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ABSTRACT

Nonrandomness in time series of annual values of flow and precipitation is investi-
gated. Simplified mathematical models are derived for the relationship of annual
flow, annual effective precipitation (defined as precipitation minus evaporation),
annual precipitation at the ground, and annual precipitation at the cloud base.

Inferences about the nonrandomness in time series derived from these relation-
ships are tested on data of annual values for four large samples of river gauging and
precipitation gauging stations. Sampling is made on both a global scale (flow) and
a continental scale (flow and precipitation). The effect of nonhomogeneity in data
on the nonrandomness of time series is also tested.

Conclusions are that (1) the water carryover in river basins from year to year,
(2) the evaporation from river basin, (3) the evaporation of rainfall in the air between
the ground and the cloud base, and (4) the inconsistency and nonhomogeneity in
data are four essential causes of nonrandomness in the series of annual flow. The last
three factors are mainly responsible for nonrandomness in series of annual effective
precipitation, and the last two factors for the nonrandomness in series of annual
precipitation.

There is a small margin of nonrandomness left that could be explained by causes
from the upper atmosphere, oceans, and/or solar anc cosmic activities.

RESUME

Les séries temporzlles des débits et des précipitations annuels ne sont pas rigou-
reusement aléatoires. Des relations simplifiées sort déduites entre les valeurs annuelka'
du débit, des précipitations effectives (précipitation moins évaporation), des précipi-
tations au sol, et de celles a la base des nuages.

Les conclusions relatives aux écarts des series temporelles par rapport a des
séquences purement aléatoires sont confrontées avec qLatre échantillons d’observations
de stdtlons limnim¢triques et pluviométriques. L’échantillonnage est fait sur une
échelle a la fois globale (débits) et continentale (débits et précipitations).

L’effet d’inhomozénéité dans les observations sur les écarts des séries temporelles
par rapport A des séquences purement aléatoires est également étudié.

Les conclusions sont que (1) les reports d’eau d’une année a l'autre dans les
bassins versants, (2) ’évaporation dans ces bassins, (3) I’évaporation des pluies au
cours de leur chute dans Lair et (4) I'inconsistance et I’ mhomogenelte dans les obser-
vations sont les causes essentielles des écarts entre les séries temporelles des débits
annuels et des séquences purement aléatoires. Ces écarts pour les précipitations
annuelles effectives sont surtout dis aux trois derniers facteurs et ceux pour les préci-
pitations annuelles au sol aux deux derniers facteurs. Il n’existe qu’un faible espoir
de trouver une relation significative entre ces écarts et des causes liées a la haute
atmosphére, les océans et/cu des activités solaires et cosmiques.

(*) Research activities from which this paper results are sponsored by U.S.
National Science Foundation, and partly by U.S. Office of Naval Research.

(**) Professor-in-Charge of Hydrology Program, Civil Engineering Department,
Colorado State University, Fort Collins, Colorado, U.S.A.
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1. INTRODUCTION

1.1. Objectives and definitions

The subject of the paper is the study of fluctuations of wet and dry years through
analysis of runoff and precipitation. Dependence in their time series is studied.

A random series is defined as a series which has no link among its members.
Series with any type of link among members are nonrandom in sequence.

1.2. Approach to investigation

Carryover of water stored in a river basin from year to year, evaporation and
evapotranspiration from river basin area, and evaporation of rainfall in the air are
considered here as some of the most essential physical causes of nonrandomness in the
time series of annual flow and annual precipitation. Inconsistency and nonhomogeneity
in data are also considered as important causes of nonrandemnes.

A random series of a normal standard variable is used here as a bench-mark
variable and series. In the text it will be referred to as random normal variable. Pro-
perties of series of annual flow and annual precipitation are compared with the bench-
mark variable and series, and departures in this comparison are explained by factors
which are known to be the causes of nonrandomness.

Mathematical models of stochastic processes are derived in simplified forms, in
order to show the potential causes of nonrandomness in series. Hypotheses underlying
the models are based on physical relationships among hydrologic variables.

Tests of nonrandomness in sequence of annual flow and annual precipitation
were made more reliable by using large samples of data. By sampling the stations in
wide regions, on global and continental scales, the usual limitations in time length
of observations were to some extent eliminated.

1.3. Statistical methods of analysis

Techniques used in the study of series of annual flow and annual precipitation as
given here were serial correlation analysis and analysis by range. Statistical inference
of the results has been made when the appropriate technique has been available.

1.4. Samples used in research

Four large samples of data were used as the research material.

