Clemson University

TigerPrints

All Theses Theses

8-2022

Miniaturized Battery Powered Air Quality Monitoring System

Bryan Chacon
bchacon@clemson.edu

Follow this and additional works at: hitps://tigerprints.clemson.edu/all_theses

b Part of the Biomedical Commmons, and the Electrical and Electronics Commons

Recommended Citation

Chacon, Bryan, "Miniaturized Battery Powered Air Quality Monitoring System" (2022). All Theses. 3863.
https://tigerprints.clemson.edu/all_theses/3863

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3863?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Miniaturized Battery Powered Air Quality Monitoring System

A Thesis
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Electrical Engineering

by
Bryan Anthony Chacon
August 2022

Accepted by:
Dr.Goutam Koley, Committee Chair
Dr.William Harrell
Dr.Judson Ryckman

ABSTRACT

In this work, an air quality monitoring system was developed using various
sensors that measure specific air quality parameters, including Volatile Organic
Compounds, Carbon Dioxide, particulate matter of varying sizes, ambient pressure,
humidity, and temperature. This system is based off a Particle micro-controller, Boron
LTE CAT-M1 which allows for cellular connectivity for real-time data transmission. It is
powered by a 3.7 Volt Li-Po battery and has a miniaturized design which allows for
portability. This data is processed through an Internet of Things software provider that
allows for the device to be connected and accessed to and from anywhere in the world.
This paper discusses the design considerations, prototyping phase, electrical circuit
design phase, printed circuit board design phase and fabrication process phase
information. This paper also compares the performance of the air quality monitoring

device to previous iterations and existing commercial devices.

DEDICATION

This work is dedicated to my wonderful family, friends, and partner for all their

support and encouragement during this process.

ACKNOWLEDGMENTS

| would like to acknowledge my advisory committee members, Dr. Goutam
Koley, Dr. William Harrell, and Dr. Judson Ryckman, consideration of my work. | would
like to recognize my advisor, Dr. Goutam Koley, for his guidance as | completed my
Graduate course of study.

I would also like to thank fellow graduate student Balaadithya Uppalapati for his
input and assistance within the NESL lab. | would like to also express my appreciation
for some undergraduate students for their assistance in software development of the
device including Kevin Patel and Dhruv Acharya.

Finally, I would like to acknowledge my mother, father, sister, brother and partner
for their love and support throughout this journey which started during the global
pandemic caused by Coronavirus. I could not have persevered and reached this point in

my academic/professional career without them.

TABLE OF CONTENTS

Page
TITLE PAGE ...ttt bbbttt bbb bt [
ABSTRACT ..ot b bbbttt bbb nes i
DEDICATION ottt sttt bbb bbbttt nb et st snenne s ii
ACKNOWLEDGMENTS ...ttt st st iv
LIST OF TABLESo ettt viii
LIST OF FIGURES ..ottt e X
CHAPTER
1. INTRODUCTION ..ciiiiiiiieie ettt 1
1.1 The Need for Air Quality Monitoring..........ccccooeviveveiieiieere e, 1
1.2 Air Quality Parametersccooveieiiienese e 2
2. DESIGN OF THE SENSOR SYSTEM......ccccoiiiiiiiicr e 4
2.1 Sensors and COMPONENTScoviirieieieie et 4
2.2 Integration of Sensors and COmMPONENtScccecvveveeiecieseesieennnn, 10
3. BREADBOARD BASED DEMONSTRATIONcccccoiiiiiiieiene e 11
3.1 Individual Component Circuit Diagrams...........c.ccceevveveivieieeseeennenn, 11
3.2 Breadboard Based Prototype CirCUitccocvvvrieiieiene e 16
4. SOFTWARE INTEGRATION AND TESTING........cccoveieeecece e, 18
4.1 Component Testing and Software Development................cccccoenienne. 18
4.1.1 Microcontroller SEtUPcccoovveveeiiiccie e 18
4.1.3 THP SENSOI SELUP ...eoviiiiiiieieeiiesieee e 19
4.1 A NVOC SELUD oottt ens 20
Table of Contents (Continued)
Page

4.1.5 Particulate Matter Sensor SEtUPccccvevvevvecesieese e 20

4.1.6 Carbon Dioxide SENSOr SEtUPccccovrvreeieeiieieniesesiesienes 21

4.1.7 Global Positioning System Sensor Setupccccevvevverveenne. 21

4.2 Combined Sensor Component TeStiNGccccevveverieiencieniseeiee 29

5. SENSOR DATA DASHBOARD DEVELOPMENT.......cccocevvninieiiiraienes 35
5.1 Data Stream Creation and Handlingc.ccccovvviininiiiie i, 35

5.2 Losant Website and Data Processing.........ccccccevveveiieesesiieseesinannenns 37

5.3 Data Visualization and User INterfaceccccovvreneeneniesennesnnnne 40

6. FINAL CIRCUIT AND PCB DESIGN......cccccoeiiiiiiiesrceeesese e 41
6.1 Sensor SChematic DESIGNSccovvieieiiererie e 41

6.2 Final Circuit Schematic DeSigncccceveveiiieve e 47

6.3 Printed Circuit Board DeSIgNcceveririrenininieieese s 48

6.4 Printed Circuit Board Fabrication Process..........cccovevvneienesesiennn 53

7. SUMMARY AND FUTURE PLANScoiiiitie st 54
7.1.SuMmMary 0f WOrK.........coooviiiiececc e 54

7.2 PosSible Future UPates...........ovvveieieiieniiesisis s 55

e o N] R 56
Al BME280 SOfIWAIE ..o e 58
B: SCD30 SOFtWAIEcovieiiiiiieiieee et 59
C: SPS30 SOFIWAIEeiiiieiiieie e e 60
D: VOC SOMIWAIE......eiiiiiiieiiieie sttt 61
Bl GPS SOMWAIE.. ..ot et 62
F: FUll SyStem SOTtWArE........ccvveiiiiiicce e 64

Table of Contents (Continued)

H: Completed SOftWare.........cvviiiiiecee e 71

Vi

J: Microprocessor Data SNEEL..........cccveuiiieiicieie e
K: Sensor Data SNEELS.........ccuccuiiiiieeii et
REFERENGCES ..ottt sttt sttt sttt nbe st

vii

Table

1.1

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

LIST OF TABLES

List of Tables (Continued)

Table

6.1

Page

Air Quality Parameter RANQESccccvveieeiieieceese e 3
Particle Boron SpecifiCations...........cccccvevieiieiiiiie e 5
SCD30 CO2 Sensor SPeCITICALIONSccververieriereie e 6
SPS30 Particulate Matter Sensor Specifications............ccccccevveveiieveeseennn, 7
SGP30 VOC Sensor SPeCifiCationsccccveveeiieiieieeic e 8
XA1110 GPS Sensor SPecCifiCations.........c.ccovecvevieiieie e 8
BME280 THP Sensor SPecifications..........ccccvcveiieiiiie e 9
Sensor Interface ProtOCOIScccoiiiiriiiicsee e 12
BME280 Breakout Board Pin Out Diagramcccccovevveiieieiieseese e, 16
SGP30 Breakout Board Pinout Diagramccccceevveieeneiie e 16
SPARKFUN GPS Breakout Board Pinout Diagramccccceveeveiieennnne 16
SCD30 Pin OUL DIAGIAMccviiieiiecie ettt 17
SPS30 Pin QUL DIAGIaAM.....c.eciuiiieiiieie ettt sre et sreenne s 17
First System Test Resultant Graphs with Impulse Inputs............cccccoeeveneee. 31
Mobile Full System Test GPS PIOLSccccooveiiiieceeececeee e 32
Mobile Full System Test GPS Maps.......ccccovveiieiiiieiicciie e 33

Page
Final System Current Draw and Power Consumption...........ccccceeveevieeninnnn, 47

viii

6.2

Bill of Materials for System

Figure

1.1
3.2
3.3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
5.1
5.2
5.3
5.4
6.1
6.2
6.3

6.4

LIST OF FIGURES

Page
Poor Air Quality Effects on the Human Bodyccccooeveviiiieninnicccee 2
Particle Electron Pin CONNECHIONScoveiiiiiiiiiieiieieeeee e 14
Breadboard-based Prototype Circuit Diagram...........cccocveveriveneniinsieenennenn 17
System BIOCK DIAGIamcc.ooeiiiiiiniiieiese et 11
UART Communication DIagramccccueieeerierienenieseseeeeee e 12
SP1I Communication DIagramccccceeeieieienenie e 13
[2C Communication DIagram.........ccocveierierienereiesiseeeeeeee e 14
Particle Boron PiNOUL DIAgramccccueierieienenininiseeeeee e 15
Pull up Resistor 12C Bus TOPOoIOgYcccooeiiieriiiniiieieee e 18
Breadboard Prototype Circuit Diagramcccooererenieninieeieiene e 21
Losant Data WOIKFIOW ..o 36
DEVICE STALE LAYETciiiiieiieieee e 37
Data Path BIOCK DIAQramcccooeiiiiiiiieieie s 37
Losant Data Visualization Dashboardccccoeeviiininiiicniienc e 38
Boron Schematic Symbol with corresponding PCB Footprint.................... 39
BME280 Schematic Symbol with corresponding PCB Footprint 40
Recommended 12C connection circuit for BME280cccccooviiiiniiinnns 41
Electrical Circuit Schematic for BME280cccooiviiiiniinieieie s 41

List of Figures (Continued)

Figure
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14

6.15

Page
Recommended Configuration for SGP30.........ccccccevveviiieiicce e 42
Electrical Circuit Schematic for SGP30cccooviiiireiiniiece e 42
SCD30 Electrical Circuit SChematiC...........cccoiieiiiiiics e 43
5V Boost Circuit Schematic for SPS30 INPUL........cccccoevieiiiie i 44
Logic Level Shifting Circuit SchematiCc.cccovveviieiiiiiiicc e, 45
GPS Electrical Circuit SCNEMALICcccerveiiiiiiiiieees e 45
Electrical Circuit Schematic of Full System..........ccccccevvviieiicie i, 46
All components and connections in PCB software...........ccccceecvveeiieiecnnenn, 48
PCB Component placement with CONNECLIONS..........c.ccccveveiieieeiecieceeie 49
Printed Circuit Board Design for Full System..........c.cccccvevviieiiiie e 50
Printed Circuit Board Gerber Files Preview ... 51

