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Abstract

We investigate how the coefficients of a sparse polynomial system influence the sum, or the

trace, of its solutions. We discuss an extension of the classical trace test in numerical algebraic

geometry to sparse polynomial systems. Two known methods for identifying a trace affine linear

subset of the support of a sparse polynomial system use sparse resultants and polyhedral geometry,

respectively. We introduce a new approach which provides more precise classifications of trace

affine linear sets than was previously known. For this new approach, we developed software in

Macaulay2 [9].
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Chapter 1

Background

Algebraic geometry is the study of geometric objects, such as curves and surfaces, that are

defined by polynomial systems and their algebraic properties. As background, we introduce concepts

from algebraic geometry, and experts may consider skipping to Chapter 2.

1.1 Polynomial Systems

We begin by defining and providing examples of fundamental objects in algebraic geometry.

We also establish the notation used throughout the paper. See [6] for a more detailed discussion of

these topics.

Let x1, x2, . . . , xn be a finite collection of variables and α1, α2, . . . , αn ∈ N be nonneg-

ative integer exponents. Then xα := xα1
1 xα2

2 · · ·xαn
n is a monomial in x1, . . . , xn. The tuple

α = (α1, α2, . . . , αn) ∈ Nn is called the multidegree of the monomial. The total degree of a

monomial xα is the sum of the exponents, and it is denoted by |α|. Let k be a field. A term cαx
α

is a monomial multiplied by a coefficient cα ∈ k.

Example 1.1. The product x2
1x2x

4
5 is a monomial in x1, . . . , x5 with multidegree α = (2, 1, 0, 0, 4).

The total degree is |α| = 2 + 1 + 0 + 0 + 4 = 7.

Definition 1.2. Given a field k, a polynomial in k[x1, . . . , xn] is a finite sum:

f =
∑
α∈A

cαx
α
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where cα ∈ k for each α.

Definition 1.3. The set of multidegress of the monomials appearing in a polynomial f is called the

support of f , that is supp(f) = {α : cα ̸= 0}. We say that f is supported on A if supp(f) ⊆ A.

Note that A ⊂ Nn since each multidegree α is an n-tuple of positive integers. Here, we let

0 ∈ N. We work in the complex field k = C, so examples will be chosen with coefficients in C.

Example 1.4. Consider the polynomial f = x2y − 4xy + 3xy2 + 7y + 3 ∈ C[x, y]. The polynomial

f is a sum of five terms, and the support of f is {(2, 1), (1, 1), (1, 2), (0, 1), (0, 0)}.

Definition 1.5. Given a field k, a polynomial system F ∈ (k[x1, . . . , xn])
m is a collection of

polynomials (f1, f2, . . . , fm) where each fi ∈ k[x1, . . . , xn]. If n = m the system is called square.

Definition 1.6. Let F = (f1, . . . , fm) be a polynomial system in (k[x1, . . . , xn])
m, where each fi is

supported on Ai. The collection A = (A1, . . . , Am) is called the support of the system F , and

we say F is supported on A.

The lattice L[A] of a support A ⊂ Zn is the Abelian group generated by all differences of

points in A. Since L[A] is a subgroup of Zn, L[A] ≃ Zr for some integer r ≤ n. The rank of A is

this r. We say A ⊂ Zn is full rank if A has rank n. Note that a support A may have rank n while

L[A] is a proper subset of Zn. The lattice L[A] of a collection of supports A = (A1, . . . , An) is the

group generated by ∪ni=1L[Ai].

The following definition is a technical one that is needed for completeness in Algorithm 4.

Definition 1.7. A supportA = (A1, . . . , Am) of a polynomial system F = (f1, . . . , fm) is abundant

if each Ai is full rank.

We would like to go beyond the study of polynomials as algebraic equations. The next

definitions introduce the connection between polynomial systems and geometric objects. First,

define kn = {(a1, . . . , an) | a1, . . . , an ∈ k} to be the n-dimensional affine space over k.

Definition 1.8. Let F = (f1, . . . , fm) be a polynomial system in (k[x1, . . . , xn])
m. The set of
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simultaneous solutions (a1, . . . , an) ∈ kn to the equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

is the affine variety, or simply variety, of F , denoted by V(F).

When we restrict the solution set of the system F to its nonzero solutions, we write V×(F) =

{(a1, . . . , an) ∈ V×(F) | ai ̸= 0 ∀i}. An irreducible variety is a variety such that there is no

decomposition V = V1 ∪ V2 into a union of proper subvarieties.

We define a family of polynomial systems to be a parameter space together with a

continuous map to the space of polynomials, that is V ↪→ (C[x])m. The parameter space V is

a subvariety of Cm for some m. The family describes a situation in which the coefficients of the

system are dependent upon parameters, typically by an algebraic function. In this paper we consider

a family of polynomials with a map which identifies point c ∈ Cm with the system which has c as

some of the coefficients. For a polynomial system in the family supported on A, we write F ∈ CA.

Example 1.9. The family of polynomials described by C3 ↪→ C[x] where

(a, b, c) 7→ ax2 + bx+ c

is the family of polynomials in one variable of degree at most 2. We could also write this as the

family of polynomials supported on A = {0, 1, 2}.

Definition 1.10. A generic property of a family of polynomials is a property that is true for

polynomials in its parameter space except for those on a proper subvariety. A generic polynomial

in a family of polynomials is a polynomial that has this generic property.

Example 1.11. A generic property of the family of polynomials of degree less than or equal to

2 is the existence of two distinct roots. Note that ax2 + bx + c has two distinct roots if a ̸= 0

and b2 − 4ac ̸= 0. The requirement that a ̸= 0 ensures the polynomial has degree 2, and the

requirement that the discriminant is nonzero ensures that the roots are distinct and there is not a

3



double root. The collection of polynomials without two distinct roots is the variety {ax2+bx+c | a =

0} ∪ {ax2 + bx+ c | b2 − 4ac = 0}, which is a subvariety of the family of polynomials. Therefore the

generic property holds on the entire family except on this subvariety.

Definition 1.12. Given a collection of supports A, the sparse family of polynomials supported on

A is the collection of all polynomial systems supported on A. A dense family of polynomials is one

limited by the degrees of the polynomials. The support of a dense family is A = {α : |α| ≤ d},

where d is the total degree of the polynomial.

Remark 1.13. Dense families are sparse since fixing the total degree of the polynomial defines the

support. However, sparse families are not always dense because, given support A of some sparse

family, we may have A ̸= {α : |α| ≤ d} for every degree d.

Example 1.14. Consider the dense family of polynomials described by C6 ↪→ C[x, y], where

(a, b, c, d, e, f) 7→ a+ bx+ cy + dx2 + exy + fy2.

This family consists of polynomials of degree less than or equal to 2 in two variables. The support

for a generic polynomial in this family is A = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.

If we remove (1, 0) and (0, 2) from the support A, we have a sparse family of polynomials

where the support of a generic polynomial is B = {(0, 0), (0, 1), (2, 0), (1, 1)}, but this family is not

dense. Additionally, the parametrization

(a, c, d, e) 7→ a+ cy + dx2 + exy

shows that the parameter space of this sparse family is C4.

Given a set A ⊂ Zn, we replace each coefficient cα ∈ C from Definition 1.2 with a parameter

uα. We say that the family f(u) is the universal polynomial supported on the set A. The universal

polynomial has coefficients which are parameters, but unlike the family of polynomial systems, the

universal polynomial does not include a mapping. We extend this notation to a system.

Definition 1.15. Given a set of supports A = (A1, . . . , An), the universal system F(u) supported

on A is the system F(u) = (f1(u), . . . , fn(u)), where each fi(u) is the universal polynomial supported

on Ai.

4



Let A = (A1, . . . , Am) be a set of supports where each Ai ⊂ Zn. Then the universal system

F(u) supported on A is a system whose polynomials are fi =
∑

αi∈Ai
uαi

xαi . Each fi is from the

family fi(u) supported on Ai.

1.2 Resultants and Sparse Resultants

In algebraic geometry, one use of the resultant is to detect whether overdetermined poly-

nomial systems share solutions. The resultant of two polynomials in one variable can be computed

by most computer algebra systems, and it equals zero if and only if the two polynomials have a

common zero. The resultant can be extended to sparse systems. We follow [6] and the interested

reader can find more detail there, especially in Chapters 3 and 7. We begin with a discussion and

examples for two polynomials.

Definition 1.16. Let f, g ∈ k[x] be two nonzero polynomials of degrees n andm, respectively, where

f = anx
n+ · · ·+a1x+a0 and g = bmxm+ · · ·+b1x+b0 such that an, bm ̸= 0. The resultant of the

system F = (f, g) is denoted by Res(F) or Res(f, g), and is defined to be an integer polynomial

in the coefficients of the polynomials f, g such that Res(f, g) = 0 if and only if f and g share some

common solution.

One way to evaluate the resultant of two polynomials in one variable is by using the Sylvester

resultant :

Definition 1.17. The Sylvester resultant is the determinant of the (n+m)× (n+m) coefficient

matrix of the system:

Res(f, g) = det



an bm

an−1 an bm−1 bm

an−2 an−1
. . . bm−2 bm−1

. . .

... an−2
. . . an

... bm−2
. . . bm

a0
...

. . . an−1 b0
...

. . . bm−1

a0 an−2 b0 bm−2

. . .
...

. . .
...

a0 b0


5



The coefficients of f are repeated deg(g) = m-many times. Similarly, the column of coefficients from

g is repeated deg(f) = n-many times.

Example 1.18. Consider the following two polynomials in one variable f, g ∈ C[x]:

f = x2 − 6x+ 3 and g = −x3 + 5x2 + 3x− 3

The resultant of the system F = (f, g) is:

Res(x2 − 6x+ 3,−x3 + 5x2 + 3x− 3) = det



1 0 0 −1 0

−6 1 0 5 −1

3 −6 1 3 5

0 3 −6 −3 3

0 0 3 0 −3


= 0

Since the resultant equals zero, by definition, the varieties defined by these two polynomials share at

least one solution. Although the resultant does not find the solution, it is not difficult to solve the

system in this case. One way is to compute the greatest common divisor of the two polynomials. In

this case, the greatest common divisor is f itself, as we observe that g is divisible by f :

−x3 + 5x2 + 3x− 3 = (−x− 1)(x2 − 6x+ 3).

The two roots of f = x2 − 6x+ 3 are x = 3±
√
6 by the quadratic formula. Since g is divisible by

f , these are also roots of g.

In general, we can extend the definition of the resultant to systems of n + 1 polynomials

in n variables. The resultant of a system F = (f1, . . . , fn+1) in n variables, as expected from

Definition 1.16, is an integer polynomial in the coefficients of the polynomials fi, such that the

resultant equals 0 if and only if the fi share at least one common solution. The resultant of F

equals 0 if and only if the variety V(F) is nonempty.

Additionally, we extend the definition of the resultant to universal systems. Let A be a

collection of supports such that F ∈ CA is a system with n + 1 polynomials in n variables. Then

the universal system F(u) supported on A has a resultant polynomial, defined as follows:

Definition 1.19. The resultant polynomial of the universal system, Res(F(u)), is a polyno-

6



mial in the parameters uαi , [6, Section 3.5]. Generic points in the variety of Res(F(u)) correspond

to systems F which have a common affine solution.

Example 1.20. Let A = (A1, A2) where A1 = {3, 2, 1, 0} and A2 = {3, 2, 1, 0}. Let F(u) be the

universal system supported on A. Then F(u) is a system of two generic polynomials f1(u) and

f2(u). We denote the parameter ui,j to be the coefficient in fi(u) associated with the monomial xj ,

so that

f1(u) = u1,3x
3 + u1,2x

2 + u1,1x+ u1,0 and f2(u) = u2,3x
3 + u2,2x

2 + u2,1x+ u2,0.