The first sample consists of data of 140 river gauging stations with a total of 7667
annual flows, and average length of observation per station of 55 years, as sampling
on the global scale (U.S. A. 72, Canada 13, Europe 37, Australia and New Zealand 11,
and Asia and Africa 7). The second large sample consists of data of 446 river gauging
stations with a total of 16509 annual flows, and average length of observation per
station of 37 years, as sampling on the continental scale of Northwestern America
(Western U.S.A. 431, Western Canada 14). The third large sample consists of 1140
precipitation stations considered as being with relatively homogencous data, with a
total of 61600 annual values and average length of observation per station of 54 years,
as sampling on the continental scale of Northwestern America (Western U.S.A. 1059,
Western Canada 81), covering the same region as the second sample. The fourth
Jarge sample consists of 472 piecipitation stations considered as being of nonhomo-
gencous data, with a total of 27133 annual values, and an average length of observation
per station of 57 years (all stations from Western U.S.A.). This last sample was used
exclusively to test the effect of nonhomogeneity in data on the characteristics of time
series. For detailed description of samples see reference (9).
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2. MATHEMATICAL MODELS

2.1. Variables

Variables used in the mathematical models, all expressed as annual values for
water years and for a river basin, are : V, flow; P, effective precipitation (net water
yield of atmosphere to a river basin, or precipitation minus evaporation for a year);
P;, precipitation at the ground level; E, evaporation and evapotranspiration from river
basin surface; Pe, precipitation at the cloud base; E4, evaporation of rainfall between
the cloud base and the ground; W, and Wj, water stored in river basin at the end and
at the beginning of a water year, respectively; /1 W, change in the total volume of
water stored in river basin for a year; ¢, random error in any variable; i, inconsistency
in any variable (trends and jumps in time series caused by the systematic errors);
h, nonhomogeneity in any variable (trends and jumps in time series caused by natural
and manmade causes which alter the virgin values of flow and precipitation); g, errors
in AW. For detailed description of mathematical models see reference (9).

2.2. General mathematical model

The general mathematical model used for investigation of dependence in series of

annual flow, annual effective precipitation, and annual precipitation is
Pe=P— (Eg+E)=Pi—E=V+We—Wo=V+AW (1)
with Pi = Po — Eq, and AW = W¢ — Wp.

Seven variables P, Eq, Pi, E, Pe, /l W and V are characterized by their probability
distributions and sequential patterns. These properties are related, because Pr =
Pi + Eq; Pi = Pe+ E; and Pe = V -+ AW. The properties of Eq, E, and AW
determine the relationship among the characteristics of P., P;, P, and V.

Taking the errors and nonhomogeneity in ¥ and Z W into account, the true value
Pie of annual effective precipitation is

Pie=V ey +iv+hy+ AW + g #3]

in which the random errors e, decrease the nonrandomness of a series, while the
inconsistency iy and the nonhomogeneity #, in ¥, and nonrandom errors g in 4 W,
in the form of trends and jumps, increase on the average the nonrandomness in the
Pe-series. In general, the effect of random errors in the computed annual flows is
smaller than the effect of inconsistency and nonhomogeneity in data.

2.3. Relationship of annual flow to annual effective precipitation

The change AW in water carryover may be expressed as a simplified Markov
linear model, figure I, because Wp and W, may be expressed as the linear functions
of annual effective precipitation of previous years

j=0
AWy = Py — "> bjPyy 3)
io

with /1 Wy, change in carryover for nth year; Py, annual effective precipitation or
Pe-value for the nth year; P,; annual effective precipitation fer the year which
precedes the nth year by j years; and by, coeflicients which represent the proportions
of P, flowing out in successive years.

Equation (3) is based on the properties of outflow of water stored in a river basin.
Assuming an average recession curve of river flows at the end of water years, and
the average distribution of rainfail and evaporation over river basin and within the
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year, then the b; coefficients have these six properties : (1) their sum is unity; (2) they
are all positive; (3) they decrease monotenically; (4) theoretically there is an infinite
number of them, but practically they are insignificant after b,;, and m number of
years, which depends on the available storage spaces, and inflow and outflow conditions
for storage spaces; (5) they are assumed constant for given river basin and given
distribution of rainfall and evaporation within the year and over the river basin, but
usualiy the value by changes from year to year; and (6) they do not depend on P,-
values, but each individual b; depends on the time elapsed since the occurrence of a
given annual effective precipitation.

From eqgs. (1) and (3) comes

j=o

Vi = ijpn—j:te (4)
i=0

with e, variable which takes care of random errors, of the difference in distributions
of precipitation and evaporation within the year and over the river basin, and the
use of average b; values in eq. (4). Equation (4) and properties of b; coefficients show
that any significant and changing water carryover from year to year makes the
annual flow V), nonrandom in sequence when the annual effective precipitation
Pn—yisrandom in sequence, or the degree of nonrandomness in V-series is increased
if Pe-series is also nonrandom.