Xi

CHAPTER ONE

INTRODUCTION

1.1 The Need for Air Quality Monitoring

Poor air quality is predominately produced/emitted by human activities and are a
major threat to mankind and the environment. It is important that we can sense our
surroundings and capture the data so that the correct precautionary and safety actions can
be executed. Poor air quality has been linked to numerous acute and chronic conditions
ranging from decreased concentration, decreased cognitive function, sleep disorders,
and/or autoimmune conditions like asthmas, cancer, or nervous system damage. Poor Air
Quality can not only cause new health conditions, but it can exacerbate existing health
conditions that are common to varying groups which could lead to frequent
hospitalization and sometimes death. Studies show that about 16% of Americans alone
have been diagnosed or undiagnosed with asthma, chronic obstructive pulmonary disease
(COPD), and other respiratory conditions. According to the World Health Organization
(WHO) up to 91% of the world’s population live in areas where air pollution exceeds
safe daily limits. [1] These poor air quality conditions are the fourth largest killer of
people on Earth with 7 million people dying each year due to constant exposure and
inhaling of these poor air quality conditions [1]. The most dangerous air pollutants that
are a root cause behind such terrible statistics are not visible and odorless to humans.
Carbon Dioxide (CO2) and Volatile Organic Compounds (VOCs) are one of the most

dangerous air pollutants that humans can be exposed to on a normal day. VOCs are

human made chemicals that can be found in the manufacturing of paint, pharmaceuticals,
and refrigerants. VOCs can be emitted by normal activities around the house including
cooking, cleaning, and/or painting. CO2 can be found in the emissions from human
activities such as burning coal, oil, and gas. VOC and CO2 concentrations are higher
indoors and it is important that we can detect these harmful air pollutants to protect
ourselves and the environment. A summary of some of the affects poor air quality can be

seen in the Figure 1.1[12] below.

o impaired cognitive

and motor function
o strokes
o seizures

\ chronic and acute
respiratory diseases
including:
o lung damage
o lung cancer
o bronchitis
o asthma

o cardiovascular
disease
o heart attack

liver and kidney
damage

urinary and
bladder cancer

in females:
birth defects
infant mortality
cancer risk

in males:
infertility
cancer risk

Figure 1.1 Poor Air Quality Effects on the Human Body

1.2 Air Quality Parameters

When determining Air Quality, it is important to include the pollution levels of
other important human health factors such as temperature, humidity, and particulate
matter which is a mixture of solid particles and liquid droplets found in the air (i.e., dust,

dirt, soot, or smoke). The system requirements for our device include the ability to

measure CO., VOCs, particulate matter of multiple different sizes, temperature, pressure,
and humidity. Air Quality ratings range from excellent, fine, moderate, poor, very poor,
and severe. For our system, we will be monitoring all these parameters and sending the
real time data which will fit within these ranges for consumer information. It is
recommended that the indoor air temperature should range from 73°F to 79°F in the
summer and 68°F to 75°F in the winter [2]. High humidity levels (greater than 60%) can
lead to mold growth and possibly dehydration which can be dangerous [3]. High CO>
and VOC levels can lead to lowered cognitive function, drowsiness, and lower activity
levels. Furthermore, prolonged CO> concentrations above 1,000 ppm generally indicate
inadequate ventilation [4]. A table summarizing the various levels of indoor and outdoor
levels of the various parameters is given in Table 1.1. All these parameters and ranges are
directly used to determine the Air Quality and will give accurate and informative
information to the consumer.

Table 1.1 Air Quality Parameter Ranges

Parameter Outdoor | Indoor (norm) | Indoor (high) Dangerous
CO2 (ppm) [5] 250-350 | 350-1,000 1,000-5,000 >40,000
VOC (ppb) [5] 0-10 0-220 220-2200 >2200
Particulate Matter <1 <12 20-60 >60
(ug/m®) < PM2.5 [5]

Particulate Matter <1 <20 50-100 >100
(ug/m®) <PM10 [5]

Temperature (F) [6] | 70-85 70-82 90-130 >130

CHAPTER TWO
SENSOR COMPONENT SELECTION

2.1 Sensors and Components

The components and sensors used in our system were selected based on their
sensitivity, selectivity, size, response time, and power consumption. For our system, we
have decided to use a Boron Particle LTE CAT-M1, SPS30 sensor, SGP30 sensor,
SCD30 sensor, BME280 sensor, XA1110 sensor as the microcontroller, particle matter
sensor, Volatile Organic Compound sensor, CO2 sensor, Temperature Pressure Humidity
sensor, and Global Position System sensor, respectively.

The Boron Particle is a develop Kit that supports cellular networks and Bluetooth
LE (BLE). It is based on an ARM Cortex-M4F 32-Bit processor, Nordic nRF52840
which is the Bluetooth module and has a built-in battery connector and charging circuit
which allows for a Lithium Polymer (Li-Po) battery to be connected and power the
components and sensors within our system. Particle’s 0T connectivity services and
microcontrollers made this selection uncomplicated. Table 2.1 shows a some of the

Particle Boron key specifications that are related to our needs.

Table 2.1 Particle Boron Specifications

Microcontroller

Specification Particle
Controller Boron
Size (inches) 0.9x0.65x2.00
Weight 10 grams
Cost $59.37
Input Voltage 3.3-65V
Digital Pins 20
Analog Inputs 6

Analog Outputs 6

PWM Outputs 8

UART Ports 3

SPI1 Ports 1

12C Ports 2

JTAG Ports 1
Built-in Wi-Fi No
Built-in Cellular Yes
Built-in Bluetooth Yes

The Sensirion SCD30 (SCD30) is the Carbon Dioxide sensor in our system. It is a
nondispersive infrared sensor which means that it detects the decrease in transmitted
infrared light which is in proportion to the gas concentration. The CO2 particles absorb
infrared light and create vibrations for the sensor to detect. The black box component on
the breakout board is where the infrared light is constantly being sent and waits for CO2
particles to create the reaction described above. The SCD30 needs to be powered by a
3.3Volt-5Volt source and can use UART or 12C for communication. An overview of the
specification of the SCD30 are shown in Table 2.2.

Table 2.2 CO> Sensor Specifications

Sensor

Sensor SCD30

Company Sensirion

Price $58

Voltage 3.3-55V

Peak Current 75 mA

Lifetime 15 years

Range 400-10,000 ppm

Accuracy 30 ppm

Response Time | 20 s

Interface UART /12C

Dimensions (35x23) mm / (1.4x1.0) inches
Footprint 805mm? / 1.25inches?

Other Qualities | Measures temperature and humidity

The Sensirion SPS30 sensor is our particulate matter sensor. It is based on laser

scattering and Sensirion’s latest contamination-resistance technology. This sensor can

sense 4 different sizes ranging from PM1.0, PM2.5, PM4, and PM10, where the number
stands for the range in microns. The SPS30 needs a 5 Volt supply and can communicate
via 12C and UART. The SPS30 specifications can be seen in Table 2.3.

Table 2.3 SPS30 Specifications

Sensor

Sensor SPS30

Company Sensirion

Price $52

Voltage 45-55V

Peak Current 80 mA

Lifetime >8 years

Particle Size 1,25,4,10

Range (mass) 0-1000 pg/m®

Range 0-3000 #/cm?
(concentration)

Accuracy 10

Response Time 5s

Interface UART /12C
Dimensions (41x41) mm / (1.6x1.6) inches
Height 12 mm /0.5 inches
Other Qualities Mass and Concentration

The SGP30 Sensor from Sensirion will detect the Volatile Organic Compounds
(VOCs). The SGP30 sensor is a standard hot-plate MOX sensor, this means it is
composed of a metal-oxide surface (often tin dioxide), a sensing chip that measures the
change in conductivity. The SGP30 requires a 1.62V-1.98Volt power supply and uses

I2C communication protocol. The SGP30 specifications can be seen in Table 2.4.

Table 2.4 SGP30 Specifications

Sensor

Sensor SGP30
Company Sensirion

Price $13.49

Voltage 1.62-1.98 V
Range 0-1000 ppm
Interface 12C
Dimensions 2.45x 2.45mm
Height 0.9 mm

We used the XA1110 module from GTOP as our GPS sensor for the device. The
XA1110 is supported by several GPS constellations, which means different Global
Position System architectures in space that operate in case one fails. This allows for
accurate and reliable tracking. It is powered by a 3.3 Volt source, has a connector to

connect an external antenna and uses 12C communication protocol. The XA1110

specifications can be seen in Table 2.5.

Table 2.5 XA1110 Specifications

GPS Sensor

Sensor

XA1110

Company

Sierra Wireless

Antenna Location

Internal and/or External

Price $20.85

Voltage 3.3V

Peak Current 20-35 mA (25 mA typical)
Sensitivity -165 dB

Interface UART or 12C

Dimensions 125 mm x 12.5 mm
Height 6.8 mm

Finally, the BME280 from Bosch will be used to detect Temperature, humidity,

and pressure. This IC uses common practices to sense the intended parameters. It is

small, robust, has a fast response time, and requires a low amount of power to operate.

BME280 specifications can be shown in Table 2.6.

Table 2.6 BME280 Sensor Specifications

BME280

Voltage 1.7-36V

Peak Current <800 pA

Price $8

Temperature Humidity Pressure

Range -40-185°F 0-100 %RH 0.3-1.1 atm
Accuracy 1°C/ 1.8°F 3 1.2x10* atm
Resolution 0.01°C/ 0.018°F 0.008 1.776x10° atm
Response Time 1s . .
Interface 12C / SPI Dimensions 25x25x0.93 mm

2.2 Integration of Sensors and Components

After selecting all components that will be fused together to sense the intended

parameters, a plan to test and design the overall system was devised. To do so, breakout

boards from trusted electronic suppliers, SPARKFUN and ADAFRUIT were acquired.

When prototyping loT devices that fuse multiple sensors, using existing breakout boards
to create a breadboard-based circuit with all sensors is intelligent step to verify if all the
sensors chosen will/can work together. Breakout boards are individual printed circuit
boards that have the desired sensing Integrated Chips with their own corresponding
power regulating and communication circuits designed from the electronic suppliers, that
then allow the data transfer to your intended Microcontroller. The Particle Boron’s ability
to transfer data to and from a cloud service and ability to host over 100 different devises
on its Serial Communication Line and Serial Data lines make it a sound choice to test

with our 5 sensors/breakout boards and allow for additions in the future if intended.

10

CHAPTER THREE
BREADBOARD BASED CIRCUIT DESIGN

3.1 Individual Component Circuit Diagrams

The next step in the design process was to acquire the necessary breakout boards
to create a circuit to be built on a standard bread board. This step is important because
different sensors and Serial Communication and Serial Data Lines require different
impedances and voltages to be able to communicate. Before creating the circuit design, it
is important to understand the overall process flow of our 10T device. Figure 3.1 shows

the process flow for our 10T device to execute.

Battery/USB
Connector for Power

Satellite
Data

-] 5
Particle Cloud Data Base w

\Webhooks

GPS Sensor <«
Data

Data

Air Quality Sensors

Losant Cloud Data Base

Dashboard User interface

Figure 3.1 System Block Diagram

11

To create the circuit for our system, we need to decide how all the breakout
boards will be powered and how they will communicate with our Microcontroller, the
Particle Boron. A communication protocol is a system of rules that allow for two or more
devices with communication systems to transfer information via the corresponding
physical quantity, in our case the data from the sensing mechanisms of each sensor. The

communication protocols supported by each sensor in our system can be seen in Table

3.1.
Table 3.1 Sensor Interface Protocols
Supported | BME280 SCD30 SPS30 SGP30 XA1110
Protocols | (ATM) (CO2) (PM) (VOQ) (GPS)
UART v v v
SPI v
12C v v v v v

The most common communication protocols that are in use today are Universal
Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-
Integrated Circuit Communication(12C). UART communication protocol has two data
lines, one that transmits data (TX) and one that receives data (RX) which can be seen as
digital 1/0 pins in microcontrollers. The TX and RX of the chosen microcontroller will

communicate to the desired sensor as shown in Figure 3.2 [9].

