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ABSTRACT 

 

 

Allostery (1) is the process through which proteins self-regulate in response to 

various stimuli. Allosteric interactions occur between nonadjacent spatially distant 

residues (1), and they are exhibited through the correlated motions (2) and momenta of 

participating residues. The location of allosteric sites in proteins can be determined 

experimentally but computational methods to predict the location of allosteric sites are 

being developed as well (2-4, 10). Experimental and computational methodologies for 

locating allosteric sites can be used to design specific targeted drug delivery (5-6, 19), but 

these methods have not yet fully explained a mechanism for allosteric communications.  

An allosteric pathway is a chain of residues that “communicate” by frequently 

colliding into one another. The frequency of collisions causes members of the chain to 

transfer kinetic energy amongst each other preferentially (3-4). Allosteric pathways begin 

and end at protein binding sites. An allosteric event occurs when an external molecule 

interacts with a binding site. An allosteric process is triggered by an allosteric event (7-9), 

and it is a consequence of a protein’s free energy landscape changing in response to the 

stimuli (12). The protein begins to assume a new conformation due to the changes in its 

free energy landscape, and as its structure changes its functionality also changes as the 

system approaches a new equilibria. At equilibrium, a protein’s conformational ensemble 

remains stable, and the residues participating in an allosteric pathway remain fairly 

constant (3). 

The frequent collisions along allosteric pathways lead to quantifiable 

mathematical patterns in the physical states (position, momentum, internal energy) of 
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allosteric pathway residues over time. Non-allosteric pathway residues also collide with 

other residues but will not display a discernable pattern in physical state with other 

residues over time. Current computational methods for quantifying patterns in physical 

state to identify allosteric pathways utilize Percolation Theory (3), Isotropic Heat 

Diffusion (4), Direct Cross Correlation (2), and Information Theory (11, 13). This work 

strives to enhance the Information Theoretic approach for locating allosteric sites and use 

this new perspective to develop a model to describe protein communication. The 

Information Theoretic approach has been chosen due to its ability to capture dynamic, 

nonlinear relationships, at relevant biological temperatures. Mutual Information (MI) 

quantifies the information that two variables share (5), and it will be used in this work to 

examine signaling relationships between a protein’s residues at equilibrium. There is 

evidence to suggest that allosteric signals travel along energy pathways through transfers 

of kinetic energy between colliding residues (3-4). This work hypothesizes that a pattern 

of collisions forms during equilibria via repetitive kinetic energy transfers between 

residues along an allosteric pathway.  If the energy transferred during this process 

functions as a repetitive biological ‘signal’ then there will be quantifiable patterns in 

physical state data that Mutual Information can be used to characterize analytically. 
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CHAPTER ONE 

 

AN INFORMATION-THEORETIC EXPLORATION OF PROTEIN SIGNALING 

 

Introduction: 

Allostery is the process induced in a protein when a chemical signaling event (ex. 

binding a small molecule) occurs at one location which causes information to flow to 

another part of the protein and a change the function, dynamics, or conformation of a 

distal location (1,2 16). There is a great deal of interest in determining a physical 

mechanism for allostery as well as developing methodologies for locating allosteric 

residues in proteins (2-4,10,24). Allostery has a broad range of possible applications from 

drug delivery (3) to self-assembly (6). Allostery is often coined “The Second Secret of 

Life” (1) and developing a more sophisticated model to predict and manipulate allosteric 

effects would significantly advance the field of biochemistry. For example, having the 

ability to predict allosteric effects combined with machine learning ligand synthesis 

would enable the creation of ligands that are designed to alter a particular function of a 

particular protein with high specificity and efficacy. In that case, the only parameter 

needed to design such a ligand would be the protein’s conformation necessary for a 

specific function and a library of allosteric effects to build from. Many different methods 

for locating allosteric residues have been explored in the literature: Anisotropic Heat 

Diffusion (4), Percolation Theory (OHM webserver) (3), Direct Cross-Correlation 

(2,4,17), and Information Theory (2). 
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Anisotropic Heat Diffusion:  

Protein sequences are heterogeneous in nature which causes them to display a 

broad range of conformations and functions. Signal propagation through proteins appears 

to arise from closely packed secondary structures that collide frequently with one another 

and transfer kinetic energy (4). Kinetic energy transferred in this way is defined in this 

work as a signal.  

As a protein changes conformation, each of its residues assume a new position 

relative to each other. In their new positions, the residues have a new likelihood of 

colliding into one another due to their altered proximity from other residues.  If a 

conformational change alters the residue’s positions drastically the new likelihood of 

collision can lead to changes in the signaling pathway. Signaling pathways have been 

shown to evolve over time (3) and upon ligand binding (4,10,18). New signaling 

pathways have also been documented to form after an old pathway was disrupted by a 

mutation (8,15). 

Anisotropic heat diffusion is a simple and computationally inexpensive method 

for locating energetically anisotropic signaling pathways via the following steps (4). 

