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A BST RA CT 

Nonrandomness in time se ries of a nnual values of flow and precip itat io n is investi
gated. Simpli fied m a thema tica l models are der ived for t he rela tionship of annua l 
fl ow, an nua l effecti ve precipita tion (defined as precipitatio n minus evaporation), 
annual precipitation at the ground, and annual precipitat ion at the cloud base. 

In ferences a bout the nonrandomness in ti me ;e ri es derived from these relation
ships are tested or. data of annual values for four :arge samples of river gauging a nd 
precipita tio n gauging stat ions. Sa mpl ing is m ade on both a globa l scale (flow) a nd 
a co nti nental scale (flow a nd precipita t io n) . T he effec t of non homogenei ty in data 
on the non randomness ::,f ti me srries is also tested . 

Conclusions are tha t ( I) the wa te r ca rryover in river bas ins from yea r to yea r, 
(2) the evaporation from ri ve r bas in , (3) the evapo~ation of rainfall in the a ir between 
the gro und a nd the cloud base, and (4) the inco ns istency and nonhomo genei ty in 
d a ta are four essentia l causes of non randomness in the se ri es of ann ua l flo w. The las t 
three factors arc m a inl f responsible for no nrandomness in series of annua l effective 
precipitation , and the last two factors for the no nrandomness in series of annual 
precipitation. 

There i a small ma rgin of nonrandomness left tha t cou ld be expla ined by causes 
from the upper atmosphere, oceans, and /or solar anc. cosmic activities. 

R ESUME 

Les se ries tem pore lles des debits et oes precipita tions annuel5 ne sont pas rigou
reusement a lca to ires. Des rela tions simpli fiees sort deduites entre Jes va lcurs annuelles · 
du debit, des precipit a tions effectives (prec ipita t ion ~oins evapora tion), de5 precip i
ta tions a u sol, et de c,~llcs a la base des n uagcs. 

Les conclusion re la ti ves aux ecarts des series temporellcs par rapport a des 
sequences p uremcnt a l.:ato ire5 -o nt con fron tees avec quatre echa ntillons d 'observations 
de sta tions limnim6tr iq ues et pluviometriques. L'echantillonnage es t fait sur une 
echelle a la fo is glo bale (debits) et con tinenta le •:debits et precip ita tions). 

L'effe t d'inhomogenc ite d ans lcs observations sur Jes ecarts des ser ies temporelles 
pa r rapport a d es sequences p uremen t a lea toires e t egalcment etudie. 

Les conclusions sont que ( I) le5 repor ts d'eau d'une annee a l'au tre d ans les 
bass ins versants, (2) ['evapora tion d a ns ces bas ins, (3) !'evaporation des plu ies au 
cours de leur chute da ns !'ai r et (4) l 'i nco nsistance et l ' inhomogenei te dans les obser
vations sont les causes essentie lles des ecarts entre !es ser ie~ tempore lles des debits 
annuels et des sequence purement a leatoi re~ Ces eca rts pour les prec ipi ta tions 
annuelles effecti ves sont surtout dus aux trois derniers facteu rs et ceux pour !es prec i
pita tions annue lles au so l aux deux dernie rs fac teurs. I I n 'existe qu'u n faible espo ir 
de trou ver une relation signific:itive ent re ces ecarts et d es causes liecs a la hau te 
atmo phere, les ocea ns ct/cu des ac ti vites so la ircs et cosmiques. 

(•) R esearch act1v1t1 es from which thi s paper results a re sponsored by U.S. 
N atio nal Scienci: Fo undat ion, and part ly hy U . S. O ffice of 'aval Research. 

(* • ) Professor -in-Cha rge of H ydrology Program, Civi l Engineerin g Department , 
Colorado Sta te University, Fort Collins, Colorado, U .S.A. 
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J. I NTRODUCTION 

1.1 . Objectives and de.fi11itio11s 

The subject of the paper is the study of fluctuations of wet and dry years through 
analysis of runoff and precipita tion. Dependence in their time series is s tudied. 

A random series is defined as a series which has no link among its members. 
Series wi th any type of link among members are nonrandom in sequence. 

1.2. Approach to i11 vesliga 1io11 

Ca rryover of water stored in a r iver basin from year to year, evaporation a nd 
evapotra nspira tion from river basin a rea , and evapo ration of rai nfall in the air are 
consirlcred here as some of the most e-sentia l physical causes of non randomness in the 
time series of an nual flo w and annual precipitation. Inconsis tency and non homogeneity 
in data are also conside red as important causes of nonrandomncs. 

A random series of a normal s tandard variable is used here as a bench-ma rk 
variable and series. In the text it will be referred to as random norma l variable. Pro
perties of series of an nu :i l flow and annual precipitation are compared with the bench
mark variable and series , and departures in thi s co mparison are expla ined by factors 
which are known to be the causes of m,nrandomness. 

Mathematical models of stochastic processe are derived in si mplifted forms, in 
order to show the potentia l causes of on randomness in series. Hypotheses underlying 
the models a re based on physical rela tionships a mong hydrologic var iables. 

Tests of nonrandomness in sequence of annual flow and annual precipita tion 
were made more reliable by using large samples of data. By sampling the s tations in 
wiue regions, on globa l and continen tal sca les, the usual limitations in time length 
of observa tions were to some extent eliminated. 

1.3. S1atislica l m e/hods of a11alysis 

Techniques used in the study of c ri es of annual flow and a nnua l precipitation as 
given here were se rial correlation analysis and analysi by range. Statistical inference 
of the resu lts has been made when the appropriate technique ha been available. 

