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ABSTRACT

REDUNDANT COMPLEXITY IN DEEP LEARNING: AN EFFICACY ANALYSIS OF

NEXTVLAD IN NLP

While deep learning is prevalent and successful, partly due to its extensive expressive power

with less human intervention, it may inherently promote a naive and negatively simplistic employ-

ment, giving rise to problems in sustainability, reproducibility, and design. Larger, more compute-

intensive models entail costs in these areas. In this thesis, we probe the effect of a neural component

– specifically, an architecture called NeXtVLAD – on predictive accuracy for two downstream nat-

ural language processing tasks – context-dependent sarcasm detection and deepfake text detection,

and find it ineffective and redundant. We specifically investigate the extent to which this novel

architecture contributes to the results, and find that it does not provide statistically significant ben-

efits. This is only one of the several directions in efficiency-aware research in deep learning, but

is especially important due to introducing an aspect of interpretability that targets design and ef-

ficiency, ergo, promotes studying architectures and topologies in deep learning to both ablate the

redundant components for enhancement in sustainability, and to earn further insights into the in-

formation flow in deep neural architectures, and into the role of each and every component. We

hope our insights highlighting the lack of benefits from introducing a resource-intensive compo-

nent will aid future research to distill the effective elements from long and complex pipelines,

thereby providing a boost to the wider research community.
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Chapter 1

Introduction

Insights on the importance of scientific design and its impacts is sometimes overlooked in the

current deep learning era. Enriching Deep Learning with theories and intuitions would be a key

to its further development and real-world application. Studies show that the reliability and repro-

ducibility of scientific research work and their findings has decreased with the popularity of deep

learning [1, 2, 3]. It is pivotal and definitely beneficial to make the contributions clear and attribute

the success or failure of a system to the correct component. Also, it is valuable to make the effort to

include scientific reasoning and justification for components of a deep learning pipeline. Publica-

tion of negative results and the findings of research trials and experiments that did not necessarily

yield to benchmark improvements but would save the time, efforts, and resources of others, is

significantly important in mitigating such concerns. On the other hand, increased interpretability

would flourish controllability and trustworthiness, in addition to enabling the incorporation of new,

insightful, and scientifically solid ideas.

Efficiency and redundancy of deep learning has been studied [4, 5, 6, 7, 8, 9, 10, 11]; yet,

many of these studies focus on compression techniques or other innovative techniques like vector

quantization or weight pruning that keep up with the state of the art accuracy with a smaller model

size. However, sometimes questioning the components in the proposed or commonly used models

or pipelines reveals interesting findings about their efficiency. Due to a general lack of interest in

negative results, and the difficulty in publishing such insights and findings, only few researchers

present the negative findings of their work [1, 12, 13] and many may decide not to devote time

to studying redundant complexity in the form of redundant components of the models, and to

distilling effective components from them.

Astonishing accuracy improvements achieved by applying large deep learning models in var-

ious domains [14, 15, 16, 17, 18, 19] have become possible by the advances in computational

hardware technologies that support the huge amount of computation that they demand. However,
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there are important cost factors that should be considered by both the research community and

industry players. Despite the success of huge deep learning models, e.g., Transformers [20], and

even the accomplishments in technologies and further availability of hardware, the environmental

and financial aspects of these computational costs are indeed important to reflect on.

The observed correlation between the increased complexity of models and the increased accu-

racy, sometimes, encourages trivial enlarging of deep learning models and hoping for the better

accuracy. This makes it easy to overlook the associated environmental and financial costs. Fi-

nancial costs appear in the form of high cost of acquiring the advanced processing hardware, and

its resulting limitation of fair accessibility of deep learning. The environmental costs are in the

form of energy consumption, carbon emissions, and global warming due to the immense computa-

tional demands of these big models. This consumed energy is mainly supplied from non-renewable

resources [21].

In an effort to bring these concerns to the broader attention and promote scientific design,

we study the application of a neural pooling component called NeXtVLAD [22], which has been

employed by others and claimed to improve the accuracy [23], to Natural Language Processing

(NLP) across two tasks. We perform a comprehensive set of experiments and even try to provide a

helpful feature modification to its input to make the component efficacious, but it proves ineffective

in both tasks. We overview both sustainability and interpretability – by interpretability, we refer

to analytical view to deep learning components and architectures, and use it as an umbrella term

that covers this new definition – concerns in creating redundant complexity in deep learning, and

encourage researchers to reflect on it and take actions to prevent it.

1.1 Motivational Factors

Deep learning has achieved impressive accuracy on many tasks and oveparameterization [24,

25] in neural networks has proven empirically successful. However, there are subsequent costs and

concerns that have motivated our research.
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1.1.1 Reproducibility

The concerns about reliability, and thus, about reproducibility, are particularly acute in deep

learning. For instance, Reimers and Gurevych [26] demonstrated that the hyperparameter settings

have a significant impact on the final results obtained by a model. Crane [1] further showed that

other confounding factors such as variation of GPUs, the exact version of a framework, the ran-

domness of a seed value provided to a learning algorithm, and the interaction between multiple

such factors, can all impact the obtained results.

Unfortunately, with increasing popularity of deep learning, the reliability of findings in pub-

lications that extensively employ deep learning can be expected, in general, to decrease [2]. A

relatively high focus in experimental findings and benchmark improvements in Natural Language

Processing (NLP) makes it eminently prone to such concerns, and amplifies their importance. In

light of this seminal empirical observation and the general difficulty of natural language process-

ing, and especially figurative language processing – our first downstream probing tasks in Chap-

ter 4, it is reasonable to not expect outright success on a benchmark corpus simply based on the

use of a neural component. Providing reproducibility details in research publications would help

preventing redundant complexity, by channeling others’ efforts in the correct directions.

1.1.2 Interpretability for Intuitive Design and Efficiency

Beyond reproducibility, however, lies another pertinent factor: the use of increasingly complex

pipelines where multiple sophisticated components are glued together for an important downstream

NLP task. In such scenarios, it is not always clear which components within the complex system

may be responsible for improved outcomes. A simple change in data preprocessing may lead to

a significant difference in the final result, for example [27, 28]. In publications that introduce

complex NLP pipelines, however, such details have sometimes been omitted.

Interpretability and efficiency are not naturally in tension. William of Ockham’s principle

of parsimony (Occam’s Razor) states “plurality should not be posited without necessity” [29].
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This is the intuitive rule in practicing interpretability in statistical learning – for the purpose of

interpretability, a smaller subset of predictors with the strongest effect is preferred [30].

Interpretability and explainability are critical for AI’s application to some domains like health-

care; but they are not only useful in making deep learning trustworthy and controllable. Inter-

pretability can create opportunities for further novel improvements in deep learning. Moving away

from a non-interpretable, black-box view to deep learning architectures, in addition to improve-

ments in interaction, control, and trustworthiness, enables the use of mathematical tools in a more

intuitive and insightful way which can yield to both scoreboard improvements and societally-aware

practices. Interpretability-aware perspectives would promote scientific – or at least intuitive – de-

sign of the architectures, which inherently avoids redundancy.

1.1.3 Sustainability

Deep learning models are getting larger and larger and they require more time to train. Even us-

ing the most advanced available hardware that is not even accessible to many researchers, training

huge models like the state-of-the-art language models takes time in the order of couple of weeks

and more. Environmental costs and effects of deep learning are increasing and they may become

a significant contributor to climate change [31]. The carbon emission of training a big model with

hyperparameter search, for example, is much more that a car’s in its lifetime [32]. The state-of-the-

art deep architectures like Transformers no longer fit into the GPU memory of personal computers.

Having access to specialized hardware (such as GPU and TPU) is becoming a privilege. Even

many of the graduate students at universities are depending on the limited free cloud resources like

Google Colab for their research. Researchers state that the current trends in model size expansion

and increasing computational demands would make deep learning environmentally, technically,

and financially unsustainable [33, 32, 21]. Rise of workshops like SustaiNLP [34] is an obvious

indicator of the importance of the matter in the community.
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1.2 Problem Statement and Contributions

The aforementioned motivational factors inspire us to employ two NLP problems in a efficacy

analysis to further drive researchers’ attention towards the redundant complexity in deep learning.

Our experimental objective is to examine a novel use of locally aggregated descriptors – specifi-

cally, an architecture called NeXtVLAD [22] – and its effect on the performance of NLP classifiers

that utilize the state-of-the-art contextual embeddings from Transformers.

We probe the incorporation of NeXtVLAD, motivated by its accomplishments in computer vi-

sion, achieve tremendous success in the FigLang2020 sarcasm detection task [35]. The reported

F1 score of 93.1% is 14% higher than the next best result. We specifically investigate the extent to

which the novel architecture is responsible for this boost, and find that it does not provide statisti-

cally significant benefits. We also analyze this component’s effect in another NLP task – deepfake

text classification task – and probe the performance of a collection of deep learning classifiers with

and without the aforementioned NeXtVLAD neural component in these two downstream tasks.