1. The protein is minimized and equilibrated to 10 K to minimize atom 

movements.  

2. A localized area of it is heated in a 300 K bath. 

3. A short gas phase molecular dynamics simulation is performed to measure 

the heat diffusion.  
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By following the above steps, only the heated residue can move which causes it to 

collide with other residues and transfer heat to them in the form of kinetic energy. Several 

different residues were tested to evaluate the directionality and reproducibility of the 

energy pathway found (4). 

1. The active site residue was heated, and energy flowed from active site to 

distal site.  

2. The distal site was heated, and energy flowed from distal site to active 

site.  

3. A surface residue that was not a part of the energy pathway was heated, 

and energy did not flow.  

Direct cross correlation (explained below) was used to verify that the energetic 

pathway located by anisotropic heat diffusion was observable in a biologically relevant 

setting. Additionally, direct cross correlation was used to calculate the speed a signal 

propagates through a protein for comparison to the value obtained from anisotropic heat 

diffusion.  

Percolation Theory: 

 Percolation Theory is another method that utilizes residue collisions to quantify 

signal propagation. In this method, the active site residues are perturbed many times and 

the frequency of kinetic energy transfers caused by collisions between residues that 

propagate through the system (3). 

Groups of residues that collide frequently with one another are expected to be 

allosteric and exhibit correlated motions. Percolation Theory is strictly a static analytical 
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method which suggests that it could miss out on dynamic causes for allosteric 

interactions. For example, several snapshots were taken from a molecular dynamics 

simulation and then analyzed with OHM. It was reported that the allosteric pathways 

change “moderately” over the course of the simulation but not quantify by how much (3). 

Direct Cross-Correlation: 

Direct Cross-Correlation (DCC) is the first truly dynamic method of locating 

allosteric residues introduced thus far. DCC quantifies the strength of a linear relationship 

between two variables for each pairwise combination of residue time series data 

(2,14,17). The data for each pairwise combination of residues can be described in one of 

three ways: positively correlated, negatively correlated, or uncorrelated. DCC’s output is 

a symmetric matrix which is visually interpreted with a heatmap whose axes each 

correspond to residue number. Each colored square on the heatmap describes the 

correlation coefficient for 1 pairwise combination of residue time series data.  

DCC can be used to either to quantify signal propagation at equilibrium or to 

evaluate the accuracy of a new method being developed (2,3,14,17). In the former case, 

DCC with the addition of a time delay can be used to search for signals that are not 

instantaneously transmitted (3). 

Information Theory: 

Correlated motions and by extension signals propagating through a protein may 

be exhibited through more types of mathematical relationships than strictly linear (11,13). 

Mutual Information, an Information Theoretic Method, quantifies of the information that 

two variables share (11,13). In this case, information describes the predictability of one 
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variable’s identity based off the identity of another (11,13). For example, if two different 

residue’s trajectories are completely dependent upon one another, then one residues 

trajectory can be used to confidently compute the identity of the other and vice vera.  

MD simulations paired with Information Theoretic analysis can be used to 

provide a holistic and dynamic analysis of protein signaling at equilibrium. Outside of the 

difference in quantification scope, the MI algorithm works in much the same way as 

DCC, but with one other major difference. MI can only be used on discrete data while 

DCC can be used on continuous data which makes DCC easier to implement with 

confidence.  

MI is quantified for each pairwise combination of residue time series data over 

the course of a MD simulation. The MI output is a symmetric matrix which is visually 

interpreted with a heatmap whose axes each correspond to residue number. Each colored 

square on the heatmap describes the information for one pairwise combination of residue 

time series data. Theoretically, MI should provide more information about the system 

than DCC, but the comparison is easier to understand if the DCC is squared so that both 

heatmaps are on the same scale.  

Methods: 

Equilibrium Molecular Dynamics Simulations: 

Equilibrium molecular dynamics simulations were performed with NAMD 2.14 

on allosterically activated Ras grown in Ca(C2H3O2)2 (pdb 3K8Y) (20), allosterically 

activated Ras which was then deactivated by soaking it in Mg(C2H3O2)
2 (pdb 3LBN) 

(20), inactive Ras grown in CaCl2 (pdb 2RGE) (20), and Y32F mutant Ras (pdb 3K9N) 
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under the CHARMM36 (26) forcefield. Modified input files from the CHARMM-GUI 

Solution Builder (23-24) were used to prepare each system and are documented below. 

Each Ras system had structurally important Ca2+ and Mg2+ cations coordinated with it, 

and notably 3K8Y also coordinated an acetate anion (C2H3O2)
-. Each X-Ray 

crystallographic structure was also coordinated with GNP, but a stable ligand could not 

be generated for simulation. 2RGE and 3LBN had residues (61-68 and 62-63 

respectively) with missing atomic information that was modeled with GalaxyFill (27). 