The resultant of the universal system, using the Sylvester resultant from Definition 1.17, is:

Res(F(u)) = det



u1,3 u2,3

u1,2 u1,3 u2,2 u2,3

u1,1 u1,2 u1,3 u2,1 u2,2 u2,3

u1,0 u1,1 u1,2 u2,0 u2,1 u2,2

u1,0 u1,1 u2,0 u2,1

u1,0 u2,0


=

u3
1,3u

3
2,0 − u1,2u

2
1,3u

2
2,0u2,1 + u1,1u

2
1,3u2,0u

2
2,1 − u1,0u

2
1,3u

3
2,1 + u2

1,2u1,3u
2
2,0u2,2

− u1,1u1,2u1,3u2,0u2,1u2,2 + 3u1,0u
2
1,3u2,0u2,1u2,2 + u1,0u1,2u1,3u

2
2,1u2,2

+ u2
1,1u1,3u2,0u

2
2,2 − 2u1,0u1,2u1,3u2,0u

2
2,2 − u1,0u1,1u1,3u2,1u

2
2,2 + u2

1,0u1,3u
3
2,2

− u3
1,2u

2
2,0u2,3 + 3u1,1u1,2u1,3u

2
2,0u2,3 − 3u1,0u

2
1,3u

2
2,0u2,3 + u1,1u

2
1,2u2,0u2,1u2,3

− 2u2
1,1u1,3u2,0u2,1u2,3 − u1,0u1,2u1,3u2,0u2,1u2,3 − u1,0u

2
1,2u

2
2,1u2,3 + 2u1,0u1,1u1,3u

2
2,1u2,3

− u2
1,1u1,2u2,0u2,2u2,3 + 2u1,0u

2
1,2u2,0u2,2u2,3 + u1,0u1,1u1,3u2,0u2,2u2,3

+ u1,0u1,1u1,2u2,1u2,2u2,3 − 3u2
1,0u1,3u2,1u2,2u2,3 − u2

1,0u1,2u
2
2,2u2,3

+ u3
1,1u2,0u

2
2,3 − 3u1,0u1,1u1,2u2,0u

2
2,3 + 3u2

1,0u1,3u2,0u
2
2,3 − u1,0u

2
1,1u2,1u

2
2,3

+ 2u2
1,0u1,2u2,1u

2
2,3 + u2

1,0u1,1u2,2u
2
2,3 − u3

1,0u
3
2,3 (1.1)

We note that the resultant is a polynomial in the eight variables u1,3, u1,2, u1,1, u1,0, u2,3, u2,2,

u2,1, u2,0. A point (a3, a2, a1, a0, b3, b2, b1, b0) ∈ C8 is a solution of the resultant when setting u1,3 =

a3, u1,2 = a2, . . . , u2,0 = b0 makes the resultant equal to 0. The set of solution points to the resultant
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polynomial is the affine variety V(Res(F(u))). Geometrically, the affine variety of the resultant is a

hypersurface in 8-dimensional space. Thus, a generic point (a3, a2, a1, a0, b3, b2, b1, b0) in the variety

V corresponds to a system supported on A with coefficients ai, bi which has a solution.

For some sparse families of polynomials, however, obtaining a zero resultant may not guar-

antee that the system has a nonzero common solution. For instance, it is possible that a system

within the sparse family has support specialized enough from the overall support that the resultant

polynomial is the zero polynomial.

Example 1.21. The resultant in Equation (1.1) has at least one of u1,0 or u2,0 as a factor in every

term. Consider the family of sparse systems supported on A = ({3, 2, 1}, {3, 2, 1}). This is equivalent

to setting u1,0 = 0 and u2,0 = 0 in the system in Example 1.20. Then, the resultant polynomial of

this universal system is the zero polynomial, which means that a system in this sparse family with

any coefficients always has a common solution. Clearly the polynomials f1 = a3x
3 + a2x

2 + a1x and

f2 = b3x
3 + b2x

2 + b1x have a common solution at x = 0 for any coefficients a3, . . . , b1 ∈ C. But

there may not be any nontrivial solutions.

Consider the systems where (a3, a2, a1, a0) = (1, 1,−5, 0) and (b3, b2, b1, b0) = (3, 1, 1, 0). We

have f1 = x3+x2−5x and f2 = 3x3+x2+x, which have a common zero at (0, 0), as expected by the

resultant. However, there are no nontrivial solutions. Table 1.1 lists the solutions of f1 and f2. This

indicates that we need a more sensitive version of the resultant which is not the zero polynomial.

Solutions to f1 Solutions to f2
1.791 −0.167 + 0.553i
0 0

−2.791 −0.167− 0.553i

Table 1.1: Table of solutions to polynomials f1 and f2. The only common solution is the trivial
solution, x = 0.

The sparseness of the family combined with the resultant, as we have defined it, is not

enough to decide whether there are systems with nontrivial solutions in this family. There is a

generalization of the resultant to deal with sparse families. We follow [6, Section 7.2].

Definition 1.22. The sparse resultant of the universal system F(u) over its support A, denoted

by ResA(F(u)), is an irreducible polynomial in the coefficients of F(u) whose solutions are generically

the coefficients c where the system F(c) has a solution in (C×)n.
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Example 1.23. The sparse resultant for the system supported on A = ({3, 2, 1}, {3, 2, 1}) in Ex-

ample 1.21 is ResA(f1(u), f2(u)) = Res(f1(u)⧸x, f2(u)⧸x), where Res is the standard resultant.

Dividing each of f1(u) and f2(u) by x decreases the total degree of the system by one, and gets rid

of the solution at x = 0. Then we compute the resultant of (f1(u)⧸x, f2(u)⧸x) using the Sylvester

resultant:

ResA(F(u)) = det



u1,3 u2,3

u1,2 u1,3 u2,2 u2,3

u1,1 u1,2 u2,1 u2,2

u1,1 u2,1


=

u2
1,3u

2
2,1 − u1,2u1,3u2,1u2,2 + u1,1u1,3u

2
2,2 + u2

1,2u2,1u2,3

− 2u1,1u1,3u2,1u2,3 − u1,1u1,2u2,2u2,3 + u2
1,1u2,3 (1.2)

A generic solution (a3, a2, a1, 0, b3, b2, b1, 0) ∈ C8 to the sparse resultant corresponds to a

system which has a nontrivial common solution.

Definition 1.24. Given a subset S ⊂ Cn, the smallest affine variety in Cn containing S is the

Zariski closure of S.

Consider the family of polynomial systems of n + 1 equations in n variables supported

on A. Let S be the subset of the parameter space of this family which maps to systems with

common solutions. The Zariski closure of S is the variety of the sparse resultant of the family, see

[8, Chapter 8].

Example 1.25. Consider the family of polynomial systems (ax+ b, cx+ d). The parameter space

for this family is C4. The sparse resultant of this family is Res = ad − bc. Note that the points

(0, b, 0, d) are solutions to the sparse resultant. Geometrically, the points (0, b, 0, d) correspond to a

system of two constant functions at b and d.

Let S be the subset of C4 which contains points (a, b, c, d) that map to systems (ax+b, cx+d)

which have at least one common solution. Setting both a = 0 and c = 0 gives the system (b, d),

which generically does not have common solutions, since we do not expect b = d = 0, in general.

That is, (0, b, 0, d) /∈ S. However, (0, b, 0, d) is in the Zariski closure of S, which corresponds to these

points being in the variety of the sparse resultant.
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1.3 Homotopy Continuation

Homotopy continuation is a standard computational method applied to polynomial systems.

In algebraic geometry, homotopy continuation is an approach best suited for finding common solu-

tions of a square polynomial system F = (f1, f2, . . . , fn) ∈ (C[x1, . . . , xn])
n. The approach involves

defining a function, called a homotopy, which deforms the system F to a simpler system. Numerical

continuation methods are used to track the solutions of the simpler system to solutions of F . See

[2], Chapter 2 for details beyond those presented here.

Definition 1.26. Let F and G be polynomial systems in (C[x])m. A homotopy between F and G

is a continuous function H(x, t) : Cn× [0, 1]→ Cn such that H(x, 0) = F(x) and H(x, 1) = G(x) for

all x ∈ Cn. We call F the target system, and the system G is the start system. Often a system

G is chosen to have known solutions.

The parameter t is introduced for the homotopy. As t moves from 1 to 0, the system G(x)

is deformed to F(x). We require H(x, t) to be a continuous function of x and t together so that the

deformation from G to F is continuous. For generic x̂, H(x̂, t) is a continuous function in t which

can be thought of as a path from the point G(x̂) to the point F(x̂). The next definition describes a

type of basic homotopy which deforms between systems affine linearly.

Definition 1.27. Let G(x) be the target system and F(x) be the start system. The straight-line

homotopy between F and G is H(x, t) := tF(x) + (1− t)G(x).

Example 1.28. Consider the system F = (f, g) ∈ (C[x, y])2 where:

f = x2y − 2xy + 3y − 4 and g = xy2 − 2x2 + 2y + 3

Also consider the system G = (f ′, g′) ∈ (C[x, y])2 where:

f ′ = x2y − 15xy + 3y − 4 and g′ = xy2 − 2x2 + 15y + 3

We wish to track the solutions of F to solutions of G. We define a straight-line homotopy between

F and G to be H(x, y; t) = tF(x, y) + (1 − t)G(x, y), so that we get the desired systems as t goes
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from 1 to 0.

H(x, y; t) =


ft = x2y − (15− 13t)xy + 3y − 4

gt = xy2 − 2x2 + (15− 13t)y + 3

The second part of homotopy continuation is path tracking. Once we have defined the

homotopy H between systems F and G, we use predictor-corrector methods to track the solutions

to G to the solutions to F . In Table 1.2, we see that six solution paths were tracked, but only five

were successfully completed. It is possible for a solution path tracking to fail due to a singularity

or divergence to infinity. Given some solution x1 to G, the function x1(t) is a solution path. Then

H(x1(t), t) = 0 for all t, since the homotopy is continuous. Taking the implicit derivative with

respect to t, we see that

JH(x1(t), t) · x′
1(t) +

∂

∂t
(H(x1(t), t)) = 0,

where J denotes the Jacobian. Given that the path begins at t = 1 with the initial solution x1, we

have the following initial value problem:

x′
1(t) = −[JH(x(t), t)]−1 ∂

∂t
(H(x1(t), t)) with x1(1) = x1.

To solve this initial value problem, we choose a predictor and path x(t), beginning at t = 1, with

initial value x(1) = p0. The computation constructs a decreasing sequence of ti’s from 1 to 0, and

each point along the path x(ti) is approximated by pi. See [2, Section 2.2] for more details.

A simple predictor method is Euler’s method, which computes approximations:

pi+1 = pi − JH(pi, ti)
−1 ∂H(pi, ti)

∂t
∆ti

with ∆ti = ti+1 − ti. Geometrically, Euler’s method predicts the next point pi by drawing a line

tangent to the solution path H(x, t) at pi−1, and then following the line a distance of ∆t.

Since we are tracking solution paths, we want each pi ≈ x(ti) to be as close as possible to

satisfying H(pi, t) = 0 for all t. The predictions resulting from Euler’s method can be made more

accurate by following each prediction with a correction. A simple corrector to employ is Newton’s
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method. Starting with pi, Newton’s method uses the iteration:

p̂i = pi − [JH(pi, ti+1)]
−1H(pi, ti)

According to [2], one or two iterations of Newton’s method typically gives a much more accurate

prediction of x(ti). In the predictor-corrector method, the predicted value pi is replaced with the

corrected value p̂i before the next predict-correct cycle is initiated.

We use the program Bertini [1], to solve systems and construct homotopies. There are other

software packages which could be used for these same purposes, which include the Julia package

HomotopyContinuation.jl [4], the Macaulay2 package NumericalAlgebraicGeometry [13], and the

packages PHCpack [17] and HOM4PS-2.0 [12].

Example 1.29. We continue Example 1.28. The tracked solutions of the homotopy H from F to

G are shown in Table 1.2. We used Bertini, as previously mentioned, to track the solutions. There

were six initial solutions tracked but only five paths were tracked successfully. Path tracking may

fail due to a singularity in the system, or divergence to infinity. In this case, we can only expect five

solutions from G since there is a divergence to infinity.

Solutions to F Tracked solutions to G
(2.09486, 1.2505) (14.8524, 4.95011)

(1.192+1.91039i, -2.05504-.934788i) (.206525, -72.4356)
(-1.35625, .529666) (-1.5843, .136638)

(.438696+1.25604i, 1.16496+2.22755i) (.88717+.810399i, -.186351+.196254i)
(.438696-1.25604i, 1.16496-2.22755i) (.88717-.810399i, -.186351-.196254i)
(1.192-1.91039i, -2.05504+.934788i)

Table 1.2: Solutions of polynomial system F are tracked to solutions of target system G, via a
straight-line homotopy. Values in the table were computed using the Bertini package [1].
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Chapter 2

Traces

We introduce traces in numerical algebraic geometry. Considering the trace as a function,

its linearity or nonlinearity is a check for completeness of positive-dimensional algebraic varieties.

The classical trace test verifies completeness of algebraic varieties using the trace. We review the

sparse trace test from [5], which similarly uses linearity of the trace to verify completeness in the

zero-dimensional case. The sparse trace test requires a subset of the support characterized by a

linear effect on the trace. Using hidden variable sparse resultants, we completely classify elements

of the support of a polynomial system by their effect on the trace. We discuss an alternate method

of classification which involves polyhedral geometry.

Definition 2.1. Let S ⊆ Cn be a set of points c = (c1, . . . , cn) ∈ S. The trace in the ith

coordinate of S is the sum Σi(S) :=
∑

c∈S ci. The trace of S is Σ(S) := (Σ1(S), . . . ,Σn(S)), the

coordinate-wise sum of the points of S.

Let F = (f1, . . . , fn) ∈ (C[x1, . . . , xn])
n be a square polynomial system. The trace in the

first coordinate of the variety of F is the trace Σ1(V×(F)). It is the sum of x1-values of points which

appear in the nonzero solutions to F . The following results are stated in terms of the trace in the

first coordinate, but they extend to traces in other coordinates by symmetry.

2.1 Classical Trace Test

In the study of varieties in algebraic geometry, the trace is used to check if a subset of an

affine slice of a positive-dimensional variety contains the entire slice. The ideas presented here are
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due to [15], and we follow [14] to write the Classical Trace Test in Lemma 2.4.

