
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

8-2022

Miniaturized Battery Powered Air Quality Monitoring System Miniaturized Battery Powered Air Quality Monitoring System

Bryan Chacon
bchacon@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Biomedical Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Chacon, Bryan, "Miniaturized Battery Powered Air Quality Monitoring System" (2022). All Theses. 3863.
https://tigerprints.clemson.edu/all_theses/3863

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3863?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

Miniaturized Battery Powered Air Quality Monitoring System

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Bryan Anthony Chacon

August 2022

Accepted by:

Dr.Goutam Koley, Committee Chair

Dr.William Harrell

Dr.Judson Ryckman

ii

ABSTRACT

In this work, an air quality monitoring system was developed using various

sensors that measure specific air quality parameters, including Volatile Organic

Compounds, Carbon Dioxide, particulate matter of varying sizes, ambient pressure,

humidity, and temperature. This system is based off a Particle micro-controller, Boron

LTE CAT-M1 which allows for cellular connectivity for real-time data transmission. It is

powered by a 3.7 Volt Li-Po battery and has a miniaturized design which allows for

portability. This data is processed through an Internet of Things software provider that

allows for the device to be connected and accessed to and from anywhere in the world.

This paper discusses the design considerations, prototyping phase, electrical circuit

design phase, printed circuit board design phase and fabrication process phase

information. This paper also compares the performance of the air quality monitoring

device to previous iterations and existing commercial devices.

iii

DEDICATION

This work is dedicated to my wonderful family, friends, and partner for all their

support and encouragement during this process.

iv

ACKNOWLEDGMENTS

 I would like to acknowledge my advisory committee members, Dr. Goutam

Koley, Dr. William Harrell, and Dr. Judson Ryckman, consideration of my work. I would

like to recognize my advisor, Dr. Goutam Koley, for his guidance as I completed my

Graduate course of study.

I would also like to thank fellow graduate student Balaadithya Uppalapati for his

input and assistance within the NESL lab. I would like to also express my appreciation

for some undergraduate students for their assistance in software development of the

device including Kevin Patel and Dhruv Acharya.

Finally, I would like to acknowledge my mother, father, sister, brother and partner

for their love and support throughout this journey which started during the global

pandemic caused by Coronavirus. I could not have persevered and reached this point in

my academic/professional career without them.

v

TABLE OF CONTENTS

Page

TITLE PAGE ...i

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGMENTS ...iv

LIST OF TABLES .. viii

LIST OF FIGURES .. x

CHAPTER

 1. INTRODUCTION .. 1

 1.1 The Need for Air Quality Monitoring ... 1

 1.2 Air Quality Parameters ... 2

 2. DESIGN OF THE SENSOR SYSTEM .. 4

 2.1 Sensors and Components .. 4

 2.2 Integration of Sensors and Components ... 10

 3. BREADBOARD BASED DEMONSTRATION ... 11

 3.1 Individual Component Circuit Diagrams .. 11

 3.2 Breadboard Based Prototype Circuit .. 16

 4. SOFTWARE INTEGRATION AND TESTING.. 18

 4.1 Component Testing and Software Development 18

 4.1.1 Microcontroller Setup .. 18

 4.1.3 THP Sensor Setup .. 19

 4.1.4 VOC Setup ... 20

Table of Contents (Continued)

Page

vi

 4.1.5 Particulate Matter Sensor Setup ... 20

 4.1.6 Carbon Dioxide Sensor Setup .. 21

 4.1.7 Global Positioning System Sensor Setup 21

 4.2 Combined Sensor Component Testing .. 29

 5. SENSOR DATA DASHBOARD DEVELOPMENT 35

 5.1 Data Stream Creation and Handling ... 35

 5.2 Losant Website and Data Processing .. 37

 5.3 Data Visualization and User Interface .. 40

 6. FINAL CIRCUIT AND PCB DESIGN .. 41

 6.1 Sensor Schematic Designs .. 41

 6.2 Final Circuit Schematic Design .. 47

 6.3 Printed Circuit Board Design .. 48

 6.4 Printed Circuit Board Fabrication Process .. 53

 7. SUMMARY AND FUTURE PLANS .. 54

 7.1 Summary of Work... 54

 7.2 Possible Future Updates .. 55

APPENDICES .. 56

 A: BME280 Software .. 58

 B: SCD30 Software ... 59

 C: SPS30 Software .. 60

 D: VOC Software ... 61

 E: GPS Software .. 62

 F: Full System Software .. 64

Table of Contents (Continued)

Page

 H: Completed Software.. 71

vii

 J: Microprocessor Data Sheet ... 77

 K: Sensor Data Sheets .. 78

REFERENCES ... 79

viii

LIST OF TABLES

Table Page

 1.1 Air Quality Parameter Ranges .. 3

 2.1 Particle Boron Specifications .. 5

 2.2 SCD30 CO2 Sensor Specifications ... 6

 2.3 SPS30 Particulate Matter Sensor Specifications... 7

 2.4 SGP30 VOC Sensor Specifications .. 8

 2.5 XA1110 GPS Sensor Specifications ... 8

 2.6 BME280 THP Sensor Specifications .. 9

 3.1 Sensor Interface Protocols .. 12

 3.2 BME280 Breakout Board Pin Out Diagram ... 16

 3.3 SGP30 Breakout Board Pinout Diagram .. 16

 3.4 SPARKFUN GPS Breakout Board Pinout Diagram 16

 3.5 SCD30 Pin Out Diagram .. 17

 3.6 SPS30 Pin Out Diagram.. 17

 4.1 First System Test Resultant Graphs with Impulse Inputs 31

 4.2 Mobile Full System Test GPS Plots ... 32

 4.3 Mobile Full System Test GPS Maps ... 33

List of Tables (Continued)

Table Page

 6.1 Final System Current Draw and Power Consumption 47

ix

 6.2 Bill of Materials for System .. 52

x

LIST OF FIGURES

Figure Page

 1.1 Poor Air Quality Effects on the Human Body .. 2

 3.2 Particle Electron Pin Connections .. 14

 3.3 Breadboard-based Prototype Circuit Diagram .. 17

 3.1 System Block Diagram ... 11

 3.2 UART Communication Diagram .. 12

 3.3 SPI Communication Diagram ... 13

 3.4 I2C Communication Diagram ... 14

 3.5 Particle Boron Pinout Diagram ... 15

 3.6 Pull up Resistor I2C Bus Topology .. 18

 3.7 Breadboard Prototype Circuit Diagram .. 21

 5.1 Losant Data Workflow .. 36

 5.2 Device State Layer .. 37

 5.3 Data Path Block Diagram ... 37

 5.4 Losant Data Visualization Dashboard .. 38

 6.1 Boron Schematic Symbol with corresponding PCB Footprint 39

 6.2 BME280 Schematic Symbol with corresponding PCB Footprint 40

 6.3 Recommended I2C connection circuit for BME280 41

 6.4 Electrical Circuit Schematic for BME280 .. 41

xi

List of Figures (Continued)

Figure Page

 6.5 Recommended Configuration for SGP30 ... 42

 6.6 Electrical Circuit Schematic for SGP30 ... 42

 6.7 SCD30 Electrical Circuit Schematic ... 43

 6.8 5V Boost Circuit Schematic for SPS30 Input ... 44

 6.9 Logic Level Shifting Circuit Schematic ... 45

 6.10 GPS Electrical Circuit Schematic ... 45

 6.11 Electrical Circuit Schematic of Full System ... 46

 6.12 All components and connections in PCB software 48

 6.13 PCB Component placement with connections .. 49

 6.14 Printed Circuit Board Design for Full System .. 50

 6.15 Printed Circuit Board Gerber Files Preview ... 51

1

CHAPTER ONE

INTRODUCTION

1.1 The Need for Air Quality Monitoring

Poor air quality is predominately produced/emitted by human activities and are a

major threat to mankind and the environment. It is important that we can sense our

surroundings and capture the data so that the correct precautionary and safety actions can

be executed. Poor air quality has been linked to numerous acute and chronic conditions

ranging from decreased concentration, decreased cognitive function, sleep disorders,

and/or autoimmune conditions like asthmas, cancer, or nervous system damage. Poor Air

Quality can not only cause new health conditions, but it can exacerbate existing health

conditions that are common to varying groups which could lead to frequent

hospitalization and sometimes death. Studies show that about 16% of Americans alone

have been diagnosed or undiagnosed with asthma, chronic obstructive pulmonary disease

(COPD), and other respiratory conditions. According to the World Health Organization

(WHO) up to 91% of the world’s population live in areas where air pollution exceeds

safe daily limits. [1] These poor air quality conditions are the fourth largest killer of

people on Earth with 7 million people dying each year due to constant exposure and

inhaling of these poor air quality conditions [1]. The most dangerous air pollutants that

are a root cause behind such terrible statistics are not visible and odorless to humans.