NAMD’s conjugate gradient and line search algorithm (28-29) was used to 

minimize each system in a periodic rectangular water box with explicit TIP3 H2O for 

10,000 steps. CHARMM-GUI calculated the number of K+ and Cl- ions necessary to 

neutralize each system with a KCl concentration of 0.15 M, and it also selected each 

water box’s dimensions to ensure that their edges were 10 Å away from the solvent (23-

24,30). The dimensions for each water box are shown in the table below.  

3K8Y (Å) 2RGE (Å) 3LBN (Å) 3K9N (Å) 

X = Y = Z =  

{min = 0, max = 67} 

X = Y = Z =  

{min = 0, max = 67} 

X = Y = Z = 

{min = 0, max = 67} 

X = Y = Z = 

{min = 0, max = 66} 

Table 1.1: Water Box Dimensions 

 

Each Ras structure was then slowly heated to 303.15° K over 610 ps. The systems 

were equilibrated in the NVT ensemble using Langevin dynamics to maintain constant 

temperature. CHARMM-GUI (23-24) selected heavy atoms to be placed under harmonic 

restraints that slowly relaxed over the course of a 154 ns equilibration. Initially, the 

harmonic restraints relaxed over the course of 50 ns (31), but the resulting systems were 
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unstable which led to clashes that made the systems blow up. The systems that 

equilibrated longer did not experience these difficulties. 

The Van der Waals interactions for equilibration and production had a cutoff of 

12 Å and CHARMM force switching began implementation at 10 Å. The cutoff of 12 Å 

was chosen because it is the cutoff distance that was used to develop the CHARMM36 

forcefield (30). CHARMM force switching is NAMD’s switching algorithm for the 

CHARMM36 forcefield. Full electrostatic interactions were implemented with Particle 

Mesh Ewald that utilized an interpolation order of 6 and grid spacing of 1.  

During production, a constant pressure of 1.01325 bar (1 atm) was maintained by 

NAMD’s Nosé-Hoover Langevin piston pressure control (28-29) and a constant 

temperature of 303.15° K was maintained by Langevin dynamics.  

Signals have been documented to propagate through a protein at ~14 Å/ps (4) and 

have been weakly detected with time-delayed direct cross-correlation from a 500ns 

molecular dynamics simulation (4). If signal strength grows stronger with the length of 

the simulation it is quantified from, then during a 2.5 µs simulation previously observed 

signals become easier to detect and signals that were too weak to detect in a shorter 

simulation could also be observed.  

Each Ras structure was simulated at equilibrium for ~ 2.5 µs and snapshots were 

recorded every 10 ps. A 10 ps snapshot time was selected signal propagation will still be 

observable and the number of frames recorded is minimized. Reducing the number of 

frames recorded also reduces the computational cost of analysis performed on the 

resulting trajectory. 
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Each protein’s alpha carbon trajectory coordinates were superimposed on their 

PDB coordinates using Bio3D’s implementation of the Kabsch algorithm prior to 

performing an RMSD to evaluate equilibration time (32). Alpha carbons were chosen to 

significantly reduce the computational cost of analysis and attempt to conserve 

information about each residue’s position. Portions of each trajectory were also viewed to 

ensure that the RMSD values were representative of the movie. 

Locating Allosteric Pathways with Information Theoretic Analysis:  

Mutual Information (MI), an Information Theoretic method (13), was selected to 

detect and quantify signal propagation in a protein at equilibrium. MI is defined below as: 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)

𝑛

𝑖=1

 

Equation 1.1: Shannon Entropy 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

Equation 1.2: Mutual Information 

 

Where I(X;Y) is the information shared between discrete variables X and Y, H(X) 

and H(Y) are the Shannon entropies of each variable, H(X,Y) is the joint entropy of the 

two variables, and P(xi) is the probability of state n occurring (13). I(X;Y) can be a broad 

range of numbers which makes it difficult to compare with other methods. The MI of 

each pairwise combination of residue trajectory data was computed (using the R package 

InfoTheo (33) and resulted in a unique set of MI values for each residue that describe its 

informatic relationship with every other residue in the protein. Each residue’s MI set 

contains a different range of information values which makes it difficult to intuit the 
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meaning of a given MI because there is no point of reference. These difficulties were 

overcome by changing each residue’s set of MI values to a scale of zero to one using 

symmetric uncertainty (SU) (34) which is defined below: 

𝑈(𝑋, 𝑌) = 2 ∗  
𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 

Equation 1.3: Symmetric Uncertainty 

 

A SU of zero indicates that two variables are statistically independent, and a SU 

of one indicates that two variables are identical. Biochemically speaking, an SU of one 

between two different residues (X and Y) indicates that a statistical relationship exists 

where X’s trajectory could be used to compute Y’s perfectly and vice versa. In this case, 

signals would perfectly propagate between those two residues. On the other hand, a SU of 

zero between two different residues indicates that no information propagates between 

them.  

If signals propagate via kinetic energy transfers caused by collisions between 

residues (34), then the SU of spatially close residue pairs should increase with their 

frequency of collision. Chains of spatially close residues pairs whose members frequently 

collide with one another would propagate signals from one point to another along the 

chain. By extension, the members of a signaling chain would show increased SU with 

one another and could be more formally described as allosteric pathways. These 

relationships can be located visually by plotting the pairwise SU values in a heatmap.  