1.4. Samples used i11 research 

Fou r large samples of data were t•scd as the research materi al. 
The first sample consis ts of data of 140 river gaugi ng stat ions with a total of 7667 

c1nnual flows, and average length of observation per station of 55 years, as sampl ing 
on the global scale (U.S. A. 7'2, Canada 13, Europe 37, Australia and New Zealand 11, 
and Asia and Africa 7). The seco nd la rge sample consists of dat a of 446 ri ver gauging 
stations with a total of 16509 a nnual flows, and av rage length of observation per 
statio n of 37 years, as sampling on the cont. inen ta l scale of Northwestern America 
(Weste rn U.S.A. 43 1, Western Canada 14) . The third large sample consists of 1140 
precipitation stations considered as being with relatively homogeneous data, with a 
total of 6 I 600 annual \'alues a11d ave rage len gth of observation rie r station of 54 years, 
as sa mpling on the continental sca le of Northwestern America (Western U.S. A . I 059, 
Wes tern Canada 81 ), covering the same region as the second sample. The fourth 
large sample consis ts of 4 72 p1 ccipit lion statio s co nsidered as being of non homo
geneous data, wi th a total of 27133 a nnu a l values , and an average length of observation 
per sta tion of 57 years (a ll sta tio ns from Western U.S.A.). This las t sample was used 
exclusively to test the effec t of nonhomogeneity in data on the characteristics of time 
series. For detailed description of sa mples see reference (9). 
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2. MATHEMATICAL MODELS 

2.1. Variables 

Variables used in the mathema tical models, a ll expressed as a nnual values for 
water years and for a river basin, are : V, now; P e, effecti ve precipita tion (net water 
yield of a tmosphere to a river basi n, or precipi tation minus evapo ra tio n for a year) ; 
P;, precipi ta tion at the grou nd level; E, vapo r· tion and evapotra nspira tion from river 
basin surface; Pc, precipitat ion at the clo ud ba ,e ; Ea, evaporation of rainfall between 
the cloud base and the ground ; W • and Wb , water stored in river bas in a t the end and 
at the beginning of a waler yea r, respectively ; Ll W, change in the total vol ume of 
wate r stored in river ba in fo r a year; e, ra ndom error in a ny va riable; i, inco nsistency 
in any va riab le (trends and jumps in time series caused by the sys tema tic errors); 
h, nonhomogeneity in any variable (tren ds and jumps in time series caused by natural 
a nd man made causes which alter the virgi n values of flow and precipita tion) ; g , errors 
in Ll W. For detailed description of m athematical models see reference (9). 

2.2. General matltemalica/ model 

The genera l mathematica l model used for investigation of dependence in series of 
annual flow, nn ua l effective precipita ti on, and annual precipitation is 

P , = Pc - (Ea + E) = Pi - E = V + W , - Wb = V + Ll W (I) 
with P; = Pc - Ea, and Ll w = w. - wb. . 

Seven variables Pc, Ea , P; , E, P e, Ll W and Va re cha racterized by their pro bability 
distributions and sequentia l patterns. These rope rties a re related , because Pc = 
P; + Ea; P; = P, + E; and P , = V - Ll W. The properties o f Ea , E, and Ll W 
determine the rela tionship amo ng the cila racteristics of Pc, Pi, P • a nd V. 

Takin g the errors and non ho mogeneity in V and Ll W into account, the true value 
P i e of annual effective precipi tation is 

Pi e = V ± e u ± iv ± h v + Ll W ± [;w (2) 

in which the rand o m errors ev decrease the nonrandomness of a series, while the 
inconsis tency iu and the no nl10mogeneity k v in V, a nd nonrandom erro rs gw in Ll W, 
in the form o f trends and jumps, increa e on the average the nonrandomness in the 
P , -series. ln general , the effect of rand om errors in the computed a nnual flows is 
smaller than the effect o f inconsistency a nd nonhomogeneity in data. 

2.3. R elalionsltip of annual flow 10 a,uuw / effecrive precipilation 

T he change Ll W in water ca rryover may be expressed as a simplified Markov 
linear model, gu re I, because W11 and W e may be expressed as the linear fu nctions 
of annual effective precipitation of previous years 

J-oo 

Ll W,. = P71 - 2 bjPn- j 

j - 0 

(3) 

with Ll W,,, change in ca rryover for 11th year; P,, , annu a l effective precipitatio n or 
P ,-va lue for the 11th year ; P11 - 1, annual effective precipita tion fo r the year which 
precedes the 11th year by j years; and bJ, coefficients which represent the proportions 
of P,. flowing ou t in successive years. 

Equation (3) is based on the properti es of outflow oi water stored in a river basin . 
Assuming an average recession curve of river flows at the end of water years, and 
the average distribution of rainfall and evaporation over river basin and within the 
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year, then the b1 coefficients have these six properties: (1) their sum is un ity; (2) they 
are all positive; (3) they dec rease mu note nically; (4) theoretically there is an infinite 
number of them, but practica lly they a re insignificant after b,,. , and 111 nu mber of 
years, which depends on the available storage spaces, and inCTow and outCTow conditions 
for storage spaces; (5) they are assumed constant fo r given river basin and given 
distribution of rainfall and evaporation within the yea r and over the river basin, but 
usually the value bo changes from yea r to year; and (6) they do not depend on P,
values, but each individual b1 depends on the time elapsed since the occurrence of a 
given annual effective precipitation . 

From eqs. (I) and (3) comes 

v,, 
j -oo 

2 b1 Pn- J ± e 
j~O 

(4) 

with e, va ri able which takes care of random errors, of the difference in distributions 
of precipitation and evaporation within the yea r a d over the river basin, and the 
u5e of average b1 values in eq. (4). Equation (4) and propert ies of b1 coefficients show 
that any significant a nd changing water carryover from yea r to year makes the 
annual flow V11 nonrandom in sequence when the an nu a l effective precipitation 
Pn- J is random in sequence, o r the degree of nonrandomness in V-series is increased 
if P ,-series is also nonrandom. 