Definition 2.2. Let X be a variety. The dimension of X is the number of generic hyperplanes

needed such that their intersection with X is a nonzero, but finite, number of points. The codi-

mension of X is the difference between the dimension of the ambient space containing X and the

dimension of X.

Example 2.3. Let X ⊆ R2 be a curve. In R2, a hyperplane is simply a line. A generic line ℓ ⊆ R2

intersects X in at least one point. Therefore only one hyperplane is needed to intersect X in a

nonzero set of points, so we say that X has dimension 1. If X is a surface in R3, intersecting with

one hyperplane results in a curve, and intersecting with a second hyperplane results in a set of

points. Thus a surface in R3 has dimension 2.

Let L denote the affine space such that X ∩ L is a set of points. Then L has dimension

equal to the codimension of X. A subset of a variety V ⊆ X ∩ L is complete if V = X ∩ L.

Lemma 2.4 (Classical Trace Test). Let X ⊆ Cn be an irreducible variety, and Lt a parallel family

of affine spaces, each with codimension equal to the dimension of X. For generic Lt, the intersection

X ∩ Lt is a set of points in Cn. A nonempty subset Vt ⊆ X ∩ Lt varies continuously at t changes.

Then Vt is complete if and only if the trace Σ(Vt) is an affine linear function of t.

In practice, we can determine the completeness of a subset by implementing Lemma 2.4 in

an algorithm. The Classical Trace Test in Algorithm 1 serves as a completeness test since it gives a

condition for determining whether a set contains the complete slice of a variety.

Algorithm 1: Classical Trace Test

Input: • a positive dimensional variety V(F)
• a family of parallel generic affine spaces Lt of codimension dim(V(F))
• a nonzero subset of the variety St ⊆ V×(F) ∩ Lt

Output: if S = V(F), then pass, else fail
1 Use homotopy continuation, beginning with t = 1, to track St ⊆ V(F) ∩ Lt to t = 1

2
and t = 0

2 Compute traces Σ1(S0), Σ1(S1/2), and Σ1(S1)
3 if (0,Σ1(S0)), (1/2,Σ1(S1/2)), (1,Σ1(S1)) are collinear then

return pass

else
return fail

Example 2.5 ([14]). Consider the polynomial system f ∈ C[x, y] where f = x3 + y3 − 3xy. The

affine variety V(F) = {(x, y) ∈ C2 | x3 + y3 = 3xy} is known as the folium of Descartes. We choose
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a family of parallel lines Lt, as seen in Figure 2.1, defined by x− y + t = 0. For varying values of t,

Lt is a line passing through the folium in three points, counting complex values and multiplicity. In

other words, the intersection Vt = V(F) ∩ Lt contains three points for each t. The traces Σ(Vt) for

four t values are labeled in Figure 2.1, and together the traces are collinear.

Figure 2.1: The folium of Descartes X in purple, with a parallel family of lines Lt in orange. Four
t-values are illustrated. The points contained in X ∩ Lt for each t are in red, and the trace of each
set is a black point. The traces are collinear, as shown by the dotted black line. Image generated
using Desmos [7].

Example 2.6. Let X be as in Example 2.5. Consider Wt ⊆ X ∩Lt containing only two points. For

varying values of t we get the traces Σ(Wt), as seen in Figure 2.2. The traces are not collinear, and

in fact the relationship among the trace points is cubic. Thus, by the Classical Trace Test 2.4, the

subset Wt ⊆ X ∩ Lt is not complete.

2.2 Sparse Trace Test

Given a collection of supports A = (A1, . . . , An) with each Ai ⊆ Zm, let F(u) be the

universal sparse system supported on A. We call F(u) the sparse universal system, and, from this

point forward, we assume polynomials are generic from sparse families, unless otherwise stated. We

refine the Classical Trace Test above to the sparse case with a new algorithm. First, we introduce

Newton polytopes, which encode important information about the variety of a system. Here they are

used as a visual aid in the study of the support, but we discuss geometric applications in Section 2.4.

Definition 2.7. Given a set S ⊆ Rn, the convex hull of S, denoted by Conv(S), is the smallest
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Figure 2.2: This intersection of the folium of Descartes X with the linear family Lt is missing one
point. The traces of the incomplete solution sets Wt are not collinear, as seen by the black dashed
curve, which goes through the traces. The relationship between the traces is cubic, not linear. Image
generated using Desmos [7].

convex set in Rn which includes S. A polytope is the convex hull of a finite set in Rn. Given a

polynomial f ∈ C[x1, . . . , xn], the Newton polytope of f is the convex hull of the support A ⊆ Nn

of f .

Example 2.8. Let f, g ∈ C[x, y] where

f = x2y − 2xy + 3y − 4 and g = xy2 − 2x2 + 2y + 3

We draw the Newton polytope of f and g in Figure 2.3. The horizontal axis of the lattice

represents increasing powers on the x variable, while the vertical axis represents increasing powers

on the y variable. Each open circle represents an exponent appearing in the polynomial. The shaded

region is the Newton polytope. Lattice points in the interior of the Newton polytope are not required

to be in the support, as we see in this example.

x

y

Support of f

x

y

Support of g

Figure 2.3: The polynomials f and g in C[x, y] are each supported by a set in Z2. The Newton
polytope of each polynomial is depicted by the shaded region and is the convex hull of the support.
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Any convex polytope P ⊆ Rn has an n-dimensional volume. Letting x1, . . . , xn be coordi-

nates on Rn, we compute the volume by the polynomial:

Voln(P ) =

∫
· · ·

∫
P

1 dx1 · · · dxn.

Furthermore, the vector space structure of Rn allows us to define two operations on polytopes, for

more details, see [6]. The Minkowski sum of two polytopes P,Q in Rn is the set of all sums of points

in P and Q, i.e., P +Q := {p+q | p ∈ P and q ∈ Q}. Given a real number λ ≥ 0, the scalar multiple

λP of P is the set of all points in P scaled by λ, i.e., λP := {λp | p ∈ P}. Using these operations,

we measure the volume of the support of a polynomial system.

Definition 2.9. Given a collection of polytopes P1, . . . , Pn, consider the function λ1, . . . , λn 7→

Voln(λ1P1 + · · · + λnPn). Then Voln(λ1P1 + · · · + λnPn) is a polynomial in λ1, . . . , λn. The n-

dimensional mixed volume of the collection, denoted by MV (P1, . . . , Pn), is the the coefficient

of the monomial λ1λ2 · · ·λn in the volume Voln(λ1P1 + · · · + λnPn). Let A = (A1, . . . , An) be a

collection of supports, where Ai ⊆ Zm, and let Pi = Conv(Ai) be the Newton polytope of the ith

support. The n-dimensional mixed volume of A, denoted by MV (A), is the mixed volume of the

collection of polytopes P1, P2, . . . , Pn.

The concept of the mixed volume for a polynomial system relates the mixed volume to the

number of solutions, as in the following theorem due to [3, 10, 11].

Theorem 2.10 (BKK, [3, 10, 11]). Let F be a generic polynomial system with square support A

such that MV (A) ≥ 0. If F is outside of a Zariski closed subset, then the cardinality of V×(F), when

counted with multiplicity, is MV (A). Moreover, for all systems F supported on A, the cardinality

of V×(F) counted with multiplicity is at most MV (A).

Generically, MV (A) = 0 implies there are no nonzero solutions to a system supported on

A, so we consider systems where MV (A) > 0. For our purposes, we focus on polynomial systems

for which this BKK bound is met.

Definition 2.11. Let A = (A1, . . . , An) be a collection of supports, where Ai ⊆ Zm. A Bernstein-

generic system F supported on A is one which has exactly the same number of roots (each with

multiplicity 1) as the mixed volume MV (A).
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Following [5], we introduce the Sparse Trace Test in Algorithm 2. This algorithm serves as

a completeness test for a subset W ⊆ V×(F), which contains some nonzero solutions of the sparse

polynomial system F . The inputs are a system of polynomials and a subset W of V×(F). The

output is pass if the subset of the variety is complete and fail if the subset is incomplete. The

algorithm deals with the trace in the first coordinate and analogous results are true for traces in

other coordinates.

The Sparse Trace Test in Algorithm 2 is similar to the Classical Trace Test because both

tests track a set of solution points by t so that the trace of the set Σ1(St) is a function of t. Both

tests state that the function is linear if and only if the solution set is complete. The Sparse Trace

Test is so named because, instead of beginning with a specific variety or system, the first input to

the test is a sparse support A. Additionally, the Classical Trace Test works on nonsquare systems.

Algorithm 2: Sparse Trace Test [5]

Input: • a collection of supports A such that L[A] = Zn and MV (A) > 0
• a Bernstein-generic system F ∈ CA

• a nonzero subset of the variety S ⊆ V×(F)
• a collection B ⊆ A which is trace affine linear and abundant

Output: if S = V×(F), then pass, else fail
1 Choose a generic system H ∈ CB and construct G ∈ CA such that G = H over support
B and G = F otherwise

2 Use homotopy continuation, beginning with S = S1, to track St ⊆ V×(tF + (1− t)G) to
t = 1

2 and t = 0
3 Compute traces Σ1(S0), Σ1(S1/2), and Σ1(S1)
4 if (0,Σ1(S0)), (1/2,Σ1(S1/2)), (1,Σ1(S1)) are collinear then

return pass

else
return fail

One input to Algorithm 2 is a trace affine linear subset B ⊆ A of the support. This type of

subset is a collection of the support which collectively influences the trace in an affine linear manner.

Trace affine linear sets are discussed in more detail in the following sections.

2.3 Finding Trace Affine Linear Sets

Given a support A, the trace is a function Σ1 : CA → C, and a generic element F ∈ CA is a

system with coefficients in CA. Let the coefficients of the system be affine linearly dependent on some

t ∈ CA. Then Ft ∈ CA is an affine linear function of t. We can define a function h : CA → (C[x])m
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such that values for t are mapped to systems Ft ∈ (C[x])m. Thus the composition Σ1 ◦ h is a

function CA → C that maps a value t ∈ CA to the trace Σ1(V×(Ft)), where

CA (C[x])m C

t Ft Σ1(V×(Ft)).

h Σ1

Note that the function t 7→ Ft is affine linear. Then if the function from t to Σ1(V×(Ft) is nonlinear,

we know it must be the trace function which is acting nonlinearly. So, by observing the linearity as

t 7→ Σ1(V×(Ft), we can isolate the effect certain coefficients, and therefore elements of the support,

have on the trace.

Definition 2.12. Let F be a polynomial system supported on A. A subset of the support B ⊆ A

is trace affine linear if the trace Σ(V×(F)) is an affine linear function of the coefficients which are

indexed by elements in B.

In practice, it can be challenging to confirm a subset is trace affine linear. We introduce a

formula for the trace of a variety which depends on elements of the support of the system. Then

we classify elements of the support based on how they appear in this formula. The formula in the

sparse case involves sparse resultants.

In the univariate case, we can write down a simple formula for the trace. This formula goes

back to Newton. We write the polynomial f ∈ C[x] as f(x) = a(x− r1)(x− r2) · · · (x− rn), where

the n roots of f are r1, . . . , rn. Expanding the polynomial, we rewrite f as f = axn − a(r1 + · · ·+

rn)x
n−1 + · · · − ar1r2 · · · rn. The negative coefficient of the xn−1 term divided by the coefficient of

the xn term is the trace:

−−a(r1 + · · ·+ rn)

a
= r1 + · · ·+ rn = Σ1(f) (2.1)

Writing the expanded form of the polynomial in one variable as f = cnx
n + cn−1x

n−1 +

· · ·+ c1x+ c0, where cn = a, cn−1 = a(r1 + · · ·+ rn), and so on, the formula for the trace is − cn−1

cn
.

The coefficient cn−1 influences the formula for the trace in the univariate case linearly. Also, cn

influences the trace non-linearly, since it shows up in the denominator of the formula for the trace.

All other coefficients of f do not influence the trace. Equivalently, the other coefficients influence

the trace in a constant manner. We introduce new vocabulary to categorize this classification.
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Definition 2.13. Let A = (A1, . . . , An) be a set of supports and F(u) the universal system sup-

ported on A. Let Ft be a generic system supported on A where t is the coefficient of the monomial

xα
i,j . Then αi,j ∈ A has agency classified by behavior of the function t 7→ Σ1(V(Ft)).

• αi,j has independent agency if Σ1(V(Ft)) is a constant function of t

• αi,j has linear agency if Σ1(V(Ft)) is an affine linear function of t

• αi,j has nonlinear agency if Σ1(V(Ft)) is a nonlinear function of t

We also introduce a system of shading elements of the support to visually represent their

agency. Open circles represent elements with independent agency, crosshatched circles are elements

with linear agency, and shaded circles are elements with nonlinear agency. In Figure 2.4, the uni-

variate formula for the trace is depicted.

c0 c1 cn−2 cn−1 cn

Figure 2.4: The trace of the univariate polynomial f(x) = cnx
n + cn−1x

n−1 + · · · + c1x + c0 is
− cn−1

cn
. The points of the Newton polytope of the support are shaded according to agency: open for

independent, crosshatched for linear, or filled for nonlinear.