Our first probing task, context-dependant sarcasm detection, is the same task as in the origi-

nal study that applied NeXtVLAD to NLP and suggested its effectiveness [23]. Probing for this

task, in addition to providing the opportunity to compare our models with the ones from that re-

search, is specifically interesting as the cross-locality subtraction operator could intuitively fit the

sarcasm detection application, where contradictions and oppositions play an essential role in cre-

ating sarcasm. Furthermore, this is a relatively difficult task in NLP, due to the nature of figurative

language. Our second task is a short-text classification task to discriminate human-written and

machine-generated text. Our experiments for this task improve the predictive accuracy, but that is

again not due to the incorporation of the NeXtVLAD component, and our ablation study shows its

superfluity. Although these are not baseline NLP tasks, we believe they provide a good test bed

for our objective. We think they are important tasks, one from a difficulty viewpoint and the other

from a motivational angle. Sarcasm detection is important because of its difficulty, which is partly

due to the inherent requirement of further knowledge beyond the present text, like commonsense,

which makes it a great candidate for becoming a performance measure in future NLP baselines.
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The deepfake text detection however, is important from the urgent, time-sensitive angle of misin-

formation, disinformation, and fake news in the current era of social media and their tremendous

effect on various aspects of our lives.

Based on our downstream NLP experiments, even in the case of context-dependent sarcasm

detection where we hoped to benefit from the cross-locality subtraction operator in NeXtVLAD,

we found the neural component to be ineffective. We encourage researchers to take intuitions in

design more seriously, and distill complex NLP pipelines. Simpler models are more explainable

and have less environmental impacts. Deep learning approaches are expensive, and we hope our

insights highlighting the lack of benefits from introducing a resource-intensive component will aid

future research to distill the effective elements from long and complex pipelines, thereby providing

a boost to the wider research community.

1.2.1 Publications

The work in this thesis has also been published in the following papers. The first publication

mainly focuses on the same objective as of this thesis, and the second one reports the experimental

results on a NLP task and focuses on the improved accuracy compared to previously tested models.

⋄ Sina Mahdipour Saravani, Ritwik Banerjee, and Indrakshi Ray. 2021. An Investigation into

the Contribution of Locally Aggregated Descriptors to Figurative Language Identification. In

Proceedings of the EMNLP Workshop on Insights from Negative Results in NLP. Association

for Computational Linguistics.

⋄ Sina Mahdipour Saravani, Indrajit Ray, and Indrakshi Ray. 2021. Automated Identification

of Social Media Bots using Deepfake Text Detection. In Proceedings of the International

Conference on Information Systems Security (ICISS). Springer.
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Chapter 2

Related Work

To limit the scope of our related work section, we only include research publications that either

profoundly relate to our objectives and motivations, or have studied redundancy reduction in deep

learning. Further related work for each of our NLP tasks are discussed in their respective sections.

2.1 Sustainability

Strubell et al. [32] conduct an interesting study on quantifying approximate costs of training

NLP models and their findings are shocking. They estimate the CO2 emissions from training a big

Transformer with neural architecture search to be five times the emissions from a car in its lifetime.

Based on their findings, they recommend i) reporting training time and models’ sensitivity to hy-

perparameters, ii) provision of a government-funded academic compute cloud for equitable access

to resources, and iii) prioritization of computationally efficient hardware and algorithms. Our work

in this thesis encourages and supports this latest recommendation by experimental findings. They

follow up their work with another report in [21]. Based on their study, while the top three cloud

compute providers, Amazon AWS, Google, and Microsoft respectively use 50%, 100%, and 50%

of their consumed energy from renewable sources, the renewable energy consumption in United

States is only at 17% [32]. Another recommendation to researchers and practitioners that is aug-

mented to the three previous ones is to be mindful of the used energy sources and report such

information to the degree possible. The online tool1 provided by Lacoste et al. [36] is a helpful

resource to follow such initiatives on reporting carbon footprint.

Predictions show that with the continuation of current trend lines in the increase of computa-

tional demands in deep learning, advancements are becoming environmentally, economically, and

technically unsustainable [33]. They suggest that such growth in the computational requirements

1https://mlco2.github.io/impact/
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would finally induce a burden on deep learning’s application. They provide a tangible theoretical

analysis using statistical learning theory: The benefits of overparameterizing – having more pa-

rameters than the number of training data points – has been proven [24], resulting in the number

of parameters to grow with the number of training data points. The cost of training grows with

the product of the number of parameters and the number of training data points. However, based

on the statistical learning theory, the number of data points must increase quadratically to get im-

provements on the performance. This implies that training an overparameterized model with the

goal of introducing improvements would at least require computations in the order of the fourth

power of the performance improvements [33]. This is theoretically restrictive. For a review of

these computational requirements in practice, we refer the reader to [33]. They include an inter-

esting estimation of the required computational power, carbon emission, and economic cost for

hitting target error rates (better than the current state-of-the-art) on benchmark datasets in com-

puter vision and natural language processing. Even their most optimistic extrapolation of current

trends in computational power is much worse than the theoretical lower-bound, making it critical

to put efforts in designing efficient solutions.

In the same line of work with [36], Anthony et al. [31] present another tool, called Carbon-

tracker, for reporting energy consumption and carbon footprint of training deep learning models.

Their tool supports a variety of environments and platforms for easy use, and is capable of stopping

the training process if the predicted environmental cost is surpassed. Their recommendations for

reducing carbon emissions include training in low carbon intensity regions, training in low carbon

intensity times of the day, using efficient algorithms, and choosing efficient hardware.

2.2 Redundancy, Compression, and Interpretability

Increased complexity also adversely affects interpretability. While the usual measure of suc-

cess or improvement in machine learning is the predictive accuracy, many applications dictate the

importance of interpretability [37]. Bratko [37] state that interpretability criterion has been over-
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looked and that is probably due to the lack of qualitative assessment measures of interpretability,

compared to the easily understood measures of predictive accuracy.

On the topic of efficiency and redundancy in deep learning, Stock [4] discusses equivalence

classes of neural networks and their compression. They propose a variant of stochastic gradi-

ent decent (SGD) – called Equi-Normalization (ENorm) – that inserts additional steps in-between

normal SGD iterations to select a representant of the functional equivalence class to minimize a

specific energy function. They also propose a novel technique called Iterative Product Quantiza-

tion (iPQ) to significantly compress neural networks by vector quantization almost without any

accuracy loss. They further put their methods to test by applying them to a real-world application

in ultra-low bandwidth video chat using a GAN [38] for reproduction of the video at the receiver’s

end [5].

Multiple prior work address the problem of compressing neural networks. Pruning, quantiza-

tion, knowledge distillation, selective attention, and low-rank factorization are common techniques

for model compression. Motivated by applications in embedded systems where both memory and

computational requirements of deep learning are restrictive, Han et al. [6] develop a three-stage

pipeline to i) prune unimportant neural connections, ii) quantize connection weights, and iii) en-

code quantized weights using Huffman code [39]. They reduce the network size by a factor of

35 to 49 without any loss of accuracy (AlexNet and VGG-16 on ImageNet). They also achieve

a 3 to 4 times layer-wise speedup and a 3 to 7 times better energy efficiency. Model distillation

and compression in Hinton et al. [40] and Buciluǎ et al. [41] aim to reproduce the accuracy of an

ensemble of models with a single model. The ensemble models are used to label new unlabeled

data and the resulting labeled data is used to train a single model that almost reproduces the initial

accuracy. This idea is further developed to the Teacher Student model where the soft labels from

a large teacher model is used to train a smaller, simpler student model that replicates the teacher.

Interesting modifications have been applied to this idea that even change the objective from com-

pression to enhancing accuracy [42, 43, 44]. Abbasi et al. [45] provide a good overview of this.

Other examples of model compression and redundancy reduction in deep learning include using
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agglomerative clustering to produce unique receptive fields that do not extract redundant similar

features [7]; using few neural network weight values to predict the rest of the weights [11]; using

the cosine distance between the filters in the feature space, and regularization and adaptive feature

dropout to remove the features with little or no variations from others, and hence reducing the

network size [8, 9]; and deactivating network connections in convolutional layers [10].

Examining Transformers in the computer vision domain, Pan et al. [46] find redundant com-

putations on uncorrelated input tokens and develop a framework to gradually and dynamically

drop those computations. They achieve notable reduction in computations – delivering up to 1.4×

speed-up with less than 0.7% accuracy loss. Transformers’ computational costs extremely exac-

erbates with the length of input sequence – computation is in the order of input sequence length

to the power of four. Hence, reduction in input length would be highly influential on the compu-

tational demand. Pan et al. [46] leverage this fact and create a dynamic inference policy network

[47, 48] to avoid computations on uninformative input tokens. Such a technique is inspired by the

human perception that attends to the input signal with dynamic levels of scrutiny, on a per-input

basis (selective attention). Pan et al. [46] seek to achieve both efficiency and interpretability, while

saving the flexibility and predictive power of the model. The learned input token selection provides

inherent interpretability to their approach, which outperforms other interpretation methods.

Li et al. [49] is another interesting work that investigates model compression with a special fo-

cus on interpretability. They leverage the relationship between the input vectors and the 2D kernels

in CNNs to propose a kernel sparsity and entropy (KSE) indicator for measuring the significance of

input features to guide model compression. Basically, they use interpretability to find redundancy

in deep learning – another motivation for us to study redundancy and interpretability in parallel.

The huge Transformer architecture is interesting to be studied for interpretability and redun-

dancy. Using matrix decomposition, Brunner et al. [50] have proposed effective attention that is

the part of the attention matrix in Transformers that actually affects the outputs. Further studies in

this line of work would also yield to interesting findings on making more efficient deep learning

architectures.
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Chapter 3

Studied Neural Architecture and its Prerequisites

In this section, we introduce the necessary neural components and explain their role in the

neural architecture that is the basis of our study in this thesis. We also review topics and concepts

that are helpful for easier understanding of our work.

