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ABSTRACT 

 

 

 

CAUSES, CONSEQUENCES, AND MANAGEMENT OF TREE SPATIAL PATTERNS 

IN FIRE-FREQUENT FORESTS 

 

 

 

Increasingly, restoration treatments are being implemented to dually meet wildland fire 

hazard reduction alongside ecological objectives. Restoration treatments however deviate from 

conventional fuels treatments by emphasizing the re-creation of forest structure present prior to 

EuroAmerican settlement, notably the retention of single and grouped trees interspersed between 

canopy openings. As these historical forests persisted over cycles of fire returns, it is assumed 

that restoring these historical complex tree spatial patterns will, in turn, restore historical 

ecological processes. This includes more benign fire behavior that results in only partial tree 

mortality, allowing persistent and partial retention of forest cover over cycles of fire return. The 

qualitative description of historical forest structure, lacks, however, a clear process-based 

explanation detailing the interactions of heterogeneous forest structures and fire. While fires 

were historically frequent, it is unclear what role fire played in the genesis and maintenance of 

tree spatial patterns. If models of tree spatial dynamics can be improved and the interactions 

between tree spatial patterns and fire can be elucidated, forest managers will have an improved 

understanding of the implications of restoration-based fuels hazard reduction treatments both 

during fire-free periods and during fire events. 
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The aims of this dissertation were to: 1) explore the causes of tree spatial patterns in dry fire-

frequent forests; 2) investigate the consequences of tree spatial patterns on potential fire behavior 

and effects; 3) determine how alternate silvicultural strategies targeted at manipulation of tree 

spatial patterns can influence fire behavior and effects. In Chapter 2, I explored spatial patterns 

of tree regeneration over 44 years in absence of fire. In cooler periods, regeneration preferred 

clustering in openings, including openings following overstory mortality and away from 

overstory trees. Mortality risk of regeneration was heightened nearer overstory trees. In warmer 

periods, these trends reversed, likely because of a ‘nurse effect’ from the overstory. In 

anticipation of climate change, these results suggest silviculturists may benefit by capturing 

regeneration mortality in within openings while keeping regeneration near the overstory. In 

Chapter 3, I found that regenerating trees also form heterogeneous patterns following stand-

replacing fires. In these sparse, early seral forests, all species were spatially aggregated, partly 

attributable to the influence of topography and beneficial interspecific attractions between 

ponderosa pine and other species. Results from this study suggest that scale-dependent, and often 

facilitatory, rather than competitive, processes act on regenerating trees. In Chapter 4, I studied 

the interaction between fire and tree spatial patterns, both historically and in modern forests. Tree 

mortality in the historical period was clustered and density-dependent because tree mortality was 

greater among small trees, which tended to be assembled in tightly spaced clusters. Tree 

mortality in the contemporary period was widespread, except for dispersed large trees, because 

most trees were a part of large, interconnected tree groups. Postfire tree patterns in the historical 

period, unlike the contemporary period, were within the historical range of variability found for 

the western United States. This divergence suggests that decades of forest dynamics without 

significant disturbances have altered the historical means of pyric pattern maintenance. In 
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Chapter 5, I examined how fuels treatment designs with different manipulations of tree spatial 

patterns may influence treatment effectiveness. I simulated fires on hypothetical cuttings which 

manipulated the arrangement of crown fuels horizontally and vertically, either increasing the 

distance between tree crowns or not, and either removing small trees or not. All cutting methods 

reduced fire behavior and severity, but the results confirm possible tradeoffs between ecological 

restoration and hazard reduction; treatments that separated tree crowns reduced severity the most 

because these treatments reduced crown fire spread. But these can easily be overcome where 

restoration treatments incorporate small tree removal, because this action limits crown fire 

initiation. Managers could also incorporate managed fires to reduce surface fuel loads and use 

more aggressive cuttings to further gains in hazard reduction, regardless of cutting method used. 
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CHAPTER 1 – INTRODUCTION 

 

 

 

1.1 Problem Statement and Framing 

Dry forests in the western US are increasingly impacted from severe fires due to 

anthropogenic climate change and fuels accretion from over a century of fire suppression 

(Westerling 2006; Fule et al. 2014). Prior to EuroAmerican settlement, fires in these forests were 

frequent, occurring once every few to 35 years on average; fire severities were low to moderate, 

killing only a portion of the forest canopy (Covington and Moore 1994). However, land 

management practices including fire suppression, grazing, timber production, and development 

of human infrastructure since the late 19th Century have led to altered fire regimes. 

Contemporary forests now have greater tree densities relative to the pre-settlement era, including 

a greater proportion of shade-tolerant, fire-sensitive species (Battaglia et al. 2018). This is 

compounded by impacts of warmer, drier conditions associated with climate change including 

longer fire seasons (Westerling 2006) and higher frequencies of droughty fuel conditions when 

ignitions can occur (Richardson et al. 2022). Consequently, when fires now occur, landscapes are 

increasingly impacted by large ‘mega fires’ with large patches of high severity fire effects 

(Fornwalt et al. 2016). Such historically uncharacteristic mega fires are resulting in undesirable 

ecological and social effects (Schoennagel et al. 2017). This includes large patches of tree 

mortality, in which forests may not recover in a timely manner, potential for mass erosion, 

reduced air quality, and threats to life and property (Rhoades et al. 2011; Schoennagel et al. 

2017; Stevens-Rumann and Morgan 2019). Fuels hazard reduction treatments (fuels treatments), 

silvicultural entries focused on reducing surface and canopy fuels (Agee and Skinner 2005), are 
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one critical management practice to mitigate these undesirable outcomes (Fulé et al. 2012; Kalies 

and Yocom Kent 2016). 

Ecological restoration treatments build upon the principles of fuels reduction, by 

incorporating historical characteristics of pre-settlement dry forests (Churchill et al. 2013b; 

Stephens et al. 2021). Like conventional fuels treatments, restoration treatments reduce surface 

and canopy fuel loads and favor fire-resistant species such as Pinus ponderosa (Dougl. ex 

Laws.). Restoration treatments however also aim to create or maintain heterogeneous forest 

structures analogous to these forests’ pre-settlement conditions. Historically, these forests were 

relatively open, containing a mixture of canopy gaps and meadows (Lydersen et al. 2013; 

Matonis and Binkley 2018). Except for a few larger and older isolated trees, most trees were 

arranged in small groups numbering from 2 to 20 trees (Clyatt et al. 2016). By recreating these 

heterogeneous arrangements of forest structure which were once present, forest managers aim to 

incorporate many ecological objectives (Reynolds et al. 2013a; Stephens et al. 2021); fire hazard 

reduction is generally seen as also an achievable objective based on the reasoning that these dry 

forests endured through intervals of fire return (Larson and Churchill 2012; Hessburg et al. 2015; 

Stephens et al. 2021). 

The scientific basis for this heuristic—long-term persistence of historical dry forests is 

evidence that heterogeneous tree spatial patterns are a critical strategy to restore resilience to 

fire—however, is under studied. It is believed that heterogeneous forest structures fostered lower 

fire severities, and these lower fire severities promoted heterogeneous forest structures through 

partial tree mortality, forming a feedback loop (Larson and Churchill 2012; Addington et al. 

2018).  However, an understanding of how spatial arrangements of forest structure interact with 

fire behavior is still immature given the fire environment is complex, consisting of 
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spatiotemporally dynamic fire-fuel-atmosphere interactions (Larson and Churchill 2012; Parsons 

et al. 2017). Secondly, empirical studies on the genesis and maintenance of complex forest 

structures (e.g., Fulé and Covington 1998; Yu et al. 2009) are limited (Donato et al. 2012; Larson 

and Churchill 2012). A complete conceptual model of how complex forest structures in dry 

forests develop and persist through fire is needed to inform the development of silvicultural 

prescriptions which seek to restore complex forest structures while meeting fire hazard reduction 

goals.  

The goals of this dissertation are to: 1) explore the causes of tree spatial patterns in dry fire-

frequent forests; 2) investigate the consequences of tree spatial patterns on potential fire behavior 

and effects; 3) determine how alternate silvicultural strategies targeted at manipulation of tree 

spatial patterns can influence fire behavior and effects. To address these goals, this dissertation 

uses spatial pattern recognition and process modelling. Spatial patterns indicate the consequences 

of how underlying processes, such as fire, shape forest structure (Stoyan and Penttinen 2000). 

Process-based physical fire modelling, which can explicitly represent the fire environment at fine 

scales, is useful for investigating how fire behavior responds to within-stand variations in forest 

structure (e.g., Parsons et al. 2017). The combination of pattern recognition and process 

modelling is especially applicable for developing conceptual models of fire-mediated spatial 

forest dynamics (Lutz et al. 2018). 

1.2 Background 

The consensus view that fires mediated the formation and maintenance of tree patterns in dry 

forests has developed since the mid-20th Century. In the early 20th Century, it was originally 

suggested that frequent (return intervals <35 yr.) recurrences of low and mixed-severity fires 

successively eroded the forest canopy (Lieberg 1902; Pearson 1950). Later research revealed 
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however that frequent fires consumed some trees as well as surface fuels, lowering the risk of 

fire-caused mortality after successive fires (Pearson 1950; Weaver 1951). As a consequence, 

frequent fires regulated forest structure, reducing the potential of stand-replacing fires and 

retaining a mixture of age cohorts (Cooper 1961; Harrington and Sackett 1990). Reconstructions 

of historical forest structures have led researchers to hypothesize that these fires yielded 

heterogeneous, uneven-aged forest structures through periodic tree mortality, stimulated fire-

adapted understory plants, and created temporally and spatially variable conditions for tree 

regeneration (Show and Kotok 1924; Larson and Churchill 2012; Knapp et al. 2013). If this 

hypothesis is supported, fires were a key component in regulating the complex mosaics of 

scattered individual trees, groups of trees, and canopy openings occupied by understory plants or 

regenerating trees (Larson and Churchill 2012) (Figure 1).  

 

Figure 1.1 Historical map of forest structure diversity 

Spatial distribution of within-stand structural stocking stages at the Black Mountain Experimental Forest, CA. 

Reprinted from Hallin (1959). 
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There are, however, opposing means by which fires may have impacted tree spatial patterns. 

Recent syntheses suggest patterns of fire-caused mortality is density-dependent (Larson and 

Churchill 2012; Hood et al. 2018; Lutz et al. 2018). High stocking within tree groups could 

permit tree-to-tree fire spread (Stephens et al. 2021); in addition, woody debris and needlecast 

accumulate underneath tree groups (Banwell et al. 2013; Banwell and Varner 2014). This may 

lead towards greater intensity and greater severity within groups than in sparser areas (Larson 

and Churchill 2012). Alternatively, fire-caused mortality may have been greater outside of tree 

groups. Susceptibility to damage by fire is greater among young and smaller trees (Sieg et al. 

2006). Some researchers have observed that these smaller, susceptible trees prefer to establish in 

meadows rather than within tree groups (Boyden et al. 2005; Sánchez et al. 2009; Fry et al. 

2014). Additionally, openings were often "unsafe" sites (Larson and Churchill 2012; Reynolds et 

al. 2013b) because openings contained greater cover of understory vegetation available for fire 

consumption (Matonis and Binkley 2018). This included grass-dominated fuelbeds in meadows 

(Cooper 1961; White 1985; Stephens and Fry 2005; Sánchez Meador et al. 2010), as well as drier 

and windier conditions, both of which may exacerbate fire behavior near these younger and 

smaller trees (Bigelow and North 2012). 

Those interactions of tree spatial patterns and fire behavior and effects may now be 

significantly altered in contemporary forests. Fire suppression, in addition to livestock grazing 

and logging, led to infilling of forest structure at scales from tree neighborhoods (Figure 1.2; 

Sánchez et al. 2009; Lydersen et al. 2013) to landscapes (Hessburg et al. 2015; Matonis and 

Binkley 2018). Canopy fuel is now more continuous due to higher tree densities, leading to great 

potential of crown fire initiation and spread (Hessburg et al. 2005; Reynolds et al. 2013b; Brown 

et al. 2015). Without canopy gaps to interrupt the spread of crown fires, the resulting continuity 
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in the forest canopy may lead to widespread canopy mortality. Consequently, the residual forest 

structure after fire may lack the heterogeneous arrangements of tree groups and openings. 

 

Figure 1.2. Change in forest structure over the past century 

Stem-maps of trees from two studies in a Californian mixed-conifer forest (Lydersen et al. 2013) and an Arizonan 

ponderosa pine forest (Sanchez-Meador et al. 2009)  reveal the heterogeneous distribution of trees in the early 20th 

Century (left), while trees have formed contiguous canopies by the early 21st Century (right). Points, scaled by their 

diameter at breast height, represent individual tree locations. 

Spatially heterogeneous restoration treatments are suggested to restore the historically 

characteristic relationships between forest structure and process (Larson et al. 2012; Tuten et al. 

2015; Addington et al. 2018), but structurally-homogenizing treatments continue to be 
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implemented (Underhill et al. 2014), based on aspatial fire hazard reduction principles (Agee and 

Skinner 2005). Even within treatments designed to increase structural heterogeneity, silvicultural 

specifications often implement spacing-based targets within tree groups (Tuten et al. 2015). 

Further understanding of structure-fire interactions in historic forests and in contemporary forests 

can aid in evaluating effectiveness of alternative, differing silvicultural approaches (Knapp et al. 

2017; Lutz et al. 2018).   
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CHAPTER 2 – CLIMATE IMPACTS THE TREE INTERACTIONS SHAPING PATTERNS OF 

TREE REGENERATION  

 

 

 

2.1 Introduction 

Tree spatial patterns are increasingly recognized as an important attribute of forest 

ecosystems. The spatial patterns of trees shape abiotic and biotic interactions, impacting 

processes such as competition (Kuehne et al., 2015; Suzuki et al., 2008), facilitation (Ziegler et 

al., 2017), recruitment (Fajardo et al., 2006; Kuehne et al., 2015; Moeur, 1993), mortality (Das et 

al., 2011; Kuehne et al., 2015; Suzuki et al., 2008), and functions such as hydrologic regulation 

(Schneider et al., 2019), habitat provisioning (Knapp et al., 2013; Zagidullina and Tikhodeyeva, 

2006), productivity (Schall et al., 2018), soil dynamics (Abella et al., 2013), nutrient cycling 

(Yankelevich et al., 2006), light availability (Cannon et al., 2019). Tree spatial patterns also 

affect the severity and distribution of disturbance effects from fire, pests, or pathogens (Bače et 

al., 2015; Churchill et al., 2013; Malone et al., 2018; Wild et al., 2014; Yu et al., 2009; Ziegler et 

al., 2020). These processes and effects post disturbance in turn shape future spatial distributions 

of structure, feeding back to form a complex adaptive system (Puettmann, 2011).  

Recognizing forests as complex adaptive systems, policy makers, stakeholders, and the 

public are increasingly advocating for managed complexity throughout forest ecosystems across 

the globe, spurred by objectives such as ‘naturalness’, forest restoration, and biodiversity 

(Brumelis et al., 2011; Fahey et al., 2018; Hessburg et al., 2016; McElhinny et al., 2005; 

Puettmann, 2011; Schall et al., 2018). Complex forest structures may provide greater resilience 

to the uncertainty associated with global change (Fahey et al., 2018; Larson and Churchill, 2012; 

Puettmann, 2011; Puettmann et al., 2015). However, informational limits hinder the 
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implementation of complexity-oriented forest management (Puettmann et al., 2015). In 

particular, the factors influencing establishment of heterogeneous forest structure has been a key 

limitation (Bugmann, 2001; Herben and Hara, 2003). 

One region where more information is needed to foster complex forest structures is within 

dry coniferous forests of the western United States. In these systems, there is considerable 

interest in developing uneven-aged silvicultural systems that promote or restore historically-

characteristic, fine-scale heterogeneity (Churchill et al., 2013; Fajardo et al., 2006; Knapp et al., 

2017; Kuehne et al., 2015; Larson and Churchill, 2012). As uneven-aged, complexity-oriented 

silviculture needs to foster tree recruitment, it is necessary to understand regeneration 

preferences (Fajardo et al., 2006). 