Beyond the univariate case, one formula for Σ1(V×(F)) comes from the hidden variable

sparse resultant of the system, see Lemma 2.17. Let F be a square system supported on A, with

each Ai ⊆ Zn. Recall from Section 1.2 that the resultant is defined for a system F with one more

equation than variables. To compute the resultant of the square system F with n equations in n

variables, we “hide” one of the variables by considering it as a coefficient, resulting in a system of n

equations and n− 1 variables.

Definition 2.14. Let F = (f1, . . . , fn) ∈ (C[x1, . . . , xn]) be a square polynomial system. The

hidden variable resultant of F in the ith coordinate is Res(F ;x1, . . . , xi−1, xi+1, . . . , xn) = Res(G)

where G = (f1, . . . , fn) ∈ (C[xi][x1, . . . , xi−1, xi+1, . . . , xn])
n.

The hidden variable resultant of F in the ith coordinate is a polynomial in xi. Generically,

the roots of this resultant are the xi-coordinates of the solutions to the system; see [6, Section 3.5]

for the proof.

Example 2.15. Consider the system F = (f, g) ∈ (C[x, y])2 where:

f = x2y − 2xy + 3y − 4 and g = xy2 − 2x2 + 2y + 3
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The system is supported on A = ({(2, 1), (1, 1), (0, 1), (0, 0)}, {(1, 2), (2, 0), (0, 1), (0, 0)}). The mixed

volume is MV (A) = 6, so we expect six common solutions. We consider f and g as polynomials in

y whose coefficients are polynomials in x. Using Definition 1.16, the resultant is a polynomial in x

whose solutions are the x-values of the common solutions of f and g:

Res(f, g, y) = det


x2 − 2x+ 3 0 x

−4 x2 − 2x+ 3 2

0 −4 −2x2 + 3


= −2x6 + 8x5 − 17x4 + 12x3 + 20x2 − 36x+ 51 (2.2)

Solving the polynomial Res(f, g, y) for x using Bertini [1], there are two real roots and three complex

roots, listed in the first column of Table 2.1. These are the x-values which make the resultant

polynomial equal to zero, so they are exactly the x-values where f and g have common solutions.

For comparison, directly computing the solutions of the system F = (f, g) in Bertini gives

the solutions depicted in the second and third columns of Table 2.1. The x-values of these solutions

exactly match the values found by the hidden variable resultant technique.

x-value, sol. of Res. x-value, directly solved y-value, directly solved
2.09486 2.09486 1.2505

.438696 + 1.25604i .438696 + 1.25604i 1.16496 + 2.22755i
1.192 + 1.91039i 1.192 + 1.91039i −2.05504− .934788i
−1.35625 −1.35625 .529666

1.192− 1.91039i 1.192− 1.91039i −2.05504 + .934788i
.438696− 1.25604i .438696− 1.25604i 1.16496− 2.22755i

Table 2.1: Solutions to F = (f, g) computed using the hidden variable resultant are compared with
solutions computed using Bertini zero dimensional solver [1].

When applied to a universal system of polynomials F(u), the hidden variable resultant is

a polynomial in xi where the coefficients are polynomials in xi and the parameters uα of F(u).

Solutions of Res(F(u), x1, . . . , xi−1, xi+1, . . . , xn) correspond to coefficients and xi-coordinates for

which a system F has a solution. The next example looks at the universal system associated with

the system of Example 2.15.

Example 2.16. Consider the universal system F(u) supported on A = (A1, A2) where A1 =

{(2, 1), (1, 1), (0, 1), (0, 0)} and A2 = {(1, 2), (2, 0), (0, 1), (0, 0)}; see Figure 2.3. We write the univer-
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sal family as F(u) = (f, g) with:

f = u2,1x
2y + u1,1xy + u0,1y − u0,0 and g = v1,2xy

2 + v2,0x
2 + v0,1y + v0,0.

Each coefficient corresponds to an element of the support of the system. For example, u2,1 corre-

sponds to the element (2, 1) in support of f . Similarly, vα coefficients correspond to elements α in

the support of g. In order to use the hidden variable resultant, we interpret f and g as polynomials

in y whose coefficients are polynomials in x:

f = (u2,1x
2 + u1,1x+ u0,1)y − u0,0 and g = (v1,2x)y

2 + (v0,1)y + v2,0x
2 + v0,0.

The support of the system with x hidden is the projection of the original support onto the y-axis.

Now that we have a system of two polynomials in one variable, we compute the resultant:

h = Res(f, g; y) = det


u2,1x

2 + u1,1x+ u0,1 0 v2,0x

u0,0 u2,1x
2 + u1,1x+ u0,1 v0,1

0 u0,0 v1,2x
2 + v0,0


= (u2

2,1v1,2)x
6 + (2u2,1u1,1v1,2)x

5 + (u2
1,1v1,2 + 2u2,1u0,1v1,2 + u2

2,1v0,0)x
4

+ (2u1,1u0,1v1,2 + 2u2,1u1,1v0,0)x
3 + (u2

0,1v1,2 − u2,1u0,0v
2
0,1 + u2

1,1v0,0 + 2u2,1u0,1v0,0)x
2

+ (u0,0v2,0 − u1,1u0,0v0,1 + 2u1,1u0,1v0,0)x− u0,1u0,0v0,1 + u2
0,1v0,0 (2.3)

Note that this resultant, as expected, is a polynomial in one variable, x, whose coefficients

are polynomials in the coefficients of f and g. In fact, if we substitute the coefficients used in

Example 2.15 for the u’s and v’s, we would get the polynomial shown in Equation (2.2). From the

trace function for a univariate polynomial, Equation (2.1),

Σ1(h) = −
c5
c6

= −2u2,1u1,1v1,2
u2
2,1v1,2

= −2u1,1

u2,1
.

Analyzing this formula, we see that the trace is a linear function of u1,1, so (1, 1) has linear agency.

The only coefficient appearing non-linearly is u2,1, so (2, 1) has nonlinear agency. All other coeffi-

cients correspond to elements with independent agency. We shade the points of the Newton polytope

of the universal system according to this information in Figure 2.5.
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Support of f Support of g

Figure 2.5: Elements of the support are shaded according to their agency in the x-coordinate trace of
the system. Elements with non-linear agency are shaded, ones with linear agency are cross-hatched,
and those with independent agency are left white.

The following lemma clarifies a formula for the trace computed via sparse resultants. The

degree of the hidden variable sparse resultant for generic F is the same as the number of solutions in

V×(F). Additionally, the cardinality of V×(F) is MV (A) by Theorem 2.10. Therefore the degree of

the hidden variable sparse resultant polynomial is the mixed volume of A. See [6] for more details.

Lemma 2.17 (Formula for Trace). Let A = (A1, A2, . . . , An) be a square set of supports such that

MV (A) = m > 0. Let F(u) be the universal system having support A. Then the sparse hidden

variable resultant which hides the first variable x1 is the polynomial:

ResA(F(u), x2, . . . , xn) = dm(u)xm
1 + dm−1(u)x

m−1
1 + · · ·+ d1(u)x1 + d0(u),

where each di(u) is an expression in the parameters uα of the universal system F(u). Then the trace

of the solutions to the system in the x1-coordinate is given by the formula

Σ1(V×(F)) = −dm−1(u)

dm(u)
.

Proof sketch: For a detailed proof, see [5]. The sparse resultant h = ResA(F(u), x2, . . . , xn) is a

polynomial in x1 with coefficients in the parameters uα of the universal system. For generic F ∈ CA

in the universal system, we have values cα ∈ C to replace parameters uα, so the sparse resultant h

is a univariate polynomial in C[x1] whose roots are the x1-solutions of the system F . A generic F

has dm(c) ̸= 0, so the trace of V×(F) in the first coordinate is as according to Equation 2.1:

Σ1(V×(F)) = −dm−1(c)

dm(c)
.

Since this property holds for generic F ∈ CA, it holds on the universal system F(u).
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Remark 2.18. Given a support A, one way to obtain a candidate trace affine linear subset of the

support B ⊆ A is to compute the hidden variable sparse resultant of a universal system F(u) ∈ CA

and observe which coefficients appear in the formula −dm−1(u)
dm(u) . We saw this at work with a Sylvester

resultant in Example 2.16, and the above lemma extends the idea to computations involving sparse

resultants.

The main result of this section is that we can identify a trace affine linear subset of the

support directly from the formula for the trace given by the hidden variable sparse resultant.

Lemma 2.19 (Individual Agency Classification). Let A = (A1, A2, . . . , An) be a square set of

supports such that MV (A) > 0. Let F(u) be the universal system with support A where coefficient

uαi,j
is associated with element αi,j ∈ Ai. We have the following:

• parameter uαi,j does not appear in the formula for Σ1(V×(F)) in Lemma 2.17 if and only if

αi,j has independent agency.

• parameter uαi,j
appears in the numerator to degree at most one and does not appear in the

denominator in the formula for Σ1(V×(F)) if and only if αi,j has linear agency.

• parameter uαi,j
appears in the numerator to degree greater than one or appears in the denom-

inator the formula for Σ1(V×(F)) if and only if αi,j has nonlinear agency.

Proof. Let t contain fixed coefficients for all elements of A, except, for αi,j , let the coefficient be

parameter uαi,j . Then t 7→ Σ1(V×(Ft)) is a function which maps values for uαi,j to values of the

trace Σ1(V×(F)).

• uαi,j
does not appear in the formula for Σ1(V×(F)) if and only if Σ1(V×(Ft)) is a constant

function of t. So αi,j has independent agency by defnition.

• uαi,j
appears in the numerator to degree at most one and does not appear in the denominator

in the formula for Σ1(V×(F)) if and only if Σ1(V×(Ft)) is an affine linear function of t. So

αi,j has linear agency by definition.

• uαi,j
appears in the numerator to degree greater than one or appears in the denominator the

formula for Σ1(V×(F)) if and only if Σ1(V×(Ft)) is a nonlinear function of t. So αi,j has

nonlinear agency by definition.
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Lemma 2.20. Let A = (A1, A2, . . . , An) be a square set of supports such that MV (A) > 0. Let

F(u) be the universal system having support A, where coefficient uαi,j
is associated with element

αi,j ∈ Ai. A subset B ⊆ A is trace affine linear if and only if B contains only elements αi,j

which have independent or linear agency, and each monomial in the numerator of the formula for

Σ1(V×(F)) has at most one element of B.

Proof. (⇒) Suppose B ⊆ A is a trace affine linear subset. By definition, the trace Σ1(V×(F))

is an affine linear function of the coefficients which are indexed by elements αi,j ∈ B. The trace

Σ1(V×(F)) must then be an affine linear function of each coefficient individually, so every element

αi,j ∈ B has independent or linear agency. Additionally, suppose some monomial in the formula for

Σ1(V×(F)) has two elements of B. Then Σ1(V×(F)) would be a nonlinear function of these two

coefficients, which is a contradiction since Σ1(V×(F)) is an affine linear function of all coefficients

indexed by B.

(⇐) Now suppose B contains only elements αi,j which have independent or linear agency, and each

monomial in the numerator of the formula for Σ1(V×(F)) has at most one element of B. Since each

element αi,j ∈ B has independent or linear agency, by Lemma 2.19, uαi,j
appears at most in the

numerator to degree one. Let t contain fixed coefficients for all elements of A, except, for αi,j ∈ B,

let the coefficient be parameter uαi,j . Since no monomial of Σ1(V×(F)) can contain more than one

of these uαi,j
’s, Σ1(V×(Ft)) is an affine linear function of t. Therefore B is a trace affine linear

subset of the support.

Definition 2.21. Let A = (A1, . . . , An) be a set of supports and F(u) the universal system sup-

ported on A. Let Ft be a generic system supported on A where the two coefficients uαi1,j1
, uαi2,j2

associated with the elements αi1,j1 , αi2,j2 ∈ A are affine linearly dependent on the parameter t.

Then we say the pair has joint linear agency if Σ1(V(Ft)) is an affine linear function of t.

Theorem 2.22. Let A = (A1, A2, . . . , An) be a square set of supports such that MV (A) > 0, and

let B ⊆ A. B is a trace affine linear subset of the support if and only if B contains only elements

of independent and linear agency, and for all pairs in B with linear agency, the pair has joint linear

agency.

Proof. (⇒) Suppose B ⊆ A is trace affine linear. By Lemma 2.20, B contains only elements αi,j

which have independent or linear agency, and each monomial in the numerator of the formula for

Σ1(V×(F)) has at most one element of B. Consider any pair αi1,j1 , αi2,j2 ∈ B with linear agency.
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By Lemma 2.19, the corresponding coefficients uαi1,j1
, uαi2,j2

appear in the numerator to degree at

most one and do not appear in the denominator of Σ1(V×(F)). Let Σ1(V(Ft)) be a function where

coefficients uαi1,j1
, uαi2,j2

are affine linearly dependent on parameter t. Now uαi1,j1
and uαi2,j2

only appear linearly in the numerator, and cannot appear in the same monomial in the formula for

Σ1(V×(F)). Now Σ1(V(Ft)) is an affine linear combination of monomials of the form at, so it is an

affine linear function of t. Thus the pair αi1,j1 , αi2,j2 has joint linear agency. This is true for every

pair with linear agency in B.

