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ABSTRACT 

 Due to the drawbacks of traditional refractive optics, the implementation of planar or nearly 

planar optical devices has been of research interest for over a century.  Subwavelength gratings 

are a particularly promising option for creating flat optical devices; however, the implementation 

of subwavelength grating-based optics is limited by fabrication constraints.  Recently, we 

implemented flat optical devices using the nanoimprinting of refractive index (NIRI) process, a 

process which was pioneered in a previous study but remained largely unproven in terms of device 

fabrication.  The planar, gradient index microlenses we fabricated were found to possess an 

effective medium similar to a subwavelength grating.  We determined that the gradient index 

planar microlenses successfully focused collimated incident light with focal full-width-half-

maximums of less than 14 μm at wavelengths as low as 406 nm.  We also fabricated digitally 

patterned waveguides between 0.35 and 2 μm in width using the NIRI process.  We found a 

propagation loss in the non-oxidized waveguides of 8.1 ± 0.245 dBm/mm, which we were able to 

reduce by roughly 8 times following a full oxidation of the waveguides.   
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CHAPTER 1 

SURVEY OF FLAT OPTICS 

Currently, most optics applications are dominated by conventional, bulk refractive optical 

devices.  True to their name, refractive optics rely on refraction to modify incident wavefronts.  

The two parameters used to shape the output wavefront are the bulk refractive index and geometry 

of the device [1].  Most refractive optics are created using high temperature silica or quartz fusion 

processes followed by molding, which requires precise shaping and polishing of the surface [2], 

[3].  In addition to their involved fabrication, refractive optics tend to be relatively bulky and 

heavy.  This is particularly true in applications where a high resolution is required, as there is an 

inherent trade-off in refractive optics between thickness and numerical aperture, as shown in 

Figure 1 A [4].  There is an increased need for small, lightweight optical devices due to the general 

technological trends towards miniaturization and integration as well as some novel applications 

such as LiDAR and virtual reality [2].   

Flat optics can perform the same operations as refractive optics but are significantly thinner 

and less bulky.  By definition, flat optics have thicknesses on the order of or less than the incident 

wavelength [1].  The earliest flat optics were diffractive optics, where the wavelength-scale 

thickness of the optics cause diffraction to dominate over refraction [1].  The earliest example of 

a flat, diffractive optical device was the Fresnel Zone Plate, invented in 1866 [5].  In a flat, 

diffractive optical device, various regions of the flat device surface are patterned or modified in 

some way to shift the phase of the incident light.  In a flat diffractive lens, the phases of the various 

regions of the lens are designed such that the output light interferes constructively at the focal point 

[4].  Over the past century, fabrication techniques have improved in precision, allowing for the 



2 

 

fabrication of flat optics with deeply subwavelength features.  In this deeply subwavelength 

regime, conventional diffraction theory doesn’t sufficiently describe the behavior of the flat optical 

devices.  The deeply subwavelength structures can either behave as an effective homogenous 

medium, as in a subwavelength grating [6], or shape the incident wavefront through resonance, as 

in a metasurface [7].  This chapter will discuss diffractive optics, metasurfaces, and subwavelength 

gratings, with a particular emphasis on the latter.  

 

Figure 1. (A) numerical aperture vs thickness of refractive optics [4] (B) numerical aperture of 

diffractive lenses depends on period, not thickness [4] (C) model of a binary diffractive lens (not 

to scale) [4] (D) model of a multi-level diffractive lens (not to scale)[4] (E) model of a high 

index metalens (not to scale) [4] 

1.1 Diffractive Optics 

When they were first introduced, diffractive optics held a significant advantage over refractive 

optics in terms of spatial profile.  Subsequent innovations in diffractive optics increased the optical 

efficiency of diffractive systems from the relatively low 10% efficiency of the Fresnel zone plate, 

making diffractive optics more useful in a wider variety of applications [8].   In modern optics, 

diffractive optical devices can be categorized into two categories based on their basic constituent 
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topologies.  These are binary diffractive optics and multilevel diffractive optics.  Binary diffractive 

optical elements consist of arrays of uniform thickness, wavelength-scale elements arranged 

periodically.  In the case of a circular binary diffractive lens, these elements are typically arranged 

in concentric circles around the center, as shown in Figure 1 C.  The phase shift of a specific 

location on a binary diffractive device is controlled by the local period between the binary 

diffractive elements, as shown in Figure 1 B [4].  In a circular lens, each point along the radius r 

has a different distance from the focal point located above the center of the lens, so each radial 

point in a binary diffractive lens must shift the phase of the incident light to correspond to the local 

path length.  Because of this principle, the period between the binary diffractive elements decreases 

towards the edges of the lens.  Generally, the local period in a binary diffractive lens is designed 

according to the following equation:  

𝑟𝑚 = 2𝑚𝑓λ0 + (𝑚λ0)
2 

( 1 ) 

Here, rm is the radius of the mth period, f is the overall focal length of the lens, and λ0 is the incident 

wavelength.  The width of the mth period of the lens is defined as rm – rm-1 [9].  The range of 

achievable phase shifts in a binary diffractive optic depends on the thickness of the binary 

diffractive elements.  In order to get a full 2π phase shift, the thickness t of the binary elements 

must be at least λ/(n – 1) [4].   

A persistent issue with binary diffractive optical devices is their limited focusing efficiency, 

particularly at broadband, as well as chromatic aberration [10].  To address these issues, a second 

type of diffractive optical device was developed, known as blazed or multilevel diffractive optical 

devices.  As their name suggests, the diffractive elements can take on a range of discretized heights 

rather than only one as in binary diffractive optics [4].  The multilevel nature of multilevel 

diffractive optics allows for many more degrees of freedom, enabling for more flexible design and 
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better performance.  Theoretically, multilevel diffractive optics can achieve a focusing efficiency 

of 100%, though this hasn’t been observed in practice [11].  However, multilevel diffractive optical 

devices can still achieve much higher focusing efficiencies than their binary counterparts.  There 

has also been a great deal of progress in making broadband multilevel diffractive optics.  Early on, 

multilevel diffractive optics were designed to operate at multiple discrete wavelengths using higher 

diffraction orders, as in multiorder diffractive lenses [12], or by combining properties of diffractive 

and refractive optics, as in harmonic diffractive lenses [13].  Continuously broadband multilevel 

refractive optics have also been implemented more recently.  For instance, N. Mohammed et al. 

demonstrated a multilevel diffractive lens with a focusing efficiency that exceeded 40% over a 

continuous band of 300 nm in the visible spectrum [14].   

Multilevel diffractive optics can also be designed to severely limit chromatic aberration.  

Chromatic aberration in binary refractive optics occurs because diffraction angle is directly 

proportional to incident wavelength [15].  This causes the focal point to move farther away as 

wavelength increases in a binary diffractive lens.   Chromatic aberration can be compensated for 

in multilevel diffractive optics thanks to the added degrees of freedom in multilevel diffractive 

optical design, as demonstrated by Wang, Mohammed, and Menon [10].  They created three 

cylindrical, achromatic multilevel diffractive lenses that focused at three wavelengths between 460 

nm and 620 nm.  Throughout the visible range, the best performing lens showed a lateral focal 

shift of 1.3 μm laterally and 25 μm axially.  The average optical power was found to be around 

25%, which is relatively high for achromatic lenses.   

Because of their relatively large feature size relative to incident wavelength, it is easy to 

fabricate flat diffractive optical devices using mature lithography technology used in CMOS.  

Binary diffractive optics can be fabricated in a single etch or curing step while multilevel 
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diffractive optical devices are fabricated using either a single greyscale lithography step or multiple 

binary lithography and etch steps [4].  Diffractive optical devices can be made of polymers or 

dielectric materials, which adds flexibility to the fabrication processes.  A promising method for 

mass production of multilevel diffractive optical devices involves creating a stamp or template 

device using greyscale lithography and then replicating it using imprint lithography of polymers 

[10].   

1.2: Metamaterials 

Metamaterials are artificially created materials consisting of resonant, deeply subwavelength 

elements, designed to produce a specific electromagnetic response [7], [16].  Metamaterials have 

generated a large amount of press over the past two decades due to their exotic properties.  In 2000, 

D. R. Smith et al. demonstrated a metasurface with a negative permittivity and a negative 

permeability, a so-called “left-handed” medium [17].  Shortly after this, Shelby, Smith and Schultz 

demonstrated a metamaterial with a negative refractive index [18].  Generally, the term 

‘metamaterial’ refers to a 3D artificial resonant material.  A major downside of these 3D 

metamaterials is their high attenuation.  This attenuation issue was minimized by creating similar 

artificial materials in 2D, a class of materials that came to be known as metafilms or metasurfaces, 

first demonstrated in 2011 [19], [20].  Metasurfaces have since shown utility in the field of flat 

optics, as they have wavelength-scale thicknesses and can exert strong control over the 

characteristics of incident light, namely phase, amplitude, polarization and interface dispersion 

[21].   

Metasurfaces operate based on the phase response of their constituent scatterers, or “meta-

atoms,” which are deeply subwavelength structures that locally modify incident light.  The phase 

discontinuity caused by the meta-atoms can be characterized using the generalized laws of 
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reflection and refraction.  Considering a situation where a plane wave travelling through a medium 

with index ni is incident on a metasurface with angle θi, and assuming a constant phase gradient 

over the metasurface, a generalized version of Snell’s Law of refraction can be derived as follows: 

sin(𝜃𝑡) 𝑛𝑡 − sin(𝜃𝑖) 𝑛𝑖 =
𝜆0

2𝜋

𝑑Φ

𝑑𝑥
 

( 2 ) 

Here, θt is the angle of refraction with respect to surface normal, and the quantities ni and nt are 

the refractive indices of the media above and below the metasurface respectively.  The quantity λ0 

is the wavelength of the incident beam in a vacuum.  The value Φ is the phase discontinuity 

encountered by the incident beam at a given point due to the meta-atoms at the interface, and dx is 

the distance along the interface.  This means that the quantity 
𝑑Φ

𝑑𝑥
 represents the gradient of phase 

discontinuity introduced by the meta-atoms along the metasurface [20].  A similar equation can be 

derived to describe the reflection at the metasurface interface:  

sin(𝜃𝑟) − sin(𝜃𝑖) =
𝜆0

2𝜋𝑛𝑖

𝑑Φ

𝑑𝑥
 

( 3 ) 

Where θr is the angle of reflection relative to surface normal.  Unlike in traditional optics, the 

angles of reflection and refraction at the metalens interface do not have a linear relationship [20].   

Early metasurfaces, known as plasmonic metasurfaces, operated using surface plasmon 

resonance in metallic meta-atoms.  When each individual metal meta-atom is exposed to a time-

varying electromagnetic field, such as incident light, the electrons in the meta-atom oscillate 

according to the Lorentzian oscillator model.  This oscillation can be used to modify the phase of 

incident light.  The exact surface plasmon resonance behavior of an individual oscillating meta-
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atom depends on its physical geometry and material properties.  Depending on the size of the meta-

atom relative to the incident wavelength, the angle of the meta-atom relative to the incident field 

can also be a factor [22].  Angle-based phase modulation can be seen in the design of one of the 

earliest metasurfaces by Yu et al. that consists of an array of V-shaped meta-atom ‘antennas’, 

where the local phase and polarization responses were tailored by changing the angles of the two 

antenna arms, as shown in Figure 2 A [23].  A downside of these meta atoms was their low 

efficiencies, estimated to be 10 % under ideal circumstances.   

There are further resonance phenomena associated with coupling between meta-atoms in a 

metasurface that can be tuned by changing the spacing between meta-atoms relative to their 

resonance wavelength.  This resonance coupling can increase metasurface efficiency if harnessed 

effectively [22].  In order to fully capitalize on these resonance coupling phenomena, different 

types of meta-atoms and metasurface topologies needed to be designed [22].  The earliest example 

was the gap-plasmon metasurface, which used nanobrick-shaped metal meta-atoms deposited on 

top of an insulator substrate.  The insulator substrate layer had another layer of metal beneath it, 

as shown in Figure 2 B [24].  These metasurfaces only worked in reflectance mode due to the 

presence of the reflective metal layer.  To develop high-efficiency, transmission-mode 

metasurfaces, meta-atoms began to be fabricated from dielectric materials rather than metals.  The 

earliest majority-dielectric metasurfaces were Huygens’ metasurfaces [19].  Huygens’ 

metasurfaces typically consist of an array of unit cells, each containing either a wire and a loop or 

three-layered, stacked planar metallic patterns sandwiched between dielectric layers, which is 

known as a cascaded topology.  In some implementations the loop and wire are fabricated on 

different dielectric layers that are stacked on top of one another, while in others, both wire and 

loop are placed in the same plane [25].  An example device, a prism, created using Huygens’ 
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metasurface with a cascaded topology can be seen in Figure 2 C [26].  Huygens’ metasurfaces 

have extremely high transmission efficiencies at microwave and near-IR wavelengths, but 

relatively low transmission efficiency at visible wavelengths [19].   

