = TP/(TP + FN) (7.4)

TrueNegativeRate(TNR) = TN/(TN + FP ) (7.5)

BalancedAccuracy = (TPR+ TNR)/2 (7.6)

A metric not as widely reported however well-representative of classifier performance is the

Matthew’s Correlation Coefficient (MCC) which is a measure of the quality of binary classification

which includes both true and false positives and negatives. MCC is generally regarded as providing

a more balanced measure of classification model performance even when the classes are very different

sizes [98, 99].

105



MCC = (TPTN − FPFN)/((TP + FP )(TP + FN)(TN + FP )(TN + FN)) (7.7)

These metrics can also be used for non-binary classification models, where more than two

classes are present in a single problem, by measuring them for each individual class rather than

evaluating them for the model as a whole.

To further validate the performance of the top models, a k-fold cross validation was com-

pleted for each model using 3 folds, shuffled data, and all three performance metrics were calculated

for each. K-fold cross-validation holds out a portion of the dataset during training of the classifier.

The partitioning used is propagated through the dataset by splitting the dataset into k smaller sets

or folds and training the model using k-1 folds. The model is then iteratively trained on each split

of folds until all folds have been used for both training and testing as in Fig. 7.11. The resulting

performance metrics for each iteration or split are used to compute the average value.

Figure 7.11: Representation of k-fold Cross Validation with k=5 splits

The k-fold method provides an increased percentage of training data allowed the result-

ing classifier to learn from more data points, potentially encompassing more data variability when

compared to the more common fixed 60% training/40% testing dataset split used in many machine

learning applications. The smaller size of the k-fold test dataset increases the chance of the model

being overfit to the test data. The potential for overfitting is diminished by iteratively splitting the

dataset and averaging the model performance over all iterations. A second motivation for the k-fold
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cross-validation as a check in selecting the top models was that the dataset encompassed time series

data. Time series data changes over time and so different areas of the dataset contain differing

distributions of information. By iterating over the full dataset, the resulting classifier is validated

against all variability in the collected dataset.

The k-fold model performance and standard deviation are summarized in Fig. 7.12 and are

ordered by MCC value.

Figure 7.12: Top 5 model classification performance

From Fig. 7.13, all five models presented performed very well in classifying the collected

data. All models had above 92% balanced accuracy (orange bar) including one standard deviation

of the k-fold mean. Additionally, all models had above 0.85 MCC value with 1 being a perfect

prediction, including one standard deviation from the k-fold mean. Fig. 7.13 proposes a solution

which utilizes multiple classifier methods to create a balanced prediction increasing the confidence

in the feedback to the operator.
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Figure 7.13: Ensemble of three equally weighted models to improve the performance of the resulting

classifier
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Chapter 8

Summary of Contributions

The goal of this study was to provide accountable measures from assembly line operatives

to a manufacturer for process quality improvement in manually completed tasks. To accomplish

this, quality improvement methods were evaluated which led to a wearable sensing system validation

system. After a market and literature review, a sensing glove was investigated. Methodologies for the

sensor glove can be applied to other format and operations, not to limit the findings in this research to

only a sensor glove format. The objective of this research is to model the relationship between force,

sound, motion and other sensed signals in manual assembly environments and the resultant quality

of connections made. The proposed sensor glove offers a unique sensing measurement capability

and approach that offers a level of robustness and continuance to be successfully incorporated into

harsh environments in manufacturing. A coupled wrist unit moves necessary electronics away from

operator movement points and potentially damaging surroundings. The sensor glove captures shear

force, normal force, acceleration, and gyroscopic information for process evaluation. These measure

can be used to determine operator approach and engagement for an objective determination of

quality. The sensor system considered interviewed associates after assembly line testing and users

reported little to no disturbance in their workflow and a minimally invasive approach.

The sensor glove is paired with a well-conditioned classification algorithm which evaluates

segmented data and discerns a connection as ”good” or ”rework”. The classifier applies 5 methods

to the data; Random Forest, Naive Bayes, RBF SVM, Gaussian Process, and Multi-layer Perception.