Regeneration of ponderosa pine (Pinus ponderosa Dougl. ex Laws.), like many other tree 

species (Herben and Hara, 2003), exhibits initial spatial patterns of aggregation (Larson and 

Churchill, 2012). Aggregation emerges primarily from selective filtering for the most ideal 

locations for germination, establishment, and survival (Pielou, 1960; Ziegler et al., 2017), and 

secondarily due to seed caching (Vander Wall, 2003). In grassy openings where competition for 

moisture with understory vegetation is intense, tree regeneration favors establishing under 

overstory canopies (Abella et al., 2013; Ehle and Baker, 2003). Overstory trees are suggested to 

also function as nurse trees, by ameliorating droughty conditions and redirecting precipitation 

(Fajardo et al., 2006; Haase, 2001). Owing to their size, larger overstory trees are more 

ameliorative relative to intermediately sized trees (Fajardo et al., 2006). Conversely, regeneration 

can be more prolific in openings where grass is not competitive, suggesting competition from the 

overstory canopy can deter successful establishment (Malone et al., 2018; Moeur, 1993; Sánchez 

et al., 2009). Gaps created from recent overstory tree mortality also provide spatial niches for 
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regeneration. Recently formed gaps supply mineral soil, lower understory competition, and better 

nutrient conditions (Abella et al., 2013; Wild et al., 2014), especially for shade-intolerant species 

such as ponderosa pine (York et al., 2007). On the other hand, Das et al., (2011) identified that 

gap creation occurs in locations where stocking is most dense and competition highest; this may 

inhibit regeneration. After establishment, mortality further shapes tree spatial patterns. In 

general, clusters of tree regeneration trend towards uniformity via self-thinning (Boyden et al., 

2005; Larson and Churchill, 2012; Pielou, 1960). But mortality via competition with the 

overstory may be more prevalent where conditions lead to establishment near the overstory 

rather than regeneration clusters (Larson and Churchill, 2012; Lutz et al., 2014). Consequently, 

the likelihood of regeneration establishment and mortality near large trees or within newly 

formed tree gaps is likely dependent on competitive pressure from the overstory. 

As variability in precipitation and temperature impact the suitability for tree regeneration 

(Petrie et al., 2016), the relationships among regenerating trees and between regenerating trees 

and overstory trees may additionally depend on climatic conditions. Per the stress gradient 

hypothesis, the strength of biotic facilitative interactions increases as the abiotic support for 

regeneration decrease (Maestre et al., 2009). Recent comparisons of tree spatial patterns across 

sites with different climates provide some evidence. For example, Rodman et al., (2017) 

observed that ponderosa pine trees, across all sizes, display greater spatial aggregation under 

harsher climates, and Fajardo et al., (2006) found that ponderosa pine regeneration tend to occur 

in proximity to overstory trees within more xeric sites. If the overstory proximity is a 

predominant driver of tree regeneration suitability, it is surmisable that the areas of suitable 

microclimate for establishment and survival of tree regeneration shift with climatic conditions. 
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In this study, I assessed the spatial dynamics of ponderosa pine establishment and mortality 

over a period of 44 years in the Front Range of Colorado, USA. To infer which biotic 

interactions influenced the spatial patterning of tree regeneration, I divided the spatial analysis 

into multiple procedures performed at each measurement period. I first measured the spatial 

patterning of tree regeneration during each period. Next, I measured the spatial correlations of 

tree regeneration with smaller and larger living overstory trees, and recently dead trees. I also 

measured the spatial correlation of tree regeneration with suppressed trees, as these trees may 

indicate locations of intense competition from the overstory. I then assessed patterns of 

regeneration mortality with spatial analyses to measure whether self-thinning was occurring 

within regeneration, and whether mortality was heightened near small and large trees. Finally, I 

explored whether these regeneration spatial patterns, indicative of biotic interactions, can be 

suggested to have been modulated by climatic conditions. Specifically, I evaluated whether the 

variation in the strength of spatial patterns over time was correlated with changes in climate over 

the 44 years. 

2.2 Materials and Methods 

2.2.1 Study Site 

This study uses six measurements (1974, 1983, 1991, 2001, 2010, and 2018) of a 9.3 ha 

square plot on the Manitou Experimental Forest within the Pike National Forest of the Colorado 

Front Range. The site is 40 km northwest of Colorado Springs, CO at an elevation of c. 2500 m 

and is situated on a southeast-facing aspect with slopes under 5%. Over the past thirty years, 

precipitation averaged 57.1 cm with most precipitation occurring as rain in May through August; 

average daily temperatures ranged from a low of -3.9 °C in January to 17.3 °C in July (PRISM 

Climate Group, 2011). 
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Ponderosa pine comprises 99.2% of all tree species. Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco), Rocky Mountain juniper (Juniperus scopulorum Sarg.), and blue spruce (Picea 

pungens Engelm.) were infrequently present. The following site history and biophysical 

description, previously reported by Boyden et al. (2005), follows. The understory includes 

perennial grasses (Arizona fescue [Festuca arizonica Vasey], mountain muhly [Muhlenbergia 

montana (Nutt.) Hitchc.]), various forbs, and a minor shrub (common juniper [Juniperus 

communis L.]) component. Soils are classified as the Boyett-Frenchcreek complex typified as 

well-drained, originating from granite and arkosic sandstone, and having a shallow (2.5 cm) O 

stratum and gravelly, sandy loam texture. Extensive commercial logging within the region 

occurring c. 1880 removed an estimated 15% of overstory stocking at the time. No further 

logging operations nor fires have occurred since, however a mountain pine beetle (Dendroctonus 

ponderosae) outbreak occurred in the early 1980s leading to the death of ~8% of the overstory 

trees. By 1974, the distribution of overstory tree ages in this site was bimodal, centered about 70 

and 170 years of age at breast height. 

2.2.2 Site Inventory 

During the original measurement period of 1974, all trees at least 1.37 m tall were mapped 

using a Cartesian coordinate system, tagged, measured for diameter at breast height (DBH), and 

aged to pith at 1.37 m height. In the subsequent periods from 1983 to 2018, all tagged trees were 

remeasured for DBH and, from 1991—2018, ingrowing trees at least 1.37 m tall were mapped, 

tagged, and measured for DBH. Ingrowth was not measured in 1983, requiring us to estimate 

which of the ingrowth measured in 1991 could have been counted in 1983. I assumed that 

ingrowth with at least 2.0 cm DBH would have been measured in 1983; this cutoff corresponded 

with the 75th percentile of DBH for ingrowing trees measured over 2001—2018. Further, I 
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estimated that trees measured in 1974 below 2.0 cm DBH comprised ingrowth occurring 

between ~1969 to 1974, allowing us to analyze patterns of ingrowth of this measurement period.  

For analyses, trees were classified as: small overstory, large overstory, suppressed, dead, 

regeneration, ingrowth. First, trees which had been established (i.e., > 2.0 cm DBH) in 1974 

were designated as either small or large trees using a breakpoint of 20 cm DBH. This cutoff 

separated trees preceding the harvest in the 19th Century (averaging 170 years at DBH) and those 

establishing shortly thereafter (averaging 70 years at DBH). These small and large trees were 

additionally classed as suppressed if their percent annualized basal area increment had been 

within the lowest quartile of all trees, during that measurement period. If a small or large tree 

died during an observation period, I reclassified that tree as a snag (standing dead tree). Newly 

observed trees were designated as tree regeneration just for the measurement period of initial 

observation. Afterwards, these trees were classified as ingrowth having grown in over the course 

of the study. 

2.2.3.2 Point Pattern Analyses  

 

To understand the multiple facets of biotic interactions among ingrowth and overstory trees, I 

split spatial analysis into several specific tests of observed patterning against null point process 

models (Table 2.1). These tests examine facets of regeneration locations among themselves and 

with other components of stand structure. I use the term pattern specifically to refer to the 

average spatial correlation between trees relative to the spatial correlation generated from a null 

model which assumes spatial randomness or spatial independence.  

First, I assessed how regeneration locations were patterned in each measurement period (A1). 

Using a univariate pair correlation function g(r), this function uses an annulus of a given width, 1 
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m in this study, to count the number of regenerating trees within distance r of the average 

regenerating tree, normalized by the count if points (tree locations) had been distributed under 

complete spatial randomness (CSR) (Wiegand and Moloney 2013). When values of the empirical 

function deviate above CSR, tree patterns indicate aggregation; deviations below CSR indicate 

uniformity. Point pattern analyses use a Monte Carlo approach for hypothesis testing; here, the 

null model to represent the expected pair correlation function of regeneration, gregen(r), was an 

inhomogeneous Poisson process which randomly distributed points using a coarse spatial field of 

expected intensity (points m-2). I parameterized intensity by smoothing over the observed 

intensity of regeneration locations using an Epanechnikov smoothing kernel at a bandwidth of 15 

m and resolution of 1 m2. I chose an inhomogeneous Poisson process to account for coarse-scale 

gradients of tree locations in the observed data (Wiegand and Moloney, 2014). 

Table 2.1 Hypotheses framework 

Analyses used to evaluate spatial interactions, and influence of climate, among regenerating and ingrowth trees; see 

text for details on analyses. 

Analysis Null hypothesis Method and spatial null model 

A1) Were regeneration randomly located? Spatial randomness 
g(r) with a heterogeneous Poisson 

process 

A2) Were regeneration attracted to prior 

ingrowth? 

Independence between 

patterns 
g1,2(r) with toroidal shift 

A3) Were regeneration associated with small or 

large trees? 

Independence between 

patterns 
g1,2(r) with toroidal shift 

A4) Were regeneration associated with 

suppressed or dead trees? 

Independence between 

patterns 
g1,2(r) with toroidal shift 

A5) Is ingrowth mortality sensitive to intra-class 

density? 

Random mortality of 

ingrowth 

g1,1+2(r) - g2,1+2(r) with bivariate 

random labelling 

A6) Is ingrowth mortality associated with small 

or large tree proximity? 

Random mortality of 

ingrowth 

c1,2(r) with trivariate random 

labelling 

A7) Do patterns display synchronicity? 
Lack of cross-

correlation 
Correlation analysis 

A8) Do patterns vary with climate? 
Insignificant effect of 

climate 
Distributed lag regression 

 

The second set of spatial analyses refer to hypotheses regarding the locations of regenerating 

trees relative to other trees. I use a bivariate pair correlation function, g1,2(r) to answer A2—A4. 
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This function describes whether type 2 points are more or less numerous around type 1 points 

than expected by chance according to a null point process model (Wiegand and Moloney 2013). 

Specifically, g1,2(r) results in the average density of type 2 points at distance r from type 1 points 

and is then normalized by the overall intensity of type 2 points, λ2. The interpretation of the 

statistic depends on the null model appropriate given the hypothesis (Goreaud and Pelissier 

2003). I used a null model of independence between cohorts and each null model simulation 

randomly shifted type 2 points around a torus. This preserved the spatial structure of both type 1 

and type 2 points but separated their joint structure (Wiegand and Moloney 2013). Further, by 

shifting type 2 points while keeping type 1 points fixed, this null hypothesis is particularly 

relevant for tests where the type 1 cohort precedes the type 2 cohort (Wiegand and Moloney 

2013). I examined the relationship of regeneration around prior ingrowth, gingrowth,regen(r), small 

trees, gsmall,regen(r), large trees, glarge,regen(r), suppressed trees, gsuppressed,regen(r), and snags, 

gsnags,regen(r). For gsnags,regen(r), I related the positions of regenerating trees to locations where trees 

had died at least two measurement periods prior, c. 18 yr.; this accounted for a lag between the 

period of overstory tree death and the time it takes for a tree to potential germinate near a snag 

and then reach 1.37 m in height in order to be observed during a remeasurement period (c. 20—

25 yr.; Boyden et al., 2005). Where empirical statistics exceed the Monte Carlo distribution 

yielded by simulations of the null model at distance r, the interpretation is that regeneration are 

attracted to the respective type 1 points at distance r, whereas deviations lower than expectation 

reflect repulsion, and empirical statistics approximating the null model suggest regeneration 

locations are independent of the type 1 point in question. 

Next, I used a bivariate pair correlation function with a different form of hypothesis test to 

examine whether mortality among ingrowth was spatially random or density dependent (A5). 
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Here the form was g1,1+2(r)-g2,1+2(r) (Yu et al. 2009). This difference examines if there were 

more surviving or dead ingrowth around dead ingrowth than there were surviving or dead 

ingrowth around surviving ingrowth, gdead,dead+survive(r)-gsurvive,dead+survive(r) (concisely referred to 

as ddingrowth(r)). Random labelling is the preferred null model to test a process that affects a set of 

points subsequently (Goreaud and Pelissier 2003); therefore, each of the Monte Carlo 

simulations was a random labelling as surviving or dead while keeping the locations of all 

ingrowth fixed. For this test, positive and negative deviations suggest positive and negative 

density-dependence respectively, while non-significant deviations indicate risk of mortality is 

spatially independent of ingrowth density. 

Last, I investigated the impact of overstory trees on ingrowth mortality rates (A6). The tests 

were based on a trivariate form of the mark correlation function, c1,2(r), which averages a test 

function on marks (i.e., quantitative measurements) of type 1 points separated by a given 

distance r from a type 2 point (Biganzoli et al. 2009; Wiegand and Moloney 2013). I used a test 

function, t = m1 which calculated, from a type 2 point (either small or large trees), the mean 

identity of a type 1 (ingrowth) point’s mark, where mark identities were binary, either 1 for dead 

ingrowth or 0 for surviving ingrowth. Thus, c1,2(r) here represents the mortality rate of ingrowth 

at distance r from small, csmall,ingrowth(r), and large overstory trees, clarge,ingrowth(r). A positive, or 

negative, deviation indicates significantly higher, or lower, mortality rates of ingrowth, 

respectively, at distance r from overstory trees. In the null model of trivariate random labelling, 

all locations were fixed as were classifications of either ingrowth or trees of either small or large 

size class, but the designation of survival or death within ingrowth locations were randomly 

assigned. 
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I applied the Diggle-Cressie-Loosmore-Ford Goodness-of-Fit (GoF) test to determine the 

deviation of empirical statistics against expectations generated from the Monte Carlo procedure 

using 399 simulations of each null model. Inference testing using this GoF test is a percentile 

rank of the sum of squared deviations for the empirical correlation function. While the GoF test 

typically uses the raw statistics from correlation functions, I used a modification of the GoF test 

developed by Myllymäkia et al. (2015); I first studentized statistics for each empirical and 

simulated correlation function, S’i(r): 

𝑆𝑖′(𝑟) = 𝑆𝑖(𝑟)−𝑆(𝑟)̅̅ ̅̅ ̅̅�̂�𝑆(𝑟) , 
Equation 2.1 

where 𝑆𝑖(𝑟) is an empirical or simulated correlation function, 𝑆(𝑟)̅̅ ̅̅ ̅̅  is the mean under the 

simulated null model, �̂�𝑆(𝑟) is the sample standard deviation of 𝑆(𝑟). Then I applied the GoF test 

to calculate the test statistic 𝑢𝑖′ (Eq. 2.2):  

𝑢𝑖′ = ∑ (𝑆𝑖′(𝑟) − 𝑆′(𝑟)̅̅ ̅̅ ̅̅ ̅)215𝑟=0 , 
Equation 2.2 

The test statistic is the sum of squared deviations between 𝑆𝑖′(𝑟) and 𝑆′(𝑟)̅̅ ̅̅ ̅̅ ̅, the mean of the 

399 simulated null models, over a range of distance r. In this study, I calculated correlation 

functions over r from 0 to 15 m. I then used a non-parametric means to calculate the significance 

of the test statistic of the empirical (𝑖 = 0) test statistic, 𝑢0′  (Eq. 2.3), 

�̂�0 = 1 − 𝑟𝑎𝑛𝑘[𝑢0′ ]−1400 , 
Equation 2.3 

where �̂�0 is the complement of the percent rank of 𝑢0′ . The GoF test collapses dimensionality of r 

into a scalar, simplifying hypothesis testing. And, studentization is a standardized measure of 

effect size (Wiegand and Moloney 2013; Myllymäki et al. 2015; Velázquez et al. 2016). By 
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removing dimensionality and standardizing, 𝑢0′  therefore facilitates a simple and scale-

accumulated comparison to assess the strength of a pattern (e.g., deviance).  