2.4. Relationship of annual effective precipitation to annual precipitation

A simple linear equation for annual evaporation is assumed here as
E =aP; + bWy + f (5)

with Pj, annual precipitation; Wjp, annual storage of water and moisture inside the
river basin at the beginning of a water year; @ and b, coefficients which depend on
river basin and climatic factors; and f, a variable embracing the random errors and
the effects of neglected factors. ¥} is a function of precipitation, evaporation and
runoff conditions of previous years.

As P, = P; — E, and by using ¢q. (5) and a Markov linear model for Wy, as a
function of annual effective precipitation of previous years, figure 1, and applying a
recurrence procedure to express P, as function of Pj, then

j=o0
Pp = kiPp—y +d (6)
j=0
with P, the P,value for the nth year; Pp—j, annual precipitation at the ground for
the jth year previous to the nth year: kj, coeflicients (their sum is not unity, they are
not all positive); and d, a variable taking care of the simplified assumptions and ne-
" glected factors and errors.

Equation (6) with the Markov linear model shows that the dependence of annual
evaporation from a river basin on the moisture history of previous years introduces
nonrandomness in the sequence of annual effective precipitation, when the annual
precipitation is random in sequence. However, the effect of evaporation is not simple
as the effect of changes in water carryover, because « and b coeflicients in eq. (5) are
functions of many variables, and are related.

236



b,

k— n-th year —k(ndl)-th year —<(n+2)-th year—&(n+3)-th year—

)

Ll d

:w}\\mlmmm5

e il

b . ‘N’:h
il t

k (n-3)-th year =« (n-2)-th year & (n-1)-th year ———n-th year ——
Fig. 1 — A schematic representation of water carryover from year to year, lower
graph. The upper graph shows the proportions (b-coefficients) of an annual
effective precipitation flowing out for successive years.

2.5. Relationship of annual precipitation on ground to annual precipitation at cloud
base (*).

Starting from the approximate equations for the terminal fall velocity of raindrop
in the air (1), the distribution of raindrop size as a function of rainfall intensity and
elevation (2), the standard atmosphere, the equation for total transfer of heat from the
air to an evaporating and ventilated spherical drep, and the rate at which the total
mass of water vaporand the latent heat are transferred from a raindrop to the ventilated
air (3), the evaporation of rainfall in a column of air of unit cross section area between
the cloud base (elevation Zp) and the ground (elevation Zj) for the duration of rainfall
tp is given approximately by the equation

to Zy .0 —_—
T-—T i 0.2464/ R
Eq = aong J- f f - gelid + VR azar %)
t=0 Yz-2g e—bo

=0

(*) This study of the evaporation of rainfall in the air and of its effects on the
nonrandomness of annual precipitation at the ground was initiated by the author
while working as the guest with the U.S. National Center for Atmospheric Research,
Boulder, Colorado, in July 1962.
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where ag = 47k/L = 1.21 x 106 (k, thermal conductivity of air = 5.66 x 105,
cal/em sec °C; L, latent heat of evaporization = 594.9 — 0.517, cal/gm, T in °C);
o, factor greater than unity which takes care of nonsphericity of raindrops; g, gravi-
tational constant; r, raindrop radius; e, water vapor pressure at the altitude Z; 7, dry-
bulb temperature and T, wet-bulb temperature in °C; by = kR2K3/e212D2J =
7200 dynes/cm?2 (R, universal gas constant; K, Kelvin temperature, K = 273 + T,
T in °C); ¢, specific gravity of water vapor with respect to dry air; D, coefficient of
diffusion of water vapor in air; J, mechanical equivalent of heat); p(r), distribution
function of raindrop sizes (*); R., Reynolds number (R, = 2rV./v; with }7, falling
velocity of the drop relative to the dry air; » = 0.13 cm?/sec, kinematic viscosity).

The values e, T, Ts, p(r), r, and R, change with time and altitude. As the evapor-
ation Eg depends on e, T, and Zp, and as these three variables depend to some extent
on water evaporation from the ground in a region, and on ground conditions, the
evaporation of rainfall in the air depends also on water stored in the river basin in
different forms and places. However, the climatic factors are of a much more significant
influence than the evaporation from the ground.

As P; = P, — Eg4, the annual precipitation on the ground depends also on the
climatic factors and in a small measure also on the moisture conditions in a river
basin and around it of previous years, insomuch as the evaporation E, depends on
the moisture stored in a river basin or around it. This factor may be of a significant
effect in some regions znd may introduce the nonrandomness in the series of annual
precipitation, when the annual precipitation at the cloud base is random in sequence.