3.1 Deep Learning Methodology for Text Classification

The general deep learning approach in text classification follows a set of steps given below.

[Step 1: Preprocessing] The goal of preprocessing is to modify the text to have a form that can

be better processed and analyzed by the following NLP components. Usually, preprocessing

involves tokenization, lemmatization, stopwords removal, token normalization (lowercasing

all tokens for example), and noise removal (removing unknown characters for example) on

the text. The helpful preprocessing steps may vary from task to task and they are chosen

based on the type of the subsequent NLP components.

[Step 2: Language Representation] Probably the most important component of a NLP pipeline

is the language representation model. This component creates numerical representations for

the input text, usually by mapping text to a vector space. This makes it possible to apply deep

learning algorithms to text data. The simplest form of this component is the one-hot word

vectorization where each word is represented by a vector of the same size as the number of

words in the vocabulary which has a single one value at the corresponding dictionary index

of the word and zeros in all other positions. Nowadays, however, deep neural networks

are utilized to learn vector representations for words and subwords of a language using the

masked token prediction and next sentence prediction objectives on the huge amount of

available unlabeled text. Word2vec [51], GloVe [52], FastText [53], and BERT [54] are

among these models.
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[Step 3: Feature Extraction and Learning] This step often applies a neural network architecture

to the vector representations from Step 2. The vector representations of words or sentences

are fine-tuned and transformed by a sequence of network layers to build features that are

helpful for the target classification task. Some of the common neural layers that are used

for this step are recurrent neural networks (RNNs), long short-term memorys (LSTMs), and

convolutional neural networks (CNNs). Note that, recently and specially after the introduc-

tion of BERT, feature extraction and learning layers are often no longer explicitly separable

from the language representation layer. Steps 2 and 3 together create and update the vec-

tor representations to include richer and more useful linguistic and statistical information to

learn and understand the language better.

[Step 4: Pooling] Objective of the pooling layers is to summarize the important information

from the huge number of features that previous layers produce into a compact form and

also to remove unneeded variance in the feature space. Simple fully-connected layers, and

maximum and average pooling layers are the most common choices.

[Step 5: Classification] Finally, a fully-connected network layer, usually with a softmax ac-

tivation function, is used to produce probability scores for different classes and make the

predictions based on the pooled features.

3.2 Language Models

Language models, in general, are models that predict the next token or word in a sequence,

and wherefore can be used to generate text. However, the term now may occasionally be used to

refer to broader applications for representing text. Masked Language Modeling (MLM) refers to

the case where the objective is to predict randomly masked tokens in text. Many of the most recent

language models are trained (pre-trained) primarily using the MLM objective to learn the statistics

of text data, hoping to implicitly learn the language as well.
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3.2.1 Non-contextualized Embeddings

Dense vector representations for words flourished with the introduction of Word2Vec [51].

The backbone philosophy is "you shall know a word by the company it keeps" [55]. Using the

huge volume of available digital text, co-occurrence statistics of words can be learned. In a semi-

supervised machine learning setting, either context words are used to predict a target word, or the

target word is used to predict the context words. Maximum likelihood estimation gives the optimal

weights of the model – a simple neural network – to maximize the probability of the huge corpus.

Variations of Word2Vec and similar word embedding models dominated other text representa-

tions (vectorization) methods from 2013 to 2017 due to the resultant higher accuracy across mul-

tiple baseline tasks and their interesting characteristics in terms of proximity and general place-

ment of the embedding vectors in the vector space. However, their biggest drawback is their

non-contextual nature where the embedding of a token is constant and generated offline. While

providing simplicity and ease in use and storage, the linguistic limitations hurt the performance on

more complex tasks and datasets. We include two such models in our experiments in Section 4

(LSTM on GloVe and FastText’s Supervised Classifier [56] in Table 4.9).

3.2.2 Contextualized Embeddings and the Transformer

An important deficiency of constant word embedding models like Word2Vec is their global

representation for words without consideration of their context. The prevalent example is the word

"bank" which has the same representation in both of the following sentences, while having totally

different semantics:

• She went to the bank to open a checking account.

• The erosion of the river bank may cause damages to the underground utilities.

Attention and the Transformer

The term attention with its current meaning in the NLP community appeared in [57] where

authors implemented a computational mechanism in an encoder-decoder architecture for machine
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translation to enable the decoder to decide which parts of the source to pay attention to. The

attention mechanism can be described as a mapping from a query and a set of key-value pairs to

an output. Fully-connected layers generate the query, key, and value vectors and a compatibility

function between the query and the key produces the weight of the corresponding value. The

output is the weighted sum of the values [20]. Transformer [20] is an encoder-decoder neural

sequence transduction architecture based on this mechanism. Both the encoder and decoder in

Transformer are comprised of stacked self-attention and point-wise fully-connected layers. This

entirely attention-based architecture outperforms the previous state-of-the-art, establishing the title

of the published paper, “Attention Is All You Need”.

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language representation

or embedding model that uses the encoder module of the Transformer to learn a bidirectional

representation from the left and right contexts of each token in text. BERT has improved the

state-of-the-art performance on eleven NLP tasks [54]. BERT’s N -dimensional representation

vectors are generated dynamically based on the attention score mechanism [57, 20] which relates

the effect of each token to all other tokens and to the task objective. It also creates an encyclopedic

representation for the whole input text – the [CLS] (classification) token that is often used as the

input to a classification algorithm. However, in the studied architecture and some of the presented

experiments in this work, the representations for all and every token is consumed by the subsequent

layers. Generating the representations dynamically and based on the input sentence makes BERT’s

embeddings to be contextualized, and hence, to be different for the two instances of bank in the

provided example sentences.

The Transformer-based encoder models, like BERT, have been investigated and tweaked in

recent years and have been proposed in various configurations and sizes. The parameters of these

models are learnt in a pre-training phase using the next sentence prediction and masked language

modeling objectives on huge collections of unlabeled data. Although such training has resulted

in powerful general language models, as language and text form differs from domain to domain,
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they can still be fine-tuned for specific domains or datasets to reach even greater performance.

We also conduct experiments with such domain-specific pre-trained Transformer encoder models

– including a BERTLarge model pre-trained on COVID-19-related tweets [58], called CTBERT.

The expectation of gaining accuracy improvements by using this domain-specific model is met by

discerning our experimental results. Other variations of the Transformer encoder models that we

have included in our experiments are XLNet [59], RoBERTa [60], and BERTweet [61].

GROVER

GROVER [62] has the same architecture as GPT2 [63], which is a slightly modified version

of the Transformer’s decoder [20]. It is a state-of-the-art fake news generation model. However,

Zellers et al. [62] also adapt a modified version of their model for discrimination tasks. The major

difference of GROVER with GPT2 is in its data structure, where it is tailored for news articles. Each

data point contains domain, date, authors, and headline metadata fields in addition to the body of

the news. We conduct some experiments in Chapter 4 to assess the capabilities of GROVER’s

discriminator on detecting deepfake text, and compare it with other models.

3.3 BiLSTM in the Studied Architecture

The BiLSTM neural architecture is commonly used to capture temporal relations (relations

showing the sequential position of the token with respect to other tokens) in the sentence. It is the

bi-directional version of LSTM that is from the family of recurrent neural networks. These models

had dominated other methods in modelling natural language prior to the development of Trans-

formers. Since a BiLSTM layer has been used by Lee et al. [23], we include it in our experiments

in an effort to reproduce their results. While investigating the efficacy of components other than

NeXtVLAD is not in the scope of this work, our experiments indicate that this BiLSTM layer is

also ineffective, similar to the NeXtVLAD component. Note that BiLSTM here, and in the work of

Lee et al. [23], is not used for encoding the whole sequence of tokens into a single representation;

instead, it is applied to capture the temporal features and incorporate them to update and fine-tune

the vector representation of each token. BiLSTM updates the representation of each token based
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on its previous tokens in both the left-to-right and right-to-left directions, hence the representation

of the last token of the sentence in both directions (the first and the last token) are often pooled

and used as the representation of the whole sentence (sentence embedding). However, this is not

the case in the studied architecture and instead, all of the tokens are consumed by the subsequent

layers. The inherent bias toward tokens that appear at two ends of a sentence in BiLSTM may be

another possible intuition of Lee et al. [23] for incorporation of NeXtVLAD in its current position

– after the BiLSTM layer – in the studied architecture (Section 3.4.4) in order to mitigate this bias

by leveraging its cross-locality computations across all sections of its input.

3.4 NeXtVLAD

We start this section by presenting some fundamental information about Bag of Visual Words

and build on top of it to describe the Vector of Locally Aggregated Descriptors (VLAD) and the

evolution of NeXtVLAD. Finally, we explain how NeXtVLAD is incorporated into the studied

architecture and our experiments.

Characteristically, NeXtVLAD is a neural parametric pooling component. Pooling layers in-

tend to summarize the important information from the huge number of features that previous layers

produce, and remove the redundant variance in the feature space. Maximum pooling and average

pooling are the most common pooling layers that are not parametric, in contrast with NeXtVLAD.