2.4. Relationship of a1111ua/ effective precipitation lo annual precipitation 

A simple linear equation for annual evapora tion is assumed here as 

E = a Pi + b Wb ± f (5) 

with Pi, annual precipitation; Wb , annua l storage of water and moisture inside the 
river basin at the beginning of a water year; a and b, coefficients which depend on 
river basin and climatic factors; and/, a variable embracing the random errors and 
the effects of neglected fac tors . Wb is a function of precipitation, evaporation a nd 
runoff conditions of previous years. 

As P e = Pt - £, and by using eq. (5) and a M· rkov linear model for Wb, as a 
function of annual effective p°recipilation of previous years, figure I, and applying a 
recurrence procedure to express P , as functio n of Pt, then 

J- co 

Pn = 2 kJPp- J ± d 
J- 0 

(6) 

wilh Pn the P .-va lue for the 11th year; Pp-J, annual precipitation at the ground for 
the }th y..:a r previous to the 11th year ; /9 , coefficients (their sum is not unity, they are 
not all positive); and d, a va, iable taking care of the simplified assumptions and ne
glected facto rs and errors. 

Equation (6) with the Markov linear model shows that the dependence of annual 
evaporation from a river basin on the moisture history o f previous years introduces 
nonrandom ness in the sequence of a nnual effective precipitation, when the annual 
precipitatio n is random in sequence. However, the effect of evaporation is not simple 
as the effect of changes in water carryover, because a and b coefficients in eq. (5) are 
functions of many variables, and are related . 
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a 
Pn 

I 

t 

~ n-th year ' (n.',1)-th year ¾<n•2 )-th year + <n•3)-th year ~ 

Q 

~ (n-3)-th year + (n-2)-th year + (n-1)-th yea r ~-n-th year 
Fig. I - A schematic representation of wat er carryover from yea r to year, lower 

graph, The upper graph shows the proponio ns Cb-coefficien ts) of an annu al 
effec tive precip ita tion flowin g out fo r succe sive years. 

2.5. R ela1io11ship of 01111110/ precipitation 0 11 ground to a111wal precipita tion at cloud 
base (*). 

Starting from the approxim ate equations for the te rminal fall ve locity of raindrop 
in the air (1), the dis tribu tion of rai nd rop size as a fun ction of ra infall in tensi ty a nd 
elevatio n (2), the sta nda rd atmosphere, the equatio fo r total transfer o f hea t from the 
ai r to an evaporating a n<l ventila ted spherica l dr p, and the rate at which the total 
mass oiwa t"ifrvapo r and the latent heat are tramferred from a rai nd ro p to the vent ilated 
a ir (3), the evaporation of rainfa ll in a column of air of un it cross section area between 
the cloud base (eleva tion Z b) a nd the ground (elevat ion Zg) for the dura tion of rainfall 
to is given approximately by the equatio n 

l o fzb I co --
J 

e( T - T8)r;rJ(r )(l + 0 .246-yRe) 
Ea = aoa.g --------------dtdZ dr 

e - bo t- o z - zu , -o 
(7) 

(*) This st ud y of the evapora tion of rainfall in the air and of its effects on the 
nonrandomness of a nnu al precipitat ion at th ground was initiated by the au tho r 
while workin g as the guest with the U . S. National Center fo r Atmospheric Research, 
Boulder, Colorado, in July 1962. 
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where a0 = 4,r,k/ L = 1.21 x I o-6 (k, thermal conductivity of ai r = 5.66 x I o-5, 

cal/cm sec °C; L, latent hea t of cvaporization = 594.9 - 0.5 1 T, cal /gm, Tin °C); 
ex, factor greater than unity which takes care of no nsphericity of raindrops; g, gravi
ta tional constant; r, rai nd rop rad ius; e, water vai:or r-ressure al the altitude Z; T, dry
bulb temperature and T s, wet-bu lb temperat ure in °C; bo = kR2 K3/ B2L 2D2J = 

7200 dynes/cm2 (R, tni versal gas consta nt ; K, Kel ·,in temperature, K = 273 + T, 
Tin °C); 6, specific grav ity of wate r vapo r with respect to dry air; D, coefficient of 
diffusion of water vapor in air; J , mechanical equiva lent of heat); p(r), dist ribution 
function of raindrop sizes (2); R e, Reynolds nuribcr (Re = 2rVz/v; with , ·, , falling 
ve loci ty of the drop rc lati Ye to the dry ai r ; v = 0. 13 cm2/sec, kinematic viscosity) . 

The values e, T, Ts, p(r ), r, and R e change with time and a ltitude. As the evapor
ation Ea depends on e, T, and Zb, a nd as these three va ri ables depend to some extent 
on wate r evaporat ion from the ground in a region, a nd on ground conditions. the 
evaporation of rainfall in the a ir depends also on waler sto red in the ri ver basin in 
different form s and places. However, the clim a tic facto rs a re of a much more significant 
influence than the evaporation from the ground . 

As P; = Pc - Ea, the annual precipitat ion on the ground depends also on the 
climatic fa ctors and in a small measure a lso on the mo isture conditions in a river 
basin and around it of previo us yea rs, insomuch as the evaporation Ea depends on 
the moistu re stored in a ri ver basin or around it. This facto r may be of a significant 
effect in some regions c. nd may introduce the nonrando ness in the series of annual 
precipitation, when the annual precipitation at the cloud base is random in sequence. 