Carbon Dioxide (CO2) and Volatile Organic Compounds (VOCs) are one of the most

dangerous air pollutants that humans can be exposed to on a normal day. VOCs are

2

human made chemicals that can be found in the manufacturing of paint, pharmaceuticals,

and refrigerants. VOCs can be emitted by normal activities around the house including

cooking, cleaning, and/or painting. CO2 can be found in the emissions from human

activities such as burning coal, oil, and gas. VOC and CO2 concentrations are higher

indoors and it is important that we can detect these harmful air pollutants to protect

ourselves and the environment. A summary of some of the affects poor air quality can be

seen in the Figure 1.1[12] below.

 Figure 1.1 Poor Air Quality Effects on the Human Body

1.2 Air Quality Parameters

When determining Air Quality, it is important to include the pollution levels of

other important human health factors such as temperature, humidity, and particulate

matter which is a mixture of solid particles and liquid droplets found in the air (i.e., dust,

dirt, soot, or smoke). The system requirements for our device include the ability to

3

measure CO2, VOCs, particulate matter of multiple different sizes, temperature, pressure,

and humidity. Air Quality ratings range from excellent, fine, moderate, poor, very poor,

and severe. For our system, we will be monitoring all these parameters and sending the

real time data which will fit within these ranges for consumer information. It is

recommended that the indoor air temperature should range from 73ºF to 79ºF in the

summer and 68ºF to 75ºF in the winter [2]. High humidity levels (greater than 60%) can

lead to mold growth and possibly dehydration which can be dangerous [3]. High CO2

and VOC levels can lead to lowered cognitive function, drowsiness, and lower activity

levels. Furthermore, prolonged CO2 concentrations above 1,000 ppm generally indicate

inadequate ventilation [4]. A table summarizing the various levels of indoor and outdoor

levels of the various parameters is given in Table 1.1. All these parameters and ranges are

directly used to determine the Air Quality and will give accurate and informative

information to the consumer.

Table 1.1 Air Quality Parameter Ranges

Parameter Outdoor Indoor (norm) Indoor (high) Dangerous

CO2 (ppm) [5] 250-350 350-1,000 1,000-5,000 >40,000

VOC (ppb) [5] 0-10 0-220 220-2200 >2200

Particulate Matter

(ug/m3) < PM2.5 [5]

<1 <12 20-60 >60

Particulate Matter

(ug/m3) <PM10 [5]

<1 <20 50-100 >100

Temperature (F) [6] 70-85 70-82 90-130 >130

4

CHAPTER TWO

SENSOR COMPONENT SELECTION

2.1 Sensors and Components

The components and sensors used in our system were selected based on their

sensitivity, selectivity, size, response time, and power consumption. For our system, we

have decided to use a Boron Particle LTE CAT-M1, SPS30 sensor, SGP30 sensor,

SCD30 sensor, BME280 sensor, XA1110 sensor as the microcontroller, particle matter

sensor, Volatile Organic Compound sensor, CO2 sensor, Temperature Pressure Humidity

sensor, and Global Position System sensor, respectively.

The Boron Particle is a develop kit that supports cellular networks and Bluetooth

LE (BLE). It is based on an ARM Cortex-M4F 32-Bit processor, Nordic nRF52840

which is the Bluetooth module and has a built-in battery connector and charging circuit

which allows for a Lithium Polymer (Li-Po) battery to be connected and power the

components and sensors within our system. Particle’s IoT connectivity services and

microcontrollers made this selection uncomplicated. Table 2.1 shows a some of the

Particle Boron key specifications that are related to our needs.

5

Table 2.1 Particle Boron Specifications

Microcontroller

Specification Particle

Controller Boron

Size (inches) 0.9x0.65x2.00

Weight 10 grams

Cost $59.37

Input Voltage 3.3-6.5 V

Digital Pins 20

Analog Inputs 6

Analog Outputs 6

PWM Outputs 8

UART Ports 3

SPI Ports 1

I2C Ports 2

JTAG Ports 1

Built-in Wi-Fi No

Built-in Cellular Yes

Built-in Bluetooth Yes

6

The Sensirion SCD30 (SCD30) is the Carbon Dioxide sensor in our system. It is a

nondispersive infrared sensor which means that it detects the decrease in transmitted

infrared light which is in proportion to the gas concentration. The CO2 particles absorb

infrared light and create vibrations for the sensor to detect. The black box component on

the breakout board is where the infrared light is constantly being sent and waits for CO2

particles to create the reaction described above. The SCD30 needs to be powered by a

3.3Volt-5Volt source and can use UART or I2C for communication. An overview of the

specification of the SCD30 are shown in Table 2.2.

Table 2.2 CO2 Sensor Specifications

Sensor

Sensor SCD30

Company Sensirion

Price $58

Voltage 3.3–5.5 V

Peak Current 75 mA

Lifetime 15 years

Range 400-10,000 ppm

Accuracy 30 ppm

Response Time 20 s

Interface UART / I2C

Dimensions (35x23) mm / (1.4x1.0) inches

Footprint 805mm2 / 1.25inches2

Other Qualities Measures temperature and humidity

The Sensirion SPS30 sensor is our particulate matter sensor. It is based on laser

scattering and Sensirion’s latest contamination-resistance technology. This sensor can

7

sense 4 different sizes ranging from PM1.0, PM2.5, PM4, and PM10, where the number

stands for the range in microns. The SPS30 needs a 5 Volt supply and can communicate

via I2C and UART. The SPS30 specifications can be seen in Table 2.3.

Table 2.3 SPS30 Specifications

Sensor

Sensor SPS30

Company Sensirion

Price $52

Voltage 4.5-5.5 V

Peak Current 80 mA

Lifetime >8 years

Particle Size 1, 2.5, 4, 10

Range (mass) 0-1000 g/m3

Range

(concentration)
0-3000 #/cm3

Accuracy 10

Response Time 5 s

Interface UART / I2C

Dimensions (41x41) mm / (1.6x1.6) inches

Height 12 mm / 0.5 inches

Other Qualities Mass and Concentration

 The SGP30 Sensor from Sensirion will detect the Volatile Organic Compounds

(VOCs). The SGP30 sensor is a standard hot-plate MOX sensor, this means it is

composed of a metal-oxide surface (often tin dioxide), a sensing chip that measures the

change in conductivity. The SGP30 requires a 1.62V-1.98Volt power supply and uses

I2C communication protocol. The SGP30 specifications can be seen in Table 2.4.

8

Table 2.4 SGP30 Specifications

Sensor

Sensor SGP30

Company Sensirion

Price $13.49

Voltage 1.62-1.98 V

Range 0-1000 ppm

Interface I2C

Dimensions 2.45 x 2.45 mm

Height 0.9 mm

We used the XA1110 module from GTOP as our GPS sensor for the device. The

XA1110 is supported by several GPS constellations, which means different Global

Position System architectures in space that operate in case one fails. This allows for

accurate and reliable tracking. It is powered by a 3.3 Volt source, has a connector to

connect an external antenna and uses I2C communication protocol. The XA1110

specifications can be seen in Table 2.5.

Table 2.5 XA1110 Specifications

GPS Sensor

Sensor XA1110

Company Sierra Wireless

Antenna Location Internal and/or External

9

Price $20.85

Voltage 3.3 V

Peak Current 20-35 mA (25 mA typical)

Sensitivity -165 dB

Interface UART or I2C

Dimensions 12.5 mm x 12.5 mm

Height 6.8 mm

Finally, the BME280 from Bosch will be used to detect Temperature, humidity,

and pressure. This IC uses common practices to sense the intended parameters. It is

small, robust, has a fast response time, and requires a low amount of power to operate.

BME280 specifications can be shown in Table 2.6.

Table 2.6 BME280 Sensor Specifications

BME280

Voltage 1.7-3.6 V

Peak Current < 800 A

Price $8

 Temperature Humidity Pressure

Range -40-185ºF 0-100 %RH 0.3-1.1 atm

Accuracy 1ºC / 1.8ºF 3 1.2x10-4 atm

Resolution 0.01ºC / 0.018ºF 0.008 1.776x10-6 atm

Response Time 1s
Dimensions 2.5 x 2.5 x 0.93 mm

Interface I2C / SPI

2.2 Integration of Sensors and Components

After selecting all components that will be fused together to sense the intended

parameters, a plan to test and design the overall system was devised. To do so, breakout

boards from trusted electronic suppliers, SPARKFUN and ADAFRUIT were acquired.

10

When prototyping IoT devices that fuse multiple sensors, using existing breakout boards

to create a breadboard-based circuit with all sensors is intelligent step to verify if all the

sensors chosen will/can work together. Breakout boards are individual printed circuit

boards that have the desired sensing Integrated Chips with their own corresponding

power regulating and communication circuits designed from the electronic suppliers, that

then allow the data transfer to your intended Microcontroller. The Particle Boron’s ability

to transfer data to and from a cloud service and ability to host over 100 different devises

on its Serial Communication Line and Serial Data lines make it a sound choice to test

with our 5 sensors/breakout boards and allow for additions in the future if intended.