(⇐) Now suppose B contains only elements of independent and linear agency, and for all pairs in B

with linear agency, the pair has joint linear agency. Let αi1,j1 , αi2,j2 ∈ B be some pair with linear

agency. The function Σ1(V(Ft)), where coefficients uαi1,j1
, uαi2,j2

are affine linearly dependent on

parameter t, is an affine linear function of t. Then there can be no monomial in Σ1(V(Ft)) which

has both uαi1,j1
and uαi2,j2

, since this would make the function quadratic in t. This is true for

all possible pairs with linear agency in B, so each monomial in the numerator of the formula for

Σ1(V×(F)) has at most one element of B. Thus, by Lemma 2.20, B is a trace affine linear subset of

the support.

The following example illustrates the need for Definition 2.21 and the theorem relating trace

affine linear sets and joint linear agency.

Example 2.23. Let F(u) be the universal system supported on A such that:

F(u) =


f = a(0,0) + a(1,0)x+ a(0,1)y + a(0,2)y

2 + a(0,3)y
3

g = b(0,0) + b(0,1)y + b(1,2)xy
2 + b(0,2)y

2 + b(0,3)y
3

Figure 2.6 shows the support classified by individual agency. Note that the element (0, 2) in the

support of f and the element (0, 3) in the support of g are each identified as having linear agency.

However, we compute the hidden variable sparse resultant and obtain a formula for the trace, see

Equation (2.4). The product a(0,2)b(0,3) appears in the second term in the numerator of the formula

for the trace. Thus, when considering the elements together, the trace is a nonlinear (quadratic)

function of a(0,2) and b(0,3). The two elements (0, 2) ∈ A1 and (0, 3) ∈ A2, despite having individual

linear agency, do not form a trace affine linear set. Thus any subset of the support containing both

of these elements is not trace affine linear.
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Support of f Support of g

Figure 2.6: Classification of elements in the support A by individual agency. Two support elements
which individually have linear agency do not have joint linear agency. These two elements, shaded
in red, cannot both be in a trace affine linear set.

Σ1(V×(F)) =
−3a(0,3)a(1,0)b(0,2) + a(0,2)a(1,0)b(0,3) − 2a(0,0)a(0,3)b(1,2)

a(0,3)a(1,0)b(1,2)
(2.4)

By Theorem 2.22, in order to obtain a maximal trace affine linear subset of the support, we

need to check whether all pairs with linear agency have joint linear agency. The support elements

(0, 2) ∈ A1 and (0, 3) ∈ A2 do not have joint linear agency, so we must exclude at least one of them

from any trace affine linear set. The set of all support elements with independent or linear agency

without (0, 2) ∈ A1 is a maximal trace affine linear subset of the support. Similarly, the set of all

support elements with independent or linear agency without (0, 3) ∈ A2 is also maximal trace affine

linear subset.

We conclude from these theorems that the formula for the trace given by the hidden variable

sparse resultant provides all information needed to completely describe a trace affine linear subset of

the support. However, even though some hidden variable sparse resultants can be computed using

symbolic algebra software, it is not difficult to come up with a system for which the sparse resultant

is too large to compute.

Example 2.24. Let F = (f, g, h) be a polynomial system in (C[x, y, z])3, where:

f = a(0,0,0) + a(1,0,1)xz + a(1,2,0)xy
2 + a(2,2,1)x

2y2z

g = b(0,0,0) + b(0,1,1)yz + b(2,0,1)x
2z + b(1,2,2)xy

2z2

h = c(0,0,0) + c(1,1,1)xyz + c(1,1,2)xyz
2 + c(2,1,2)x

2yz2

27



We consider each polynomial in C[x, y][z], that is, as a polynomial in z whose coefficients are poly-

nomials in x and y. The support A = (A1, A2, A3) projected onto the xy-plane is:

A1 = {(0, 0), (1, 0), (1, 2), (2, 2)},

A2 = {(0, 0), (0, 1), (2, 0), (1, 2)}, and

A3 = {(0, 0), (1, 1), (1, 1), (2, 1)}.

To compute the hidden variable sparse resultant, we use the SparseResultants package [16] in

Macaulay2 [9]. This computation was run on a laptop with MacOS Catalina 10.15.7, 2.9 GHz

dual-core intel core i5 processor, and 8GB of memory. After running this example for several hours,

the computation did not finish. The hidden variable resultant of this three variable system, even

though the system is not of large total degree, is too much for a typical computer to handle.

Example 2.24 shows that the sparse resultant approach to finding trace affine linear subsets

does not scale well. This motivates a search for different methods of classifying a trace affine linear

subset, since the Sparse Trace Test of Algorithm 2 requires a trace affine linear subset of the support.

2.4 Estimating Trace Affine Linear Subsets

Aspects of polyhedral geometry can be used to estimate candidate sets that are trace affine

linear. In this section, we follow [5] to illustrate these techniques.

Definition 2.25. Let A ⊆ Zn be a support, and let ei be the basis vector in the direction of the

ith coordinate. For some distance k ∈ R+, the set of k-offset points of A in the ith coordinate is

offseti(A, k) = {α ∈ A | α+ (k + ϵ)ei /∈ Conv(A) for all ϵ > 0}

Example 2.26. Consider the support from Figure 2.3, where f and g are supported on A1 =

{(2, 1), (1, 1), (0, 1), (0, 0)} and A2 = {(1, 2), (2, 0), (0, 1), (0, 0)}, respectively. For A = (A1, A2),

Figure 2.7 identifies offset(A, 0.5) and offset1(A, 1) by shifting the Newton polytopes, as seen by the

dashed lines.

Offset points relate to trace affine linear sets, as classified by the following lemma.
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A1 A2

Figure 2.7: Support of f and g with elements shaded according to shifts in the convex hull. Fully
shaded elements are the 0.5-offset points, while 1-offset points are crosshatched.

Lemma 2.27 ([5]). Let A = (A1, . . . , An) be a square set of supports such that MV (A) > 0. Then

A without its 0.5-offset points is a trace affine linear subset B ⊆ A. Additionally, A without its

1-offset points is a subset of the elements of A which have independent agency.

Lemma 2.27 provides candidate subsets which are trace affine linear, but the classification

given by the polyhedral geometry is more conservative than what would result from the resultant

technique. That is, the set A\offset(A, 0.5) may not be a maximal trace affine linear subset, and the

set A \ offset(A, 1) may not contain every element with independent agency. Indeed, in Figure 2.5

from Section 2.3, we see that every element of A2 has independent agency, but in Figure 2.7 above,

two of those elements were shaded as nonlinear, according to the geometry.

The next example has a larger support and includes elements which are in the interior of

the Newton polytope.

Example 2.28. Let F = (f1, f2) be a polynomial system supported on A = (A1, A2) where

A1 = {(0, 0), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 2), (2, 3), (2, 4), (3, 1)} and

A2 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)}.

We apply Lemma 2.27 in the x-direction, as seen in Figure 2.8. According to the polyhedral

geometry, a subset of the support which affects the trace Σ1 affine linearly is B = (B1, B2), where

B1 = {(0, 0), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2)} and

B2 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)}.

Next we apply the lemma to the support in the y-direction, as seen in Figure 2.9. A subset
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A1 A2

Figure 2.8: Supports A1 and A2 with offset points in the x-direction. 0.5-offset points are fully
shaded and 1-offset points are crosshatched.

which affects the trace in the second coordinate, Σ2, affine linearly is B = (B1, B2) where

B1 = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3)} and

B2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

A1 A2

Figure 2.9: Supports A1 and A2 with offset points in the y-direction. 0.5-offset points are fully
shaded and 1-offset points are crosshatched.

Working with the polyhedral geometry is a good place to start, but the lemma gives a trace

affine linear set which may not be maximal. It may be that some elements classified as having

nonlinear agency in the polyhedral geometry actually have independent or linear agency in practice.

We compare trace affine linear sets estimated by polyhedral geometry to the maximal trace affine

linear set in Section 3.3.
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Chapter 3

Identifying Trace Affine Linear

Sets

Let F = (f1, . . . , fn) ∈ (C[x1, . . . , xn])
n be a sparse polynomial system over a square collec-

tion of supports A = (A1, . . . , An). In Sections 2.3 and 2.4 we identified trace affine linear subsets of

the support by computing the sparse resultant and analyzing the formula for the trace given by the

coefficients of the sparse resultant. However, we have seen that the computation of sparse resultants

is not always feasible in practice. Additionally, we have identified a trace affine linear subset of the

support using polyhedral geometry, but we wish to find maximal trace affine linear subsets.

We introduce a method for identifying a maximal trace affine linear set which uses homotopy

continuation to avoid the use of hidden variable sparse resultants. We outline and implement the

strategy. Finally we discuss some results.

3.1 Trace Affine Linear Identification with Homotopy

Given some subset of the support B ⊆ A, we construct a homotopy to track the solutions

of the system by deforming the coefficients associated with elements of B. We continue to use the

function t 7→ Σ1(V×(Ft)) as introduced in Section 2.3. As before, t affine linearly changes coefficients

associated with elements in B, but we now explicitly define the function using a homotopy. Then

we compute the solutions of the system at some t-values along the homotopy. The trace of these
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solution sets Σ1(V×(Ft)) as a function of t is linear if and only if B is a trace affine linear subset.

A schematic describing our use of homotopies is shown in Figure 3.1. Let F be a polynomial

system supported on A. Choose some subset of the support B ⊆ A. Let H(x, t) be a straight-line

homotopy from F to a system G such that coefficients associated with chosen support elements in

B are deformed as t goes from 1 to 0. H is constructed so that the coefficients in B are deformed

affine linearly. Then we compute the solutions of the system at the three t-values t = 0, t = 1
2 , and

t = 1 along the homotopy, see Figure 3.1. Any differences between the three solution sets are due

to the change in the coefficients indexed by B, since everything else was left the same. We classify

the relationship among the traces of the solution sets as constant, linear, or non-linear.

Original System

H(x, 1)

t : 1→ 1
2

“Halfway” System

H(x, 1
2 )

t : 1
2 → 0

Final System

H(x, 0)

Solutions S1 Solutions S1/2 Solutions S0

Figure 3.1: Schematic of a two-step homotopy at work. We obtain three solution sets from the
homotopy and then compare the traces of those sets to determine linearity.

By Theorem 2.22, a subset B of the support A is a trace affine linear set if every element

of B has independent or linear agency, and every pair of elements with linear agency has joint

linear agency. Thus, the homotopy used does not need to deform all of the coefficients of the

system at once. Instead, we use several homotopies or small subsets of B to classify behavior.

To do this, we introduce three procedures. The Agency Classification Algorithm uses homotopy

continuation to classify individual agency of support elements. The Joint Agency Classification

Algorithm uses homotopy continuation to classify joint linear agency. And a sub-procedure, the

Degree Test, determines the degree relationship among traces of the solution sets which result from

homotopy continuation.

We determine a trace affine linear subset B by combining these three methods. Given a

support A, we perform the Agency Classification Algorithm, which makes use of the Degree Test, to

determine the individual agencies of each support element. Then we collect all elements of A which

have linear agency, and perform the Joint Agency Classification Algorithm on pairs of these elements

to determine which pairs have joint linear agency, using the Degree Test. Finally, a maximal trace
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affine linear set B ⊆ A contains as many elements with independent and linear agency as possible

without having any pairs of linear elements with nonlinear joint agency.

3.1.1 Degree Test

In order to determine agency and joint agency, we need to identify the degree relationship

among a collection of traces. Lemma 3.2, the Degree Test Lemma, determines the degree of a

univariate polynomial f using the alternating sum of binomial coefficients. First, we introduce

Lemma 3.1 to support the Degree Test Lemma.

Lemma 3.1. Let f(x) be a univariate polynomial of degree d ≥ 1. Then f(x) − f(x + 1) is a

polynomial of degree d− 1.

Proof. Let f(x) =
∑d

i=0 cix
i, where ci ∈ C for all i. Then:

f(x)− f(x+ 1) =

d∑
i=0

cix
i −

d∑
i=0

ci(x+ 1)i

=

d∑
i=0

cix
i −

d∑
i=0

ci

( d∑
j=0

(
i

j

)
xj

)

=

d∑
i=0

cix
i −

d∑
j=0

( d∑
i=j

ci

(
i

j

))
xj

=

d∑
j=0

(
cj −

d∑
i=j

ci

(
i

j

))
xj

= −
d∑

j=0

( d∑
i=j+1

ci

(
i

j

))
xj .

The xd monomial in this polynomial has a coefficient of 0 since setting j = d pushes outside the

index of the sum: ( d∑
i=d+1

ci

(
i

d

))
xd = 0 · xd.

Thus the polynomial f(x) − f(x + 1) has degree less than d. Additionally, the xd−1 monomial has

a nonzero coefficient: ( d∑
i=d

ci

(
i

d− 1

))
xd−1 = cddx

d−1.