All dielectric metasurfaces with high efficiencies at visible wavelengths have been achieved 

using high index contrast dielectric materials.  This category of metasurfaces is known as “high 

contrast metasurfaces,” and is the type of metasurface pictured in Figure 1 E.  The high-index 

materials in question tend to be those that are easily processed, such as silicon or germanium [27].  

Each high contrast meta-atom acts as a tiny, truncated waveguide behaving like a Fabry-Perot 

oscillator.  The high index contrast is needed for confinement in the meta-atoms, which maximizes 

the transmission efficiency of the metasurface [19].  The output light receives a polarization-

dependent phase and polarization shift from the meta-atoms’ oscillation.  Similar to metallic meta-

atoms, the polarization-dependent phase response of individual dielectric meta-atoms can be tuned 

by changing meta-atom geometry [27].  An example of a high-contrast metasurface topology can 

be seen in Figure 2 D, where local phase and polarization responses are tuned by adjusting the 

dimensions of the ellipse as well as its relative angle.   
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Figure 2. (A) A scanning electron microscope image of an early plasmonic metasurface made of 

gold deposited on silicon [23] (B) An example unit cell from a metal-insulator-metal plasmonic 

metasurface; the orange is gold, and the purple is silicon dioxide [24] (C) An example topology 

of a 3-layer Huygens’ metalens designed to refract incident light at a given angle; each grid 

square is a unit cell created from a thin gold structure sandwiched between layers of SU-8 

dielectric [26] (D) A high-contrast metasurface topology consisting of elliptical silicon columns 

arranged in a hexagonal grid on a silicon dioxide substrate [27] 

 A major limiting factor to the widespread commercialization of metasurfaces has been the 

difficulty of manufacturing them.  For use in visible optics, feature sizes would need to be < 100 

nm, below the limits of most traditional lithography techniques.  Most metasurfaces fabricated in 

research settings are created using direct-write techniques such as electron-beam lithography [2].  

However, direct write processes are too low throughput to be used in an industry setting.  There is 

also ample research into alternative large-area lithography techniques such as maskless laser 

techniques, extreme-UV lithography and plasmonic lithography.  These techniques have 

drawbacks in terms of the flexibility of the patterns they can create, as laser techniques can either 

create periodic or aperiodic structures (not both) and plasmonic lithography is limited to small 
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mask sizes, limiting throughput [19].  Some non-photolithographic methods such as nano-imprint 

lithography and self-assembly lithography have also been proposed but are still largely 

experimental.  Self-assembly lithography is limited in the patterns it can create, but nano-imprint 

lithography has shown promise in terms of its high throughput, high resolution, and design 

flexibility.  However, there are some issues with degradation of the imprinted polymer layer during 

the process [19].  

1.3 Subwavelength Grating Principle of Operation 

Subwavelength gratings are a type of metamaterial.  Similar to the metasurfaces described in 

the previous section, subwavelength gratings are comprised of deeply subwavelength elements.  

However, unlike the metasurfaces described in the previous section, subwavelength gratings do 

not operate using resonance and are typically comprised of dielectric materials such as silicon [6].  

Subwavelength gratings are notable in the fact that they are able to act like a homogenous, 

anisotropic material with effective refractive indices between that of the subwavelength structures 

and the surrounding medium.  This effective refractive index can be adjusted by changing the local 

design of the grating.  Subwavelength gratings have been of particular use in silicon photonics, 

where they have allowed for a wider range of refractive index profiles compared to binary-

patterned silicon photonic components at typical length scales [28].   

When a subwavelength grating is fashioned into a waveguide, as shown in Figure 3 A, it can 

be described by one of several different models depending on its period Λ as compared to the 

Bragg threshold: λ0 /(2neff).  Here, λ0 is the incident wavelength in a vacuum and neff is the effective 

index of the first Floquet-Bloch mode.  When the period is less than the Bragg threshold, the 

subwavelength grating acts like a homogenous, anisotropic material described by a permittivity 

tensor:  
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𝜀 = [

𝑛𝑥𝑥
2 0 0

0 𝑛𝑦𝑦
2 0

0 0 𝑛𝑧𝑧
2

] 

( 4 ) 

Here, nxx, nyy and nzz are the effective refractive indices in the x, y, and z directions respectively.  

These three effective indices are found through a process of homogenization, the specifics of which 

depend on how close the grating period is to the Bragg threshold.  When the period of the 

subwavelength grating is much smaller than the Bragg threshold, an analytical method known as 

the laminar material model can be used [6].  As the name suggests, the subwavelength grating is 

modelled as a laminar periodic structure where each layer is transversally infinite, as shown in 

Figure 3 B.  In this model structure, material 1 has thickness a and bulk refractive index n1, and 

material 2 has thickness b and bulk refractive index n2.   

 

Figure 3. (A) a subwavelength grating waveguide [6] (B) a section of the laminar model structure 

[29] 

It will be useful to examine a simple plane wave in the x-z direction using this model.  This 

plane wave is described by the wave vector �⃗� (𝜑) = 𝑘𝑥�̂� +  𝑘𝑧�̂�, where incidence angle 𝜑 =

atan (
𝑘𝑥

𝑘𝑧
).  Propagation constants kx and kz are related by the following dispersion relation:  
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cos(𝑘𝑧𝛬) = cos(𝑘1𝑥𝑎) cos(𝑘2𝑥𝑏) − ∆ sin(𝑘1𝑥𝑎) sin (𝑘2𝑥𝑏) 

( 5 ) 

Here, 𝑘𝑖𝑥 = √(
2𝜋𝑛𝑖

𝜆0
)
2

− 𝑘𝑥
2
 where i = 1 or 2, and Δ depends on the polarization of the incident 

light.  For TE and TM polarization, Δ can be found using the following two formulas:  

∆𝑇𝐸=
1

2
(
𝑛2

2𝑘1𝑥

𝑛1
2𝑘2𝑥

+ 
𝑛1

2𝑘2𝑥

𝑛2
2𝑘1𝑥

) 

( 6 ) 

∆𝑇𝑀=
1

2
(
𝑘1𝑥

𝑘2𝑥
+

𝑘2𝑥

𝑘1𝑥
) 

( 7 ) 

 Under the assumption of transversally infinite layers, and the assumption that λ >> Λ, the 

terms kzΛ << 1, kza << 1, and kzb << 1. This allows equations 5 through 7 to be simplified to the 

following form: 

𝑘𝑥
2𝑛⊥

2 + 𝑘𝑧
2𝑛∥

2 = 𝑘0
2 

( 8 ) 

𝑘𝑥
2𝑛∥

2 + 𝑘𝑧
2𝑛∥

2 = 𝑘0
2 

( 9 ) 

Equations 8 and 9 describe the TE and TM polarizations respectively, where n ∥ and n ⊥ are the 

refractive indices of the equivalent material for polarization parallel (n ∥) and perpendicular (n ⊥) to 

the laminar layers [29], [30].  They can be solved for using the following two equations: 

𝑛∥ =
𝑘𝑧

𝑘0
, 𝑘𝑥 = 0 

( 10 ) 

𝑛⊥ =
𝑘𝑥

𝑘0
, 𝑘𝑧 = 0 

( 11 ) 
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The permittivity tensor representing the effective material can be approximated by the following:  

𝜀1 = [

𝑛∥
2 0 0

0 𝑛∥
2 0

0 0 𝑛⊥
2

] 

( 12 ) 

The infinite laminar model simplifications can be easily applied to the subwavelength grating 

waveguide as pictured in Figure 3 A with a period much smaller than the Bragg threshold.  The 

permittivity tensor for the waveguide can be simplified to equation 12, and the tensor components 

can be found using the following approximations:  

𝑛∥
2 ≈

𝑎

Λ
𝑛1

2 +
𝑏

Λ
𝑛2

2 

( 13 ) 

𝑛⊥
2 ≈ (

𝑎

Λ
𝑛1

−2 +
𝑏

Λ
𝑛2

−2)
−1

 

( 14 ) 

As is evident from these two formulas, the duty cycle of the grating has a significant effect on the 

polarization and effective refractive indices of the modes propagating through a subwavelength 

grating.  If the duty cycle of the higher index material decreases, the effective index of the grating 

decreases.  Because of this, duty cycle is one of the primary geometric parameters used to modify 

and implement photonic devices using subwavelength gratings [28].   

As the period of the subwavelength grating approaches the Bragg threshold, the laminar 

model no longer accurately approximates its behavior.  A different model must be used here, 

known as the slab material model.  In this model, the subwavelength grating still behaves like a 

homogenous, birefringent material that can be described using a 3x3 diagonal permittivity tensor.  

However, the calculation of the permittivity tensor components cannot be done analytically as in 

the laminar model but must be solved numerically by simulation [6].  In addition to the parameters 
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used in the laminar model, the slab material model also accounts for the height of the 

subwavelength grating structures, labelled ‘H’ in Figure 3 A.  When the period of the grating 

exceeds the Bragg threshold, scattering becomes significant and the structure can no longer be 

modelled as a homogenous material, but instead must be modelled like conventional photonic 

structures at wavelength scale.    

1.4 Subwavelength Grating Applications 

The refractive index patterning offered by subwavelength gratings has shown to be useful in a 

variety of applications, particularly in integrated silicon photonic circuits.  Photonic devices such 

as waveguide couplers, photonic sensors, and fiber to chip couplers have shown significant 

enhancement with the addition of subwavelength grating elements.  Subwavelength gratings also 

have the potential to be useful as flat optics, however it has been difficult to implement 

subwavelength grating optics due to fabrication difficulties.   

Subwavelength gratings have shown promising results when applied to a number of different 

waveguide couplers including directional couplers, adiabatic couplers, and multimode interference 

couplers.  Directional couplers have traditionally suffered from limited bandwidth due to the 

wavelength-dependent nature of the beat length [30].  Subwavelength gratings were integrated into 

a directional coupler as shown in Figure 4 A with longitudinal gratings superimposed on the 

directional coupler in the coupling region.  This idea was first explored in [31], where the 

superimposed subwavelength grating allowed for a fivefold enhancement of bandwidth in a 50/50 

directional coupler.  Subwavelength gratings were then used to increase bandwidth in directional 

couplers with different splitting ratios [32].  Adiabatic couplers tend to suffer mainly from the size 

of their footprint, as they must be long to ensure adiabadicity [6].  They operate via the interaction 

of modes in adjacent waveguides, so subwavelength gratings have been used to change the 
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effective index in the area between the two waveguides to decrease local confinement, increasing 

mode interaction, as shown in Figure 4 B.  This allows the couplers to be made shorter [33], [34].  

In multimode interference couplers, the use of subwavelength gratings has been shown to both 

increase bandwidth and decrease device footprint [35], [36].  