A SU heatmap is originally a triangular matrix which is made symmetric to help 

the viewer observe patterns in the data. Both axes of the SU heatmap are residue number, 

and the diagonal line through the center of it represents a residue’s information with itself 
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which is maximal. Every other pixel on the heatmap denotes the SU between the two 

residues who intersect at that point. The SU of a pixel can be determined by comparing 

the pixel’s color with the color key. 

Heatmaps aide in visualization and analysis of matrix data but become 

increasingly difficult to read as the number of indices grows larger. R’s native 

agglomerative hierarchical clustering algorithm (hclust) was used to identify clusters of 

residues with similar pairwise SU values (35-36). The hierarchical clustering method 

used the complete linkage method to identify clusters (35-36). The SU heatmaps could 

then be reordered based off the clustering results, and groups of allosteric residues that 

make up an allosteric pathway can easily be visually identified.  

Discretization Methods: 

Unfortunately, MI can only be used to quantify the information between discrete 

variables, and the output of a MD simulation is continuous. To use MI to analyze a MD 

trajectory it must be “binned” or in other words transformed from continuous to discrete. 

If the binning process is not done rigorously, information will be lost, and the MI will not 

represent the data accurately (11). A non-representative MI heatmap would yield 

incorrect allosteric residues after clustering and give no new insight into the system.  

Three types of trajectory data for each residue were analyzed to compute each 

protein’s pairwise information values: position, total potential energy, and RMSD. 

Position was separated from the equilibrium simulation as Kabsch algorithm 

superimposed coordinate data for each alpha carbon. Theoretically, binning results can be 

improved by minimizing the number of variables being binned which results in a 
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decrease in the space between datapoints (37-39). Total potential energy and RMSD were 

selected for this reason in an attempt to raise cluster quality. Total potential energy was 

also selected because signal transmission is hypothesized to result from kinetic energy 

transfer (34). If signal transmission occurs due to kinetic energy transfers between 

residues, then MI could be used to track signaling over a residue’s potential energy 

trajectory as those transfers occur. Energy is also a state variable, and thus would resist 

translation, rotation, and solvent bombardment noise unlike positional data.  The total 

potential energy for each residue was calculated with the VMD and NAMD extension 

NAMD Energy using the CHARMM36 forcefield. The solvent, ions, and heteroatoms 

were excluded from each of these calculations. RMSD for each residue was computed 

from Kabsch algorithm superimposed coordinate data for each alpha carbon.    

Three discretization methods were chosen to evaluate which method and data type 

combination conserves information the most effectively during binning. The selected 

methods are Clustering Large Applications based on RANdomized Search (optimized k-

Medoids) (40-42), Histogram binning, and Equal Width/Frequency Binning. These 

methods are unsupervised machine learning classification methods that cover a range of 

computational complexity. Each of these methods requires k number of microstates as an 

input. Each method and its heuristic for selecting k will be explained in more detail 

below.  
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Equal Width/Frequency Binning: 

Equal width/frequency binning are simple, computationally inexpensive methods. 

The heuristic for both of these methods approximates the Freedman-Diaconis rule and is 

defined below (33). 

𝑘𝑢𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 ≈ (𝑛)
1
3 

Equation 1.4: Approximated Freedman-Diaconis Rule 

 

Where n is the total number of observations. Unfortunately, this heuristic is only 

designed with univariate data in mind, and if kunivariate is used to bin each of the three 

variables in position data the computed SU is artificially high. This is caused by how 

Shannon entropy creates sample spaces (S). If the univariate rule is applied the 3d data, 

there will be three equal k values for that data.  

𝑘𝑣1 ≈ (𝑛)
1
3 

𝑘𝑣2 ≈ (𝑛)
1
3 

𝑘𝑣3 ≈ (𝑛)
1
3 

Equation 1.5: Approximated Freedman-Diaconis Rule for 3D Data Set 

 

𝑆3𝑑 = 𝑘𝑣1𝑘𝑣2𝑘𝑣3 = 𝑛 

Equation 1.6: Sample Space Generated from Equation 1.5 

 

With the original rule, the number of possible states in the data equals the number 

of observations in the data. In this case, S3d needs to equal kunivariate to properly 

approximate the Freedman-Diaconis rule. 

 



 

 13 

𝑘𝑣1 ≈ (𝑛)
1
9 

𝑘𝑣2 ≈ (𝑛)
1
9 

𝑘𝑣3 ≈ (𝑛)
1
9 

Equation 1.7: Approximated Freedman-Diaconis Rule Modified for 3D Data Set 

 

𝑆3𝑑 = 𝑘𝑣1𝑘𝑣2𝑘𝑣3 = 𝑛
1
3 

Equation 1.8: Sample Space Generated from Equation 1.7 

 

Equal width binning separates a variable into k equal width bins over its range of 

data. In equal width binning each bin is populated based on the distribution of the data. 

