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Abstract

Free resolutions for an ideal are constructions that tell us useful information

about the structure of the ideal. Every ideal has one minimal free resolution which

tells us significantly more about the structure of the ideal. In this thesis, we consider

a specific type of resolution, the Lyubeznik resolution, for a monomial ideal I, which

is constructed using a total order on the minimal generating set G(I). An ideal

is called Lyubeznik if some total order on G(I) produces a minimal Lyubeznik

resolution for I. We investigate the problem of characterizing whether an ideal I

is Lyubeznik by using covers of generators of I, a construction due to Guo, Wu,

and Yu [3] that is distinct from its Lyubeznik resolution. For monomial ideals of a

polynomial ring, we characterize all Lyubeznik ideals that are minimally generated

by four or fewer generators, and provide the total order that produces the minimal

Lyubeznik resolution for all such ideals.
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Chapter A

Introduction

In algebra, the minimal generating set of an ideal gives us some information

we need in order to “classify” the ideal. However, if we want to find out how similar

two ideals are, the minimal generating set does not usually provide enough infor-

mation. So the natural question to ask is just what information do we need about

an ideal in order to get a useful classification? One way to go about this is to look

at the relations on the generating set of an ideal, which can better determine simi-

larity between two or more ideals. There is an additional second set of relations on

the first set of relations, a third set of relations on the second set of relations, and

so on. Looking at all these sets of relations at once gives a structure called a free

resolution; see Definition B.1.10 below.

In this thesis, we will be looking at more specific rings and ideals. Let R =

k[x1, . . . , xs] be a polynomial ring over a field k. A monomial ideal I is an ideal

which has a generating set that consists only of generators of the form xn1
1 · · · · ·xnss .

Given a monomial ideal I ⊂ R, a free resolution of R/I gives information about

the generators of the ideal, the relations between those generators, the relations

between the relations, and so on. There are usually many possible free resolutions

1



of R/I that contain this information, however there is exactly one unique minimal

free resolution of R/I. The benefit of finding the minimal free resolution of R/I is

that, up to isomorphism, it is independent of the chosen generator set of the ideal,

so this minimal free resolution is an invariant of the ideal.

Difficulties comes up when trying to explicitly compute the minimal free res-

olution of R/I. In 1966, the first foray into explicitly computing resolutions was

given by Diana Taylor in her PhD thesis [9]. She described what has come to be

known as the Taylor resolution. This resolution is usually not minimal. In 1973,

Herbert Scarf published an article in a mathematical economics journal that intro-

duced a structure that would later be called the Scarf complex [8]. This structure

is built upon a simplicial complex, which caused others to look into other types of

“simplicial” resolutions. The Scarf complex is always minimal, but is not necessary

a resolution. In some sense, the Taylor resolution is too large and the Scarf com-

plex is too small. In 1988, Gennady Lyubeznik showed that a new type of simplicial

resolution, later called the Lyubeznik resolution, is usually closer to being minimal

than the Taylor resolution [4]. Lyubeznik resolutions are again always resolutions,

but are usually not minimal. However, they are more often minimal than Taylor res-

olutions and are more often closer to the minimal resolution. A useful summary of

all three of these is given by Jeff Mermin in his paper “Three Simplicial Resolutions”

[5]. We discuss simplicial resolutions in detail in Chapter B.

The problem of explicitly computing the minimal free resolution of R/I for

an arbitrary ideal I is particularly challenging. In 2019, Eagon, Miller, and Ordog

[2] solved this problem using a very complicated construction. We are interested

in characterizing ideals where the minimal free resolution is more manageable to

compute, in particular where the Lyubeznik resolution is minimal. A Lyubeznik

resolution requires that we put a total order ≺ on the minimal generating set of I,
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whereas the Taylor resolution and Scarf complex do not. If even one total order

yields a minimal Lyubeznik resolution, we call I a Lyubeznik ideal. Finding this

particular total order is not an easy problem, though. Because I is finitely gener-

ated, there is only a finite, but potentially large, number of possible total orderings

that we could place on the generators. It is important to refine the search for a min-

imal Lyubeznik resolution by finding restrictions on the total order. One of the most

common ways to find a helpful total order is to consider rooted complexes, which

originated in the study of matroid ideals [6], but turned to be useful for Lyubeznik

resolutions as well. This method is often not sufficient for quickly determining if

an ideal is Lyubeznik. In 2013, Jin Guo, Tongsuo Wu, and Houyi Yu [3] released

an alternate method of determining whether or not there exists a total order that

yields a minimal Lyubeznik resolution. An algorithm is included, but still requires

an almost exhaustive search of total orders. Guo, Wu, and Yu’s method uses what

we call covers of generators, and will be the basis for this thesis.

In Chapter B, we will first describe the construction of chain complexes and

free resolutions. We will also define Lyubeznik resolutions and Lyubeznik ideals

using Isabella Novik’s work [6] and Keri Sather-Wagstaff’s notation [7], followed

by some definitions and resulting theorems using Guo, Wu, and Yu’s [3] work on

covers. In Section C.1, we will show that every ideal minimally generated by three

or fewer generators is Lyubeznik, and explicitly describe the necessary total order.

In Section C.2, we will then give a relatively concise way to determine whether an

ideal minimally generated by four elements is Lyubeznik, and explicitly describe

the necessary total order for those ideals that are Lyubeznik. Finally, in Chapter

D, we will suggest several future lines of inquiry on how to expand this research

to include a larger set of ideals, find more explicit computations for necessary total

orders, and generalize some provided results.
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Chapter B

Background

For the remainder of this thesis, let k be a field. Also let R = k[x1, . . . , xs] be

a polynomial ring and let I = 〈u1, . . . , um〉 ⊂ R be a monomial ideal with minimal

monomial generating set G(I) = {u1, . . . , um}, unless otherwise stated.

B.1 Simplicial Complexes and Resolutions

Lyubeznik resolutions and Lyubeznik ideals are supported by a simplicial

structure, so we first discuss simplicial complexes, chain complexes, and resolu-

tions in some generality. The definitions in this section are adapted from definitions

in Part VI of Sather-Wagstaff’s book [7] with some changes in notation for consis-

tency.

Definition B.1.1. A finite simple graph G = (V,E) consists of a vertex set

V = {x1, . . . , xm} and edge set E ⊆ {xixj | i 6= j } ⊆ P so that there are no loops,

no multiple edges, and no directed edges.

Example B.1.2. (a) Two graphical representations of the 3-cycle C3 are
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x1 x2

x3

or

x y

z.

(b) The following graph is built from the vertex set V = {x1, x2, x3, x4, x5, x6} with

edge set

E = {x1x2, x1x4, x2x3, x2x4, x2x5, x2x6, x3x5, x4x5, x4x6, x5x6}.

x1

x3

x4 x2

x6

x5

Definition B.1.3. A simplicial complex on a vertex set V = {x1, . . . , xm} is a

nonempty subset ∆ ⊆ P(V ) of the power set on V that is closed under taking

subsets. An element of ∆ is called a face of ∆. The dimension of a face F is given

by dim(F ) = |F |− 1, where |F | counts the number of vertices that contribute to the

face. The m-simplex ∆m is exactly P({x0} ∪ V ).

Notice that a graph is a simplicial complex with faces of at most dimension 1

(edges). A simplicial complex builds on a graph by adding in m-simplices in higher

dimensions.

Example B.1.4. (a) The geometric realizations of simplices on 0 through 3 ver-
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tices are as follows:

∆0 =

∆1 =

∆2 =

∆3 = (solid tetrahedron)

(b) The following is a simplicial complex on six vertices composed of one solid

tetrahedron, one filled triangle, and two edges:

∆ =

x1

x3

x4 x2

x6

x5

For ease of use, we use the subscripts of vertices to represent the ver-

tices directly, so we write V = {1, . . . ,m} to mean V = {x1, . . . , xm}. We will use

the following two definitions to associate simplicial complexes to algebraic objects,

particularly ideals.

Definition B.1.5. Let ∆ be a simplicial complex on V = {1, . . . ,m}. The associ-

ated labeled simplicial complex ∆(I) has the zero-dimensional faces 1, . . . ,m of ∆
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labeled with the generators u1, . . . , um of I, respectively, then labeling each higher-

dimensional face F with the least common multiple of all labels on faces G that are

subsets of F , i.e.

label on F = lcm {label on G |G ( F } .

Equivalently, the label on F is the lcm of all labels on the vertices of F .

Example B.1.6. Consider the simplicial complex ∆ in Example B.1.4(b) and the

ideal I = 〈x2, xy, y2, xz, yz, z2〉. We will label vertices 1 through 6 with the genera-

tors of I, in the order they are written. The labeled simplicial complex at this point

looks as follows.

∆(I) =

x2

y2

xz xy

z2

yz

Next, the edges are labeled with the lcms of the labels of their endpoints. For

example, the edge between x2 and xy is labeled with

lcm({x2, xy}) = x2y.

The filled triangle is labeled with the lcm of the labels on the edges on its boundary.

For example, the bottom-most filled triangle with edges labeled xyz, x2y, and x2z

is

lcm({xyz, x2y, x2z}) = x2yz.

The solid tetrahedron is labeled with the lcm of the labels on the triangles on its
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boundary,

lcm({xyz2, xyz2, xyz2, xyz}) = xyz2.

The full labeled simplicial complex, except for the label on the solid tetrahedron,

follows.

∆(I) =

xyz

xy
z

y 2z

xy
2

xyz 2

xyz

yz 2

xz
2

x
2z

x
2 y

x2

y2

xz xy

z2

yz

xyz2

x2yz

x
yz

2

xyz
2

xyz

Next we will define chain complexes in generality, then immediately specify

to simplicial chain complexes, which is all that we will need for the rest of the thesis.

Definition B.1.7. Let Mi be an R-module for every i ∈ Z. A chain complex M is a

sequence of R-module homomorphisms

M = · · · ∂i+2 //Mi+1
∂i+1 //Mi

∂i //Mi−1
∂i−1 // · · ·

such that ∂i−1 ◦ ∂i = 0 for all i ∈ Z, where ∂i is the ith differential of M . Elements in
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Mi are said to have degree i.

Definition B.1.8. Let ∆(I) be a labeled simplicial complex and set

∆i(I) = {F ∈ ∆(I) : |F | = i} .

The associated simplicial chain complex of R/I over R is the sequence C(∆, I) =

0 // R|∆m(I)| ∂m // R|∆m−1(I)| ∂m−1 // · · · ∂2 // R|∆1(I)| ∂1 // R|∆0(I)| // 0,

where m = |G(I)| is the number of vertices in ∆. The basis elements of R|∆i(I)|

are formal symbols eF such that F = {`1 < · · · < `i} is a face of ∆(I) and |F | = i.

Elements in R|∆i(I)| have degree i. The differentials ∂i are defined on basis vectors

by

∂i(eF ) =
i∑

j=1

(−1)j−1 lcm(`1, . . . , `i)

lcm(`1, . . . , ̂̀j, . . . , `i)eF\{`j},
where (`1, . . . , ̂̀j, . . . , `i) = (`1, . . . , `j−1, `j+1, . . . , `i).

The ∆i(I)’s are the sets of faces of dimension i−1, so |∆1(I)| is the number

of vertices, |∆2(I)| is the number of edges, |∆3(I)| is the number of triangles, and

so on. The empty face is always the only face of dimension -1, so |∆0(I)| = 1 for

any simplicial complex. It is straightforward to show that the differentials of C(∆, I)

satisfy δi−1 ◦ δi = 0 for all i, so C(∆, I) is a chain complex.