2.6. Test of conclusions from the above mathematical models

From the simple mathematical models, eq. (1), (4}, (6), and (7), it results that the
carryover of water from year to year, in any form, the dependence of evaporation
from the ground on the moisture in a river basin, stored from previous years, the
evaporation of rainfali in the air, affect the nonrandomness of series of annual precipi-
tation, annual effective precipitation, and annual flow.

The series of V, Pe, and P; are used to test the effect of £ and A W. Lack of suffi-
cient data on series P, makes a direct test of the effect of variable E, unfeasible.

2.7. Determination of variables V, P, and P;

The variable V is obtained directly from the r.ver flow records. The P, variable
is obtained from the equation P, = V + /A W. Valuzs of /I W are obtained by compu-
ting the water volumes W, and W), using the average recession curve and the flow at
the end of water year as an index discharge (4) and (%). The variable P; is obtained
from precipitation recorcs.

3. ANALYSIS BY SERIAL CORRELATION

3. 1. Serial correlation coefficient and its confidence limnits
The serial correlation coefficient ry of lag k& was computed by

N-k N—k N-k

=, 1 = '
S XXk —m S0 S
2 XXk N—kZ lALXHk
i=1 =1 =1
k= N—k N—k 2-1/2 &
1/217 1 / — g
N f 2 N'yi2,, — e
[( k— 1)sk ] [‘éth L A r \ %Xﬂk) :l
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with the variance

1 = T s
L " TN 2}' 9
Sk N—k—l[é{‘ N_k<;=1 i 9)

with N, sample size, and X; and Xj;x, members of the series.
The confidence limits on 95% level for ry are given by R.L. Anderson (°) for
random and circular time series approximately as

—1 + 1.644/N—k—2
N—k—1

L(95%) = (10)

For r1 of a random time series, but taken as circular (the last member of time
series is supposed to be followed by the first member), R.L. Anderson (°) gives the
expected value

Flr=— 11
! N—1 , (
and the standard error of r;
/N=2
A\
s(r1) = ——— . (12)
1) N1

Equations (8) through (12) werc used in the analysis of serial correlation coeffi-
cients for the variables V, P,, and P;.

Time series in this paper are used as the open series, so it may be assumed that
the expected value of r; for random normal variable is zero. Both expected values,
that of eq. (11) and zero, will be used here.

3.2. Serial correlation analysis of the first large sample

The first serial correlation coefficient ry is computed for the data of 140 stations
for both V-scries and P.-series. The average values are: F1(V) = 0.176 and 71 (P,) =
0.130. The Fy for random circular series with N = 55 is —0.018, and 7; = 0 for open
random series.

Water carryover is the factor which accounts for 35.4%, of the positive value of
ry of V-series as compared with P,-series. Figure 2 shows the probability distributions
of ry for 140 stations both of V-series and P .-series, and the random series with N = 55.

In the range of 20%-95%, the ri-distributions for V- and P-series follow closely
the slope of the ry-distribution of random series for N = 55. The departures of the
r1(V) and r;(P,) distributions on the extremes from the normal distribution may be
partly explained by the use of the average sample size N = 55 for 140 series, with a
range of N from 40 to 150.

This large sample of flows for stations from several parts of the world includes
many river basins with unusually great stcrage reservoirs (St. Lawrence, Gota, Neva,
Nile, Lake Victoria, Lake Albert, etc.). Therefore, the differences in F; and in ry-distri-
butions for V- and P.-series would be smaller than given by the above results for other
samples of river basins with less water carryover from year to year.

Figure 3 gives the correlograms (ry versus the lag k) for both V-series (upper
graph) and P.-series (lower graph) for four river gauging stations from the first large
sample, with 120 or more years of flow observations tor each station. They are : Gota
River at Sjétorp-Vinersburg, Sweden, with 150 years (1808-1957); Rhine River at
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Fig. 2 — Cumulative frequency distributions of first serial correlation coefficient (r1)
for 140 river stations, using Cartesian-probability scales : (1) V-series, computed;
(2) Pe-series, computcd (3) random circular series for N = 55; (4) random open
series (71 = 0); (5) V-series, fitting a straight line for range 20,,,-95%, (6) P
series, fitting a straight line for 2094-95% range of cumulative frequency.

Basle, Switzerland, with 150 years (1808-1957); Nemunas at Smalininkai, Lithuania,
U.S.S.R., with 132 years (1811-1943); and Danube at Orshava, Romania, with
120 years (1838-1957). The ri(V)-values for these four stations are 0.463, 0.076, 0.185,
and 0.096, respectively. The ri(P.)-values for these four stations are 0.009, 0.015,
0.118, and —0.001, respectively. The confidence limits on 959% level are computed
by using eq. (10). The ry-values are determined up to k = N/4, with N the length of
series.