Subwavelength gratings have been shown to enhance the sensitivity of multiple photonic 

sensor topologies.  The two main mechanisms used in photonic sensing are bulk and surface 

sensing.  In bulk sensing, the effective index of a waveguide segment or resonator changes due to 

a change in the index of the surrounding medium.  In surface sensing, the surface is functionalized 

to adsorb specific molecules, and the effective index of the sensor changes as the thickness of the 

adsorbed layer increases [37].  In both cases, the sensitivity depends on the overlap between the 

evanescent tails of the propagating mode and the sensor’s surroundings, so reducing the mode 

confinement of the sensor increases its sensitivity.  This can be accomplished by reducing the 

effective refractive index of the sensor by making the sensing element out of a subwavelength 

grating [30].  In some implementations of this, the sensing elements were straight, cavity sensors 

as shown in Figure 4 C [38], [39].  Ring resonator sensors were also fabricated from subwavelength 

grating structures, shown in Figure 4 D [40], [41].  There is, however, a tradeoff between increased 

sensitivity and roughness-induced scattering in the subwavelength grating sensing elements [42].   
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Figure 4. (A) SEM image of a directional coupler with superimposed subwavelength grating, 

allowing for a wider bandwidth [32] (B) SEM image of an adiabatic coupler with sections of 

subwavelength grating, enabling a smaller footprint [33] (C) SEM image of a photonic cavity 

sensor with subwavelength grating elements [39] (D) SEM image of a ring resonator photonic 

sensor made using subwavelength gratings [41] 

Off-chip couplers (typically fiber-to-chip couplers) are an essential component to most 

photonic integrated circuits.  Coupling between off-chip fibers and on-chip waveguides has 

historically been a challenge due to the size mismatch between the mode field diameters of 

waveguides and optical fibers [30].  The two main types of off-chip couplers are edge couplers 

and surface or grating couplers.  Edge couplers are relatively simple, broadband couplers, but as 

their name implies, they can only be placed at the edge of a chip.  The mode size mismatch between 

the fiber and waveguide is a particularly egregious source of loss.  Subwavelength gratings have 

been used to decrease the effective refractive index of the waveguide near the edge, as shown in 

Figure 5 A.  This increases the size of the mode propagating in the waveguide, decreasing the 

mode mismatch and allowing for a higher efficiency (upwards of 90%) [43], [44].  Grating 

couplers enable vertical off-chip coupling, as shown in Figure 5 B, and operate based on resonant 

coupling.  Subwavelength grating structures have been used in grating couplers to improve 

efficiency by increasing mode overlap using their ability to adjust effective index, similar to edge 
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couplers with subwavelength grating elements [45]. The addition of subwavelength grating 

elements to grating couplers can also increase bandwidth and add polarization insensitivity among 

other applications [46], [47].   

Flat optics are an application for subwavelength gratings that hasn’t been fully explored, 

mainly due to the small feature sizes required for subwavelength gratings designed for NIR, visible 

and ultraviolet wavelengths.  Spot size converters, which are essentially on-chip, waveguide-

integrated lenses, have already been implemented with subwavelength gratings, as shown in 

Figures 5 C and D.  The width of the grating elements is modulated to give the spot size converter 

a higher index towards the center, allowing for effective mode size change with a high bandwidth 

and low loss [28].  There have also been a handful of implementations of vertical, off-chip optics 

using subwavelength gratings.  Ghargi et al. designed and fabricated an invisibility carpet cloak 

device implemented using subwavelength grating elements.  This subwavelength grating consisted 

of a planar nitride waveguide with a pattern of subwavelength holes formed via electron beam 

lithography and reactive ion etching, as shown in Figures 5 E and F.  The diameter and spacing of 

the holes determined local effective index, and the index pattern was designed using quasi 

conformal mapping to cloak a bump in the nitride film [48].  Later, Ye, Ray, and Yi designed, 

fabricated, and tested a flat, GRIN microlens made up of subwavelength gratings.  The microlens 

had a bandwidth encompassing most of the visible spectrum (250 nm range) and was achromatic 

over this range.  This particular microlens, shown in Figure 5 G, was fabricated from a low index 

E-beam photoresist polymer rather than silicon.  The E-beam lithography process used was still 

direct write and low-throughput, but fabrication was less complex than for high contrast dielectrics 

such as TiO2 or GaN [49].   
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Figure 5. (A) edge coupler fabricated from a subwavelength grating [6] (B) grating coupler with 

subwavelength grating elements [6] (C) SEM image of a GRIN spot size converter fabricated 

from subwavelength gratings [28] (D) diagram of the GRIN spot size converter showing the 

shape of the subwavelength elements [28] (E) and (F) SEM images showing the surface of the 

invisibility carpet cloaking device fabricated [48] (G) SEM image showing the subwavelength 

grating flat microlens along with a 2.5 μm scale bar [49] 

1.5 Subwavelength Grating Fabrication 

 As previously mentioned, the fabrication of subwavelength grating-based optics is difficult 

due to the small feature sizes required, particularly for devices designed for NIR, visible and UV 

wavelengths.  As indicated in Figure 6, the main processes used for subwavelength grating 

fabrication are deep UV lithography, electron beam lithography, and extreme UV lithography [50].  

Deep UV lithography is a mature, wafer-scale photolithography process that uses light in the UV-

C band, which is between 100 and 280 nm.  It is a mature technology capable of fabricating 

submicron features, but it is incapable of fabricating sub-100 nm features due to wavelength 

constraints.  This range of feature sizes is suitable for creating subwavelength gratings designed 

for mid-infrared region [50].  Electron beam lithography is a direct write process that uses a 

focused, sub-micron-diameter beam of electrons to create patterns in a specialized resist [51].  It 
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has a higher resolution than deep UV lithography, but its low throughput limits its applications in 

subwavelength grating devices, especially if they are to be mass-produced.  Extreme UV 

lithography is a largely experimental process that has the potential to pattern wafer scale patterns 

with sub-100 nm features.  It is similar to deep UV lithography but with a shorter wavelength, 

which leads to some added challenges that have delayed its commercialization.  Due to the 

extremely short wavelengths of EUV sources (13.5 nm or less), EUV photons are easily absorbed 

by almost any medium.  This leads to challenges in choosing materials for EUV masks and resists 

and also means that the EUV chamber must be kept at a high vacuum.  Additionally, EUV sources 

must have very high power, a challenge that has mostly been solved through the use of laser and 

discharge produced plasmas [52].   

 

Figure 6. Diagram of subwavelength grating applications and fabrication techniques [50] 
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CHAPTER 2 

 THE NANOIMPRINTING OF REFRACTIVE INDEX PROCESS 

 Although subwavelength gratings are a promising technology for a variety of applications, 

the fabrication difficulties detailed in the previous chapter prevent them from widespread use.  An 

alternative to the top-down manufacturing of subwavelength gratings involves leveraging bottom-

up, self-organization techniques that are present at subwavelength scales.  The subwavelength-

scale of the self-organized structures gives them an effective refractive index similar to 

subwavelength gratings.  Some recent examples of bottom-up techniques used to create effective 

refractive index profiles are ionic exchange in chalcohalide glass composites (Δn < 0.1) [53], UV 

exposure on photosensitive glass based composites (Δn < 0.01) [54], micro-contact photothermal 

annealing of organic/inorganic hybrid materials (Δn ≈ 0.05) [55], direct electrospray printing of 

chalcogenide glass films (Δn < 0.4) [56], densification of Si or TiO2 based nanocomposites in UV 

curable films (Δn < 0.45) [57], and electrochemical etching of mesoporous silicon [58] (Δn < 2).  

Of these techniques, those involving anodized mesoporous silicon, which features deeply 

subwavelength pore diameters in the range from ~2 – 50 nm is especially attractive due to its high 

index contrast and CMOS compatible synthesis from silicon wafers [59]. 

The nanoimprinting of refractive index (NIRI) process is a nanoimprint lithography 

technique specifically applied to mesoporous silicon [60].  As will be demonstrated in subsequent 

chapters, this process is capable of producing flat porous silicon films with arbitrary effective 

refractive index profiles with a high degree of control.  The NIRI process is promising for the field 

of flat optics in particular because it offers the effective index patterning flexibility of 

subwavelength gratings while also being high-throughput and inexpensive by utilizing the bottom-

up self-organization of mesoporous silicon.  There are a variety of other processes for fabricating 
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porous silicon structures, but none offer the large index range, GRIN patterning capability, and 

high throughput of the NIRI process.  A generic outline of the NIRI process will be described in 

this chapter, while the specifics of fabricating microlenses and waveguides using the NIRI process 

will be discussed in chapters 3 and 4 respectively.   

2.1 Properties of Porous Silicon 

 Porous Silicon was first reported in 1956 by Uhlir after he inadvertently fabricated it while 

electropolishing silicon wafers.  There was an explosion of interest in it in the 1990’s following 

Leigh Canham’s publications on red luminescence of porous silicon [61].  Research interest in 

porous silicon persists due to its unique optical, electrical, chemical, and structural properties as 

well as its ease of fabrication.  Major avenues of porous silicon research include electronics, 

optoelectronics, optics, diagnostics, medical applications, and energy applications [62]. 

 Although there are a number of methods for fabrication of porous silicon, the concentration 

of this thesis will be on the formation of mesoporous silicon by the anodization of p+ (1 0 0) silicon 

wafers.  In this process, the silicon wafer itself serves as the cathode, and platinum wire is used for 

the anode.  A fluoride-based electrolyte, usually hydrofluoric acid, is required to etch pores into 

the surface of the silicon [63].  When a uniform current density is applied to the cell, an oxidation 

reaction occurs on the silicon surface, resulting in pore formation.  The curve in Figure 7 A models 

the Si/HF system, showing how the general current density of the system changes in response to 

applied potential.  The point denoted ‘OCP’ is the open circuit potential of the silicon electrode.  

Above the open circuit potential point, the silicon electrode enters the region corresponding to the 

formation of porous silicon.  After a transition region where both pore formation and 

electropolishing mechanisms are present, the silicon enters a purely electropolishing region, where 

the surface is eroded uniformly without pore formation.   
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The primary oxidation reaction in the porous silicon region is the following half-reaction:  

Si + 6F− + 2H+ + 2h+ → SiF6
2− + H2 

( 15 ) 

Here, h+ represents a valence hole in the silicon while H+ represents a proton [64].  In addition to 

the formation of pores on the silicon surface, this reaction leads to the formation of hydrogen gas 

bubbles, which can limit the etching reaction if they become stuck to the porous silicon surface.  

In order to prevent this, surfactants are often added to HF electrolyte solutions.  Typically, these 

surfactants are a type of alcohol such as ethanol or methanol [63].  The dissolution rate of silicon 

according to this reaction depends on the exposed crystal plane.  The (100) crystallographic plane 

is especially prone to pore formation reactions due to the strained S-H bonds in this plane, making 

(100) silicon wafers ideal for the formation of porous silicon films.  Once a pore forms in the (100) 

surface, it propagates perpendicularly because the enhanced electric field at the pore tip attracts 

holes, which fuel the reaction in equation 15.  The porous silicon layer isn’t completely etched 

away during the etching process because of the crystallographic orientation of the pore sidewalls 

as well as the dearth of holes near the surface of the pore sidewalls, which limits the etching 

reaction [64].   

 A number of anodization parameters can be used to control the formation of (100) porous 

silicon films.  For instance, when an alcohol surfactant is used to dilute the HF electrolyte, the 

porosity of the anodized film can be controlled by the concentration of HF relative to surfactant 

[63].  The porosity can also be controlled by modifying the applied cell current.  For a larger 

applied cell current, the porosity and average pore size of the film increases.  Additionally, the 

pore size distribution of the film also increases with increased current density [65].  The depth of 

the porous silicon film can be controlled by the amount of time that the current is applied or by the 

current density, with higher current densities causing higher etch speeds [59].  Due to the 
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importance of holes in the etching process, the doping density of the p-type silicon also effects the 

pore formation.  Highly doped p-type wafers form pores with larger diameters, while silicon wafers 

with lower p-type doping form smaller pores [65].   

 

Figure 7. (A) approximate trend showing applied etching cell potential vs. current density in the 

Si/HF system.  The region on the left is where porous silicon forms.  After the first threshold, the 

surface is more uniformly etched away [64] (B) Variation of Young’s Modulus with porous 

silicon film porosity according to several different measurement methods [66] (C) Graph 

showing how the theoretical predictions of the Bruggeman approximation, Looyenga equation, 

and Maxwell-Garnett mixing rule vary with film porosity [58] (D) calculated curve showing the 

variation of refractive index with silicon dioxide skeleton fraction in a porous silicon film, 

measured at 632.8 nm wavelength; calculations were performed using a 3-component 

Bruggeman approximation [67] 

 Porous silicon, similar to other porous materials, possesses a number of unique properties, 

many of which are tunable based on the porosity and/or pore diameter of the porous silicon film.  

In terms of structural and mechanical properties, the porosity of the film determines its surface 

area, density, hardness, Young’s modulus, and fracture toughness [68].  In a p+-doped mesoporous 
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film, as the porosity varies from 30% to 84%, the Vickers hardness value varies between 8.8 GPa 

and 0.75 GPa, a reduction of more than 90% [69].  As the porosity of a p+-doped mesoporous 

silicon film increases, the Young’s modulus of the film varies according to the trend shown in 

Figure 7 B [66].  Due to the anisotropic structure of anodized, mesoporous p+ (100) silicon films, 

they display anisotropic mechanical behavior.  For instance, mesoporous silicon films have been 

shown to have different values of Young’s modulus when tested in different directions relative to 

the pore direction [70].   