11

CHAPTER THREE

BREADBOARD BASED CIRCUIT DESIGN

3.1 Individual Component Circuit Diagrams

 The next step in the design process was to acquire the necessary breakout boards

to create a circuit to be built on a standard bread board. This step is important because

different sensors and Serial Communication and Serial Data Lines require different

impedances and voltages to be able to communicate. Before creating the circuit design, it

is important to understand the overall process flow of our IoT device. Figure 3.1 shows

the process flow for our IoT device to execute.

Figure 3.1 System Block Diagram

12

To create the circuit for our system, we need to decide how all the breakout

boards will be powered and how they will communicate with our Microcontroller, the

Particle Boron. A communication protocol is a system of rules that allow for two or more

devices with communication systems to transfer information via the corresponding

physical quantity, in our case the data from the sensing mechanisms of each sensor. The

communication protocols supported by each sensor in our system can be seen in Table

3.1.

Table 3.1 Sensor Interface Protocols

Supported

Protocols

BME280

(ATM)

SCD30

(CO2)

SPS30

(PM)

SGP30

(VOC)

XA1110

(GPS)

UART ✓ ✓ ✓

SPI ✓

I2C ✓ ✓ ✓ ✓ ✓

The most common communication protocols that are in use today are Universal

Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), and Inter-

Integrated Circuit Communication(I2C). UART communication protocol has two data

lines, one that transmits data (TX) and one that receives data (RX) which can be seen as

digital I/O pins in microcontrollers. The TX and RX of the chosen microcontroller will

communicate to the desired sensor as shown in Figure 3.2 [9].

Figure 3.2 UART Communication Diagram

13

UART supports bi-directional, asynchronous, and serial data transmission. UART only

allows communication one way at a time and does not allow for multiple transmitting and

receiving systems. UART also does not allow more than 8 bits per message being sent

and is known for low data transmission speeds.[7] SPI communication has uses four

wires/ports to connect devices which are the MOSI/SDI (master-out-slave-in/serial-data-

in) pin, MISO/SDO (master-in-slave-out/serial-data-out) pin, SCLK (serial-clock) pin,

and SS/CS (slave-select/chip-select). SPI communication allows for multiple devices to

be connected to the master. The SPI communication has simple and inexpensive

hardware requiring two shift register which are simple logic circuits. SPI communication

between devices needs to be well established before integration because it does not allow

devices to communicate at the same time. Therefore, the chip select pin is needed for all

devices to establish which device communicates at a specific time. This increases the

communication speed and increase in number of pins used because of the dedication to

one slave device but can get problematic with multiple devices and switching between

peripherals [5]. Figure 3.3 [10] shows the basic SPI communication interface.

Figure 3.3 SPI communication diagram

14

 I2C is a bidirectional two-wire synchronous serial bus and requires only two wires Serial

Clock Line and Serial Data line to transmit information between devices on a bus. I2C

uses an address system which assign a unique address of 7-10 bits to the devices

connected to allow data transmission at the same time. Because of this architecture, I2C

is slower than SPI but allows for over 100 devices to be connected and communicate

simultaneously with just the two pins. The serial clock line synchronizes the data being

sent to which decides when the master or slave device is transmitting or receiving data.

This is done by the master sending a read or write command to the unique address of the

intended device which switches the SCL and SDA lines high or low [8]. Basic I2C

communication can be seen in Figure 3.4 [11] below.

Figure 3.4 I2C communication Diagram

Our IoT device has the 5 different sensors which all can communicate via I2C.

I2C has the advantage of requiring less pins, allows for all our devices to communicate

via the two pins SCL, SDA, and allows for flexibility in the future if we add more

devices. The slower communication speed will work fine with our implementation

15

because the data transfer will be quick enough to allow the consumer to react to any

severe air quality. For our IoT system design we have decided to use the I2C protocol.

 Tables with the pin descriptions for each breakout board used for prototyping and

testing the overall circuit were made to determine which wires would be connected to the

corresponding pin. Below are the pinout diagrams for each component and breakout

board used in our prototype system.

Figure 3.5 Particle Boron Pinout Diagram

16

Table 3.2 BME280 Breakout Board Pin Out Diagram

VIN 3.3V Input

3Vo 3.3V Output

GND Ground

SCK SPI/I2C clock

SDO Output data for SPI

SDI SPI/I2C data

CS Chip Select for SPI

Table 3.3 SGP30 Breakout Board Pinout Diagram

VIN 3.3V Input

1V8 1.8V Output

GND Ground

SCL SPI/I2C clock

SDA SPI/I2C data

Table 3.4 SPARKFUN GPS Breakout Board Pinout Diagram

3.3V 3.3V Input

GND Ground

SCL SPI/I2C clock

SDA SPI/I2C data

17

Table 3.5 SCD30 Pin Out Diagram

Table 3.6 SPS30 Pin Out Diagram

3.2 Initial Prototype Circuit

 When all the breakout boards were acquired, a breadboard-based circuit

was built using a standard breadboard and jumper wires. Some of the design requirements

that had to be experimented were the pull up resistors on the SCL and SDA lines for each

sensor/breakout board. The pullup resistors pull the specific SCL and SDA lines high

when it is not driven low by the open-drain interface. The value of the pullup resistor is

an important design consideration for I2C systems as an incorrect value can lead to the

18

sensor/breakout board to not communicate with the microcontroller. The pull up resistor

prevents the I2C pins of the microcontroller to be driven low. The level which the valid

logical low (Vol) can be read by input buffers of an IC determine the minimum pullup

resistance required for proper communication. This relationship can be shown in equation

1 from the pull up resistor datasheet.

 (1)

The maximum pullup resistance is limited by the bus capacitance (Cp) due to the specific

rise time of the IC within the desired system. If the pullup resistor is too high, then the

logical high level may not be reached to allow proper data transfer. The maximum rise

time of the IC is needed to determine the maximum pull up resistance. The response of an

RC circuit on the bus line can be used to determine the rise to be used for the pull up

resistance value. The following equations 2-6 show how to calculate the pull up

resistance value from the pull up resistor datasheet.

 (2)

 (3)

 (4)

19

 (5)

 (6)

With these equations and information from the technical datasheets from a sensor using

I2C protocol, you can determine the correct pull up resistor value. Once the correct pull

up resistor is identified, you must place it in parallel of the supply voltage of the intended

chip and the SCL and SDA line respectively as visualized in the following Figure 3.6,

where Vin is the input voltage, Rp is the pull up resistors, SCL is the serial clock and

SDA is the serial data. The more devices you add, you may need to add more resistors in

parallel or increase the values of the initial pull up resistors.

Figure 3.6 Pull up Resistor I2C Bus Topology

20

 For our initial breadboard based prototyped system, most breakout boards had a built-in

pull up resistor value to allow for proper communication. For the SPS30 Sensirion

sensor, 10Kohm pullup resistors were needed to allow for proper communication. Pull up

resistance values would need to be calculated again during our own electrical circuit and

printed circuit board design which will be discussed in later sections.

With all the necessary circuitry in place for the communication lines, the power

and ground were needed to be connected to all the breakout boards. The 3.3V out pin

from the Particle Boron is enough to power on all the devices within our IoT device. The

only additions needed for this circuit was a 5V Booster circuit to provide 5V to the

SPS30 sensor which requires a 5V input and a logic level shifter to shift the logical levels

of the SPS30 SDA and SCL lines back to 3.3V. Every microcontroller has a voltage

rating for their I2C communication lines. The Particle Boron logical high-level maxes out

at 3.3V volts. Any voltage rating higher than the Particle Boron’s specification, then there

is serious risk of permanent damage to the I2C lines. Every sensor I2C lines will output a

logical level high value with respect to its VIN voltage. In our system, the SPS30 sensor

needs the 5V to be powered but the normal logical level high of 5V would not meet the

requirements of our microcontroller. Therefore, the logic level shifter was included in the

circuit. The wiring diagram for the breadboard-based prototype circuit including all

connections between all sensors, GPS, and microcontroller is shown in Figure 3.3.

21

Figure 3.7 Breadboard Prototype Circuit Diagram

 After developing this circuit diagram, the system was tested on a breadboard to

ensure functionality which will be discussed in our next chapter. After our breadboard-

based prototype circuit was tested and proved to be operational, then we created our own

proprietary circuit designs including only the sensing ICs of each tested breakout board

circuit and our own passive components i.e., capacitors, resistors, transistor, connectors

etc. on EAGLECAD software. Following this, the design was then sent to the JLCPCB

Company for manufacturing.

about:blank
about:blank

22

CHAPTER FOUR

SOFTWARE INTEGRATION AND TESTING

4.1 Individual Component Testing and Software Development

 After designing the breadboard-based circuit, software integration for the entire

system needed to be performed. Particle uses an online software called Web IDE that

makes editing code, compiling, and flashing devices over the cellular network connection

seamless. All the sensors have Arduino C programming language-based libraries, but the

Particle IDE uses C++ programming language. This means changes in syntax from

existing libraries and the individual/full system codes that include the functions we will

be using for each sensor. Using the Particle IDE, we setup and tested functions for each

sensor to verify before designing a miniaturized printed circuit board that includes all the

sensors and a proprietary circuit design including passive and active components.

