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A TEST OF PHILLIPS' HYPOTIJESIS FOR EDDY VISCOSITY IN PIPE FLOW 

by 

Lionel V. Baldwin and Robert D. Haberstroh 

Colorado State University 
Fort Collins, Colorado 

In a recent paper, 0. M. Phillips (1) proposed a mechanism for the 

manner in which turbulent components support Reynolds stress in turbulent 

shear flow. Phillips' model is a generalization of Miles' mechanism for 

wind generated water waves in that each turbulent component is assumed to 

interact with the mean flow to produce an increment of Reynolds stress at 

the "matched layer" of that particular component. The derivation is 

rather involved but leads to a simple relation between measurable turbu

lence, statistical properties and eddy viscosity. The eddy viscosity de

rived by Phillips is not the customary formulation of Boussinesq, but it 

is easily related to the latter. Specifically, for a fully developed pipe 

flow, Phillips gives: 

d (TT ) 
d (r dU) 

dr = Ile dr rx dr (1) 

where 

1 = - p uw rx 

whereas the classical formulation is (2, p. 23), 

µ* 
dU 

1 = dr rx e (2) 

In other words, Phillips' mechanism leads to an eddy viscosity which 

is a proportionality constant between the stress gradient and the second 
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derivative of the mean velocity rather than the familiar form (Eq. 2). 

Furthermore, the mechanism relates µe to measurable physical properties 

of the turbulence; thus, 

µ = A p w2 8 e (3) 

where A is a number less than n and 8 the convected integral time 

scale of the lateral fluctuation velocity which has a mean square magnitude 

w2 • Phillips tested the analysis with experimental anemometer data ob

tained in the near field mixing region of an air jet (3) and he concluded 

that these data were consistent with the analytical prediction. For the 

jet flow mixing region, A= 0.24, but Phillips states that, depending on 

the shape of the turbulent eddy, the precise value may vary somewhat from 

one turbulent shear flow to another. 

Eddy viscosity models are widely used and, although there have been 

numerous advances recently in formulating rather general functions (e.g. 

Ref. 4), heuristic dimensional arguments are usually the sole basis of the 

formulation. Phillips' proposal is a welcome exception which should be 

critically tested in a variety of turbulent shear flows. This note 

summarizes the results of one such test in the core of fully developed 

pipe flow. 

The shear stress gradient is constant in a fully developed pipe flow 

and it is easily related to the wall pressure drop down the tube. A sum

mary of measured wall shear stress data for smooth tubes, as well as the 

ratio of bulk to centerline velocity, is given in Ref. 5 in the form of a 

review of the semiempirical velocity profile proposed by Pai (2, p. 42). 

This velocity profile is the most accurate available in the core region of 

pipe flow. The eddy viscosity of Eq. 1 may be derived using the Pai pro

file to be 
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s - 1 
n-s s-1 2n-2 
n-1 + n n-1 n 

[
n-s 
-- + n n-1 

2n-2 
ns (s-1) n 

s-1 2n-2][n-s --n --+ n-1 n-1 
2 s-1 2n-2] · n -- n n-1 

(4) 

Here n and s are empirical constants which are functions only of the 

Reynolds number; Ref. 5 gives numerical values for these constants in 

graphical and tabular form. At the pipe centerline, the dimensionless 

radius n = .£ = 0 and the Phillips a , 

cal to the classical version µ* 
e 

µe(O) n(s-1) 
---= 

µ n-s 

eddy viscosity µe becomes identi-

(5) 

Figure 1 is a plot of Equation 5 prepared using the n and s values of 

Ref . 5. Although not . shown in the plot, µe(0) = 0 at NRe < 2100 be

cause s is unity by definition in laminar pipe flow. 

The statistical properties of turbulence in pipe flow necessary to 

test Phillips' model (Eq. 3) were published in References 6 and 7. The 

Eulerian space-time correlation of the axial velocity fluctuations in the 

apparent convective frame of reference (7)were fit with exponential curves 

for the reported four mean flow velocities of air flowing in an 8-inch 

pipe (see Table I). The convective integral scales L' 
T 

(Ref. 3 

nomenclature) were then read as the values of T where the peak correla

tions dropped to the value of 1/e . This procedure is identical to that 

followed by Phillips (1) in interpreting the jet mixing region data of 

Davies (3) in his original computation of A. The lateral intensities 

of turbulence w2 were reported for the same experimental conditions in 

Ref. 6 in the following form: 
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and 

W"'o.7sW. 
Table 1 summarizes the turbulent properties, L' 

T 
(which Phillips used 

for E) in Ref. 1) and w2 , as well as the value of A computed from 

A = (3b) 

In pipe flow the values of A range from 0.43 to 0.26 with no systematic 

Reynolds number trend. The average value of A for pipe flow is 0.33 

which is only 30 percent larger than the value inferred by Phillips from 

jet data. Although more definitive experimental tests of Phillips model 

need to be designed, the pipe flow results are consistent in the same 

sense as the original experimental test employing jet data. 

It is worth noting in closing that a direct measurement of the 

turbulent diffusivity of heat at for the core of pipe flow was reported 

in Ref. 6 (Table 1) for these identical flow conditions. Using the 

kinematic eddy viscosity V (0) 
e 

calculated from Eq. 5 divided by the air 

density, an eddy Prandtl number NPrt at the pipe centerline may be com-

puted. Table 2 shows Np is essentially unity, which lends direct sup-
rt 

port to the classical version of the Reynolds analogy. In the same vein, 

Phillips' eddy viscosity formulation (Eq. 3) bears a striking resemblance 

to the analogous eddy viscosity of heat or mass which would be calculated 

from Taylor's theory of diffusion by continuous movements using the 

Eulerian-to-Lagrangian approximations proposed in References 6 and 7. 



Symbol 

V 

a 

A 

e 

L' 
T 

n 

r 
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u 

uw 

u2 

e 

n 

µ 

µe 

µ* e 
- µe 
=-e p 

p 

T rx 

s 

LIST OF SY!-IBOLS 

Pipe radius, ft 

Dimensionless constant, Eq. (3) 

Naperian logarithm base, 2.718 ... 

Convective integral scale of axial turbulent velocity from 
space-time data, sec 

Dimensionless constant, Eq. 4 
V 

e -;-, 
t 

u2a --, 
V 

turbulent Prandtl number 

Reynolds number 

Radial coordinate, ft 

Dimensionless constant, Eq. 4 

Bulk mean flow velocity, ft/sec 

Centerline velocity, ft/sec 

Reynolds shear stress component, ft 2/sec2 

Mean square of axial turbulent velocity, ft2/sec 2 

Mean square of radial turbulent velocity, ft 2/sec2 

Convective integral scale of radial turbulent velocity from 
space-time data, sec 

E.., dimensionless pipe radius 
a 

Molecular viscosity, lbF-sec/ft2 

Phillips' eddy viscosity, Eq. 1, lbF-sec/ft2 

Boussinesq's eddy viscosity, Eq. 2, lbF-sec/ft2 

Kinematic eddy viscosity, ft 2/sec 

Fluid density, lbF-sec/ft 4 

Turbulent shear stress, lbF/ft 2 
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