A second advantage of 𝑆𝑖(𝑟) is that these values can be used to construct confidence 

intervals. Specifically, the minimum 2.5% rank and the maximum 97.5% rank, across all 

distances r, can be de- studentized back to a linear scale to construct 95th percentile global 

envelopes of maximal absolute deviation (Wiegand and Moloney 2013; Myllymäki et al. 2015). I 

plotted the empirical correlation functions against these global envelopes to determine direction 

of deviance as this information is lost in Eq. 2. I performed all point pattern analyses in 

Programita (Wiegand and Moloney 2013) using the edge effect correction scheme described by 

Wiegand and Moloney (2013) 

2.4. Climate—Pattern Analysis 

I assessed whether pattern deviance from each of the above spatial analyses co-varied with 

climate across the measurement periods. I accessed climatic data from the Parameter elevation 

Regression on Independent Slopes Model dataset within a c. 800 m x 800 m area containing the 

study site geographic location (PRISM Climate Group, 2011); variables included precipitation, 

minimum temperature, maximum temperature, mean temperature, minimum vapor pressure 

deficit (VPD), and maximum VPD monthly for the years from 1938—2017. These data were 

then aggregated as seasonal averages, and then averaged over the years between measurement 

periods (i.e., summer precipitation associated with the measurement period of 2018 was the 

average monthly precipitation from June to August, averaged over the years 2010 through 2017). 

Prior to 1974, climate data were binned in intervals of 9 years, the average timespan between the 

measurement periods. I then reduced the dimensions using principal component analysis after 

centering and scaling by standard deviation. Only the first principal component (PC1) was used 
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for subsequent analyses. PC1 explained 57% of the variation in seasonal climate and can be 

interpreted as a gradient of seasonal, climate harshness. Large positive values in PC1 

corresponded to low precipitation, elevated temperature, and vapor pressure deficit across 

seasons (Table 2.2). 

Table 2.2. Principal component climate and season correlations 

Correlations between seasonal climate variables and PC1. 

Climate variable Spring Summer Fall Winter 

Precipitation -0.61 -0.90 -0.79 -0.20 

Temperaturemin 0.44 0.71 0.82 0.60 

Temperaturemean 0.66 0.85 0.94 0.63 

Temperaturemax 0.77 0.85 0.89 0.49 

Vapor pressure deficitmin 0.34 0.58 0.73 0.65 

Vapor pressure deficitmax 0.73 0.90 0.95 0.67 

 

I used a form of linear regression to determine whether climate harshness (PC1) related to the 

observed regeneration patterns. There was however a lag between tree seedling establishment 

and observation. Given that environmental conditions at the time of germination and over the 

subsequent c. 5 years (P. Fornwalt, pers. comm.) are critical years for potential recruitment, it 

was tenuous to relate the current deviance of ingrowth tree patterns to very recent climate. In 

other words, the patterns for a given measurement period were more likely related to the climate 

experienced during trees’ germination; this corresponded to a lag of 1 to 3 periods given the 

frequency of remeasurements of the study site. I thus used a finite distributed-lag model for the 

pattern deviances of A1—A4. Finite distributed-lag models regress the current value of a 

response to accumulations of specified lagged values of predictor variables (Davidson et al. 

1985). In this study, this distributed-lag regression followed the form:  

𝑢0,𝑡′ = 𝛼 + 𝛽0𝑃𝐶1𝑡−1 + 𝛽1𝑃𝐶1𝑡−2 + 𝛽2𝑃𝐶1𝑡−3 + 𝑒𝑡, (4) 
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where 𝑢0,𝑡′  was the deviance of an empirical function at measurement period t, 𝛼 was the 

intercept, and 𝛽, lag weights for PC1 over lags of t-1 through t-3. Lag weights were estimated 

using ordinary least squares. For exploratory purposes, I also applied Eq. 4 to predict 

regeneration density (trees ha-1). For regressions associated with A5 and A6, I used simple, 

ordinary least squares regression. No attempts to correlate to lagged climate was necessary 

because these analyses concerned the mortality of ingrowth which had occurred during the 

current measurement period. 

2.3 Results 

2.3.1 Stand Development 

The continual accrual of trees concomitant with growth of overstory trees led to greater 

stocking through time. Sizes of overstory trees were initially distributed bimodally with two 

peaks at approximately 15 cm and 35 cm DBH (Figure 1). This corresponded to the distinction 

of small from large trees at a 20 cm DBH breakpoint. Over time, the overstory trees increased 

from an average of 26 cm in 1974 to 32 cm DBH in 2018. Meanwhile, the proliferation of 

ingrowth over the measurement periods led to a shift in size distribution. Regeneration rates 

(ratio of newly observed regeneration to overstory trees) averaged 22.5% (± 19.5% s.d.) over the 

periods. This produced a transition from a bimodal age structure to a multi-aged structure.  
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Figure 2.1 Tree size distributions 

Change in tree size distribution by regeneration cohort, with a vertical line at 20 cm diameter at breast height 

separating small from large established trees. 

As shown in Figure 2.2, both basal area and trees per hectare increased between each 

measurement period with a sole exception in 1983, attributable to some beetle-caused overstory 

mortality. Whereas there were an initial 297 trees ha-1 measured and 19.5 m2 ha-1 of basal area, 

stocking increased to 586 trees ha-1 totaling 24.3 m2 ha-1 of basal area, with ingrowth accounting 

for 19% of this change in basal area. By 2018, ingrowth had comprised 56% of all trees, though 

only 4% of the total basal area.  
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Figure 2.2 Tree density distribution 

Change in tree density by a) basal area and b) trees per hectare over measurement periods, by regeneration cohort.  

Mortality trends varied between previously established and ingrowth trees. Over the 44 years, 

16% of the overstory trees died; the mortality rate (ratio of killed overstory trees to living 

overstory trees) averaged 1.5% (± 0.5%) over all periods, though was greater (8%) in 1974 due 

to mountain pine beetles. Ingrowth mortality rates (ratio of living ingrowth to recently dead 

ingrowth) averaged 2.6% (± 1.3%). Most mortality of ingrowth occurred within just one cohort; 

73% of dead ingrowth observed over the duration of the study had both established in the period 

of 1991—2001 and perished by 2010. 

2.3.2 Spatial Stand Structure 

Initial data exploration by visual examination of stem-maps showed patchy distributions of 

overstory trees and clustered locations of spatial regeneration in openings (Figure 2.3). Open 

space present in the initial inventory in 1974 had largely been filled with successive cohorts of 

regeneration by 2018, creating a mosaic of trees either present before 1974 or those ingrown 

trees which had recruited during the study period. 
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Figure 2.3 Stem-maps by year 

Stem-maps of each measurement period including tree locations colored by class, including large (>= 20 cm 

diameter at breast height), small (< 20 cm diameter at breast height), ingrowth (trees appearing over the duration of 

the study), and regen (newly measured ingrowth trees). 
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2.3.3 Spatial Patterns of Tree Regeneration 

 

Figure 2.4 Point pattern analyses goodness-of-fit 

Goodness of fit (u) for nine empirical point patterns (colored points) to address components of the six hypotheses 

(rows) in each time period (columns). Salmon-colored lines denote range of simulated null patterns, with the black 

line indicating the 95th percentile. Significant deviations occur when points are to the right of the black line with 

greater deviations at higher u values; points are colored to reflect direction of deviance. 

Spatial patterns of regeneration locations at scales of 0 to 15 m displayed significantly non-

random patterning among most analyses with substantial variation in deviance across 

observation periods (Figure 2.4). Tree regeneration were aggregated at every period (Analysis 

A1). In periods from 1991 to 2018, I observed attraction between regeneration and ingrowth 

(A2). There was significant attraction in the 1983 period between regeneration and ingrowth, yet 

only at scales < 1 m (Figure 2.5), therefore goodness of fit over the entire range of 0—15 m was 

insignificant. In all periods, regeneration exhibited repulsion from large trees (A3). Small trees 

attracted regeneration in 1974 and were repulsive in periods 1983 to 2018 (A3). Regeneration 
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was repulsed from suppressed overstory trees in all periods (A4). Regeneration was independent 

of snags in periods 1991 and 2001 but attracted to snags in periods 2010 and 2018. Mortality 

rates of ingrowth within 15 m of other ingrowth were 3%, 2%, and 5% of ingrowth in periods 

1991, 2001, and 2010, respectively (A5). This positive density-dependence deviated from chance 

only in the 2010 period. In periods 1991, 2001, and 2010, mortality rates of ingrowth near small 

trees were 30%, 7%, and 19% respectively (A6). This risk was significantly greater than chance 

in periods 1991 and 2010. In periods 1991, 2001, and 2010, mortality rates of ingrowth near 

large trees were 37%, 4%, and 11% respectively. In all periods this was significantly greater than 

chance. 

 

Figure 2.5 Point pattern analyses 
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Spatial point pattern analyses in the study (rows) at scales from 0 to 15 m in each time period (columns). Significant 

deviations occur when the empirical line deviates outside of the envelope of simulations. See text for explanation of 

analysis names. 

The results from these statistical analyses are apparent on visual inspection (Figure 2.6). 

Some analyses did not include all measurement periods: suppressed trees were not detectable 

until remeasurement in 1983; I waited to measure the spatial correlation of regeneration with the 

locations of snags killed at least two measurement periods prior. No spatial analyses of 

regeneration mortality occurred until a sufficient sample size was reached (n = 10 at 1991) and 

time has not yet passed to detect mortality since 2018. 
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Figure 2.6 Point patterns of regeneration 

Division of the study site in 2010 into nine 1-ha subsets highlighting the locations of points used for each of the nine 

point pattern analyses; these showcase findings of: (A1) aggregation of newly mapped tree regeneration; (A2) 

attraction of regeneration to prior ingrowth; (A3) moderate repulsion of regeneration from small trees; (B1) severe 

repulsion of regeneration from large trees; (B2) repulsion of regeneration from suppressed small + large trees; (B3) 

attraction of regeneration to snags (standing dead small + large trees); (C1) positive density-dependent ingrowth 

mortality; (C2) risk of regeneration mortality independent of small tree proximity; (C3) risk of regeneration 

mortality increasing with large tree proximity.  

There are correlations among point patterns, indicating synchronicity of patterns across time. 

Measurement periods with greater regeneration aggregation, gregen(r), occur in periods with 
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greater regeneration density (trees ha-1), and greater repulsion from small trees, gsmall,regen(r), 

large trees, glarge,regen(r), and suppressed trees, gsuppressed,regen(r) (Absolute Pearson's correlations > 

0.98). Meanwhile, measurement periods with low self-thinning, as measured by ddingrowth(r), tend 

to have greater risk of mortality when near small trees, csmall,ingrowth(r) (Pearson's correlation = 

0.94), and large trees, clarge,ingrowth(r) (Pearson's correlation = 0.95). The only patterns that were 

not highly correlated (Pearson's correlation < 0.90) with another pattern were gsnag,regen(r), the 

spatial correlation of regeneration and snags, and gingrowth,regen(r), the spatial correlation of 

regeneration and prior ingrowth. 

2.3.4 Climate—Pattern Analysis 

I found evidence to indicate climate potential drives tree regeneration point patterns 

(Analysis A8). Intra-period climatic conditions correlated strongly with tree regeneration density 

and regeneration aggregation (Table 2.2). When the lag-regressed values of PC1 were low, 

signaling moderated climate with lower temperatures and more precipitation, more trees 

established (R2 = 0.97, p = 0.046; Figure 2.7a), preferring to establish in clusters (R2 = 0.99, p = 

0.011; Figure 2.7b) and ingrowth that established in prior years  (R2 = 0.72, p = 0.637; Figure 

2.7c). In contrast, periods with higher values of lag regressed PC1, i.e., harsher climatic 

conditions, found regeneration establishing closer to both small (R2 = 0.82, p = 0.253; Figure 

2.7d) and large overstory trees (R2 = 0.91, p = 0.135; Figure 2.7e). There was a strong correlation 

indicating that regeneration is repelled from suppressed overstory trees when climate was 

moderate (R2 = 1.00, p = 0.035; Figure 2.7f). Regeneration tended to establish near snags under 

moderate climate, but this trend was not consistent across all periods (R2 = 1.00, p = 0.035; 

Figure 2.7g).  
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The spatial patterns of regeneration mortality followed similar trends. Under moderate 

periods of climate, I found less density-dependent mortality among ingrowth (R2 = 0.81, p = 

0.290; Figure 2.7h). Conversely, ingrowth mortality was heightened near small (R2 = 0.85, p = 

0.254; Figure 2.7i) and large overstory trees (R2 = 0.83, p = 0.268; Figure 2.7j) under moderated 

climate. 
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Figure 2.7 Point patterns and climate 

Summary of lag regression fits fit to regeneration density (a) and deviances of spatial patterns (b—j) against climate 

harshness (PC1). The left y-axis displays the observed values whereas the right y-axis displays either raw PC1 

values, or if denoted as PC1*, lag-weighted values of PC1 based on lag-regression fits (see text for details). Larger 

values of PC1 indicate climate harshness. 
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Table 2.3 Lag-regressions 

Summary of lag-regression models of regeneration density and deviances of point patterns on climate harshness 

(PC1). 

Pattern deviance 𝒖𝟎,𝒕′  Parameter [lag] β SE t p R2 Model p 

Density (regen ha-1) Intercept 423.44 60.70 6.98 0.0199 

0.97 0.047 

PC1 [1] -47.55 19.21 -2.48 0.1317 

PC1 [2] -5.91 17.62 -0.34 0.7692 

PC1 [3] -105.52 17.36 -6.08 0.0260 

gregen(r) Intercept 738.79 36.56 20.21 0.002 

0.99 0.0107 

PC1 [1] -104.54 11.57 -9.04 0.012 

PC1 [2] -19.19 10.61 -1.81 0.212 

PC1 [3] -109.65 10.45 -10.49 0.009 

gingrowth,regen(r) Intercept 343.14 311.56 1.10 0.469 

0.72 0.637 

PC1 [1] -47.35 68.79 -0.69 0.616 

PC1 [2] -66.25 74.92 -0.88 0.539 

PC1 [3] -38.17 51.80 -0.74 0.596 

gsmall,regen(r) Intercept 2.14 37.85 0.06 0.960 

0.82 0.253 

PC1 [1] 17.91 11.98 1.50 0.273 

PC1 [2] 14.99 10.98 1.36 0.306 

PC1 [3] 7.92 10.82 0.73 0.540 

glarge,regen(r) Intercept -221.21 29.65 -7.46 0.018 

0.91 0.135 

PC1 [1] 18.91 9.38 2.02 0.182 

PC1 [2] 14.91 8.61 1.73 0.225 

PC1 [3] 13.65 8.48 1.61 0.249 

gsuppressed,regen(r) Intercept -136.31 30.24 -45.08 0.014 

1.00 0.035 PC1 [1] 11.50 0.67 17.23 0.037 

PC1 [2] -3.63 0.73 -4.99 0.126 
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PC1 [3] 16.51 0.50 32.83 0.019 

gsnag,regen(r) Intercept -19.22 24.38 -0.79 0.575 

0.49 0.824 

PC1 [1] 2.97 5.38 0.55 0.678 

PC1 [2] -1.49 5.85 -0.26 0.841 

PC1 [3] 3.64 4.05 0.90 0.534 

ddingrowth(r) Intercept 19.51 14.47 1.35 0.406 

0.81 0.290 

PC1 [0] 7.29 3.57 2.04 0.290 

csmall,ingrowth(r) Intercept 45.04 10.99 2.65 0.230 

0.85 0.254 

PC1 [0] -9.95 4.19 -2.37 0.254 

clarge,ingrowth(r) Intercept 40.11 5.39 7.45 0.085 

0.83 0.268 

PC1 [0] -2.97 1.33 -2.23 0.268 

 

2.4 Discussion 

In a ponderosa pine stand over 44 years without active management and with minimal 

disturbance, the results presented here indicate the locations of tree regeneration are not spatial 

random; these locations are likely driven by biotic interactions, which, moreover, are modulated 

by climate. The spatial arrangement of trees in a forest stand is an integration of multiple 

processes such as regeneration and mortality dynamics, and effects of climate, disturbances, and 

management activities. A point pattern analytic approach to analyze tree spatial arrangement 

holds promise to elucidate the drivers of regeneration establishment locations (Fajardo et al. 

2006; Malone et al. 2018) and further concepts of development of stand complexity (Stoyan and 

Penttinen 2000; Boyden et al. 2005; Larson and Churchill 2012).  

A key advantage of this study was that regenerating trees were censused every c. 9 years. 

Although tree locations are dynamic through time, most investigations use a “frozen” approach 

(Herben and Hara 2003; Velázquez et al. 2016) making use of a single inventory of a mapped 
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community to retroactively interpret past tree interactions. This approach is not ideal as it flattens 

the pattern-shaping processes over time (Comas and Mateu 2007). In contrast, longitudinal 

designs such as in this study are suited for investigating long-term dynamical processes such as 

recruitment (e.g. Lutz et al., 2014). By finding that specific tree patterns are correlated over time, 

I strengthen suggestive links between pattern and process. Additionally, a correlation with 

climate implies interactions between overstory and regenerating trees are modulated, creating 

plasticity of regeneration niches spatially. 