Example B.1.9. We will continue with Example B.1.6, so we already know what

the labeled simplicial complex looks like. We count the number of faces of each
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dimension.

|∆0(I)| = 1

|∆1(I)| = 6 (number of vertices)

|∆2(I)| = 10 (number of edges)

|∆3(I)| = 5 (number of filled triangles)

|∆4(I)| = 1 (number of solid tetrahedra)

There are no faces of a higher dimension than a tetrahedron, so |∆i(I)| = 0 for all

i > 4. Then the basic structure of C(∆, I) is

0 // R
∂4 // R5 ∂3 // R10 ∂2 // R6 ∂1 // R // 0.

The basis elements for degree i look like eF , where F is a face of dimension i− 1.

Let us look at the simplicial complex while numbering the vertices from 1 to 6 as in

Example B.1.4(b).

1

3
4 2

6

5

We would write the edge from vertex 1 to vertex 2 as 12, we would write the triangle

with vertices 1, 2, and 4 as 124, and so on. The basis elements for each degree

10



are written below the corresponding module in the diagram below.

0 // R
∂4 // R5 ∂3 // R10 ∂2 // R6 ∂1 // R // 0.

e2456 e124 e12 e1 e∅

e245 e14 e2

e246 e23 e3

e256 e24 e4

e456 e25 e5

e26 e6

e35

e45

e46

e56

Let us look in detail at ∂1 and ∂4.

For ∂1, we have

∂1(em) =
1∑
j=1

(−1)j−1 lcm(m)

lcm( ̂̀j) em\`j .
There is only one term in this sum when j = 1, so

∂1(em) =
m

1
e∅ = me∅,

where m ∈ {x2, xy, y2, xz, yz, z2} is the label on a vertex. ∂1 is represented by the

vector

∂1 =

(
x2 xy y2 xz yz z2

)
.

For ∂4, we have only one basis element in the domain, so we see where that basis

element ends up. First, note that lcm(2456) = lcm({xy, xz, yz, z2}) = xyz2 is the

same lcm that we found for the solid tetrahedron in Example B.1.6. Each of the

lcm’s of the filled triangles are also on the labeled simplicial complex in Example
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B.1.6.

∂4(e2456) =
4∑
j=1

(−1)j−1 lcm(2456)

lcm(2456 \ `j)
e2456\`j

=
lcm(2456)

lcm(456)
e456 −

lcm(2456)

lcm(256)
e256 +

lcm(2456)

lcm(246)
e246 −

lcm(2456)

lcm(245)
e245

=
xyz2

xyz2
e456 −

xyz2

xyz2
e256 +

xyz2

xyz2
e246 −

xyz2

xyz
e245

= e456 − e256 + e246 − ze245.

Therefore, ∂4 is represented by the vector

∂4 =

(
0 −z 1 −1 1

)T
.

For completion, the matrix representations of ∂2 and ∂3 are below, using the order

of basis elements given in the chain complex:

∂2 =



−x −z

y −z −z −z −xy

y −z

x y −y −z

x y x −z

z2 x y


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and

∂3 =



z

−y

x 1 z

−1 z

−1 −1

1 z

y −y

x x



,

where the empty spaces all have 0 entries.

The ordering of the basis elements in each dimension matters to determine

the signs in the differentials. Next, we see that resolutions are special cases of

chain complexes, but requiring exactness.

Definition B.1.10. A free resolution of R/I over R is an exact sequence

· · · ∂i+1 // Rβi
∂i // Rβi−1

∂i−1 // · · · ∂2 // Rβ1 ∂1 // R // R/I // 0.

We will often instead use a truncated free resolution of R/I over R, which is the

chain complex

· · · ∂i+1 // Rβi
∂i // Rβi−1

∂i−1 // · · · ∂2 // Rβ1 ∂1 // R // 0

that is exact at Rβi for every i > 0. The sequence is not usually exact at Rβ0 = R. A

(truncated) free resolution is called simplicial if it is isomorphic to a simplicial chain
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complex C(∆, I), and in this event, we say that the resolution is supported on ∆.

Definition B.1.11. A simplicial chain complex is minimal if ∂i(R|∆i|) ⊆ mR|∆i−1| for

all i > 0, where m = 〈x1, . . . , xs〉 is the homogenous maximal ideal of R.

Combining Definitions B.1.10 and B.1.11 tells us that a simplicial chain com-

plex C(∆, I) is a minimal free resolution of R/I when

(1) C(∆, I) is exact at R|∆i| for all i > 0, and

(2) ∂i(R|∆i|) ⊆ mR|∆i−1| for all i > 0.

There are several ways to check whether a simplicial chain complex is a

resolution. One of the ways that we can see exactness properties of the simplicial

chain complex C(∆, I) based on just the simplicial complex ∆ is to look at whether

∆ is contractible to a point. Technically, the necessary and sufficient condition

here involves the reduced simplicial homology of ∆ and certain sub-complexes of

∆, but in our examples, failure of contractibility is sufficient. See Bayer, Sturmfels,

and Peeva’s paper [1] on monomial resolutions for more details.

Now consider the minimality condition ∂i(R|∆i|) ⊆ mR|∆i−1|. If this condition

is satisfied, then ∂i(eF ) ∈ mR|∆i−1| for all F ∈ ∆i(I). It is straightforward to show

that this is equivalent to the minimality condition, and it is also equivalent to all

entries in the matrix representations of ∂i being in m. Because of the way ∂i is

constructed, this means that C(∆, I) is not minimal if and only if ∂i(eF ) is a unit in

R for some i and for some F ∈ ∆.

Example B.1.12. (a) We look at whether the chain complex C(I,∆) from Exam-

ple B.1.9 is a resolution and whether it is minimal. Recall that the simplicial

complex ∆ could be represented by the following diagram.
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∆ =

1

3
4 2

6

5

Since the three edges 23, 25, and 35 create a triangle, but the triangle is not

filled in, ∆ has nontrivial reduced simplicial homology, so it also cannot be a

resolution. Note that this is related to the fact that ∆ is not contractible.

Next, by inspection of the matrix representations of ∂i that we com-

puted in Example B.1.9, we can see that ∂4(e2456) has a coefficient of 1 or −1

in the third, fourth, and fifth components. Therefore, C(∆, I) is not minimal.

(b) Let I = 〈xy, xz, yz〉 and ∆(I) be the labeled simplicial complex on the 2-

simplex,

∆(I) =

xyz

xyzxy
z

yz xz.

xy

xyz

This simplicial complex has three vertices, three edges, and one filled trian-

gle. Setting xy to be vertex 1, xz to 2, and yz to 3, we get the simplicial chain

complex

0 // R



1

−1

1


// R3



−z −z 0

y 0 −y

0 x x


// R3

(
xy xz yz

)
// R // 0.

e123 e12 e1 e∅

e13 e2

e23 e3
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It can be checked that the chain complex is exact for every degree i > 0.

Because of the exactness, this is a simplicial free resolution. In fact, it is the

Taylor resolution TR(I) [9]. We can see that this resolution is not minimal by

the 1 and −1 coefficients of ∂3.

(c) Let I = 〈xy, xz, yz〉 and ∆(I) be the labeled simplicial complex on three dis-

joint vertices,

∆(I) =

yz xz.

xy

This simplicial complex has three vertices. Setting xy to be vertex 1, xz to 2,

and yz to 3, we get the simplicial chain complex

0 // R3

(
xy xz yz

)
// R // 0.

e1 e∅

e2

e3

This is not a resolution because −ze1 + ye2 ∈ Ker(∂1) \ Im(∂2). However, it

is minimal because the entries of the matrix representation of ∂1 are all in

m = 〈x, y, z〉. This is the Scarf complex SR(I) [8].

In practice, we can construct simplicial chain complexes using Scarf’s con-

struction [8] and we can usually construct free resolutions using Taylor’s construc-

tion [5, 9], but constructing minimal free resolutions is difficult.
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B.2 Lyubeznik Resolutions

Next, we will build up the definitions and theorems needed to understand

the definition of the Lyubeznik resolution, which is a specific type of simplicial res-

olution. The definitions are adapted to fit the notation of the previous section, but

primarily follow the necessary terminology that Guo, Wu, and Yu use in their paper

on covers [3].

Lyubeznik resolutions of R/I are built upon defining a total order on the

monomial minimal generating set G(I), so we will introduce some terminology for

total orders on G(I).

Definition B.2.1. Let A be a subset of G(I). The multidegree of A, denoted

mdeg(A), is the least common multiple of of the elements in A.

Example B.2.2. Consider

I = m2 = 〈x, y, z〉2 =
〈
x2, xy, y2, xz, yz, z2

〉
⊂ k[x, y, z].

Then, for example,

mdeg(G(I)) = lcm({x2, xy, y2, xz, yz, z2})

= x2y2z2.

If A = {xz, yz} ⊂ G(I), then mdeg(A) = xyz.

Definition B.2.3. Let ≺ be a total order on G(I). For any subsets A,B ⊆ G(I):

(a) The minimum of a set A, denoted min(A), is the least element in A according

to the total order ≺. If min(A) ≺ min(B), then we write A ≺ B. If u ∈ G(I) and

u ≺ min(B), then we write u ≺ B.
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(b) The minimum of a monomial u, denoted min(m), is the least element in u ∈

G(I) such that u | m.

(c) A is broken under the total order≺ if there exists u ∈ G(I) such that u | mdeg(A)

and u ≺ A.

(d) A is preserved if there are no subsets of A that are broken.

Notice that the total order ≺ is on just the generators G(I) of I, so ≺ does

not extend to a monomial order on I. Informally, a set is broken if the least element

under ≺ that divides the multidegree of the set is not in the set. Therefore, we will

often see a set A is broken if min(mdeg(A)) /∈ A.

Example B.2.4. Consider I = m2 ⊂ k[x, y, z] again. Define a total order ≺ on G(I)

based on the order the generators were written in Example B.2.2:

x2 ≺ xy ≺ y2 ≺ xz ≺ yz ≺ z2.

Let A = {xz, yz}, and we have already seen that mdeg(A) = xyz. Then min(A) =

xz is the least element in A. We can see that based on the total order, xy is one

element that is smaller than min(A). Since xy | mdeg(A) and xy ≺ A, then A is

broken under the total order ≺. Therefore, A is not preserved.

Notice that if any subset A contains the least element in the total order, that

subset cannot be broken. This subset A could still not be preserved, since we

need to consider whether any subset of A is broken. In the previous example, B =

{x2, xy, y2, xz} is not broken because it contains the least element, but {y2, xz} ⊂ B

is broken because xy | mdeg({y2, xz}) and xy ≺ {y2, xz}. Therefore, B would

not be preserved. On the other hand, consider C = {xy, xz, z2} using the same
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example. Then we check whether C is preserved by looking at whether any of its

subsets are broken.

min(mdeg({xy, xz, z2})) = min(xyz2) = xy. xy ∈ {xy, xz, z2} X

min(mdeg({xy, xz})) = min(xyz) = xy. xy ∈ {xy, xz} X

min(mdeg({xy, z2})) = min(xyz2) = xy. xy ∈ {xy, z2} X

min(mdeg({xz, z2})) = min(xz2) = xz. xz ∈ {xz, z2} X

min(mdeg({xy})) = min(xy) = xy. xy ∈ {xy} X

min(mdeg({xz})) = min(xz) = xz. xz ∈ {xz} X

min(mdeg({z2})) = min(z2) = z2. z2 ∈ {z2} X

Since no subset of C is broken, C is preserved.

Now that we have the notions we need for a total order on G(I), we can de-

fine the Lyubeznik simplicial complex and its associated simplicial chain complex.

Definition B.2.5. Let ∆I be the simplex on G(I), and let ≺ be a total order on G(I).

Then the Lyubeznik simplicial complex of I under ≺ is

Λ(I,≺) =
{
F ∈ ∆I : min {u ∈ G(I) : u | mdeg(H)} ∈ H ∀ G ⊆ F

}
.

In other words, the Lyubeznik simplicial complex consists of all preserved faces F

of ∆I , i.e., all faces F so that every subface H of F contains the least element that

divides mdeg(H).