2.6 . Tes t of co11clusio11s ,'i-0 111 the above mat!tematical models 

From the simple nuthematical models, eq. (I), (4), (6), and (7), it results that. the 
carryover of water from year to yea r, in any for:n, the dependence of evaporation 
from the ground on the moisture in a river basio, sLorcd from previous years, the 
evapora tion of rainfa li in the air, affect the nonran o mness of se ri es of ann ual precipi
tation , annual effective precipitation, and annual now. 

Th:: series of V, Pe, and Pt are used to test the effect of£ and Ll W. Lack of suffi
cient da ta on series Pc makes a direct test of the effect of va riable Ea unfeas ible. 

2.7. Deter111i11atioll of va.•ir1hles V, P e, and Pt 

The variable V is obtained directly from the r:ver flow records. The P e variable 
is obtained from the equation P e = V + Ll W . Values of Ll Ware obtained by compu
ting the water volumes We and Wb using the average rcce~sion curve and the flow at 
the end of water year as an index d ischa rge (4) and (9). The variable Pi is obtained 
from precipitation recor s. 

3. ANALYSIS BY SER IAL CO RRELAT ION 

3. /. Serial correlation roefficie11t a11d its co11/ide11ce limits 

The serial correlation coefficient r k of lag k was computed by 

N - k t,·-k N-k 

) X1XHk - --
1
- ""X1 ""XHk 

._., N-k L L 
i - 1 1= 1 i= l 

(8) 
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with the variance 

(9) 

with N, sample size, a nd X t a nd X 1+ 1c, members of the series. 
T he confidence limits on 95 % level fo r r1c are given by R. L. Anderson (5) for 

rando m and circular time series appro,dma tely as 

- 1 ± 1.64 ,/ N - k-2 
L~5 % ) = · 

N - k - 1 
( 10) 

For r1 of a rando m time series, but taken as circular (the last member of time 
series is supposed to be followed by the first member), R . L. Anderson (5) gives the 
expected value 

and the standard erro r of r 1 

h = 
N - 1 

'\I N-1 
s(ri ) = - - -

N - I 

( 11 

( 12) 

Eq uations (8) th rough ( I 2) were use:J in the analysis of seria l correlation coeffi
ci<>nls for the va riables V, P ,, and P;. 

Time series in this paper are used as the open series, so it may be assumed that 
the expected va lue of r1 for random normal variable is zero . Both expected values, 
that of eq. ( 11 ) a nd zero, will be used h re. 

3.2. Serial correlation analysis of the first large sample 

The fi rst ser ial corre lat io n coeffic ient rt is c mputed for the data of 140 sta tions 
fo r both V-serics and P , -series . T h..: average values are: Pi ( V) = 0.176 a nd 1'1 (P e) = 
0.130. The 1'1 for random ci rcular series "ith .V = 55 is - 0.0 1 S, and h = 0 for open 
random series. 

Water carryover is the fac tor which accounts for 35.4 % of the positive value of 
r1 of V-serics as compared with P ,-series . Figure 2 shows the probability distributions 
of rt for 140 stat ions both of V-se ries and P , -series, and the rando m series with N = 55. 

In the range o f 20 %-95 %, the r1-dislributions fo r V- and P ,-series follow closely 
the slope of the r.1 -distribu tio n of random series for N = 55 . The depa rtures of the 
I'[ ( V) and r1 (P , ) distributions on the extremes from the normal distribution may be 
partly explained by the use of the average sa mple size N = 55 for 140 se ries, with a 
range of N from 40 to 150. 

This la rge sa mp le of flows fo r sta tions from severa l parts o f the wor ld includes 
many river bas ins with unusually grea t stcrage reservoi rs (St. Lawrence, Gola, Neva, 

ile, Lake Victoria, Lake Albert, etc.). Therefore, the differences in 1'1 and in r1-dis tri
but ions fo r V- and P ,-series wou ld be smaller th an given by the above results for o ther 
samples of river basins wi th less water carryover from year to year. 

F igu re 3 gives the correlograms (r k versus the lag k ) for both V- eries (upper 
graph) and P .-series (lower graph) fo r four river gauging stations from the firs t large 
sample, with 120 or more yea rs of flow observations tor each station. They are : G ola 
River a t Sjotorp-Viinersburg, Sweden , with 150 years (1808-1957); Rhine River at 
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Fig. 2 - Cumulative frequency distribu tions of firs: serial correlation coefficient (r1) 
fo r 140 river stations, using Cartesia n-probabili ty scales : (1) V-scries , computed ; 
(2) P ,-series , computed: (3) random circular series for N = 55 ; (4) ra ndom open 
series (f1 = O): (5 ) V-serics, filling a st raight iine for ran ge 20 %-95%; (6) ? , 
series, fttting a straight line fo r 20 %-95 % range o f c mula tive frequency. 

Bas ie, Swi tzer land, with ;so yea rs (1808- 1957); 'emunas a t Smalininkai, Lithu a nia, 
U. S.S. R. , with 132 years (181 1-1943); and Da m. be at Orshava , Roma nia, wi th 
I 20 years ( 1838- 1957). The r 1 ( V)-valucs for these foLr stations a re 0.463, 0.076, 0. I 85, 
and 0.096, respectively. T he r1(P ,)-va lucs fo r these fou r stations a re 0.009, 0.015, 
0.11 8, and - 0.001, respectively. The co nfidence li n its on 95 % level are computed 
by using eq. (10). The r k-values are determined up to k = N/4, with N the length of 
series . 

The compa riso n of 1'1 values of V-se ries lo those of P .-series for these stations 
with long records shows that in all fou r cases the water ca rryover accounts for a large 
portion of the posi tive firs t seria l correlation. 

The corrclograms lead to the conclusions, th at the rA-•Values, except fo r ri-valucs, 
may be co nsidered as not significant from zero on 95 % level. In this test 5 % of all 
rk-values should be outside I.he confidence li mits, what occurs approximately for 
these four correlograms. 