UART 1 UART 2

o<

Figure 3.2 UART Communication Diagram

12

UART supports bi-directional, asynchronous, and serial data transmission. UART only
allows communication one way at a time and does not allow for multiple transmitting and
receiving systems. UART also does not allow more than 8 bits per message being sent
and is known for low data transmission speeds.[7] SPI communication has uses four
wires/ports to connect devices which are the MOSI/SDI (master-out-slave-in/serial-data-
in) pin, MISO/SDO (master-in-slave-out/serial-data-out) pin, SCLK (serial-clock) pin,
and SS/CS (slave-select/chip-select). SPI communication allows for multiple devices to
be connected to the master. The SPI communication has simple and inexpensive
hardware requiring two shift register which are simple logic circuits. SPI communication
between devices needs to be well established before integration because it does not allow
devices to communicate at the same time. Therefore, the chip select pin is needed for all
devices to establish which device communicates at a specific time. This increases the
communication speed and increase in number of pins used because of the dedication to
one slave device but can get problematic with multiple devices and switching between
peripherals [5]. Figure 3.3 [10] shows the basic SPI communication interface.

Master Slave 1

Figure 3.3 SPI communication diagram

13

12C is a bidirectional two-wire synchronous serial bus and requires only two wires Serial
Clock Line and Serial Data line to transmit information between devices on a bus. 12C
uses an address system which assign a unique address of 7-10 bits to the devices
connected to allow data transmission at the same time. Because of this architecture, 12C
is slower than SPI but allows for over 100 devices to be connected and communicate
simultaneously with just the two pins. The serial clock line synchronizes the data being
sent to which decides when the master or slave device is transmitting or receiving data.
This is done by the master sending a read or write command to the unique address of the
intended device which switches the SCL and SDA lines high or low [8]. Basic I12C

communication can be seen in Figure 3.4 [11] below.

Slave 1

. . SDA
5

; r e SCL
{ S—

Master Slave 2

B | = [A
SCL
.t !

Slave 3

—

Figure 3.4 12C communication Diagram
Our 10T device has the 5 different sensors which all can communicate via 12C.
12C has the advantage of requiring less pins, allows for all our devices to communicate
via the two pins SCL, SDA, and allows for flexibility in the future if we add more

devices. The slower communication speed will work fine with our implementation

14

because the data transfer will be quick enough to allow the consumer to react to any
severe air quality. For our loT system design we have decided to use the 12C protocol.
Tables with the pin descriptions for each breakout board used for prototyping and
testing the overall circuit were made to determine which wires would be connected to the
corresponding pin. Below are the pinout diagrams for each component and breakout

board used in our prototype system.

MICRO-B USE
(S00mA MIN)

PO.18 RESET .
1
3.3VDC /1000 rnA MAX OUTPUT . :
TO 3.7V LiPo
PO.11 1
: '
P0.03 PWM 2 . : COMNMECTED TO +PIN OF LiPo CONNECTOR
PWM 2 ® ENABLE CONNECTTO GND TO DISABLE DEVICE
PWM 2 ® CONNECTED TO USB POWER FIN { 5VDC TYPICAL)
po ® o 1
PWM 3 ® PWM 0 P1.12
S ® o 1
® o 1
P1.13 SPI_MOSI 22 ® SPII_MISO PWM 1 P1.08
oo ® e wost e 3
[rom | s o spi_sck pww 3
® [Pozs
PWM 0 GROUP 0 PWM PINS ADE | ANALOG TO DIGITALINPUT FINS [PNUARTAN SERIAL COMMUNICATION PINS (SERIALT)
PWM 1 GROUF 1 PWM PINS SP1 SPI COMMURNICATION PINS (SPI) SP SPI COMMUNICATION PINS (SPIT)
PWM2 GROUP 2 PWM PINS SDASEL 12C COMMUNICATION PINS (WIRE)
PWM3 GROUP 3 PWM PINS PX.XX__ | nRF52840 PIN NAMES

Figure 3.5 Particle Boron Pinout Diagram

15

Table 3.2 BME280 Breakout Board Pin Out Diagram

VIN 3.3V Input

3Vo 3.3V Output

GND Ground

SCK SPI/12C clock
SDO Output data for SPI
SDI SP1/12C data

CS Chip Select for SPI

VIN 3.3V Input
1v8 1.8V Output
GND Ground

SCL SPI/12C clock
SDA SPI/12C data

Table 3.4

SPARKFUN GPS Breakout Board Pinout Diagram

3.3V 3.3V Input
GND Ground

SCL SPI/12C clock
SDA SPI/12C data

16

Table 3.5 SCD30 Pin Out Diagram

Pin Comments 3 &
o ® @ > =
VDD Supply Voltage 2222z '-'m_.-'
GND Ground ‘ ‘ ‘ ‘ ‘ ‘
1 Modbus: Transmission ine (Push/Pull with 3V feve) 00000
I2C: Serial clock (internal 45kQ pull-up resistor, pulled
SCL o ipay)

RY/ Modbus: Receive line (Input must not exceed 5.5V)
I2C: Serial data (internal 45kQ pull-up resistor, pulled

SDA - iay) [®
RDY Data ready pin. High when data is ready for read-out
PWM output of COz concentration measurement N
e (PWM not supported yet) {| | @
Interface select pin. Pull to VDD (do not exceed 4V, use Io
SEL voltage divider in case your VDD is >4V) for selecting b J
Modbus, leave floating or connect to GND for selecting
PC
Table 3.6 SPS30 Pin Out Diagram
Pin | Name Description Comments
1 | VDD Supply voltage 5V + 10%
RX UART: Receiving pin for TTL 5V and
Pin 1 Pin 5 2 communication LVTTL 3.3V

SDA | I2C: Serial data input / output compatible
Y UART: Transmitting pin for TTL 5V and

| ¢ ey 3 communication LVTTL 3.3V
H u | SCL | I2C: Serial clock input | compatible
1.8 2 9 - Leave floating to
select UART
4 | SEL Interface select T PuloGND B |
select 12C
5 | GND Ground

3.2 Initial Prototype Circuit

When all the breakout boards were acquired, a breadboard-based circuit
was built using a standard breadboard and jumper wires. Some of the design requirements
that had to be experimented were the pull up resistors on the SCL and SDA lines for each
sensor/breakout board. The pullup resistors pull the specific SCL and SDA lines high
when it is not driven low by the open-drain interface. The value of the pullup resistor is

an important design consideration for 12C systems as an incorrect value can lead to the

17

sensor/breakout board to not communicate with the microcontroller. The pull up resistor
prevents the 12C pins of the microcontroller to be driven low. The level which the valid
logical low (Vol) can be read by input buffers of an IC determine the minimum pullup
resistance required for proper communication. This relationship can be shown in equation

1 from the pull up resistor datasheet.

Rp{rﬂin] _ (UCC _TDL |:|T|EI}|{]|}
) (1)

The maximum pullup resistance is limited by the bus capacitance (Cp) due to the specific
rise time of the IC within the desired system. If the pullup resistor is too high, then the
logical high level may not be reached to allow proper data transfer. The maximum rise
time of the IC is needed to determine the maximum pull up resistance. The response of an
RC circuit on the bus line can be used to determine the rise to be used for the pull up
resistance value. The following equations 2-6 show how to calculate the pull up

resistance value from the pull up resistor datasheet.

by
V(t) = Vi x| 1-e" |
' : (2)
ForV,, = 0.7 = V..
i 11 !
1'.."'||.| =0.7T= \'u'rcc = I"JFCC x 1—Equct
L} s (3)
ForV, =0.3 = V..
L k!
II'n"l||_ =03= I'ulrcc = 'U'CC x| 1- EHF'CB
(4)

18

t = t,-1,=0.8473x Rpxcb (5)

tr

R ——
(max) (0.8473xC,)

(6)
With these equations and information from the technical datasheets from a sensor using
I2C protocol, you can determine the correct pull up resistor value. Once the correct pull
up resistor is identified, you must place it in parallel of the supply voltage of the intended
chip and the SCL and SDA line respectively as visualized in the following Figure 3.6,
where Vin is the input voltage, Rp is the pull up resistors, SCL is the serial clock and
SDA is the serial data. The more devices you add, you may need to add more resistors in

parallel or increase the values of the initial pull up resistors.

Vin

RS = Rp
SsCL pe

Master Device
(Particle Boron) SDA

Vin

Slave Device
(Sensors)

Figure 3.6 Pull up Resistor 12C Bus Topology

19

For our initial breadboard based prototyped system, most breakout boards had a built-in
pull up resistor value to allow for proper communication. For the SPS30 Sensirion
sensor, 10Kohm pullup resistors were needed to allow for proper communication. Pull up
resistance values would need to be calculated again during our own electrical circuit and
printed circuit board design which will be discussed in later sections.

With all the necessary circuitry in place for the communication lines, the power
and ground were needed to be connected to all the breakout boards. The 3.3V out pin
from the Particle Boron is enough to power on all the devices within our loT device. The
only additions needed for this circuit was a 5V Booster circuit to provide 5V to the
SPS30 sensor which requires a 5V input and a logic level shifter to shift the logical levels
of the SPS30 SDA and SCL lines back to 3.3V. Every microcontroller has a voltage
rating for their I2C communication lines. The Particle Boron logical high-level maxes out
at 3.3V volts. Any voltage rating higher than the Particle Boron’s specification, then there
is serious risk of permanent damage to the 12C lines. Every sensor 12C lines will output a
logical level high value with respect to its VIN voltage. In our system, the SPS30 sensor
needs the 5V to be powered but the normal logical level high of 5V would not meet the
requirements of our microcontroller. Therefore, the logic level shifter was included in the
circuit. The wiring diagram for the breadboard-based prototype circuit including all

connections between all sensors, GPS, and microcontroller is shown in Figure 3.3.

20

3.7 LIPO Battery

e connected to power

5V Booster to take 3.3V Ne] | BORON Battery port
from boron to 5V to i

power 5V Devices

110
- L4 SGP30
(VOC Sensor)

& 1@
53 | Hpt
BO = w3
Foar) T 8%
«)VIJ. vr:

2 i=

SCD30
(CO2 Sensor)

5V DC FAN g/

BME280 7 il i
(temp,
pressure, humidity) - n@:ﬁ (Particulate Matter)

Figure 3.7 Breadboard Prototype Circuit Diagram
After developing this circuit diagram, the system was tested on a breadboard to
ensure functionality which will be discussed in our next chapter. After our breadboard-
based prototype circuit was tested and proved to be operational, then we created our own
proprietary circuit designs including only the sensing ICs of each tested breakout board
circuit and our own passive components i.e., capacitors, resistors, transistor, connectors
etc. on EAGLECAD software. Following this, the design was then sent to the JLCPCB

Company for manufacturing.