The corresponding chain complex L(Λ, I,≺) is the Lyubeznik resolution of

I under ≺. Formally, for Λi = {F ∈ Λ(I,≺) : |F | = i}, the Lyubeznik resolution of
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R/I under ≺ is

L(Λ, I,≺) =

(
0 // R|Λm|

∂m // R|Λm−1| ∂m−1 // · · · ∂2 // R|Λ1| ∂1 // R // 0

)
,

where m − 1 is the largest dimension of any face in Λ(I,≺). We will denote R|Λi|

as Li. The basis elements of Li are formal symbols eF such that

F = {`1 < · · · < `i} ∈ Λ(I,≺)

and |F | = i.

For F = {`1 < · · · < `i} ∈ Λi, let Fj = F \ {`j} ∈ Λi−1 for 1 ≤ j ≤ i, then the

differentials are given by

∂i(eF ) =
i∑

j=1

(−1)j−1 mdeg(F )

mdeg(Fj)
eFj .

The definition of the resolution here is a special case of Definition B.1.8 from

Section B.1 using the Lyubeznik simplicial complex Λ(I,≺), as we will see in the

next examples.

Example B.2.6. We will consider I = 〈xy, xz, yz〉 ⊂ k[x, y, z] with the following total

order on G(I)

xy ≺ xz ≺ yz.

We will number the vertices from 1 to 3 in order from least to greatest, so xy will be

vertex 1, xz will be vertex 2, and yz will be vertex 3. For each face, we need to find

its multidegree, then find the least element in G(I) that divides that multidegree
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and check to see if that least element is in the face.

min(mdeg(1)) = min(xy) = xy = 1. 1 ∈ 1 X

min(mdeg(2)) = min(xz) = xz = 2. 2 ∈ 2 X

min(mdeg(3)) = min(yz) = yz = 3. 3 ∈ 3 X

min(mdeg(12)) = min(xyz) = xy = 1. 1 ∈ 12 X

min(mdeg(13)) = min(xyz) = xy = 1. 1 ∈ 13 X

min(mdeg(23)) = min(xyz) = xy = 1. 1 6∈ 23 X

min(mdeg(123)) = min(xyz) = xy = 1. 1 ∈ 123 X

The only face that does not contain the minimum element that divides its multide-

gree is the edge 23. Therefore, 23 and any face that has 23 as a subface is not in

the Lyubeznik simplicial complex. So we have

Λ(I,≺) = {∅, 1, 2, 3, 12, 13}.

The unlabeled and labeled forms of the Lyubeznik simplicial complex are given

here.

Λ(I,≺) =
2 1 3

xz xy yz
xyz xyz

Since there are three vertices and two edges, the associated Lyubeznik resolution
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can be found to be

L(Λ, I,≺) =

(
0 // R2



−z −y

0 x

x 0


// R3

(
xy xz yz

)
// R // 0

e12 e1 e∅

e13 e2

e3

)
.

By defining a different total order on G(I), we could get one of three Lyubeznik

simplicial complexes.

xz xy yz
xyz xyz

xy xz yz
xyz xyz

xy yz xz
xyz xyz

Each of these simplicial complexes supports a Lyubeznik resolution that is similar

to the one above.

It is not true in general that reordering the generators in G(I) will give a

similar Lyubeznik simplicial complex. In fact, for ideals with larger generating sets,

it is very unlikely that two total orders on G(I) give the same Lyubeznik simplicial

complex.

Example B.2.6 shows a few important properties when determining which

faces are in Λ. First, for any vertex i, we get that min(mdeg(i)) = i, so all vertices

are automatically included in Λ. Also, any face G that contains the vertex labeled 1

must have min(mdeg(G)) = 1, so all faces containing the vertex 1 are automatically
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included in Λ. Finally, any face containing a subface that is not in Λ must also not

be in Λ.

Fact B.2.7 (Lyubeznik [4]). For an ideal I and a total order≺ onG(I), the Lyubeznik

resolution L(Λ, I,≺) is a resolution of R/I.

The proof of the previous fact is in Lyubeznik’s original paper when defining

the Lyubeznik resolution [4]. Minimality works the same way as it did in Definition

B.1.11, as we discuss next.

By looking at the definition of ∂i(F ) from Definition B.2.5, minimality holds

true as long as the coefficient of ∂i(F ) is never a unit, i.e., when
mdeg(F )

mdeg(Fj)
6= 1

for all faces F ∈ Λ(I,≺) and for all j. Another way to write this is we need that

mdeg(F ) 6= mdeg(Fj) for all faces F ∈ Λ(I,≺) and for all j.

Definition B.2.8. An ideal I is Lyubeznik if there exists a total order ≺ on G(I) so

that the associated Lyubeznik resolution L(Λ, I,≺) is minimal.

For an ideal to be Lyubeznik, there only needs to be one total order on G(I)

that gives a minimal free resolution. In particular, a Lyubeznik ideal may have as

few as one total order on G(I) that gives a minimal free resolution and the others

do not, as shown in the example below.

Example B.2.9. Consider I = m2 = 〈x2, xy, y2〉 ⊂ k[x, y].

(a) Let ≺ be the following total order on G(I):

x2 ≺ xy ≺ y2.

Each of the vertices 1, 2, and 3 is in Λ(I,≺). Furthermore, edges 12 and 13

are in Λ(I,≺) because they contain the vertex 1 and all of their subfaces are in
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Λ(I,≺). For the edge 23, we see

min(mdeg(23)) = min(xy2) = xy = 2,

so 23 ∈ Λ(I,≺). Therefore, the filled triangle 123 is in Λ(I,≺) because it

contains the vertex 1 and all of its subfaces are in Λ(I,≺). The unlabeled and

labeled Lyubeznik simplicial complexes under ≺ are represented as follows.

Λ(≺) =

1 3

2

Λ(I,≺) =

x2y2

xy 2

x
2 y

x2 y2

xy

x2y2

(unlabeled) (labeled)

To see the associated Lyubeznik resolution is not minimal, consider the filled

triangle F = 123 and the edge G = 13 ⊂ F between x2 and y2. Then

mdeg(F ) = mdeg({x2, xy, y2}) = x2y2 and

mdeg(G) = mdeg({x2y2}) = x2y2,

so the associated resolution L(Λ, I,≺) is not minimal by Definition B.1.11. Al-

ternatively, we can see this by considering the matrix representation of the
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differential ∂2 in L(Λ, I,≺) below, which has a −1 as one of its entries.

0 // R



y

−1

x


// R3



−y y2 0

x 0 −y

0 x2 x


// R3

(
x2 xy y2

)
// R // 0

e123 e12 e1 e∅

e13 e2

e23 e3

(b) Let ` instead be the following total order on G(I):

xy ` x2 ` y2.

Here, the edge 23 is not in Λ(I,`) because min(mdeg(23)) = min(x2y2) = xy =

1 and 1 6∈ 23. It follows that the filled triangle 123 is not in Λ(I,`), since any face

which contains a subface not in Λ(I,`) is also not in Λ(I,`). The unlabeled and

labeled Lyubeznik simplicial complexes under ` are represented as follows.

Λ(`) =

2 3

1

Λ(I,`) =

xy 2

x
2 y

x2 y2

xy

We can check that for both of the faces 12, 13 ∈ Λ(I,`), their multidegree is
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different from the multidegrees of each of their subfaces.

mdeg(1) = xy

mdeg(2) = x2

mdeg(3) = y2

mdeg(12) = x2y

mdeg(13) = xy2

We see that mdeg(12) 6= mdeg(1) and mdeg(12) 6= mdeg(2), and similarly

that mdeg(13) 6= mdeg(1) and mdeg(13) 6= mdeg(3). Therefore, the resolution

L(Λ, I,`) is minimal, so I is Lyubeznik. We can also see this from the fact that

the entries of all the matrix representations of differentials are all in m below.

0 // R2



−x −y

y 0

0 x


// R3

(
xy x2 y2

)
// R // 0

e12 e1 e∅

e13 e2

e3

The naı̈ve way to check whether an ideal is Lyubeznik would then be to look

at every possible total order and either stop when you find one that gives a minimal

free resolution or when you have gone through every possibility. In the next section,

we will introduce some terminology from Guo, Wu, and Yu [3] that will allow us to

determine whether an ideal is Lyubeznik by reducing the set of total orders under

consideration, instead of having to compute every Lyubeznik resolution.
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B.3 Lyubeznik Ideals Through Covers

Here is the aforementioned terminology from Guo, Wu, and Yu [3].

Definition B.3.1. Let I ⊂ R be a monomial ideal. Let u ∈ G(I) be a generator of

I.

(a) A subset C ⊆ G(I) covers u if u ∈ C and u | mdeg(C \ {u}). We also say that

C is a cover of u, and denote this by u C.

(b) A cover C of u is E-minimal if there is no proper subset of C that covers u.

In other words, for any subset {v1, . . . , vi} ofG(I) so that u | mdeg({v1, . . . , vi}),

a cover C of the generator u is the set {u, v1, . . . , vi}. An E-minimal cover is minimal

with respect to containment among all covers of u. In the following example, we

exhibit some covers and E-minimal covers.

Example B.3.2. Consider I = m2 ⊂ k[x, y, z] from Example B.2.2 with minimal

generating set

{x2, xy, y2, xz, yz, z2}.

Let u = xy. Then some possible covers of u are

u {xy, x2, y2} = C1 u | mdeg(C1 \ {u}) = x2y2,

u {xy, x2, yz} = C2 u | mdeg(C2 \ {u}) = x2yz,

u {xy, x2, y2, z2} = C3 u | mdeg(C3 \ {u}) = x2y2z2, and

u G(I) u | mdeg(G(I) \ {u}) = x2y2z2.

To see that C1 and C2 are E-minimal, suppose that u C is a cover contain-

ing 2 elements, say u and v. That would imply that u | mdeg(C\{u}) = mdeg(v) = v,
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which means thatG(I) is not minimal as a generating set of I. Therefore, any cover

must contain at least 3 elements. Since C1 has three elements, no proper subset

of C1 can cover u, so C1 is E-minimal. Similarly, C2 is E-minimal. The cover C3 of

u is not E-minimal because we can remove z2 and the remaining set still covers u.

Similarly, G(I) is not an E-minimal cover of u because we can remove xz, yz, and

z2 and the remaining set still covers u.

Now that we have this notion of covers of generators in G(I), we will define

some particular subsets and elements of covers that will be useful below.

Definition B.3.3. Let u ∈ G(I) and let u C be a cover of u. A subset D ⊆ C is an

out set of C if mdeg(D) = mdeg(C) and for any proper subset E ( D, mdeg(E) 6=

mdeg(D). If a generator v ∈ G(I) is in every out set of C, then we call v an out

point of C. The set of all out points of C is denoted O(C).

Example B.3.4. Again consider I = m2 = k[x, y, z] from Example B.3.2, and con-

sider the cover C = {xy, x2, y2, xz, yz} of xy, so mdeg(C) = x2y2z. The out sets of

C are the smallest subsets of C that also have multidegree x2y2z.

D1 = {x2, y2, xz}

D2 = {x2, y2, yz}

Notice that x2 and y2 are in both out sets, so both are out points and O(C) =

{x2, y2}.

We will use O(G(I)) to represent the out points of the entire generating set.

Another way to think about out points follows.
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Proposition B.3.5. Let C be a cover of u ∈ G(I) and let v ∈ C. Then v is an out

point of C if and only if removing v from C would result in a set with a multidegree

that is a proper factor of mdeg(C).

Proof. First suppose that mdeg(C \{v}) is a proper factor of mdeg(C). Then D\{v}

is not an out set of C for any D ⊆ C since mdeg(D \ {v}) either is the same as

mdeg(C \ {v}) or is a proper factor of mdeg(C \ {v}), so every out set of C must

contain v. Therefore v is an out point of C.