3.3. Seria l correlation analysis of the secund a11d third large samples 

There are two cases in these two samples, (a) the len gth of each of the three series 
( V, P , , a nd P1) is taken as 30 years ( I 931- 1960) for all stations, and (b) the actual 
length of record at each sta tion is used , with the average size of series Ni = 37 years 
for V and I' , variables, and N2 = 54 years for P, variable. 

240 



-0
3

 0 
2 

3 

rk
(P

e
l 

0
.3

 

0
. 0
.1

 

0 

-
0.

1 

-0
2

 

-0
3

 

N
 

.i
,.

 

4 
",

 

F
ig

. 

G
O

T
A

 
R

IV
E

R
 

-
-

N
E

M
U

N
A

S
 

R
IV

E
R

-
--

·-
·-

10
 

2
0

 
2

5
 

R
H

IN
E

 
R

IV
E

R
-

-
-
-.

-
D

A
N

U
B

E
 

R
IV

E
R

··
··

· 

3 
-

C
o

rr
cl

o
g

ra
m

s 
o

f 
sc

ri
c 

o
f 

an
n

u
al

 n
o

w
s 

(u
p

p
er

 g
ra

p
h

) 
an

d
 a

n
n

u
a

l 
ef

fe
ct

iv
e 

p
re

ci
pi

ta
ti

o
n

 (
lo

w
e

r 
g

rn
p

h
) 

fo
r 

th
e 

ri
ve

rs
 w

it
h 

lo
ng

.:
 t

 o
b

s.
:r

va
ti

o
n

s 
: 

G
ti

ta
 (

 1
50

),
 

R
h

in
e 

(1
50

),
 N

cm
u

n
as

 (
13

2)
, 

an
d

 
D

an
u

b
e 

(1
20

).
 

k 



The mea n values for r1 a re : 

(a) Length of series 30 years : 

V-serics , mean of 446 stations, 
P ,-series, mean of 446 stations 
Pi-series, mean of 114 stations 

h(V) = 0.163 . 
h(Pe) = 0.146. 
h (P1) = 0.028. 

(b) Average length of Vand P e series is 37 y ars, and of Pt series 54 years: 

V-series, mean of446 sta tions h( V) = 0.197. 
P ,-series, mean of 446 stations "1 (P e) = 0.181. 
Pi-series, mean of 1140 stations t'1( P;) = 0.055. 

The l't-values for a random and circular seri~ of length 30, 37, and 54, eq. (11), 
are - 0.0345, - 0.0278 , and - 0.019, respectively, a nd zero for random open series. 
The standard errors of ri for these tluee cases, eq. ( I 2), a re 0. 182, 0. I 64, and 0. I 36, 
respectively. 

This compariso n of the mean values of r1 for the tluee series shows that the change 
Ll Win water carryover accounts for about 10.5 % or 8.2 ~; of the positive correlation 
of ri in V-series, while l e evaporation E accounts for about 80.9% or 69.7 % of the 
positive correlation of r1 in P , -series, respectively fo r the periods of 30 yea rs and for 
the longes t ava ilable length of observations. 

The Fi values for three series V, P e, and P; increase with an increase of the average 
length of observations. The mean va lue is increased from 0.163 to 0.197 (o r 20.5 %) 
for V-series by an increase or average N from 30 to 37; fro m 0.146 to 0.18 1 (or 24 %) 
for P ,-series for the same change of average N ; ar.d from 0.028 to 0.055 (or I 00 %) 
for P;-ser ies for an increase of average /\i from 30 to 54. This cha nge may be explained 
by the fact that the period 1931-1 960 was simul taneo us for a ll stations, and as such 
may have a smaller average value of r1 than the average for 30-year periods.The 
increase of 1'1 ,, ith an increase of average Nmay be p1rtly explained also by the greater 
occurrence and influence of inconsistency and non l10 mogeneity in data in a longer 
period of observation, than in a shorter one. 

The example of correlograms of four stations with longes t records, figure 3, docs 
not suppor t a hypothesis for i'1 to increase constantly with. an increase of the average 
length of series. 

Figure 4 gives the tluee probability distributions of r 1 for V, P e and P;, for 30 
years' length of series. Figure 5 gives the same information for the lon ges t available 
length of observat ions. The probability distributions of random series (both circul ar 
and open) for each len gth of series are also given for comparative purposes. 

Fii;ure 4 shows that the probability distributions o f r1 ( V) and r1 (P e) follow closely 
the slope of the probability distribution of ranliom normal variable with N = 30 and 
s(r1 ) = 0. i 82 in the range f 5 %-95 % of probability. This conclusion i also applicable 
for the distribution of ri (P;), which is normally distrib ted with 1'1 (Pt) = 0.028, 
and standard errors = 0.168 for all the range of probJbility, except that the slope with 
s = 0. J 68 does not correspond closely to the slope with s (r1) = 0.182 of the random 
normal variable with N = 30. The di/Terence is not subst ntial. 

Figure 5 shows that the probability distributic ns of r1( V ) and r 1 (Pel follow 
closely the slope of the distribution of random normal variable with N = 37 and 
s(ri) = 0.164 in the range of 2.5 %-97 .5 ~{- The same conclusions are valid for the 
distribution of r 1 (Pi), with s(ri) = 0.136 fo r N = 54. 