21

about:blank
about:blank

CHAPTER FOUR

SOFTWARE INTEGRATION AND TESTING

4.1 Individual Component Testing and Software Development

After designing the breadboard-based circuit, software integration for the entire
system needed to be performed. Particle uses an online software called Web IDE that
makes editing code, compiling, and flashing devices over the cellular network connection
seamless. All the sensors have Arduino C programming language-based libraries, but the
Particle IDE uses C++ programming language. This means changes in syntax from
existing libraries and the individual/full system codes that include the functions we will
be using for each sensor. Using the Particle IDE, we setup and tested functions for each
sensor to verify before designing a miniaturized printed circuit board that includes all the
sensors and a proprietary circuit design including passive and active components.

4.1.1 Microprocessor Setup

To setup the Boron Particle, we must register it with a particle account. To do
this, we needed a usb cable for power, and external antenna and an iOS Bluetooth
enabled device. The iOS device finds the Bluetooth connection to the Particle Boron to
find a unique data matrix from the microprocessor. Then the cellular connection is used
to link to the account used on the iOS device to the Particle Boron. To verify connection,
a simple LED blinking code was flashed onto the device to turn the onboard LED on and
off. This and all future software will have library inclusions, information definitions and
declarations, variable creation, setup function, and repeated loop function calling a

specific function/command from the included libraries. The libraries include code with

22

commands that could be used for sensors and actuators, communication protocol
functions, and memory structures. The information definitions and declarations are where
we label the variables to an air quality parameter for future use. The variable creation is
where we tell the code the name of the air quality parameter we are trying to read and its
data size and where we want it to be sent in the system. The setup function and repeated
loop is where we take the command from the library to find the air quality parameter and
send the value to the variable, we created to then be published to the particle dashboard
continuously. All sensors will use the following libraries shown below as they are

needed for basic math functions, particle functions, and 12C functions.
#include <Wire h>

#include <math h>
#include <Particle h=>

4.1.3 Temperature, Pressure, Humidity Sensor Setup

The top of this setup uses the library named “Adafruit. BME280.h”, which has the
necessary memory structures, communication protocol, and functions to initialize this
sensor. This line of code can be shown below:

#include <Adafruit BME280.h>

All the remaining sensors will require a similar line of code for their respective libraries
which are pre-existing and created by our team. We then initialize the library by calling a
specific name within the library called bme as shown in the code below.

Adafruit BME280 bme: //Select I2C for the BME280 (temp, pressure, humidity)

Now when we call commands from the library, we can just write bme.command, where

command can be the function we intend to use from the library. A connection bit was

23

created to determine if the sensor is connected and found by the microcontroller which is
shown below:
int BME connected = 0; // the BME280 connection bit

/i Connecting to the Temp, pressure, humidity sensor
if (Ibme begin(0x77))

Particle publish("BME280"."Could not find a valid BME280!™);
else

BME_connected = 1;

Every sensor will have this connection verification in their setup. Before creating a loop,
the variables used, and sizes of variables need to be stated in the code. For the BME THP
sensor, we declare the Humidity, Temperature, and Pressure and allow for 64 bits of data
for each, which is known as a double value. As stated previously, we will be using 12C
communication, to initialize this in the code we must use Wire.Begin(), determine a
communication rate with Serial.Begin(), then find the communication address. The
variable size, communication address, and communication speed can all be found in the
sensor documentation. In the setup function, the 12C interface address was initiated at
address 0x77. Once the setup has been created for our function, we need to write the
command to read the temperature, pressure, and humidity from our sensors. This line of

code looks like the following lines below:

getBme2 80();

wvoid getBme280() {
1fiBME_connected) {
data[temp C]=1oC((110.0/125.0) * toF(bme readTemperature()));
data[pressure] = (double)bme readPressure()/100;
data[humidity] = bme readHumidity()+10]
¥
¥

24

These lines of code are the essential lines to allow the sensor to communicate the correct
variable to the microcontroller. These are all combined with the necessary C++
programming syntax of IF ELSE statements, function calling, and variable initialization.
Then using the Particle. Publish command, the data[temp_C], data[pressure], and
data[humidity] can be published to the particle console dashboard. This loop is then
constantly updated with new readings and sent to the particle dashboard. The following
sensors have a similar structure for their software setup.

4.1.4 Carbon Dioxide Sensor Setup

The Carbon Dioxide sensor, the SCD30 has an existing library called
“SparkFun_SCD30_Arduino_Library.h”. A vector of size one was declared because we
want the one carbon dioxide reading from the sensor as a double value. The function
from the library was SCD so the required call set up was as shown in the line of code
below:

SCD30 SCD: // Create the SCD30 module
After creating the module and beginning 12C communication with sensor and the
microcontroller, then we call the required command to get the CO2 values consistently in

a loop which are shown below:

void getScd30() {
if{SCD_connected) {
if{SCD dataAvailable()) {
data[temp F]=(110.0/125.0) * toF(SCD.getTemperature());
data[CO2] = (1.125) * (double)SCD getCO2();
h
h

In the loop function the temperature the concentration of carbon dioxide (given in ppm) is

constantly read and sent to the particle publish command in the code.

25

4.1.5 Particulate Matter Sensor Setup

Although the hardware setup for the particulate matter sensor, the SPS30 is
different than the other sensors, the software set up will remain like the previous sensors.
The library used for this software setup is named “SPS30.h” and the name of the module
for 12C communication is SPS and this line of code looks like the following lines of code:

SPS30 SPS: // Create the SP$30 module

The SPS30 sensor needs 4 variable initialized for the different ranges that the sensor can
sense. These variable are cPM1, cPM2_5, cPM4, and cPM10 and are set as float values
which allow for 32 bits of data awaiting to be communicated. Then the loop is created
using the command getMass and setting the arrays to their respective range values. These

lines of code for the loop are as shown below:

void getSps30() {
if{ SPS dataAvailable()) {
SPS getMass(mass_concen);
data[cPMI1] = mass_concen[0];
data[cPM2 5] =mass concen[1];
data[cPM4] = mass_concen[2];
data[cPM10] = mass_concen[3];
¥
¥

This loop continuously finds the particulate matter data and assigns it to the variables

initialized to be published on the particle’s dashboard.

4.1.6 Volatile Organic Compound (VOC) Sensor Setup

The Volatile Organic Compound sensor, SGP30 sensor uses a library called
“Adafruit_SGP30.h”. The variable initialized for this function is labeled as VOC and the

module name created is sgp as shown below:

26

Adafruait SGP30 sgp: // create SGP30 module

The command used to read the data to send to the sensor is called sgp. TVOC which is
from the library. The function used for the VOC sensing is shown in the line of code

below, which retrieves the VOC as a double value:

void getSgp() {
if (sgp IAQmeasure()) {
data[VOC] = sgp. TVOC;
¥
h

This is the last air quality parameter sensor to be setup before the integration for the

entire system to be streamlined and output every variable from each sensor.

4.1.7 GPS Setup

The Global Positioning System, GPS sensor has the greatest number of
commands and options out of all the components on the board. The accuracy of the GPS
sensor is important for integration to allow for accurate location documentation for poor
to severe air quality detected from the system. The GPS sensor uses two libraries called
“SparkFun_I12C_GPS.h” and “TinyGPS.h”. The module created was labeled myI2C and

gps as shown in the code below:

#include "SparkFun_12C_GPS.h"
#include "TinyGPS h"

The two variable we are initializing are the latitude and longitude labeled lat and Ing as
double values in the code. The main function with the appropriate commands is shown

below:

27

mnt gpsUpdate() {
1f(GPS_connected) { //if the GPS is connected...
// read the GPS and encode 1t into the parser
while(myI2CGPS available()) { gps.encode(myl2CGPS read()); }
ifi gps time 1sUpdated()) { //If the GPS has sent new data
1f{ gps location 1sValid()) { // and the data 1s valid
lat = (double) gps location lat(); // get the latitude
Ing = (double) gps location Ing(); // get the longitude
char g[50]: sprintf{g."%62.5f.%2 5{" lat.Ing): // create the data packet
Particle publish("GPS" g PRIVATE WITH_ACK); //send the data packet
GPS_count=0;
return (; //return success
¥
else { //1f GPS has sent data but 1t’s not valid
GPS_count++;
Particle publish("!Valid","GPS location not yet valid");
if{GPS_count=4) {
GPS_count=0;
1f(lat!=0 && Ing!=0) {
value = (double)((range)70.00001:0.0);
char g[50]; sprintf{g,"%2.5f.%2 .5f" lat+value,Ing); // create the data packet
Particle publish("GPS",g PRIVATE, WITH_ACK): //send the data packet
range=!range;
¥
¥
return 0;
¥
3
3

return 1; 7/ if the GPS 1s not connected or the data has not updated then return failure

¥

This function reads the latitude and longitude as double values and prepares the data to be

sent to the particle dashboard. An IF statement is also included to verify that the GPS is

communicating properly and publishes a statement to the dashboard if it is not. Also

included are functions to get the time in whichever time zone the system is located which

will be in the index of this paper along with all the lines of code not shown for each

Sensor.

4.2 Combined Sensor Component Testing

Once all sensors have been setup by the particle Web IDE individually, a singular

full system code was created to streamline the data with one full code. This code included

the library inclusions, variable declaration and creation, functions, and loops all in one

28

code which can be seen in the Appendix G of this paper. With this full system code, we
were able to begin testing the different sensors sensitivity, accuracy, and response time.
This test included impulse values for the sensors based the response of each sensor.
These impulses come in the form of concentrated dust from a common household
powder, smoke particles from a lighter, and alcohol and cleaning products commonly
found in one’s home. The resulting graphs are shown in Table 4.1. This test showed that
the Particle Boron can communicate with each sensor and obtain all the required data we
have made a requirement for our system timely and efficiently.

Table 4.1 First System Test Resultant Graphs with Steady State and Impulse Inputs

Category Impulse Inputs
Temp
674
673
672
w67
2
Ser0
o
Temperature 8669
E
2 e6.8
66.7
66.6
66.5 - : - r :
13:40 1348 1355 14:02 14:09 1416
Timestamp
humidity
110 4
100
g
= 90
Humidity E
E
T go
b
60 T T T T 1
13:40 13:48 13:56 14:02 14:09 14:16
Timestamp

29

—-coz
10000 -
8000
. 60004
£
o
CO 5
2 & 4000
(3]
2000
0
T T T T !
13:40 13:48 13:55 14:02 14:09 14:16
Timestamp
voc
7000
6000
5000
Q' 4000
[-%
&
VOC g
>
2000
1000
04
1000 : ' T T]
13:40 1348 1355 14:02 14:09 14:16
Timestamp
PM1
— PM2.5
5] PM4
PM10
)
Bl |
[=] |
=2 | |
[‘I
g 3 | i
m
PM = | [
]
s, *)
347 114
] i
1 LW A V=
a, “ ,Q-_Jr\.‘v.";\ SN
N O N -\‘\/-\, /\’,\;\‘ v T
\
0 T T T T T 1
13:40 13:48 13:55 14:.02 14:09 14:16
Timestamp

A test was also done to test the GPS and all sensors to simulate a common
scenario like going out for dinner. This test allows us to analyze the system performance
in different locations and scenarios. This test lasted nearly two hours from 19:08 to 20:56.
During this test, the system was placed taken from the base location into a vehicle at T1,
19:08. At T2 19:29, the system was taking into the restaurant at to table party was seated

at, T3 19:56, the food arrived to the table, T4 20:20 the system left the restaurant, and T5

30

20:56 the system arrived at its base location. This test was performed to show how the
system can be useful in understanding one’s surroundings. The obtained data, with the
above-mentioned Times of interest, is shown in the plots in Table 4.2. The maps of the
GPS data gathered during this test and a short drive on roads are shown in Table 4.3.