Second, suppose that mdeg(C \ {v}) = mdeg(C). Then there is some D ⊆

C \ {v} so that mdeg(D) = mdeg(C) and no proper subset of D has the same

multidegree as mdeg(C), so D is an out set not containing v. Therefore v is not an

out point of C.

Now we can write down the main result that will let us work with covers

instead of resolutions in order to determine if an ideal is Lyubeznik.

Theorem B.3.6 (Guo, Wu, Yu [3]). Let I = 〈u1, . . . , um〉 ⊂ k[x1, . . . , xs] be a mono-

mial ideal with G(I) = {u1, . . . , um}. The following are equivalent:

(a) I is a Lyubeznik ideal.

(b) There exists a total order ≺ on G(I) so that for any u ∈ G(I) and for any

E-minimal cover C of u, C is not preserved; see Definition B.2.3.

This is Theorem 3.1 in the paper by Guo, Wu, and Yu [3]. At a glance, this

theorem seems like it is not much easier to use than computing Lyubeznik reso-

lutions for every total order and determining whether they are minimal. However,

we can use some properties of covers to pare down the work that we have to do

to apply Theorem B.3.6(b). Applying this result will usually consist of first checking

every E-minimal cover of every generator and determining what we need the total
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order to look like so that those covers are not preserved. To further demonstrate

this, we will work through an example showing whether or not an ideal is Lyubeznik

using only Theorem B.3.6.

Example B.3.7. (a) Let I = 〈x3, x2y, y3, y2z, z3〉 ⊂ k[x, y, z]. We do not immedi-

ately define a total order, but instead start by looking at every E-minimal cover

of every generator. The generators x3, y3, and z3 do not have any covers,

since there are no other generators that have a power of 3 or larger for each

respective variable. For x2y, we get two E-minimal covers

x2y {x2y, x3, y3} = C1, and

x2y {x2y, x3, y2z} = C2.

Any other cover of x2y contains either C1 or C2, so those are the only two

E-minimal covers of x2y. For y2z, there is only one E-minimal cover

y2z {y2z, y3, z3} = C3.

For I to be Lyubeznik, we need to find a total order ≺ on G(I) so that none

of these three covers are preserved. Recall that a set C is preserved if there

are no subsets of C that are broken, i.e., if there are no subsets D ⊆ C so that

some u ∈ G(I) satisfies u | mdeg(D) and u ≺ D. So a set C is not preserved if

there is some subset D ⊆ C so that some u ∈ G(I) satisfies u | mdeg(D) and

u ≺ D. We will look at all subsets Di,j of each Ci with |Di,j| ≥ 2, since sets with
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one element can never be broken.

C1 = D1,0 = {x2y, x3, y3}

D1,1 = {x3, y3}

D1,2 = {x2y, y3}

D1,3 = {x2y, x3}

The only one of these subsets that is broken by an element u ∈ G(I) \ D1,j

such that u | mdeg(D1,j) is D1,1, broken by u = x2y. The only way that C1 could

not be preserved is if

x2y ≺ D1,1 = {x3, y3}. (B.3.7.1)

We go through the same process for C2 and C3. For C2, we have the following

subsets.

C2 = D2,0 = {x2y, x3, y2z}

D2,1 = {x3, y2z}

D2,2 = {x2y, y2z}

D2,3 = {x2y, x3}

Notice that x2y | mdeg(D2,1) and x2y 6∈ D2,1, so x2y causes C2 not to be pre-

served. This is the only way for C2 not to be preserved, so we must have

x2y ≺ {x3, y2z} (B.3.7.2)

in the total order on G(I) in order for I to be Lyubeznik. For C3, we have the
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following subsets.

C3 = D3,0 = {y2z, y3, z3}

D3,1 = {y3, z3}

D3,2 = {y2z, z3}

D3,3 = {y2z, y3}

The only way that C3 could not be preserved is if y2z breaks D3,1, so we must

have that

y2z ≺ {y3, z3} (B.3.7.3)

in the total order on G(I) in order for I to be Lyubeznik. The total order

x2y ≺ y2z ≺ x3 ≺ y3 ≺ z3

on G(I) satisfies all three of the conditions (B.3.7.1), (B.3.7.2), and (B.3.7.3).

Since all the conditions are satisfied using a single total order on G(I), I is a

Lyubeznik ideal.

(b) Consider our running example I = m2 ⊂ k[x, y, z]. We again do not imme-

diately define a total order on G(I), but instead look at some of the possible

E-minimal covers of elements in G(I). In particular, we consider the three E-

minimal covers

xy {xy, xz, y2} = C1,

xy {xy, yz, x2} = C2, and

xz {xz, xy, z2} = C3.
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These are not the only E-minimal covers of elements in G(I), but they are all

we need to show that this ideal is not Lyubeznik, as we see below. There are

a few possibilities for subsets that could break C1, so we can choose any one

of them and I could still be Lyubeznik:

yz | mdeg(C1) = xy2z yz ≺ {xy, xz, y2},

yz | mdeg({xz, y2}) = xy2z yz ≺ {xz, y2},

yz | mdeg({xy, xz}) = xyz yz ≺ {xy, xz}, or

xy | mdeg({xz, y2}) = xy2z xy ≺ {xz, y2}.

Going through a similar process for C2 and C3 gives us four possibilities for

subsets that could break each one. From C2, we get that

xz ≺ {yz, x2},

xz ≺ {xy, yz},

xz ≺ {xy, yz, x2}, or

xy ≺ {yz, x2}.

From C3, we get that

yz ≺ {xy, z2},

yz ≺ {xz, xy},

yz ≺ {xz, xy, z2}, or

xz ≺ {xy, z2}.

We have to consider all possible combinations of these three sets, since we
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need only one combination to be viable. If we choose yz ≺ {xy, xz, y2} in order

to break C1, then none of the conditions to break C2 can be fulfilled on the

same total order on G(I). Similarly for yz ≺ {xy, xz}.

If we choose yz ≺ {xz, y2} to cause C1 not to be preserved, then the

only possibility remaining to cause C2 not to be preserved as well while still

being possible in the same total order on G(I) is for xy to break {yz, x2}. This

leads to the condition xy ≺ {yz, x2} on the total order on G(I). But then none

of the conditions to cause C3 not to be preserved in the same total order are

possible.

Finally, if we choose xy to break {xz, y2} from C1, then we get the con-

dition xy ≺ {xz, y2}. Then we can choose either xz ≺ {yz, x2} or xy ≺ {yz, x2}

to cause C2 not to be preserved as well while maintaining a single total order

on G(I). In either case, none of the conditions to cause C3 not to be preserved

in the same total order are possible. Using Theorem B.3.6, since it is not pos-

sible to define a single total order on G(I) that causes every E-minimal cover

of every u ∈ G(I) not to be preserved, we conclude that I is not a Lyubeznik

ideal.

The largest minimal generating set from either of the examples above had

six elements, but already requires a lot of bookkeeping. For larger ideals, attempt-

ing to go through this process will quickly become a tedious mess. Guo, Wu, and

Yu [3] have written down some other possible methods to determine whether an

ideal is Lyubeznik, which can be found in Sections 4 and 5 of their paper. Most of

their methods require more background definitions than the ones presented in this

thesis.
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Chapter C

Classifying Lyubeznik Ideals with

Four or Fewer Generators

Motivation. The primary motivation for looking at an ideal I from the point of view

of covers is to determine some necessary conditions on the total order on G(I)

in order for I to be a Lyubeznik ideal. Even just determining some classes of

ideals that are always Lyubeznik or non-Lyubeznik would be helpful for the study

of resolutions. There are a few results in the Appendix that give some insight

into the total order of some classes of finitely-generated monomial ideals over a

polynomial ring, although the classes of ideals mentioned are fairly small.

In this chapter, the goal is to classify all ideals minimally generated by four or

fewer elements as either Lyubeznik or non-Lyubeznik, and to provide the conditions

necessary on the total order on G(I) for each of the Lyubeznik ideals. There are

some patterns to be seen from this, although many will require further study to nail

down.
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C.1 Lyubeznik Ideals with Three or Fewer Genera-

tors

The first result here is stated by Guo, Wu, and Yu [3] and deals with any

finitely generated ideal I, but the consequences are helpful for determining the

total order on G(I).

Proposition C.1.1 (Guo, Wu, Yu [3]). If I is a Lyubeznik ideal, then there ex-

ists a total order ≺ on G(I) so that ui1 ≺ · · · ≺ uiα ≺ uj1 ≺ · · · ≺ ujβ , where

O(G(I)) = {uj1 , . . . , ujβ}.

Proof. Suppose that I is Lyubeznik and let O(G(I)) = {uj1 , . . . , ujβ}. Since I is

Lyubeznik, there is a total order on G(I) so that every E-minimal cover of every

generator in G(I) is not preserved, so suppose

u1 ≺ · · · ≺ um

is such an order. We want to show that the order of uji ∈ O(G(I)) does not matter,

as long as all generators in O(G(I)) are greater in the total order than all other

generators. So consider a total order ` on G(I) that moves uj1 to be the largest

element, i.e.

u1 ` · · · ` uj1−1 ` uj1+1 ` · · · ` um ` uj1 .

First, notice that uj1 being an out point means that uj1 never divides the multidegree

of a cover that does not contain it, so for every generator, every E-minimal cover

that does not contain uj1 is still not preserved in the new total order. So suppose

that C is a cover of some generator that contains uj1. Then from the first total

order ≺, there is some subset D ⊆ C and some ui ∈ G(I) satisfying ui | mdeg(D)
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and ui ≺ D. Notice that mdeg(C \ {uj1}) is a proper factor of mdeg(C) because

uj1 ∈ O(C). Therefore for any D ⊆ C with uj1 6∈ D, uj1 cannot break D. The ui

that causes C not to be preserved cannot be uj1. This means that ui ≺ uj1, but

since uj1 became larger in `, ui ` uj1 as well. For that reason, ui still causes C not

to be preserved under `. This argument holds for any out point of G(I), so every

E-minimal cover of every generator is still not preserved under `. We can continue

the process of creating new total orders on G(I) that move uj` to be the largest

element for all out points uj` of G(I) to see that all out points can be largest in the

total order.

A consequence to Proposition C.1.1 is that the order of out points does not

matter in the total order on G(I), as long as all of them are greater than all non-out

points. Proposition C.1.1 does not imply that the total order on G(I) must have all

the out points largest in the total order for I to be Lyubeznik, just that there is at

least one such total order. The converse of Proposition C.1.1 does not hold.

Example C.1.2. Let I = 〈xyz, x2, y2, z2〉 ⊂ R = k[x, y, z]. There is only one cover

of any element in G(I), which is

xyz {xyz, x2, y2, z2} = G(I).

The out sets of this cover are the sets that have the fewest elements while still

maintaining the same multidegree of G(I), so {x2, y2, z2} is the only out set of

G(I). Since an out point is a point that occurs in every out set, every point in the

out set is therefore an out point, so

O(G(I)) = {x2, y2, z2}.
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This means that if I is Lyubeznik, then there is a total order that has all of the out

points greatest in the total order, so we consider the total order

xyz ≺ x2 ≺ y2 ≺ z2

on G(I). Finding the out points and placing them last in the total order does not

automatically mean that the ideal is Lyubeznik, but it is a good starting point for

larger ideals. To be sure that ≺ is a total order so that every E-minimal cover of

every generator is not preserved, we still need to consider the E-minimal cov-

ers. Since there is only one cover of any element, it must be E-minimal. If

we consider the subset {x2, y2, z2} ⊂ G(I), the remaining element xyz satisfies

xyz | mdeg({x2, y2, z2}) = x2y2z2, so xyz can break {x2, y2, z2} as long as xyz oc-

curs before the remaining elements in ≺. Therefore the only E-minimal cover is

not preserved if xyz occurs before the other generators in the total order, so I is

Lyubeznik using ≺. In fact, if there is at most one element in G(I) that is not an

out point, then I is guaranteed to be Lyubeznik with the total order that puts the

non-out point first (if there is one).