This comparison of observed series with the rand m normal variable leads to the 
conclusion that a portion of the nonrandomncss in the series of an nual flow is ex
plained by water carryover from year to year in riw r basms. However, the major 
portion is explained by the evaporation from the river basin surface. Though the 
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Fig. 4 - Cumulative frequency distributi ons of first serial correlation coefficient (ri) . 
for series of 44 river stations (V- and P ,-series) and for series of 11 40 precipi
ta Lion sta tions ( Pi-series), with the length of these three series of 30 years ( 1931-
1960) in Carthesian-probabili ty scales: (I) V-se ries (a nnu al flow) ; (2) P ,-series 
(annual effective precipita tion); (3) Pi-se ries ( nnual precipitation); (4) random 
circular series for N = 30; and (5) ra nd m open series (fl = 0) for N = 30. 

precipitation sta tions do not co incide with the river basins, the fact that there are 
1140 precipitation stations in the same area as 446 rive r gaugi ng sta tions makes the 
in fe rence of the essenti a l effec t of evapora tion reliao le-

lt is expected tha t one part of the nonra ndo mncss measured by the first seria l 
correlation coefficient of precipitation o n the groun d may be expla ined by the evapo r
ation of raindrops in the air, and by the inconsistency and nonhomogeneity in data. 
The da ta is no t available for a d irect test of th is first · ypothesis, but it will be tested 
indi rectly. The second hypo thes is will a lso be briefly tested. 

3.4. Example of correlograms fo r river gauging sta tion with large carryover 

As an example of the effect of water carryover, t he river basin with the larges t 
LI JV-values , the correlograms of the St. Lawrence iver at Ogdensbu rg, . Y., both 
for V-series and P ,-series are given in figu re 6, together wi th the confidence limits 
on 95 % level. They show clearly th at the carry0ver is mainly responsible for the non
randomness of series of a nnu al flow . This example is an upper limit case, but it proves 
that the simpl ified mathematical model of eq. (4) int e form of Markov linear equati on 
is an attractive approximation for the patterns in sequence of V-series as it concerns 
carryover. For river basins wi th small carryovers, the simple relationship of eq. (4) 
is not as evident as in the case of the St. I .awrence River. 
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Fig. 5 - Cumula tive frequency d istributions of first seria l correlation coefficien t 
(r i ) for series of 446 stations (V- and P ,-serics), with tlte average length of series 
N = 31, and for series of I l 40 precipitation stat ions (Pf-series), with the average 
length of series N = 54, in Carthesia n-probability scales: (I) V-serics; (2) ? , 
series; ;3) Pf-series: (4) random circular series for N = 37 ; (5) random open sl'ries 
Vi = 0) for N = 37; (6) random circular series for N = 54; (7) random open 
series (Fi = 0) for N = 54. 
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Fig. 6 - Correlograms for series of annual flow ( V-series) and ann ual effective pre
cipitation (P,-scries) for St. Lawrence River at Ogdensburg, N. Y., U.S. A., 
for 97 years of observation. 
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Most ca rryovers of moisture in a r iver bas in for both the firs t and the second 
sample are either insign ifica nt or arc sign ifica nt on ly for one year (111 = I). This 
indicates that a model Vn = boP,. + b1Pn- 1 may be the simplest fit fo r the no n
randomness model of V-series as related lo the carryover. 

3.5. flldirec t tes t of the e.fjec t of evaporation in the air 011 11011ra11do11111ess of an1111al 
precipitalio11 nt the ground 

The d irec t test of the evaporat io n o f raindrops ll1 the a ir ca nn o t be carried out 
because of the lack of da ta on the precipita tio n a t the cloud base for large number of 
stations. However, an in direct test may show tha t there is a n effect of this evaporation 
on the nonrandomness of preci pi ta tion al the ground. 

The third la rge sample of 1140 precipita tion s tati ons with rela tive ly homogeneous 
data is divided in three ubsamplcs: (a) sta tio ns with the average a nnu a l precipitation 
grea ter than 500 mm, (b) sta tions with the average pr cipila tion between 250 and 
500 mm; a nd (c) stations with t he average precip itat io n below 250 mm. T ne th ree 
subsamples have 582, 463, and 95 stations, respect ively. 

The va lues h (P;) for the three su bsam ples and :-o r N = 30 arc 0.040, 0. 24, and 
- 0.027, respectively. The va lues Fi ( P1) for the three subsamples a nd maxi mum avail
able length of records are 0.063, 0.05 I and 0.024, respectively. 

The differences show that the arid a nd semi-arid reg ions , with sman precipitat ion 
at the ground, have on the average a smaller first se rial correla tion of a nn ua; precipi
ta tion a t the gro und than the sem i-humid or humid regions. They indi ate indirectl y 
tha t there is a n influence of evapora tion of rainfall in the air on the nonrandomness 
of annua l precipitation a t the ground . 

3.6. Effect of i11co11siste11cy and 11011/;0 111oge11eity i11 data 

F igu res 7 a nd 8 give the p robabi lity distributions of the r 1 coefficient for the series 
of annua l prec ipita tio n of I 140 precip ita tion statio ns with homogeneous data, a nd for 
472 precip itatio n stations with nonhomogeneous da ta , fo r both th e period of 30 years 
and the lon gest observatio n periods. 

The sta tions with nc nhomogcncous data a re those which were fo und as such 
either by a consistency test in the river flow fo recasting service of the U.S. Weather 
Bureau , or arc found such by the au thor because of a subs tantia l change in sta tion 
posi tion (horizontal o r vertical cha nge of gauge posi tio n during the observation 
pe riod). 

The va lu es t\ for homogeneo us a nd non homogeneous data of se ri es 30 years long 
are 0 .028 a nd 0.053, respect ivel y, and fo r da ta of se ries o f maximum avai lable length 
1' 1 arc 0.055 and 0.071, respectively. These va lues and the r 1-d istri bu tions show tha t 
the no n homogeneity in da ta is no t a negli gib le factor in creating the nonra ndo mness in 
time series of rai nfa ll and runoff. 