We include maximum and average pooling layers in our experiments in the deepfake text detec-

tion task, as well. NeXtVLAD has recently been used in downstream NLP tasks, motivated by its

success in computer vision. Its origins, however, can be traced back to NLP research, when Sivic

and Zisserman [64] borrowed from the bag-of-words approach used in text retrieval. Since then,

a significant body of work in computer vision has developed this approach further. The core idea

being the treatment of an image as a document, and low-dimensional features2 extracted from them

2The literature on image processing often uses the term “descriptor”, but to stay in tune with the terminology in NLP
research, we continue to use the term “feature”.
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forming the visual vocabulary, thus enabling a vector representation of each image, subsequently

used in classification or ranking tasks.

A key advancement came in the form of Vector of Locally Aggregated Descriptors (VLAD),

introduced by Jégou et al. [65]. In this work, too, low-dimensional features were extracted from

images, but K clusters of the features were created, and only the difference of each feature from the

cluster center was recorded. Instead of a single N -dimensional feature vector, each image would

thus be represented by a K ×N matrix.

The non-differentiable hard cluster assignment, however, renders VLAD unsuitable for training

a neural network. NetVLAD [66] resolves this by using the softmax function, whose parameters

can be learned during training. Since the cluster assignments of a feature are not known prior to

training, this approach requires K N -dimensional difference vectors to encode each feature. This

increase in the number of parameters impedes model optimization, and may lead to overfitting

– drawbacks discussed and subsequently addressed by NeXtVLAD [22] by introducing a step

prior to the soft cluster assignments. In this step, the input is expanded to λN size by a fully-

connected layer, and then decomposed into G groups of lower-dimensional vectors. Further, a

sigmoid function with range [0, 1] is used to assign attention scores to the groups for each vector.

The process effectively provides a G
λ

reduction in the number of parameters, by aggregating lower-

dimensional vectors. From a linear algebra perspective, this can be interpreted as representing the

data using subspace projections of the original vector.

Each of these mentioned concepts and the NeXtVLAD’s processing procedure are further de-

scribed in the following sections.

3.4.1 Bag of Visual Words

Bag of visual words is a simple approach to encode data in computer vision that is directly

borrowed from the Bag of Words model in natural language processing and information retrieval.

The procedure in the bag of visual words model comprises either partitioning into segments or

being transformed into lower-dimension local features – such as SIFT [67] descriptors – for all of
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the dataset images, and then being encoded into a frequency vector of each of those segments or

feature, for each image.

3.4.2 Vector of Locally Aggregated Descriptors (VLAD)

Built on top of the Bag of Visual Words model, VLAD model also includes decomposing all

of the data points into lower-dimension features or segments. However, going beyond the feature

frequency encoding, it considers a number of centroids (K), which is a hyper-parameter of the

model, to cluster the feature set into K clusters. In other words, all features from all data instances

in the whole dataset are extracted and then clustered into K groups. For encoding each data sample,

first its feature vectors are extracted and assigned to their nearest cluster centroid, and then, the

vector difference of these features from their corresponding cluster centroids are computed. These

difference vectors are called residuals. For all of the feature vectors that are assigned to the same

cluster, the residual vectors are accumulated, which produces a set of K accumulated residuals

for each data sample that is considered as the representation of that data sample. Each residual

is a N -dimensional vector just like the feature vectors and hence the encoded representation is of

dimension K ×N .

3.4.3 NetVLAD

The VLAD model in its original form cannot be used in a neural network architecture as it is not

trainable. The reason behind that is the non-differentiable hard assignment of features to clusters.

The idea behind NetVLAD is to replace that hard assignment with a softmax scoring function with

parameters that can be learned from labeled data. A important drawback of NetVLAD, however, is

that swapping the hard assignment with softmax, forces the model to need to compute the residuals

for each feature vector from all of the cluster centroids and assign probability scores to them

– the reason being that the model does not know which cluster the feature vectors belong to,

beforehand. The cluster centroids in NetVLAD are learnt jointly with other model parameters

during the training phase, making it parametric and intelligent.
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3.4.4 NeXtVLAD in the Studied Architecture
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Figure 3.1: The studied architecture, where M is the number of tokens from the input text, N is the
dimension of the BERT representation, and G is the number of groups into which the input is split after
expansion.

In NeXtVLAD, the input vectors are expanded by a hyper-parameter factor (λ = 4 in our

case), and then are partitioned into groups of smaller feature vectors before continuing with the

same process as in NetVLAD. Its other difference is that the soft assignment function includes an

additional sigmoid function that computes attention scores over the groups. This scoring module

intends to find the input features that are most relevant to make the correct label prediction for each

data sample. Compared to NetVLAD, it requires fewer number of model parameters and is more

resilient to overfitting [22].

The NeXtVLAD component, in the studied architecture, clusters the contextualized token rep-

resentation vectors that are produced by the previous layers into K clusters, computes the dif-

ference of each token’s feature vector from all of the cluster centroids, and then represents the

whole input text with these difference vectors. The cluster centroids are initialized randomly and

learnt jointly with other model parameters in the training phase. In the output of this layer, we

have a K × λN/G matrix that represents the whole input text and is fed to a classifier for final

label prediction. Before being processed by the NeXtVLAD component, the input text is fed to a

pre-trained Transformer model to obtain a vector representation for each token, and then passed
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through a BiLSTM layer for potentially further enhancements. NeXtVLAD, in the role of a para-

metric pooling and aggregation layer, represents the whole input text as a K ×N matrix, which is

finally flattened and fed to two dense layers with a softmax function to assign the predicted label.

This architecture, based on the explanation provided by Lee et al. [23], is presented in Figure 3.1.

To provide a mathematical formulation of the explained process, consider M input tokens,

each represented by a vector of size N produced by the language model and further tuned by the

BiLSTM layer (e.g., N = 1024 for BERTLarge). We denote these tokens by xt, t ∈ {1, ...,M}.

Each xt is expanded to ẋt with shape (1, λN) and reshaped to x̃t with shape (G, 1, λN
G
). Then, the

(3.1) soft assignment of x̃g
t to the cluster k, and (3.2) the attention over groups, are computed as

αgk(ẋt) =
ew

T
gk

ẋt+bgk

∑K

s=1
ew

T
gk

ẋt+bgk
, (3.1)

and αg(ẋt) = σ(wT
g ẋt + bg). (3.2)

The locally aggregated feature vectors (i.e., the VLAD vectors) are generated by computing the

product of the attention, assignment, and the difference from the cluster center

vgtki = αg(ẋt)αgk(ẋt)(x̃
g
ti − cki).

Finally, the entire thread is represented by

rki =
∑

t,g

vgtki.

In the above equations, t, g, k, and i iterate over tokens, groups, clusters, and vector elements

respectively, while w and b denote the weight and bias parameters of the linear transformations in

the fully-connected layers.

20



Chapter 4

Downstream NLP Tasks for Probing NeXtVLAD’s

Efficacy

To find the answer to our research question, i.e. whether NeXtVLAD contributes to improving

accuracy measures in NLP tasks when applied to Transformer’s contextual embeddings, we chose

two tasks for experiments. The first task is the original sarcasm detection task that NeXtVLAD

was initially proposed for by Lee et al. [23] and the second task is identifying deepfake machine-

generated text. For both of these tasks, we use data from Twitter.

For an analogous use of NeXtVLAD in NLP, the token representation vectors take the place of

the feature vectors used in computer vision literature. Required input modifications for each task

is described in the respective Architecture Adaptation section. Rather detailed introduction, and

related work sections are also provided for each of the tasks.
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4.1 Sarcasm Detection

Natural language understanding often goes beyond the syntactic and semantic layers, and per-

haps nowhere is this more palpable than in the use of figurative language. Topics that touch upon

figurative language and pragmatics are notably difficult. A better understanding of figurative lan-

guage use, such as metaphors, irony, or sarcasm, can not only lead to advances in computational

creativity [68, 69], but also in understanding social media content, where users often employ such

pragmatic tools as irony or sarcasm [70, 71]. This type of figurative language is difficult to identify,

however, at least partly due to what the influential literary poet and critic William Empson called

“ambiguities” [72] in the language. In particular, figurative language use with sarcasm or irony

completely decouples – and even contrasts – the communicator’s intent from the communicated

content [73], rendering shallow syntactic or semantic features unsuitable. Sarcasm and irony can

mislead or confuse an NLP system, or even a human reader, by showing opposite polarity [74]. The

poor fit of such features is further exacerbated in social media posts due to the ubiquity of gram-

matical errors, hashtags, emojis, etc. Yet, social media users, especially in Twitter, tend to use

irony and sarcasm frequently [75, 70], making it a necessary component for accurate processing

of such data.

Irony or sarcasm can simply be defined as communicating an utterance that is in contrast with

what is meant [76]. Although some authors define irony and sarcasm differently and believe that

sarcasm is offensive and aggressive compared to the soft and delicate irony [77, 78, 79], we con-

sider them the same figurative language concept and use these terms interchangeably.

Table 4.1: A Tweet thread in the FigLang dataset. Sarcasm being context-dependent, the entire thread
serves as a single sample. The label is based on the final response in the thread.

Turn Tweet Label

Context-1 The [govt] just confiscated a $180 million boat ship-
ment of cocaine from drug traffickers.

Sarcastic
Context-2 People think 5 tonnes is not a load of cocaine.

Response Man! I’ve seen more than that on a Friday night.
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The deeper, context-dependent inferential nature of figurative language, together with the poor

fit of shallow syntactic and semantic features, makes deep neural networks a natural candidate

for downstream NLP tasks like sarcasm detection [80]. However, unfortunately, the reliability

of findings in publications that vastly utilize deep learning can be expected to decrease with its

increasing popularity [2].