For the rest of this section, we will first look at ideals that are minimally gen-

erated by three or fewer generators, since these are all straightforward to classify

using covers.

Proposition C.1.3 (Fontes). Let I = 〈u1, u2, u3〉 ⊂ k[x1, . . . , xs] be an ideal mini-

mally generated by three elements. Then I is Lyubeznik.

Proof. A generator must be covered by at least two other generators, so a cover

must contain at least three elements. Since there are only three generators, there

are two cases.
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1. Suppose there are no E-minimal covers of any elements in G(I). Since there

are no E-minimal covers, then we trivially fulfill condition (b) of Theorem B.3.6,

so I is Lyubeznik.

Furthermore, for any F ⊆ G(I) containing ui, since no generator ui di-

vides mdeg(F \{ui}), then for any face F and subface Gj, mdeg(F ) 6= mdeg(Gj).

So the Lyubeznik resolution is minimal with no necessary relations on the to-

tal order on G(I), which means that any total order ≺ on G(I) will result in a

minimal Lyubeznik resolution.

2. Suppose there is exactly one E-minimal cover in G(I), which is G(I) itself.

Without loss of generality, we will say that G(I) is an E-minimal cover of

u1. Therefore u1 | mdeg(G(I) \ {u1}) = mdeg({u2, u3}) and it follows that

mdeg({u2, u3}) = mdeg(G(I)). In order for G(I) not to be preserved, we need

to consider all possible subsets of G(I).

{u1, u2, u3}

{u2, u3} {u1, u3} {u1, u2}

{u3} {u1} {u2}

∅

Since G(I) contains all generators, it cannot be broken. Note that it is also not

an out set of G(I) because mdeg({u2, u3}) = mdeg(G(I)). Also, since ui is a

generator of I, it is not divisible by any other generator, so the one element

sets also cannot be broken. Note they are also not out sets of G(I) because ui

will be a proper factor of mdeg(G(I)) for any i. So we look at the two element
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sets. We already know that mdeg({u2, u3}) = mdeg(G(I)) and no proper subset

of {u2, u3} has the same multidegree, so {u2, u3} is an out set of G(I) that is

broken by u1. Therefore, G(I) is not preserved, so I is Lyubeznik by Theorem

B.3.6.

Furthermore, if u2 | {u1, u3}, then {u1, u3} is an out set of G(I) that is

broken by u2. Similarly for u3 | {u1, u2}. On the other hand, if u2 - {u1, u3},

then {u1, u3} is not an out set of G(I), so u2 is in all out sets and is an out

point of G(I). We know by Proposition C.1.1 that since I is Lyubeznik, we can

place all of the out points of G(I) to be greatest in ≺. Similarly for u3. So we

can determine a total order on G(I) that gives a minimal Lyubeznik resolution

by finding the out points of our single cover, making them greatest in the total

order, then placing all the other points least in the total order. The order of the

out points does not matter by Proposition C.1.1. The order of the non-out points

does not matter because for G(I) not to be preserved, we only need to choose

one subset of the cover to be broken. If there is more than one set that breaks

a cover, we can choose whichever relation we like.

The proof of Proposition C.1.3 not only tells us that every ideal generated by

three elements is Lyubeznik, but also how to construct a total order on its genera-

tors that will give a minimal Lyubeznik resolution. Additionally, from Case 1, we see

that for any finitely-generated ideal I, if every element in G(I) has no covers, then

I is Lyubeznik under any total order on G(I). In this case, the Taylor resolution and

the Scarf complex are the same as the Lyubeznik resolution.

Example C.1.4. Consider I = m2 = 〈x2, xy, y2〉 ⊂ k[x, y]. This ideal is minimally

generated by three elements, so is Lyubeznik by Proposition C.1.3. The only E-

minimal cover of any element in G(I) is xy G(I). Therefore, the Lyubeznik reso-
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lution is minimal under any total order on G(I) that has xy first and the other two

elements larger in either order. There are two of these possible total orders on

G(I).

xy ≺ y2 ≺ x2

xy ` x2 ` y2

We also could have used Proposition C.1.1 to see that x2 and y2 are out points of

G(I), which means that they can be last in the total order on G(I) and in any or-

der. We have already seen the minimal Lyubeznik resolution L(Λ, I,`) in Example

B.2.9.

Corollary C.1.5. Let I ⊂ k[x1, . . . , xs] be minimally generated by one or two ele-

ments. Then I is Lyubeznik.

Proof. Since a cover must contain at least three elements, an ideal with |G(I)| ≤ 2

cannot have any covers of any elements. Then we fall into Case 1 in the proof

of Proposition C.1.3. We trivially fulfill Condition (b) of Theorem B.3.6, so I is

Lyubeznik. Additionally, any total order on G(I) will result in a minimal Lyubeznik

resolution.

C.2 Lyubeznik Ideals with Four Generators

So far, we have only been dealing with covers of a single generator. How-

ever, Theorem B.3.6 only requires us to determine the elements that cause a cover

not to be preserved, and preservation is a characteristic of a set of elements, not

a cover. Once we have found that a cover of a generator exists, it may be useful to
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consider that cover as just a set of elements. Therefore, we introduce the following

definition in order to avoid repetitions of covers which cover multiple generators.

Definition C.2.1. Let I = 〈u1, . . . , um〉 ⊂ k[x1, . . . , xs] and let {ui1 , . . . , uiα} be the

set of elements of G(I) that are covered by a set Ci. We call {ui1 , . . . , uiα} Ci a

set cover in G(I). Alternatively, we say Ci covers the set {ui1 , . . . , uiα} in G(I), or

the set {ui1 , . . . , uiα} is covered by Ci.

We can apply a similar version of E-minimal covers from Definition B.3.1 to

set covers.

Definition C.2.2. A set cover {ui1 , . . . , uiα} Ci is E-minimal if Ci is an E-minimal

cover of ui` for some 1 ≤ ` ≤ α.

The notable change is that for a set cover to be E-minimal, the set cover only

needs to be an E-minimal cover for some element that it covers. The introduction

of set covers helps to reduce the number of cases in the proof of Theorem C.2.5,

and it can likely help with covers of finitely generated ideals in the future. Now

that we are working with set covers instead of covers of elements, the wording of

Theorem B.3.6 needs to be fine-tuned to include set covers.

Lemma C.2.3. Let I = 〈u1, . . . , um〉 ⊂ k[x1, . . . , xs] be a monomial ideal withG(I) =

{u1, . . . , um}. The following are equivalent:

(a) I is a Lyubeznik ideal.

(b) There exists a total order ≺ on G(I) so that for any u ∈ G(I) and for any

E-minimal cover C of u, C is not preserved.

(c) There exists a total order ≺ on G(I) so that for any E-minimal set cover C in

G(I), C is not preserved.
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Proof. The equivalence of Conditions (a) and (b) is in the paper by Guo, Wu, and

Yu [3]. We will show the equivalence of Conditions (b) and (c). By the definition

of an E-minimal set cover, every E-minimal cover of any u ∈ G(I) is in some E-

minimal set cover in G(I). Also, every E-minimal set cover must contain at least

one E-minimal cover. Therefore, if we consider a cover only as a set of elements,

the set of E-minimal covers is actually the same as the set of E-minimal set covers.

In fact, since determining preservation of an E-minimal cover C is based only on

the cover and not on the element being covered, a total order on G(I) causes

every E-minimal cover C of every u ∈ G(I) not to be preserved if and only if the

same total order on G(I) causes every E-minimal set cover C of G(I) not to be

preserved.

Lemma C.2.3 makes computations a little easier. Once we have found all

of the E-minimal covers of every element u ∈ G(I), we only need to consider the

covers as sets of elements to determine whether a total order on G(I) exists. An

E-minimal cover C of u might also be an (E-minimal) cover of some v 6= u, but

now we can consider just the set C without caring which elements it (E-minimally)

covers. We will often write the set cover {u} C as u C if C only covers a set of

size one.

Example C.2.4. Let I = 〈xy, xz, yzt, x2t2〉 ⊂ R = k[x, y, z, t]. First, consider the
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possible covers of generators in I.

xy {xy, yzt, x2t2} = C1

xy {xy, xz, yzt} = C2

xy G(I)

xz {xz, yzt, x2t2} = C3

xz {xz, xy, yzt} = C2

xz G(I)

yzt G(I)

There are four distinct sets given as covers of the generators. As set covers, these

are

xy {xy, yzt, x2t2} = C1,

{xy, xz} {xy, xz, yzt} = C2,

xz {xz, yzt, x2t2} = C3, and

{xy, xz, yzt} G(I).

If we want to determine whether I is Lyubeznik, we need to consider the E-minimal

set covers in G(I). Any three-element set cover must be E-minimal since there can

not be any covers with fewer than three elements, and G(I) is an E-minimal cover

of yzt. Therefore each of the four set covers above are E-minimal, so we need to

look for the ways in which the set covers cannot be preserved. One possible total
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order ≺ on G(I) satisfies the following conditions:

From C1 : xy ≺ {yzt, x2t2}

From C2 : xy ≺ {xz, yzt}

From C3 : xz ≺ {yzt, x2t2}

From G(I) : xy ≺ {xz, yzt}.

Observe that xy ≺ xz ≺ yzt ≺ x2t2 is a total order that satisfies all four conditions

above, which means that every E-minimal set cover is not preserved. Therefore I

is Lyubeznik by Lemma C.2.3. Using set covers here let us consider C2 only once

when finding ≺, rather than considering it as both an E-minimal cover of xy and an

E-minimal cover of xz.

Remark. Let I = 〈u1, u2, u3, u4〉 ⊂ k[x1, . . . , ks] be an ideal minimally generated by

four elements. If there are i three-element set covers in G(I), then there are 4 − i

generators that are in every three-element set cover.

For example, if there are three set covers of size three, say C1 = {u1, u2, u3},

C2 = {u1, u2, u4}, and C3 = {u1, u3, u4}, then there is only 4−3 = 1 generator u1 that

is contained in every one of the set covers. This remark is only true when the ideal

is minimally generated by exactly four elements. However, it helps to determine the

necessary cases to prove the main theorem below, which is also specific to ideals

minimally generated by exactly four elements.

Theorem C.2.5 (Fontes). Let I = 〈u1, u2, u3, u4〉 ⊂ k[x1, . . . , ks] be a monomial

ideal minimally generated by four elements. Then I is Lyubeznik if and only if one

of the following cases occur:

(a) There are either no (set) covers or exactly one E-minimal set cover in G(I).

45



(b) All but at most one E-minimal set cover of size three in G(I) cover the same

element u ∈ G(I), and if there is one E-minimal set cover C that does not cover

u, then u /∈ C.

Furthermore, for Case (a), if there are no (set) covers, then any total order

on G(I) satisfies Lemma C.2.3(c). If there is exactly one E-minimal set cover C

in G(I), then the total order on G(I) that places an element that is covered by C

smallest then the other elements larger in any order satisfies Lemma C.2.3(c).

For Case (b), if all E-minimal set covers cover the same element u, the

total order on G(I) that places u smallest and the other elements larger in any

order satisfies Lemma C.2.3(c). If there is one E-minimal set cover C that does

not cover or contain u, the total order on G(I) that places u smallest, places an

element covered by C second, and places the other two elements larger in any

order satisfies Lemma C.2.3(c).

Since Theorem C.2.5 refers only to a four-generated ideal, there are only

five possible set covers of G(I), the four set covers of size three and G(I). Since

an E-minimal three-element set cover cannot have any element removed while still

being E-minimal, every three-element set cover is E-minimal. Therefore I will often

leave out the word “E-minimal” in the proof when talking about set covers of size

three. Also, Case (b) of Theorem C.2.5 concerns itself with only the E-minimal set

covers of size three. As it turns out, if G(I) is an E-minimal set cover and there is at

least one other E-minimal set cover, G(I) does not give a unique condition for the

purpose of determining the total order needed in Lemma C.2.3(c), since G(I) and

every other E-minimal set cover have at least one element and subset in common

that causes both not to be preserved.