Equal width binning is extremely susceptible to outliers that make the bin width larger 

and lowers binning accuracy (33,38-39). 

Equal frequency binning creates k bins that are each populated by the same 

number of data points. In this method bin width has no constraints placed upon it. Equal 

frequency binning is also susceptible to outliers which cause the bin boundaries to be 

placed incorrectly (33,38-39). 

 Equal frequency/width binning both serve as the first step for more sophisticated 

supervised machine learning classification methods. Supervised machine learning 

methods can be useful for discretizing large datasets, but if these methods do not create 

accurate bins for trajectories, then there is no reason to explore that subset of supervised 

classification methods.  
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Histogram Binning: 

Histogram binning is another computationally inexpensive binning method that 

has been used previously to discretize trajectory data for MI analysis (2). Histogram 

binning is simple to implement but can lead to the overestimation of MI (11). The R 

hist() function was used to bin trajectories and it utilized the built-in Freedman-Diaconis 

rule, “FD”, to heuristically select k (35-36,43). The Freedman-Diaconis rule can scale to 

large numbers of observations, and it is defined below.  

𝐵𝑖𝑛 𝑤𝑖𝑑𝑡ℎ = 2 ∗ 
𝐼𝑄𝑅(𝑥)

√𝑛3  

Equation 1.9: Freedman-Diaconis Rule 

 

Where IQR(x) is the interquartile range of the variable and n is the number of 

observations. Histogram binning also applies the same heuristic adjustment to 3d position 

data as described above.  

Clustering Large Applications based on RANdomized Search (CLARANS): 

The CLARANS method is a modified version of k-medoids clustering that is 

designed to create unique clusters for large datasets. Unique clusters are comprised of 

datapoints that are a minimum distance away from their cluster’s medoid and are not 

close to another cluster’s boundary or medoid (40). CLARANS is resistant to outliers and 

less computationally expensive than other k-medoids methods but compared to the prior 

two discretization methods it is significantly more computationally expensive. One other 

benefit that CLARANS is that, unlike the previous two methods, each residue can have 

its own k value heuristically determined which allows for more mobile residues to 

display more states and less active residues to display fewer.  
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K values were heuristically determined with two methods: the Calinski-Harabasz 

Index from the R package (44) “fpc” and the Silhouette Coefficient from the R “cluster” 

package. The CLARANS method was also implemented from the R “cluster” package 

with the pamonce = 6 method (42,45). The k with the largest variance ratio criterion is 

the most appropriate when using the Calinski-Harabasz Index. The average silhouette 

value for all points in a dataset was also used to select k. Silhouette coefficients for each 

datapoint can range from negative one to one, with one indicating that the point is closer 

to the points in its cluster than the points in another cluster and negative one indicating 

that a data point is closer to the members of another cluster than the members of its own.  

In this method, the K value with the highest average silhouette coefficient is the optimal 

value.  

For both heuristics, an optimal k value can be selected by evaluating a range of 

k’s and selecting the one that best fits the data as described above.  Ten k values were 

tested for the CLARANS method: 4, 5, 6, 7, 8, 20, 30, 40, 50, and 100. Originally, k = 2 

and k =3 were also part of the tested range but could not be performed due to algorithmic 

memory restrictions. The range was expanded several time during development until the 

average silhouette values approached a steady minima, and the CH values peaked. 

Validation Methods: 

The accuracy of the information theoretic approach to allosteric residue 

identification was compared with two previously established methods: percolation theory 

via dokhlab’s Ohm webserver (3) and Direct Cross Correlation (DCC) (2, 17). 
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Percolation theory can be used to locate allosteric residues and quantify the 

expected strength of their correlations in a heatmap (3). In this theory, a protein’s active 

site is perturbed many times and the resulting potential collisions are propagated and 

counted to determine which residues will frequently collide with one another and thus 

communicate. The downside of percolation theory is that it is an entirely static method 

and any dynamic changes to an allosteric pathway are excluded (3), but it does not 

require a simulation to locate allosteric sites which drastically cuts down on analysis 

time. Percolation theory’s accuracy can be very high or low depending on the system (3), 

which suggests that dynamics may play a variable role in allosteric pathway formation.   

DCC quantifies the strength of the linear relationship (Pearson correlation 

coefficient) between two variables and can be used in a pairwise fashion for residue 

trajectories in the same way as MI (2, 17). The downside of DCC is that it misses any 

non-linear relationships between two variables, but it is less computationally expensive 

than MI and can natively analyze continuous data, so it does not lose any information to 

discretization.  