We investigate the state-of-the-art sarcasm detection system presented by Lee et al. [23] –

which reported an F1 score of 93.1%, 14% higher than the next best result reported to the FigLang

2020 workshop [35] for the Twitter track – and use ablation studies to analyze NeXtVLAD’s con-

tribution to the system’s predictive accuracy. Through a comprehensive series of experiments, we

find that this novel architecture (discussed in Section 3.4) does not lead to any significant improve-

ment. The improvement may thus be attributed to components other than the architecture, such as

augmenting the corpus by using additional data. Investigating the other components, however, is

not in the scope of the work being presented here.

The task is to determine if the final response in a thread (i.e., a sequence of Tweets where each

post is in response to its previous post) is sarcastic. One such thread is shown in Table 4.1.

4.1.1 Dataset (Sarcasm Detection)

All of our experiments for this task are conducted on the Twitter corpus of the FigLang 2020

sarcasm detection task [35], which comprises 5, 000 threads in the training set and 1, 800 in the

test set. Additional properties of this corpus are shown in Table 4.2.

Table 4.2: Overview of the FigLang dataset, showing the overall statistics for the size of individual Tweets
(using the BERT tokenizer) and the size of Tweet threads.

Variable Dataset Mean Median Std

Tweet length
(num. tokens)

Train 140.00 128.00 51.57
Validation 137.00 125.00 51.17
Test 143.00 138.00 48.56

Thread length
(num. tweets)

Train 4.85 4.00 3.20
Validation 4.93 4.00 3.29
Test 4.16 3.00 1.95
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4.1.2 Related Work (Sarcasm Detection)

In this section, we discuss the related work and literature in irony/sarcasm detection in Twitter.

The literature can be divided into two categories. First we review some of the work on detecting

irony in single tweets similar to SemEval shared task [81] and then move to approaches that try to

detect sarcasm in a thread of tweets, from the FigLang shared task [35].

Single-Utterance Irony Detection

Rohanian et al. [82] have proposed the system with the highest reported recall score in the

SemEval-2018 shared task on irony detection [81] on a dataset collected from Twitter. The integral

idea in their model is to decompose tweets into two subsections and search for contrast between

them. They use an ensemble classifier with soft voting between logistic regression and support

vector machine algorithms. Their feature set includes sentiment, semantic and surface features

with the inclusion of handcrafted features in addition to the dense word2vec embeddings [83].

Potamias et al. [84] developed a transformer-based approach to tackle the irony detection problem.

They have added a recurrent convolutional neural network on top of the pre-trained RoBERTa [60]

architecture. They report the state of the art performance on the SemEval dataset with both F1 and

recall scores of 0.80. Ghosh and Veale [85] also adopted the idea of contrast and contradictory

between two parts of a tweet to detect irony by using a Siamese network architecture. These

networks are capable of learning the semantic similarity or contrast in two inputs by transforming

them into a more suitable vector representation space [86]. Their architecture consists of two

identical sub-networks. Each subnetwork is initially fed by Glove word embeddings [52] and

comprises an embedding layer, an LSTM layer, a subtract layer, and finally a fully connected layer

with a softmax activation function for classification. Wu et al. [87] propose a simultaneous multi-

task learning approach to train their BiLSTM-based architecture. They utilize Word2Vec [83] word

embeddings and include POS-tags before feeding the feature vectors to a multi-layer BiLSTM

component. Each of their BiLSTM layers receives the hidden states from all the previous BiLSTM

layers with the goal of leveraging all levels of context information at the same time. They train

their model on three irony tasks at the same time: i) predicting the removed irony hashtag in the
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tweet, ii) classifying the tweet into ironic or non-ironic classes, and iii) predicting the type of irony,

all using the SemEval dataset.

Context-Dependent Irony Detection

Srivastava et al. [88] first encode each of the context tweets in the data point using a BERT layer

and create a matrix containing all those encoding vectors in its rows. They pass this matrix through

a two dimensional convolution layer to summarize the context representations, before feeding them

to a BiLSTM layer to build a single representation out of the whole thread. This representation

together with the encoding vector of the response tweet are given to another convolution layer to

extract n-gram features between the context and the response. They achieved the F1 score of 0.74

on the FigLang dataset. Achieving the second best accuracy in the FigLang task, Jaiswal [89] de-

veloped multiple RoBERTa models for various context lengths with different weight initialization

in a majority voting system. They also present the predictive performance of other embedding

models like BERT, ElMO [90], and Universal Sentence Encoder [91]. Dong et al. [92] created two

different architectures one focused only on the final response in the thread of Tweets and the other

considering the context in addition to the response. They use BERT, RoBERTa, and ALBERT [93]

as their embedding models. Another work uses a Siamese type network as one of its architectures,

where the context and response Tweets are separate inputs. They reported their best result from a

RoBERTa + LSTM model. Dadu and Pant [94] again build three different models based on three

configurations on using the response and context Tweets. Their best-performing configuration con-

catenates response and context Tweets before passing them to a fine-tuned RoBERTa model. For

a complete report on such context-dependent sarcasm detection systems, we refer the reader to

Ghosh et al. [35].

4.1.3 Architecture Adaptation (Sarcasm Detection)

The modifications of the architecture for the sarcasm detection task is twofold. The first trivial

modification is for adjusting the input to the architecture. In particular, one entire thread of Tweets

from the FigLang dataset needs to be fed to the architecture. To create this input, the context and
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Figure 4.1: The custom CNN architecture for context-dependent sarcasm detection in Twitter. M is the
number of context tokens. M’ is the number of response tokens. N is the token representation dimension.

response Tweets (as shown in Table 4.1) from a single thread are concatenated, with a special

[SEP] (separator) token in between of them. This token is known to BERT, and used in its next

sentence prediction task. Here, the token is used to separate different posts within a thread. After

concatenation, the text is fed to the model, and is processed as explained in Section 3.4.4

Custom CNN for Feature Extraction

The second modification relates to a proposed novel custom Convolutional Neural Network

(CNN) architecture as an explainable context-adopting feature extractor for the NeXtVLAD com-

ponent. In order to reduce the differences in the shape (i.e., dimensions) and quantity of features

fed to NeXtVLAD in Computer Vision and NLP, we designed a custom CNN to transform fea-

tures into potentially a more suitable space. In this section, we present the details of this custom

CNN for extracting features for the NeXtVLAD component. Figure 4.1 depicts the architecture of

our CNN. First, all of the context Tweets are concatenated and passed to BERT to get the token

representations. These vector representations are stored in a M × N matrix. The response Tweet
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also goes through the same process and is represented in a M ′ × N matrix. N is the dimension

of the token representation vectors and M and M ′ denote the number of tokens in the contexts

and response respectively. Each row in these matrices contains the vector representation of one

token. Similar to KimCNN [95], we set the width of the CNN kernel to the dimension of the token

representation vector (N ). But, different from KimCNN, our kernels are always applied to local

areas from two distinct input matrices.

In this proposed architecture, kernels only slide vertically to move over different tokens. To

demonstrate, consider the kernel of size 3 in Figure 4.1. The first two rows of this kernel cover the

first two tokens of the context matrix and the last row covers the first token in the response matrix.

The inner product is computed and yields the first element in the first output vector. Then, the blue

portion of the kernel slides downward and the computation repeats to yield the second element of

the first output vector. When this sliding window reaches the end of the context matrix, the first

output vector is completely computed. Then, the gray portion of the kernel slides downward on the

response matrix and all of the previous steps repeat to generate the next output vector. This set of

operations with F different kernels and by applying appropriate zero padding to the input, yields an

output of shape (F,M ′,M) which is (64, 100, 512) in our experiments. This output is rearranged

and reshaped to shape (M ′ ×M,F ), which is much more similar to image/video features in shape

and quantity. This matrix is then fed to the NeXtVLAD component in the sarcasm detection

architecture. We use 64 kernels in our experiments with size 2, 3, 4, and 5 (16 kernels of each size;

size only refers to the height of the kernel, since the width is fixed). In our experiments, the values

are set as F = 64, M = 512, and M ′ = 100.

4.1.4 Experiments and Results (Sarcasm Detection)

We delve into several modifications of the model, as well as various hyperparameter settings, in

order to investigate how much effect the NeXtVLAD component has on the sarcasm detection task.

Our experiments initially use the same training configuration as Lee et al. [23], before exploring

further.
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Table 4.3: Sarcasm detection results. Precision, recall, and F1 are shown for the “sarcasm” class, while the
accuracy is averaged over both classes. Experiments with dataset expansion (DE) and label augmentation
(LA) are also included. The model identical to Lee et al. [23] (minus data augmentation and modification)
is shown in bold italics. Subscripts LC and LuC stand for Large-Cased and Large-Uncased respectively.