Proof. We will consider all possible cases for the number and type of set covers in
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G(I). For each case or subcase, we will determine whether the ideal I would be

Lyubeznik by checking if Condition (c) of Lemma C.2.3 holds. If we find just one

total order on G(I) that causes each E-minimal set cover not to be preserved, then

I is Lyubeznik. If we show that no total order on G(I) is possible that causes each

E-minimal set cover not to be preserved, then I is not Lyubeznik. Each case is

presented below.

1. Suppose there are no (set) covers or exactly one E-minimal set cover in G(I).

The proof for this case follows a similar argument as the proof for Proposition

C.1.3, so I is Lyubeznik. In the case of no covers, the order of elements in the

total order on G(I) does not matter. In the case of one set cover, I is Lyubeznik

with the total order on G(I) that has some generator covered by the set cover

first and the other elements larger in any order.

2. Suppose there are exactly two E-minimal set covers in G(I). We split into sub-

cases based on which generators are covered by which set covers.

a. Suppose one of the E-minimal set covers isG(I). This means there is exactly

one set cover which has three elements, say u1 {u1, u2, u3} = C, and one

set cover G(I) which has all four elements. One of the elements that G(I) E-

minimally covers needs to be an element that is not covered by C. Consider

an element, say u1, that breaks {u2, u3} ⊂ C, so we get the condition u1 ≺

{u2, u3} on the total order from C. Then u1 also breaks {u2, u3} ⊂ G(I), so

the condition on the total order from G(I) does not contribute uniquely to the

conditions necessary on the total order in order for I to be Lyubeznik. So I

is Lyubeznik if and only if the condition on the total order gained from C not

being preserved produces a total order on G(I). Since this now essentially

falls into Case (1), I is Lyubeznik with the same total order on G(I) as the
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one that would be produced if C were the only E-minimal set cover.

The remaining subcases in Case (2) necessarily do not have G(I) as

one of the E-minimal set covers.

b. Suppose that both set covers C1 and C2 are covers of the same generator

u1. Then both set covers must contain u1 and must have three elements, so

suppose they are

C1 = {u1, u2, u3} and

C2 = {u1, u2, u4}.

In order for C1 not to be preserved, u1 can break the subset {u2, u3} ⊂ C1,

which gives the condition u1 ≺ {u2, u3} on the total order from C1. Also, u1

can break the subset {u2, u4} ⊂ C2, which gives the condition u1 ≺ {u2, u4}

on the total order from C2. There is a total order

u1 ≺ u2 ≺ u3 ≺ u4

which fulfills both of these conditions, so I is Lyubeznik with the total order

on G(I) that puts the element covered by both set covers first and the other

elements larger in any order.

c. Suppose that one set cover C1 is a cover of the element u1 that does not

appear in the other set cover C2, so suppose they are

u1 C1 = {u1, u2, u3} and

C2 = {u2, u3, u4}.
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Then u1 can break the subset {u2, u3} ⊂ C1, which gives the condition u1 ≺

{u2, u3} on the total order from C1. Since C2 is a set cover, one of its elements

must break the subset containing the other two, so say u2 breaks {u3, u4} ⊂

C2 and gives the condition u2 ≺ {u3, u4} on the total order from C2. The total

order

u1 ≺ u2 ≺ u3 ≺ u4

fulfills both of these conditions, so I is Lyubeznik with the total order on G(I)

that puts the element not in C2 first, some element covered by C2 second,

and the others larger in any order.

d. Suppose that C1 and C2 are both set covers containing u1 and u2, but u1 is

not covered by C2 and u2 is not covered by C1, since then we would be in

Subcase (2b). Also neither set cover covers the element not in the other

set cover, since then we would be in Subcase (2c). We are left with the two

covers (not set covers)

u1 C1 = {u1, u2, u3} and

u2 C2 = {u1, u2, u4}.

The only possible way that C1 and C2 could not be preserved are when u1

breaks {u2, u3} ⊂ C1 and when u2 breaks {u1, u4} ⊂ C2. Then the conditions

on the total order we could have are u1 ≺ {u2, u3} from C1 and u2 ≺ {u1, u4}

from C2. We cannot fulfill u1 ≺ u2 and u2 ≺ u1 in the same total order, so I is

not Lyubeznik.

3. Suppose there are exactly three E-minimal set covers in G(I). We split into

subcases again based on which elements are covered by which set covers.
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a. Suppose one of the E-minimal set covers is G(I). One of the elements that

G(I) E-minimally covers needs to be an element that is covered by neither

of the other two set covers C1 and C2. However, any element that causes

C1 or C2 not to be preserved also causes G(I) not to be preserved, which

means that the condition gained from G(I) does not contribute uniquely to

the conditions necessary on the total order. So I is Lyubeznik if and only if

the conditions on the total order gained from C1 and C2 not being preserved

produce a single total order on G(I). Furthermore, if I is Lyubeznik, it is with

the total order on G(I) that is produced from conditions given by only the

three-element set covers. Since this now essentially falls into Case (2), we

can determine whether I is Lyubeznik by looking at the total order on G(I)

produced if C1 and C2 were the only E-minimal set covers.

The remaining subcases in Case (3) necessarily do not have G(I) as

one of the E-minimal set covers.

b. Suppose that C1, C2, and C3 are all set covers that cover the same generator,

say u1. Then all three covers must contain u1 and must have three elements,

so they must be

C1 = {u1, u2, u3},

C2 = {u1, u2, u4}, and

C3 = {u1, u3, u4}.

Then u1 breaks {u2, u3} ⊂ C1, {u2, u4} ⊂ C2, and {u3, u4} ⊂ C3. All three

conditions on the total order on G(I) from the three set covers not being
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preserved just require that u1 comes first, so the total order

u1 ≺ u2 ≺ u3 ≺ u4

fulfills all three conditions. Therefore I is Lyubeznik with the total order on

G(I) that puts the element covered by every set cover first and the other

elements larger in any order.

c. Suppose that two set covers C1 and C2 cover the same generator, say u1,

and a third set cover C3 = {u2, u3, u4} does not contain u1. Suppose without

loss of generality the set covers are

u1 C1 = {u1, u2, u3},

u1 C2 = {u1, u2, u4}, and

u1 6∈ C3 = {u2, u3, u4}.

Then u1 can break {u2, u3} ⊂ C1 and u1 can also break {u2, u4} ⊂ C2, which

give the conditions u1 ≺ {u2, u3} from C1 and u1 ≺ {u2, u4} from C2 on the

total order. Choose any element that C3 covers. If C3 covers u2, then we get

that u2 breaks {u3, u4}, which gives the condition u2 ≺ {u3, u4} on the total

order from C3. The total order

u1 ≺ u2 ≺ u3 ≺ u4

on G(I) fulfills all three conditions that cause the set covers not to be pre-

served. If C3 covers u3 or u4, say u3, but not u2, the condition on the total

order from C3 would be u3 ≺ {u2, u4} and a total order on G(I) that fulfills all
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three conditions would be

u1 ≺ u3 ≺ u2 ≺ u4.

Therefore I is Lyubeznik with the total order on G(I) that puts the element

covered by two set covers first, followed by an element covered by the third

set cover, and finally the other two elements larger in any order.

d. Suppose that two set covers C1 and C2 cover the same generator u1 ∈ G(I)

and a third set cover C3 contains but does not cover u1, and we do not fall

in to Subcase (3c). If C3 covered u1, then we would be in Subcase (3b), so

suppose that the set covers are

u1 C1 = {u1, u2, u3},

u1 C2 = {u1, u2, u4}, and

u3 C3 = {u1, u3, u4}

with u1 ��C3. We can choose u3 or u4 to be the element covered by C3, so

without loss of generality we suppose C3 covers u3. In order to not fall in to

Subcase (3c), we must have u3 ��C1, C1 and C2 can not both cover u2, and

C2 and C3 can not both cover u4. First, consider the case where C1 or C2

does not cover any other elements. If C1 does not cover any other elements,

the only possible condition on the total order from C1 not being preserved is

u1 ≺ {u2, u3} ⊂ C1.

Since u1 ��C3, there are only two possible conditions on the total order from
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C3 not being preserved,

u3 ≺ {u1, u4}, or

u4 ≺ {u1, u3}

If u4 ��C3, we can not fulfill both the condition u1 ≺ u3 from C1 and u3 ≺ u1

from C3. If u4 C3, then we consider C2. We have u4 ��C2 since otherwise

both C2 and C3 covering u4 would put us in Subcase (3c). If C2 does not

cover u2, then there is no total order that can fulfill the three conditions

u1 ≺ {u2, u3} from C1,

u1 ≺ {u2, u4} from C2, and

u4 ≺ {u1, u3} from C3.

If C2 does cover u2, then there is no total order that fulfills the three conditions

u1 ≺ {u2, u3} from C1,

u2 ≺ {u1, u4} from C2, and

u4 ≺ {u1, u3} from C3.

Next, consider the case where both C1 and C2 cover an additional element.

If they both cover u2, then we are in Subcase (3c), since C3 does not contain

u2. If C1 covers u3, then we are in Subcase (3c) again since C2 does not

contain u3. If C1 covers u2, C2 covers u4, and C3 covers u4, then we would

again be in Subcase (3c) since C1 does not contain u4. If C1 covers u2,

C2 covers u4, and C3 does not cover u4, then we would have the following
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conditions on the total order from each cover not being preserved.

u2 ≺ {u1, u3} from C1

u4 ≺ {u1, u2} from C2

u3 ≺ {u1, u4} from C3

There is no total order that fulfills all three conditions. Therefore I is not

Lyubeznik.

e. Suppose that each of the three set covers C1, C2, and C3 covers a different

element than the others and does not cover any of the elements that are

covered by another set cover. In other words, suppose we have the following

conditions.

u1 {u1, u2, u3} = C1 {u2, u3}��C1

u2 {u2, u3, u4} = C2 {u1, u3}��C2

u3 {u1, u3, u4} = C3 {u1, u2}��C3

Then to cause C1 not to be preserved, we must use that u1 breaks {u2, u3},

so a necessary condition on the total order from C1 is u1 ≺ {u2, u3}. If C3

only covers u3, then that would give us a condition u3 ≺ {u1, u4} on the total

order, and there is no total order that fulfills both conditions. So suppose that

C3 also covers u4, which gives the condition u4 ≺ {u1, u3} on the total order

from C3. Since C2 can not also cover u4, we must get that C2 only covers

u2, so the necessary condition on the total order from C2 is u2 ≺ {u3, u4}. All

54



three of the conditions

u1 ≺ {u2, u3} from C1,

u2 ≺ {u3, u4} from C2, and

u4 ≺ {u1, u3} from C3

can not be fulfilled on the same total order. We reach the same conclusion

if C3 covers u4 instead of u3 or if one of the set covers was replaced by

{u1, u2, u4}, so I is not Lyubeznik.

4. Suppose there are exactly four E-minimal set covers in G(I). We split into

subcases again based on which elements are covered by which set covers.

a. Suppose one of the set covers is G(I). Then with the same argument as

Subcase (3a), I is Lyubeznik if and only if the conditions on the total order

gained from the three set covers of size three not being preserved produces

a total order on G(I). Furthermore, if I is Lyubeznik, then it is with the

total order on G(I) that is produced from only the three-element set covers.

Since this now essentially falls into Case (3), we can determine whether I is

Lyubeznik by looking at the total order on G(I) produced if the set covers of

size three were the only E-minimal set covers.