 Porous silicon’s unique optical properties have been of particular interest over the previous 

few decades.  At visible wavelengths and above, mesoporous silicon can be described by an 

effective permittivity tensor, similar to equation 4, due to its subwavelength-diameter pores, which 

vary from 2 to 50 nm, as well as its structural anisotropy.  For (100) mesoporous silicon, the 

refractive index experienced by light perpendicular to the film surface is different from that 

experienced by light shining perpendicular to the pore walls [71].  The effective index models used 

for subwavelength gratings cannot be used for mesoporous silicon due to the irregularity of the 

pore structure.  There are some more appropriate models such as the Bruggeman approximation, 

the Looyenga formula, and the Maxwell-Garnett mixing rule [58].  The Bruggeman approximation 

has been found to fit experimental data from etched, meso-porous silicon samples [72].  The 

goodness of fit of a given model depends on the porous silicon film structure as well as its porosity, 

as shown in Figure 7 C [58].  As can be seen from the graph, the refractive index of the porous 

silicon film varies between that of bulk silicon and that of air.  For porosities between 30% and 

80%, the refractive index of a silicon-supported, mesoporous (100) silicon film ranges between 

~2.8 and ~1.4, an index contrast > 1 [73].   Porous silicon naturally forms a native oxide in an 

oxygen-heavy environment, which decreases the refractive index as shown in Figure 7 D.   
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 Porous silicon also possesses unique electrical and chemical properties.  One notable 

property of porous silicon is its resistivity, which is 5 orders of magnitude greater than that of bulk 

silicon.  This is due to the depletion of holes from the surface of the silicon skeleton during the 

etching process.  The conductivity of a porous silicon film can be tailored by changing its porosity, 

though the conductivity is also strongly dependent on the properties of the bulk silicon prior to 

anodization [74].  Porous silicon is also both biocompatible and biodegradable, which has excited 

interest for its use in biosensing [75].  Furthermore, the surface of porous silicon tends to have a 

large number of Si-O bonds due to native oxide formation as well as some Si-N and Si-C species.  

All three of these bonds are very stable and can be used to attach a number of functional molecules 

to the surface for sensing applications [76].   

 Porous silicon has been the subject of research for a variety of applications.  Currently, the 

most actively researched include sensing, energy conversion, micro-optics, and various biomedical 

applications [62].  Most porous silicon sensors are photonic sensors such as those discussed in the 

previous chapter, where changes in resonance of the porous silicon photonic element indicate 

changes in either adsorbed molecule layer thickness or the index of the surrounding medium [77].  

The capability and cost of these sensors are highly dependent on the fabrication techniques used 

to create the photonic sensing elements from the porous silicon film.  Porous silicon is also being 

researched for use in battery electrodes, solar cell anti-reflective coatings, and fuel cells.  In 

biomedical applications, porous silicon is being researched for use in drug delivery, orthopedics, 

and tissue engineering [62].  In the realm of micro-optics, porous silicon has been fabricated into 

a range of different devices including photonic crystals, optical waveguides, and diffraction 

gratings.  These also require porous silicon microfabrication techniques, many of which are low-

throughput and insufficient for large-scale production.   
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2.2 Porous Silicon Fabrication Techniques 

Despite the potential of porous silicon as a material, it is difficult to manipulate and pattern 

using traditional microfabrication techniques.  It is difficult to pattern porous silicon using 

photolithography because resists, developers, and etchants become stuck in pores, causing issues 

in both positive and negative photolithography [78], [79].  Both wet and dry etching of porous 

silicon are also rendered impractical by the pore morphology [78].   

 Traditional photolithography techniques are sometimes still used along with backfilling 

and capping layers, but there are also microfabrication techniques developed specifically for 

porous silicon that avoid the poor fidelity, over-etching, and poor sidewall control of porous silicon 

photolithography [78], [79].  Most of these focus on pre-processing of the silicon substrate prior 

to the formation of the porous layer.  For instance, ion irradiation can be used to locally modify 

silicon doping, which modifies subsequent pSi porosity.  It allows for some degree of depth 

control, but it is generally a very low throughput process [80].  Dry Removal Soft lithography 

(DWSL) utilizes a soft PMDS stamp to selectively lift off parts of the porous silicon film, but is 

restricted to binary, 2D patterning of the film [81].  Mac-Imprinting uses metal-assisted chemical 

etching to selectively etch parts of the porous silicon surface [78].  This changes the height of the 

film in a continuous manor but doesn’t actually compress it or change the local refractive index.   

This can be useful in some applications, however when local changes in refractive index 

are necessary, there are some appropriate microfabrication methods.  These methods are the direct 

imprinting of porous substrates (DIPS) and nano-imprinting of refractive index (NIRI) processes, 

both of which involve mechanically compressing select areas of a porous film to change the local 

height and porosity [60], [82].  Unlike the DIPS process, the NIRI process has almost exclusively 

been applied to porous silicon with the primary aim of changing the local refractive index of the 
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porous silicon film by compressing the silicon skeleton [60].  The DIPS process has shown the 

feasibility of creating curvilinear structures, shown in Figure 8 A and B, and both processes have 

been used to demonstrate optical grating structures, shown in Figure 8 D and E [83].  These 

processes are very high throughput and can be performed at room temperature without the need 

for pre-processing of the porous substrate for patterning.  Additionally, the refractive index 

patterning these processes provide is extremely flexible, and can be made into gradient, pixelated, 

or binary patterns as desired [60], [82].   

 

Figure 8. (A) Optical microscope image of a curvilinear structure created in porous silicon using 

the DIPS process; the scale bar is 100 μm [84] (B) AFM line scan of one of the curvilinear 

structures pictured in (A) [84] (C) optical microscope image of a multilevel, digital pattern 

created using the DIPS process; the scale bar is 10 μm [84] (D) SEM image cross-section of a 

grating structure created using the NIRI process, showing the densification of the porous silicon 

structure [60] (E) Optical microscope image of a grating structure created using the NIRI process 

and then planarized; the structural color of the film indicates the pattern of refractive index [60] 
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A useful potential application of this fabrication technique is the manufacture of flat optics.  

As previously mentioned, most flat optics are currently implemented using diffractive optics, 

metasurfaces, or subwavelength gratings.  These approaches face significant manufacturing 

difficulties, particularly metasurfaces and subwavelength gratings, which require deeply 

subwavelength lithography techniques.  In addition to low throughput and high costs, these 

lithography techniques also have the downside of being binary patterning processes, so analog 

patterning over a device surface is difficult to accomplish.  NIRI flat optics could provide a 

continuous variation in refractive index combined with a high throughput.   

Porous silicon is not a completely novel material in the manufacture of flat optical lenses, 

but previous approaches have demonstrated some significant downsides.  For instance, many of 

these require etching or selectively doping of the silicon substrate in a particular pattern prior to 

anodization in order to create a graded refractive index [85]–[87].  These planar microlens 

fabrication methods require more processing steps, inherently lowering throughput, and also don’t 

report particularly high index contrast for lenses fabricated.  Ilyas and Gal reported fabrication of 

planar, pSi GRIN lenses using a specialized ring-shaped electrode during anodization [88], [89].  

Due to the electrical properties of silicon, the circular lens profile was limited to a quadratic profile 

unless additional masking steps were used.  The NIRI process overcomes the downsides of 

previous pSi GRIN microlens implementations, as it allows for rapid and easy fabrication with a 

large index contrast exceeding Δn = 1 and an arbitrary index pattern [60].    

2.3 Details of the Nanoimprinting of Refractive Index Process 

Figure 10 A depicts an overview of the NIRI process, wherein a premastered and reusable 

stamp is utilized to compress a mesoporous silicon film, patterning the refractive index distribution 

n(x,y).  This study used the previously-characterized NIRI procedure to fabricate two different 
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types of devices from mesoporous silicon (pSi) films [60].  The NIRI process allows for localized 

changes in refractive index through the compression of the silicon skeleton of the mesoporous 

film, effectively decreasing its porosity.  The refractive index profile of the resulting compressed 

film is dependent on the geometry of the stamp used and can produce both binary and gradient 

refractive index profiles.  The two NIRI devices fabricated in this study, optical waveguides and 

flat, gradient index microlenses, utilized binary and grayscale stamps respectively.  As previously 

discussed, prior work exploring the NIRI process has demonstrated a microscale binary grating 

pattern as a proof of concept, pictured in Figure 8 E and F, but did not demonstrate greyscale 

refractive index patterning or the operation of an optical device fabricated using NIRI [60].   

Previous work has characterized the NIRI refractive index change as it varies with 

compression and demonstrated that a refractive index change of Δn ≈1 is possible through the 

NIRI imprinting process [60].  The initial porosity of the pSi determines the maximum imprint 

fraction as well as the resulting refractive index at a given pressure.  The initial porosity also 

determines the range of achievable refractive index changes, so a larger starting porosity allows 

for a greater refractive index change from imprinting due to a larger void fraction.  The pSi samples 

used in device fabrication for this experiment were p-type (1 0 0) wafers with a conductivity 

between 0.01 and 0.02 Ω-cm, etched in a 15% ethanoic HF solution using a current density of 55.1 

mA/cm2.  This resulted in films with an approximate thickness of 1.1 μm and an approximate 

starting porosity of 75%.  The average pore size for these samples, since they were mesoporous (1 

0 0) silicon, was between 2 and 50 nm, which is significantly smaller than the test wavelengths of 

406 to 635 nm for the microlenses and 1260 to 1360 nm for the waveguides.  Due to the 

subwavelength nature of the pores, an effective medium approximation for porous silicon films 

was used to describe the mesoporous film for simulation purposes.  The main approximations used 
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for porous silicon were discussed in the first section of this chapter.  In previous work on the NIRI 

process, it was found that a modified, 3-component Bruggeman effective medium approximation 

provided the best fit for the raw data extracted from NIRI-imprinted porous silicon films [60].  

This approximation accounts for the silicon skeleton, air, and native SiO2 layer.  The standard, 2-

component Bruggeman approximation is as follows: 

(1 − 𝑝)
𝑛Si

2 − 𝑛2

𝑛Si
2 + 2𝑛2

+ 𝑝
1 − 𝑛2

1 + 2𝑛2
= 0 

( 16 ) 

Where n is the effective refractive index of the porous silicon film, nSi is the refractive index of 

silicon, and p is the volume fraction of the pores [67].  This formula is applicable to freshly 

anodized porous silicon films with relatively high porosities but is insufficient for describing 

porous silicon films that have undergone oxidation in ambient conditions.  The oxidation of the 

film leads to significant volume expansion of the skeleton in addition to a decrease in the silicon 

volume fraction.  Assuming the non-oxidized silicon volume fraction in a porous silicon film is f0 

= 1-p0, where p0 is the initial pore volume fraction, a fraction x of f0 is oxidized under ambient 

conditions.  The formation of silicon dioxide causes an expansion by a factor of ~2.27, so the 

volume fraction of SiO2 is g = 2.27x, the new volume fraction of silicon is f = f0 – x, and the new 

pore volume fraction is p = 1 – f – g [67].  The unmodified, 3-component Bruggeman equation is 

as follows: 

(𝑓0 − 𝑥)
𝑛Si

2 − 𝑛2

𝑛Si
2 + 2𝑛2

+ 2.27𝑥
𝑛SiO2

2 − 𝑛2

𝑛SiO2
2 + 2𝑛2

+ (1 − 𝑓0 − 1.27𝑥)
1 − 𝑛2

1 + 2𝑛2
= 0 

( 17 ) 

 Figure 7 D shows how the index n varies with increasing SiO2 volume fraction according to this 

model.   
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The Bruggeman approximation detailed above does not explicitly account for film 

compression. The derivation of the effective medium formula applied to the NIRI process is as 

follows.   In the NIRI process, the imprinted porous silicon film has a desired refractive index 

profile: 𝑛(𝑥, 𝑦) = 𝑛0 + ∆𝑛(𝑥, 𝑦).  The index of the compressed film is dependent on the 

compressed height of the film: ℎ(𝑥, 𝑦) = ℎ0 + ∆ℎ(𝑥, 𝑦), where h0 is the initial film thickness and 

Δh describes the imprint depth, which is dictated by the geometry of the stamp used.  In NIRI, the 

local porosity P is decreased by inducing a net volume reduction ΔV of a defined porous medium 

volume V0, according to: 

𝑃 = 1 −
1 − 𝑃0

1 − 𝐶
 

( 18 ) 

Where C describes the volumetric expansion of the underlying film according to: 

𝐶 = −
∆𝑉

𝑉0
≈ −

∆ℎ

ℎ0
 

( 19 ) 

Here, the quantity 
∆ℎ

ℎ0
 is the engineering strain of the compressed film.  The above approximation 

can be made because the transverse strain, 
∆𝑤

𝑤0
, representing the width expansion of the compressed 

film, and therefore the Poisson ratio 𝑣 =  
∆ℎ

∆𝑤
, is negligible for larger imprinted features, as 

demonstrated in Figure 9 C through E.  Although smaller digital features such as the 0.35 μm wide 

waveguide in Figure 9 B were fabricated, the simulation and testing in this project focused on 2-

μm or wider digital and gradient imprints.  
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Figure 9. (A) A diagram showing the Poisson effect for an isolated digital imprint, (B) SEM 

image of a ~350 nm wide digital imprint exhibiting a small amount of lateral expansion in the 

high compression (deformation) regime, indicating a low Poisson ratio. (C) Calculated lateral 

expansion of 500 nm, 2000nm, and 10,000 nm wide digital features under Poisson ratios of 0.15, 

0.0375, 0.0075.  To achieve the same ~100 nm lateral expansion near high compression, the 

Poisson ratio is effectively feature size dependent. (D) Calculated normalized volume change for 

digital imprints with different Poisson ratios. (E) Expected refractive index for digital imprints 

with differing Poisson ratios (ν).  Deviation from 0 Poisson ratio (ZPR) coincides with non-

negligible lateral expansion and reduction in refractive index relative to the ideal ZPR value.  