Utilizing multiple models for process evaluation provides a more encompassing approach that is not

sensitive to outlier phenomena for increased feedback confidence.
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The sensor glove is investigated for the use of connector quality evaluation on an automotive

OEM’s assembly line. Throughout the investigation, data were collected in the lab and on the

assembly line. This included good connections and purposeful failure at both locations. The signals

were run through a regression analysis to determine the correlation of data collected in a research

environment to what is seen on the assembly line. The multimodal sensing assisted with achieving a

repeatable and measurable process for the classifier. The classifier results reported a high accuracy

in the 5 model methods. The methods had an average balanced accuracy of 94.8% with Naive Bayes

performing the best with a 97.6% balanced accuracy.

The idea is to augment the associate with various sensing forms to describe the response of

the system as a measurement of quality to minimize defects without overextending process times.

The investigation was successful in this venture providing a low-cost, wearable sensing approach

that is minimally invasive to the operator and to process times.

8.0.1 Key Knowledge Contributions

• Design and validation of a flexible, durable, and low-cost shear force sensor

• Architecture of a wearable, non-intrusive force sensing system for manufacturing assembly line

use

• A multi-modal sensor fusion classifier for assembly connections

• Capture of intuitive final assembly operations through sensor signal relationships that require

complex movements that cannot yet be automated

8.1 Recommendations for the Graduate School at Clemson

University

Continue to offer funded opportunities through GTA, GRA, fellowships, etc..; The more you

have the better. This was a key element I considered when researching graduate schools. I amassed

a rather large amount of student loan debt for my undergraduate schooling. I was not prepared to

take on additional debt while my old debt continued to gain interest.
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Incorporate deadlines and deliverables for the Automotive Engineering MS with a thesis

into the grad student handbook. I am told that I am the first Automotive Engineering student to

complete the MS with a thesis degree. As a results, everyone involved was learning what to do with

me. For future students, this should be incorporated into the handbook just like the other options.

I think this will also entice other students to look into a MS with a thesis as well, especially those

already involved in research.
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Chapter 9

Future Work

Future developments of the physical data capture and evaluation system for process quality

improvement can be broken down into 4 main categories; Sensor glove industrialization, extended

line trials, classification algorithm refinement, printed sensor development, and a durability study.

Each of the aforementioned sections are discussed below indicating key elements to progress the

sensing system towards widespread implementation into manufacturing environments.

Throughout the next steps of this work, it is important to consider the human factors

before reaching decisions. This will ensure the sensing system endorses usability and comfort for the

operators. The system in place should not be a burden to the operator or manufacturer, but rather

a robust tool that can perform its function well without requiring extensive training, attention, or

instruction.

9.1 Sensor Glove Industrialization

Unlike many wearables found in research or on the current market, the proposed sensor

glove already achieves a high level of robustness and durability that a manufacturing environment

requires. This is a great stage to launch the system into an industrialization phase focusing on the

weaker points of the sensing system to ensure long-term usability. Durability should be increased

before deployment to avoid any disconnects in the circuit resulting in all data not being collected

and processes. This was an issue briefly had during one day of assembly line testing that should be

mitigated in future endeavors.
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One of the most vulnerable points for damage on the sensor glove system are the sensor

leads, specifically the shear sensor. The shear sensor currently has a terminal with a plastic housing

just below the thumbprint of the operator. This restricts the operator from fully closing their fist.

During line trials at BMW, associates were asked to review their experience with the glove including

comfort remarks. The associates reported no hindrance with their work despite the plastic terminal

cover in line with their thumb. This is most likely due to the associate not needing to fully close their

hand when completing their work in the investigated areas. However, the current state is not ideal

for implementation across other processes at BMW or other manufacturing OEMs and suppliers.

Therefore, the sensor leads should be amended before widespread implementation.