2.4.1 Prescence of Large Trees Broadly Determines Regeneration Niche Preference  

The spatial preferences of tree regeneration, over the duration of the whole study, were likely 

driven primarily by the presence of large trees. First, periods of greater aggregation within 

regeneration co-occur with periods of greater repulsion away from overstory trees. Additionally, 

the repulsion of regeneration away from suppressed trees, where competition is heightened, and 

increased mortality rates of regeneration near overstory trees were especially indicative of 

competition. This suggests that periods of heightened competition from the overstory confine 

successful establishment to gaps. Second, I observed colonization of canopy gaps, as indicated 

by the attraction of tree regeneration to snags. Gap creation, whether through disturbances such 

as harvesting (Sánchez et al. 2009), tree competition (Vacek and Lepš 1996), or, in this study, 

mountain pine beetle, provides greater availability of light and nutrients for shade-intolerant tree 

species (York et al. 2007). Third, large trees repulsed regeneration more than small trees; the 

interactions of saplings with larger trees tend to be more negative than interactions with medium-

sized trees (Fajardo et al. 2006) because larger trees utilize a greater share of abiotic resources 

per capita (Nguyen et al. 2016). The importance of large trees for impacting ponderosa pine 

regeneration locations, however, does not negate contributing influences arising from fine-scale 
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edaphic or topographic variability (Abella et al. 2013). These sources of niche modification are 

more apparent, and likely more consequential, where the overstory has been completely removed 

such as after stand-replacing fires (Ziegler et al. 2017b). The results here reify models of stand 

dynamics which emphasize the regulatory role of large trees (Lutz et al. 2012). 

Larson and Churchill (2012)’s review of tree spatial patterns identified many commonalities 

regarding spatial structure across dry forests in the western US. Findings of clustered small trees 

segregated from larger, older trees has been observed frequently, whether stand structure was 

old-growth or responding to a partial harvest in decades past, and whether the overstory was 

ponderosa pine dominated or mixed conifer (Moeur 1993; Sánchez et al. 2009; Lydersen et al. 

2013; Schneider et al. 2016; Iniguez et al. 2019). There remains a question as to how 

generalizable this pattern is; whereas the aforementioned studies found trees to have filled in 

gaps over time, North et al. (2004) found tree regeneration to disprefer gaps in a mixed conifer 

Sierra Nevada forest and suggested high temperatures in gaps precluded establishment. And in 

some forests, dense shrub communities can establish in openings (Knapp et al. 2013), 

outcompeting tree regeneration (Erickson and Harrington 2006). Further research of large, 

mapped plots over time are needed to investigate patterns of forest dynamics (Lutz et al. 2018); 

the compilation of such efforts will help separate the degree to which aspects of spatial forest 

dynamics are idiosyncratic or can be distilled into common heuristics. 

2.4.2 Climatic Conditions Finely Tunes Regeneration Niche Preference 

Though the patterns in this study suggest a net negative interaction of overstory trees on tree 

regeneration, this does not mean overstory trees had not benefitted tree regeneration. The canopy 

gaps in this study represented middling conditions wherein competition was lessened, but the 

proximate canopy still moderated microclimatic conditions. In this study, 99.6% of tree 
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regeneration occurred within 14 m of an overstory tree; this is within the zone of influence of 

larger trees, as identified by prior research from Boyden and Binkley (2016) in the same plot as 

this study. Regenerating trees in very large open spaces devoid of any canopy shading may be 

subject to excessive surface temperatures and evaporation (North et al., 2004). Experimental 

plantings of ponderosa pine and other conifers in the Sierra Nevada demonstrate that the 

advantage of being in open space diminishes quickly asymptotes with distance from the 

overstory. This has led researchers to categorize openness according to distance from the 

overstory in order to capture the degree to which trees moderate the immediate growing 

environment (Lydersen et al. 2013; Matonis and Binkley 2018; Iniguez et al. 2019). For 

example, Iniguez et al., (2019) discriminate between gaps and openings where growing 

conditions are moderated in the former but not the latter. The authors point out that identifying a 

distance-based distinction between gaps and openings is subjective. Further investigations are 

needed to identify how the balance of overstory-attenuated microclimates against overstory 

competition affects ponderosa pine establishment and survival. 

The relationships between climate and patterns of tree regeneration indicate that the net 

negative interactions from the overstory are dynamic and may spur development of diverse tree 

group structures. As climate became harsher, moisture stress in open areas likely increased. This 

led to greater density-dependent mortality within ingrowth but less mortality of ingrowth near 

the overstory. Additionally, the net repulsion from overstory trees likely lessened as canopy 

shading mitigated moisture and temperature stresses. In other words, the range of preferred 

conditions for establishment and survival contracted away from open spaces and towards canopy 

edges. This was manifested by a lessening in the tendency for regeneration to cluster with each 

other segregated from the overstory (Figure 2.9). This trend, evocative of the stress-gradient 
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hypothesis, has been demonstrated by contrasting comparatively xeric and mesic ponderosa pine 

and Douglas-fir stands in northwestern Montana (Fajardo et al. 2006). Over time, tree 

regeneration which established during wetter periods will lead to development of even-aged tree 

groups (Cooper 1960) whereas drier periods may produce tree groups of mixed ages (White 

1985). This study demonstrates that the stress gradient hypothesis can be applied to explain 

spatial regeneration dynamics in dry forests and leads to divergent tree group structuring. 

 

Figure 2.8 Demonstration of tree patterns 

Conceptual figure of climatic mediation of tree regeneration spatial patterns. Locations of regeneration shift as 

conditions became warmer and more xeric, realized as: lower density; lower aggregation; less attraction to snags and 

recent ingrowth; less repulsion from overstory trees, including suppressed trees; less density-dependent mortality 

within regeneration; and greater regeneration mortality near overstory trees. 

2.4.3 Silvicultural Implications for Future Forests 

The trajectory of stand development observed here echoes a common theme: dry forests in 

the western US have infilled, leading to homogenization (Hessburg et al. 2005; Sánchez et al. 

2009; Schneider et al. 2016). In this site, background mortality and the endemic mountain pine 

beetle event killed only 1 overstory tree ha-1 yr-1. Meanwhile, 6.6 trees ha-1 yr-1 were recruited. 
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As of 2018, stocking consisted of 486 trees ha-1 with 24.3 m2 ha-1 of basal area, far greater than 

the pre-settlement (1860 AD) average of 97 trees ha-1 or 6.3 m2 ha-1 of basal area for similar 

forests in the Front Range region (Battaglia et al. 2018). Higher fuel connectivity associated with 

greater stocking increases the risk of high severity fire. This can result in high fire-caused 

mortality and sparse, homogeneous residual overstories with little seed availability to ensure 

forest recovery (Ziegler et al. 2017b; Stevens-Rumann and Morgan 2019); in contrast, fire 

severity is lower in heterogeneous forests with lower fuel connectivity (Kane et al. 2019; Koontz 

et al. 2020). In the upcoming century with greater expected wildfire activity (Williams et al. 

2012), complexity-oriented silvicultural treatments which seek to create heterogenous forest 

structures are argued to bolster resistance and resilience to disturbances such as fire (Larson and 

Churchill 2012; Puettmann et al. 2015; Ziegler et al. 2017a; Fahey et al. 2018). 

These complexity-oriented treatments employ variable retention harvesting, creating 

heterogeneity of residual trees. For example, the Individuals, Clumps and Openings framework 

(ICO) emphasizes emulating historical forest structure, namely a mosaic of isolated trees, groups 

of trees, and gaps (Churchill et al. 2013b). These treatment designs are aligned with the 

autecological spatial dynamics of ponderosa pine for two reasons. Firstly, this study suggests the 

persistence of edges and gaps benefits continual tree recruitment, by providing both open areas 

to regenerate as well as climate moderation, sustaining an all-aged forest structure. ICO-like 

treatments in similar forests produce areas of greater light conditions over spacing-based 

treatments (Cannon et al. 2019) benefitting ponderosa pine establishment. Enhanced light 

conditions also counteract undesirable compositional shifts towards shade-tolerant species 

occurring in many western US forests (Battaglia et al. 2018). Maintaining an all-aged forest 

structure enhances resilience, especially against mortality agents which favor larger and older 
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trees (Baker and Williams 2015; Briggs et al. 2017), e.g. mountain pine beetle (Negrón and Popp 

2004). However treatments as currently implemented are often not creating sufficiently sized 

edges and gaps (Briggs et al. 2017; Matonis and Binkley 2018). A silvicultural emphasis on edge 

and gap creation would enhance biological and structural diversity (Dickinson 2014; Kane et al. 

2014; Briggs et al. 2017; Matonis and Binkley 2018). 

Secondly, the ICO framework incorporates removal of ladder fuels (Churchill et al. 2013b). 

Fire modeling studies have confirmed that spatial segregation of small trees from overstory trees 

in historical and heterogeneous forests reduces fire severity (e.g., Ziegler et al., 2021). Given that 

tree regeneration in this study was repelled by—and mortality higher near—larger trees, ladder 

fuel removal would capture eventual mortality while lowering the potential for crown fire 

transition. Briggs et al. (2017) caution however, that forest managers should weigh fire hazard 

concerns against benefits of multi-storied tree groups, especially habitat provisioning (e.g., 

Youtz et al. 2008). Further, my results indicate tree regeneration will establish nearer to the 

overstory under a warming and more stressful climate in the 21st Century. My results 

demonstrate that retaining some all-aged groups will ensure the ingrowth in these groups will be 

buffered against heat and drought stress. 

Close proximity of trees in dense patches can lead to heightened interactions, resulting in 

locally intense self-thinning (Suzuki et al. 2008). This study shows that climate can 

synergistically interact with the arrangement of local tree neighborhoods to increase risk of 

mortality, as suggested by Lutz et al. (2014). Most tree regeneration perished in the 2002-2010 

period with mortality concentrated in denser patches of regeneration. This climatic period 

contained the strongest megadrought since the 16th Century (Williams 2012). As drought 
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frequency and severity are expected to trend upwards, climate-adaptive silvicultural strategies 

may benefit from thinning some regeneration patches. 

2.4.4 Limitations and Future Opportunities 

The duration of this study captured the shift from a largely two-aged and two-sized stand to 

an uneven-aged stand, characterized by a reverse sigmoid shaped size distribution (O’Hara 

2014). This shift occurred in the late 20th Century, whereas little regeneration occurred over the 

early to mid-20th century. This lack of early 20th Century regeneration has been observed 

elsewhere in the Colorado Front Range (Baker et al. 2007). Consequently, this study 

encompassed the majority of tree regeneration over the last century. 

However, the inferential strength of this study would be improved both by more frequent 

observations and inclusion of seedlings. In the exploratory analyses, I found that the correlations 

between climate and spatial patterns, with exception of the patterns between ingrowth and 

regeneration, and between snags and regeneration, was high (R2 ≥ 0.81). Yet the statistical power 

was low, owing to low sample sizes of observation periods and degrees of freedom. More 

frequent observations aided by advances in lidar (light detection and ranging) can increase 

sample sizes while reducing effort to map trees (e.g., Kane et al., 2019). As a result, more 

frequent observations may be possible. In this study, increasing the sample size of observation 

periods would have aided inferential ability. Furthermore, it was necessary to summarize climate 

variables within the same temporal periods as the periodic observations, and these periods were 

marked by significant intra-periodic variability (Figure 2.10). More frequent observations would 

increase degrees of freedom, sample size, and increase the precision of climate as a predictor. By 

addressing these factors, future studies could establish a more robust climate—spatial pattern 

linkage. 
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Figure 2.9 Climatic variability over years 

Interannual PRISM climate at the study location point pattern; alternative grey and white vertical backgrounds 

represent individual periods. 

2.4.5 Extending Point Pattern Analyses for Comparative Purposes 

In spatial point pattern analysis (SPPA), studies use complete spatial randomness (CSR), 

spatial independence, or random labelling (depending on the structure of the data and desired 

hypothesis test) as a null model (Velázquez et al. 2016) for the basis of determining an observed 

spatial pattern. ‘No difference’ as a null hypothesis has been levied against traditional, 

frequentist hypothesis testing; likewise, spatial null models which assume no spatial structure of 

the data are often described as trivial and uninteresting. Reasons given are that an overwhelming 

compilation of SPPA research rarely demonstrate, and even a priori assumptions of investigators 

rarely assume, plant communities are randomly assembled (Velázquez et al. 2016). Inference-

making with SPPA via simulation envelopes or goodness-of-fit measures is typically trinary—in 

the case of CSR as the null model, uniformity, randomness, or aggregation—and stops short of 

assessing effect size. This study however demonstrates that a null of randomness or no difference 

provides a baseline against which empirical patterns can be compared. 

Moreover, I submit studentization and scalar transformation per Myllymäki et al. (2015), as 

employed here, can elevate the usefulness of perceived trivial null models. This simplification of 

complex data structures (e.g., aggregating data from Appendix Figure A1 to Figure 5) generates 
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effect sizes and permits comparison-making, an underused but promising use of SPPA (Fajardo 

et al. 2006; Velázquez et al. 2016). This approach avoids an view of states like aggregated or 

random as mutually exclusive categories and reframes spatial patterns as occupying a gradient of 

spatial correlation. 

2.5 Conclusions 

Heterogeneous forest structures develop over extended periods of time from shifting 

distributions of regeneration niches. This case study suggests those niches in ponderosa pine 

forests in the Southern Rockies are driven largely by competition from the overstory, but also 

with a modicum of facilitation during droughts. In the absence of historically frequent 

disturbances such as fire, continued canopy closure will continue to decrease the availability of 

gaps. This will challenge successful recruitment in similarly situated ponderosa pine-dominated 

forests as well as mixed conifer dry forests. The results here offer evidence to support the use of 

variable retention harvesting methods. Emphasizing gap creation can enhance opportunities for 

recruitment, supporting a mixture of age classes and therefore long-term viability.  

The analyses connecting climate to spatial regeneration patterns was exploratory in nature 

and provided hypotheses for more confirmatory experiments and studies. Meanwhile, forest 

managers must implement silvicultural strategies today in anticipation of growing conditions in 

the future. Whether the same spatial patterns of regeneration in ponderosa pine forests of the 

Southern Rockies extend to the future will likely become increasingly tenuous over time as 

climate deviates from the range I observed in this study. Rather than regenerating into openings, 

creating distinct tree groups, harsher climatic periods may enhance the ‘nurse’ effect from the 

overstory, leading to greater abundance of multi-aged tree groups. This will create 
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characteristically different assemblages of tree groups, requiring forest and fire managers to 

adjust their silvicultural planning and fuels management. 
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CHAPTER 3 – TREE REGENERATION SPATIAL PATTERNS IN PONDEROSA PINE 

FORESTS FOLLOWING STAND-REPLACING FIRE: INFLUENCE OF 

TOPOGRAPHY AND NEIGHBORS 

 

 

 

3.1 Introduction 

Disturbances, management, and ecological processes imprint their signatures on the spatial 

pattern of forest structure throughout forest development. Interpreting these spatial patterns while 

using other sources of information such as species’ silvics provides insights into forest stand 

dynamics (Stoyan and Penttinen 2000). One ecosystem where studies of spatial patterns have led 

to an improved understanding of stand dynamics is in ponderosa pine (Pinus ponderosa Dougl. 

ex Laws.)-dominated forests of western North America. In many of these forests, relatively 

frequent, low- to mixed-severity fires historically shaped structure and composition, creating and 

maintaining generally open, uneven-aged stands consisting of a mosaic of individual trees, tree 

groups, and openings (Larson and Churchill 2012). These mosaics have been characterized as 

aggregated at sub-hectare scales and with heterogeneous spatial patterns of tree sizes (e.g., within 

a group, interior trees were often smaller than peripheral trees) (Pearson 1950; Larson and 

Churchill 2012). Fires responded to and reinforced these spatial patterns (Larson and Churchill 

2012) and these fire-dependent patterns regulated elements of forest dynamics including 

demography (Boyden et al. 2005), mortality (Boyden et al. 2005), tree growth (Pearson 1950) 

and regeneration (Fajardo et al. 2006). 

As the density and spatial arrangement of tree locations and sizes affect forest dynamics 

(Bače et al., 2015; Donato et al., 2012; Ziegler et al., 2017a), understanding patterns of initiating 

stands is critical for anticipating the consequences of altered fire regimes (Hansen et al. 1991; 
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Tepley et al. 2014). Many ponderosa pine forests are experiencing greater occurrence and extent 

of high-severity, stand-replacing fires due, in large part, to a century of fire exclusion, past land 

uses, and changing climate (Brown et al. 2004; Stephens et al. 2014; Hessburg et al. 2016). 