The remaining subcases necessarily do not have G(I) as one of the

E-minimal set covers. Note that it is not possible for all four covers of size

three to cover the same element, since the element being covered must be

in the set cover.

b. Suppose that three set covers C1, C2, and C3 all cover the same element u1
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and the fourth set cover C4 covers a different element, say u2. So we have

u1 {u1, u2, u3} = C1 u1 ≺ {u2, u3}

u1 {u1, u2, u4} = C2 u1 ≺ {u2, u4}

u1 {u1, u3, u4} = C3 u1 ≺ {u3, u4}

u2 {u2, u3, u4} = C4 u2 ≺ {u3, u4}

All four of these conditions are satisfied by the total order

u1 ≺ u2 ≺ u3 ≺ u4

on G(I), so I is Lyubeznik with the total order on G(I) that puts the element

covered by three set covers first, an element covered by the fourth set cover

second, and the other elements larger in any order.

c. Suppose that two set covers C1 and C2 cover the same element u1 and do

not cover u3 or u4, the third set cover C3 covers u3 but not u1 or u4, and the

fourth set cover C4 covers u4 but not u1 or u3. We have

u1 {u1, u2, u3} = C1 u3 ��C1

u1 {u1, u2, u4} = C2 u4 ��C2

u3 {u1, u3, u4} = C3 {u1, u4}��C3

u4 {u2, u3, u4} = C4 u3 ��C4

The two conditions on the total order from u1 breaking {u2, u3} ⊂ C1 and

u3 breaking {u1, u4} ⊂ C3 can not be fulfilled at the same time. If C1 were

to cover u2 as well, the two conditions on the total order from u2 breaking
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{u1, u3} ⊂ C1 and u1 breaking {u2, u4} ⊂ C2 can not be fulfilled at the same

time. If C2 were to also cover u2, then we would be back in the same position

we started in. Therefore I is not Lyubeznik.

d. Suppose every set cover is of a different element, and no other element is

covered by any set cover, so we have

u1 {u1, u2, u3} = C1 {u2, u3}��C1

u2 {u1, u2, u4} = C2 {u1, u4}��C2

u3 {u1, u3, u4} = C3 {u1, u4}��C3

u4 {u2, u3, u4} = C4 {u2, u3}��C4

Then each set cover only gives one possible condition on the total order to

cause every set cover not to be preserved, which are

From C1 : u1 ≺ {u2, u3}

From C2 : u2 ≺ {u1, u4}

From C3 : u3 ≺ {u1, u4}

From C4 : u4 ≺ {u2, u3}

The first two of these conditions are not possible in the same total order, so

I is not Lyubeznik.

e. Suppose that two set covers C1 and C2 cover the same element u1 but not u3

and that the other two set covers C3 and C4 cover the same element u3 but
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not u1, since otherwise we would be in Subcase (4b). So we have

u1 {u1, u2, u3} = C1 u3 ��C1

u1 {u1, u2, u4} = C2

u3 {u1, u3, u4} = C3 u1 ��C3

u3 {u2, u3, u4} = C4

The two conditions on the total order from u1 breaking {u2, u3} ⊂ C1 and u3

breaking {u1, u4} ⊂ C3 can not be fulfilled at the same time, so at least one

of C1 or C3 must cover an additional element. If C1 covers u2 as well or if

C3 covers u4 as well, then we are in Subcase (4c). If both C1 covers u2 and

C3 covers u4, then we are in subcase (4d), since we know that the original

elements that are covered by C1 and C3 do not give a condition that allows

for a single total order on G(I). Therefore I is not Lyubeznik.

5. Suppose that there are exactly five E-minimal set covers in G(I), which means

G(I) is an E-minimal set cover and every three-element set is also a set cover.

With the same argument as Subcases (3a) and (4a), I is Lyubeznik if and only

if the conditions on the total order gained from the four set covers of size three

not being preserved produces a single total order on G(I). Furthermore, if I is

Lyubeznik, then it is with the total order on G(I) that is produced from only the

three-element set covers. Since this now essentially falls into Case (4), we can

determine whether I is Lyubeznik by looking at the total order on G(I) produced

if the set covers of size three were the only E-minimal set covers.

After going through every case, we get that I is Lyubeznik when it meets

one of the following conditions.
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(a) There are either no (set) covers or exactly one E-minimal set cover in G(I).

(b) There are exactly two set covers of size three, both of which cover the same

generator.

(c) There are exactly two set covers of size three, one of which covers a generator

u that does not appear in the second set cover.

(d) There are exactly three set covers of size three, all three of which cover the

same generator.

(e) There are exactly three set covers of size three, two of which cover the same

generator u and the third does not contain u.

(f) There are exactly four set covers of size three, three of which cover the same

generator u and the fourth does not contain u.

Conditions (b) and (d) have every set cover covering the same generator. Also, the

total order on G(I) that satisfies Lemma C.2.3(c) for each of these is found in the

same way. Similarly, conditions (c), (e), and (f) have all but one set cover covering

the same generator u, and the final set cover not containing u. Also, the total order

on G(I) that satisfies Lemma C.2.3(c) for each of these is found in the same way.

Combining conditions (b) through (f) into a single statement gives us exactly the

statement in Theorem C.2.5(b).

Here are a few examples of using Theorem C.2.5.

Example C.2.6. (a) Consider the ideal I = 〈xy, xz, yzt, x2t2〉 ⊂ R = k[x, y, z, t].

We already know I is Lyubeznik by Example C.2.4. We have also already
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seen that the four E-minimal set covers in G(I) are

{xy} {xy, yzt, x2t2} = C1,

{xy, xz} {xy, xz, yzt} = C2,

{xz} {xz, yzt, x2t2} = C3, and

{xy, xz, yzt} G(I).

There are exactly three E-minimal set covers of size three in G(I) with both C1

and C2 covering xy and with xy 6∈ C3. Since xy C1 and xy C2, but xy 6∈ C3,

we can see that I is Lyubeznik by Theorem C.2.5(b). In fact, we also know

from Subcase (3c) in the proof of Theorem C.2.5 that two possible total orders

on G(I) that have every set cover not preserved are

xy ≺ xz ≺ yzt ≺ x2t2, and

xy ` xz ` x2t2 ` yzt,

since both of those have the element covered by two set covers (xy) first, an

element covered by the third set cover (xz) second, and the other elements

larger in any order. Notice that ` does not have the only out point x2t2 largest,

but it is still a viable total order on G(I) to satisfy Lemma C.2.3(c).

(b) Consider the ideal I = 〈xy, zt, xz, yt〉 ⊂ R = k[x, y, z, t]. The E-minimal set
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covers in G(I) follow.

xy {xy, xz, yt} = C1

zt {zt, xz, yt} = C2

xz {xz, xy, zt} = C3

yt {yt, xy, zt} = C4

There are exactly four E-minimal set covers of size three in G(I), all four of

which cover one element which is different than any of the others. This does

not meet the criteria for Theorem C.2.5, so I is not Lyubeznik. This can also

be checked by looking at the necessary conditions on the total order from each

of the E-minimal set covers, and finding there is no total order that satisfies

Lemma C.2.3(c).

(c) Consider the ideal I = 〈xy, zt, x2z2, y2t2〉 ⊂ R = k[x, y, z, t]. There are two

E-minimal set covers in G(I), which are

xy {xy, x2z2, y2t2} = C1, and

zt {zt, x2z2, y2t2} = C2.

Since C1 covers the element xy that does not appear in C2, I is Lyubeznik

by Theorem C.2.5(b). Furthermore, we get from Subcase (2c) in the proof of

Theorem C.2.5 that a possible total order on G(I) that has every set cover not

preserved is

xy ≺ zt ≺ x2z2 ≺ y2t2,

since ≺ has the element not in C2 first, an element covered by C2 second, and
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the other elements larger in any order. If we instead noticed that C2 covers the

element zt that does not appear in C1, we again fall into Subcase (2c) in the

proof. Therefore another possible total order on G(I) that has every set cover

not preserved is

zt ` xy ` x2z2 ` y2t2,

since ` has the element not in C1 first, an element covered by C1 second, and

the other elements larger in any order.

Using Theorem C.2.5 requires less work than using Theorem B.3.6 both

to determine if I is Lyubeznik and to find a relevant total order on G(I). This

also means that if I is Lyubeznik, less work is required to determine the minimal

free resolution of I, since we already know a total order that gives the minimal

Lyubeznik resolution.

Example C.2.7. Consider the ideal I = 〈xy, xz, yzt, x2t2〉 ⊂ R = k[x, y, z, t] again,

which we know via Example C.2.6(a) is Lyubeznik with the total order

xy ≺ xz ≺ yzt ≺ x2t2

on G(I). We construct the Lyubeznik simplicial complex and Lyubeznik resolution

using Definition B.2.5. Number the vertices from 1 to 4 and label them with the

generators in order from least to greatest under ≺. For each possible face F in the

simplex ∆3, we consider whether F is in the Lyubeznik simplicial complex Λ(I,≺)

by determining if min(mdeg(F )) ∈ F . Any vertex automatically satisfies this. Also,

any face containing the first vertex 1, labeled with xy, in ≺ as one of its vertices

automatically satisfies this as long as all of its subfaces are also in Λ(I,≺). We
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check the remaining faces.

min(mdeg(23)) = min(xyzt) = xy = 1 1 6∈ 23 X

min(mdeg(24)) = min(x2zt2) = xz = 2 2 ∈ 24 X

min(mdeg(34)) = min(x2yzt2) = xy = 1 1 6∈ 34 X

min(mdeg(124)) = min(x2yzt2) = xy = 1 1 ∈ 124 X

We do not need to check if any of the other filled triangles are in Λ(I,≺) because

they contain at least one of the edges 23 or 34, which we already determined are

not in Λ(I,≺). Similarly, we do not need to check if the solid tetrahedron is in

Λ(I,≺). So the Lyubeznik simplicial complex is

Λ(I,≺) = {∅, 1, 2, 3, 4, 12, 13, 14, 24, 124}

and is represented by

Λ(I,≺) =

x
y
zt

xyz

x
2zt

2

x 2
yt 2

yzt
3

x2t2,
4

xz
2

xy
1

x2yzt2

where the multidegree of each face is shown. Since there is one filled triangle,

four edges, and four vertices, the associated Lyubeznik resolution L(Λ, I,≺) can
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be found to be

0 // R



xt2

0

−z

y


// R4



−z −zt −xt2 0

y 0 0 −xt2

0 x 0 0

0 0 y z


// R4

(
xy xz yzt x2t2

)
// R // 0.

e124 e12 e1 e∅

e13 e2

e14 e3

e24 e4

Since we found that I is Lyubeznik by Theorem C.2.5, we know that L(Λ, I,≺) is

the minimal free resolution of R/I over R.
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Chapter D

Further Study

Generally, the purpose of determining whether an ideal is Lyubeznik is so

that we can explicitly compute the minimal free resolution for that ideal by comput-

ing the Lyubeznik resolution. The current relationship between the resolutions of

Lyubeznik ideals and the E-minimal covers of Lyubeznik ideals is in the total order

on G(I), as seen in Example C.2.7.

Question. What other relationships are there between covers of elements in G(I)

and Lyubeznik resolutions?

There are many ways that one could look into this question. A few sugges-

tions follow.

One way is to consider what E-minimal covers of generators look like on

a simplicial complex, since the Lyubeznik simplicial complex is also constructed

based on a total order on G(I). Covers always consist of generators of G(I),

which are the vertices on the simplicial complex Λ. In a Lyubeznik ideal, the el-

ements that cause covers to not be preserved might in some way be related to

the higher-dimension faces that do or do not appear in Λ. Additionally, Λ is built by

considering the preserved faces in ∆I , while Lemma C.2.3 considers the E-minimal
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covers that are not preserved, which implies that there may be a relationship us-

ing preservation of sets. Also, the differentials ∂i on a Lyubeznik resolution L are

based on the multidegrees of the labels on the faces of Λ, which may correspond

to the multidegrees we have used to find covers of elements in G(I).