The shear sensor leads should ideally be like the normal force sensor leads; printed and

encased in a flexible plastic. Concurrent with this development, there should be a sensor lead

rerouting of both sensors. This should take the leads away from the inside surfaces of articulating

joints to inhibit bending. Routing the leads to the back of the hand to the wrist unit will keep them

out of harms way from articulation and tool usage. Integrating the leads into the glove will forgo

the current secondary glove which is in place to provide and additional layer of protection to the

loose wires and leads.

Adding in a disconnect between the wrist unit and sensor glove can also provide easier access

to the operators and prevent the leads connecting the two from being ripped or snagged. This could

be solved by simply integrating a locking connection allowing the user to put on the arm sleeve and

glove separately without the other hanging from the leads.

The sensor glove wrist unit requires further advancement to be implemented onto the as-

sembly line without an accompanying laptop or researcher. These developments include an internal

power supply, internal postprocessing (automatically segmenting the data and running it through

the classifier), and integrating a feedback method to the operator.

The feedback method should not provide any information to the operator that requires

analyzing. The method should be straightforward and only required when a fault is detected.

Allowing the operator to complete their work without needing to look at the system for feedback

every time will empower long-term usage as it will be minimally invasive to them. Development

of this should consider providing feedback to the operator wearing the sensing system and the

associates downstream of the completed work. The corrective measure based on a detected fault

does not necessarily have to be completed by the one wearing the sensing system. Providing feedback

113



to an operator decoupled from the sensor glove down the assembly line can allow for unused takt

times to be filled and a fresh perspective when examining connections labeled as ”rework”. Should

the feedback method be implemented downstream of where the connections are made, there must

be sufficient access to the investigated connectors. For example, if the connectors are completed

inside on the vehicle floor, rework connections must be checked before any components such as the

carpets are put in place.

In consideration of human factors, there should be an evaluation of the sensor glove system’s

overall usability in addition to the points mentioned above. Before completing corrective measures

regarding these advancements, surveys should be conducted to attain the pro’s and con’s of the

current system to lead development in the right direction. Other studies should be completed to

ensure the system is easy and non-intrusive to use. This should be conducted with those who are

unfamiliar with the sensing system to determine difficult to use components.

The feedback method to the operator should also undergo a human factors study. Ideally,

this should not rely on the operator’s judgement but it should relay easily discernable information in

a convenient method. For example, a haptic motor or visual display of lights can be utilized. These

could both properly indicate a good or rework connection to the operator. The final implementation

should consider which feedback method cannot be mistaken as the opposite outcome. A haptic

motor can be missed as the associates are constantly moving and engaged in the process. A light

indicator may be missed if no input of acknowledgement is given from the associate.

9.2 Extended Line Trials

Once the sensing system is developed to the point where a researcher does not need to be

present to collect data, efforts should look towards extended line trials. This will involve a long-term

collection of data with assembly line operator wearing the sensing system as they complete their

work normally. Data should automatically be segmented and stored during the collection process

to minimize postprocessing times. This will also allow a greater number of connection data to be

stored in the device as it would not be saving a continuous data stream. After collection periods,

system performance and durability can be evaluated. Associates who complete the extended line

trials should be interviewed after regarding usability and comfort with the sensing system.
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9.3 Classification Algorithm Refinement

The classification algorithm needs to be refined further before completing extended line

trials. This starts with further development of the window function to only save critical points (ex.

push-pull-push at BMW). This will automatically segment and save data from a continuous data

stream. The data that is not deemed a critical point will not be saved allowing more space on the

internal storage. A depiction of the window function concept is shown in Fig. 9.1. The window

function uses a given window size and step size to investigate a segment of the incoming continuous

data stream for given parameters. These windows can overlap to ensure investigated parameters are

not missed, but this increases processing time. Process minimum and maximum duration should be

utilized to determine step and window size.

Figure 9.1: Window function methodology [100]

Once the window function development is achieved along with some other ones mentioned

above, the extended line trials can begin. The data gathered during this can be run through the

existing classifier. It is important to maintain communication with the manufacturer and to have

them record when a fault is detected. Classifier performance can then be evaluated and subsequently

excite refinement to the algorithm. Processing time of the data should also be reduced to achieve a

real-time feedback is desirable.