Validation set results Test set results

Model Precision Recall F-1 Accuracy Precision Recall F-1 Accuracy

BERTLC 0.75 0.84 0.80 0.79 0.71 0.78 0.74 0.73
BERTLC + BiLSTM + NeXtVLAD 0.74 0.84 0.79 0.78 0.71 0.77 0.74 0.72

BERTLC + NeXtVLAD 0.71 0.82 0.76 0.74 0.69 0.77 0.73 0.71
BERTLC + BiLSTM 0.76 0.82 0.79 0.79 0.71 0.74 0.72 0.72
BERTLC + KimCNN + NeXtVLAD 0.74 0.84 0.79 0.78 0.72 0.82 0.77 0.75
BERTLC + OurCNN + NeXtVLAD 0.77 0.71 0.74 0.76 0.69 0.79 0.74 0.72

CTBERTv2 0.76 0.83 0.80 0.79 0.72 0.76 0.74 0.73
CTBERTv2 + BiLSTM + NeXtVLAD 0.72 0.85 0.78 0.77 0.71 0.79 0.75 0.73

BERTLC (DE) 0.81 0.85 0.83 0.82 0.72 0.73 0.73 0.72
BERTLC + BiLSTM + NeXtVLAD (DE) 0.79 0.84 0.82 0.81 0.73 0.74 0.74 0.73

BERTLuC (DE) 0.79 0.83 0.81 0.81 0.73 0.73 0.73 0.73
BERTLuC + BiLSTM + NeXtVLAD (DE) 0.79 0.87 0.82 0.82 0.73 0.79 0.76 0.75

CTBERTv2 (DE) 0.78 0.83 0.80 0.80 0.75 0.77 0.76 0.75
CTBERTv2 + BiLSTM + NeXtVLAD (DE) 0.81 0.83 0.82 0.82 0.77 0.77 0.77 0.77

BERTLC (DE, LA) 0.79 0.84 0.81 0.87 0.73 0.75 0.74 0.82
BERTLC + BiLSTM + NeXtVLAD (DE, LA) 0.67 0.60 0.63 0.77 0.63 0.52 0.57 0.74

3 * [CTBERTv2 + BiLSTM + NeXtVLAD] (DE) 0.62 0.61 0.61 0.62 0.60 0.54 0.57 0.59

Since Lee et al. [23] employ additional unpublished data, an exact reproduction of the exper-

iments is not possible. Moreover, the partition of the corpus into training and validation set is

left unspecified. Thus, their results reported on the validation set are not truly comparable. Some

hyperparameter settings, like the number of epochs for training, are also omitted from their report.

However, the primary aim of this set of experiments is not to focus on reproduction of the results,

but to determine what role the NeXtVLAD component played in the excellent final F1 score of

93.1%.

The performance of different configurations are shown in Table 4.3. Our results are shown for

the original FigLang test set as well as the one-fifth validation set we separated from training3.

All of the models have been trained for 8 epochs with a batch size of 4. We train the models for

different number of epochs ranging from 3 to 30. Lee et al. [23] mention the use of early stopping

for their number of training epochs, which aims to prevent overfitting by monitoring the model

3Our code and the choice of validation set are available at https://github.com/sinamps/nextvlad-for-nlp

28



performance on a held-out set at the end of each epoch, and stopping the training when perfor-

mance starts to degrade. Their work, however, leaves out two hyperparameter values required for

replication: patience, which controls the number of consecutive times it is acceptable for a model

to not improve, and delta, the minimum threshold for differential improvement.

Without these, we follow Fomin et al. [96] and apply early stopping with patience and delta set

to 2 and 0, respectively. With early stopping, the number of optimal epochs varied, but even while

setting the random states manually to make the configuration as deterministic as possible, repeated

experiments showed optimal training to always vary between 5 to 12 epochs (a subset of the more

comprehensive experiments we conducted, checking from 3 to 30 epochs). In our experiments,

the BERTLC + BiLSTM + NeXtVLAD model is identical to Lee et al. [23] (without their data

augmentation and modification). The hyperparameters for this model are provided in Table 4.4.

Since this model achieves the best F1 score on the validation set with 8 training epochs, we fix the

number of training epochs to be 8 for the other models as well.

Table 4.4: General hyperparameter values for our implementation of the BERTLarge-Cased + BiLSTM +
NeXtVLAD model.

Hyperparameter Value

K 128
G 8
λ (expansion) 4
M 512
N 1024
Context Gating’s dropout rate 0.5
BiLSTM’s dropout rate 0.25
# of epochs 8
Batch size 4
Initial learning rate 10

−6

In order to replicate the ensemble model discussed by Lee et al. [23], threads with more than

one context are used to create extra samples by removing the furthest context, one at a time, until

only one context remains. In the experiments using this data expansion (DE), the thread in Table

4.1, for instance, gives rise to one additional sample, with only context 2 and the response. Then,
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a separate model is trained for each context length, and majority voting assigns the final label. We

also conduct a series of experiments where the response Tweet is removed from each thread, and

the remaining thread is considered non-sarcastic. These are indicated in Table 4.3 by LA (label

augmentation).

To explore further, we record the performance for all training epochs on the validation set. Ta-

ble 4.5 shows the accuracy for epochs 1 to 8, for the studied architecture with the configurations of

Lee et al. [23] (the first configuration in Table 4.3), and the distilled version without NeXtVLAD.

We compute the accuracy and F1 score for up to 30 training epochs. A comparison of the best

scores from the models that employ NeXtVLAD with the ones that do not, we find no statistically

significant improvement. Even worse, the incorporation of the NeXtVLAD and the BiLSTM com-

ponents decelerates the convergence of the learning algorithm, requiring more training time for

the more complex model. While the distilled model gets close to its peak accuracy only after three

epochs, the model with NeXtVLAD takes five epochs to approach that accuracy. This is significant

in terms of environmental and financial sustainability, when scaled.

Table 4.5: The validation set accuracy after training epochs 1 to 8 of the first model configuration from
Table 4.3 (the first and second rows from Table 4.3).

Accuracy for each epoch

Model 1 2 3 4 5 6 7 8

w/o NeXtVLAD 0.69 0.73 0.77 0.78 0.78 0.78 0.78 0.79
w NeXtVLAD 0.51 0.51 0.49 0.49 0.76 0.77 0.77 0.78

We also include additional experiments that replace BiLSTM with convolution layers. We use

KimCNN [95] as well as our custom CNN (simply called OurCNN in Table 4.3) with filters that

always cover one response token with various number of context tokens. Section 4.1.3 provides

a discussion of our custom CNN. These variations, too, however, do not outperform the baseline

results obtained through the BERT-only architecture.
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4.2 Deepfake Text Detection

The extensive use of online social networks as a medium for information exchange and com-

munication makes it influential on the society, e.g., on public decisions, and actions [97]. The

number of monthly active users in Twitter, as an example, has increased by a factor of 11 in a

period of 9 years [98, 99]. It becomes essential, then, to ensure the security of social media to

prevent malevolent parties from exploiting its massive potentials in their favor.

Popularity of social networking platforms and their power has increased the proliferation of

cyber bots. Some studies report that 9 to 20 percent of Twitter users are bots and they contribute

to 35 percent of Twitter’s contents [100, 101]. These bots can generate deepfake text content and

be manipulated to propagate misinformation and spam, change the stock market value by trending

fake information for financial gain, affect the elections for political gain, and more [102]. With the

emerging progress in natural language generation, and the availability of huge language models,

fake text is now more deceptive and bots have become harder to identify. Even simplest fake

text generation methods like search-and-replace can trick human readers [103]. Deepfake text

generation models like deep language models such as GPT, GROVER, LSTM, RNN, etc., however,

are much more capable and can generate correct and fluent new sentences or even interact with

human users in an online conversation. Some studies report that the humans detection rate against

these text samples is near chance [104, 105]. Easy availability of such bots and language models,

that can be readily deployed, empowers attackers so that they can perform malicious activities

more easily. Consequently, deepfake text detection and bot identification are critical in social

networks [106]. Furthermore, the privacy, accessibility, and requirement limitations, along with

the frequency of Cyborgs (human-assisted bots or bot-assisted humans) in Twitter [107] accents

the importance of deepfake text detection even above account-level bot identification.

A requirement of text classification with deep learning, however, is the meaningful represen-

tation of text in vectors, which introduces an additional complexity compared to computer vision

applications – partly due to their more natural data representation – wherein deepfake detection

has been investigated in greater depths. Again, targeting social media content, the distinction from
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formal language adds to the classification difficulty. Predominantly, text in social media is short in

length, is informal both literally and grammatically, and includes entities such as hashtags, men-

tion tokens, and emojis, all of which contribute to this complexity. However, deep learning can

discover statistical anomalies in data that are not recognizable by humans but significantly help

in detection of machine-generated text [105] – hence, the relatively highly accuracy of our deep

discriminator models.

In this experimental task, we consider deepfake text detection as identifying bot-generated

text content in Twitter where the objective is to determine whether a given Tweet is written by

a human user or generated by a machine. We use a real world Twitter dataset for this set of

experiments, as well. The presented results in Table 4.9 is a superset of results that are relevant

to probing NeXtVLAD’s effect on predictive accuracy; yet, they are included in this document

to present a comprehensive report on the task of identifying machine-generated text, as well –

where we improved the state-of-the-art accuracy. Our contributions in this task, beyond probing

the effect of the NeXtVLAD component, include i) improving the classification accuracy on this

real-world dataset using a domain-specific BERT model, and ii) providing further context for fake

text detection as a real-time solution to social media bot identification problem.