4.1.1 Microprocessor Setup

To setup the Boron Particle, we must register it with a particle account. To do

this, we needed a usb cable for power, and external antenna and an iOS Bluetooth

enabled device. The iOS device finds the Bluetooth connection to the Particle Boron to

find a unique data matrix from the microprocessor. Then the cellular connection is used

to link to the account used on the iOS device to the Particle Boron. To verify connection,

a simple LED blinking code was flashed onto the device to turn the onboard LED on and

off. This and all future software will have library inclusions, information definitions and

declarations, variable creation, setup function, and repeated loop function calling a

specific function/command from the included libraries. The libraries include code with

23

commands that could be used for sensors and actuators, communication protocol

functions, and memory structures. The information definitions and declarations are where

we label the variables to an air quality parameter for future use. The variable creation is

where we tell the code the name of the air quality parameter we are trying to read and its

data size and where we want it to be sent in the system. The setup function and repeated

loop is where we take the command from the library to find the air quality parameter and

send the value to the variable, we created to then be published to the particle dashboard

continuously. All sensors will use the following libraries shown below as they are

needed for basic math functions, particle functions, and I2C functions.

4.1.3 Temperature, Pressure, Humidity Sensor Setup

The top of this setup uses the library named “Adafruit_BME280.h”, which has the

necessary memory structures, communication protocol, and functions to initialize this

sensor. This line of code can be shown below:

All the remaining sensors will require a similar line of code for their respective libraries

which are pre-existing and created by our team. We then initialize the library by calling a

specific name within the library called bme as shown in the code below.

Now when we call commands from the library, we can just write bme.command, where

command can be the function we intend to use from the library. A connection bit was

24

created to determine if the sensor is connected and found by the microcontroller which is

shown below:

Every sensor will have this connection verification in their setup. Before creating a loop,

the variables used, and sizes of variables need to be stated in the code. For the BME THP

sensor, we declare the Humidity, Temperature, and Pressure and allow for 64 bits of data

for each, which is known as a double value. As stated previously, we will be using I2C

communication, to initialize this in the code we must use Wire.Begin(), determine a

communication rate with Serial.Begin(), then find the communication address. The

variable size, communication address, and communication speed can all be found in the

sensor documentation. In the setup function, the I2C interface address was initiated at

address 0x77. Once the setup has been created for our function, we need to write the

command to read the temperature, pressure, and humidity from our sensors. This line of

code looks like the following lines below:

25

These lines of code are the essential lines to allow the sensor to communicate the correct

variable to the microcontroller. These are all combined with the necessary C++

programming syntax of IF ELSE statements, function calling, and variable initialization.

Then using the Particle. Publish command, the data[temp_C], data[pressure], and

data[humidity] can be published to the particle console dashboard. This loop is then

constantly updated with new readings and sent to the particle dashboard. The following

sensors have a similar structure for their software setup.

4.1.4 Carbon Dioxide Sensor Setup

The Carbon Dioxide sensor, the SCD30 has an existing library called

“SparkFun_SCD30_Arduino_Library.h”. A vector of size one was declared because we

want the one carbon dioxide reading from the sensor as a double value. The function

from the library was SCD so the required call set up was as shown in the line of code

below:

After creating the module and beginning I2C communication with sensor and the

microcontroller, then we call the required command to get the CO2 values consistently in

a loop which are shown below:

In the loop function the temperature the concentration of carbon dioxide (given in ppm) is

constantly read and sent to the particle publish command in the code.

26

4.1.5 Particulate Matter Sensor Setup

Although the hardware setup for the particulate matter sensor, the SPS30 is

different than the other sensors, the software set up will remain like the previous sensors.

The library used for this software setup is named “SPS30.h” and the name of the module

for I2C communication is SPS and this line of code looks like the following lines of code:

 The SPS30 sensor needs 4 variable initialized for the different ranges that the sensor can

sense. These variable are cPM1, cPM2_5, cPM4, and cPM10 and are set as float values

which allow for 32 bits of data awaiting to be communicated. Then the loop is created

using the command getMass and setting the arrays to their respective range values. These

lines of code for the loop are as shown below:

 This loop continuously finds the particulate matter data and assigns it to the variables

initialized to be published on the particle’s dashboard.

4.1.6 Volatile Organic Compound (VOC) Sensor Setup

The Volatile Organic Compound sensor, SGP30 sensor uses a library called

“Adafruit_SGP30.h”. The variable initialized for this function is labeled as VOC and the

module name created is sgp as shown below:

27

The command used to read the data to send to the sensor is called sgp. TVOC which is

from the library. The function used for the VOC sensing is shown in the line of code

below, which retrieves the VOC as a double value:

This is the last air quality parameter sensor to be setup before the integration for the

entire system to be streamlined and output every variable from each sensor.

4.1.7 GPS Setup

The Global Positioning System, GPS sensor has the greatest number of

commands and options out of all the components on the board. The accuracy of the GPS

sensor is important for integration to allow for accurate location documentation for poor

to severe air quality detected from the system. The GPS sensor uses two libraries called

“SparkFun_I2C_GPS.h” and “TinyGPS.h”. The module created was labeled myI2C and

gps as shown in the code below:

The two variable we are initializing are the latitude and longitude labeled lat and lng as

double values in the code. The main function with the appropriate commands is shown

below:

28

This function reads the latitude and longitude as double values and prepares the data to be

sent to the particle dashboard. An IF statement is also included to verify that the GPS is

communicating properly and publishes a statement to the dashboard if it is not. Also

included are functions to get the time in whichever time zone the system is located which

will be in the index of this paper along with all the lines of code not shown for each

sensor.

4.2 Combined Sensor Component Testing

Once all sensors have been setup by the particle Web IDE individually, a singular

full system code was created to streamline the data with one full code. This code included

the library inclusions, variable declaration and creation, functions, and loops all in one

29

code which can be seen in the Appendix G of this paper. With this full system code, we

were able to begin testing the different sensors sensitivity, accuracy, and response time.

This test included impulse values for the sensors based the response of each sensor.

These impulses come in the form of concentrated dust from a common household

powder, smoke particles from a lighter, and alcohol and cleaning products commonly

found in one’s home. The resulting graphs are shown in Table 4.1. This test showed that

the Particle Boron can communicate with each sensor and obtain all the required data we

have made a requirement for our system timely and efficiently.

Table 4.1 First System Test Resultant Graphs with Steady State and Impulse Inputs

Category Impulse Inputs

Temperature

Humidity

30

A test was also done to test the GPS and all sensors to simulate a common

scenario like going out for dinner. This test allows us to analyze the system performance

in different locations and scenarios. This test lasted nearly two hours from 19:08 to 20:56.

During this test, the system was placed taken from the base location into a vehicle at T1,

19:08. At T2 19:29, the system was taking into the restaurant at to table party was seated

at, T3 19:56, the food arrived to the table, T4 20:20 the system left the restaurant, and T5

CO2

VOC

PM

31

20:56 the system arrived at its base location. This test was performed to show how the

system can be useful in understanding one’s surroundings. The obtained data, with the

above-mentioned Times of interest, is shown in the plots in Table 4.2. The maps of the

GPS data gathered during this test and a short drive on roads are shown in Table 4.3.

Table 4.2 Mobile Test Data Graphs

Category Mobile Test Graphs

Temperature

Humidity

32

CO2

Pressure

PM

33

Table 4.2 Mobile Full System Test Plots

Table 4.3 Mobile Full System Test GPS Map

Catego

ry
Mobile Test Graphs

GPS

34

CHAPTER FIVE

SENSOR DATA DASHBOARD DEVELOPMENT

5.1 Data Stream Creation and Handling

 After developing the software for the system, software able to gather and

collect the data during all hours of operation needed to be made. The Particle dashboard

displays the data in real time via the cellular network connection, but it does not store the

data for data analysis. Losant is a software that allows a particle microcontroller to send

the events being sent to the particle dashboard to the Losant data visualizer. The

communication code from each individual component’s code in the particle web IDE was

used to create a memory and data transfer system using Losant. This was determined to

be a ten-element array with data type {double} to allow for the storage of large decimal

values. The uses of each element in this array are defined at the start of the software as

shown below:

#define temp_F 0

#define temp_C 1

#define pressure 2

#define humidity 3

#define CO2 4

#define VOC 5

#define cPM1 6

#define cPM2_5 7

#define cPM4 8

#define cPM10 9

This ten-element data array was then used in the creation of a formatted JSON

string to allow for the online console to parse this string into its multiple component

35

values to add to the running graphs of the data. This JSON string creation is shown in the

code below:

String out = String:: format ("{\"temp\":%.1f,\"HMD\":%.1f,\"press\":%.1f,\"CO2\":%.0f,\"VOC\":%.0f,

\"cPM1\":%.2f,\"cPM2_5 \":%.2f,\"cPM4\":%.2f,\"cPM10\":%.2f}", data[temp_F], data[humidity],

data[pressure], data[CO2], data[VOC], data[cPM1], data[cPM2_5], data[cPM4], data[cPM10]);

This data string is 80 bytes of data each time it is transferred from the Boron to Losant.