DCC values range from negative one to one. A DCC of one indicates that two 

variables are perfectly correlated, a DCC of negative one indicates that two variables are 

perfectly anticorrelated, and a DCC of zero indicates the two variables share no 

correlation. The DCC matrices were squared so that overall linear correlation could be 

compared with SU on the same scale. This also made it possible to visualize if the 

information theoretic approach found any non-linear signals that DCC missed.  
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R’s native agglomerative hierarchical clustering algorithm and complete linkage 

method were also used to identify groups of allosteric residues for both percolation 

theory and DCC (35-36). 
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Results and Discussion: 

Ras Alpha Carbon RMSD:  

 

 

Figure 1.1: Alpha Carbon RMSD of Equilibrium Trajectory 
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3K8Y’s production run lasted for a total of 2.47 us and it established equilibrium 

after 0.7 us. ~0.95 us later its RMSD dropped from an average of 2.3 to 2 and then 

stabilized again. The drop in RMSD indicates that the system underwent a 

conformational change at this point. The RMSD relaxed further, and the protein did not 

move erratically in the trajectory. It appears that the protein entered a new equilibrium 

which is supported by further analysis below. 

2RGE’s production run lasted for a total of 2.07 us and it established equilibrium 

after 0.7 us. ~0.8 us later its RMSD rose from an average of 2.5 to 3. Then it quickly 

dropped to 2.5 again. After briefly touching 2.5 the RMSD shot to 3.8. After quickly 

peaking at 3.8 the RMSD dropped to 2.2 and remained there. The rapid fluctuations in 

RMSD indicate that the system underwent a conformational change at this point 

3LBN’s production run lasted for a total of 2.44 us and it established equilibrium 

after 1.1 us. 3LBN took the longest to reach equilibrium but remained at a stable RMSD 

of 2.2 for the rest of the simulation. 3LBN likely maintained one conformation for the 

whole simulation after reaching equilibrium due to the minimal changes in its average 

RMSD. 

3k9n’s production run lasted for a total of 2.06 us and it established equilibrium 

after 0.5 us. ~0.75 us later its RMSD rose sharply from an average of 2 to a brief peak 

around 4.2. After the peak the RMSD quickly dropped back down to 2.3 and remained 

there for the rest of the simulation. The rapid spike in RMSD indicates that the system 

underwent a conformational change at this point. The protein appears to have 

experienced a brief clash then the system relaxed again. 
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Protein EQ1 - before spike (µs) EQ2 - after spike (µs) Net Equilibrium (µs) 

2RGE 0.700 0.469 1.369 

3K8Y 1.000 0.768 1.768 

3K9N 0.600 0.760 1.560 

3LBN N/A N/A 1.338 

Table 1.2: Equilibration Trajectory Lengths 

 

Microstate k comparison:  

The position, total potential energy, and RMSD equilibrium trajectories for each 

residue of each Ras structure were discretized with histogram binning, equal 

width/frequency binning, and CLARANS to explore which data type and discretization 

combination produced the most accurate identification of allosteric residues. All the 

equilibrium trajectories in Table 2. were discretized with equal width binning, equal 

frequency binning, and histogram binning because the low computational cost of these 

methods allowed for them to be applied to the whole equilibrium trajectory. The 

heuristics (see Methodology) for selecting a k value for these methods is also much less 

computationally expensive than those for CLARANS.  
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Protein PDB Production Equal Width/Freq Histogram 

2RGE 

EQ 1 39 ± 0  136 ± 28 

EQ 2 38 ± 0 134 ± 27 

Net EQ 53 ± 0 177 ± 43 

3K8Y 

EQ 1 44 ± 0 152 ± 30 

EQ 2 40 ± 0 134 ± 28 

Net EQ 56 ± 0 186 ± 49 

3K9N 

EQ 1 39 ± 0  132 ± 30 

EQ 2 38 ± 0 129 ± 30 

Net EQ 53 ± 0 176 ± 43 

3LBN Net EQ 51 ± 0 164 ± 38 

Table 1.3: K Value Average and Standard Deviation 

 

Equal width/frequency binning is the simplest discretization method utilized and 

also applies the simplest heuristic to evaluate k, and every residue’s k value being the 

same is a byproduct of that. Each k generated by the Freedman Diaconis Rule for 

histogram binning has the same number of observations, but the interquartile range for 

each residue is different which leads to a large deviation in possible k values.  

Both heuristics for selecting k for CLARANS required that a range of possible k 

values be tested and evaluated. The tested range was, (4, 5, 6, 7, 8, 20, 30, 40, 50, 100). 

The range of k values was expanded several times during development until the average 

silhouette values approached a steady minima, the Calinski-Harabasz values peaked. For 

a vast majority of the residues, the testing range listed above contained a Calinski-
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Harabasz value peak and selecting k was trivial. Although some of the residues had two 

peaks very close together (10-3-10-4) and the algorithm selected the k with the slightly 

higher value. The Calinski-Harabasz plot of these residues contained a valley instead of a 

peak which indicates that more k values should have been tested.    