Because of distance-limited seed dispersion, large stand-replacing patches often beget sparse 

post-fire tree regeneration, generating concern that forest developmental pathways may be 

altered by shifts towards greater high-severity fire (Chambers et al. 2016; Rother and Veblen 

2016). Such changes will have long-lasting repercussions for forest structure and composition 

(Chambers et al. 2016; Rother and Veblen 2016). 

Recent syntheses of stand development suggest that severe, stand-replacing fires induce 

spatially complex forest structures (DellaSala et al. 2014; Tepley et al. 2014). Patterns of sparse 

stand regeneration are hypothesized to be especially heterogeneous, influenced by large and fine-

grained variability in growing environments (Donato et al. 2012; Bače et al. 2015). Competition 

is thought to largely influence patterns (Donato et al. 2012), resulting in the spatial segregation 

of trees into monospecific groups (Pielou 1962) and diminished growth between competing 

neighbors (Das et al. 2011). Other studies, however, suggest that positive interactions may be 

more important as neighbors ameliorate moisture stress in the absence of canopy cover (Donato 

et al. 2012; Redmond et al. 2015). Positive interactions would form heterospecific groups in 

contrast to competitive interactions (Pielou 1962). As much as tree interactions inform spatial 

patterns, abiotic influences on resource availability are also likely to be important, reflecting 

niche preferences and promoting fine-scale aggregation (Bonnet et al. 2005; Getzin et al. 2008). 

For example, the higher evaporative demand on southwestern aspects or lower soil moisture 

retention on steep slopes inhibit regeneration less so than on northeastern or shallower slopes 

(Rother and Veblen 2016). Moreover, sparsely regenerating stands may also develop a 
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heterogeneous spatial arrangement of tree sizes due to biotic interactions and differential growth 

rates across abiotic gradations (Donato et al. 2012; Bače et al. 2015). How patterns of 

regenerating trees manifest is therefore contingent on the prevailing growing environment and 

requires examination of the roles of biotic and abiotic factors such as tree interactions and 

topography (Donato et al. 2012). 

Further, tree regeneration patterns are modulated by traits of species composing the 

regeneration (Urza and Sibold 2017). For example, in ponderosa pine-dominated forests, wind is 

an important disperser of ponderosa pine and Douglas-fir (Pseudotsuga menziesii (Mirb.) 

Franco) seeds; the heavier seed size of ponderosa pine may not disperse as far as lighter 

Douglas-fir seeds (Vander Wall 2003; Chambers et al. 2016; Rother and Veblen 2016). In 

contrast, lodgepole pine (Pinus contorta Dougl. ex Loud.) cones are often serotinous (Alexander 

1966) which could result in concentrated seed dispersal around dead parent trees. However, 

lodgepole pine seeds are also light and easily wind-dispersed (Vander Wall 2003). Quaking 

aspen (Populus tremuloides Michx.) sprouts clusters of ramets around preexisting genets and 

does not primarily rely on wind dispersion to regenerate (Shepperd 1993). Once regeneration 

occurs, species’ tolerance to heat, light, and moisture availability, which vary by abiotic and 

biotic environmental conditions, can influence establishment and growth (Urza and Sibold 

2017). These differential traits make it pertinent to examine tree regeneration patterns using a 

species-specific approach. 

The overarching aim was to identify the spatial patterns of tree regeneration in ponderosa 

pine-dominated forests following stand-replacing fire and ascertain how tree patterns are 

responding to topographic variation and tree interactions. I conducted this study in ponderosa 

pine forests given their wide geographic range in western North America and the interest of 
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managers in buffering post-fire resiliency of dry forests globally (Stephens et al. 2014). 

Specifically, I (1) assessed the spatial patterns of tree locations and heights; (2) examined 

whether species interactions, in a beneficial or negative manner, were shaping these patterns; and 

(3) explored the influence of topographic gradations on these patterns. This study’s results 

further an ecological understanding of forest recovery and may inform forest management 

decision making within these and similar dry forests. 

3.2 Materials and Methods 

I studied ponderosa pine forests following three wildfires in the western USA: the 2000 

Bobcat Gulch Fire (Colorado Front Range), the 2002 Hayman Fire (Colorado Front Range), and 

the 2000 Jasper Fire (Black Hills of South Dakota; Figure 3.1). Within the fire footprints, 

elevation ranged from ~1700 to 2500 m, mean annual precipitation from 48 to 58 cm, and 

temperature from 5.2 to 7.8 ◦C (Brown et al. 1999). Aside from ponderosa pine, three other 

species were abundant. Quaking aspen occurred within all three burned areas, often in moister 

sites (Peet 1981). Douglas-fir was common on northerly aspects within the Bobcat Gulch and 

Hayman Fires (Peet 1981). The third, lodgepole pine, occurred on northerly aspects in the 

Bobcat Gulch Fire (Peet 1981). 

These forests historically experienced fires with a range of severities from low to moderate to 

high with the latter being infrequent and tied to climatic anomalies (Brown and Sieg 1999; 

Brown et al. 1999; Fornwalt et al. 2016). The mixture and frequency of severities were 

significantly spatially variable over landscapes, influenced by complex topography, and over 

decades, influenced by broad-scale climatic oscillations (Brown and Sieg 1999). Though there is 

some debate as to the relative historical portion and patch sizes of fire severities across these 
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landscapes (Fule et al. 2014), it is generally accepted that high-severity fires were not historically 

as common in extent or occurrence as today (Hessburg et al. 2016). 

3.2.1 Data Collection 

I established six randomly located 4-ha (200 m × 200 m) plots in stand-replacing patches 

(i.e., 100% tree mortality) of each fire, for a total of 18 plots (Figure 3.1). I excluded areas that 

were inaccessible (i.e., not on public land or >4 km from a road) or that experienced post-fire 

logging or planting. I placed three plots per fire adjacent to, and three plots at least 200 m from, 

living residual forest, permitting statistical accounting of distance–regeneration density 

relationships. Sampling occurred 11 to 15 years post fire to allow time for tree establishment 

(Shepperd et al. 2006). 

In each plot, I recorded locations, species, and heights of all post-fire regenerating trees ≥15 

cm tall (Figure 3.1). Where conspecifics of similar height were densely clustered, I recorded the 

cluster’s centroid, radius, number of individuals, and their average height. Clusters were small 

with a median count of five trees and radius of 0.5 m. I then assigned random coordinates to 

clustered trees within their cluster’s radius. I considered only those species with a sufficient 

sample size (≥20 individuals in any plot), leaving ponderosa pine and quaking aspen across all 

fires, Douglas-fir in the Hayman, and Bobcat Gulch fires, and lodgepole pine in the Bobcat 

Gulch Fire. After filtering, regeneration counts ranged from three trees to 1704 trees per 4-ha 

plot, averaging forty-three trees ha-1 across the sampled population (Table 3.1). 

I calculated three topographic measurements within each plot using 10-m resolution digital 

elevation models (USGS 2016): aspect, percent slope, and topographic position index (TPI) 

(Tagil and Jenness 2008). I cosine-transformed azimuthal aspect to a range from zero 
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(southwest) to two (northeast). I measured TPI as the difference in elevation between a location 

and its surrounding neighborhood, defined as a 10-m radius in this study. I used base tools in 

ArcGIS 10.3 (ESRI, Redlands, CA, USA) with the Geomorphology and Gradient Metrics 

toolbox (Cushman et al. 2010) for these calculations. 

In ArcGIS 10.3, I also measured the distance from residual forest canopy using supervised 

classification (see Chambers et al. (2016) for method details) on 1-m resolution aerial imagery 

(USGS 2016). I joined topographic measurements and distance from residual forest canopy to 

each 4-ha plot (Table 3.1). 

  

Figure 3.1 Study location 

Locations of sampled fires and 4-ha plots within high-severity areas, as well as an example plot of mapped tree 

regeneration, by species, for illustration. 

Table 3.1 Regeneration properties 
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Regeneration properties and topographic conditions where regeneration was present; TPI is topographic position 

index and distance is distance from residual live canopy. 

Statistic Density (Trees ha-1)* Height (m) Distance (m)* Aspect (Unitless) Slope (%) TPI 

Ponderosa pine (Pinus ponderosa) 

Mean 8.6 0.8 76.2 0.8 9.3 0.1 

Std. dev. 14.5 0.5 134.3 0.8 8.7 0.4 

Range 1.0–260.0 0.1–3.0 0.0–758.8 0.0–2.0 1.1–51.6 -2.1–3.2 

Lodgepole pine (Pinus contorta) 

Mean 0.7 1.2 150.6 1.6 39.2 0.2 

Std. dev. 0.5 0.6 119.4 0.5 8.3 0.7 

Range 0.0–5.8 0.3–3.0 17.7–457.9 0.1–2.0 16.6–54.4 -1.5–1.8 

Quaking aspen (Populus tremuloides) 

Mean 43.5 1.4 338.5 1.2 9.6 -0.4 

Std. dev. 66.1 1.0 194.5 0.8 7.4 0.8 

Range 0.0–414.3 0.1–4.0 10.6–759.0 0.0–2.0 1.0–49.9 -3.3–2.8 

Douglas-fir (Pseudotsuga menziesii) 

Mean 1.5 0.5 107.9 1.6 17.1 0.0 

Std. dev. 2.1 0.3 85.1 0.6 12.9 0.6 

Range 0.0–30.3 0.1–1.6 3.2–453.5 0.0–2.0 1.5–53.4 -2.1–2.7 

All 

Mean 43.0 1.2 358.9 1.1 9.9 -0.2 

Std. dev. 61.2 0.9 205.1 0.8 8.5 0.8 
*
Tree density is inversely weighted by the sampled intensity of distances from residual forest canopy (i.e., 

values are the average tree density from 0 to 759 m from residual forest canopy) to control for distance-

regeneration density relationships. 

3.2.2 Patterns of Regenerating Tree Locations 

To assess spatial patterns of each species, I tested whether trees were distributed randomly 

(i.e., complete spatial randomness or CSR), uniformly, or aggregated using the distance-

dependent univariate pair correlation function, g(r) (Wiegand and Moloney 2013). This function 

describes the density of mapped points at distance, r, from any arbitrary point, relative to 

expectation under CSR (Wiegand and Moloney 2013). Therefore, when observed statistics of 

g(r) are greater than expected, tree patterns are aggregated; similarly, lower values than expected 

suggest uniformity. 

I randomly distributed points under a null model 999 times to evaluate for departure from 

CSR. 
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The null model, an inhomogeneous Poisson process, distributed points under non-constant 

intensity (points per unit area). Intensity was parameterized by an Epanechnikov smoothing 

kernel at a bandwidth of 15 m and resolution of 1 m (Wiegand and Moloney 2013). I chose an 

inhomogeneous over a homogeneous Poisson process to account for intensity gradients in the 

observed data (Wiegand and Moloney 2013). Treating each plot as a replicate, I pooled observed 

statistics together and null statistics together using ratio estimation (Wiegand and Moloney 

2013). I then tested goodness-of-fit of pooled observations about the pooled null expectation 

(Wiegand and Moloney 2013; Baddeley et al. 2015) over a range of distances, 0 to 15 m (α = 

0.05 for all hypothesis tests). The upper limit was selected a priori following recommendation 

that tests should mirror the scale at which trees’ spatial correlation structures generally manifest; 

this is often near 15 m (Wiegand and Moloney 2013). 

I then explored interspecific interactions with the bivariate pair correlation function, g1,2(r). 

This statistic is like g(r), except it considers only the number of species 2 points located at 

distance, r, from species 1 points (Wiegand and Moloney 2013). The statistics’ interpretation 

depends on choice of the null model (Goreaud and Pelissier 2003); the null model was 

independence. The toroidal shift method is often used to simulate independence (Goreaud and 

Pelissier 2003); an alternative method is preferred when point patterns display significant 

inhomogeneity (Wiegand and Moloney 2013). I simulated independence by randomly displacing 

species 2 locations within a 15-m radius while holding species 1 locations fixed. This preserves 

broad spatial structures of species locations, while removing small-scale correlations (Wiegand 

and Moloney 2013). Using this analysis, I could determine whether species were located 

independent of one another, attracted to one another (i.e., statistics above the null expectation), 

or repulsed from one another (i.e., statistics below the null expectation). The former implies 
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beneficial interactions while the latter, negative interactions (Pielou 1962). The procedure for 

handling replication and goodness-of-fit testing for departure from the null model was otherwise 

identical to the above univariate analysis. 

Last, I explored the influence of topography on tree locations, while accounting for the effect 

of distance from residual forest canopy. I fit an inhomogeneous Cox process model, a weighted 

generalized linear model with a log-link and Poisson error distribution (Baddeley et al. 2015), to 

estimate the intensity of each species at each location. Models were a function of distance from 

the residual forest canopy, each of the topographic covariates and, as a random effect, the 

identity of each plot’s fire. To identify statistical significance of topography, I compared this full 

model to a reduced model with no topographic covariates using the likelihood-ratio test. I 

assessed these models with a two-step process. For each covariate, I multiplied its range of 

observations by its estimated coefficient. This is the log-scale relative magnitude of each 

covariate. Transforming to linear scale yields the factor change in intensity from the lowest to 

highest observed value of each covariate (Baddeley et al. 2015). Next, I examined model 

performance; I assessed goodness-of-fit of the observed g(r) from the univariate analysis against 

999 realizations of the fitted models. Here, I did not pool across plots; significant deviation from 

the fitted point process in any one plot constituted an incomplete description of the observed 

pattern. I performed point process modelling in R (v3.2.3, R Core Team 2016, Vienna, Austria) 

with Spatstat 

(v1.46-1; Baddeley et al., 2015). 

3.2.3 Patterns of Regenerating Tree Heights 

I assessed the patterns of each species’ tree heights with the univariate mark correlation 

function, kmm(r) (Wiegand and Moloney 2013). This function measures the relationship, 
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formalized using a suitable test function, between marks of pairs of points, m1 and m2, separated 

by r. I used the test function f(mi,mj) = mi mj using tree heights of any arbitrary pair of points, i 

and j, as marks (Wiegand and Moloney 2013). The test function statistics were normalized by the 

square of all tree heights; therefore, kmm(r) < 1 when neighboring trees at r are shorter than, and 

kmm(r) > 1 when neighboring trees are taller than the mean height of all trees. The former implies 

negative interactions while the latter, beneficial interactions (Suzuki et al. 2008; Das et al. 2011). 

I then explored the influence of heterospecific proximity on each species’ tree heights using 

the bivariate r-mark correlation function, k1m2(r). In this analysis, the test function yields the 

identity of species 2’s height at r from species 1 normalized by the mean of species 2’s heights 

(Wiegand and Moloney 2013); k1m2(r) < 1when species 2 trees at r from species 1 trees are 

shorter than the mean height of all species 2 trees, and k1m2(r) > 1 when trees are taller than the 

mean. 

Goodness-of-fit tests and plot replication procedures were identical to those used for the 

above pair correlation functions. For both kmm(r) and k1m2(r), I simulated null models of 

independence using 999 random permutations of a species’ heights. I performed both the 

univariate and bivariate analyses for pair correlation and mark correlation functions in 

Programita (Wiegand and Moloney 2013) using Ripley’s edge correction scheme (Wiegand and 

Moloney 2013). 

Finally, I examined the influence of topography on tree heights. I regressed, with mixed-

effects general linear models, species’ (log) heights on distance from residual canopy and the 

topographic factors with the identity of each plot’s fire as a random effect. Mirroring the Cox 

process modelling approach above, I compared the full model against a reduced (i.e., intercept-

only) model with a likelihood-ratio test and calculated the relative magnitude of each factor. I 
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used marginal-R2 (variance explained by fixed-effects only) (Nakagawa and Schielzeth 2013) as 

an indicator of model fit. I met general linear modelling assumptions. 

3.3 Results 

3.3.1 Patterns of Regenerating Tree Locations 

All species had aggregated spatial patterns, with aggregation greatest at smaller scales 

(Figure 3.2). In particular, deviance from CSR among lodgepole pine (p = 0.025) and Douglas-fir 

(p = 0.003) trees occurred at very small scales, from 0 to 2 m and 0 to 4 m, respectively. 

Aggregation of ponderosa pine (p = 0.001) and quaking aspen (p = 0.001) extended farther, out 

to 9 m. These findings reflect the clustering apparent on initial visual inspection of mapped plots 

(e.g., Figure 3.1). 