The post-imprint porosity distribution of the NIRI-imprinted film is P(x,y), which is related to the 

imprint profile h(x,y) according to the following formula: 

𝑃(𝑥, 𝑦) = 1 −
ℎ0

ℎ(𝑥, 𝑦)
(1 − 𝑃0) 

( 20 ) 

Where the post-imprint height and porosity are bounded by: ℎ0(1 − 𝑃0) ≤ ℎ ≤ ℎ0 and 0 ≤ 𝑃 ≤

𝑃0 respectively.  To simplify the 3 component Bruggeman approximation as a function of porosity, 
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the quantities of nSi and nSiO2 from equation 17 were lumped into a single value, nsk representing 

the effective refractive index of the skeleton.  It was assumed that the silicon skeleton was 

comprised of a 50:50 volumetric ratio of SiO2 to Si.  The simplified Bruggeman approximation as 

a function of porosity is as follows:  

𝑃(𝑥, 𝑦)
1 − 𝑛𝑠𝑘

2

1 + 2𝑛𝑠𝑘
2 + (1 − 𝑃(𝑥, 𝑦))

𝑛𝑠𝑘
2 − (𝑛(𝑥, 𝑦))

2
 

𝑛𝑠𝑘
2 + 2(𝑛(𝑥, 𝑦))

2 = 0 

( 21 ) 

Figure 10 C shows how the effective refractive index of a NIRI imprinted film changes with 

imprint fraction and porosity according to this model.  As indicated in the figure, the refractive 

index can be controlled over a wide working range Δn, readily reaching from ~0.5-1 RIU at 

optical wavelengths (e.g. 𝜆0=635 nm).  The maximum achievable film refractive index is 

determined by the refractive index of the skeleton, while the achievable index contrast is 

determined by the initial porosity P0.   
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Figure 10. (A) This diagram shows a simplified procedure for NIRI device fabrication (not to 

scale).  A solid silicon or fused silica stamp is pressed into the porous silicon following HF 

etching, and then the porous silicon is polished to achieve flat optical or photonic devices.  The 

areas in pink and green indicate a higher refractive index achieved through imprinting (B) SEM 

image of a post-imprinted pSi film (C) Evolution of porosity P and effective refractive index n 

vs. film compression C assuming P0 = 0.75 and a skeleton comprised of 50:50 Si:SiO2   

 As an additional case study in the index patterning ability of the NIRI process, an extra pSi 

sample was prepared following the standard NIRI procedure used in this paper.  It was then 

imprinted with a solid piece of silicon wafer at a pressure of 642.97 N/mm2, significantly reducing 

the porosity in the imprinted area.  The imprinted areas on the actual NIRI fabricated devices were 

too small to gather useful reflectance data given the available equipment.  Figure 10 B shows an 

SEM cross-section of the porous silicon after it was imprinted from an initial height of 1.143 μm 

to a final height of 0.433 μm, an imprint fraction of C = 0.61.  The refractive index of the film 

before and after imprint was determined using reflectance measurements, pictured in Figure 11.  

The reflectance traces were fit using the standard 3-component Bruggeman NIRI model, which 
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indicated an index contrast of Δn = 0.85.  Furthermore, both reflectance traces in Figure 11 also 

show minimal attenuation over the 500 nm wavelength range, indicating that losses and scattering 

are not particularly strong factors.  This confirms that the mesoporous silicon film acts as an 

effective medium for wavelengths over 500 nm regardless of imprinting.    

 

Figure 11. Reflectance data from imprinted and non-imprinted porous silicon film (top) as well 

as the fit refractive index of the pre- and post-imprint films over the 400 to 1000 nm range 
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CHAPTER 3 

NANOIMPRINTED REFRACTIVE INDEX MICROLENS ARRAY 

 3.1 NIRI Microlens Fabrication 

The specifics of the nanoimprinted refractive index (NIRI) microlens fabrication process are 

shown in Figure 13 below.  The etch cell used in all of the etching stages is pictured in Figure 12.  

A 15% ethanoic hydrofluoric acid solution was used in all trials.  The etch cell includes a platinum 

wire cathode, and the silicon wafer serves as the anode.  The electrodes are connected to a Keithley 

2601A SYSTEM SourceMeter current source controlled using Keithley etch system control 

software.  The DC current density used in the initial etch phase for the microlens fabrication is 

55.1 mA/cm2, which is applied for 34 seconds, resulting in a ~1.1 μm porous silicon layer with an 

initial porosity ~0.75.  The film is then imprinted with the microlens stamp, an off the shelf 5 mm 

x 5 mm fused silica microlens array (SUSS MicroOptics) comprised of a rectangular array of 

spherical cap features with a radius of curvature equal to 708 μm and a pitch of 110 μm.  An 

approximate rendering of this stamp can be seen in Figure 14 A, though it is not to scale.  This 

particular stamp showed remarkable durability, as we used it to create well over 50 microlens 

imprints at a pressure of ~4 kN before it began to crack.  This indicates that fused silica is a 

promising candidate for use in stamps for larger-scale NIRI imprinting.   

The imprint occurred at a pressure of ~4 kN for <5 seconds using a Specac Atlas 2T manual 

hydraulic press. To prevent cracking of the porous silicon sample during imprinting, both sample 

and stamp are backed with Scotch tape prior to imprinting.  The porous silicon is placed in the 

hydraulic press with the porous layer facing up, and the stamp is placed on top of the porous layer 

face down. Figure 14 B shows an optical microscope image of the analog profile formed in the 

nanoimprinted mesoporous silicon film after imprinting with a force of ~4 kN for <5 sec.  Further 
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details of the imprint methods can be found in Appendix A.  The gradient pattern resulting from 

the imprint can be directly observed from the concentrically uniform and radially modulated 

structural color profiles captured by the microscope camera.  Following imprinting, the 

microlenses are briefly annealed at 500°C for 15 minutes in air in order to prevent excessive 

scratching and deformation of the film during polishing.  During this annealing phase, a thin oxide 

layer is grown on the internal surface of the silicon skeleton which passivates the film, increasing 

its hardness and durability, but there is still a significant amount of silicon present in the porous 

skeleton, an estimated fraction of 50%.   

 

Figure 12. Schematic of the porous silicon etch cell used in the fabrication of NIRI devices (not 

to scale) 

To realize a truly flat-optical structure capable of reshaping an incident wavefront according 

to its modulated refractive index profile ∆𝜙(𝑥, 𝑦) ∝ ∆𝑛(𝑥, 𝑦), we remove the imprinted surface 

topography of the microlens array by performing chemical mechanical polishing (CMP).  We 

performed the polishing for these NIRI microlens samples using a Buehler VibroMet 2 vibratory 

polisher with a 0.06 μm colloidal silica slurry (pH = 9.8).  An issue with this particular polishing 



38 

 

process was the insufficient planetary motion of the sample during polishing, which gave rise to 

uneven polishing and polishing gradients across the sample in some cases.  We partially 

compensated for this by manually rotating the samples in the polisher relative to the direction of 

revolution periodically throughout the polishing process.  Further details on the polishing methods 

can be found in Appendix B.  A 50-minute polish using this method was found sufficient to 

planarize the film to a final thickness of ~320 nm.  Due to the thinness of the film, we etch a 

thicker, mechanical support porous layer beneath the porous GRIN layer following polishing.  This 

mechanical support layer is created using a slightly lower current density of 52 mA/cm2 because 

the higher current density was found to cause structural collapse in the porous silicon film.  We 

perform a third etch to separate the planar microlens array from the solid silicon substrate.  The 

current density used in this etch stage is 137.8 mA/cm2, more than twice the current density of 

previous stages.  This causes the etching to proceed in the electropolishing regime, shown in Figure 

7, so a thin layer of silicon is removed uniformly at the support layer-substrate interface.  Due to 

the short duration of this etch phase, the high etch current density doesn’t significantly degrade the 

porous silicon layers.  We then lift off the microlens film onto optically transparent, double-sided 

adhesive (Nicomatic transparent spacer adhesive), adhered to a borosilicate glass coverslide 

(22x22 #1 Platinum Line Cover Glass).   
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Figure 13. A flow chart depicting the process used to create a NIRI microlens array.  Following 

NIRI imprinting, the lenses are briefly oxidized to prevent scratches in the vibratory polisher, 

after which they are planarized through polishing.  A second round of etching is performed to 

form a mechanical support layer, which is fractured using a pulse in the electrochemical cell.  

After this, the microlens layer can be lifted off onto a transparent substrate, which was a 

microscope coverslide in this case; the red areas on the porous silicon layers indicate an area of 

densified film caused by the imprint process 

Figures 14 C and d show the nanoimprinted mesoporous film at different points in the process 

shown in Figure 13.  Given the flat nature of the planarized film, the structural color pattern 

observed in Figure 14 C and D arises purely from the patterned refractive index variation Δn(x,y) 

modulating the local reflectance characteristics which are dictated by thin-film Fabry-Perot 

interference.  As can be seen in Figure 14 C, there is some deviation from the perfectly circular 

lens profiles seen in the imprint image due to flaws in the vibratory polishing process that caused 

pore deformation and uneven polishing.  Further improvements in polishing, such as more uniform 

planetary rotation of the sample during polish, will likely result in more perfectly circular 

planarized lenses.  It should also be noted that the observed color profile of these GRIN patterns 
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spans a full 360-degree orbit through chromaticity space, which suggests NIRI could also be 

utilized to nanoimprint structural colors over a wide color gamut.   

 

Figure 14. (A) An artistic rendering of an analog stamp profile in a fused silica microlens array 

stamp, (B) an optical microscope image of the microlens array imprint in a ~1.1 μm thick, ~75% 

porosity film (scale bar 200 μm), (C) a flat GRIN microlens array following 50 min CMP to a 

flat-optic thickness of ~320 nm prior to detachment from the substrate (scale bar 200 μm), (d) a 

flat GRIN microlens array following the mechanical support layer (~5μm thick) etch, just prior 

to detachment from the substrate (scale bar 200 μm). 

To quantitatively measure the imprinted n(x,y) profile prior to planarization, we performed 

multi-wavelength interferometry at wavelengths 406 nm, 520nm, and 635 nm in a customized 

reflection mode microscope setup. We then fit the experimentally observed fringe profiles (Figure 

15 A through C) to a model (Figure 15 D through F) accounting for the patterned height h(x,y) and 

dispersive gradient refractive index n(x,y,λ) profiles.  Our model fit shows excellent 

correspondence with the observed profiles as shown in Figure 15 G through I, and indicates that 
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the porosity of the patterned effective medium depicted in Figure 14 B is modulated from ~0.75 at 

the outer edge of the GRIN profile to ~0.315 at the center as shown in Figure 15 J and L.  At the 

green test wavelength this corresponds to an analog GRIN profile n(x,y) patterned with a dynamic 

range from ~1.35 to ~2.15 over a radial distance of ~35 μm.  