Table 4.2 Mobile Test Data Graphs

Category Mobile Test Graphs

89 T1
1 T4
76 H
74

~T72

70

Temp (F

Temperature
68
66

64

T T T T T T T T T T T 1
18:43 19:12 19:40 20:09 20:38 21:07 21:36
Timestamp

—— humidity

~
w
J

T1

~
o
1

[=2]
(3.
I

A

)]
(&)1
1

Humidity

humidity (%
3

o
(&2}
1

40 4

351

T T T T T T T T T T T 1
18:43 19:12 19:40 20:09 20:38 21:07 21:36
Timestamp

31

2200

T1
T2
2000 - I TS
1800
1600
E 1400
o
CO2 & 1200 -
o
1000 +
800 V
600
400 T T T T T T T T T 1
18:43 1912 1940 2009 2038 2107 2136
Timestamp
™ 1
987 - T TS
986 JWW }_,,_l
©
o
<
2 985 -
Pressure >
3
g
984
983
T T T T T 1
18:43 1912 1940 20:09 20:38 2107 21:36
Timestamp
pm1
T pm10
74 12 T
4
| | T5
o 6 tl
< i
2 i
c;” " A
e 5+ | i
(] |
5 | | |
if Ih g
PM 2, LA i
% | | .‘ Y/ 9 | I |
My I“ LA D,
33 A Y,
5 | | N !
o] Wy N Mo phih Al
2 | ’l""‘ it l‘l
1 T 1 T T T I
18:43 19:12 19:40 20:09 20:38 21:07 21:36
Timestamp

32

Table 4.2 Mobile Full System Test Plots

Catego

ry Mobile Test Graphs

rel Rd

GPS |

Table 4.3 Mobile Full System Test GPS Map

33

CHAPTER FIVE

SENSOR DATA DASHBOARD DEVELOPMENT

5.1 Data Stream Creation and Handling

After developing the software for the system, software able to gather and
collect the data during all hours of operation needed to be made. The Particle dashboard
displays the data in real time via the cellular network connection, but it does not store the
data for data analysis. Losant is a software that allows a particle microcontroller to send
the events being sent to the particle dashboard to the Losant data visualizer. The
communication code from each individual component’s code in the particle web IDE was
used to create a memory and data transfer system using Losant. This was determined to
be a ten-element array with data type {double} to allow for the storage of large decimal
values. The uses of each element in this array are defined at the start of the software as

shown below:

#define temp_F O
#define temp_C 1
#define pressure 2
#define humidity 3
#define CO2 4
#define VOC 5
#define cPM1 6
#define cPM2_57
#define cPM4 8
#define cPM10 9

This ten-element data array was then used in the creation of a formatted JSON

string to allow for the online console to parse this string into its multiple component

34

values to add to the running graphs of the data. This JSON string creation is shown in the
code below:

String out = String:: format ("{\"temp\":%.1f \"HMD\":%.1f\"press\":%.1f,\"CO2\":%.0f \"VOC\":%.0f,
\"cPM1\":%.2f \"cPM2_5 \":%.2f \"cPM4\":%.2f \"cPM10\":%.2f}", data[temp_F], data[humidity],
data[pressure], data[CO2], data]VOC], data[cPM1], data[cPM2_5], data[cPM4], data[cPM10]);

This data string is 80 bytes of data each time it is transferred from the Boron to Losant.
The data that is received by Losant follows the order of the string creation, which is
temperature in Fahrenheit to the tenth decimal place, percentage of humidity to the tenth
decimal place, pressure in hectopascal as a whole number, concentration of Carbon
Dioxide (CO2) as a whole number in parts per million, concentration of Volatile Organic
Compounds (VOCs) as a whole number in parts per billion, the concentration of
particulate matter in the air with radii of 1um, 2.5um, 4um, and 10um (in pg/mq) to two
decimal places. This string with the air quality parameters and a separate string with GPS
location is created by the Particle Boron and sent to the Losant IoT software.

5.2 Losant and Data Processing

Losant takes the data from the intended micro-controller and visualizes the data
with easy-to-understand graphs for analysis. This is done by the creation of webhooks
that are messages sent to and from services using the internet and URLS. In our case we
created webhooks in the Particle Integrations tab and in the Losant website to create the
link between the two. These webhooks take the BLOB of string data we created and
stores it in the specific value we declare it as in the Losant software. Once the webhooks

for communication were created, then a workflow needs to be declared in the Losant

35

software to be able to process and visualize the information. The workflow for our device

is shown below in figure 5.1.

Figure 5.1 Losant Data Workflow
Two workflows were created, one for our original string creation and one for our GPS
location. The webhook layer finds the webhook URL, the orange debug layer is where
you declare how the information from the webhook is named in the Losant environment.
The Blue layer takes the JSON string format and creates its own arrays that can be
customized and declared as the air quality variables we are sensing. Then the device state
layer is where we take the arrays and match them with the JSON string, we created for
the data transfer. An additional layer was created for the GPS location to link the location
to an address using google maps URL which is a feature Losant has built in. The
following Figure 5.2 shows an example of how the attribute made from Losant was

matched with the JSON string label.

36

o
=
o

pm {{stuff.cPM1}]

=}
P
o
ol
o

pm10 {stuff.cPm10]

m
o
m

pm325 [{stuff.cPm2_s}

Figure 5.2 Device State Layer
Once this workflow was established in Losant, the data was able to be received and
visualized from our Particle Boron. Figure 5.3 shows the block diagram of the path our
data takes from our system to an online service that allows one to access the information

in real time from anywhere in the world.

Data (& Data =

> { S
Particle Cloud Data Base

Webhooks

Air Quality »7Data

Sensors/GPS Data

Data

Data

Losant Cloud Data Base

Dashboard User interface Losant Workflow

Figure 5.3 Data Path Block Diagram

37

5.3 Data Visualization and User Interface

The Losant Dashboard allows for real time data visualization. The dashboard
allows for customization to allow graphs to display data from 10 minutes to up to 90

days. The following Figure 5.4 shows the dashboard graphs for one hour of operation in

average household environment.

Figure 5.4 Losant Data Visualization Dashboard

38

CHAPTER SIX

FINAL CIRCUIT AND PCB DESIGN

6.1 Sensor Schematic Designs

After completing the software integration and 10T user interface of the entire
system. The miniaturization of the system could be performed. To make this system
optimal in size, the amount of breakout boards in the system needed to be reduced. To do
this, a Printed Circuit Board with the individual sensors and supporting active and passive
components needed to be designed. EAGLE, a scriptable electronic design application
with schematic capture, printed circuit board layout, and computer aided manufacturing
features was used to design the printed circuit board. The first step in designing a printed
circuit board in EAGLE, is an electrical schematic of the system needs to be created. To
do this, all components used in the system need to have a corresponding footprint within
EAGLE. This footprint defines the physical size, physical pin configuration, and pad
sizes needed for each component. For example, the Particle Boron will have a design
block created for the electrical schematic editor and corresponding footprint as shown in

Figure 6.1.

BORON

0000000000000000

S

o
°
©
©
©
°
-4
L]
@
=

2)

Figure 6.1 Boron Schematic Symbol with corresponding PCB Footprint

39

EAGLE has some commonly used active and passive components symbol/footprints
included with the software but for components that do not exist in EAGLE, the
symbol/footprint needs to be created manually. This had to be performed for the Particle
Boron, SCD30, SPS30, and BME280. The symbol and footprint for the BME280 is
shown in the following Figure 6.2.

S oy >NAME

2 2 &

VDD: 1.8-3.6V

Temp: -40~85°C >VALUE

Figure 6.2 BME280 Schematic Symbol with corresponding PCB Footprint

All sensors and components on the board will have this symbol and footprint. After all
the symbols and components are made in eagle, then we were able to design the circuit
for our system.

Every chip used has an associated data sheet providing recommended circuitry.
Using this datasheet, common practices, and the circuit information from the breakout
boards used in our prototypes we created the following circuits. The BME280 which is

made by Bosch has a recommended I12C circuit configuration as shown in Figure 6.3.

40

v Vo
8 P 14
Voo e’ GND
7 2
GND CSB
TOP VIEW Ri[JR:
(pads not visible) .
6 3
" |t Voo Sl ot
Vent hole
12C address bit 0 5 4 scL
GND: '0'; Vppi: 1" sSDO SCK
TIlT"

Figure 6.3 Recommended 12C connection circuit for BME280
The R1 and R2 in the diagram are the pull up resistors for the circuit that have previously
been discussed and are both 10Kohms. The C1 and C2 values are recommended as
100nF. Using this information, the following circuit diagram for the BME280 was
designed as shown in Figure 6.4.

+3.3V

* ! B ES) Digral ! ! !
— P +
I J_li +
! GND

WD 1225
Tarmp: A0S

Figure 6.4 Electrical Circuit Schematic for BME280
A low drop out (LDO) regulator was added to the suggested circuit so that we can obtain
a lower and ideally stable output voltage from the main power supply of the Particle
boron. This was added to add greater stability and allow the BME280 to operate at

intended conditions as suggested per the data sheet.

41

The SGP30 has the following recommended circuitry from the manufacturer,

Sensirion as shown in Figure 6.5.

4] WOH VDD l:: s

i
S0 %y

)

e SCL
[t

Figure 6.5 Recommended Configuration for SGP30

2

|||+— E_E"

Given this recommendation and knowledge of pull up resistors, the following circuit

shown in Figure 6.6 was created for the SGP30.

GND

+

,—,7 nll

e
-]

)

Figure 6.6 Electrical Circuit Schematic for SGP30

42

This circuit also includes LDO voltage regulator to add stability to the SGP30 sensor,
which has 2 capacitors and resistors added for intended operation. The capacitor values
are both 10nF and the resistor values is 4.7kohms. The pull up resistance values are both
10Kohms, capacitor value is 01.uF.

The SCD30 does not have individual 12C circuits because the sensing IC is not
available to be purchased individually. This means that the SCD30 breakout board will
need to be soldered on the printed circuit board. All that is required for the schematic is
the electrical symbol and solder pad footprint for the SCD30. The SCD30 Symbol is

shown in the following Figure 6.7.