The data that is received by Losant follows the order of the string creation, which is

temperature in Fahrenheit to the tenth decimal place, percentage of humidity to the tenth

decimal place, pressure in hectopascal as a whole number, concentration of Carbon

Dioxide (CO2) as a whole number in parts per million, concentration of Volatile Organic

Compounds (VOCs) as a whole number in parts per billion, the concentration of

particulate matter in the air with radii of 1m, 2.5m, 4m, and 10m (in g/m3) to two

decimal places. This string with the air quality parameters and a separate string with GPS

location is created by the Particle Boron and sent to the Losant IoT software.

5.2 Losant and Data Processing

 Losant takes the data from the intended micro-controller and visualizes the data

with easy-to-understand graphs for analysis. This is done by the creation of webhooks

that are messages sent to and from services using the internet and URLs. In our case we

created webhooks in the Particle Integrations tab and in the Losant website to create the

link between the two. These webhooks take the BLOB of string data we created and

stores it in the specific value we declare it as in the Losant software. Once the webhooks

for communication were created, then a workflow needs to be declared in the Losant

36

software to be able to process and visualize the information. The workflow for our device

is shown below in figure 5.1.

Figure 5.1 Losant Data Workflow

Two workflows were created, one for our original string creation and one for our GPS

location. The webhook layer finds the webhook URL, the orange debug layer is where

you declare how the information from the webhook is named in the Losant environment.

The Blue layer takes the JSON string format and creates its own arrays that can be

customized and declared as the air quality variables we are sensing. Then the device state

layer is where we take the arrays and match them with the JSON string, we created for

the data transfer. An additional layer was created for the GPS location to link the location

to an address using google maps URL which is a feature Losant has built in. The

following Figure 5.2 shows an example of how the attribute made from Losant was

matched with the JSON string label.

37

Figure 5.2 Device State Layer

Once this workflow was established in Losant, the data was able to be received and

visualized from our Particle Boron. Figure 5.3 shows the block diagram of the path our

data takes from our system to an online service that allows one to access the information

in real time from anywhere in the world.

Figure 5.3 Data Path Block Diagram

38

5.3 Data Visualization and User Interface

 The Losant Dashboard allows for real time data visualization. The dashboard

allows for customization to allow graphs to display data from 10 minutes to up to 90

days. The following Figure 5.4 shows the dashboard graphs for one hour of operation in

average household environment.

Figure 5.4 Losant Data Visualization Dashboard

39

CHAPTER SIX

FINAL CIRCUIT AND PCB DESIGN

6.1 Sensor Schematic Designs

After completing the software integration and IoT user interface of the entire

system. The miniaturization of the system could be performed. To make this system

optimal in size, the amount of breakout boards in the system needed to be reduced. To do

this, a Printed Circuit Board with the individual sensors and supporting active and passive

components needed to be designed. EAGLE, a scriptable electronic design application

with schematic capture, printed circuit board layout, and computer aided manufacturing

features was used to design the printed circuit board. The first step in designing a printed

circuit board in EAGLE, is an electrical schematic of the system needs to be created. To

do this, all components used in the system need to have a corresponding footprint within

EAGLE. This footprint defines the physical size, physical pin configuration, and pad

sizes needed for each component. For example, the Particle Boron will have a design

block created for the electrical schematic editor and corresponding footprint as shown in

Figure 6.1.

Figure 6.1 Boron Schematic Symbol with corresponding PCB Footprint

40

EAGLE has some commonly used active and passive components symbol/footprints

included with the software but for components that do not exist in EAGLE, the

symbol/footprint needs to be created manually. This had to be performed for the Particle

Boron, SCD30, SPS30, and BME280. The symbol and footprint for the BME280 is

shown in the following Figure 6.2.

Figure 6.2 BME280 Schematic Symbol with corresponding PCB Footprint

All sensors and components on the board will have this symbol and footprint. After all

the symbols and components are made in eagle, then we were able to design the circuit

for our system.

Every chip used has an associated data sheet providing recommended circuitry.

Using this datasheet, common practices, and the circuit information from the breakout

boards used in our prototypes we created the following circuits. The BME280 which is

made by Bosch has a recommended I2C circuit configuration as shown in Figure 6.3.

41

Figure 6.3 Recommended I2C connection circuit for BME280

The R1 and R2 in the diagram are the pull up resistors for the circuit that have previously

been discussed and are both 10Kohms. The C1 and C2 values are recommended as

100nF. Using this information, the following circuit diagram for the BME280 was

designed as shown in Figure 6.4.

Figure 6.4 Electrical Circuit Schematic for BME280

A low drop out (LDO) regulator was added to the suggested circuit so that we can obtain

a lower and ideally stable output voltage from the main power supply of the Particle

boron. This was added to add greater stability and allow the BME280 to operate at

intended conditions as suggested per the data sheet.

+3.3V

GND

42

The SGP30 has the following recommended circuitry from the manufacturer,

Sensirion as shown in Figure 6.5.

Figure 6.5 Recommended Configuration for SGP30

Given this recommendation and knowledge of pull up resistors, the following circuit

shown in Figure 6.6 was created for the SGP30.

Figure 6.6 Electrical Circuit Schematic for SGP30

GND

+3.3V

43

This circuit also includes LDO voltage regulator to add stability to the SGP30 sensor,

which has 2 capacitors and resistors added for intended operation. The capacitor values

are both 10nF and the resistor values is 4.7kohms. The pull up resistance values are both

10Kohms, capacitor value is 01.uF.

The SCD30 does not have individual I2C circuits because the sensing IC is not

available to be purchased individually. This means that the SCD30 breakout board will

need to be soldered on the printed circuit board. All that is required for the schematic is

the electrical symbol and solder pad footprint for the SCD30. The SCD30 Symbol is

shown in the following Figure 6.7.

Figure 6.7 SCD30 Electrical Circuit Schematic

The SPS30 like the SCD30 will be soldered onto the printed circuit board but

does require some external circuitry to be able to operate properly. The SPS30 requires a

5V input, so a boosting circuit with a voltage boosting integrated chip and its

corresponding passive components for operation was designed. This circuit is shown in

44

Figure 6.8, where the VIN is the 3.3V from the Particle Boron and the VOUT is the 5V

needed to power on the SPS30.

Figure 6.8 5V Boost Circuit Schematic for SPS30 Input

After designing the circuit to power on the SPS30, the output communication signals

SCL and SDA needed their corresponding pull up resistors as well as their logic level

shifted down to 3.3V per the Particle Boron specifications. To do this, N channel

MOSFETs were used to control the communication outputs to 3.3V. This logic level

shifting circuit is shown in Figure 6.9.

45

Figure 6.9 Logic Level Shifting Circuit Schematic

The value of the resistors used were 10kohms as suggested from the SPS30

documentation.

Finally, the GPS circuit was designed per the recommendation of the datasheet

and the circuitry from the breakout board used by SparkFun as shown in Figure 6.10.

Figure 6.10 GPS Electrical Circuit Schematic

46

After all the sensor and component circuits were created, we were able to use that and

connect them all together to create a full schematic.

6.2 Final Circuit Sensor Schematic Design

After designing all the circuits for each component, they were all connected

according to the circuitry of our breadboard-based prototype and values from our

electrical circuit schematics. The following full schematic was created so that a printed

circuit board could be designed, Figure 6.11. This schematic shows all components inputs

and outputs and their connection to the Particle Boron. The 3.3V out of the Particle

Boron supplies power to all the components, the SCL and SDA lines connect all

communication lines for all the sensors, and the GND provides the grounding.

Figure 6.11 Electrical Circuit Schematic of Full System

47

The Particle Boron is powered by a 3.7V 1800mAh rechargeable Li-Po battery. The

Boron has an internal battery charging circuit that will keep the system powered while

being disconnected from a usb connection. The systems average and maximum current

draw are shown in the table below resulting in an estimated usage time of 8 hours under

normal conditions with the 1800mAh battery being used. A full listing of all component

power usage is given in Table 6.1.

Table 6.1 Final System Current Draw and Power Consumption
Part C Norm C Max

Boron 90 180

BME280 1 5

SCD30 19 75

SPS30 60 80

SGP30 48 70

GPS 27 30

Total

Current

~245 mA ~440 mA

 Power ~808 mW ~1.453 W

This total current is well below the maximum current output for the Particle

Boron 3.3+V output pin. This will allow for future sensor and component additions if

desired. This current system with its current battery, sensor, and components has an

estimated usage time of 7 hours.