 

Figure 15. (A), (B), and (C) show experimentally observed fringe profiles of an imprinted 

microlens sample at wavelengths of 406 nm (A), 520 nm (B), and 635 nm (C); (D), (E), and (F) 

show 3D model fits of the fringe profiles, based on the 3-component refractive index vs imprint 

fraction simulation, for imprinted microlenses at wavelengths of 406 nm (D), 520 nm (E), and 

635 nm (F); (G), (H), and (I) show 2D cross sections of the model fits and experimental data 

shown in Figures (A) through (F); (J) A plot showing how refractive index varies with porosity 

according to the 3-component Bruggeman approximation; (K) 3D image of the index profile of 

the imprinted lenses ; (L) 2D cross section of an imprinted lens showing the imprint topology as 

well as the resulting porosity profile; (M) simulated gradient refractive index profiles of the 

imprinted microlens at the three test wavelengths  

The extracted refractive index profile can be seen in Figure 15 K and M, and is found to match 

a hyperbolic secant GRIN profile of the form:  

𝑛𝑟 =  𝐶0 sech(𝛼𝑟) + 𝑛0 

( 22 ) 
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Where n is the refractive index at radius r from the center of the microlens, n0 is the refractive 

index of the film prior to imprint, and C0 and α are gradient parameters [90].  The hyperbolic secant 

fit of the refractive index profile can be seen in Figure 16 below.   

 

Figure 16. A graph of the simulated microlens index profile along with a hyperbolic secant fit 

3.2 NIRI Microlens Performance 

Following the chemical mechanical polishing and liftoff processes, we verified the wavefront-

shaping capabilities of the planar GRIN profiles.  As shown in Figure 17 A through C, the NIRI 

patterned flat optics are predicted to behave as focusing microlens arrays.  Each flat GRIN lens 

imparts a phase profile approximated by the following formula: 

𝜙𝑟 =  
2𝜋

λ0
∆𝑛𝑟𝑡 =  

2𝜋

λ0
𝐶0sech (𝛼𝑟𝑡) 

( 23 ) 

Where ϕ is the phase imparted by the microlens at distance r from the lens profile’s center, 𝜆0 is 

the incident wavelength in a vacuum, Δn is the index contrast, and t is the thickness of the GRIN 

film, indicated in Figure 17 C.  This indicates that the total phase coverage and focusing power of 
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the lens are dependent on the index contrast Δn as well as the final polished film thickness t.  The 

thickness dependency is confirmed by the finite difference time domain (FDTD) simulations in 

Figure 17 A and B.  As can be observed from these two simulations, a thickness change of 250 nm 

drastically changes the focal distance and full-width half max of the GRIN lenses.  Assuming Δn 

≈ 0.75 and t = 320 nm in the experimentally fabricated GRIN microlens array, the transmitted 

phase coverage in the visible region is on the order of 𝜋 radians.  Finite difference time domain 

(FDTD) simulations of this geometry and refractive index profile, shown in Figure 15 M, predict 

focusing an incident plane-wave to a full width half-maximum (FWHM) of ~12 m at a focal 

length near ~1.1 mm at 0 = 635 nm.   

 

Figure 17. FDTD simulation of the flat GRIN lens operating at 635nm for planar thicknesses: 

(A) t = 150 nm or (B) t = 400 nm. (C) Illustration of the flat GRIN lens characterized with 

patterned index profile n(x,y) and film thickness t. (D) Experimental image of 635 nm light 

focusing after transmission through a ~320 nm thick NIRI patterned GRIN microlens array 

(sample from Figure 14 C), and (E) corresponding z vs. x cross-section aggregated from a 

captured video, and (F) z vs. x cross-section demonstrating wavefront shaping at visible 

wavelengths 406 nm, 520 nm, and 635 nm. 

To test the wavefront shaping abilities of the fabricated microlenses, we shine a collimated, 

planar wavefront from a multi-channel coupled laser source (Thorlabs MCLS1 4-Channel Laser 
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Source) through the GRIN microlens film.  Figure 18 shows the measurement setup used to capture 

the output wavefront from the lenses.  Scanning in the z-dimension is performed by recording a 

video as the flat-optic is manually translated along the z-axis relative to the imaging objective. 

Video scans are then post-processed to aggregate the video frames and construct a 2D cross-

section, shown in Figure 17 E.  We determine the full-width-half-maximums of the lenses by 

taking 2D cross-sections of pixel intensity values across multiple microlenses over all the relevant 

video frames.  Figure 17 D shows the video frame where the full width half maximum of the output 

focal point is minimized for an input wavelength of λ0 = 635 nm, indicating the microlenses are in 

focus.   

 

Figure 18. Diagram of the planar GRIN microlens testing setup 

The measured full-width-half-max for the video frame in Figure 17 D was 14.33 μm for λ0 = 

635 nm.  Similar measurements of different video captures of this sample at the same incident 

wavelength yielded similar FWHM results, ranging between 13.35 μm and 15.21 μm.  Video scans 

were also captured for illumination wavelengths 0 = 406 nm and 0 = 520 nm, both of which 
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exhibited similar light focusing behaviors as indicated in Figure 17 F.   The exact focal points of 

these lenses cannot be determined from the scans due to the uneven, manual nature of the z-

translation in this setup, but the shapes of the simulated and experimental focal cross sections, 

shown in Figure 17 A and B and Figure 17 D and F respectively, are visibly very similar.  This 

confirms the presence of a hyperbolic secant index profile realized on the fabricated lenses.   

An issue that affects the quality of the video footage is the presence of wrinkles and 

microcracks in the pSi film containing the microlenses following liftoff onto the transparent 

substrate.  Any wrinkles or microcracks in the sample present in a video frame scatter light from 

the incident wavefront, negatively impacting the clarity of adjacent microlenses.  This is likely due 

to the strong optical anisotropy of porous silicon as well as the wavelength or super-wavelength 

scale of the cracks and wrinkles.  The thickness of the glass cover slide used as a transparent 

substrate for the microlens array was ~140 μm and its transmittance at 635 nm was measured to 

be around ~91%.  The transmission efficiency of the GRIN microlens array was measured to be 

~74% as normalized to a transparent glass cover slide and is limited by absorption in the ~5 m 

thick mechanical support layer etched beneath the NIRI patterned film.  Figure 19 shows the 

transmission of this support layer as well as extrapolated transmission efficiencies for thinner 

support layers between 1 μm and 320 nm in thickness.  These extrapolations demonstrate that a 

thinner support layer can drastically increase microlens transmission efficiency to > 95% in the 

visible range.  Overall, the results of the various NIRI microlens tests indicate the successful 

realization of a high index contrast, truly flat GRIN-optic with a smoothly varying (non-

discretized) index profile and subwavelength thickness operating at visible frequencies. 
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Figure 19. Measured transmission efficiency, normalized to the transmission of a microscope 

glass slide, of the lifted-off porous silicon film carrying the flat NIRI microlens array. 

Attenuation is dominated by visible light absorption of silicon in the ~5 micron thick mechanical 

support layer.  The actual transmission efficiency for thinner layers, including the 320 nm thick 

NIRI patterned layer can be significantly higher.  
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CHAPTER 4 

NANOIMPRINTING REFRACTIVE INDEX: OPTICAL WAVEGUIDES 

4.1 Imprinted Optical Waveguide Fabrication 

In addition to patterning GRIN profiles we utilized NIRI to pattern digital refractive index 

patterns n(x,y) according to the procedure outlined in Figure 20.  The porous silicon films used to 

form the waveguides are fabricated to the same specifications and using the same equipment as 

the porous silicon films used to form the GRIN microlenses in the previous chapter.  The p-type 

(1 0 0) silicon wafers are placed in the etch cell, pictured in Figure 12, and etched with a current 

density of 55.1 for 34 seconds.  This etch recipe results in a ~1.1 to ~1.2 μm thick film with a 

~75% starting porosity.  NIRI is performed using a 2.59x3.59 mm area solid silicon stamp 

containing waveguide ridges of various widths ranging from 2 μm to 0.5 μm, shown in Figure 21 

B.   Appendix A contains a more detailed account of the imprinting methods.  As shown in the 

artistic rendering of the waveguide stamp in Figure 21 A and the microscope images of the 

imprinted pattern in Figure 21 C, in the regions between each waveguide ridge, the stamp pattern 

is filled with dummy pillar arrays.  The purpose of these arrays is to increase the overall surface 

area of the stamp and to suppress long range pattern density variations which could lead to non-

uniform pressures and imprint depths.   
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Figure 20. An artistic rendering outlining the NIRI waveguide fabrication process; following 

the imprinting step, a porous silicon lower cladding layer was added, and the sample was 

lightly oxidized, reducing loss; The darker sections indicate areas of the porous film that 

have been densified 

The waveguide stamps were fabricated by Ivan I. Kravchenko at Oakridge National 

Laboratories.  A four-inch Si wafer was coated in a 250 nm thick layer of ZEP520A resist and 

exposed to the stamp pattern using a Jeol 9300FS electron beam lithography system.  Following 

exposure, the wafer was developed using a standard Xylenes developer and plasma-based de-

scumming process.  The desired etch depth was larger than what could be achieved through a 

single e-beam lithography step, so the surface of the resist on the wafer was coated with a 10 nm 

layer of Cr and treated in a hot NMP bath to generate a Cr mask pattern.  The wafer with its Cr 

mask was subsequently etched to the desired depth using an Oxford plasma etcher, and then the 

Cr mask was removed using a wet Cr etchant.  Finally, the residuals on the wafer were removed 

using oxygen microwave plasma exposure.    
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Figure 21.  (A) An artistically rendered closeup of a stamp used to fabricate the digitally-

patterned NIRI waveguides, (B) An optical microscope image of one of the waveguide stamps 

showing the arrangement of all of the waveguide ridges; the light grey areas around the outside 

of the stamp are comprised of dummy pillar arrays (scale bar 500 μm), (C) an optical microscope 

image of an imprinted waveguide sample (scale bar 100 μm), (D) a cross-sectional SEM image 

of an imprinted waveguide following the secondary electrochemical etch to add low index 

waveguide cladding (scale bar 2 μm). 

The resulting etch depth of the stamp features was ~1 μm.  The stamp depth was selected to be 

deeper than the maximum imprint depth of ~900 nm assuming P0 = 75% porosity and 1.2 m 

starting film thickness. This ensures that the stamp only contacts with the substrate and densifies 

areas defined by the digital pattern, while leaving the background index n0 unmodified.  When the 

stamp etch depth is insufficient, as was the case in earlier stamp prototypes, pieces of the porous 

silicon film can become detached from the substrate and adhere to the stamp during imprint.  

Compared to fused silica, silicon has a much lower compressive strength and is much more subject 
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to fracturing.  Consequently, the stamp lifetime was significantly reduced to a maximum of 15 

imprints.  Additionally, unlike the fused silica microlens stamp, the silicon waveguide stamps 

could not be cleaned using sonication in isopropyl alcohol, as this was found to degrade the binary 

ridge features of the stamp.  This made the silicon stamps more susceptible to dirt and debris that 

impacted the imprint quality.   

Following imprint, we return the sample to the etch cell to etch a porous silicon cladding layer 

below the waveguides to improve confinement.  The current density used in this step is 52 mA/cm2 

applied for 170s, yielding a cladding layer of thickness ~5 μm.  This current density is lower than 

in the first etch phase to avoid structural collapse of the porous skeleton.  The lower cladding layer 

is visible in the cross-sectional SEM image in Figure 21 D, and it can be observed that the second 

etch did not interfere with the densified waveguide region and that the etching resumes unimpeded 

by the densified porous film above, confirming that film integrity is retained after secondary 

anodization.   The patterning of the waveguide in Figure 21 D also demonstrates that NIRI is 

capable of patterning sub-micron features while imprinting with >1:1 aspect ratio.  While prior 

direct imprinting work has demonstrated a topographic direct imprinting resolution <100 nm [60], 

in practice we expect the minimum patterning resolution to depend on factors such as maximum 

aspect ratio and imprint depth.  In this work we successfully imprinted line features as small as 

~350 nm in width to a high compression regime, i.e. C > 60% where Δn ≥ 0.8, for a maximum 

aspect ratio of ~2.75:1.   