 

Figure 3.2 Univariate point patterns 

Patterns of replicated univariate pair correlation functions of post-fire tree regeneration (black lines) among 999 

simulations of spatial randomness (grey lines). Symbols indicate goodness-of-fit interpretations of potential 

departure of observations from randomness. PP is ponderosa pine (Pinus ponderosa), LP is lodgepole pine (P. 

contorta), AS is quaking aspen (Populus tremuloides), and DF is Douglas-fir (Pseudotsuga menziesii). 

In addition, interspecific spatial interactions were found to shape tree patterns for half of all 

species pairs. In every pairwise species association involving ponderosa pine, I detected a pattern 

of attraction (p = 0.001 to 0.019). The pattern of attraction was most clear at scales up to 4 m 

(Figure 3.3). Pairs of species not involving ponderosa pine, however, were spatially independent 

of each other (p = 0.059 to 0.800). In no species pair was repulsion evident. 
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Figure 3.3 Bivariate point patterns 

Patterns of replicated bivariate pair correlation functions of post-fire tree regeneration (black lines) among 999 

simulations of independent marking (grey lines). Symbols indicate goodness-of-fit interpretations of potential 

departure of observations from independence. See Figure 3.2 for species key. 

The Cox process models indicated that topography also influenced spatial patterns of all 

species. Topography and distance from residual canopy, together, explained variance in tree 

locations more than the latter alone (p-values < 0.001). Relative magnitudes of covariates show 

that slope, primarily, and aspect, secondarily, were most influential among conifers (Table 3.2). 

Ponderosa pine abundance was greatest on southwestern aspects and shallow slopes, whereas the 

other conifers were more abundant on northwestern aspects and steeper slopes. Quaking aspen 

locations were most strongly driven by topographic position with more individuals in swales 

(i.e., low TPI). Last, I found distance from residual forest canopy to be negatively related to 

densities of all conifers. Assessing the fit of these models, the observed g(r) was similar to the 



 

55 

simulated statistics of the Cox process models at distances of 4–15 m; however, the models 

underpredicted tree densities at smaller distances, as corroborated by plot-wise goodness-of-fit 

tests (p-values < 0.005). 

Table 3.2. Cox point process model fits 

Effect of covariates on post-fire tree regeneration intensity (stems m-2), by species, from fittings of inhomogeneous 

Cox process models. 

Covariate β SE t p Relative magnitude 

Ponderosa pine (Pinus ponderosa) 

(Int.) -3.549 0.083 -42.798 < .001  

Distance -0.006 <0.001 -17.769 < .001 119.744 

Aspect -0.317 0.058 -5.504 < .001 1.793 

Slope -0.059 0.006 -10.266 < .001 13.348 

TPI -0.050 0.070 -0.709 .478 1.587 

Lodgepole pine (Pinus contorta) 

(Int.) -12.536 1.478 -8.438 < .001  

Distance -0.004 0.002 -1.855 .064 24.294 

Aspect 0.669 0.500 1.339 .181 3.811 

Slope 0.102 0.029 3.474 .001 630.665 

TPI 0.110 0.327 0.336 .737 2.706 

 Quaking aspen (Populus tremuloides)  

(Int.) -5.637 0.492 -11.453 < .001  

Distance 0.001 <0.001 3.656 < .001 2.220 

Aspect 0.193 0.062 3.101 .002 1.471 

Slope -0.026 0.011 -2.306 .021 5.172 

TPI -0.883 0.057 -15.496 < .001 2955.452 

Douglas-fir (Pseudotsuga menziesii) 

(Int.) -9.674 1.474 -6.564 < .001  

Distance -0.007 0.001 -6.108 < .001 265.845 

Aspect 0.580 0.190 3.048 .002 3.190 

Slope 0.094 0.018 5.107 < .001 380.372 

TPI -0.116 0.138 -0.845 .398 2.857 

3.3.2 Patterns of Regenerating Tree Heights 

I mostly found positive autocorrelation of tree heights (Figure 3.4). When ponderosa pine, 

lodgepole pine, and quaking aspen were within 15 m of a conspecific, they were taller than 

expected by random chance (p-values of 0.001, 0.036, and 0.001, respectively). Heights of 

ponderosa pine and lodgepole pine exceeded expectation at distances up to 4 m, while quaking 
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aspen heights were greater than expected across the distance range evaluated (0–15 m). Douglas-

fir was the only species for which I did not detect departure from independent marking (p = 

0.135). 

 

Figure 3.4 Univariate height spatial patterns 

Patterns of replicated univariate mark correlation functions of post-fire tree regeneration heights (black lines) among 

999 simulations of independent marking (grey lines). Symbols indicate goodness-of-fit interpretations of potential 

departure of observations from independence. See Figure 3.2 for species key. 

Species associations influenced tree heights in just under one-third of species pairs (Figure 

3.5). Among three pairs, trees of one species near another species were shorter than expected by 

chance. This included both quaking aspen and Douglas-fir around ponderosa pine, across the full 

range of distances observed (p = 0.001). In addition, ponderosa pine was shorter when near 

Douglas-fir (p = 0.049), particularly at distances <2 m from a Douglas-fir. However, in each of 

these instances, the effect size was small; proximity to heterospecifics conferred about a ~5% 

decrease in tree height. In just one species pair did I find a positive relationship: Douglas-fir trees 

within 5 m of quaking aspen were significantly taller (p = 0.030). Here again, the effect size was 

relatively small. 
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Figure 3.5 Bivariate height spatial patterns 

Patterns of replicated bivariate mark correlation functions of post-fire tree regeneration heights (black lines) among 

999 simulations of independent marking (grey lines). Symbols indicate goodness-of-fit interpretations of potential 

departure of observations from independence. See Figure 3.2 for species key. 

Topographic variability minimally influenced tree heights. The full model of tree heights 

performed better than a reduced model, only for ponderosa pine (p = 0.004) and quaking aspen 

(p < 0.001). However, full models were only able to explain 2.1% of the variability in ponderosa 

pine heights and 15.9% of the variability in quaking aspen heights (Table 3.3). Full models were 

no better than reduced models for lodgepole pine (p = 0.861) and Douglas-fir (p = 0.249). 

Table 3.3. General linear model fits on regeneration height 

General linear models of tree regeneration (log) heights on topographic covariates and distance (from residual forest 

canopy), by species. 

Covariate β SE t p Rel. Mag. 

Ponderosa pine (Pinus ponderosa); (marginal-R2 = 0.021) 

Intercept -0.760 0.151 -5.030 < .001  

Distance 0.001 < 0.001 3.110 .002 1.595 

Aspect -0.026 0.026 -0.998 .318 1.054 

Slope -0.006 0.004 -1.565 .118 1.352 
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TPI 0.048 0.025 1.930 .054 1.294 

Lodgepole pine (Pinus contorta); (marginal-R2 = 0.271) 

Intercept -0.178 0.671 -0.264 .793  

Distance 0.003 0.001 1.995 .054 3.652 

Aspect -0.153 0.273 -0.562 .578 1.348 

Slope -0.004 0.013 -0.327 .745 1.177 

TPI -0.054 0.148 -0.364 .718 1.192 

Quaking aspen (Populus tremuloides); (marginal-R2 = 0.159) 

Intercept -1.153 0.210 -5.502 < .001  

Distance < 0.001 < 0.001 2.333 .020 1.445 

Aspect -0.112 0.014 -8.037 < .001 1.251 

Slope 0.046 0.003 17.861 < .001 9.648 

TPI -0.143 0.011 -13.118 < .001 2.397 

Douglas-fir (Pseudotsuga menziesii); (marginal-R2 = 0.021) 

Intercept -1.319 0.127 -10.349 < .001  

Distance 0.001 < 0.001 1.656 0.099 1.421 

Aspect 0.233 0.067 3.497 0.001 1.592 

Slope -0.005 0.003 -1.635 0.104 1.305 

TPI -0.005 0.063 -0.082 0.935 1.025 

3.4 Discussion 

Results here suggest that, after more than a decade following stand-replacement fires in 

ponderosa pine-dominated forests, tree regeneration was heterogeneously patterned, displaying 

aggregation and positive density–height relationships among conspecifics. Although a number of 

complex interacting processes influence tree regeneration patterns, this study’s results indicate 

that topographic effects and biotic interactions, redolent of beneficial interactions, contributed to 

the aggregated patterns. However, just interspecific associations promoted spatial patterning of 

tree sizes, but only among a few pairs of species and marginally at that. 

Further, observed patterns stand in contrast to other studies of conifer regeneration, wherein 

density was one to two orders of magnitude greater during stand initiation (Donato et al. 2009; 

Pauchard et al. 2016). Those studies found relatively simpler patterns and no effect of 

topography nor biotic interactions on those patterns. This may indicate that the mechanisms 
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controlling early stand development may be contingent on regeneration density (Donato et al. 

2012). 

Moreover, topography and tree interactions acted on spatial patterns of regeneration at 

different scales. Specifically, topography, after accounting for seed dispersal limitation, 

explained tree location patterns at scales greater than ~4 m, whereas tree interactions explained 

both location and size patterns at scales less than ~4 m. This separation of scales may result from 

trees modifying their immediate growing environment. For example, Nguyen et al., (2016) noted 

a larger separation scale of 15 m for larger trees within mature forests. If the separation scale 

relates to tree size, I expect that topography might diminish in influence as this sites’ trees grow. 

3.4.1 Intraspecific Spatial Patterns 

The observed intraspecific aggregation among all species supports the idea that aggregation 

is the predominant pattern in ponderosa pine-dominated forests (Larson and Churchill, 2012; 

Ziegler et al., 2017a). After stand-replacing fire, both topography and intraspecific interactions 

played roles in formation of aggregation. At coarser scales, topography was explanatory in ways 

specific to species. On flatter and southwestern hillsides, I found greater abundance of ponderosa 

pine. Meanwhile, other conifers were more abundant on steeper and northwestern slopes, and 

quaking aspen were common in swales. At finer scales, I suggest that both species-specific 

regeneration strategies and intraspecific facilitation generated aggregation. Species-specific 

regeneration strategies may promote aggregation of both quaking aspen and lodgepole pine 

because both bear adaptions—resprouting and serotiny respectively, which yield ramets and 

seedlings, respectively—centered around parent trees (Alexander 1966; Shepperd 1993). In 

contrast, ponderosa pine and Douglas-fir lack in-situ seed sources following stand-replacing fire 

(Oliver and Ryker 1990). Rather than a species-specific regeneration strategy, I suspect that 
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improved fitness nearer to conspecifics (Stoll and Prati 2001) resulted in increased survival of 

regeneration due to beneficial interactions. As facilitatory effects can increase with proximity, 

this selection for aggregation may play upon itself, inducing a positive aggregating feedback 

(Losapio et al. 2017). 

Through the analysis of tree height patterns, I found size hierarchies at small scales. That is, 

trees were taller in denser, rather than sparser, neighborhoods. Accumulating evidence from 

tropical and temperate forests suggest that such size hierarchies develop early during secondary 

succession (Ehle and Baker 2003; Suzuki et al. 2008). These size hierarchies are often attributed 

to resource inequity (Weiner and Solbrig 1984); if resource inequity across abiotic gradients 

regulates local densities, as the results suggest, conspecifics should be not just more numerous 

but taller in suitable areas (Pielou 1960). However, Suzuki et al. (2008) and Stoll and Prati 

(2001) demonstrated that, even in otherwise homogeneous environments, tree interactions 

sufficiently produce unequal growing conditions and lead to size hierarchies. Given that I found 

little relationship between topography and tree heights and that size hierarchies occurred at finer 

scales than topographic-related tree density, the results support the latter cause of size 

hierarchies: denser neighborhoods can improve growth as intraspecific facilitation improves 

resource conditions. This interpretation warrants evaluation using controlled studies to verify the 

general and species-specific means of tree pattern regulation. This is especially pertinent because 

interactions among different abiotic and biotic factors can induce analogous patterning (Getzin et 

al. 2008). 

3.4.2 Interspecific Spatial Patterns 

Facilitation may have also shaped patterns of regeneration among heterospecifics. Unlike 

other species, ponderosa pine was more abundant on southwestern aspects, exposing individuals 
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to greater moisture stress and posing a survival risk (Rother and Veblen 2016). This is 

counterintuitive, though it may be that survival was greater where individuals were near nurse 

trees. Patterns of spatial attraction to all other species may explain the existence of ponderosa 

pine on southwestern slopes. Spatial attraction via facilitation has also been identified among 

conifers following low- to moderate-severity fires in ponderosa pine forests (Callaway 2007). In 

addition, Fajardo et al., (2006) demonstrated that, as water availability decreased, ponderosa pine 

trees were more apt to establish nearer to Douglas-fir. In contrast, other conifers and quaking 

aspen were not attracted to other species in this study. Presumably, this is because these species 

were more abundant in northeasterly aspects and swales which confer less moisture stress. This 

study adds to accumulating evidence that regeneration of ponderosa pine may especially depend 

on facilitation in harsh (e.g., post stand-replacement) environments (Fajardo et al. 2006). 

It is important to note I did find some evidence for competition, particularly between 

Douglas-fir and ponderosa pine. That these species spatially attracted each another implies 

beneficial interactions regarding initial establishment; however, the marginally stunted growth of 

these heterospecific neighbors may suggest that post-establishment growing conditions may be 

shifting towards competition, as I discuss below. 

3.4.3 Limitations and Future Research Directions 

Although this study has provided insights into the potential roles of topography and tree 

interactions in the pattern of regeneration following high severity fires, the interpretation of the 

results is constrained by several limitations. Previous research has suggested that the rate and 

pattern of tree regeneration in ponderosa pine forests is influenced by a number of complex 

interacting phenomena, including the spatial variability in solar radiation, temperature, 

precipitation, soil edaphic factors, herbivory, regeneration mechanisms, and the caching and 
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perching behavior of wildlife (Bonnet et al. 2005; Wild et al. 2014; Chambers et al. 2016). This 

study’s design indirectly accounted for the abiotic processes using topographic surrogates. 

Although a number of studies have shown a strong correlation between topographic variables 

and abiotic attributes including temperature, moisture and soil edaphic factors, the lack of direct 

measurement limits the ability to discern the exact mechanisms controlling regeneration pattern. 

As an alternative approach to directly measuring these abiotic factors, I could have included 

additional variables that are known to influence the fine scale patterns of temperature and 

moisture such as the presence of stumps and coarse woody debris (Bonnet et al. 2005; Wild et al. 

2014; Chambers et al. 2016). Given the fine-scale variability of such factors (Vakili et al. 2016), 

I would expect that their inclusion would have resulted in increased resolution and understanding 

of regeneration pattern at scales under 4 m. Further research that aims to better understand the 

influence of various mechanisms across scales could shed additional light on how environmental 

conditions affect regeneration patterns and stand initiation following large, severe wildfires. 

In addition, ponderosa pine recruitment and establishment is highly dependent on inter-

annual climate (Shepperd et al. 2006). Because of this dependency, this study may provide 

limited understanding for regeneration following future large, severe fires or for the longer-term 

trajectory on these study sites. Specifically, changes in moisture regimes following the fire event 

could lead to changes between facilitation and competition among species. For example, 

previous research has suggested that as moisture stress increases, the degree of aggregation and 

interspecific attraction may increase (Fajardo et al. 2006); whereas, others have indicated that 

facilitative relationships may reverse to competitive ones (Holmgren and Scheffer 2010), 

inducing negative density-dependent patterns (Pielou 1962). Measurements of spatial patterns in 
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multiple burned areas under varying climatic conditions could further help determine how plastic 

spatial patterns are in response. 

3.4.4 Ecological and Management Implications 

Anticipating how current patterns of tree regeneration may influence future forest dynamics 

is complex and fraught with uncertainty. However, building on prior research, I hypothesize that 

the current predominance of beneficial tree interactions may beget greater competition in the 

future (Donato et al. 2012; Wright et al. 2014). Within conspecifics, size hierarchies may lead to 

within-patch self-thinning of smaller, poorer competitors and relaxation of aggregation towards a 

more random or even uniform forest structure (Shepperd 1993; Boyden et al. 2005; Suzuki et al. 