Note that cd ̸= 0 since f is of degree d, and d ̸= 0 since d ≥ 1. Thus cddx
d−1 is the leading term of

f(x)− f(x+ 1), and this polynomial has degree d− 1. □
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Lemma 3.2 (Degree Test Lemma). Let f(x) be a univariate polynomial of degree d.

• If d < n then the polynomial
∑n

k=0(−1)k
(
n
k

)
f(x+ k) is the zero polynomial.

• If d ≥ n then
∑n

k=0(−1)k
(
n
k

)
f(x+ k) is not the zero polynomial.

Proof. We prove the above by induction on n. Let f(x) be a univariate polynomial of degree d.

Base case. Set n = 1. Then we have the following sum:

1∑
k=0

(−1)k
(
1

k

)
f(x+ k) = f(x)− f(x+ 1).

If d < 1, the degree of f is 0, so f(x) = f(x+1) and the above is the zero polynomial. On the other

hand, if d ≥ 1, then f(x)− f(x+1) ̸= 0 since the difference of the leading terms is nonzero. Let the

leading term of f(x) be axd, a ̸= 0. Then the difference is axd − a(x + 1)d = −adxd−1 + · · · , and

since a, d ̸= 0 we expect this to be nonzero.

Induction step. Suppose that d < n implies
∑n

k=0(−1)k
(
n
k

)
f(x+k) = 0, while d ≥ n implies∑n

k=0(−1)k
(
n
k

)
f(x+ k) ̸= 0. Consider the case for n+ 1, where we have the following sum:

n+1∑
k=0

(−1)k
(
n+ 1

k

)
f(x+ k) =

n+1∑
k=0

(−1)k
((

n

k

)
+

(
n

k − 1

))
f(x+ k)

=

n+1∑
k=0

(−1)k
(
n

k

)
f(x+ k) +

n+1∑
k=1

(−1)k
(

n

k − 1

)
f(x+ k)

=

n∑
k=0

(−1)k
(
n

k

)
f(x+ k) +

n∑
k=0

(−1)k+1

(
n

k

)
f(x+ k + 1)

=

n∑
k=0

(−1)k
(
n

k

)
(f(x+ k)− f(x+ k + 1)),

where the first equality comes from Pascal’s identity and the third equality is a result of reindexing

the second sum.

Define g(x) := f(x)− f(x+ 1). By Lemma 3.1 the degree of g is d̂ = d− 1. Let the degree

of f be d < n+ 1, so that the degree of g is d̂ < n. Then, by the induction assumption,

n+1∑
k=0

(−1)k
(
n+ 1

k

)
f(x+ k) =

n∑
k=0

(−1)k
(
n

k

)
g(x+ k) = 0.

34



On the other hand, if d ≥ n+ 1, then d̂ ≥ n so

n+1∑
k=0

(−1)k
(
n+ 1

k

)
f(x+ k) =

n∑
k=0

(−1)k
(
n

k

)
g(x+ k) ̸= 0.

Therefore, the sum
∑n

k=0(−1)k
(
n
k

)
f(x+ k) decides the degree d of f . □

The procedure in Algorithm 3 heuristically calculates the degree of a fitting curve to the

set of traces according to the sum in Lemma 3.2. The application of Lemma 3.2 determines

whether the degree of the curve fitting the trace points is less than i + 1. In particular, a j-

step homotopy gives j + 1 traces which have a degree one relationship if and only if the points

(0,Σ1(S0)), (1,Σ1(S1), . . . , (j,Σ1(Sj)) are collinear. To check if the degree of the fitting curve is

one, the Degree Test checks for each consecutive threesome of traces whether they fit the binomial

alternating sum, that is, whether Σ1(Sj) − 2Σ1(Sj+1) + Σ1(Sj+2) = 0. Then the test extends this

calculation to higher degrees.

Algorithm 3: Degree Test

Input: • a list of lists of solutions along a homotopy {S0, S1, . . . , Sn}
• a coordinate m

Output: degree of relationship between the traces of the solutions
1 Compute traces (Σm(S0),Σm(S1), . . . ,Σm(Sn))
2 for i← 0, n− 1 do
3 for j ← 0, n− i− 1 do

if
∑k=i+1

k=0 (−1)k
(
i+1
k

)
Σm(Sj+k) ̸= 0 then

break

if degree i fit for every set of j traces then
4 return i

5 return −1

The input to the Degree Test is a set of solution sets computed by the homotopy, along

with a coordinate in which to compute the trace. The output of the Degree Test is the degree of the

fitting curve to the set of traces, or −1 if no degree was found. We take −1 to signify an unknown,

but nonlinear, relationship.

3.1.2 Individual Agency Classification

The next important procedure is the Agency Classification with Homotopy in Algorithm 4.

The algorithm takes as input a support A = (A1, . . . , An) and a coordinate in which to test the
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agency. Then the algorithm computes the agency of each individual element of the support using

homotopy continuation and the Degree Test.

We use homotopy continuation to identify the way a set of solutions changes as we change

the coefficient of a monomial. We construct a homotopy which deforms one coefficient of the original

system, see Definition 1.26. As t varies from 0 to 1, we take different values of t as checkpoints. Each

checkpoint along the homotopy corresponds to a system for which we compute the solutions. The

sums of the solutions are then input into the Degree Test to classify agency of the support element

associated with the deformed coefficient.

The Agency Classification Algorithm performs this procedure for every support element.

The output lists the determined agency of each support element.

Algorithm 4: Agency Classification with Homotopy

Input: • a collection of supports A = (A1, . . . , An)
• a ring R[x1, . . . , xn]
• a coordinate m

Output: a list of degrees; each denotes the agency of an element of the support.
1 Generate generic polynomials fi ∈ R[x1, . . . , xn] supported on each Ai

2 Construct a homotopy ring S = R[x1, . . . , xn][t]
3 Compute initial solutions S0 of F = (f1, . . . , fn)
4 for i← 1, n do
5 for each α ∈ Ai do
6 Select random β ∈ C.
7 Construct homotopy H(x, t) where H(x, 1) = F and H(x, 0) = F + jβxα.
8 Collect j + 1 systems H = {F ,F + βxα, . . . ,F + jβxα}.
9 Compute solutions X = (S0, S1, . . . , Sj) of H

10 if degreeTest({Σm(Sk)}jk=1) = d then
list d

else
list −1

3.1.3 Joint Agency Classification

In order to check that a given subset of elements B ⊆ A is trace affine linear, it is not enough

to check that each element has independent or linear agency. By Theorem 2.22, in order for B to

be a trace affine linear subset, each pair of elements in B with linear agency must have joint linear

agency.

We therefore introduce a procedure in Algorithm 5 to check for joint linear agency. The
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main difference between this algorithm and Algorithm 4 is that in the joint case we only need to

check pairs of support elements within B where both elements have linear agency, by Theorem 2.22.

To accomplish the check between pairs, we construct a homotopy which deforms the coefficients of

two monomials of the original system at once. As t varies from 0 to 1, we again take different values

of t as checkpoints and compute the solutions of the systems at those checkpoints. Then the Degree

Test determines the degree relationship of the traces of the solutions sets. If the degree is one, then

the two support elements associated with the two deformed coefficients have joint linear agency.

The Joint Agency Classification Algorithm performs this procedure on every pair of support

elements which individually have linear agency. Therefore, it is necessary to perform the Agency

Classification Algorithm first in order to determine which elements have linear agency.

Algorithm 5: Joint Linear Agency Classification

Input: • a collection of supports A
• a ring R[x1, . . . , xn]
• a coordinate m

Output: a list of degrees; each denotes the joint agency of a pair
1 L = {pairs of elements in A with linear agency}
2 Generate generic polynomials fi ∈ R[x1, . . . , xn] supported on each Ai

3 Construct a homotopy ring S = R[x1, . . . , xn][t]
4 Compute initial solutions S0 of F = (f1, . . . , fn)
5 for each pair (α1, α2) ∈ L do
6 Select random β, γ ∈ C.
7 Construct homotopy H(x, t) where H(x, 1) = F and H(x, 0) = F + jβxα1 + jγxα2 .
8 Collect j + 1 systems H = {F ,F + βxα1 + γxα2 , . . . ,F + jβxα1 + jγxα2}.
9 Compute solutions X = (S0, S1, . . . , Sj) of H

10 if degreeTest({Σm(Sk)}jk=1) = d then
list d

else
list −1

3.2 Implementation

The three procedures from Section 3.1 are implemented in Macaulay2 [9]. See the appendix

for code. We present some examples and notes on implementation for each of the main algorithms.

We first demonstrate constructing a homotopy and obtaining solutions sets for different

t-values along the homotopy, a process used by both Algorithms 4 and 5. The function homotopyN

constructs a homotopy as follows: Let F(x) = H(x, 1) be the original system, and suppose we desire
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three solution sets. From t = 1 to t = 1
2 , the homotopy multiplies the chosen coefficients of the

system by a random complex number to obtain the “halfway” system H(x, 1
2 ). Then the homotopy

multiplies the coefficient attached to the same monomials again by the same complex number to

obtain the final system H(x, 0) = G(x). The only difference between the original system and the final

system is that the coefficients of the chosen monomials have been linearly deformed. Coefficients

associated with all other monomials are left the same. The function BertSolsN tracks the solution

set along the homotopy as t changes to obtain the desired number of solution sets.

Example 3.3. Consider again F = (f, g) with support illustrated in Figure 2.3:

f = x2y − 2xy + 3y − 4 and g = xy2 − 2x2 + 2y + 3.

We want to identify the agency of the element (2, 1) ∈ A1. We construct a homotopy to deform the

coefficient of the monomial x2y in f . Let α be some random complex number, which we call the

deformation constant. In this example, we demonstrate a two-step homotopy, so we choose three

t-values at which to compute solutions. Let F0 = (f ′, g) where f ′ = (1 + 2α)x2y − 2xy + 3y − 4,

which is the original system with the coefficient of the x2y monomial in f increased by 2α. Then

define the homotopy H(x, y, t) such that

H(x, y, t) = (1− t)F(x, y) + tF0(x, y).

Now let Ft(x, y) = H(x, y, t) so that the start system is F1 = F and the target system is F0. The

homotopy continuously and affine linearly deforms the coefficient of the monomial x2y in f . The

middle system is F1/2 = 1
2F(x, y) +

1
2F0(x, y) = (f ′′, g) where f ′′ = (1 + α)x2y − 2xy + 3y − 4,

which is the original system with the coefficient of the monomial x2y in f increased by α. We use

the software package Bertini [1] to track the solutions of the start system F1 to the new solutions

of F1/2 and F0 via homotopy continuation. The resulting three solution sets are S1, S1/2, and S0,

as in the schematic in Figure 3.1.

For example, letting α = 9.677744 + 5.4167144i gives the homotopy

Ft = (2(9.677744 + 5.4167144i)x2yt+ x2y − 2xy + 3y − 4, xy2 − 2x2 + 2y + 3).

The function homotopyN constructs the homotopy as a list of two systems, one for each desired
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solution set (not including the solutions of the original system).

H = homotopyN(f, g, x^2*y, t, alpha, 2)

>>{{(- 9.67774 - 5.41671*ii)x^2 y*t + (10.6777 + 5.41671*ii)x^2 y - 2x*y + 3y

- 4, x*y^2 - 2x^2 + 2y + 3},

{(- 9.67774 - 5.41671*ii)x^2 y*t + (20.3555 + 10.8334*ii)x^2 y - 2x*y

+ 3y - 4, x*y^2 - 2x^2 + 2y + 3}}

The function BertSolsN performs homotopy continuation using Bertini to track solution

points between the original system and the two constructed systems. Then the output of

BertSolsN(H,sols,s,t) are the three solution sets listed in Table 3.1.

S1 S1/2 S0

.438696− 1.25604i, 1.30183− .036502i 1.26535− .020743i
2.09486 −1.28046 + .017119i −1.25883 + .013447i

1.192 + 1.91039i .114215 + .459048i .0846946 + .33903i
.438696 + 1.25604i .274827 + .593957i .184299 + .439915i

−1.35625 −.018269− .70639i −.043743− .507199i
1.192− 1.91039i −.0942076− .478374i −.0786426− .345948i

Σ1(S1) = 4 Σ1(S1/2) = .29793− .15114i Σ1(S2) = .15313− .08149i

Table 3.1: Sets of solutions of systems along the homotopy for three t-values. We list the x-values
of the solutions and first coordinate traces.

Example 3.3 demonstrates the use of homotopyN and BertSolsN to deform the coefficient

of one monomial, which is how these functions are implemented within the Agency Classification

Algorithm, Algorithm 4. Within the Joint Agency Classification Algorithm, Algorithm 5, these same

functions are used to deform coefficients of two monomials at once.

Next we discuss implementation of the Degree Test from Algorithm 3. We continue with

the same system as in Example 3.3.

Example 3.4. Previously, we defined a homotopy which continuously deformed the coefficient

associated with x2y in f . Table 3.1 lists the three solution sets along this homotopy when we select

three t-values. The set of three solution sets S is the input for degreeTest, along with a coordinate

in which to take the trace. In this example we compute the trace in the x-coordinate, implemented

by degreeTest(S, 0).