Figure 6.7 SCD30 Electrical Circuit Schematic
The SPS30 like the SCD30 will be soldered onto the printed circuit board but
does require some external circuitry to be able to operate properly. The SPS30 requires a
5V input, so a boosting circuit with a voltage boosting integrated chip and its

corresponding passive components for operation was designed. This circuit is shown in

43

Figure 6.8, where the VIN is the 3.3V from the Particle Boron and the VOUT is the 5V

needed to power on the SPS30.

WE 74438356010

TAR an!

TPS61023

3.TABOOST
[4]

1l

WIM: 0.5-5.5Y
WOUT: ==5.5Y

Figure 6.8 5V Boost Circuit Schematic for SPS30 Input

After designing the circuit to power on the SPS30, the output communication signals
SCL and SDA needed their corresponding pull up resistors as well as their logic level
shifted down to 3.3V per the Particle Boron specifications. To do this, N channel
MOSFETSs were used to control the communication outputs to 3.3V. This logic level

shifting circuit is shown in Figure 6.9.

44

R+l
IllMll
R4
l'lN(ll
>
REE
R
—
el Q]
- EE
i
N 21'*‘1'3 g
al o f—tf
Z = E,: ol =z &
of o w o = a‘?
A &
%]
™~ — 1
R 8 8 & g % o
Ih Z Z o ©0 %]
o o ¢
[n]

Figure 6.9 Logic Level Shifting Circuit Schematic
The value of the resistors used were 10kohms as suggested from the SPS30
documentation.
Finally, the GPS circuit was designed per the recommendation of the datasheet

and the circuitry from the breakout board used by SparkFun as shown in Figure 6.10.

CBi
W ETERCY
o 2 =
e | N m o
I SIS FEE G & w
= e FesET |2 5
SA0F [L8uF &
2} Ey_anT SDA ﬁ !
SCL :
A
B gackup T LB o
+2 . ipps 2L e
L) wake up + =
Ry 20 i
90 HBInHY + 5% /GaamA il i} Az
w
o
1 cs [z
.FL 15 =
oLk e =
mos L o
9 G mso [5
Jitan X1 GPS =
Db
B
[T
=
==
<1
o
Yy

Figure 6.10 GPS Electrical Circuit Schematic

45

After all the sensor and component circuits were created, we were able to use that and
connect them all together to create a full schematic.

6.2 Final Circuit Sensor Schematic Design

After designing all the circuits for each component, they were all connected
according to the circuitry of our breadboard-based prototype and values from our
electrical circuit schematics. The following full schematic was created so that a printed
circuit board could be designed, Figure 6.11. This schematic shows all components inputs
and outputs and their connection to the Particle Boron. The 3.3V out of the Particle
Boron supplies power to all the components, the SCL and SDA lines connect all

communication lines for all the sensors, and the GND provides the grounding.

e = PR t
é
e B
BETRE R
ST

i
B

|
A
Ll

[on |
o
FFERE EE T

Figure 6.11 Electrical Circuit Schematic of Full System

46

The Particle Boron is powered by a 3.7V 1800mAh rechargeable Li-Po battery. The
Boron has an internal battery charging circuit that will keep the system powered while
being disconnected from a usb connection. The systems average and maximum current
draw are shown in the table below resulting in an estimated usage time of 8 hours under
normal conditions with the 1800mAh battery being used. A full listing of all component
power usage is given in Table 6.1.

Table 6.1 Final System Current Draw and Power Consumption
Part C Norm C Max

Boron 90 180
BME?280 1 5
SCD30 19 75
SPS30 60 80
SGP30 48 70
GPS 27 30
Total ~245 mA ~440 mA
Current
Power ~808 mW ~1.453 W

This total current is well below the maximum current output for the Particle
Boron 3.3+V output pin. This will allow for future sensor and component additions if
desired. This current system with its current battery, sensor, and components has an
estimated usage time of 7 hours.

6.3 Printed Circuit Board Design

After creating the Electrical Circuit Schematic for the system, the printed circuit
board had to be designed. Using the schematic information and footprint data, EAGLE
will transfer the Electrical Schematic into a printed circuit board design environment.

This environment takes all the connections and components and lays them out into the

47

software as shown in Figure 6.12. The yellow wires are just as reference to show how all

components are connected.

Figure 6.12 All components and connections in PCB software

Once all the components were transferred in, the placement of the components
needed to be determined. Each air quality variable sensor and their corresponding
components were all placed near each other to reduce the length of the routes and to
follow some requirements from the sensor datasheets. The Particle boron was placed on
the side of the printed circuit board so that the Li-Po battery could be placed underneath
to reduce the size of the full system. The initial placement of the components on the

printed circuit board can be seen in Figure 6.13.

48

JSenzaura V1

Figure 6.13 PCB Component placement with connections

Once the components are placed on the board, then routing needs to be
determined. This routing is how the signals are internally connected by the board. Using
the yellow “air” wires that are reference to how components are connected, then you can
use a routing feature in the EAGLE software to design these routes. Using common
practices and some verification features from the design software, the following routes
were designed. The red and blue lines are routes connecting all the components where the
blue routes called vias are on the other side of the board to avoid overlapping
connections, shorts. This makes the printed circuit board a 2-layer board with a
grounding layer in between to ground all the components. After labeling all components

and lines, the final printed circuit board design is as shown below in Figure 6.14.

49

Figure 6.14 Printed Circuit Board Design for Full System

6.4 Printed Circuit Board Fabrication Process

After the design of the printed circuit board, then it was manufactured by
PCBWAY. All that was needed was the Gerber files of the PCB design from eagle which
can be previewed and visualized as seen in Figure 6.15(top, bottom, grounding layer).

The final PCB size came out to be 4.35 x 2.29 inches.

50

L

D000

Figure 6.15 Printed Circuit Board Gerber Files Preview

51

The Parts list and bill of materials are as shown in the following table. The total for 1 unit

of our entire system is $234.34. The battery price can range from $15-$30 and it depends

on the mAh that is desired by the user. There is no 10T based air quality monitoring

device that is this miniaturized that monitors this many parameters.

“Desig “Qty | Manuf; er “Mfg Part # Description / Value *Unit Price
J1 1|SparkFun WRL-09144 SparkFun Accessories U.FL SMD Connector $2.919
L2 1|Wurth Elektronif 7847806330 Fixed Inductors WE-MCI 33nH 0.55 Ohms Q-Factor=12 50174
FB1 1[{Murata BLM18KG300WH1D Ferrite Beads FB SMD 0603inch 30chm POWRTRN $0.330
C8.C9 2|Taiyo Yuden |LMKO063CE104KP-F Multilayer Ceramic Capacitors MLCC - SMD/SMT 0201 10VDC 0.1uF 10% X865 $0.105
Cc10,C11 2|Taiyo Yuden |JMKO063ABJ105KP-F Multilayer Ceramic Capacitors MLCC - SMD/SMT 0201 6.3VDC 1uF 10% X5R $0.061
R13.R14 2|Vishay / Dale |CRCWO08054K70FKEAC|Thick Film Resistors - SMD 1/8Watt 4 7Kohms 1% Commercial Use $0 058
Q1.Q2 2|Onsemi/FairchiljBS5138 MOSFET SOT-23 N-CH LOGIC $0.415
us 1|Microchip TechnMIC5225-3 . 3YMa-TR LDO Voltage Regulators High Vin, Low Iq Regulator
BME280 1|Bosch Sensorte|BME280 Board Mount Humidity Sensors MEMS humidity, pressure and temperature 57.119
CA.C5,C6,C7 4|Taiyo Yuden |LMR212BD7106KG-T |Multilayer Ceramic Capacitors MLCC - SMD/SMT 0805 10VDC 10uF 10% X7T AEC-Q200 $0.343
GPS 1|Sierra Wireless |XA1110_1104308 Mavigation GPS, GLOMASS Transceiver Module 1.598GHz ~ $26.617
SGP30 1|Sensirion AG [SGP30-2 5K AIR QUALITY GAS SENSOR FOR VOC'S $6.825
U4 1|Microchip Techn TC2015-1.8VCTTR LDO Voltage Regulators .1mA w/Shtdn & Ref B 1.8V $0.960
TPS61023 1|Texas Instrumen TPS61023DRLR 3.7-A Boost Converter with 0.5-V Ultra-low Input Voltage 54.620
L1 1[Wirth Elektronilf 74438356010 FIXED IND 1UH 7.2A 15 MOHM SMD $2.729
R1 1[Vishay / Dale [CRCW0603732KFKEA |Thick Film Resistors - SMD 1/10watt 732Kohms 1% $0.123
R2,R3 2|Panasonic ERJ-H3ED1003V Thick Film Resistors - SMD 0603 100KOhm 0.5% AEC-Q200 50.184
R6 1|Panasonic ERJ-H3QD4RTOV Thick Film Resistors - SMD 0603 4. 70hm 0.5% AEC-Q200 $0.246
C1.C2.C3 3|Murata GCM21BD70G226ME36| Multilayer Ceramic Capacitors MLCC - SMD/SMT 22UF 4V 20% 0805 $0.336
R4.R5.R7 R8 §|Vishay / Dale |[RCC080510KOFKEA Thick Film Resistors - SMD 1/4W 10Kohms 1% 100ppm $0.193
Boron 1 Particle Particle Boron Microcontroller $67.210
SPS30 1 Sensirion AG ~ SPS30 Particulate Matter Sensor $50.240
SCD30 1 Sensirion AG ~ SCD30 CO2 Sensor $62.520
All Total $234.327

Table 6.2 Bill of Materials of System

52

CHAPTER SEVEN
SUMMARY AND FUTURE PLANS

7.1 Summary of Work

The quality of the air we breathe is becoming an increasing issue that needs to be
addressed. Infrastructure that monitors and informs people of the quality of their
environments needs to be put into place. Internet of Thing devices are a great option to
solve this issue. In this research, a fully operational miniaturized lIoT Air quality
monitoring device was developed. All the sensors chosen were tested and proven to
detect the intended air quality monitoring parameters. Then a breadboard-based prototype
was built and programmed to fuse all the sensors and allow the data to be visualized in
real time from a cloud-based software. After verification, the miniaturization of this
system was performed by designing our own proprietary circuits to connect all the
components on a printed circuit board. This system was then tested determining its

reliability overall performance.

7.2 Possible Future Updates

In the future, sensors could be added to the design as there is available power to
supply several more devices to detect different air quality parameters. A casing could be
designed to house this system for possible future commercial introduction. A future
development that enhances the intended application would be an android or apple based
mobile app that would send notifications when a poor or severe air quality condition is

detected during operation. If these additions were made, then conducting a study with a

53

Health System or professional organization to determine the effectiveness of the system

would be the next step.