Other algorithmic or smart tools can also be investigated. Examples of these tools include

open source artificial intelligence software such as IBM Watson or Clarifai. Other methods such as

image classification can be evaluated for performance.
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9.4 Printed Sensor Development

The printed sensor design shows promise, but it needs an ample amount of further develop-

ment to be suitable for a manufacturing environment. Efforts include increasing the measurement

range, refining the middle layer geometry, and an evaluation and sourcing of materials. Increasing

the measurement range can be done through the utilization of a different resistive ink. This will

change the resistance of the sensor creating more stark differences under shear loads. The middle

layer geometry left off on an asterisk (*) like shape. This enables multi-directional measurement

with a controlled contact patch for a greater measurement range. Other geometries and thicknesses

should be evaluated. Lastly, the materials within the sensor need to perform better. The current

sensor maintains flexibility but lacks durability and structural integrity under shear loading. This

seems to mainly stems from the adhesives and the middle layer material used. Sourcing and testing

of replacement or augmenting materials should be had which may include discussions with current

flexible sensor manufacturers.

Figure 9.2: Sensing system architecture being worn and shaking hands

9.5 Durability Study

To further understand the capabilities of the developed sensor glove system, an investigation

in the durability of the system should take place. This should begin with a Gage Repeatability and

Reproducibility (GRR) study to determine the sensor glove system’s accuracy to ensure measure-

ments are repeatable and reproducible. The GRR study should be concurrently developed with a

study to determine critical points of failure in the system (i.e. what is wearing out first?). This will
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determine weak points that require further development to reach a desired lifespan. The findings

from the aforementioned investigations can then be compared to the durability of marketed sen-

sor glove solutions to determine the applicability outside of a research environment. The literature

review yielded information that led to the marketed sensor glove solutions being unfit for a manufac-

turing environment due to durability concerns, but this should be verified after fully understanding

the durability limits of the developed sensor glove. This high level comparison of sensor gloves can

yield a metric detailing operational limits regarding durability for future solutions to quantify. This

will give manufacturers and those alike an idea of applicable solutions for their concerns.
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Chapter 10

Publications
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3. Scott Kerner, Matthew Krugh, Laine Mears. “Wearable shear and normal force sensing glove
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10.2 Conference
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analysis”, Institute of Industrial and Systems Engineers Conference (IISE 2022). May 21-24,

2022.
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3. Ethan Wescoat, Scott Kerner, Laine Mears. “A comparative study of different algorithms

using contrived failure data to detect robot anomalies”, International Conference on Industry
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Appendix A Process Failure Mode Effects Analysis

A.1 PFMEA Evaluation Measures

Figure 1: PFMEA severity ranking table of failure mode [101]

Figure 2: PFMEA occurrence rate ranking table of failure mode [101]
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Figure 3: PFMEA detection capability ranking table of failure mode [101]

Figure 4: Focus color key breakdown for failure modes in larger PFMEA table for each connector
type

A.2 PFMEA BMW Connector Types 1-3
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Figure 5: PFMEA for BMW connector Type 1 indicating severity, occurrence, and detection
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Figure 6: PFMEA for BMW connector Type 2 indicating severity, occurrence, and detection
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Figure 7: PFMEA for BMW connector Type 3 indicating severity, occurrence, and detection
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Appendix B Data Classification Code

B.1 Module Importing and Plotting
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B.2 Feature Create Function
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B.3 Data Locating and Listing
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B.4 Data Preprocessing
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B.5 Data Import
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B.6 Feature Extraction
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B.7 Main Function
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B.8 Initial Model Training
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B.9 Plotting for Wrist Unit 1 Model Performance - Method 1
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B.10 Classification Method 2

B.11 Plotting for Wrist Unit 1 Model Performance - Method 2
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B.12 Plotting for Wrist Unit 2 Data
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B.13 Plotting for Wrist Unit 1 Data
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B.14 Plotting for Wrist Unit 1 Data - Acceleration and Gyro Separate
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