Another way is to consider an alternate definition to Definition B.2.5 which is

covered by Mermin [5], Novik [6], and Sather-Wagstaff [7]. The alternate definition

builds the Lyubeznik simplicial complex Λ via rooted faces, and is more commonly

used in the field than looking for the faces that are preserved. These definitions for

Λ are similar, but the way to determine whether the associated Lyubeznik resolution

L is minimal differs between the two methods. Looking for similarities between the

two constructions could help understand both covers and Lyubeznik resolutions.

There is also natural followup question to Theorem C.2.5.

Question. How feasible is it to determine if ideals generated by five or more ele-

ments are Lyubeznik, and how difficult is it to explicitly compute the total order on

G(I) for these ideals?

The proof to Theorem C.2.5 is dependent on there being at most five set

covers in G(I). When looking at five-generated ideals, the total number of possible

set covers is (
5

3

)
+

(
5

4

)
+

(
5

5

)
= 16,

so it is possible but not very feasible to continue the process by looking at every

possible number of E-minimal set covers in G(I). There may be other general-

izations found from the four-generated case, though. One idea to think about for

four-generated ideals is that independent of the number of set covers in G(I), if all

but at most one of them cover the same element as possible and the remaining

set cover does not contain that element, then I is Lyubeznik. While this statement
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is not true for ideals generated by five or more elements (consider the Lyubeznik

ideal I = 〈x2y2, z2t2, x2z2, y2t2, xyzt〉, which has six E-minimal covers of size three),

perhaps it could be generalized to consider more classes of ideals.

Additionally, there are a few results in the Appendix for this thesis that are

about any finitely generated ideal. In particular, there may be similar ideas to the

Proposition and following Example that could be applied to any finitely generated

ideal. Ideals from these classes are not Lyubeznik. While it is useful to know when

an ideal is not Lyubeznik at a glance, the preferred conclusion would be that some

class of ideals is Lyubeznik, especially with an explicit total order on G(I). There

are additional classes of Lyubeznik ideals that are mentioned in Guo, Wu, and Yu’s

paper [3], including tame ideals, cone ideals, and M-cone ideals. For cone ideals

and M-cone ideals, the associated total order on G(I) is described. However, for

tame ideals, the associated total order on G(I) is not described. Looking into the

details of those classes of Lyubeznik ideals or determining the necessary total

order on G(I) for tame ideals may be helpful.

A final question relates to the definitions regarding covers that were never

used in this thesis.

Question. How are other properties of covers useful for determining whether an

ideal is Lyubeznik?

Guo, Wu, and Yu [3] define additional types of covers, including complete

covers and M-minimal covers. They use these definitions to provide some addi-

tional results about Lyubeznik ideals, in particular Proposition 4.2 of their paper.

Considering these other definitions and results in conjunction with some of the

patterns found in this thesis could be a good stepping-off point for more study on

covers. Also, while out sets and out points are the easiest type of points to find
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in a cover, there are additional definitions for inner points, boundary points, and

exchangeable points which allow for additional complexity and intricacy. Guo, Wu,

and Yu [3] discuss how to explicitly determine if a point is an out point, inner point,

boundary point, or exchangeable point of a cover in Chapter 6 of their paper. These

computations are fairly opaque, but may be useful to determine whether an ideal

is Lyubeznik after breaking G(I) down into the various types of points for each of

its covers.

Considering Lyubeznik ideals from the standpoint of covers is a fairly new

field of study, and any classes of ideals that are found to be Lyubeznik by using

covers can give more insight into the corresponding minimal Lyubeznik resolution

for the ideals. If we can explicitly compute a total order on G(I) using covers, then

we can also explicitly compute the minimal free resolution for I, which helps to

satisfy our overall goal of understanding classes of ideals.
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Some More about Covers

This appendix is devoted to some results about finitely generated ideals

which are not necessary for the proof of Theorem C.2.5, but came up naturally in

the process.

Proposition. Let I = 〈u1, . . . , um〉 ⊂ k[x1, . . . , xs]. Then |O(G(I))| ≤ s.

Proof. The multidegree of G(I) is mdeg(G(I)) = xa11 x
a2
2 · · ·xass , where ai ≥ 0 for

1 ≤ i ≤ s. Let r ≤ s be the number of variables where ai ≥ 1, and reorder

the variables so that mdeg(G(I)) = xa11 x
a2
2 · · ·xarr satisfies ai ≥ 1 for 1 ≤ i ≤ r.

Let D ⊆ G(I) be an out set of G(I), so mdeg(D) = xa11 x
a2
2 · · ·xarr as well. For all

1 ≤ i ≤ r, there must be some udi ∈ D so that xaii | udi since D is an out set. The

udi ’s are not necessarily distinct, but we can find an upper bound on the size of this

set to be

|{ud1 , . . . , udr}| ≤ r.

In other words, since D is an out set, it is one of the smallest subsets of G(I)

that has the same multidegree as G(I). For each variable with nonzero exponent,

there must be at least one element of D that attains the exponent of that variable

in mdeg(G(I)). Now let uj ∈ G(I) such that uj 6= udi for any 1 ≤ i ≤ r. Then we

have

uj | xa11 x
a2
2 · · ·xarr | ud1ud2 · · ·udr .

Therefore uj 6∈ D for any uj 6= udi and any out point must be in D, so

|O(G(I))| ≤ |{ud1 , . . . , udr}| ≤ r ≤ s.
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The above proposition is most useful when there are s out points in G(I)

that are straightforward to find, like in the ideal I = m2 = {x2, xy, y2, xz, yz, z2}

in R = k[x, y, z]. Since x2, y2, and z2 are out points of I and R only has three

variables, none of the other elements in I can be out points.

Next, consider the following example as a preface to the subsequent proposition

and corollary.

Example. Consider I = 〈x1, . . . , xs〉n ⊂ k[x1, . . . , xs] for s ≥ 2 and n ≥ 3. Consider

the following two E-minimal covers of generators in G(I).

xn−1
1 x2 {xn−1

1 x2, x
n
1 , x

n−2
1 x2

2}

xn−2
1 x2

2 {xn−2
1 x2

2, x
n−1
1 x2, x

n−3
1 x3

2}

These two covers only include the four elements xn1 , x
n−1
1 x2, x

n−2
1 x2

2, and xn−3
1 x3

2.

However, if we try to use Theorem B.3.6 to determine if the ideal is Lyubeznik,

these covers already give us two necessary conditions on the total order on G(I).

xn−1
1 x2 ≺ {xn1 , xn−2

1 x2
2}

xn−2
1 x2

2 ≺ {xn−1
1 x2, x

n−3
1 x3

2}

These are not both possible to fulfill with the same total order. There is also no

generator in G(I) that divides the multidegree of either cover. Therefore I is not

Lyubeznik by Theorem B.3.6, and we will see in the next Proposition that I is not

Lyubeznik for any ideal that has two covers of this sort.

The above example shows that at least 3rd powers of the maximal ideal of
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a polynomial ring in at least two variable are not Lyubeznik. Interestingly enough,

the converse of that statement is actually true, which is proved in the following

Corollary to Proposition D.

Proposition. Suppose I is an ideal generated by at least four elements that has

two covers u2 C1 and u3 C2 of the form

u2 {u1, u2, u3} = C1, and

u3 {u2, u3, u4} = C2

so that u`1 does not break C1 for any `1 6= 2 and so that u`2 does not break C2 for

any `2 6= 3. Then I is not Lyubeznik.

Proof. Suppose I = 〈u1, . . . , um〉 ⊂ k[x1, . . . , xs] has two covers

u2 {u1, u2, u3} = C1, and

u3 {u2, u3, u4} = C2

so that u`1 does not break C1 for any `1 6= 2 and so that u`2 does not break C2

for any `2 6= 3. If a different set of four generators has the same property, then

reorder G(I) so those four generators appear first. Then we have two necessary

conditions for the total order on G(I) are

u2 ≺ {u1, u3}, and

u3 ≺ {u2, u4}.

These two conditions can not be fulfilled by the same total order on G(I), so I is

not Lyubeznik.
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This class of ideals is very restrictive, since it requires that no element other

than u2 breaks mdeg(C1) and no element other than u3 breaks mdeg(C2). However,

one case it does cover is if I is a “large enough” power of a maximal ideal over a

polynomial ring with a “large enough” number of variables.

Corollary. Let I = 〈x1, . . . , xs〉n = mn ⊂ R = k[x1, . . . , xs] be the nth power of the

maximal ideal. Then I is Lyubeznik if and only if it falls into one of the following

cases:

(a) s = 1.

(b) n = 1.

(c) s = 2 and n ≤ 2.

Proof. We split into a number of cases.

1. Suppose s ≥ 2 and n ≥ 3, so

I = mn =
〈
xn, xn−1y, xn−2y2, xn−3y3, . . .

〉
⊂ k[x, y, . . . ].

Then I can not have any other generator that divides the listed four generators

above, since otherwise the ideal would not be maximal. Then I satisfies the

above Proposition with the following two covers.

xn−1
1 x2 {xn−1

1 x2, x
n
1 , x

n−2
1 x2

2}

xn−2
1 x2

2 {xn−2
1 x2

2, x
n−1
1 x2, x

n−3
1 x3

2}

Therefore I is not Lyubeznik.
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2. Suppose s ≥ 3 and n = 2, so

I = m2 =
〈
x2, xy, y2, y2, xz, yz, z2, . . .

〉
⊂ k[x, y, z, . . . ].

Then I is not Lyubeznik using the argument found in Example B.3.7(b).

3. Suppose s = 2 and n ≤ 2. The ideal I with n = 2 is

I = m2 =
〈
x2, xy, y2

〉
⊂ k[x, y].

Then I is Lyubeznik by Proposition C.1.3. The ideal J with n = 1 is

J = m = 〈x, y〉 ⊂ k[x, y].

Then J is Lyubeznik by Corollary C.1.5.

4. Suppose s = 1, then I = 〈xn〉 ⊂ k[x] is Lyubeznik by Corollary C.1.5, since

there is only one variable and so only one generator of I.

5. Suppose n = 1, then I = 〈x, y, z, . . .〉 ⊂ k[x, y, z, . . . ] is trivially Lyubeznik by

Theorem B.3.6, since each generator is a distinct variable so no covers exist of

any element in G(I).

The above Corollary shows that any ideal given by a power higher than two

of a maximal ideal, or any maximal ideal in more than 2 variables is not Lyubeznik.

There are other classes of examples that are also not Lyubeznik. For one

more, suppose I is an ideal generated by n ≥ 4 elements that has j ≥ 4 covers of
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the form

u1 {u1, u2, u3} = C1

u2 {u2, u3, u4} = C2

...

uj−2 {uj−2, uj−1, uj} = Cj−2

uj−1 {uj−1, uj, u1} = Cj−1

uj {uj, u1, u2} = Cj

so that ui does not break C` for any 1 ≤ ` ≤ j and for any i 6= `. Then I is not

Lyubeznik.

Example. Consider the edge ideal of a cycle C6, given by

I(C6) = 〈ab, bc, cd, de, ef, fa〉 ⊂ R = k[a, b, c, d, e, f ].

Each element inG(I) is E-minimally covered only by that element and the elements

on either side of it, i.e.

ab {ab, bc, fa}.

There is only one way to cause the above cover to not be preserved, which is when

ab breaks {bc, fa}. There are six of these E-minimal covers, one for each element,
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each of which give a condition on the total order on G(I).

ab ≺ {bc, fa}

bc ≺ {ab, cd}

cd ≺ {bc, de}

de ≺ {cd, ef}

ef ≺ {de, fa}

fa ≺ {ab, ef}

There is no total order that can include the necessary conditions from all 6 E-

minimal covers at the same time, since the covers produce a cycle. So the edge

ideal of C6 is not Lyubeznik. In fact, the edge ideal of Cn for any n ≥ 4 is not

Lyubeznik.
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