 

Figure 1.2: Calinski-Harabasz Plot 

 

Silhouettes scores were also used to select a k for each residue. Silhouette scores 

can range from negative one to one. A silhouette score of one means an individual data 

point is closer to the data in its cluster than the data in another and therefore belongs 

perfectly inside the cluster. A silhouette score of zero represents that a data point is closer 

to the members of another cluster than its own and therefore does not belong in its 

cluster. A k with an average silhouette score greater than 0.8 is considered to represent a 

data set well, and because each residue’s trajectory was clustered individually the average 

of the average k for each residue describes the quality for the clustering of the protein as 
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a whole. Unfortunately, none of the tested k values for any residue had an average 

silhouette score greater than 0.55 which indicates none of the selected k values represent 

the trajectories well. The average and standard deviation of k for each production and 

data type is listed in the figure below.  

Protein PDB 2RGE 3K8Y 3K9N 

Production EQ 1 EQ 2 EQ 1 EQ 2 EQ 1 EQ 2 

CLARANS Position 4 ± 1 4 ± 1 5 ± 1 4 ± 1 4 ± 1 4 ± 1 

CLARANS Energy 89 ± 24 88 ± 24 89 ± 24 92 ± 22 88 ± 24 89 ± 23 

CLARANS RMSD 58 ± 41 62 ± 42 67 ± 41 70 ± 40 55 ± 45 54 ± 43 

Table 1.4: K Value average and Standard Deviation for CLARANS 

 

Overall, based off of the low average silhouette values and similar CH indices, 

none of the discretization methods led to highly representative bins for each dataset. 

Although, the discretized data sets created by the CLARANS method did yield SU 

heatmaps with similar features to previously established allosteric residue detection 

methods and they will be described below. 

Data Type and Mutual Information: 

The potential energy data yielded minimal information values for each protein, 

equilibrium trajectory, and discretization method. No signals were observed in any 

energy derived mutual information heatmap because all of the SU values ~0. It is 

possible that there was not enough significant energy transfer occurring over the duration 

of the simulation to lead to any observable signaling patterns via the net potential energy 

of each residue. 
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 The RMSD data yielded low information values when compared to the positional 

data. Each Ras structure displayed minor characteristic areas of information, but only 

when clustered with CLARANS. Larger and more detailed versions of these information 

areas are observed in perturbation propagation correlation heatmaps, direct cross 

correlation heatmaps, and the CLARANS mutual information analysis for the positional 

trajectory data, but no groups of allosteric residues could be extracted from any of the 

data. When RMSD is clustered with histogram binning, equal width binning, or equal 

frequency binning no relationships were observed. 

The positional data captured the most pairwise relationships and also yielded 

areas of correlation that matched percolation theory and DCC. Overall, the CLARANS 

method paired with positional data quantified the most information out of the tested 

discretization methods and data type combinations. Unfortunately, the CLARANS 

method does not scale well to large datasets which inhibited the length of simulations that 

it was used to analyze in this project. Interestingly, the positional data was the only data 

type where some signals were visible between discretization methods which suggests that 

the relationships it stores are a robust characteristic of the data set. The CLARANS 

method also appears to have quantified more areas of low correlation than the other 

discretization methods. More analysis is required to determine if the areas of higher 

correlation in the other methods are noise or statistically significant.  
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Figure 1.3: Clustered Percolation Theory 

 

Figure 1.4: Clustered Symmetric Uncertainty 
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Figure 1.5: Clustered Direct Cross-Correlation Squared 

 

Allosteric Site Identification:   

Each clustered heatmap is read in the same way as an unclustered heatmap. The 

axes are still both residue number, but the indices are no longer in numerical order. The 

residues in the clustered heatmaps have been sorted by into clusters by the similarity of 

their pairwise analytical method values. A vertical line has been drawn on each heatmap 

to show where the most resolved clusters lie. The left side of the line is one cluster and 

the right side is the other. The SU heatmap, squared DCC heatmap, and OHM allosteric 

correlation prediction heatmap each had an optimal number of two agglomerative clusters 

present.  
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Each method with two optimal clusters had a smaller cluster that contained 

anywhere between 30-50 highly related residues and another larger cluster containing the 

rest of the residues which were less related on average. Each analysis type also had 

several small subsets of clusters that can be seen as small boxes along the diagonal 

running through the heatmaps that are present in both clusters. The small subset clusters 

were all very close together, and their dendogram heights were too small to warrant 

creating another cluster. These small subsets were generally comprised of groups of 

sequence adjacent residues that are members of the same secondary structures. α helices 

and β sheets are held together by strong hydrogen bonds which makes them rigid and 

causes the residues that make them up do display these kinds of correlated motions.    

Each 3K8Y CLARANS position trajectory snapshot also had two well resolved 

agglomerative clusters with one cluster being smaller but higher in information and the 

other being larger and lower in information comparatively.  Many smaller subclusters 

were also present in these heatmaps whose dendogram heights were too small to warrant 

creating another cluster to place them in.  

Unfortunately, none of the clustered heatmap methods returned very accurate 

results. 3K8Y has nine experimentally located allosteric residues (residue numbers 97, 

100, 101, 106, 107, 108, 109, 111, and 137) (3). The squared DCCM method identified 

the most residues that were experimentally verified as allosteric and identified the least 

number of falsely positive allosteric residues. Interestingly, when OHM accounted for the 

active site it identified all of the allosteric residues with perfect accuracy, but when it did 

not account for the active site, its accuracy dropped significantly with only 5 
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experimentally validated residues successfully grouped together and 48 falsely positive 

identifications.  