4.2.1 Dataset (Deepfake Text Detection)

Targeting deepfake text detection, specifically in social media, we use the the TweepFake

dataset [103] for both model training and evaluation. This dataset is published in Kaggle4 and

contains annotated examples of human-generated and bot-generated Tweets. Tweets are collected

from 23 different bots that imitate 17 human accounts. Table 4.6 shows a few examples from this

dataset. The generator models that produced the fake Tweets are language models such as GPT2,

RNN, OpenAI, Markov Chains, etc. making it a suitable deepfake dataset for our task. The other

publicly available dataset of bot-generated Tweets – Cresci’s dataset [108] (used by Kudugunta

4https://www.kaggle.com/mtesconi/twitter-deep-fake-text
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Table 4.6: Example data points from TweepFake anonymized dataset.

Tweet text Label

the world needs more whale stories. I would love to know what whalefacts are
hiding in them.

GPT-2 Bot

just to clarify, i singlehandedly brought the olympia mega mall from near collapse
due to freak weather, using my spinnaker

GPT-2 Bot

I will make [FOLLOWERS OF A RELIGION] victims. They come into the
United States but should have been crippled so I flourish. I can do it. [@USER-
NAME] #debate

RNN Bot

The repositorify user and have you need to the Securion started Java EE for the
driver not stillers so sething software to be a releases on to be you can look appeves
in Netbeans Code’s an install constr

RNN Bot

it literally what time of gucci shorts or not tolerate Libra slander on my face Other Bot

YEA now that note GOOD Other Bot

I think if i put my mind to it, I could put a tree in my house like they do at the
Cherry hill mall

Human

[@USERNAME] whales are incredibly vital both before and after death you are
correct :)

Human

and Ferrara [109] and Heidari and Jones [110]) – does not contain deepfake text samples that are

difficult enough for examining the state-of-the-art deep text classification models.

Table 4.7 shows the statistics of the TweepFake dataset [103]. As shown in this table, the

dataset is almost balanced between the human and bot classes.

Table 4.7: Statistics of the TweepFake dataset.

Human GPT-2 RNN Others Total

Training set 10358 3109 3325 3920 20712

Validation set 1150 346 370 436 2302

Testing set 1278 384 412 484 2558
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4.2.2 Related Work (Deepfake Text Detection)

While many of the past work focus on bot account identification [107, 106, 111, 110, 112, 113],

those studies are almost irrelevant to deepfake text detection. We discuss the related work for this

task along two categories: i) content-level Twitter bot identification, and ii) fake text detection

outside social media.

Bot Detection at Content-level

Dukić et al. [114] work on the PAN Author Profiling dataset [115] to detect bot-generated

Tweets. Their model uses the pre-trained BERTBase model to get contextual embedding of the

Tweet and concatenates it with emoji2vec embedding and a few binary features to feed to either a

Logistic Regression classifier or a deep neural network classifier. It is worth mentioning that they

do not fine-tune BERT representations in their training phase. They report a weighted F1 score

of 83.35 in the bot detection task by using this architecture. Kudugunta and Ferrara [109], focus

on content-level classification, but not only based on the Tweet text, but also using Tweet object’s

metadata such as the number of Retweets and replies or favorite counts to augment the GloVe

embedding features for a better classification. They use a LSTM layer to learn sequential features

of the Tweet text and concatenate it with metadata features before feeding it to fully-connected

classification layers. They also calculate a classification score just by the LSTM’s representation

and use a weighted average loss based on the two outputs for training. Finally, Fagni et al. [103],

who have published the TweepFake dataset that we use in this work, have drawn community’s

attention to detecting deepfake text in social media platforms. They also test a set of machine

learning and deep learning classification methods on their dataset. Their performance results are

directly comparable with ours.

Fake Text Detection outside Social Media

The studies included in this section investigate the fake text detection outside social media do-

main but are completely relevant to our task. Zellers et al. [62] present a text generation model

called GROVER which is based on GPT2 and raise the concern about the need to build verifi-
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cation techniques against such generator models. GROVER’s generated fake news is even better

than human-written disinformation at deceiving human readers [62]. They train and evaluate their

model with a fake news dataset that they have crawled from 2016 to 2019. Adelani et al. [104]

combine available language models to generate fake reviews with desired sentiment for Amazon

and Yelp. They study how human readers and machine learning generator-based classifiers per-

form on detecting these generated reviews. Their findings are that the human readers’ performance

in detecting those generated reviews was roughly equal to chance and machine learning detection

mechanisms, despite performing better than humans, still need much more improvements. Ippolito

et al. [105] focus on comparing humans and machines in detecting deep fake text. They base their

evaluations on GPT2-generated text and use BERT as the primary discriminator model. They state

that since text generator models are trained to fool humans, despite being successful in achieving

that objective, introduce abnormalities that make the detection task easy for automatic discrimina-

tors. Their experiments also show that fake text detection is more difficult when facing short-length

text.

4.2.3 Architecture Adaptation (Deepfake Text Detection)

The only required architectural modification to the studied architecture – discussed in Sec-

tion 3.4.4 – to detect bot-generated text5 is input adjustment. Our models solely use a single

Tweet’s text in order to determine whether it is generated by a machine or a human user. We

do not apply any text preprocessing techniques other than tokenization, where we employ the

matched or recommended tokenzier for each model. For example, the most our accurate models

specifically use the model and tokenizer of CTBERT-v2 [58] from the Hugging Face transformers

library [116].

5Our code for this paper is published in the GitHub repository at https://github.com/sinamps/bot-detection
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Table 4.8: Hyperparameter values for our deepfake text detection models.

Hyperparameter Value

# of training epochs 8
Initial learning rate 10

−6

Batch size 1
dropout rate 0.25
# of warmup steps 2000
dropout rate 0.25
BERT’s max length 512
NeXtVLAD’s expansion 4

4.2.4 Experiments and Results (Deepfake Text Detection)

We have mainly focused on binary classification of Tweets into bot-generated or human-written

classes and hence the account.type column of the TweepFake dataset is used as the target label for

our objective. However, the dataset further contains annotation labels that separate Tweets based

on their generator bot type, and we use this labels in a subset of our experiments to analyze the

capabilities of various generator model types against discriminator models.

We implemented the models with PyTorch and Keras frameworks and used three NVIDIA

GeForce RTX 2080 Ti GPU cards for running the experiments6. We report our hyperparameters in

Table 4.8.

Fagni et al. [103] have conducted similar experiments with a set of machine learning algorithms

for detecting the bot-generated Tweets in the TweepFake dataset. Their results are directly compa-

rable with our results in Table 4.9. The presented scores are computed on the TweepFake test set.

As the Transformer-based models had the best predictive accuracy according to Fagni et al. [103],

we expand those Transformer-based experiments by testing other pre-trained weights and other

auxiliary model components, including NeXtVLAD. Table 4.10 shows the detailed configurations

of our various models.

The best overall accuracy that we get is 92% which is 2% better than the best model reported

in Fagni et al. [103] – their best model’s results are included in the second row of Table 4.9. The

6Code available at https://github.com/sinamps/bot-detection
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Table 4.9: Results obtained from our experiments for different deepfake text detection mechanisms on the
TweepFake test set (the first and second rows are reported from [103]). FT means that the model is fine-
tuned. Domain means that the model is pre-trained on domain-specific data while General means that it is
not the case. DM means that dummy metadata is used. twitter-glove-200 is the pre-trained 200-dimensional
GloVe embeddings on Tweets. Cfg stands for configuration (the details of these configurations are provided
in Table 4.10). Values are rounded to the nearest hundredths. This table is directly comparable with the
results reported in [103].

Human Bot All

Model Precision Recall F1 Precision Recall F1 Accuracy

BERT (General-FT) [103] 0.90 0.88 0.89 0.88 0.90 0.89 0.89

RoBERTa (General-FT) [103] 0.90 0.89 0.90 0.89 0.90 0.90 0.90

LSTM on GloVe (twitter-glove-200) 0.84 0.81 0.82 0.81 0.85 0.83 0.83

BERT+BiLSTM+NeXtVLAD (Domain-FT) Cfg 1 0.92 0.91 0.92 0.92 0.92 0.92 0.92

BERT+BiLSTM+NeXtVLAD (Domain-FT) Cfg 2 0.92 0.90 0.91 0.91 0.92 0.91 0.91

BERT (Domain-FT) Cfg 3 0.91 0.92 0.92 0.92 0.91 0.92 0.92

BERT+BiLSTM+NeXtVLAD (General-FT) Cfg 4 0.90 0.87 0.88 0.87 0.90 0.88 0.88

BERT+BiLSTM+AvgPooling (Domain-FT) Cfg 5 0.91 0.92 0.91 0.92 0.91 0.91 0.91

BERT+BiLSTM+MaxPooling (Domain-FT) Cfg 6 0.91 0.91 0.91 0.91 0.91 0.91 0.91

BERT+BiLSTM+NeXtVLAD (Domain-FT) Cfg 7 0.92 0.91 0.91 0.91 0.92 0.91 0.91

XLNET+BiLSTM+NeXtVLAD (General-FT) Cfg 8 0.86 0.88 0.87 0.88 0.85 0.87 0.87

RoBERTa (Domain-FT) Cfg 9 0.90 0.94 0.92 0.93 0.89 0.91 0.91

RoBERTa+BiLSTM+NeXtVLAD (Domain-FT) Cfg 10 0.89 0.94 0.92 0.94 0.88 0.91 0.91

FastText’s Supervised Classifier [56] 0.83 0.81 0.82 0.82 0.83 0.82 0.82

GROVER Discriminator (BS=1, MaxSeqLength=1024) 0.92 0.89 0.90 0.89 0.92 0.91 0.90

GROVER Discriminator (BS=32, MaxSeqLength=256) 0.92 0.90 0.91 0.91 0.92 0.91 0.91

GROVER Discriminator (BS=32, MaxSeqLength=256, DM) 0.91 0.90 0.90 0.90 0.91 0.91 0.91

accuracy is a good measurement criteria in these experiments, as the dataset is balanced. However,

this best accuracy is shared between the two configurations Cfg1 and Cfg 3 that only differ in the

incorporation of the NeXtVLAD and the BiLSTM components. Furthermore, comparing Cfg 5,

Cfg 6, and Cfg 7, the replacement of the NeXtVLAD component with the much simpler, non-

parametric average and maximum pooling layers has no effect on the predictive accuracy – all of

these three models score 91% accuracy. This, again, shows that the NeXtVLAD component does

not provide any improvement in terms of the predictive power, and only adds to the complexity of

the model. Such redundant complexities make deep learning models further inefficient.