The x-coordinate traces are: Σ1(S1) = 4, Σ1(S1/2) = .29793 − .15114i, and Σ1(S0) =

.15313− .08149i. There are only three traces, so the Degree Test checks for relationships of degrees
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i = 0 and i = 1. There is a change between the calculated traces, hence Σ1 is not a constant

function of t and the element (2, 1) in the support cannot have independent agency. That is,

Σ1(S1)− Σ1(S1/2) = 4− (.29793− .15114i) ̸= 0.

Next degreeTest checks if the relationship between the traces is linear according to Lemma

3.2. The Degree Test computes Equation (3.1), and decides that the relationship between these

three calculated traces is not linear.

Σ1(S1)− 2Σ1(S1/2) + Σ1(S0) = 4− 2(.29793− .15114i) + .15313− .08149i

= 3.55727 + .22079i (3.1)

Neither degree i checked by the Degree Test was successful, so the output of degreeTest(S, 0)

is −1, which signifies that the degree relationship among the traces is nonlinear. Since the only

feature that was changed to get these different traces was the coefficient of the monomial x2y in f ,

we conclude that (2, 1) ∈ A1 has nonlinear agency.

Algorithm 4, the Agency Classification with Homotopy, is implemented by the function

traceTestN. When we implement this procedure, we write each support as a matrix whose columns

are elements of the support. Note that each support matrix has the same number of rows, since

there are as many rows as variables in the system. However, supports may not all have the same

number of columns because some supports may be larger than others. Additionally, we include a

tolerance with the inputs to the function. The tolerance is a small number which is used to account

for numerical error.

The output of traceTestN is a list of integers greater than or equal to −1 corresponding

to the agency of each element of the support. If the output is non-negative, then it is the degree

relationship of the trace for that element of the support. For example, 0 denotes independent agency,

1 denotes linear agency, and 2 or above denotes nonlinear agency. An output of −1 indicates that

the element has nonlinear agency, but without a degree estimate. We illustrate the implementation

by continuing the previous example.

Example 3.5. The system F = (f, g) from Example 2.15 has support A = (A1, A2), where

A1 = {(2, 1), (1, 1), (0, 1), (0, 0)} and A2 = {(1, 2), (2, 0), (0, 1), (0, 0)}. The function traceTestN

describes the agency of elements in A, so the results apply to generic systems in CA. Written as

40



matrices, the supports are

M1 =

0 0 1 2

0 1 1 1

 and M2 =

0 0 2 1

0 1 0 2

 . (3.2)

Then the input to traceTestN is the list {M1,M2}. In this example, we set the tolerance equal to

10−4, we use a two-step homotopy, and we compute the trace in the x-coordinate. The procedure

traceTestN(listM, R, 1e-4, 0 , 2) first generates a random polynomial system supported onA.

As part of this process, it creates a list of monomials which could appear in F in order of total degree

and support. The list of monomials for {M1,M2} in order is L = {{1, y, xy, x2y}, {1, y, x2, xy2}}.

Then for each element ai,j ∈ A, a homotopy is constructed and solved as in Example 3.3,

and the agency of ai,j is determined as in Example 3.4. The agencies are denoted by integers,

displayed in a list whose order is the same as the order of elements in the support in L. In the

output

traceTestN(\{M1, M2\}, R, 1e-4, 0 , 2)

>> {{0, 0, 1, -1}, {0, 0, 0, 0}},

the entry of 1 corresponds to the xy monomial from f1, and the entry of −1 corresponds to the x2y

monomial from f2. That is, (1, 1) has linear agency, (2, 1) has nonlinear agency, and all other points

have independent agency.

In addition to the printed and listed output, the function tikzOutput takes as input the list

of agencies and outputs an encoding of the Newton polytope with agency shaded according to the

list. The picture generated by tikzOutput for the list {{0, 0, 1,−1}, {0, 0, 0, 0}} is Figure 3.2. The

Newton polytope with shaded support elements aids in the display and interpretation of support

agency.

The function TALTestN combines the processes of both Algorithms 4 and 5. Similar to

traceTestN, we input the support of the system as matrices. The function traceTestN is called as

part of TALTestN, in order to obtain individual agency classification of the support. Then a similar

procedure checks joint agency, but only for those pairs of elements which were found to have linear

agency by traceTestN.

In the printed output of TALTestN, each pair is written as a sequence containing the two

monomials, along with numbers designating which polynomial each monomial came from. For
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example, the printed output {(x^2, 1), (x*y^3 , 2)} observed effect is linear means that

the monomial x2 comes from the first polynomial f and the monomial xy3 comes from the second

polynomial g. Then the elements (2, 0) ∈ A1 and (1, 3) ∈ A2 have joint linear agency. The function

also outputs a list of degrees associated with the joint agency of the pairs.

3.3 Results

In this section we work through a few examples. Each example illustrates an aspect of

Algorithm 4 as well as theory from [5].

Example 3.6. Let F = (f, g) be the simple system from Example 2.15, where:

f = x2y − 2xy + 3y − 4 and g = xy2 − 2x2 + 2y + 3

In Example 2.16, we generated a classification of the support with shading as in Figure 2.5. We aim

to generate the same shading using our new method of trace test with homotopy continuation.

We consider generic polynomial systems with the same support as F . The support of f

is A1 = {(2, 1), (1, 1), (0, 1), (0, 0)} and the support of g is A2 = {(1, 2), (2, 0), (0, 1), (0, 0)}. We

investigate the trace in the x-coordinate. Running Algorithm 4 on A = (A1, A2) gives the individual

classifications seen in Table 3.2 and Figure 3.2. Let B be the collection of elements in A which have

linear or independent agency. At this stage, we check for joint linear agency, using Algorithm 5, to

obtain the final trace affine linear set B ⊆ A. In this case all pairs in B have joint linear agency, so

B is trace affine linear.

Monomial Degree Output Classification

Polynomial: −10x2y − 3xy + 2y − 3
1 0 constant
y 0 constant
xy 1 linear
x2y −1 non-linear

Polynomial: 3xy2 − 5x2 + y − 10
1 0 constant
y 0 constant
x2 0 constant
xy2 0 constant

Table 3.2: Table listing agency in the x-coordinate for each element of the support from Equa-
tion (3.2).
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Support of f1 Support of f2

Figure 3.2: Support from Equation (3.2) with agency classification according to the x-coordinate.

Thus a trace affine linear subset of the support is B = (A1 \ {x2y}, A2). The classification

is different in the y-coordinate, as we see in Table 3.3 and the associated shading in Figure 3.3. In

the y-coordinate case, the pairwise agency check has output {(xy,1), (y, 2)} observed effect

is non-linear and reveals that the pair of elements (1, 1) ∈ A1 and (0, 1) ∈ A2 cannot be together

in a trace affine linear set.

Monomial Degree Output Classification

Polynomial: −10x2y − 3xy + 2y − 3
1 1 linear
y −1 non-linear
xy 1 linear
x2y 0 constant

Polynomial: 3xy2 − 5x2 + y − 10
1 0 constant
y 1 linear
x2 0 constant
xy2 −1 non-linear

Table 3.3: Table listing agency in the y-coordinate for each element of the support of a simple from
Equation (3.2).

Support of f1 Support of f2

Figure 3.3: Support from Equation (3.2) with agency classifcation according to the y-coordinate.
Elements that are crosshatched and color red have individual linear agency but nonlinear joint
agency, so both cannot be included in a maximal trace affine linear set.

43



In Example 3.6 there are a few differences exhibited from the polyhedral geometry strategy

in Example 2.26. The trace affine linear set estimated by the polyhedral geometry does not include

elements (2, 0) and (1, 2) from A2, since these two elements were classified by the geometry to have

potential nonlinear agency. However, by using the agency classifying algorithm, we see that a trace

affine linear set for the trace in the first coordinate can include these two elements because they

both have independent agency.

Example 3.7. Consider the system F = (f, g) ∈ (C[x, y])2 over the support from Example 2.28,

A = (A1, A2) where:

A1 = {(0, 0), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 2), (2, 3), (2, 4), (3, 1)}

A2 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)}

The universal polynomials f and g supported on A are:

f = a0x
3y + a1x

2y4 + a2x
2y3 + a3x

2y2 + a4x
2 + a5xy

4 + a6xy
3 + a7xy

2 + a8xy + a9x+ a10y
2 + a11,

g = b0x
2y3 + b1x

2y2 + b2x
2y + b3x

2 + b4xy
3 + b5xy

2 + b6xy + b7x+ b8y
3 + b9y

2 + b10y + b11

We compute the individual agencies of elements in the support using Algorithm 4. The

results can more clearly be seen in Table 3.4 as well as depicted on the Newton polytope in Figure 3.4.

Then let B be the collection of elements which have independent or linear agency.

Support of f1 Support of f2

Figure 3.4: Support from Example 3.7 classified according to agency in the x-coordinate. One
element with linear agency which may be removed to obtain a trace affine linear set is colored red.

We focus on the trace in the x-coordinate. To verify B is a trace affine linear subset, we

also apply Algorithm 5 to this example. Out of 21 possible pairs of elements with linear agency in
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Monomial Degree Output Classification

Polynomial: f = 10x2y4 + 4x2y3 − 7x3y − 6x2y2 + 3xy3 + 5x2 + 9xy + 2y2 − 5x+ 1
1 0 constant
y2 0 constant
x 0 constant
xy 0 constant
xy2 0 constant
xy3 0 constant
xy4 0 constant
x2 1 linear
x2y2 1 linear
x2y3 1 linear
x2y4 1 linear
x3y −1 non-linear

Polynomial: g = 6x2y3 + 4x2y2 − 4xy3 − 4x2y + 7xy2 − 3y3 − 6x2 + 8xy + 9y2 − 7x+ 2y + 3
1 0 constant
y 0 constant
y2 0 constant
y3 0 constant
x 1 linear
xy 0 constant
xy2 0 constant
xy3 0 linear
x2 −1 non-linear
x2y 1 linear
x2y2 −1 non-linear
x2y3 −1 non-linear

Table 3.4: Table listing agency in the x-coordinate for each element of the support A.
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B, the algorithm identifies three pairs which do not have joint linear agency. Those are (2, 0) ∈ A1

and (2, 1) ∈ A2, (2, 3) ∈ A1 and (2, 1) ∈ A2, and (2, 4) ∈ A1 and (2, 1) ∈ A2. Note that (2, 1) ∈ A2

is in each of these pairs, so in order for B to be trace affine linear it must not contain (2, 1) ∈ A2, or

none of the other three mentioned elements.

We omit the table for the y-coordinate, but the results can be seen in the shading of the

support in the Newton polytope in Figure 3.5.

Support of f1 Support of f2

Figure 3.5: Support from Example 3.7 classified according to agency in the y-coordinate.

There are some cases when every element of the support is classified as having independent

agency. According to [5], this may be if a system has a lacunary support. Additionally, as the next

example shows, some subset of the support may be lacunary.

Definition 3.8. Let A be a collection of supports and L[A] the lattice of integer points represented

in the support. A is lacunary if the index [Zn : L[A]] is greater than 1.

Example 3.9. Consider the following polynomial system in (C[x, y])2:

f = 9x3y − 3x2 + xy − 2y + 4 and g = 4x3 − 4x2y − 5x+ 7

The support A = (A1, A2) written in matrix form is:

M1 =

0 0 1 2 3

0 1 1 0 1

 and M2 =

0 1 2 3

0 0 1 0


At first glance, the support of this system is not lacunary, since the lattice generated by difference

between points is Z2. However, when we remove elements which have independent agency according

to the polyhedral geometry, the remaining support is lacunary. By Lemma 2.27, each element of A
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Support of f1 Support of f2

Figure 3.6: Support of F shaded according to agency in the x-coordinate. Every element in the
support has independent agency.

offset1(A1, 1) offset1(A2, 1)

Figure 3.7: Support of F with all but 1 − offset points removed. The remaining support elements
form a lattice which has an index within Z2 not equal to one. Thus, the set is lacunary.

that is not a 1 − offset point in the x-direction has independent agency. The remaining support,

depicted in Figure 3.7, is lacunary since points in the lattice generated by the remaining support

are of the form {(a, b) : a+ b is even}. Then the index of this lattice within Z2 is greater than one.

In this lacunary system, every element in the support is found to have an independent agency in

the x-coordinate, see Figure 3.6. However, the system is not lacunary in the y-direction, and in the

y-coordinate there are some linear and nonlinear classifications, as we see in Figure 3.8.

Support of f1 Support of f2

Figure 3.8: Classification of the lacunary system’s support in the y-coordinate.

Next we consider an example where the difference between the estimation done by polyhedral

geometry and the computed result are very different.

Example 3.10. Consider F = (f1, f2) ∈ (C[x, y])2 supported onA = (A1, A2) such that the support
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written in matrix form is:

M1 =

0 1 1 2 1 3 3 4 2 5 6

0 0 1 3 3 1 2 2 4 1 1

 and M2 =

0 0 1 1 2 2 4 5 6 6

0 1 2 3 2 3 3 2 2 3


This support is on the larger side when it comes to computing a hidden variable sparse resultant. It

is one example where waiting for the computation to finish is unreasonable. Applying our Algorithm

4 to this support, however, provides insight on the agency of elements of the support, as seen in

Figure 3.10. There is only one element with linear agency and only one element with nonlinear

agency.