The comparison of 7y values of V-series to those of P.-series for these stations
with long records shows that in all four cases the water carryover accounts for a large
portion of the positive first serial correlation.

The correlograms lead to the conclusions, that the ryp-values, except for ri-values,
may be considered as not significant from zero on 959 level. In this test 5% of all
rr-values should be outside the confidence limits, what occurs approximately for
these four correlograms.

3.3. Serial correlation analysis of the second and third large samples

There are two cases in these two samples, (a) the length of each of the three series
(V, Pe, and P;) is taken as 30 years (1931-1960) for all stations, and (b) the actual
length of record at cach station is used, with the average size of series N = 37 years
for ¥V and P, variables, and Nz = 54 years for Py variable.
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The mean values for ry are:

(a) Length of series 30 ycars :

V-series, mean of 446 stations, Fi(V) = 0.163.
P.-series, mean of 446 stations F1(Pe) = 0.146.
Pi-series, mean of 1140 stations F1(P;) = 0.028.

(b) Average length of ¥V and P, series is 37 years, and of P; series 54 years :

V-series, mean of 446 stations F1(V) = 0.197.
P .-series, mean of 446 stations F1(P¢) = 0.181.
Pi-series, mean of 1140 stations 71(P;) = 0.055.

The Fi-values for a random and circular series of length 30, 37, and 54, eq. (11),
are —0.0345, —0.0278, and —0.019, respectively, and zero for random open series.
The standard errors of r; for these three cases, eq. (12), are 0.182, 0.164, and 0.136,
respectively.

This comparison of the mean values of rj for the three series shows that the change
AW in water carryover accounts for about 10.5% or 8.2% of the positive correlation
of r1 in V-series, while the evaporation E accounts for about 80.9% or 69.7% of the
positive correlation of ry in Pe-series, respectively for the periods of 30 years and for
the longest available length of observations.

The 71 values for three series V, P, and P; increase with an increase of the average
length of observations. The mean value is increased from 0.163 to 0.197 (or 20.5%)
for V-series by an increase of average N from 30 to 37; from 0.146 to 0.181 (or 249,
for Pe-series for the same change of average N; ard from 0.028 to 0.055 (or 100%;)
for Pj-series for an increase of average N from 30 to 54. This change may be explained
by the fact that the period 1931-1960 was simultancous for all stations, and as such
may have a smaller average value of r; than the average for 30-year periods.The
increase of 71 with an increase of average N may be partly explained also by the greater
occurrence and influence of inconsistency and nonhomogeneity in data in a longer
period of observation, than in a shorter one.

The example of correlograms of four stations with longest records, figure 3, does
not support a hypothesis for 7 to increase constantly with an increase of the average
length of series.

Figure 4 gives the three probability distributions of ry for V, P, and Py, for 30
years’ length of series. Figure 5 gives the same information for the longest available
length of observations. The probability distributions of random series (both circular
and open) for each length of series are also given for comparative purposes.

Figure 4 shows that the probability distributions of r1 (V) and r1 (P,) follow closely
the slope of the probability distribution of random normal variable with N = 30 and
s(ry) = 0.182 in the range of 5%-959% of probability. This conclusicn is also applicable
for the distribution of r1(P;}, which is normally distributed with 7;(P;) = 0.028,
and standard error s = 0.168 for all the range of probability, except that the slope with
s =0.168 does not correspond closely to the slope with £(r1) = 0.182 of the random
normal variable with N = 30. The difference is not substantial.

Figure 5 shows that the probability distributicns of r1(V) and ri(P,) follow
closely the siope of the distribution of random normal variable with N = 37 and
s(ry) = 0.164 in the range of 2.5%-97.5%. The same conclusions are valid for the
distribution of r1(P;), with s(ry) = 0.136 for N = 54,

This comparison of observed series with the random normal variable leads to the
conclusion that a portion of the nonrandomness in the series of annual flow is ex-
plained by water carryover from year to year in river basins. However, the major
portion is explained by the evaporation from the river basin surface. Though the

242



N =30 years

—T;(Pe)=0146

s e )
| . H Rv)=0163

00 S e
&3 - 1 (P)-0.028

-07+ ke aPF9C% — 5

_1m - ¢ 1 - | . V. 1 L L L 1 A1 1 1 1 1 i = & i L J
01 051 2 8 10 2030405060780 90 95 9899 998 9999

Fig. 4 — Cumulative frequency distributions of first serial correlation coefficient (r1).
for series of 446 river stations (V- and P.-series) and for series of 1140 precipi-
tation stations (Pi-series), with the length of these three series of 30 years (1931-
1960) in Carthesian-probability scales : (1) V-series (annual flow); (2) P.-series
(annual effective precipitation); (3) Pi-series (annual precipitation); (4) random
circular series for N = 30; and (5) randem open series (7; = 0) for N = 30.

precipitation stations do not coincide with the river basins, the fact that there are
1140 precipitation stations in the same area as 446 river gauging stations makes the
inference of the essential effect of evaporation relianle.