54

APPENDICES

55

Appendix A

BME280 SOFTWARE

#include <Adafruit BME280.h>
Adafruit_ BME280 bme; //Select 12C for the BME280 (temp, pressure, humidity)
int led = D7,
bool t = false;
bool use_data = true;
void setup() {
[Particle.function("sled",spiT);
pinMode(led, OUTPUT);
digitalWrite(led,HIGH);
Particle.function(*SLed",spiT);
Serial.begin(9600);
delay(2000);
print("BME280 test");
if ('bme.begin(0x76)) {
print("Could not find a valid BME280 sensor, check wiring!");
t=true;
digitalWrite(led,LOW);
}
else {
print("Found Connection: Starting™);
digitalWrite(led, HIGH);
}

}
char data[64];

float d[3];
void loop() {
if(t=="false) {
d[0] = bme.readTemperature()*9.0/5.0 + 32.0;
d[1] = bme.readPressure()/101325.0F;
d[2] = bme.readHumidity();
sprintf(data, "%0.2f,%0.2f,%0.2f,%0.2f",d[0],(d[0]-32)*5/9,d[1],d[2]);
Particle.publish("Temp_F, Temp_C,Pressure,Humidity" data);
}
else { print(“error"); }
[/l wait 2 seconds
delay(2000);
}
void print(String cmd) {
if(use_data) { Particle.publish(cmd); }
else { Serial.printin(cmd); }
}
int spiT(String command) { digitalWrite(led, digitalRead(led)"1); return digitalRead(led); }

56

Appendix B
SCD30 SOFTWARE

#include <Wire.h>
#include "SparkFun_SCD30_Arduino_Library.h"

int led = D7,
float co2_d[3];

void setup() {
pinMode(led, OUTPUT);
digitalWrite(led,HIGH);
Particle.function("BME_Led",BMET);
Wire.begin();
Serial.begin(9600);
Serial.printin("SCD30 Example™);
SCD30.begin()

}

void loop() {
if (SCD30.dataAvailable()) {
co2_d[0] = SCD30.getTemperature()*(9.0/5.0) + 32;
co2_d[1] = SCD30.getCO2();
co2_d[2] = SCD30.getHumidity();

Serial.print("co2(ppm):");
Serial.print(co2_d[1]);

Serial.print(" temp(F):"™);
Serial.print(co2_d[0], 1);

Serial.print(" temp(C):");

Serial.print((co2_d[0]-32)*(5.0/9.0), 1);
Serial.print(" humidity(%):");
Serial.print(co2_d[2], 1);
Serial.printin();

¥
else { Serial.printin("NA"); }

delay(2000);

¥
Int BMET(String command) {

digitalWrite(led, digitalRead(led)"1);
return digitalRead(led);
}

57

Appendix C
SPS30 SOFTWARE

#include "SPS30.h"

SPS30 Sensor;

int led = D7;

void setup() {
pinMode(led,OUTPUT);
digitalWrite(led,HIGH);
Particle.function("PM-Led",pmT);

Wire.begin();

Serial.begin(9600);
Serial.println("SPS30 Example™);

Sensor.begin();

if(!Sensor.begin()) {
Particle.publish("SENSOR NOT DETECTED");
delay(500);
Il System.reset();

¥
¥

float mass_concen[4];
float num_concen[5];

char *pm[5] = {"PMO0.5", "PM1.0", "PM2.5", "PM4.0", "PM10"};
int i=0;
void loop() {
if (Sensor.dataAvailable()) {
Sensor.getMass(mass_concen);

Sensor.getNum(num_concen);

char data[4];

Particle.publish("--Mass Concentration--");

58

for(i=0; i<4;i++) {
sprintf(data, "%s: %0.2f ", pm[i+1], mass_concenli]);
Particle.publish("", data);
/I Serial.printf("%s: %0.2f\n", pm[i+1],mass_concen[i]);

}

Serial.printIn("--Number Concentration--");
for(i=0; i<5;i++) {
Serial.printf("%s: %0.2f\n", pm[i],num_concen[i]);

¥

¥
else { Particle.publish("NA"); }

delay(2000);
}

int pmT(String command) {
digitalWrite(led, digitalRead(led)"1);
return digitalRead(led);

}

59

Appendix D
SGP30 SOFTWARE

#include "Adafruit SGP30.h"
#include <Wire.h>

#include <math.h>

#include <Particle.h>

Adafruit_SGP30 sgp;

uint32_t getAbsoluteHumidity(float temperature, float humidity) {

I/ approximation formula from Sensirion SGP30 Driver Integration chapter 3.15

const float absoluteHumidity = 216.7f * ((humidity / 100.0f) * 6.112f * exp((17.62f * temperature) /
(243.12f + temperature)) / (273.15f + temperature)); // [g/m"3]

const uint32_t absoluteHumidityScaled = static_cast<uint32_t>(1000.0f * absoluteHumidity); /
[mg/m~3]

return absoluteHumidityScaled,;

}

void setup() {
Wire.begin();
Serial.begin(115200);
while (1Serial) { delay(10000); } // Wait for serial console to open!

Particle.publish("SGP30 test");

if (!sgp.begin()){
Particle.publish("Sensor not found :(*);
delay(10000);

}

if ('sgp.begin()){
Particle.publish("Sensor not found :(*);
delay(10000);

}

if ('sgp.begin()){
Particle.publish(*Sensor not found :(*');
delay(10000);

¥

Particle.publish("Found SGP30 serial #");
Serial.print(sgp.serialnumber[0], HEX);
Serial.print(sgp.serialnumber[1], HEX);
Serial.printIn(sgp.serialnumber[2], HEX);

60

¥

int counter = 0;
void loop() {

if (Isgp.IAQmeasure()) {
Particle.publish("Measurement failed");

}

Particle.publish(*working");

Particle.publish("TVOC", String(sgp.TVOC));

delay(10000);

counter++;
if (counter == 30) {
counter = 0;

uintl6_t TVOC_base, eCO2_base;
size_t readBytes(char*TVOC_base,size_t length);
if (1sgp.getlAQBaseline(&eCO2_base, &TVOC base)) {
Serial.printin("Failed to get baseline readings");
return;
}
Particle.publish(*TVOC base",String(TVOC_base,HEX));
Serial.print("****Baseline values: eCO2: 0x"); Serial.print(eCO2_base, HEX);
Serial.print(" & TVOC: 0x"); Serial.printin(TVOC_base, HEX);

61

Appendix F
GPS SOFTWARE

#include "TinyGPS.h"
#include "SparkFun_I12C_GPS.h"

I2CGPS myl2CGPS;
TinyGPSPlus gps;

bool GPS_connected = true;
unsigned long msDelay=0;
double lat,Ing;

bool rst=false;

void setup() {

Serial.begin(115200);

Serial.printin("GTOP Read Example™);

Particle.function("RESET",RST_DVC);

Particle.variable("Latitude",lat);

Particle.variable("Longitude™,Ing);

if (myl2CGPS.begin() == false) {
Serial.printin("Module failed to respond. Please check wiring.");
while (1); //Freeze!

}

Serial.printin("GPS module found!");

¥

void loop() {

if(millis() - msDelay < 1*60*1000) {return;}

msDelay = millis();

while (myl2CGPS.available()) {
gps.encode(myl2CGPS.read()); //Feed the GPS parser

}

if (gps.time.isUpdated()) {
displaylInfo();

}

¥
char data[200];

//Display new GPS info
void displaylInfo() {
Serial.printin();
if (gps.time.isValid()) {
Serial.print(F("Date: "));
Serial.print(gps.date.month());
Serial.print(F("/"));
Serial.print(gps.date.day());

62

Serial.print(F("/"));
Serial.print(gps.date.year());

Serial.print((" Time: ™));

if (gps.time.hour() < 10) Serial.print(F("0™));
Serial.print(gps.time.hour());
Serial.print(F(":"));

if (gps.time.minute() < 10) Serial.print(F("0™));
Serial.print(gps.time.minute());
Serial.print(F(":"));

if (gps.time.second() < 10) Serial.print(F("0"));
Serial.print(gps.time.second());
Serial.printIn(); //Done printing time

sprintf(data,"Date: %d/%d/%d - Time:
%2d:%2d:%2d",gps.date.month(),gps.date.day(),gps.date.year(),gps.time.hour()+(int)round(gps.location.
Ing() /20),gps.time.minute(),gps.time.second());
Particle.publish("Data&Time",data);
}
else {
Serial.printin(F("Time not yet valid"));
Particle.publish("Date&Time","Time not yet valid");

¥

if (gps.location.isValid()) {
Serial.print("Location: ");
Serial.print(gps.location.lat(), 6);
Serial.print(F(", "));
Serial.print(gps.location.Ing(), 6);
Serial.printin();

lat = (double) gps.location.lat();
Ing = (double) gps.location.Ing();

sprintf(data,"%2.7f,%2.7f" lat,Ing);
Particle.publish("GPS",data);

}

else {
Serial.printIn(F("Location not yet valid™));
Particle.publish("Location","Location not yet valid");

}

}

int RST_DVC(String command) { rst = true; return rst; }

63

Appendix G
FUSED SENSOR SYSTEM SOFTWARE

/I This #include statement was automatically added by the Particle IDE.
#include "Adafruit SGP30.h"

#include "SPS30.h"

#include "SparkFun_12C_GPS.h"

#include "TinyGPS.h"

#include <Adafruit BME280.h>

#include <SparkFun_SCD30_Arduino_Library.h>

#include <Wire.h>

#include <math.h>

#include <Particle.h>

SPS30 SPS; /I Create the SPS30 module

Adafruit_SGP30 sgp; // create SGP30 module

Adafruit. BME280 bme; //Select 12C for the BME280 (temp, pressure, humidity)

SCD30 SCD; /I Create the SCD30 module

12CGPS myl2CGPS; /I Create the GPS module

TinyGPSPlus gps; // Create the GPS interpreter
STARTUP(System.enableFeature(FEATURE_RETAINED_MEMORY)); //Allows the system to retain
variables for quick startup

retained intt_zone = -4; // set the default time zone to -4 (east coast USA) with saving ability

// main blue LED for use in status signals and connecting checking
int led = D7;

/I used later in the functions
#define temp_F O
#define temp_C 1
#define pressure 2
#define humidity 3
#define CO2 4
#define VOC 5
#define cPM1 6
#define cPM2_57
#define cPM4 8
#define cPM10 9

/1 used to hold raw data from all sensors. Temporary initialized
retained double data[10] = {-1,-1,-1,-1,-1,-1,0.401,0.425,0.440,0.410};

/I GPS saved values

retained double lat = 0.0;
retained double Ing = 0.0;

64

[variable used later in the function

unsigned long msDelay=0; //last ms count at data send
unsigned long gpsDelay=0; //last ms count at GPS update
int past; /I the day when the system started

bool rst = false; // resetting variable for user quick reset
bool slp = false; // sleeping variable for user full reset

/I hold the values for SPS sensor
float mass_concen[4];

//Average Temp in Celcius
float Ctemp_avg;

// Connection bits

int SGP_connected = 0; // new SGP30 connection bit

int BME_connected = 0; // the BME280 connection bit

int SCD_connected = 0; // the SCD30 (Sensirion CO2) connection bit
int SPS_connected = 0; // the SPS30 (Sensirion PM) connection bit
int GPS_connected = 0; // the GPS connection bit

int GPS_count=8;