As can be seen from the optical microscope image of the imprint in Figure 21 C, there was a 

structural color change in the imprinted areas from the yellow of the non-imprinted areas to a dark 

reddish-brown.  This, along with the relatively high imprint pressures used in fabrication indicates 

a large imprint fraction, and consequently a large refractive index contrast.  The large refractive 
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index contrast is confirmed by Figures 22 A and D, which show scanning electron microscope 

images of the cleaved facet of a ~2-μm and a ~0.5-μm-wide NIRI imprinted waveguide 

respectively.  For Figure 22 D, it was determined that the non-imprinted film height is 1.1 μm and 

the imprinted film height is 0.328 μm, so the imprint fraction in this case is 0.702.  As for the 

waveguide in Figure 22 A, the non-imprinted height is 1.09 μm, and the imprinted height is 0.294 

μm, so the imprint fraction is 0.730.   

According to the film compression vs. porosity model in Figure 10 C, the porosity of the 

imprinted film should be very close to 0 for both imprints: 0.075 and 0.161 for the waveguides in 

Figure 22 A and D respectively.  This is confirmed by the absence of visible pores in the imprinted 

areas in Figures 22 A and D.  According to the 3-component refractive index vs. imprint fraction 

model, the refractive indices of the waveguides in Figures 22 A and D should be 2.31 and 2.19 

respectively.  The non-imprinted pSi film has been characterized to have an index of 1.287, so the 

imprints in Figures 22 A and D would correspond to index differences of Δn = 1.023 and Δn = 

0.899 respectively.  The index profiles for both waveguides, modelled in Lumerical Mode, are 

shown in Figures 22 B and E.  The high refractive index differences, bode well for waveguide 

confinement.  Previous works indicate that a compression this close to the limit of 0.75 would 

cause the silicon skeleton in the imprinted area to become brittle and dislodge, but this has, so far, 

not been observed in the imprinted waveguide samples [82].  This is likely due to the fact that the 

waveguide samples in this study were briefly thermally oxidized for 15 minutes at 500°C prior to 

testing.  The volumetric expansion from the formation of the native SiO2 oxide during oxidation 

likely locked the potentially loose material into the film.   
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Figure 22. (A) A scanning electron microscope image of the cross-section of a ~0.5 μm wide 

imprinted waveguide at 4.0k magnification.   (B) A simulated index profile of the ~0.5 μm 

waveguide based on the cross section and the 3-component imprint fraction vs. index 

approximation (C) a mode simulation of the primary TE mode for the ~0.5 μm waveguide at λ = 

1310 nm (D) A scanning electron microscope image of the cross-section of a ~2 μm wide 

imprinted waveguide at 11.0k magnification (E) A simulated index profile of the ~2 μm 

waveguide based on the cross section and the 3-component imprint fraction vs. index 

approximation (F) a mode simulation of the primary TE mode for the ~2 μm waveguide at λ = 

1310 nm 

4.2 NIRI Waveguide Performance 

Following the thermal oxidation, we experimentally characterized NIRI patterned waveguides 

operating in the O-band from 1260 nm - 1360 nm.  To enable input/output coupling, the waveguide 

patterns were cleaved into ~1 mm long waveguide segments with exposed waveguide edge facets 

as shown in Figure 22 A and D.  The cleaving step significantly reduced the yield of usable 

waveguide samples, as the cleaved samples were often left with edge facets that were not 

perpendicular to the upper face of the sample, making coupling more difficult.  The cleaving 

process also introduced an additional opportunity for physical damage, such as scratches or chips, 

to the porous silicon film, which rendered a number of waveguide samples unusable.  In these 

cleaved waveguide samples, in-plane optical confinement is achieved by the laterally patterned 
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index profile while out-of-plane confinement is provided by the index contrast between the 

imprinted core and the low index cladding layer formed by the second anodization step mentioned 

in the previous section.  The mode simulation (Ansys Lumerical), shown in Figure 22 F, indicates 

that the fundamental quasi-TE polarized mode is well confined to the waveguide core.   

 

Figure 23. Waveguide characterization setup 

The cleaved waveguide samples are characterized using the setup shown in Figure 23.  We 

perform fiber-to-chip coupling using a tapered lensed fiber with a ~2.5 μm spot diameter and ~14 

μm working distance (OZ Optics), which we align to the chip using a high precision XYZ 

alignment stage (Thorlabs NanoMax) with the aid of top and side-view infrared cameras 

(Hammamatsu  C2741).  The strong waveguide confinement and mode mismatch with the input 

light source leads to an estimated ~10 dB coupling loss between the input fiber and waveguide.  In 

the future improved coupling efficiency could be achieved by implementing a mode convertor or 

using NIRI to pattern a grating coupler to facilitate efficient out-of-plane coupling.  Such a device 

could be engineered by either digitally patterning a binary refractive index profile or by 

engineering a gradient or analog index profile to optimize edge or grating coupler efficiency [6], 

[45]–[47].   
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A microscope objective (Mitituyo 50x M Plan APO NIR) and a tube lens (Navitar 12x Zoom 

Infrared Lens Tube) are used to focus the light from the waveguide’s output onto an IR camera 

lens, as shown in Figure 23 above.  A free-space polarizer placed between the objective lens and 

lens tube is used to verify quasi-TE polarization, which is controlled by the polarization controller 

(Thorlabs 3-paddle) placed between the laser source and the sample. The scattered light intensity 

is measured by averaging top-down images taken at wavelengths from 1260 nm to 1360 nm 

(Santec TSL-550). Imaging is calibrated by capturing top-down images for input power settings 

ranging from 10 dBm to 1 dBm at intervals of 1 dBm.  Image processing is performed in MATLAB 

to determine the waveguide propagation losses.   One of these top-down images can be seen in 

Figure 24 C below.  From visual inspection of this image, it is obvious that the scattered light 

intensity decays as it propagates down the waveguide.  The data extracted from image processing 

of this waveguide can be seen in Figure 24 E.  The waveguide loss was found to be 8.103 ± 0.245 

dBm/mm using the image processing method.  This value is comparable to other reports of 

mesoporous silicon waveguides prepared by lithography and RIE in low resistivity p-type silicon 

[91], [92].   

Although non-negligible optical scattering is visible in the infrared camera, the dominant loss 

mechanism is attributed to free-carrier absorption of the p-doped silicon skeleton.  The (1 0 0) 

silicon wafers used to create the waveguides have an acceptor concentration NA = 3.2E18 to 

8.5E18, which we will assume is the same for the imprinted waveguides.  This value can be used 

along with the coefficients and linear regression formulas to describe how the absorption 

coefficient and refractive index of silicon changes with carrier concentration, as derived in a paper 

by Nedeljkovic et al [93].  The formula derived for absorption coefficient is as follows:  
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∆𝛼(𝜆) = 𝑎(𝜆)∆𝑁𝑒
𝑏(𝜆)

+ 𝑐(𝜆)∆𝑁ℎ
𝑑(𝜆)

 

( 24 ) 

Here, ΔNe and ΔNh are the electron and hole concentrations due to doping and a, b, c, and d are 

wavelength-dependent coefficients.  In this case, due to the strongly p-type doping, the term 

containing ΔNe is negligible and can be disregarded.  Using this formula, the predicted free-carrier 

absorption coefficient of silicon at   = 1.3 μm is estimated to be between 14.3 cm-1 and 42 cm-1 

for a silicon loss coefficient between 6 – 18 dB/mm [93].  Thus, a waveguide confinement factor 

in silicon near ~0.5 is sufficient to attribute the majority of the observed propagation loss to free-

carrier absorption rather than scattering loss.  We also note that our measured propagation loss is 

consistent with other reports of mesoporous silicon waveguides prepared from low resistivity p-

type silicon [94].  In the future, losses could be improved by lowering the free-carrier concentration 

to near intrinsic values, for example by compensation doping or by synthesizing mesoporous films 

by alternative processes such as metal-assisted chemical etching which are compatible with high 

resistivity silicon [78].  Alternatively, and as demonstrated in this work, the waveguide loss can 

be improved by oxidizing the waveguide from mesoporous silicon into mesoporous silica.  
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Figure 24. (A) SEM image of a 2-μm-wide imprinted waveguide facet (2 μm scale bar), (B) 

Lumerical MODE simulation based on the facet in (A) and showing the dominant TE mode at a 

wavelength of 1310 nm, (C) top-down IR image of a 2μm wide, non-oxidized waveguide 

guiding light at an input wavelength of 1300 nm, (D) A top-down view of a different 2-μm-wide 

waveguide after full thermal oxidation guiding input light at a wavelength of 1300 nm, (E) Graph 

of the power loss over the non-oxidized waveguide in (C) that shows a waveguide loss of 8.103 

± 0.245  dBm/mm, (F) Graph of the power loss over the oxidized waveguide in (D) that shows a 

waveguide loss of 1.1054 ± 1.010 dBm/mm. 

Following the fabrication procedure shown in Figure 20 and cleaving, we thermally oxidize 

some of the samples at 900°C for 24 hours in order to fully oxidize the silicon skeleton.  In addition 

to eliminating free-carrier absorption, this process modulates the refractive index contrast of the 

waveguide which is bounded to material indices between air (n = 1) and SiO2 (n = 1.45). Based on 

fitting the reflectance spectra of oxidized mesoporous silicon thin-film witness samples, we 

estimate the high and low refractive indices of our mesoporous silica waveguides to be nhi ≈ 1.38 

and nlo ≈ 1.15.  An example of one of these fully oxidized samples can be seen in Figure 24 D.  

The sample shown in Figure 24 C was also fully oxidized after testing, but stopped waveguiding 

following oxidation, possibly due to the volumetric expansion of the Si skeleton as it oxidized, 
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changing the waveguide geometry.  The sample in Figure 24 D was a different sample that was 

found to waveguide strongly following oxidation.   

As can be seen from even a visual comparison between Figures 24 C and D, there was 

much lower loss along the oxidized waveguide, as the scattering within the oxidized waveguide is 

relatively constant in intensity between the source (left) and the output (right).  This was confirmed 

by the image processing procedure used to calculate the waveguide loss, the results of which can 

be seen in Figure 24 F for the oxidized waveguide.  The loss was found to be ~1.1 ± 1 dB/mm.  

Due to the lower propagation losses and the influence from light scattering at the facets, our IR 

imaging-based analysis of oxidized samples was limited to the middle ~500 μm portion of the 

waveguide (Figure 24 F), limiting the measurement accuracy to ± 1 dB/mm.  In future work, 

measurements of longer mesoporous silicon waveguides can be used to estimate the waveguide 

loss with reduced uncertainty.  Based on prior reports regarding mesoporous silica [94], we 

anticipate surface-scattering limited losses below 1 dB/cm in the infrared and volume-scattering 

limited losses below 5 dB/cm in the visible should be feasible. 
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CHAPTER 5 

CONCLUSION AND OUTLOOK 

5.1 Conclusion 

 We demonstrated two proof-of-concept optical devices fabricated using the 

nanoimprinting of refractive index (NIRI) process.  We successfully designed, fabricated, and 

characterized a planar GRIN microlens array and several digitally patterned optical waveguides.  

We achieved a flat, subwavelength-thickness porous silicon microlens with an approximate 

transmitted phase coverage of π in the visible region and an overall transmission of ~74%.  These 

microlenses demonstrated distinct wavefront-shaping behavior at visible wavelengths of 406 nm , 

520 nm, and 635 nm consistent with their hyperbolic secant phase profiles and with the results of 

corresponding FDTD simulations.  The focal length of these lenses at 635 nm is estimated to be 

~1.1 mm, and the FWHM of the focal point was measured to be ~14 μm.   

 We also demonstrated digitally patterned waveguides fabricated using the NIRI process.  