It is expected that one part of the nonrandomness measured by the first serial
correlation coefficient of precipitation on the ground may be explained by the evapor-
ation of raindrops in the air, and by the inconsistency and nonhomogeneity in data.
The data is not available for a direct test of this first hypothesis, but it will be tested
indirectly. The second hypothesis will also be briefly tested.

3.4. Example of correlograms for river gauging station with large carryover

As an example of the effect of water carryover, the river basin with the largest
/ W-values, the correlograms of the St. Lawrence River at Ogdensburg, N.Y., both
for V-series and P.-series are given in figure 6, together with the confidence limits
on 959% level. They show clearly that the carrycver is mainly responsible for the non-
randomness of series of annual flow. This example is an upper limit case, but it proves
that the simplified mathematical model of eq. (4) in the form of Markov linear equation
is an attractive approximation for the patterns in sequence of V-series as it concerns
carryover. For river basins with smail carryovers, the simple relationship of eq. (4)
is not as evident as in the case of the St. I.awrence River.
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Fig. 5 — Cumulative frequency distributions of first serial correlation cocfficient
(r1) for series of 446 stations (V- and P,-series), with the average length of series
N = 37, and for series of 1140 precipitation stations (Pi-scries), with the average

length of serics N = 54,

in Carthesian-probability scales : (1) V-serics; (2) P,-

series; {3) Pi-series; (4) random circular series for N = 37; (5) random open series
(F1 = 0) for N = 37; (6) random circular series for N = 54; (7) random open

series (F1 = 0) for N = 54.
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Fig. 6 — Correlograms for series of annual fiow (V-series) and annual effective pre-
cipitation (Pe-series) for St. Lawrence River at Ogdensburg, N.Y., U.S.A.,

for 97 years of observation.
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Most carryovers of moisture in a river basin for both the first and the second
sample are either insignificant or are significant only for one year (m = 1). This
indicates that a model Vy, = boPyn + b1Pp—1 may be the simplest fit for the non-
randomness model of V-series as related to the carryover.

3.5. Indirect test of the effect of evaporation in the air on nonrandomness of annual
precipitation at the ground

The direct test of the evaporation of raindrops in the air cannot be carried out
because of the lack of data on the precipitation at the cloud base for large number of
stations. However, an indirect test may show that there is an effect of this evaporation
on the nonrandomness of precipitation at the ground.

The third large sample of 1140 precipitation stations with relatively homogeneous
data is divided in three subsamples : (a) stations with the average annual precipitation
greater than 500 mm, (b) stations with the average precipitation between 250 and
500 mm; and (c) stations with the average precipitation below 250 mm. The three
subsamples have 582, 463, and 95 stations, respectively.

The values 71 (P;) for the three subsamples and “or N = 30 are 0.040, 0.024, and
—0.027, respectively. The values 7y (P1) for the three subsamples and maximum avail-
able length of records are 0.063, 0.051 and 0.024, respectively.

The differences show that the arid and semi-arid regions, with small precipitation
at the ground, have on the average a smaller first serial correlation of annua: precipi-
tation at the ground than the semi-humid or humid regions. They indicate indirectly
that there is an influence of evaporation of rainfall in the air on the nonrandomness
of annual precipitation at the ground.

3.6. Effect of inconsistency and nonhomogeneity in data

Figures 7 and 8 give the probability distributions of the r; coeflicient for the series
of annual precipitation of 1140 precipitation stations with homogeneous data, and for
472 precipitation stations with nonhomogeneous data, for both the period of 30 years
and the longest observation periods.

The stations with nonhomogencous data are those which were found as such
cither by a consistency test in the river flow forecasting service of the U.S. Weather
Bureau, or are found such by the author becausc of a substantial change in station
position (horizontal or vertical change of gauge position during the observation
period).

The values 71 for homogeneous and nonhomogeneous data of series 30 years long
are 0.028 and 0.053, respectively, and for data of series of maximum available length
71 are 0.055 and 0.071, respectively. These values and the ri-distributions show that
the nonhomogeneity in data is not a negligible factor in creating the nonrandomness in
time series of rainfall and runoff.

Though there may be a disagreement about the classification of precipitation data
into homogeneous and nonhomogeneous, the large number of stations in the two
classes tends to minimize error due to this cause, and validate the conclusion that
nonhomogeneity in data increases on the average the nonrandomness of time series.