I/l GPS Testing Variable
retained int gps_time = 60;
retained int sense_time = 30;

void setup() {
/[setting time zone to user selected time zone (default: -4)
Time.zone(t_zone);

Wire.begin();
Serial.begin(115200);

while (!Serial) {
delay(1000);
}

[/ Connecting to the Particulate Matter sensor
if(1ISPS.begin())

Particle.publish("SPS30", "Could not found a valid SPS30!");
else

SPS_connected = 1;

// Connecting to the VOC sensor

if(!sgp.begin())
Particle.publish("SGP", "Could not found a valid SGP!");

65

else
SGP_connected = 1;

[/l Connecting to the Temp, pressure, humidity sensor
if (lbme.begin(0x77))

Particle.publish("BME280","Could not find a valid BME280!");
else

BME_connected = 1;

I/ Connecting to the CO2 sensor
if (ISCD.begin())

Particle.publish("SCD30","Could not find a valid SCD30!");
else

SCD_connected = 1;

/I Connecting to the GPS module
if ('mylI2CGPS.begin())

Particle.publish("GPS","Could not find the GPS module!");
else

GPS_connected = 1;

I/ Update the GPS location if the GPS is ready
gpsUpdate();

Particle.publish("STARTING","Starting the data aquisition!");

// Save starting day
past = Time.day();

void loop() {
/I reset once everyday at the begining of the day
DaylyReset();

/I check to see if GPS needs updating (every 1 minute)
if(millis() - gpsDelay > 1000*gps_time) {
gpsDelay = millis(); gpsUpdate();
}
//1f the system has been running to long the millis() can reset to 0
if(millis() < gpsDelay) {
gpsDelay=millis();
}

I/ toggle every 15 seconds
if(millis() - msDelay > 500*sense_time) {

66

ledToggle("™");
}

I/ reset if it hasnt been 30 seconds

if(millis() - msDelay < 1000*sense_time) {
return;

}

/I if time has looped to high, reset timer

else if(millis() < msDelay) {
msDelay=millis();

}

msDelay = millis(); // save time if it has been 30 seconds

/I fucntion call to read data of various sensors
getSps30();

getSgp();

getBme280();

getScd30();

[/ formated string output
String out =
String::format("{\"temp\":%.1f \"HMD\":%.1f \"press\":%.1f \"CO2\":%.0f \"VVOC\":%.0f \"cPM1\":%.2
f\"cPM2_5\":%.2f \"cPM4\":%.2f \"cPM10\":%.2f}",
data[temp_F], data[humidity], data[pressure], data[CO2], data[VOC], data[cPM1],
data[cPM2_5], data[cPM4], data[cPM10]);

Particle.publish("blob_full", out, PRIVATE, WITH_ACK);
delay(10000);

¥

Il fucntion defination
void getSps30() {
if(SPS.dataAvailable()) {

SPS.getMass(mass_concen);
data[cPM1] = mass_concen|[0];
data[cPM2_5] = mass_concen[1];
data[cPM4] = mass_concen[2];
dataJcPM10] = mass_concen[3];

¥
¥

void getSgp() {
if (sgp.lAQmeasure()) {
data]VOC] = sgp.TVOC;
¥
¥

67

void getBme280() {
if(BME_connected) {
data[temp_C] = toC((110.0/125.0) * toF(bme.readTemperature()));
data[pressure] = (double)bme.readPressure()/100;
data[humidity] = bme.readHumidity()+10;
}
}

void getScd30() {
if(SCD_connected) {
if(SCD.dataAvailable()) {
data[temp_F] = (110.0/125.0) * toF(SCD.getTemperature());
data[CO2] = (1.125) * (double)SCD.getCO2();
}
}
}

void TempAvg() {

if(SCD_connected && BME_connected) {
Ctemp_avg = (data[temp_C] + toC(data[temp_F])) /2;
data[temp_C] = Ctemp_avg;
data[temp_F] = toF(Ctemp_avg);

}

else if (SCD_connected) { data[temp_C] = toC(data[temp_F]); }

else if (BME_connected) { data[temp_F] = toF(data[temp_C]); }

}

bool range=true;
double value=0.0001,

int gpsUpdate() {
if(GPS_connected) { //if the GPS is connected...
I read the GPS and encode it into the parser
while(myl2CGPS.available()) { gps.encode(myl2CGPS.read()); }
if(gps.time.isUpdated()) { /Nf the GPS has sent new data
if(gps.location.isValid()) { // and the data is valid
lat = (double) gps.location.lat(); // get the latitude
Ing = (double) gps.location.Ing(); ~ // get the longitude
char g[50]; sprintf(g,"%2.5f,%2.5f" lat,Ing); // create the data packet
Particle.publish("GPS",g,PRIVATE,WITH_ACK); // send the data packet
GPS_count=0;
return 0; //return success
}
else { //if GPS has sent data but its not valid
GPS_count++;

68

Particle.publish("!Valid","GPS location not yet valid");
if(GPS_count>4) {
GPS_count=0;
if(lat!=0 && Ing!=0) {
value = (double)((range)?0.00001:0.0);
char g[50]; sprintf(g,"%2.5f,%2.5f" lat+value,Ing); // create the data packet
Particle.publish("GPS",g,PRIVATE,WITH_ACK); // send the data packet
range=!range;
}
}
return O;
}
}
}

return 1; // if the GPS is not connected or the data has not updated then return failure

}

void DaylyReset() {
if(Time.day() != past){
I/ print the message
Particle.publish("NORM_RST","The normal dayly reset (will last 15 minutes)");
Wire.end(); // stop 12C system
delay(200); // wait for message to send and 12C system to stop
System.sleep(SLEEP_MODE_DEEP, 900); //sleep for 15 minutes

¥
¥

/I helper functions
I convert to Farenheit
float toF(float value) {
return value*(9.0/5.0) + 32.0;

¥

/I convert to Celcius
float toC(float value) {
return (5.0/9.0)*(value-32.0);

}

I/ toggle the built in LED

int ledToggle(String command) {
digitalWrite(led, digitalRead(led)"1);
return digitalRead(led);

}

// set the UTC zone
int utcSet(String command) {

69

t_zone = atoi(command); return t_zone;

¥

[Iretreave the previously set UTC zone
int utcGet(String command) {
return t_zone;

¥

int gpsSet(String command) {
int value = atoi(command);
if(value >=1) {
gps_time = value;
}
else {
gps_time = 60;
}
return gps_time;

}

int senseSet(String command) {
int value = atoi(command);
if(value >=5) {
sense_time = value;
}
else {
sense_time = 30;
}
int n = 100*(10*sense_time/31);

return sense_time + 100*n;

70

Appendix L
MICROPROCESSOR DATASHEET

Particle Boron:
https://docs.particle.io/reference/datasheets/b-series/boron-datasheet/

71

Appendix M
SENSOR DATA SHEETS

SGP30:

https://cdn-
learn.adafruit.com/assets/assets/000/050/058/original/Sensirion_Gas_Sensors_SGP30 _Da
tasheet EN.pdf

SCD30:
https://sensirion.com/media/documents/4AEAF6AF8/61652C3C/Sensirion_CO2_Sensors_
SCD30_Datasheet.pdf

SPS30:
https://www.digikey.com/htmldatasheets/production/3483760/0/0/1/sps30.htm|?utm_adg
roup=General&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20S
earch_ EN_RLSA_Cart&utm_term=&utm_content=General&gclid=Cj0KCQjw2MWVB
hCQARIsAljbwoM9oyISFwPn_akiK_flIQX5NSTbpA8xqCAaj MhE8nbdONhORmMvbwI
laAr7EEALwW_wcB

BME280:
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-
bme280-ds002.pdf

XA1110:
https://media.digikey.com/pdf/Data%20Sheets/Sierra%20Wireless%20PDFs/AirPrime_X
Al1110 TechSpec_Revl 6-23-17.pdf

Pull up Resistors:
https://www.ti.com/lit/an/slva485/slva485.pdf?ts=1657408509966&ref url=https%253A
%252F%252Fwww.ti.com%252Fsitesearch%252Fen-
us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-
US%2526searchTerm%253Dcalculate%2Bpull%2Bup%2Bresistor%2Bvalue%2526nr%
253D12918

72

REFERENCES:

[1] “Air pollution,” World Health Organization, 24-Sep-2019. [Online]. Available:
https://www.who.int/airpollution/en/. [Accessed: 20-June-2022].

[2] “Standards and Guidelines,” American Society of Heating, Refrigerating, and Air
Conditioning Engineers. [Online]. Available:

https://www.ashrae.org/technical-resources/standards-and-guidelines.[Accessed: 07-June-
2022].

[3] “Mold Prevention Strategies and Possible Health Effects in the Aftermath of
Hurricanes and Major Floods,” Center of Disease Control. [Online]. Available:
https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5508al.htm [Accessed: 21-
June-2022].

[4] “Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and
Volatile Organic Compound Exposures in Office Workers: A Controlled
Exposure Study of Green and Conventional Office
Environments,” Environmental Health Perspectives. [Online]. Available:
https://ehp.niehs.nih.gov/doi/10.1289/ehp.1510037. [Accessed: 04-May-2022].

[5] “How we calculate our air quality index and why we need it,” Breeze Technologies.
[Online]. Available: https://www.breeze-technologies.de/blog/what-is-an-air-

quality-index-how-is-it-calculated/ [Accessed: 04-July-2022].

[6] “Warning Signs and Symptoms of Heat-Related IlIness,” Center for Disease Control

and Prevention. [Online]. Available:

73

https://www.cdc.gov/disasters/extremeheat/warning.html [Accessed: 01-July-
2022].

[7] Pahlevi, R. R. Fast UART and SPI Protocol for Scalable IoT Platform. 2018, pp.
23944, https://doi.org/10.1109/1ColCT.2018.8528745.

[8] Houghton, William. Advantages of 12c Protocol for Microcontroller Applications.
1991, pp. 22-27, https://doi.org/10.1109/ELECTR.1991.718167.

[9] “Basics of UART Communication,” Circuit Basics, 11-Apr-2017. [Online].
Available: http://www.circuitbasics.com/basics-uart-communication/. [Accessed:
10-May-2022].

[10] “Basics of the SPI Communication Protocol,” Circuit Basics, 23-May-2018.
[Online]. Available: http://www.circuitbasics.com/basics-of-the-spi-
communication-protocol. [Accessed: 10-May-2022].

[11] “Basics of the I2C Communication Protocol,” Circuit Basics, 11-Apr-2017.
[Online]. Available: http://www.circuitbasics.com/basics-of-the-i2c-
communication-protocol. [Accessed: 10-May-2022].

[12] “This is what dirty air does to your body,” Share America, 10-Nov-2015. [Online].
Available: https://share.america.gov/this-is-what-dirty-air-does-to-your-body/

[Accessed: 18-June-2022].

74

	Miniaturized Battery Powered Air Quality Monitoring System
	Recommended Citation

	B
	C
	D
	E
	F
	G
	L
	M