Though there may be a disag reement about th e cla,s iftcation of precipitation data 
into homogeneous a nd nonhomogencous, the large number of stations in the two 
classes tends to minimize error due to this cause, a nd va lida te t he conclusion that 
nonhomogeneity in da ta increases on the average the nonran domness of time series. 

These two samples of a nnua l p recipita tion may be suppo rted by th eoretical 
analysis. Whenever a trend or a jump, or the combina ti n of the two are introduced 
into a random time series, the average result is t a t t he series becomes nonrandom 
in sequence. 
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Fig. 7 - Cumulative frequency di stri buti o ns of fi rst seria l correlation coefficient (r 1) 
for series of 1140 precipita t ion statio ns wi th homogen eous data (P1i-series), 
and for series of 472 precipitatio n stations wi th nonhomogeneous da ta (P 2l-series) 
wi t h the average length of both groups o f series N = 30 years ( 193 1-1 960), in 
Ca rthesian-probability scales: ( I) P l i-series; (2) P 2 i-series; (3) random circula r 
series for N = 30 ; and (4) random open series (h = 0) for N = 30. 

4. ANALYSIS BY RANGE 

4. 1. Defi11itio 11 of range 

The maxi m um range for a disc rete time series a nd for n tim -unit intervals be
tween its successive members is defined here as the maximum difference R,. = s+ - S
of the accumula ted sum of departures from the mean val ue , with Rn the maxim um 
range, s+ the maximum positive and s- max imum nega tive value of the accumulated 
sum of departures for these II time-unit inte rvals. Accord ing to H. E. Hurst (6) the 
maximum range can be conceived as the maximum accum la ted storage, when there 
is never a deficit in outflow (w ich is equal here to t ile mean discharge) or as the 
maximum deficit, whe re there is never a ny storage, o r as the sum of accumula ted 
storage and deficit, when both sto rage and defici t ex ist. 

4.2. Distrib11tio11 of maximum range for a random time series 

T he asymp to tic values as fo r expected mean of the maxim um range of rando m 
normal varia ble fo r a la rge value of II is given by W . Feller (7) as 

(I 3) 
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Fig. 8 - Cum ulative frequency distributions of rst serial correlation coefficient (r1 ) 
for series of 1140 precipitation station of homogeneous data (P1i-series), with 
average length N = 54, and for series of 472 precipita tion sta tio ns of nonhomo
geneous data (P2 i-series), with avera ge len gth N = 57, in Carthesian-probability 
scales: (I) P 1 i-series; (2) P 2i-series; (3) random circular series for N = 54 ; (4) ran
dom open series (f 1 = 0) for N = 54. 

The exact distribution of ra nge Rn is difficult to obtain even for the small values 
of 11 = 4 or 5 (7). 

The expression for the expected values R ,. are given by A. A. A nis and 
E. H. Lloyd (8) as 

R. ,. = J! i ·-1/2 

i - 1 
(14 

4.3 . Co 111pariso 11 of m ean range of a1111ual effecti ve precipitation with that of random 
serit!s 

The comparison is made here for a subsampl e containing 85 ri ver ga ugin g sta tio ns 
(U . S. A. 72 , Canada 13) from the first large sam pie of 140 statio ns. The compa rison 
is made particularly fo r the means of all maxim um ra nges of standa rdized vari ables 
of annua l effective precipitation (P 0-serics) for 20 values of 11 ( 1-20). 

l f a time series had the length N = 60, th 11 there were 60 values of ra nge for 
11 = I, 30 val ues for 11 = 2, 20 values for 11 = 3, and so on, until there are only 3 
values for 11 = 20. The P e variable is fi rst standardizeci as x, = (X; - X) fs, and the 
sum S; of x, are computed for all values of i from Oto N. For a period of th e length 11 

(11, number of successive years), without overlappi g with the previous or the next 
period of length 11 ; the extreme values of the sum are determined , with Rn (P ,) = 
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s+ - S- fo r the series of each sta tion, a nd for ,z = 1 - 20. All R,,-va!ues of al l 
stations for a given II are averaged. In this manner, for 85 series there were 432 1 
val ues of R1, 2 137 for R 2, l4i7 for R3, and so decreasing. with only 183 values for 
R20. T he re liability of the computed Rn. decreases as 11 increases. 

F igure 9 shows three lines, t he asymp totic mea ns for ve ry la rge II of maxim um 
range computed by eq. ( I 3), the expected values, computed by eq. ( 14), and the average 
values R,, (P ,) fo r 85 stations, as functions of 11 . T he number of values Rn used in 
com puting R. 11 (P , ) is a lso given as function of II in figure 9. 
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F ig. 9 - Mean maximum range Rn as func tion of interval len gth ,z in years: (I) As
ymptotic means for la rge n; (2) exact valu es of mea ns ; (3 average val ues fo r 
P e-series (annual effective precipitation) fo r 85 river gaugin g stations (U.S.A. 
and Canada); (4) number of R 11 -values used in computatio n of R.11 : (5) difference 
6 R.n of values under (J) a d (2) in percen tage of values of (2). 

The R..-values of annual effective precipitation are grea ter for all 20 values of n 
than the R ,. -va lues of random series of a no rmal variable . The difference is smalles t 
for 11 = 1, 2, 3, and 4 and then increases fo r large 11-values. This resul t correspo nds 
to the standardized va riable with a small posi ti ve nonrandonrnes; in the series. 

The depa rtures of computed R,,(P ,,) from the exact ,alues of a random norma l 
'.'ariable may be explai ned by l e foilowi ng three factors : (a) Small nonrandomm,ss 
in the sequence of annual effect ive precipitation (r1 value is significantly different 
from zero); (b) Average ? , -distribution is skewed (average coefficient of skewness 
C , fo r 85 statio ns is different from zero): and (c) Inconsiscency and nonhomogeneity 
in data (which on the ave rage increase the no nrando mness). 