 
Actual Squared 

DCCM 

OHM 

Correlations 

OHM 

Percolation  

EQ1 XYZ EQ2 XYZ 

True Positive 9 6 5 9 2 0 

False Positive N/A 11 48 0 34 25 

False Negative N/A 3 4 0 7 9 

Net Positive N/A 17 53 9 36 25 

Table 1.5: Summary of Allosteric Residue Identifications  

 

The information theoretic approach was the least accurate method tested. Its most 

accurate results (EQ1) only successfully identified 2 experimentally validated allosteric 

residues and it grouped them with 34 falsely positive identifications. 46 residues switch 

agglomerative clusters between EQ1 and EQ2 which suggests that 3K8Y was either in 

the process of entering a new equilibrium or in the process of restoring its old equilibrium 

after the conformational event that occurred 1 µs into the production trajectory.  

Conclusions:  

It is possible that rare and/or uncommon signals become easier to observe as a 

simulation lengthens. There were no agglomerative hierarchical clusters present in the 

equal width, equal frequency, or histogram binned positional trajectory heatmaps for 

3K8Y EQ1 and EQ2. Although, when the entire production was analyzed all three 

methods developed two agglomerative clusters in their SU heatmaps. Much like in the 

other clustered heatmap results there was a smaller cluster of residues that shared more 
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information and a larger cluster of residues that shared less information. These heatmaps 

are less accurate for identifying allosteric residues than the clustered CLARANS method, 

but the increase in signal strength supports exploring ways to expand the scale of the data 

discretized by that method. The CLARANS algorithm will not be able to cluster the 

entire production because it has a hard cap at ~65,000 datapoints, but cap currently on 

this project is ~35,000 datapoints. Approximately doubling the number of observations 

may increase signal strength significantly like in the other discretization methods.  

The average silhouette value for the k’s selected in the CLARANS method were 

~0.5 for each residue. The optimal k that was selected for CLARANS fell between the 

equal width/frequency Freedman-Diaconis bin value and the histogram Freedman-

Diaconis bin value. It is possible that too small of a k range was tested which is supported 

by the low average silhouette values and the strange spike that occurred at the end of the 

Calinski-Harabasz index plots. A significantly larger range of clusters needs to be tested 

before moving away from CLARANS as a discretization method to evaluate if there is a 

more optimal k that was missed. A more representative k would yield higher quality 

clusters which could increase allosteric residue identification accuracy by preserving 

more information from the trajectory during clustering. 

It is also possible that a more specialized unsupervised discretization method may 

yield more representative clusters and by extension SU. This information theoretic 

approach misidentified most of the experimentally validated allosteric residues which 

could be due to information that was lost during discretization. In this situation, the SU 
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gained from a discretization method that is optimized for time series data may be worth 

the increased computational cost.  

Improving the quality and length of MD simulations is likely the most important 

improvement that can be implemented in this project. CHARMM-GUI was a very useful 

tool to learn how to perform advanced MD simulations, but many of the input files did 

not work as intended and learning how to repair them cost a significant amount of time. 

There are likely still inconsistencies and bugs in the input files that were used to run these 

simulations which could be why three out of the four systems experienced a 

conformational event approximately half-way through their production runs. The next 

iteration of this project will have its input files built entirely by hand so that the quality of 

the input files is not in question. Analyzing simulations that maintain a steady 

equilibrium for several microseconds would also add a great deal of flexibility to the 

analysis and provide a means to evaluate the impact of simulation length on signal 

strength. 

It is also possible that discrete MI is not useful for identifying a protein’s 

allosteric sites. The information lost by binning may be too detrimental even with the 

most advanced algorithms. A possible avenue to work around binning information loss is 

to instead estimate continuous MI to quantify the information of pairwise trajectory data 

more directly. Estimating continuous MI is very computationally expensive, but if its 

results are more representative of the system then it is likely a more fruitful direction for 

future study than discrete MI and its increasingly complex discretization methods. The 

power and accessibility of GPU resources on clusters is growing rapidly, and in the last 
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two years many developers have built GPU parallelization backends that can be utilized 

to increase the speed of algorithms.   
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Appendix A 

Supplementary Plots 

 
Figure A-1: 3K8Y SU Generated from Potential Energy 
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Figure A-2: 3K8Y SU Generated from RMSD 
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Figure A-3: 3K8Y SU Generated from Position 
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Figure A-4: 3K8Y Direct Cross-Correlation Squared 
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Figure A-5: 3K8Y Correlation Predictions Generated with OHM 
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Figure A-6: 3K8Y EQ1 SU Generated with CLARANS Microstates 
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Figure A-7: 3K8Y EQ2 SU Generated with CLARANS Microstates 
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