2008). The two-way competition, indicated by patterns of tree height between ponderosa pine 

and Douglas-fir, could produce eventual mortality of poorer competitors (Donato et al. 2012), 

though field studies demonstrate that fairly equal competitors can coexist in proximity despite 

mutually-inhibiting growth (Fajardo et al. 2006; Das et al. 2011). Conversely, the slightly shorter 

stature of quaking aspen near ponderosa pine hints at one-way competition; in many coniferous 

forests, competition drives mortality of quaking aspen, producing interspecific spatial repulsion 

(Peterson and Squierst 1995). The long-term persistence of quaking aspen may therefore depend 

on spatial refuges isolated from conifers. Thus, the facilitatory processes during regeneration 

may have established conditions for competitive forest dynamics. 

Given that future patterns of forest structure and ecosystem function are conditioned on prior 

events (Stoyan and Penttinen 2000), forest managers can adopt strategies post-fire to influence 

desired pathways of stand development. These strategies can accelerate spatially-complex forest 

structure desired in many ponderosa pine forests (Donato et al. 2012). I found that patterns of 

regeneration exhibited some features of desired and historical conditions, such as tree grouping 
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(Larson and Churchill 2012), spatially-heterogeneous tree size patterns (Donato et al. 2012), and 

environmental-specific distributions of tree species (Peet 1981). Yet, the observed tree densities 

11 to 15 years post fire were lower than average historical tree densities reported for ponderosa 

pine forests in the Front Range and Black Hills (100–140 trees ha-1) (Brown and Cook 2006; 

Brown et al. 2015). If managers choose to augment natural regeneration, patterns of naturally 

recovering landscapes can inform efforts to address deficiencies (Turner et al. 2003) and enhance 

recovery (Beschta et al. 2004). Plantings should reinforce local patterns of fine-scale 

heterogeneity (Hessburg et al. 2016), such as those I found, leveraging both topographic 

gradients and presence of facilitatory woody plants (DellaSala et al. 2014). 

3.5 Conclusions 

The findings here lend empirical evidence to models of forest development which state that 

stand initiation, where sparse, is likely to be spatially heterogeneous and resulting patterns may, 

in part, be due to topographic conditions and tree interactions. In addition, the observed patterns 

indicate that facilitation dominated over competition during the initial decade of establishment of 

these ponderosa pine-dominated forests. This seemingly contrasts with models of early stand 

development which state tree competition, and not facilitation, is largely responsible for forming 

spatially complex forest structure (Donato et al. 2012; Bače et al. 2015); however, these models 

of forest development generalize stand initiation over the first few decades. It may be that 

competition increases during the latter half of stand initiation. In summary, the results lead us to 

suggest that, in addition to density-dependency, general models of early forest development may 

need to account for temporally dynamic and scale-dependent roles of the abiotic environment 

and tree interactions. 
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Finally, heterogeneous forests tend to have more rapid successional dynamics than 

homogeneous forests (Getzin et al. 2008). If post-fire actions emulate, rather than overwrite, the 

complex patterns of reinitiating forests, ecologically based forest management may encourage 

faster development of desired, complex forest structure. 
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CHAPTER 4 – PYRIC TREE SPATIAL PATTERNING IN HISTORICAL AND 

CONTEMPORARY MIXED CONIFER FORESTS, CALIFORNIA, USA 

 

 

 

4.1 Introduction 

Drier mixed conifer forests of western North America have long been shaped by frequent 

fire. These fires mediated heterogeneous, uneven-aged forest structures at fine scales through 

partial and periodic tree mortality, stimulating fire-adapted understory plants, and creating 

temporally and spatially variable conditions for tree regeneration (Show and Kotok 1924; Larson 

and Churchill 2012; Knapp et al. 2013). Consequently, forest structure was patterned into 

complex mosaics composed of scattered individual trees, groups of trees, and canopy openings 

occupied by understory plants or regenerating trees (Larson and Churchill 2012). Formation of 

tree groups was spurred by conditions such as small gaps with higher light availability, patchy 

distributions of mineral soil exposed by fire (Larson and Churchill 2012), microclimate 

amelioration by neighbors and nurse trees (Fajardo et al. 2006), and zoochoric seed caching 

(Vander Wall and Joyner 1998). Canopy openings were likely a product of either localized 

agents of tree mortality, unfavorable microsite conditions for tree regeneration such as shallow 

soils (North et al. 2004), or resource competition with nontree species (Abella et al. 2013).  

Historical fire behavior and effects likely varied at fine scales in response to heterogeneously 

patterned forest structure and composition. Surface fuels accumulate in groups with more tree 

basal area (Banwell and Varner 2014), and local crowding within tree groups increases the 

probability of intertree fire spread (Contreras et al. 2012). This may have led to a clustered 

pattern of tree mortality, especially in areas with dense tree groups (Larson and Churchill 2012; 

Hood et al. 2018; Lutz et al. 2018). Alternatively, fire severity may increase in openings due to 
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drier and windier microclimates (Bigelow and North 2012) and the contribution of greater 

understory cover to surface fuel loads (Matonis and Binkley 2018; Stephens et al. 2021). Thus, 

locations of higher severity patches may have been dispersed and in areas with lower tree 

stocking. Inferences regarding fine-scale pyric regulation of forest structure are often based on 

comparisons of tree spatial patterns in contemporary, fire-suppressed forests against historical 

forests or contemporary forests with intact fire regimes (e.g., Fry et al., 2014; Schneider et al., 

2016). However, the lack of direct fire observation in these and other studies makes it difficult to 

understand the pattern–process interactions driving pyric regulation. Even when measurements 

are made before and after fires on individual sites, it is challenging to separate fire effects from 

other co-occurring processes such as density-dependent competition (Yu et al. 2009); but see 

Furniss et al., 2020).  

Recently, physics-based fire modeling has been suggested as an ideal approach to test 

conceptual models of fire-mediated forest dynamics (Lutz et al. 2018) because simulations allow 

for a high degree of experimental design and control (Larson and Churchill 2012; Parsons et al. 

2017; Hoffman et al. 2018a; Lutz et al. 2018). This line of inquiry has explored the feedback 

between heterogenous fuel arrangements and consequent fire behavior across stands (Hoffman et 

al. 2012; Linn et al. 2013; Parsons et al. 2017) and distance-dependency of tree-to-tree crown fire 

spread (Contreras et al. 2012). However, relatively few studies have used physics-based fire 

modeling to explore how fire interacts with forest structure patterns within stands (e.g., Ritter et 

al., 2020). Furthermore, an explicit comparison of how pattern–process interactions may differ 

between historical and contemporary forests is lacking.  

An increased understanding of fine-scale fire-structure interactions can guide fuel hazard 

reduction treatments. This knowledge is particularly pertinent for forest restoration treatments 
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that emulate historical forests' qualities, expressly creating a heterogeneous structure composed 

of single trees and tree groups (Tuten et al. 2015; Knapp et al. 2017; Ziegler et al. 2019). Over a 

century of fire exclusion, as well as unregulated grazing and logging, have increased tree 

densities, reduced the number and size of openings, favored shade-tolerant species, and 

decreased heterogeneity of the over and understory (Figure 4.1; Iniguez et al., 2019). Changes in 

forest structure and composition have resulted in greater and more uniform canopy and surface 

fuel loads (Lydersen et al. 2013; Fry et al. 2014; Matonis and Binkley 2018) and increased fire 

behavior (Hessburg et al. 2005). If the spatial patterns of trees influence the distribution of fire 

effects, the loss of fine-scale structural variability may be dampening the pattern–process 

relationship once present in historical forests (Hessburg et al. 2005; Parsons et al. 2017). 

Although forest restoration treatments seek to restore such relationships (Addington et al., 2018; 

Larson and Churchill, 2012; Tuten et al., 2015; Ziegler et al., 2017a), treatments leaving evenly 

spaced trees continue to be implemented (Underhill et al. 2014; Puettmann et al. 2015; Stephens 

et al. 2021), based on aspatial fire hazard reduction principles (Larson and Churchill 2012). Even 

within some variable retention harvesting methods, specifications often implement spacing-based 

targets within tree groups (Tuten et al. 2015). A greater understanding of how fine-grained forest 

overstory and understory structure interacts with fire to mediate tree patterning can help aid the 

design and evaluation of restoration-based silvicultural approaches (Knapp et al. 2017; Lutz et al. 

2018). Additionally, this information may provide insight into the link between pattern and 

process at fine spatial scales and its stability over a century of forest change.  

In this study, I examined the spatial dynamics of fire-caused mortality across a time series in 

a mixed conifer forest, which historically experienced frequent fire. I leveraged data from three 

large (~4 ha) forest plots that were stem-mapped immediately before harvesting in 1929, 
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approximating forests before EuroAmerican settlement characteristics, and again in 2008, 

representative of contemporary long-unburned forests with a history of logging. I used a physics-

based fire model to simulate fire spread in each of the two time periods and then estimated fire-

caused mortality based on species and tree size. I hypothesized that mortality would be clustered 

and density-dependent in the historical period due to pre-existing spatial variability typical of 

historical forests; I further hypothesized the residual forest structure would retain a mosaic of 

tree groups of diverse sizes. In contrast, I expected that mortality patterns would be more random 

and density-independent because the 2008 counterpart plots were comparatively homogeneous 

with continuous canopy as opposed to discrete tree groups (Lydersen et al. 2013). Such random 

mortality patterns might then leave behind a less variable distribution of tree group sizes. I 

recognize that factors in addition to tree mortality—namely spatially variable regeneration 

dynamics driven by spatially variable abiotic conditions—also contributed to the historical 

pattern.  

4.2 Materials and Methods 

4.2.1 Study Area 

I used three large plots of the permanent “Methods of Cutting” study established in 1929 in 

the Stanislaus-Tuolumne Experimental Forest of the central Sierra Nevada. The study sites have 

a Mediterranean climate, with warm, dry summers and cool, moist winters (Knapp et al. 2013). 

The sites are on a northwest aspect, at an elevation from 1,805 m to 1,840 m above sea level, and 

on deep, well-drained gravelly loam soil (Knapp et al. 2013; Lydersen et al. 2013).  
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Figure 4.1 Study site photograph 

Photographs of the mixed conifer forest in one of this study's plots contrasting low canopy cover and a 

heterogeneous overstory and understory in 1929 (left) versus high canopy cover and a homogeneous 

overstory and understory in 2007 (right photograph). 

These plots, named MC9 (4.3 ha area), MC10 (3.8 ha), and MC11 (4.3 ha), were originally 

designed to investigate regeneration and growth rates following silvicultural prescriptions in a 

mixed conifer forest dominated by Abies concolor Lindl. ex Hildebr., Pinus lambertiana 

Douglas, Calocedrus decurrens Florin, P. ponderosa ex. Lawson, and P. jeffreyi Balf., in order 

of abundance. Locations, species, heights, and diameter at breast height (dbh) of trees ≥ 9.1 cm 

dbh were recorded in 1929 prior to partial harvesting. The understory fuels were mapped into 

broad cover type patches (rock, tree regeneration, understory shrubs by dominant species, and 

the remainder assumed to be forest litter). Stem mapping of trees ≥ 10 cm dbh in MC9 and 

MC10 occurred again in 2008. In 2007, I remapped only 3.4 ha in MC11 because a road had 
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built through it. For brevity, I refer to the 2007 and 2008 measurements as the 2008 measurement 

period. Additional information on the history of these plots and prior research is provided in 

Hasel et al., (1934), Knapp et al., (2013), Knapp et al., (2013), and Lydersen et al., (2013). 

Prior work from Knapp et al., (2013) and Lydersen et al., (2013) have examined the forest 

structures in 1929 and 2008, placing these sites in the context of historical reference conditions, 

and contemporary conditions among similar forests. Results from these studies suggest the two 

sampling periods were representative proxies for pre-EuroAmerican and once-logged 

contemporary forests in mixed conifer forests of the Sierra Nevada. It is worth noting the 

historical median and maximum fire return intervals were six years and forty years, respectively; 

the last fire occurred in 1889, forty years before sampling (Knapp et al. 2013). Forest structure 

sampled in 1929 therefore represented the upper end of the historical range of variability 

regarding fire frequency. Consequently, the exclusion of smaller trees from sampling in 1929 

may have overlooked tree regeneration establishing during the longer fire-free interval; 

meanwhile, few trees were likely omitted in 2008 because tree regeneration was sparse at that 

time (Knapp et al., 2013; Figure 4.1). 

4.2.2 Fire Behavior Modeling 

I simulated fire behavior with the Wildland-urban interface Fire Dynamics Simulator. Using 

a computational fluid dynamics approach, numerical solutions are solved in a domain composed 

of discretized voxels over a series of time steps (Mell et al. 2007, 2009). This approach allows 

for the representation of vegetation and fire behavior over three-dimensional space and time. I 

simulated fire spread in six instances (each of the three plots over two time periods), using the 

respective stem maps and accompanying understory cover type. Each of the understory cover 

types was crosswalked to a standard surface fuel model (Scott and Burgan 2005). The four cover 
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types mapped initially in 1929, included conifer litter, tree regeneration, Chamaebatia foliolosa 

(Benth.) shrubs, and shrubs of other species, represented by standard surface fuel models timber-

litter 3 (TL3), timber-litter 1 (TL1), grass-shrub 2 (GS2), and shrub 2 (SH2), respectively. 

Because understory vegetation had almost entirely disappeared by 2008 as gaps in the forest 

filled with trees, I simulated those surface fuels as a homogenous layer of TL3.  

I simulated relatively high fire weather conditions because more severe burning conditions 

were expected to elicit tree mortality. Furthermore, high to extreme fire weather conditions are 

associated with a majority of burned area in western U.S. wildland fires (Finney and McAllister 

2011). Wind speeds entering the domain were set at 5.07 m/s at 6.1 m above ground level. 

Surface and crown fuel moistures were simulated at 5% and 100%, respectively. These values 

represent the 99.9th and 14.5th percentile for the wind speed and 1-hr dead downed woody fuel 

moisture, respectively, compared to data from 2011–2019 at the nearby Pinecrest 2 remote 

automated weather station (National Weather Service ID #043615). Appendix S1 gives technical 

detail on the design and further parameterization of the simulations.  

I calculated gross and per-tree crown consumption (percent dry mass lost) from simulation 

results. I used these results to estimate mortality following Parsons et al., (2018); I applied tree 

mortality likelihood equations from Hood et al., (2007) using dbh, tree species, and, in lieu of 

percent crown volume scorched, crown consumption. Trees with a mortality likelihood ≥ 50% 

were designated fire killed.  

4.2.3 Point Pattern Analyses 

I used a framework of point pattern analyses to examine stand scale spatial patterns of trees 

before each fire, and the spatial dynamics of projected mortality following each fire. All 
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statistical inferences were made using an α = 0.05. Point pattern analyses were conducted in 

Programita ver. 2018 (Wiegand & Moloney, 2013). I used tidyverse ver. 1.2.1 (Wickham et al., 

2019) for data wrangling, and cowplot ver. 1.0.0 (Claus & Wilke, 2019) and ggthemes ver. 4.2.0 

(Arnold, 2019) for data visualization, in R ver. 3.6.1 (R Core Team, 2019).  

4.2.4 Mark Correlation Functions 

I used mark correlation functions to describe the spatial structure of tree sizes, aiding 

interpretation of fire effects. Mark correlation functions yield statistics of an appropriate test 

function averaged over all pairs of trees at distance r apart. I first used the r-mark correlation 

function (Illian et al., 2008), termed kdbh(r) here, whose test statistic was the average tree dbh 

located r away from another tree. By comparing the empirical statistics to a null model of 

random labeling where dbh is randomly shuffled among tree locations, I could assess whether 

trees distanced r away from another tree were smaller or larger than the mean aspatial tree dbh. 

In addition, I used a mark variogram, γdbh(r), to assess whether tree sizes were spatially 

correlated. The test function ½ (dbhi − dbhj)
2 described the semivariance in tree dbh between two 

trees, i and j, located r distance apart. I compared the empirical statistics to a null model of 

random labeling to determine whether dbh between trees located r distance apart were more or 

less variable than expected by chance.  

4.2.5 Pair Correlation Functions 

The first pair of univariate pair correlation functions described the patterns of living trees, 

both before fire, gall(r), and after fire, galive(r). Univariate pair correlation functions measure the 

average number of points, that is, trees, at distance r from a point, normalized by dividing by the 

expected number of points. The empirical pair correlation functions are compared to a set of 
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functions realized from a null model. In these analyses, I used an inhomogeneous Poisson point 

process model. This null model randomly distributed points using an intensity field 

parameterized by an Epanechnikov smoothing kernel at a bandwidth of 20 m and a resolution of 

1 m. I chose an inhomogeneous over a homogeneous Poisson process to account for intensity 

gradients in the observed data. Any values above or below expectation reflected those trees were 

spatially distributed as aggregated or uniform patterns, respectively.  