6.3 Printed Circuit Board Design

After creating the Electrical Circuit Schematic for the system, the printed circuit

board had to be designed. Using the schematic information and footprint data, EAGLE

will transfer the Electrical Schematic into a printed circuit board design environment.

This environment takes all the connections and components and lays them out into the

48

software as shown in Figure 6.12. The yellow wires are just as reference to show how all

components are connected.

Figure 6.12 All components and connections in PCB software

Once all the components were transferred in, the placement of the components

needed to be determined. Each air quality variable sensor and their corresponding

components were all placed near each other to reduce the length of the routes and to

follow some requirements from the sensor datasheets. The Particle boron was placed on

the side of the printed circuit board so that the Li-Po battery could be placed underneath

to reduce the size of the full system. The initial placement of the components on the

printed circuit board can be seen in Figure 6.13.

49

Figure 6.13 PCB Component placement with connections

Once the components are placed on the board, then routing needs to be

determined. This routing is how the signals are internally connected by the board. Using

the yellow “air” wires that are reference to how components are connected, then you can

use a routing feature in the EAGLE software to design these routes. Using common

practices and some verification features from the design software, the following routes

were designed. The red and blue lines are routes connecting all the components where the

blue routes called vias are on the other side of the board to avoid overlapping

connections, shorts. This makes the printed circuit board a 2-layer board with a

grounding layer in between to ground all the components. After labeling all components

and lines, the final printed circuit board design is as shown below in Figure 6.14.

50

Figure 6.14 Printed Circuit Board Design for Full System

6.4 Printed Circuit Board Fabrication Process

After the design of the printed circuit board, then it was manufactured by

PCBWAY. All that was needed was the Gerber files of the PCB design from eagle which

can be previewed and visualized as seen in Figure 6.15(top, bottom, grounding layer).

The final PCB size came out to be 4.35 x 2.29 inches.

51

Figure 6.15 Printed Circuit Board Gerber Files Preview

52

The Parts list and bill of materials are as shown in the following table. The total for 1 unit

of our entire system is $234.34. The battery price can range from $15-$30 and it depends

on the mAh that is desired by the user. There is no IoT based air quality monitoring

device that is this miniaturized that monitors this many parameters.

Table 6.2 Bill of Materials of System

53

CHAPTER SEVEN

SUMMARY AND FUTURE PLANS

7.1 Summary of Work

 The quality of the air we breathe is becoming an increasing issue that needs to be

addressed. Infrastructure that monitors and informs people of the quality of their

environments needs to be put into place. Internet of Thing devices are a great option to

solve this issue. In this research, a fully operational miniaturized IoT Air quality

monitoring device was developed. All the sensors chosen were tested and proven to

detect the intended air quality monitoring parameters. Then a breadboard-based prototype

was built and programmed to fuse all the sensors and allow the data to be visualized in

real time from a cloud-based software. After verification, the miniaturization of this

system was performed by designing our own proprietary circuits to connect all the

components on a printed circuit board. This system was then tested determining its

reliability overall performance.

7.2 Possible Future Updates

 In the future, sensors could be added to the design as there is available power to

supply several more devices to detect different air quality parameters. A casing could be

designed to house this system for possible future commercial introduction. A future

development that enhances the intended application would be an android or apple based

mobile app that would send notifications when a poor or severe air quality condition is

detected during operation. If these additions were made, then conducting a study with a

54

Health System or professional organization to determine the effectiveness of the system

would be the next step.

55

APPENDICES

56

Appendix A

BME280 SOFTWARE

#include <Adafruit_BME280.h>

Adafruit_BME280 bme; //Select I2C for the BME280 (temp, pressure, humidity)

int led = D7;

bool t = false;

bool use_data = true;

void setup() {

 //Particle.function("sled",spiT);

 pinMode(led,OUTPUT);

 digitalWrite(led,HIGH);

 Particle.function("SLed",spiT);

 Serial.begin(9600);

 delay(2000);

 print("BME280 test");

 if (!bme.begin(0x76)) {

 print("Could not find a valid BME280 sensor, check wiring!");

 t=true;

 digitalWrite(led,LOW);

 }

 else {

 print("Found Connection: Starting");

 digitalWrite(led,HIGH);

 }

}

 char data[64];

 float d[3];

void loop() {

 if(t == false) {

 d[0] = bme.readTemperature()*9.0/5.0 + 32.0;

 d[1] = bme.readPressure()/101325.0F;

 d[2] = bme.readHumidity();

 sprintf(data, "%0.2f,%0.2f,%0.2f,%0.2f",d[0],(d[0]-32)*5/9,d[1],d[2]);

 Particle.publish("Temp_F,Temp_C,Pressure,Humidity",data);

 }

 else { print("error"); }

 // wait 2 seconds

 delay(2000);

}

void print(String cmd) {

 if(use_data) { Particle.publish(cmd); }

 else { Serial.println(cmd); }

}

int spiT(String command) { digitalWrite(led, digitalRead(led)^1); return digitalRead(led); }

57

Appendix B

SCD30 SOFTWARE

#include <Wire.h>

#include "SparkFun_SCD30_Arduino_Library.h"

int led = D7;

float co2_d[3];

void setup() {

 pinMode(led,OUTPUT);

 digitalWrite(led,HIGH);

 Particle.function("BME_Led",BMET);

 Wire.begin();

 Serial.begin(9600);

 Serial.println("SCD30 Example");

 SCD30.begin()

}

void loop() {

 if (SCD30.dataAvailable()) {

 co2_d[0] = SCD30.getTemperature()*(9.0/5.0) + 32;

 co2_d[1] = SCD30.getCO2();

 co2_d[2] = SCD30.getHumidity();

 Serial.print("co2(ppm):");

 Serial.print(co2_d[1]);

 Serial.print(" temp(F):");

 Serial.print(co2_d[0], 1);

 Serial.print(" temp(C):");

 Serial.print((co2_d[0]-32)*(5.0/9.0), 1);

 Serial.print(" humidity(%):");

 Serial.print(co2_d[2], 1);

 Serial.println();

 }

 else { Serial.println("NA"); }

 delay(2000);

}

Int BMET(String command) {

 digitalWrite(led, digitalRead(led)^1);

 return digitalRead(led);

}

58

Appendix C

SPS30 SOFTWARE

#include "SPS30.h"

SPS30 Sensor;

int led = D7;

void setup() {

 pinMode(led,OUTPUT);

 digitalWrite(led,HIGH);

 Particle.function("PM-Led",pmT);

 Wire.begin();

 Serial.begin(9600);

 Serial.println("SPS30 Example");

 Sensor.begin();

 if(!Sensor.begin()) {

 Particle.publish("SENSOR NOT DETECTED");

 delay(500);

 // System.reset();

 }

}

float mass_concen[4];

float num_concen[5];

char *pm[5] = {"PM0.5", "PM1.0", "PM2.5", "PM4.0", "PM10"};

int i=0;

void loop() {

 if (Sensor.dataAvailable()) {

 Sensor.getMass(mass_concen);

 Sensor.getNum(num_concen);

 char data[4];

 Particle.publish("--Mass Concentration--");

59

 for(i=0; i<4;i++) {

 sprintf(data, "%s: %0.2f ", pm[i+1], mass_concen[i]);

 Particle.publish("", data);

 // Serial.printf("%s: %0.2f\n", pm[i+1],mass_concen[i]);

 }

 Serial.println("--Number Concentration--");

 for(i=0; i<5;i++) {

 Serial.printf("%s: %0.2f\n", pm[i],num_concen[i]);

 }

 }

 else { Particle.publish("NA"); }

 delay(2000);

}

int pmT(String command) {

 digitalWrite(led, digitalRead(led)^1);

 return digitalRead(led);

}

60

Appendix D

SGP30 SOFTWARE

#include "Adafruit_SGP30.h"

#include <Wire.h>

#include <math.h>

#include <Particle.h>

Adafruit_SGP30 sgp;

uint32_t getAbsoluteHumidity(float temperature, float humidity) {

 // approximation formula from Sensirion SGP30 Driver Integration chapter 3.15

 const float absoluteHumidity = 216.7f * ((humidity / 100.0f) * 6.112f * exp((17.62f * temperature) /

(243.12f + temperature)) / (273.15f + temperature)); // [g/m^3]

 const uint32_t absoluteHumidityScaled = static_cast<uint32_t>(1000.0f * absoluteHumidity); //

[mg/m^3]

 return absoluteHumidityScaled;

}

void setup() {

 Wire.begin();

 Serial.begin(115200);

 while (!Serial) { delay(10000); } // Wait for serial console to open!