The average value of r 1 of P , -series for the subsample o r 85 stations is fi (P e) = 
0. 143. 

The average value of C s for the P ,-series of 85 statio s is (; 8 (Pe) = 0.422. T his 
is significantly d ifferent from ze ro. 

I nconsistency and nonhomogeneity in tl1e data m ust exis t, because there were 
ma ny cha nges in the past both through rive r basi n developments, a nd in the methods 
of sensing, recording and processi ng the data. 
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Regardless of the cffccl of these factors, which may have opposite influences on 
the maximum range, the difference of the computed and exact mean range is small 
for II small and large for II large. The relat ive difference of R.,.(P e) from the expected 
value o f R n, expressed as a percentage of Rn, d = l00[R,,(P ,) - R11 ]/R,, is given fo r 
each II value in figure 9. These differences in mear. range of P , -series show that the 
annual effective precipitatio n is not random in seG_uen e, but the degree of nonran
domness is smal.I as measured by the first serial correlation coefficient. 

4.4. Dis trib11tio 11 of ranges 

The exact distributions of R1, R 2, and R3 for random normal variable can be 
obtained analytically, and numerically integrated. T he greater II the mo re complex 
becomes the equat ion of exact dist ribution of R,,, a nd the more difficult becomes the 
numerical integration of thi , equation. 

The distribution of R n (P ,) for II from I to J, and the numerically in tegrated 
exact distributions of Rn for random series of norma l variable are compared in fig. 10. 

The comparison of the R,,(P e) a nd R n-d ist ributions also shows tl1at there is a 
small difference between the two series. In other, ords, for many practica l purposes 
the effect ive an nual precipitation may be considered as random in sequence for small 
values of 11 , but this conclus ion is not valid for large values of 11 . · 

4.5 . Examp le of the chauge of m ea11 ra11ge 1vith II fo r large water carry o i•er i11 river 

basi11s 

F igure I I shows th e mean values of ran ge, R. 11 ( V) a nd R.11 ( P ,), as compared with 
the asymptotic mean values for large II and the exact values, computed by eq. (13) 
and ( 14), respectively, for St. Lawrence River a t Ogdensburg, N. Y. Jt shows that the 
line of R11 (P e) is much c:oser to the values Rn of random s_ries than the line of R n ( V). 
l n this case Pe and V refer to the standardizeJ variables. The V- eries is essentially 
nonrandom in sequence because its average val ues of R n are much greater than 
the values Rn of the random normal variable. T his difference increases with an in
inc rease of 11 . However, P c-serie is very close to a random series because there is no 
essentia l difference between their average va lues of R,. even for large 11. This di fference 
between V- and P ,-series is not so evident fo r most of the river basins with re latively 
sma ll water carryover. 

5. CONCLUSIONS 

From the above mathematica l models, samples, tests and comparisons, the 
following conclusions may be drawn : 

(I) onrandomncss in sequence of time series of annual values of flow, effective 
precipitation, and precipitation at the ground decreases from flows to effective pre
cipita tion,_ and from effective precipi tation to precipitat ion. 

(2) Nonrandomness in series of annual flows is produced la rgely by the four 
factors : water carryover from year to year, e aporation and evapotranspiration 
from rive r basin surface, evaporat ion of rainfall in the air, and inconsistency and 
nonhomogenei ty in data . 

(J) Nonrandomness left in series of annual values after the above factors arc 
accounted for is rela ,ively small. 

(4) Before attempts a re made to correlate wit a nd a ttribute the nonrandomness 
in s.:ries of annual flow, annual effective precipitatio n, a nd annual precipitation to the 
factors of the upper atmosphere, oceans, a nd sol· r and cosmic activities, the known 
causes of nonrandomness as water ca rryover, evapora tion, inconsistency and non
homogeneity in data, sh ould be first accounted for. 
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F ig. 11 - Mean maximum ranges Rn as funct io n o f interval length ,z (in year~) for 
St. Lawrence River at Ogd_nsburg, N . Y., U.S.A ., for 97 years of observation, 
as compa red with the theoretical va lues. (I) Asymptotic mean range Rn fo r large 11; 
(2) Exact va lues R.11 for ra;idom series of random normal va riable ; (3) R, 11 (P ,)
values for ser ies of effective precipitatio n f St. Lawn:nce River; and (4) R_ 11 (V)
values for series of annual flow of SL Lawrence River. 

(5) Simple mathematical models describing the relationsh ip of variables o f 
annual values of flow, carryo 'er, evaporation and precipitation may explain the 
differences in the nomandomness of time ~eries scudied. The e models are, however, 
complex in a detailed analysis because of the changes in distributions of precipitation 
and evaporation both inside the river bas,ns a nd within the year from one year to 
a nother. 

(6) Samples of data ot' stat ions scattered on a large area (global or continen tal 
sa mpling), with the average in trastation c rrela tion sma ll, enable a reliable inference 
about the amount and the causes of nonrandom ness in the sequence of annual flow 
a nd an nual precipitation . 

(7) The no nrandomness in annual flow and annual effective precipi tation is 
relatively small on the average, and it changes from station to statio n, and/or fro m 
region to region. 

(8) A net f river gaugi ng and precipitation gauging stations, with homogeneous 
data and consi~ tent reco rds , well distributed on global and continental scales, and a 
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thoro ugh study of the effects of water carryover, evapora tion on the ground and in 
the air, as well as of nonhomogeneity a nd incon iscency in data may throw more 
light in the future on the patterns in s.:quence o f wet and dry yea rs, than is now avail
able. 
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