Support of f1. Support of f2.

Figure 3.9: Support of a large system classified according to agency in the x-coordinate due to the
Agency Classification Algorithm.

On the other hand, if we investigate this support by using the polyhedral geometry discussed

in Section 2.4, we get Figure 3.10. The polyhedral geometry estimates a much smaller trace affine

linear set, since there are many 0.5-offset points which actually have independent agency.

Support of f1. Support of f2.

Figure 3.10: Support of a large system with agency due to polyhedral geometry in the x-coordinate.
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Appendix A Individual Agency Classification

The following code was written in Macaulay2 [9]. We used the package Bertini [1].

The function which classifies individual agency is called traceTestN. The visual outputs of the

Newton polytopes seen in this paper were generated by the function tikzOutput. The rest of

the functions listed here build up to the individual agency classification. A main subprocedure is

degreeTest, which implements the Degree Test Lemma.

needsPackage "Bertini"

homotopyN = (f1, f2, mon, t, sclr, N) -> (

--INPUT

-- f1, f2: two polynomials

-- mon: a monomial in the support of f1

-- t: homotopy variable

-- sclr: scalar to adjust size of homotopy change

-- N: number (ge 2) of homotopies to define

--OUTPUT

-- a list containing N homotopy lists

S:= ring t;

-- construct a homotopy

-- record N systems along the homotopy in the following list

X:= for i in 0..N-1 list(

{sub(f1,S) + i*sclr*mon + (1-t)*sclr*mon, sub(f2,S)});

X

)

BertSolsN = (X,sols,s,t) -> (

--INPUT

--X: a list of homotopies of the initial polynomials

--sols: initial solution set

--s,t: homotopy variables
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--OUTPUT

-- a list of lists of solutions

tempsol:= sols;

listSols:= for H in X list(

-- this line performs the homotopy continuation of the solutions

tempsol= bertiniUserHomotopy(s,{t=>s},H,tempsol, \\

BertiniInputConfiguration=>{FinalTol=>1e-50},M2Precision=>1000)

);

prepend(sols, listSols)

)

degreeTest = (homSols, tol, coord) ->(

-- INPUT

-- homSols: a list of lists of homotopy solutions, including initial solution

-- tol: desired tolerance level, typically 1e-4

-- coord: coordinate in which to test the degree, 0 is first coordinate

-- OUTPUT

-- degree of relationship between traces, if there are at least two more \\

traces calculated than degree

-- or -1, if not enough traces to calculate a degree that high

local coordSum;

--add each set of solutions together to get a list of traces

T := apply(homSols, i->sum apply(i, j->(coordinates j)_coord));

for i in 0..#T-2 do(

--if the flag stays true throughout entire loop then the degree fits

flag:= true;

--to check if the relationship is degree i, check all adjacent combos \\

of i+2 traces

for j in 0..#T-i-2 do(

--we check whether all combinations meet the binomial pattern

coordSum= sum toList apply(0..i+1, k->(-1)^k*binomial(i+1,k)*T_(j+k));
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if not clean_tol coordSum == 0 then (flag = false; break)

);

if flag then return i

);

-1

)

supportToMonomials = (M,R) ->(

--INPUT:

--M: a matrix containing the support for some generic polynomial

--R: a ring whose variables are the variables of the polynomial

--OUTPUT:

--a list of monomials supported by M (multivar of R raised to multideg in M)

for i in 0..numColumns M-1 list(

product for j in 0..numRows M - 1 list(

(vars R)_(0,j)^(M_(j,i))

)

)

)

supportToPolynomial = (M,R) ->(

--INPUT:

--M: a matrix containing the support for some generic polynomial

--R: a ring whose variables are the variables of the polynomial

--OUTPUT:

--a polynomial supported on M with random coefficients between -10 and 10

L:= supportToMonomials(M,R);

--add together monomials from list with random coefficients

sum apply(L, i-> i*random(-10.,10.))

)
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traceTestN = (listM, R, tol, coord, N) ->(

--INPUT:

--listM: a list of matrices each containing the support for some polynomial

--R: a ring whose variables are the variables of the polynomials

--tol: desired tolerance level, typically 1e-4

--coord: coordinate in which to test the degree, 0 is the first coordinate

--N: number (ge 2) of homotopies to define

--OUTPUT:

--flagList: a list of agencies; 0 if independent, 1 if linear, \\

-1 if non-linear

--prints statements describing these degrees as effects of the monomial \\

on the polynomial

-- first write the matrix of support as a polynomial with random coefficients

f1:= supportToPolynomial(listM_0, R);

f2:= supportToPolynomial(listM_1, R);

-- next define an extended ring S with homotopy parameters t and s

S := CC[first entries vars R|{t,s}];

-- solve the system using Bertini

sols:= bertiniZeroDimSolve({f1,f2},BertiniInputConfiguration=>\\

{FinalTol=>1e-50},M2Precision=>1000);

-- set up a counter to consider support of each polynomial separately

i:= 0;

--in flagList we store flags signifying the degree effect of each monomial

local flagList;

-- choose a random complex number to be deformation scalar

sclr = 10*random CC;

while norm(sclr) < 6 do sclr = 10*random CC;

-- in the outer for loop, run through once for each polynomial

for f in {f1,f2} list(

<< endl;

-- trick to consider both combinations of polynomials
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p1 = f;

p2 = f1 + f2 - f;

<< "For poly " << f << endl;

-- In the inner for loop, run through once for each monomial in the

-- support of given polynomial. Save flag of each monomial in flagList.

flagList = for mon in supportToMonomials(listM_i,S) list(

<< endl;

-- define a homotopy that changes only the given polynomial

H = homotopyN(p1,p2,mon, t, sclr, N);

-- solve the system at each connection point in the homotopy

homSols = BertSolsN(H, sols, s,t);

-- find the degree that fits the changes in these solutions

-- print corresponding signifying statements

flag = degreeTest(homSols, tol, coord);

if flag==0 then (<< mon << " observed effect is constant " << endl)

else if flag==1 then (<< mon << " observed effect is linear" << endl)

else (<< mon << " observed effect is non-linear" << endl);

flag);

-- once finished with one polynomial and its support, move on to the next

i= i+1;

flagList

)

)

tikzOutput = (listM, L) ->(

--INPUT

--listM: a list of matrices each containing the support for some polynomial

--L: a list of flags, one for each element of each support, denoting degree

--OUTPUT

--LaTeX code that formats a lattice of the support colored for the degree

out = "\\begin{figure}\n\\centering\n";
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--each polynomial has its own support and lattice

for j in 0..length listM-1 do(

out = out | "\\begin{subfigure}[b]{0.4\\}\n\\centering\n";

out = out | "\\begin{tikzpicture}\n" | "\\foreach\\i in {0,...," | 1 + \\

max first entries listM_j |"}{";

out = out | "\\foreach\\j in {0,...," | 1+ max last entries listM_j |"} \\

{\\filldraw[color=gray] (\\i,\\j) circle (.03);}}";

for i in 0..numColumns listM_j -1 do(

out = out | "\\filldraw";

--constant effect are left white

if L_j_i==0 then

out = out | "[fill = white]";

--linear effect are crosshatched

if L_j_i ==1 then

out = out | "[pattern = crosshatch]";

--default is filled in with black (non-linear)

--any flag that is not 0 or 1 will result in the default

out = out | " ("

| listM_j_(0,i) | "," | listM_j_(1,i)

| ") circle(.15);\n";

);

out = out | "\\end{tikzpicture}\n";

out = out | "\\caption*{Support of $f_" | j+1 | "$}\n\\end{subfigure}\n";

);

out = out | "\\end{figure}";

<< out

)
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Appendix B Joint Agency Classification

The main function in this section is the joint agency classification function, which is called TALTestN.

The other functions listed here support the joint agency classification.

pairHomotopy1 = (f1, f2, mon1, mon2, t, sclr, N) -> (

--INPUT

-- f1, f2: two polynomials

-- mon1, mon2: distinct monomials in the support of f1

-- t: homotopy variable

-- sclr: scalar to adjust size of homotopy change

-- N: number (ge 2) of homotopies to define

--OUTPUT

-- a list containing N homotopy lists

S:= ring t;

X:= for i in 0..N-1 list(

{sub(f1,S) + i*sclr*mon1 + (1-t)*sclr*mon1 + i*sclr*mon2 \\

+ (1-t)*sclr*mon2, sub(f2,S)});

X

)

pairHomotopy12 = (f1, f2, mon1, mon2, t, sclr, N) -> (

--INPUT

-- f1, f2: two polynomials

-- mon1, mon2: distinct monomials in the support of f1

-- t: homotopy variable

-- sclr: scalar to adjust size of homotopy change

-- N: number (ge 2) of homotopies to define

--OUTPUT

-- a list containing N homotopy lists

S:= ring t;

X:= for i in 0..N-1 list(
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{sub(f1,S) + i*sclr*mon1 + (1-t)*sclr*mon1, sub(f2,S) + \\

i*sclr*mon2 + (1-t)*sclr*mon2});

X

)

pairHomotopy2 = (f1, f2, mon1, mon2, t, sclr, N) -> (

--INPUT

-- f1, f2: two polynomials

-- mon1, mon2: distinct monomials in the support of f1

-- t: homotopy variable

-- sclr: scalar to adjust size of homotopy change

-- N: number (ge 2) of homotopies to define

--OUTPUT

-- a list containing N homotopy lists

S:= ring t;

X:= for i in 0..N-1 list(

{sub(f1,S), sub(f2,S) + i*sclr*mon1 + (1-t)*sclr*mon1 + \\

i*sclr*mon2 + (1-t)*sclr*mon2});

X

)

linearAgencyToMonomialPairs = B ->(

--INPUT:

--B: a set containing only elements with linear agency

--R: a ring

--OUTPUT:

--a list of all possible monomial pairings within B

--pairs are listed with designation of which support they came from

monPairs = {};

for i in 0..length B-1 do(

for j in 0..length B-1 when not j==i do(

57



monPairs = insert(0,{B_i,B_j},monPairs)

);

);

monPairs

)

TALTestN = (listM, R, tol, coord, N) ->(

--INPUT:

--listM: a list of matrices each containing the support for some polynomial

--R: a ring whose variables are the variables of the polynomials

--tol: desired tolerance level, typically 1e-4

--coord: coordinate in which to test the degree, 0 is the first coordinate

--N: number (ge 2) of homotopies to define

--OUTPUT:

--degreeList: a list of degrees of each joint relationship to trace

--prints statements describing these degrees as effects of the \\

monomial pair on the trace

-- first write the matrix of support as a polynomial with random coefficients

f1:= supportToPolynomial(listM_0, R);

f2:= supportToPolynomial(listM_1, R);

-- next define an extended ring S with homotopy parameters t and s

S := CC[first entries vars R|{t,s}];

-- solve the system using Bertini

sols:= bertiniZeroDimSolve({f1,f2},BertiniInputConfiguration=>\\

{FinalTol=>1e-50},M2Precision=>1000);

-- set up an empty TAL set

B := {};

-- in degreeList, store degrees which are the effect of each monomial pair

local degreeList;

-- choose a random complex number to be deformation scalar

sclr = 10*random CC;
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while norm(sclr) < 6 do sclr = 10*random CC;

--make a list of all monomials in same order as agencies

monos := {supportToMonomials(listM_0,S), supportToMonomials(listM_1,S)};

--get the individual agencies and add only the linear ones to B

agencies := traceTestN(listM, R, tol, coord, N);

for i in 0..length agencies-1 do(

for j in 0..length agencies_i-1 do(

if (agencies_i)_j == 1 then B = insert(0, ((monos_i)_j, i+1), B)

);

);

-- list all pairs possible among elements with linear agency

monPairs:= linearAgencyToMonomialPairs B;

-- check for joint agency among each pair

degreeList = for monPair in monPairs list(

<< endl;

-- define a homotopy that changes only in selected monomials

mon1 := sub((monPair_0)_0,S);

mon2 := sub((monPair_1)_0,S);

local H;

-- construct homotopy according to which polynomials

H = if (monPair_0)_1 ==1 and (monPair_1)_1 ==1 then \\

pairHomotopy1(f1, f2, mon1, mon2, t, sclr, N)

else if (monPair_0)_1 == 1 and (monPair_1)_1==2 then \\

pairHomotopy12(f1, f2, mon1, mon2, t, sclr, N)

else pairHomotopy2(f1, f2, mon1, mon2, t, sclr, N);

-- solve the system at each connection point in the homotopy

homSols = BertSolsN(H, sols, s,t);

-- find the degree that fits the changes in these solutions

deg = degreeTest(homSols, tol, coord);

-- print corresponding signifying statements

if deg==0 then (<< monPair << " observed effect is constant " << endl)
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else if deg==1 then (<< monPair << " observed effect is linear" << endl)

else (<< monPair << " observed effect is non-linear" << endl);

deg

);

degreeList

)
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