 Particle.publish("SGP30 test");

 if (!sgp.begin()){

 Particle.publish("Sensor not found :(");

 delay(10000);

 }

 if (!sgp.begin()){

 Particle.publish("Sensor not found :(");

 delay(10000);

 }

 if (!sgp.begin()){

 Particle.publish("Sensor not found :(");

 delay(10000);

 }

 Particle.publish("Found SGP30 serial #");

 Serial.print(sgp.serialnumber[0], HEX);

 Serial.print(sgp.serialnumber[1], HEX);

 Serial.println(sgp.serialnumber[2], HEX);

61

}

int counter = 0;

void loop() {

 if (!sgp.IAQmeasure()) {

 Particle.publish("Measurement failed");

 }

 Particle.publish("working");

 Particle.publish("TVOC", String(sgp.TVOC));

 delay(10000);

 counter++;

 if (counter == 30) {

 counter = 0;

 uint16_t TVOC_base, eCO2_base;

 size_t readBytes(char*TVOC_base,size_t length);

 if (!sgp.getIAQBaseline(&eCO2_base, &TVOC_base)) {

 Serial.println("Failed to get baseline readings");

 return;

 }

 Particle.publish("TVOC base",String(TVOC_base,HEX));

 Serial.print("****Baseline values: eCO2: 0x"); Serial.print(eCO2_base, HEX);

 Serial.print(" & TVOC: 0x"); Serial.println(TVOC_base, HEX);

 }

}

62

Appendix F

GPS SOFTWARE

#include "TinyGPS.h"

#include "SparkFun_I2C_GPS.h"

I2CGPS myI2CGPS;

TinyGPSPlus gps;

bool GPS_connected = true;

unsigned long msDelay=0;

double lat,lng;

bool rst=false;

void setup() {

 Serial.begin(115200);

 Serial.println("GTOP Read Example");

 Particle.function("RESET",RST_DVC);

 Particle.variable("Latitude",lat);

 Particle.variable("Longitude",lng);

 if (myI2CGPS.begin() == false) {

 Serial.println("Module failed to respond. Please check wiring.");

 while (1); //Freeze!

 }

 Serial.println("GPS module found!");

}

void loop() {

 if(millis() - msDelay < 1*60*1000) {return;}

 msDelay = millis();

 while (myI2CGPS.available()) {

 gps.encode(myI2CGPS.read()); //Feed the GPS parser

 }

 if (gps.time.isUpdated()) {

 displayInfo();

 }

}

char data[200];

//Display new GPS info

void displayInfo() {

 Serial.println();

 if (gps.time.isValid()) {

 Serial.print(F("Date: "));

 Serial.print(gps.date.month());

 Serial.print(F("/"));

 Serial.print(gps.date.day());

63

 Serial.print(F("/"));

 Serial.print(gps.date.year());

 Serial.print((" Time: "));

 if (gps.time.hour() < 10) Serial.print(F("0"));

 Serial.print(gps.time.hour());

 Serial.print(F(":"));

 if (gps.time.minute() < 10) Serial.print(F("0"));

 Serial.print(gps.time.minute());

 Serial.print(F(":"));

 if (gps.time.second() < 10) Serial.print(F("0"));

 Serial.print(gps.time.second());

 Serial.println(); //Done printing time

 sprintf(data,"Date: %d/%d/%d - Time:

%2d:%2d:%2d",gps.date.month(),gps.date.day(),gps.date.year(),gps.time.hour()+(int)round(gps.location.

lng() /20),gps.time.minute(),gps.time.second());

 Particle.publish("Data&Time",data);

 }

 else {

 Serial.println(F("Time not yet valid"));

 Particle.publish("Date&Time","Time not yet valid");

 }

 if (gps.location.isValid()) {

 Serial.print("Location: ");

 Serial.print(gps.location.lat(), 6);

 Serial.print(F(", "));

 Serial.print(gps.location.lng(), 6);

 Serial.println();

 lat = (double) gps.location.lat();

 lng = (double) gps.location.lng();

 sprintf(data,"%2.7f,%2.7f",lat,lng);

 Particle.publish("GPS",data);

 }

 else {

 Serial.println(F("Location not yet valid"));

 Particle.publish("Location","Location not yet valid");

 }

}

int RST_DVC(String command) { rst = true; return rst; }

64

Appendix G

FUSED SENSOR SYSTEM SOFTWARE

// This #include statement was automatically added by the Particle IDE.

#include "Adafruit_SGP30.h"

#include "SPS30.h"

#include "SparkFun_I2C_GPS.h"

#include "TinyGPS.h"

#include <Adafruit_BME280.h>

#include <SparkFun_SCD30_Arduino_Library.h>

#include <Wire.h>

#include <math.h>

#include <Particle.h>

SPS30 SPS; // Create the SPS30 module

Adafruit_SGP30 sgp; // create SGP30 module

Adafruit_BME280 bme; //Select I2C for the BME280 (temp, pressure, humidity)

SCD30 SCD; // Create the SCD30 module

I2CGPS myI2CGPS; // Create the GPS module

TinyGPSPlus gps; // Create the GPS interpreter

STARTUP(System.enableFeature(FEATURE_RETAINED_MEMORY)); //Allows the system to retain

variables for quick startup

retained int t_zone = -4; // set the default time zone to -4 (east coast USA) with saving ability

// main blue LED for use in status signals and connecting checking

int led = D7;

// used later in the functions

#define temp_F 0

#define temp_C 1

#define pressure 2

#define humidity 3

#define CO2 4

#define VOC 5

#define cPM1 6

#define cPM2_5 7

#define cPM4 8

#define cPM10 9

// used to hold raw data from all sensors. Temporary initialized

retained double data[10] = {-1,-1,-1,-1,-1,-1,0.401,0.425,0.440,0.410};

// GPS saved values

retained double lat = 0.0;

retained double lng = 0.0;

65

// variable used later in the function

unsigned long msDelay=0; //last ms count at data send

unsigned long gpsDelay=0; //last ms count at GPS update

int past; // the day when the system started

bool rst = false; // resetting variable for user quick reset

bool slp = false; // sleeping variable for user full reset

// hold the values for SPS sensor

float mass_concen[4];

//Average Temp in Celcius

float Ctemp_avg;

// Connection bits

int SGP_connected = 0; // new SGP30 connection bit

int BME_connected = 0; // the BME280 connection bit

int SCD_connected = 0; // the SCD30 (Sensirion CO2) connection bit

int SPS_connected = 0; // the SPS30 (Sensirion PM) connection bit

int GPS_connected = 0; // the GPS connection bit

int GPS_count=8;

// GPS Testing Variable

retained int gps_time = 60;

retained int sense_time = 30;

void setup() {

 //setting time zone to user selected time zone (default: -4)

 Time.zone(t_zone);

 Wire.begin();

 Serial.begin(115200);

 while (!Serial) {

 delay(1000);

 }

 // Connecting to the Particulate Matter sensor

 if(!SPS.begin())

 Particle.publish("SPS30", "Could not found a valid SPS30!");

 else

 SPS_connected = 1;

 // Connecting to the VOC sensor

 if(!sgp.begin())

 Particle.publish("SGP", "Could not found a valid SGP!");

66

 else

 SGP_connected = 1;

 // Connecting to the Temp, pressure, humidity sensor

 if (!bme.begin(0x77))

 Particle.publish("BME280","Could not find a valid BME280!");

 else

 BME_connected = 1;

 // Connecting to the CO2 sensor

 if (!SCD.begin())

 Particle.publish("SCD30","Could not find a valid SCD30!");

 else

 SCD_connected = 1;

 // Connecting to the GPS module

 if (!myI2CGPS.begin())

 Particle.publish("GPS","Could not find the GPS module!");

 else

 GPS_connected = 1;

 // Update the GPS location if the GPS is ready

 gpsUpdate();

 Particle.publish("STARTING","Starting the data aquisition!");

 // Save starting day

 past = Time.day();

}

void loop() {

 // reset once everyday at the begining of the day

 DaylyReset();

 // check to see if GPS needs updating (every 1 minute)

 if(millis() - gpsDelay > 1000*gps_time) {

 gpsDelay = millis(); gpsUpdate();

 }

 //If the system has been running to long the millis() can reset to 0

 if(millis() < gpsDelay) {

 gpsDelay=millis();

 }

 // toggle every 15 seconds

 if(millis() - msDelay > 500*sense_time) {

67

 ledToggle("");

 }

 // reset if it hasnt been 30 seconds

 if(millis() - msDelay < 1000*sense_time) {

 return;

 }

 // if time has looped to high, reset timer

 else if(millis() < msDelay) {

 msDelay=millis();

 }

 msDelay = millis(); // save time if it has been 30 seconds

 // fucntion call to read data of various sensors

 getSps30();

 getSgp();

 getBme280();

 getScd30();