These two samples of annual precipitation may be supported by theoretical
analysis. Whenever a trend or a jump, or the combination of the two are introduced
into a random time series, the average result is that the series becomes nonrandom
in sequence.
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Fig. 7 — Cumulative frequency distributions of first serial correlation coeﬁicu,m (r1)
for series of 1140 precipitation stations with homogencous data (Pli-series),
and for series of 472 precipitation stations with nonhomogcneous data (P2i- series)
with the average length of both groups of series N = 30 years (1931-1960), in
Carthesian-probability scales: (1) Pli-series; (2) P2i-serics; (3) random circular
series for N = 30; and (4) random open series (1 = 0) for N = 30.

4. ANALYSIS BY RANGE

4.1. Definition of range

The maximum range for a discrete time series and for » time-unit intervals be-
tween its successive members is defined here as the maximum difference R, = St — S—
of the accumulated sum of departures from the mean value, with R, the maximum
range, ST the maximum positive and S~ maximum negative value of the accumulated
sum of departures for these n time-unit intervals. According to H.E. Hurst (%) the
maximum range can be conceived as the maximum accumulated storage, when there
is never a deficit in outflow (which is equal here to the mean discharge) or as the
maximum deficit, where there is never any storage, or as the sum of accumulated
storage and deficit, when both storage and deficit exist.

4.2. Distribution of maximum renge for a random time series

The asymptotic values as for expected mean of the maximum range of random
normal variable for a large value of n is given by W. Feller (7) as

Rn = 1.64/n . (13)
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Fig. 8 — Cumulative frequency distributions of first serial correlation coefficient (r)
for series of 1140 precipitation station of homogeneous data (Pli-series), with
average length N = 54, and for series of 472 precipitation stations of nonhomo-
geneous data (P2i-series), with average length N = 57, in Carthesian-probability
scales: (1) Pli-series; (2) P2i-series; (3) randomcircular series for N = 54; (4) ran-
dom open series (71 = 0) for N = 54.

The exact distribution of range Ry is difficult to obtain even for the small values
of n=4 or 50).

The expression for the expected values R, are given by A.A. Anis and

E.H. Lloyd (%) as
e n
Ry = 3 S‘ i-1/2
= (14

4.3. Comparison of mean range of annual effective precipitation with that of random
series

The comparison is made here for a subsamplz containing 85 river gauging stations
(U.S.A. 72, Canada 13) from the first large sample of 140 stations. The comparison
is made particularly for the means of all maximum ranges of standardized variables
of annual effective precipitation (P.-series) for 20 values of n(1-20).

If a time series had the length N = 60, then there were 60 values of range for
n = 1, 30 values for n = 2, 20 values for n = 3, and so on, until there are only 3
values for n = 20. The P, variable is first standardizec as x; = (X; — X')/s, and the
sum S; of x; are computed for all values of i from 0 to N. For a period of the length n
(n, number of successive years), without overlapping with the previous or the next
period of length n, the extreme values of the sum are determined, with R, (P.) =
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S+ — §- for the series of each station, and for n = 1 — 20. All R,-values of all
stations for a given n are averaged. In this manner, for 85 series there were 4321
values of Ry, 2137 for Rz, 1417 for Rs, and so decreasing, with only 183 values for
Raoo. The reliability of the computed R, decreases as n increases.

Figure 9 shows three lines, the asymptotic means for very large n of maximum
range computed by eq. (13), the expected values, computed by eq. (14), and the average
values R, (P.) for 85 stations, as functions of n. The number of values R, used in
computing Rn(Pe) is also given as function of  in figure 9.
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Fig. 9 — Mean maximum range R» as function of interval length n in years : (1) As-
ymptotic means for large n; (2) exact values of means; (3) average values for
Pe-series (annual effective precipitation) for 85 river gauging stations (U.S.A.
and Canada); (4) number of R,-values used in computation of R,: (5) difference
A Rn of values under (3) and (2) in percentage of values of (2).

The Rp-values of annual effective precipitation are grzater for all 20 values of n
than the R,-values of random series of a normal variable. The difference is smallest
for n =1, 2, 3, and 4 and then increascs for large n-values. This result corresponds
to the standardized variable with a small positive nonrandomness in the series.

The departures of computed R, (P,) from the exact values of a random normal
variable may be explained by the following three factors : (a) Small nonrandomness
in the sequence of annual effective precipitation (ry value is significantly different
from zero); (b) Average P.-distribution is skewed (average coeflicient of skewness
C ; for 85 stations is different from zero); and (c) Inconsistency and nonhomogeneity
in data (which on the average :increase the nonrandomness).

The average value of r1 of P-series for the subsample of 85 stations is 71 (Pe) =
0.143.

The average value of Cg for the P,-series of 85 stations is Cs(P¢) = 0.422. This
is significantly different from zero.