Our 2-μm-wide waveguides successfully guided light in the O-band from 1260 nm - 1360 nm. We 

characterized the waveguide loss using data from IR imaging systems, which indicated an initial 

propagation loss of 8.103 ± 0.245 dBm/mm.  We determined that the majority of this propagation 

loss was due to free-carrier absorption rather than scattering loss due to the roughness of the 

waveguides using formulas developed by Nedeljkovic et al [93].  We confirmed this by 

determining the propagation loss of a fully oxidized waveguide sample, which we found to be 

1.1054 ± 1.010 dBm/mm, an 8-fold reduction from the non-oxidized waveguide.  Through the 

fabrication and demonstration of these two types of devices, we have confirmed the ability of the 

nanoimprinting of refractive index (NIRI) process in performing both gradient and digital index 

patterning of mesoporous silicon.   
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5.2 Outlook 

 Unlike flat-optic technologies based on discretized local phase elements or meta-atoms, 

NIRI enables truly continuous control over the phase profile.  The NIRI process offers effective 

index patterning and performance similar to that found in subwavelength gratings, even at 

wavelengths as low as 406 nm, which is extremely difficult to achieve in subwavelength gratings 

using conventional manufacturing techniques.  The devices fabricated in this research represent a 

proof-of-concept of NIRI for use in optical device fabrication.  That being said, there is ample 

room to improve the aforementioned NIRI-fabricated devices and procedures.  For instance, the 

specific planarization process used in fabricating the microlenses tended to be uneven, leaving a 

gradient over the sample.  Additionally, the polishing process was not well-controlled, so getting 

a precise film height was relatively difficult to accomplish.  As discussed in chapter 3.2, the film 

thickness has a significant effect on the focusing characteristics of our GRIN microlenses, so it is 

important to tightly control film thickness.  We also need to control and measure the vertical height 

of the microlens sample during transmission tests to experimentally determine the microlenses’ 

focal length more precisely.  It will also be worthwhile to implement flat optical devices with full 

2π phase control using the NIRI process, as those in this research only demonstrated phase control 

of ~π, which is insufficient for many planar optical devices.  As for the waveguides, it will be 

necessary to further investigate and improve the propagation loss.  In order to gain a better 

understanding of the waveguide loss, we will need to measure longer waveguide samples, 

particularly for the oxidized waveguides, where scattering from the facets is more prominent.   

 As demonstrated in this work, the NIRI process is promising for device fabrication.  The 

combination of high index contrast and subwavelength resolution offers the prospect of enabling 

novel GRIN designs which are otherwise challenging to achieve by other methods.  In future work, 
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we envision NIRI could leverage 3D surface patterning to define custom reusable stamps to 

fabricate fully customized digital or analog refractive index profiles. In addition to wavefront 

shaping, NIRI can simultaneously modulate amplitude by leveraging Fabry-Perot 

interference.  Consideration of the superstrate and substrate properties are therefore also important 

for controlling the local Fresnel transmission/reflection coefficients.  These properties could also 

be modified using a variety of techniques such as polymer infill of the pores.  Another 

consideration in future work is the birefringence of mesoporous silicon.  In the present case, (100) 

derived mesoporous silicon exhibits uniaxial anisotropy and a polarization independent response 

when illuminated at normal incidence.  For planar waveguide applications or oblique incidence 

metasurface applications however, the effective refractive index is polarization dependent which 

provides an additional consideration and prospective design tool for polarization diverse 

applications [71]. Similarly, polarization dependence could be achieved in normal incidence 

metasurfaces for (110) derived mesoporous silicon which exhibits biaxial anisotropy [95].  In such 

cases, we anticipate the magnitude of the birefringence to be modulated by film compression since 

the anisotropy is dependent on the pore morphology. For certain prospective applications, such as 

NIRI based photonic integrated circuits, conversion to mesoporous silica from mesoporous silicon 

will also affect the birefringence.  
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Appendix A: Imprinting Methods 

Some of the stamps used for the imprinted waveguides are shown below in Figure S1.  

 

Figure S1. Imprinted waveguide stamps 

Before each imprint, the stamp being used is rinsed in isopropyl alcohol, as shown in Figure S2.  

The waveguide stamps could not be sonicated because the sonication would break the delicate 

ridges on the stamps.  Following the brief rinse, the stamps are allowed to air dry. 

 

Figure S2. Waveguide stamp cleaning process 
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To prepare the porous silicon sample to be imprinted, it is rinsed in isopropyl alcohol and dried 

using pressurized air.  After this initial rinse, a backing of Scotch tape is added to the back of the 

sample such that there are no bubbles in the tape, as shown in Figure S4.  The addition of the tape 

was found to decrease the likelihood of the sample or stamp cracking during imprint, however 

bubbles in the tape can lead to uneven imprinting.   

 

Figure S3. A porous silicon sample to be imprinted 

 

Figure S4. Front (left) and back (right) of a porous silicon stamp with its tape backing 

A similar tape backing is also added to the backside of the stamp, as shown in Figure S5.  This 

tape backing is used to secure the stamp to the sample during imprinting, ensuring that it doesn’t 
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shift as pressure is applied.  Care is taken to align the stamp to the existing cleaved crystal planes 

of the sample to aid in cleaving the imprinted waveguides.   

 

Figure S5. Stamp receiving tape backing (left) Stamp with backing mounted on the porous 

silicon sample (right) 

Figure S6 shows a cleaved cross-section of an imprinted sample where the stamp shifted during 

imprint, damaging the waveguide structure.  

 

Figure S6. Scanning electron microscope image showing a cross-section of a waveguide.  The 

damage on the left of the waveguide was caused by the stamp shifting during imprint 
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The stamp and sample are placed in the jig as shown in Figure S7.  After this, the handle at the top 

of the jig is detached and the jig is placed in the hydraulic press.   

 

Figure S7. The porous silicon sample and stamp are placed in the jig for imprinting 

The hydraulic press is operated as shown in Figure S8 after the jig is positioned appropriately.  The 

specific pressure used for these stamps was 0.1 T.  Higher pressures were found to over-imprint 

the porous silicon or even break the stamp or sample.  Lower pressures under-imprinted the 

samples, which also led to unevenness in the pressure over the stamp.  The pressure in the hydraulic 

press is held for approximately 5 seconds before it is released, and the sample is retrieved. 
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Figure S8. The jig is placed in the hydraulic press (left) and a pressure of 0.1 T is applied (right) 

Figure S9 shows a sample after being imprinted.  The stamp was removed prior to this, but some 

tape residue remains around the imprint.  This residue has not been found to affect the quality of 

the imprinted pattern.  Following this, the sample is once again rinsed in isopropyl alcohol.  

 

Figure S9. Porous silicon sample after imprint and stamp removal 
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The frequent isopropyl alcohol rinses of the sample and stamp are designed to minimize the 

presence of dirt in the imprints.  Debris can be seen in the imprint in Figure S10.   

 

Figure S10. Microscope image showing a waveguide imprint that has been degraded by debris 

The imprinting procedure for the microlenses is similar to that of waveguides except for some 

minor differences.  The microlens stamp was made of fused silica instead of silicon, so it could 

stand up to sonication.  Prior to imprints, the microlens stamp is sonicated for 5 minutes in 

isopropyl alcohol.  Additionally, the microlens stamp has a larger area than the waveguide stamp, 

so a higher pressure of 0.4 T is applied during imprint.   

Appendix B: Polishing Methods 

We used the Buehler VibroMet 2 vibratory polisher with 60 nm-diameter colloidal silica polishing 

solution, as shown in Figure S11.   
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Figure S11. Bueler VibroMet 2 vibratory polisher 

We used solid stainless steel chucks as shown in Figure S12.  In order to increase the weight on 

the sample, we stack two chucks on top of one another and secure them with tape, as shown in 

Figure S13.  

 

Figure S12. Two chucks used in polishing 
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Figure S13.  The chucks are stacked vertically (left) and secured with duct tape (right) 

We then secure the sample to the bottom-most chuck using double-sided conductive SEM tape.  

We utilize two layers of double-sided tape rather than one to aid in removing the sample after the 

polishing process.  The second layer of tape is applied perpendicular to the first, as shown in Figure 

S14, which was found to produce the optimal amount of tape contact with the back of the sample.  

Too much tape contact was found to cause sample breakage during removal, and too little tape 

contact allowed the sample to detach from the chuck in the polisher.   
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Figure S14. First tape layer (left) and second tape layer during backing removal (right) 

Following this, we attach the sample to the tape, porous side up, and place the chucks sample-side-

down in the polisher, as shown below.  

 

Figure S15. The sample attached to the chuck (left) and the chuck in the polisher (right) 

The VibroMet polisher allows for amplitude adjustment between 0 and 100 % at intervals of 10.  

A setting of 70% was used to polish the samples used in testing.  During polishing, the chucks do 
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not experience consistent planetary motion within the polisher, so to ensure even polishing, the 

chucks are rotated by hand periodically (at least once every 5 minutes), as shown in Figure S16.   

 

Figure S16. Correct polisher setting (left), rotation of the chuck (right) 

Improper rotation of the sample led so uneven polishing, which can be seen in the samples in 

Figure S17.   

 

Figure S17.  Microscope images showing samples with polishing gradients due to insufficient 

planetary rotation 
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After polishing has finished, the chucks are removed from the polisher, and the sample gets an 

initial rinse in isopropyl alcohol to remove some of the polishing solution while it is still attached 

to the chuck, as shown in Figure S18.   

 

 

Figure S18. Initial isopropyl alcohol rinse of the polished sample 

Following this initial rinse, acetone is sprayed around the edges of the sample to dissolve the 

double-sided tape adhesive.  The porous part of the sample is kept wet with isopropyl alcohol, as 

shown in Figure S19.  If acetone becomes lodged in the pores of the sample and dries there, the 

rapid temperature change that accompanies acetone’s evaporation can damage the pore structure.   
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Figure S19. Acetone application (left), isopropyl alcohol re-application (right) 

After this acetone treatment, the sample can be removed by using a thin mixing spatula to gently 

push back the tape and pry the sample up, as shown in Figure S20.  Excessive pressure on the 

sample during this stage can cause it to fracture, making it ineligible for receiving a second etch 

treatment.  After the sample is lifted off of the chuck, it is once again rinsed with isopropyl alcohol.   
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Figure S20. Removal of the sample from the chuck using the mixing spatula (left) and then 

forceps (right) 

Following this rinse, the sample is submerged in more isopropyl alcohol for transport.  This 

prevents crystallization of the remaining polishing solution on the sample. 

 

Figure S21. The isopropyl alcohol bath is prepared for the polished sample (left), the polished 

sample is submerged in isopropyl alcohol (right) 

Another isopropyl alcohol rinse is applied to the sample before it is placed in a beaker containing 

just enough isopropyl alcohol to submerge it.  This beaker is then placed in a sonicator set to run 
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for 10 to 15 minutes.  After this sonication, the sample is rinsed in isopropyl alcohol and dried, 

completing the polishing process.   

 

Figure S22. Isopropyl alcohol is added to a beaker (left), the polished sample is submerged in the 

isopropyl alcohol in preparation for sonication (right) 

 

Figure S23. The beaker containing the polished sample submerged in isopropyl alcohol is 

sonicated for 10 minutes 

Overall, the polishing process was highly variable, as can be seen in the graph in Figure 

S24 of measured polish thicknesses (based on SEM images of sample cross-sections).  Several 

different vibratory polish settings were used, as can be observed from the chart, but we found that 

a setting of 7 (70% amplitude) yielded the best results for a sub-500 nm final thickness.  The 
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variation in the sample polishing rates shown in the chart is likely due to variations in the samples 

themselves as well as variations in the polishing solution.  Some of the sample variations likely 

arose during the etch process due to slight variations in the platinum wire anode position within 

the cell, as well as variations in the aluminum foil covering on the backplate beneath the silicon 

wafer.  Further confirmation of these variations is in the noticeable variation in structural color of 

the resulting porous silicon samples, indicating variations in porosity and/or porous layer 

thickness.  Additional variations were also likely introduced during the thermal oxidation phase 

because the temperature inside the thermal oxidation chamber varied significantly around the set 

point.  This introduced different levels of oxidation to the samples, causing the more oxidized 

samples to have a slower polishing rate.   

The polishing process introduced variations because the polishing solution was not 

changed between each polish.  The polishing solution had a water base and tended to evaporate 

and densify over time.  Additional deionized water was added to the solution periodically, but 

there was still variation in the water content of the solution.  There was a slight improvement in 

polishing rate consistency immediately following a solution change, but this was not significant 

enough to warrant changing the solution after each polish.  There was additional variation 

introduced by the initial shape and area of the samples, which were cleaved from standard 100 mm 

wafers.  The area of these cleaved pieces of wafer was not standardized and the circular edge of 

the wafer introduced shape variation into the samples.  It is possible that the amount of non-porous 

silicon surrounding the porous silicon on a sample affected the polishing rate.  The primary 

microlens sample tested in the main study is not pictured on the chart in Figure S24, since it would 

need to be cleaved for measurement, and this would prevent it from being put back in the etch cell.  
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We calculated the thickness of this sample using reflectance data, since extrapolation from 

polishing data was found to be inaccurate.   

 

Figure S24. A graph showing final polished thickness vs. polish time for three different polishing 

settings; setting 5 indicates 5% amplitude, setting 7 indicates 70% amplitude, and setting 10 

indicates 100% amplitude 
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