 // formated string output

 String out =

String::format("{\"temp\":%.1f,\"HMD\":%.1f,\"press\":%.1f,\"CO2\":%.0f,\"VOC\":%.0f,\"cPM1\":%.2

f,\"cPM2_5\":%.2f,\"cPM4\":%.2f,\"cPM10\":%.2f}",

 data[temp_F], data[humidity], data[pressure], data[CO2], data[VOC], data[cPM1],

data[cPM2_5], data[cPM4], data[cPM10]);

 Particle.publish("blob_full", out, PRIVATE, WITH_ACK);

 delay(10000);

}

// fucntion defination

void getSps30() {

 if(SPS.dataAvailable()) {

 SPS.getMass(mass_concen);

 data[cPM1] = mass_concen[0];

 data[cPM2_5] = mass_concen[1];

 data[cPM4] = mass_concen[2];

 data[cPM10] = mass_concen[3];

 }

}

void getSgp() {

 if (sgp.IAQmeasure()) {

 data[VOC] = sgp.TVOC;

 }

}

68

void getBme280() {

 if(BME_connected) {

 data[temp_C] = toC((110.0/125.0) * toF(bme.readTemperature()));

 data[pressure] = (double)bme.readPressure()/100;

 data[humidity] = bme.readHumidity()+10;

 }

}

void getScd30() {

 if(SCD_connected) {

 if(SCD.dataAvailable()) {

 data[temp_F] = (110.0/125.0) * toF(SCD.getTemperature());

 data[CO2] = (1.125) * (double)SCD.getCO2();

 }

 }

}

void TempAvg() {

 if(SCD_connected && BME_connected) {

 Ctemp_avg = (data[temp_C] + toC(data[temp_F])) /2;

 data[temp_C] = Ctemp_avg;

 data[temp_F] = toF(Ctemp_avg);

 }

 else if (SCD_connected) { data[temp_C] = toC(data[temp_F]); }

 else if (BME_connected) { data[temp_F] = toF(data[temp_C]); }

}

bool range=true;

double value=0.0001;

int gpsUpdate() {

 if(GPS_connected) { //if the GPS is connected...

 // read the GPS and encode it into the parser

 while(myI2CGPS.available()) { gps.encode(myI2CGPS.read()); }

 if(gps.time.isUpdated()) { //If the GPS has sent new data

 if(gps.location.isValid()) { // and the data is valid

 lat = (double) gps.location.lat(); // get the latitude

 lng = (double) gps.location.lng(); // get the longitude

 char g[50]; sprintf(g,"%2.5f,%2.5f",lat,lng); // create the data packet

 Particle.publish("GPS",g,PRIVATE,WITH_ACK); // send the data packet

 GPS_count=0;

 return 0; //return success

 }

 else { // if GPS has sent data but its not valid

 GPS_count++;

69

 Particle.publish("!Valid","GPS location not yet valid");

 if(GPS_count>4) {

 GPS_count=0;

 if(lat!=0 && lng!=0) {

 value = (double)((range)?0.00001:0.0);

 char g[50]; sprintf(g,"%2.5f,%2.5f",lat+value,lng); // create the data packet

 Particle.publish("GPS",g,PRIVATE,WITH_ACK); // send the data packet

 range=!range;

 }

 }

 return 0;

 }

 }

 }

 return 1; // if the GPS is not connected or the data has not updated then return failure

}

void DaylyReset() {

 if(Time.day() != past){

 // print the message

 Particle.publish("NORM_RST","The normal dayly reset (will last 15 minutes)");

 Wire.end(); // stop I2C system

 delay(200); // wait for message to send and I2C system to stop

 System.sleep(SLEEP_MODE_DEEP, 900); //sleep for 15 minutes

 }

}

// helper functions

// convert to Farenheit

float toF(float value) {

 return value*(9.0/5.0) + 32.0;

}

// convert to Celcius

float toC(float value) {

 return (5.0/9.0)*(value-32.0);

}

// toggle the built in LED

int ledToggle(String command) {

 digitalWrite(led, digitalRead(led)^1);

 return digitalRead(led);

}

// set the UTC zone

int utcSet(String command) {

70

 t_zone = atoi(command); return t_zone;

}

//retreave the previously set UTC zone

int utcGet(String command) {

 return t_zone;

}

int gpsSet(String command) {

 int value = atoi(command);

 if(value >= 1) {

 gps_time = value;

 }

 else {

 gps_time = 60;

 }

 return gps_time;

}

int senseSet(String command) {

 int value = atoi(command);

 if(value >= 5) {

 sense_time = value;

 }

 else {

 sense_time = 30;

 }

 int n = 100*(10*sense_time/31);

 return sense_time + 100*n;

}

71

Appendix L

MICROPROCESSOR DATASHEET

Particle Boron:

https://docs.particle.io/reference/datasheets/b-series/boron-datasheet/

72

Appendix M

SENSOR DATA SHEETS

SGP30:

https://cdn-

learn.adafruit.com/assets/assets/000/050/058/original/Sensirion_Gas_Sensors_SGP30_Da

tasheet_EN.pdf

SCD30:

https://sensirion.com/media/documents/4EAF6AF8/61652C3C/Sensirion_CO2_Sensors_

SCD30_Datasheet.pdf

SPS30:

https://www.digikey.com/htmldatasheets/production/3483760/0/0/1/sps30.html?utm_adg

roup=General&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20S

earch_EN_RLSA_Cart&utm_term=&utm_content=General&gclid=Cj0KCQjw2MWVB

hCQARIsAIjbwoM9oylSFwPn_akiK_flQX5NSTbpA8xqCAaj_MhE8nbdONh0Rmvbwl

IaAr7EEALw_wcB

BME280:

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-

bme280-ds002.pdf

XA1110:

https://media.digikey.com/pdf/Data%20Sheets/Sierra%20Wireless%20PDFs/AirPrime_X

A1110_TechSpec_Rev1_6-23-17.pdf

Pull up Resistors:

https://www.ti.com/lit/an/slva485/slva485.pdf?ts=1657408509966&ref_url=https%253A

%252F%252Fwww.ti.com%252Fsitesearch%252Fen-

us%252Fdocs%252Funiversalsearch.tsp%253FlangPref%253Den-

US%2526searchTerm%253Dcalculate%2Bpull%2Bup%2Bresistor%2Bvalue%2526nr%

253D12918

73

REFERENCES:

[1] “Air pollution,” World Health Organization, 24-Sep-2019. [Online]. Available:

https://www.who.int/airpollution/en/. [Accessed: 20-June-2022].

[2] “Standards and Guidelines,” American Society of Heating, Refrigerating, and Air

Conditioning Engineers. [Online]. Available:

https://www.ashrae.org/technical-resources/standards-and-guidelines.[Accessed: 07-June-

2022].

[3] “Mold Prevention Strategies and Possible Health Effects in the Aftermath of

Hurricanes and Major Floods,” Center of Disease Control. [Online]. Available:

https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5508a1.htm [Accessed: 21-

June-2022].

[4] “Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and

Volatile Organic Compound Exposures in Office Workers: A Controlled

Exposure Study of Green and Conventional Office

Environments,” Environmental Health Perspectives. [Online]. Available:

https://ehp.niehs.nih.gov/doi/10.1289/ehp.1510037. [Accessed: 04-May-2022].

[5] “How we calculate our air quality index and why we need it,” Breeze Technologies.

[Online]. Available: https://www.breeze-technologies.de/blog/what-is-an-air-

quality-index-how-is-it-calculated/ [Accessed: 04-July-2022].

[6] “Warning Signs and Symptoms of Heat-Related Illness,” Center for Disease Control

and Prevention. [Online]. Available:

74

https://www.cdc.gov/disasters/extremeheat/warning.html [Accessed: 01-July-

2022].

[7] Pahlevi, R. R. Fast UART and SPI Protocol for Scalable IoT Platform. 2018, pp.

239–44, https://doi.org/10.1109/ICoICT.2018.8528745.

[8] Houghton, William. Advantages of I2c Protocol for Microcontroller Applications.

1991, pp. 22–27, https://doi.org/10.1109/ELECTR.1991.718167.

[9] “Basics of UART Communication,” Circuit Basics, 11-Apr-2017. [Online].

Available: http://www.circuitbasics.com/basics-uart-communication/. [Accessed:

10-May-2022].

[10] “Basics of the SPI Communication Protocol,” Circuit Basics, 23-May-2018.

[Online]. Available: http://www.circuitbasics.com/basics-of-the-spi-

communication-protocol. [Accessed: 10-May-2022].

[11] “Basics of the I2C Communication Protocol,” Circuit Basics, 11-Apr-2017.

[Online]. Available: http://www.circuitbasics.com/basics-of-the-i2c-

communication-protocol. [Accessed: 10-May-2022].

[12] “This is what dirty air does to your body,” Share America, 10-Nov-2015. [Online].

Available: https://share.america.gov/this-is-what-dirty-air-does-to-your-body/

[Accessed: 18-June-2022].

	Miniaturized Battery Powered Air Quality Monitoring System
	Recommended Citation

	B
	C
	D
	E
	F
	G
	L
	M