Inconsistency and nonhomogeneity in the data must exist, because there were
many changes in the past both through river basin developments, and in the methods
of sensing, recording and processing the data.
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Regardless of the effect of these factors, which may have opposite influences on
the maximum range, the difference of the computied and exact mean ranges is small
for n small and large for n large. The relative difference of R, (P,) from the expected
value of R,, expressed as a percentage of Ry, d = 100[{R,(Pe) — Ry]/ Ry is given for
each n value in figure 9. These differences in mean range of P.-series show that the
annual effective precipitation is not random in seguence, but the degree of nonran-
domness is small as measured by the first serial correlation coefficient.

4.4. Distribution of ranges

The exact distributions of Ry, Rz, and R3 for random normal variable can be
obtained analytically, and numerically integrated. The greater n the more complex
becomes the equation of exact distribution of Ry, and the more difficult becomes the
numerical integration of this equation.

The distribution of R, (P¢) for n from 1 to 3, and the numerically integrated
exact distributions of R, for random series of normal variable are compared in fig. 10.

The comparison of the R,(P,) and Rp-distributions also shows that there is a
small difference between the two series. In other words, for many practical purposes
the effective annual precipitation may be considered as random in sequence for small
values of n, but this conclusion is not valid for large values of n.

4.5. Example of the change of mean range with n for large water carryover in river
basins

Figure 11 shows the mean values of range, R, (V) and R,(P,), as compared with
the asymptotic mean values for large n and the exact values, computed by eq. (13)
and (14), respectively, for St. Lawrence River at Ozdensburg, N.Y. It shows that the
line of R, (L) is much cioser to the values R, of random szries than the line of R, (V).
In this case P, and V refer to the standardized variables. The V-series is essentially
nonrandom in sequence because its average values of R, are much greater than
the values R, of the random normal variable. This difference increases with an in-
increase of n. However, P -series is very close to a random series because there is no
essential difference between their average values of R, even for large n. This difference
between V- and Pe-series is not so evident for most of the river basins with relatively
small water carryover.

5. CONCLUSIONS

From the above mathematical models, samples, tests and comparisons, the
following conclusions may be drawn :

(1) Nonrandomness in sequence of time series of annual values of flow, effective
precipitation, and precipitation at the ground decreases from flows to effective pre-
cipitation, and from effective precipitation to precipitation.

(2) Nonrandomness in series of annual flows is produced largely by the four
factors : water carryover from year to year, evaporation and evapotranspiration
from river basin surface, evaporation of rainfall in the air, and inconsistency and
nonhomogeneity in data.

(3) Nonrandomness left in series of annual values after the above factors are
accounted for is relatively small.

(4) Before attempts are made to correlate with and attribute the nonrandomness
in series of annual flow, annual effective precipitation, and annual precipitation to the
factors of the upper atmosphere, oceans, and solar and cosmic activities, the known
causes of nonrandomness as water carryover, evaporation, inconsistency and non-
homogeneity in data, should be first accounted for.
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Fig. 10 — Comparison of probability density distributions for random series of the
maximum range R, for Ry, R2, and Rj, respectively, and the maximum range
Ry for the series of annual effective precipitation for 85 river gauging stations
(U.S.A. and Canada), (2), (4), and (6) for Ry (P¢), Re(P.)and R3(P,), respectively.
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Fig. 11 — Mean maximum ranges R, as function of interval length n (in vears) for
St. Lawrence River at Ogdensburg, N.Y., U.S.A., for 97 years of observation,
as compared with the theoretical values. (1) Asymptotic mean range R, for large n;
(2) Exact values R, for random scries of random normal variable; (3) R.(P)-
values for series of effective precipitation of St. Lawrence River; and (4) gn{(V)-
values for series of annual flow of St. Lawrence River.

(5) Simple mathematical models describing the relationship of variables of
annual values of flow, carryover, evaporation and precipitation may explain the
differences in the nonrandomness of time series studied. These models are, however,
complex in a detailed analysis because of the changes in distributions of precipitation
and evaporation both inside the river basins and within the year from one year to
another.

(6) Samples of data of stations scattered on a large area (global or continental
sampling), with the average intrastation ccrrelation small, enable a reliable inference
about the amount and the causes of nonrandomness in the sequence of annual flow
and annual precipitation.

(7) The nonrandomness in annual flow and annual effective precipitation is
relatively small on the average, and it changes from station to station, and/or from
region to region.

(8) A net of river gauging and precipitation gauging stations, with homogeneous
data and consistent records, well distributed on global and continental scales, and a
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thorough study of the effects of water carryover, evaporation on the ground and in
the air, as well as of nonhomogeneity and inconsistency in data may throw more
light in the future on the patterns in sequence of wet and dry years, than is now avail-
able.
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