A comparison of BERT (General-FT) – reported from Fagni et al. [103] – with BERT (Domain-

FT) Cfg 3 in Table 4.9 demonstrates that our achieved accuracy improvement is mainly due to the

domain-specific pre-training that we used in Cfg 3. Acquiring a boost in accuracy by utilizing

the CTBERT-v2 [58] model encouraged us to also experiment with a transformer encoder that is
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Table 4.10: Details of our model configurations. The Model column describes the components of the
architecture. T stands for the Transformer component, Bi for Bidirectional LSTM, NV for NeXtVLAD, Cl

for dense Classification layers, AP for Average Pooling, and MP for Max Pooling.

Configuration

(Accuracy)
Model Pre-Training Pooling

num. of

NeXtVLAD

clusters

post-BiLSTM

Operation

Cfg 1 (0.92) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 128 Addition

Cfg 2 (0.91) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 2 Addition

Cfg 3 (0.92) T+Cl CTBERT-v2 — — —

Cfg 4 (0.88) T+Bi+NV+Cl BERTLarge-Cased NeXtVLAD 2 Addition

Cfg 5 (0.91) T+Bi+AP+Cl CTBERT-v2 Avg Pooling — Addition

Cfg 6 (0.91) T+Bi+MP+Cl CTBERT-v2 Max Pooling — Addition

Cfg 7 (0.91) T+Bi+NV+Cl CTBERT-v2 NeXtVLAD 128 Concatenation

Cfg 8 (0.87) T+Bi+NV+Cl XLNETBase-Cased NeXtVLAD 128 Addition

Cfg 9 (0.91) T+Cl BERTweet — — —

Cfg 10 (0.91) T+Bi+NV+Cl BERTweet NeXtVLAD 128 Addition

pre-trained on general English Tweets. Hence, we also conduct experiments with BERTweet [61]

– a RoBERTa-based model pre-trained on Tweets – (Cfg 9 and Cfg 10). These models perform

comparably but are one percent less accurate compared to CTBERT-v2 in overall accuracy. We

also implemented the LSTM-based approach similar to Kudugunta and Ferrara [109] (third row

in Table 4.9) to report the results for a simpler model on the TweepFake dataset. Its accuracy is

significantly lower due to using a non-contextualized word embedding model.

To make our experiments comprehensive, we also run the GROVER discriminator model on

the dataset to assess its accuracy in detecting deepfake Tweets. GROVER initially was developed

in the context of defending against neural fake news; hence, it is a natural candidate to be tested

against deepfake bot-generated text. However, experiments with GROVER’s discriminator were

not included in the report by Fagni et al. [103]; and interestingly, GROVER outperforms the models

tested in their report. The data format in GROVER is different from raw text and it requires some

metadata (domain, date, authors, and headline fields) for training. In one experiment, we keep

these metadata fields empty, while in another one, we fill them with constant dummy data to see

the difference. We also try with two configurations of batch size and Transformer’s maximum

sequence length. The last three rows in Table 4.9 correspond to these experiments.
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The high accuracy of these classification models should not cause an imagination of safety

against deepfake, as none of the generator models are trained in an adversarial setup to confuse

deep learning discriminators. It is indeed required to investigate the effects of adversarial attacks

on deep fake text detection models to make them robust against advanced generator models and

bots.

Another interesting type of experiment involves investigating the difficulty of distinguishing

machine-generated text based on the type of the generator model. As discussed in Section 4.2.1,

the machine-generated data samples in the TweepFake dataset are produced by three major model

categories, namely GPT2, RNN, and Others (including Markov Chains, models that mix different

approaches, and unknown ones). To see the predictive power of the detection models against

different types of text generation models (bots), similar to Fagni et al. [103], we draw the heatmap

for the accuracy of four of the most accurate models from our experiments in Table 4.9 against the

type of the generator model in Figure 4.2.
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Figure 4.2: Accuracy heat map of our detection models over the type of the fake Tweet generator models.
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Chapter 5

Discussion

NeXtVLAD has a successful record in better accuracy in Computer Vision [22]. In image or

video processing, a large number of low-dimensional descriptors extracted from the original high-

dimensional image (such as SIFT vectors of size 128) are fed to NeXtVLAD. In NLP applications,

however, the token vectors have a much higher dimension. The visual features from Computer

Vision are often much more interpretable compared to word embedding vectors. It is possible

that this is the reason that the subspace representation produced by NeXtVLAD does not provide

any advantage over the original vector representation. Another possibility is that unlike images

or videos, sub-vector representations of tokens do not form meaningful units in natural language

tasks, and thus, the low-dimensional split actually hurts the learner. Our experiments also show

that the use of domain-specific models like CTBERT [58] offer comparable performance, but reach

their best results in fewer epochs of training.

We feel that it is important to distinguish the components of a complex NLP pipeline that

contribute to improvements in downstream tasks, from other components in the pipeline. While

stopping short of providing explainability to a deep learning system, this type of investigation can,

at the very least, provide attribution to specific components of NLP pipelines. In other words,

it can help us identify which parts of a pipeline are primarily responsible for improvements in a

downstream task. Such attributions can help us build comparable systems that are significantly

less resource-intensive. In our experiments for the sarcasm detection task, we were able to train

models based on the BERTLarge architecture with a 2-layer fully-connected classification head with

a batch size of 2 and sequence length of 512 on a single 12 GB GPU (NVIDIA GeForce GTX Titan

X). But, with the addition of BiLSTM and NeXtVLAD, the same configuration was only able to

fit a batch size of 1. For all the model configurations discussed in Section 4.1, BERTLarge-Cased +

BiLSTM + NeXtVLAD required two 24 GB GPUs (NVIDIA RTX 3090) to fit a batch size of 4.
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Chapter 6

Conclusion

We investigate the extent to which the NeXtVLAD component contributes to improved results

in a recent sarcasm detection task, and how it affects the accuracy in a deepfake text detection

task. We find that it offers little in terms of additional benefits. Our conjecture at this point is,

thus, that the 14% improvement achieved by Lee et al. [23] must entirely be due to the natural

language augmentation techniques used. In our experiments for the second task, while the bests of

our models improve the performance in terms of accuracy and average F1 score by 2 percent, the

NeXtVLAD component plays no role in this success.

Our work indicates that local aggregators like NeXtVLAD are unlikely to offer significant

benefits to classification tasks in natural language processing, and our empirical results confirm

this hypothesis across two tasks.

We hope that our insights can help future research in this direction by making it easier to

channel their efforts into aspects of a pipeline that have tangible and attributable benefits to the

final task, in NLP and in other applications of deep learning.

We conclude that it is extremely important not to rely on black-box interpretations in deep

learning, and at least, to provide attribution when proposing architectures or components in a deep

learning pipeline. Redundant complexity has environmental, financial, and technical costs. Even

without compression methods, it may be possible to make proposed deep learning models more

efficient, by deeply studying their components and understanding their role. However, the actually

important verdict here is for researchers who propose novel components in deep learning to explain

their intuitions, design components with scientifically solid grounds and motivations, and provide

attribution, to the best of their ability.

In addition to promoting the recommendations of Strubell et al. [21] for reducing the financial

and environmental costs and improving equity in artificial intelligence community, we summarize
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our conclusions in three further suggestions to enhance the quality of research findings in deep

learning while reducing those costs:

• In the designing phase, provide explanations or intuitions for the decisions made for the

architecture design and for the selection of pipeline components.

• Perform ablation studies on components of the proposed methodology; or preferably, in a

simple to complex fashion, incrementally add to a methodology or architecture to avoid

inclusion of useless components.

• When reporting experimental results, attribute the success of an approach to the correct

corresponding components of the method; meaning to elaborate the role of each component

in the achieved success.

In the field of NLP, in conjunction with studies that focus on querying and prompting available

language models, we promote efforts in architectural studies with the objective of interpreting

current components, and designing more efficient deep learning methodologies. We encourage

researchers, even those with limited access to computational power and resources, to study neural

architectures and try to design novel, efficient, and scientifically or intuitively solid topologies for

deep learning and put efforts into gaining further insights into the models. Although such studies

incur computational costs, those expenses can benefit the whole community eventually. As shown

by Thompson et al. [33], the current trends in deep learning’s increasing hunger for computation

may be prohibitive to its progress. We believe scientific design of new efficient algorithms or

hardware, and efforts in increasing the efficiency and interpretability of current deep learning can

mitigate this hunger and set the stage for its continued success in future.
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