The next pair of pair correlation functions described the patterns of estimated fire-killed 

trees. Bivariate pair correlation functions count the average number of type 2 points at distance r 

from a type 1 point, normalized by the density (points per area) of type 2 points (Wiegand & 

Moloney, 2013). Here, the types were the labels of alive or dead. First, I calculated the difference 

gdead,dead(r)–galive,dead(r), concisely referred to here as gcluster(r); gdead,dead(r) measured the relative 

density of fire-killed trees near fire-killed trees and galive,dead(r), the relative density of fire-killed 

trees near surviving trees. Thus, gcluster(r) estimated whether fire-killed trees were more, less, or 

equally common around surviving trees than around other fire-killed trees. The null expectation 

was zero, whereas higher values indicated clustering of mortality, and lower values indicated the 

dispersion of mortality. Second, I measured density dependence of mortality with the difference 

gdead,dead+alive(r)–galive,dead+alive(r). This compared the relative density of all trees near a dead tree 

minus the relative density of all trees near a surviving tree. The null expectation was zero; higher 

and lower values indicated a bias toward mortality in areas of higher or lower density, 

respectively. For the null models of gcluster (r) and gdens.dep(r), I randomly labeled points’ types, 

alive or dead, rather than moving points because the locations of survival or mortality are 

conditioned on the spatial pattern of trees before a fire (Goreaud & Pelissier, 2003).  
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Monte Carlo methods were used to create realizations for assessing the departure of 

empirical statistics from a null model. I generated 399 simulations of the respective null models 

for each point pattern analysis over a range of r from 0 to 15 m. The range of r should reflect the 

scale that spatial correlations are expected to manifest a priori, often 0—15 m among trees 

(Wiegand & Moloney, 2013). A simulation envelope can be constructed from the 2.5th to 97.5th 

percentile statistic for each distance r followed by a comparison of the empirical statistic against 

the envelope (Wiegand & Moloney, 2013). However, standardization is recommended to make 

formal inference without inflated Type I Error (Wiegand & Moloney, 2013). Therefore, I first 

studentized the empirical and null correlation functions to z scores, constructed maximal global 

envelopes from the 2.5 to 97.5 percentiles, and then back transformed those functions’ statistics 

to their original scale (Myllymäki et al., 2015). Under this approach, a deviation at any distance r 

from the envelope constituted a statistically significant deviation for the set of r from 0 to 15 m 

(Wiegand & Moloney, 2013). Last, I then averaged mark correlation functions and pair 

correlation functions across distance r from 0 to 15 m to produce a single statistic to compare the 

strength of departure from null models across time periods. The implementation of point pattern 

analyses here followed best practices laid out in Velázquez et al., (2016); I accounted for edge 

effects.  

4.2.6 Modeling Fire Effects on Within-stand Structure 

I assessed whether fires produced different outcomes in the distributions of tree group size 

(number of trees per group) in 1929 versus 2008. Tree groups were identified following the 

approach whereby trees within a group are within a limiting distance, here 6 m, from another 

member tree (e.g., Lydersen et al., 2013). First, I compared the median group sizes with a 

Wilcoxon signed rank test, and second, the variation of group sizes with a modified signed-
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likelihood ratio test for equality of coefficients of variation (SLRT). I modified p values with a 

Bonferroni correction to account for multiple comparisons across the three plots. Third, I used 

Sankey diagrams to visualize how trees’ group sizes changed due to fires. For this, I binned 

groups into size classes: single trees, 2–4, 5–9, 10–19, and 20+ trees per group.  

4.3 Results 

4.3.1 General Forest Structure and Fire Behavior 

Forest structure differed substantially between 1929 and 2008 in all three plots (Table 4.1). 

Despite trees being on average considerably smaller in 2008 than 1929, basal areas were higher 

in 2008 because tree density was greater. Furthermore, the canopy base height in 1929 was twice 

as tall on average as in 2008. Tree sizes were less randomly distributed in 1929 than in 2008. In 

1929, the dbh of trees within 15 m of each other was smaller (26.6 cm averaged across plots) 

than the average dbh of all trees (33.1 cm averaged across plots; Figure 4.2a). Further, the 

semivariance of those trees’ dbh within 15 m of another averaged 0.51 across plots (Figure 4.2b). 

In contrast, the dbh of trees within 10 m of each other in 2008 averaged 27.4 cm, while the 

average dbh of all trees was 28.7 cm (Figure 4.2a). In addition, the semivariance of those trees’ 

dbh within 15 m of another averaged 0.82 across plots (Figure 4.2b). These results show that 

trees closer to one another tended to be similar in size and relatively smaller. This pattern was 

much more pronounced in 1929 than in 2008.  

Table 4.1. Forest structure and mortality 

Summary of stand structure, within and across species, by plot and measured year, as well as canopy consumption 

and predicted mortality. 

Plot Pre-fire forest structure 
Mortality (% pre-

fire stocking) 
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Trees 

ha-1 

Basal 

area (m2 

ha-1) 

QMD 

(cm) 

Canopy base 

height*(m) 

Rate of 

spread (m 

s-1) 

Canopy 

consumption 

(%) 

Trees 

ha-1 

Basal 

area (m2 

ha-1) 

1929 

MC9 307 54.8 47.8 1.4 0.64 27 53 17 

MC10 300 52.0 47.2 1.4 0.58 27 62 16 

MC11 434 30.1 42.2 1.4 0.49 26 57 16 

2008 

MC9 846 38.0 32.1 0.7 0.65 90 97 84 

MC10 723 72.2 35.8 0.7 0.66 90 97 84 

MC11 680 66.1 35.4 0.8 0.57 78 88 62 
*Canopy base height expressed as the tenth percentile crown base height 

Fire behavior and effects predictions were numerically higher in 2008 than in 1929. 

Averaged across plots, rates of spread were 0.57 m/s and 0.63 m/s in 1929 and 2008, 

respectively. Canopy consumption tripled from 1929 to 2008, averaging 26% and 78% in 1929 

and 2008. Last, mortality estimates rose from 57% of trees in 1929 (16% of basal area) to over 

94% of trees (77% of basal area) in 2008.  

 

 

Figure 4.2 Spatial structure of tree DBH 
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Mark correlation functions describing the spatial structure of tree diameter at breast height (dbh) in 1929 and 2008 

for each plot (MC9, MC10, MC11) where (a) shows the r-mark correlation function, kdbh(r), which is the average 

dbh at distance r from another tree and (b) shows the mark variogram, γdbh(r) which is the correlation of dbh 

between trees at distance r apart. Blue lines are the empirical functions, while gray lines are simulated functions of 

null models generated via random labeling and black lines are the 95th percentile confidence envelopes. 

4.3.2 Fire Effects on Tree Spatial Patterns 

Spatial and aspatial distributions of surviving and fire-killed trees were markedly different 

across time periods. Whereas tree mortality and survival were arranged in a patchy mosaic in 

1929, only scattered trees were estimated to survive in 2008 (Figure 4.3a). In both time periods, 

larger trees were more likely to survive (Figure 4.3b); across plots, in 1929, the average 

surviving tree ranged from 46.3 to 56.7 in 1929 and 59.8 cm to 81.2 cm dbh in 2008. 
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Figure 4.3 Study site stem-maps and DBH distributions 

The locations of killed and surviving trees, by plot and year (a), and (b) histograms of trees by size 

Simulated fires markedly altered the spatial patterns of trees in 1929. Trees were initially 

aggregated; as a measure of aggregation magnitude, z scores of gall(r), averaged across r, ranged 

from 5.4 to 7.6 across sites (Figure 4.4a). Aggregation was present postfire but diminished; r-

averaged z scores of galive(r) ranged from 1.8 to 2.4 (Figure 4.4b). Mortality was not randomly 

distributed (Figure 4.4c), with clustering of fire-killed trees (gcluster(r); r-averaged z: 3.1— 9.6). 

Further, dead trees had more neighbors than surviving trees (gdens.dep.(r); Figure 4.4d), indicating 

mortality was density-dependent (r-averaged z: 3.1—6.4).  
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Figure 4.4 Spatial patterns of living and fire-killed trees 

Standardized effect size of four points pattern statistics within plots in 1929 and 2008. The functions describe the 

spatial pattern of all trees before a simulated fire (gall(r)); (a), the pattern of residual trees (galive(r)); (b), the 

clustering of killed trees (gcluster(r)); (c), and the density dependence of killed trees (gdens.dep(r)); (d). Blue lines are the 

empirical functions, while gray lines are simulated functions of null models generated via random labeling, and 

black lines are the 95th percentile confidence envelopes. 

Trees were less aggregated in 2008 (gall(r) r-averaged z: 1.8—2.2; Figure 4.4e). Fires also 

dampened residual aggregation, measured by galive(r) (Figure 4.4f; r-averaged z: 0.2—0.8). The 
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spatial distributions of the fire-killed trees were less clustered (Figure 4.4g; r-averaged z: 3.7—

4.3), as measured by gcluster(r). These killed trees were also in locations of higher tree density 

(gdens.dep.(r); r-averaged z: 3.1—3.3). Compared to 1929, the magnitude of all measures—tree 

aggregation before and after a fire, and clustering and density dependence of fire-killed trees—

were all lower 2008. 

4.3.3 Fire Effects on Tree Groups 

Before fire, tree groups were more numerous and larger in 2008 than in 1929 (Figure 4.5). In 

1929, there were between 114 and 129 groups per hectare. Groups with multiple trees amounted 

to 41% to 49% of all tree groups, constituting 75% to 85% of all trees and 41% to 53% of the 

stand basal area. In contrast, there were between 160 and 186 groups per hectare in 2008. 

Between 56% to 65% of these groups were multitree groups, with 88% to 93% of all trees and 

85% to 91% of the stand basal area. The mean group size (inclusive of single trees) before fire 

was significantly smaller in 1929 (2.4–3.5 trees per group) than in 2008 (3.7–5.3 trees per group; 

Wilcox tests p values ≤ 0.03). The coefficient of variation (CV) of pre-fire tree group size in 

1929 versus 2008 differed in MC9 (CV of 1.57 and 2.08, respectively; SLRT p = .03), but not in 

MC10 (CV of 2.26 and 1.72, respectively; SLRT p = .14), nor in MC11 (CV of 1.54 and 1.37, 

respectively; SLRT p = .72). 
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Figure 4.5 Tree group size distributions 

Change in tree groups per hectare (a), basal area by tree group (b), and flow of trees between tree group sizes (c), 

following simulated fire. 
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After fire, tree groups were fewer in number, smaller in size, and less variably sized in 2008 

than 1929 (Figure 4.5). Plots in 1929 had 64 to 87 groups per hectare. Twenty-seven percent to 

40% of groups, across plots, had multiple trees, accounting for 57% to 71% of trees and 31% to 

43% of the basal area. After fire in 2008, there were 16 to 44 groups per hectare, with 13% to 

28% of groups as multitree groups. These multitree groups made up 26% to 36% of trees and 

20% to 44% of basal area. Residual tree groups averaged 1.5–1.9 and 1.1–1.3 trees per group in 

1929 and 2008, respectively. The difference in group sizes between periods was supported by 

Wilcoxon tests in MC10 (p = .01) and MC11 (p < .01) but was not significantly different in MC9 

(p = .07). Further, residual tree groups were less variable in size in 2008 (CV from 0.32 to 0.46) 

than 1929(CV from 0.79 to 1.16; SLRT, p values < 0.01).  

The effect of fires on tree group size distributions differed greatly between time periods. In 

1929, trees within larger groups were more likely to be killed (Figure 4.5c). For example, 

approximately two thirds of all single trees survived, providing the bulk of single trees postfire, 

but less than half of trees in groups of 2 to 4 trees persisted. Fires, therefore, had the effect of 

splitting larger tree groups into smaller residual groups (Figure 4.6). In 2008, however, a large 

majority of trees were killed regardless of their respective tree group size (Figure 4.5c), and 

residual single trees and groups of 2–4 trees were derived from a mixture of all pre-existing 

group sizes (Figures 4.5c and 4.6).  
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Figure 4.6 Tree group shifts following fire 

Mapped change in distribution of trees, by tree group size class 

4.4 Discussion 

Fine-scale heterogeneity in forest structure is increasingly recognized as a salient 

characteristic of forests that historically experienced frequent fire (Larson and Churchill 2012; 
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Puettmann et al. 2015; Clyatt et al. 2016). This heterogeneity is thought to have been a self-

reinforcing pattern–process relationship with low to moderate severity fire (Bonnicksen and 

Stone 1980; Larson and Churchill 2012). The modeling results here based on the historical data 

support this interpretation and point to a strong local fuel control on fire effects. Simulated fires 

in 1929s forest condition maintained qualitative and quantitative characteristics typical of forests 

adapted to frequent fire. Specifically, trees predicted to survive these fires were arranged in an 

aggregated pattern (Figure 4.3b) consisting of both single trees and groups of up to twenty trees 

(Figure 4.5). This mirrors the patterns of trees reconstructed in many frequent-fire forests of 

western North America before EuroAmerican settlement (Larson and Churchill 2012). Clyatt et 

al., (2016) found that most (~73% to 99%) trees in this region were historically single trees or in 

small groups of 2 to 9 trees. I found fewer single trees or trees in small groups (64% on average) 

in the historical period before fire, whereas 94% of trees were single or in small groups after 

simulated fires. Though this shift was large— greatly reducing larger (10+ trees) groups and 

increased the relative abundance of single trees—the postfire forest structure fell within the 

historical range of variability reported by Clyatt et al., (2016).  

Simulated fires in the contemporary forest condition produced quite different patterns of 

surviving trees than those based on the historical forest condition. As has been identified in many 

other studies in frequent-fire forests (e.g., Iniguez et al., 2019; Sánchez et al., 2009), tree 

establishment and growth over decades without fire at this study site contributed to many more 

trees that were arranged in a more homogeneous condition (Lydersen et al. 2013). This coupling 

of higher tree density and greater homogeneity resulted in a relatively continuous tree canopy 

layer, which was quite different from the broken, clumpy tree canopy layer in the 1929 condition 

(Figure 4.3). After fire, no tree groups had more than four trees, and 64% to 82% of all trees 
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were single trees. The shift from trees occurring mostly in large tree groups before fire to single 

trees after fire has been observed elsewhere in contemporary Sierra Nevada forests in patches of 

high severity (Kane et al. 2019). This pattern occurred because the surviving larger, more fire-

resistant, trees were dispersed rather than clustered, a common characteristic among the largest 

trees in many frequent-fire forests (Boyden et al. 2005; Larson and Churchill 2012). 

Consequently, the results suggest high-severity fires in overstocked, contemporary forests are 

more likely to yield random patterns of sparse residual trees rather than rectify the trend toward 

homogenization over fire-free decades. 

Spatial patterns of predicted mortality from fire can be largely attributed to local 

arrangements of differently sized trees. In 1929, fire-killed trees were generally smaller, highly 

clustered, and density-dependent. This pattern is facilitated by the spatial segregation of trees by 

size class, leading to clustered mortality among smaller trees, which tend to be near each other 

(Figure 4.2). This pattern of clustered density-dependent fire-caused tree mortality has been 

observed in similar Sierran mixed conifer forests (Kane et al. 2019) and dry Pinus sylvestris (L. 

var. mongolica Litv.) forests in China (Yu et al. 2009). In contrast, fire-killed trees in 2008 were 

widespread, not clustered, and less density-dependent than in 1929. These differences are due to 

a combination of intermixed tree sizes, which is related to the dispersion of small trees, as well 

as higher tree stocking, larger tree groups, and fewer canopy interspaces (Figures 4.2 and 4.5). 

First, small tree dispersion provides numerous points for surface to crown fire transition to occur. 

Second, the increased stocking and presence of large tree groups reduces local convective 

cooling, facilitating both crown fire transition and spread (Ritter et al. 2020). These results 

suggest that the fire-mediated patterns of tree mortality have been significantly altered since 
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historical times and that these altered patterns are produced by more severe fires resulting from 

greater tree densities and altered tree arrangements.  

Simulated fires in both periods involved the same fire weather scenario, which by most 

standards would be considered high fire danger (Bradshaw et al., 1984). Interestingly, despite 

this fire danger level, the forests in the historical period maintained their salient structural 

characteristics, that is, large live trees arranged in a heterogeneous mixture of groups and 

individuals (Larson and Churchill 2012). Meanwhile, simulated fires in the contemporary period 

produced historically ahistorical forest structures with relatively random and sparse overstories. 

Though clustered tree regeneration may recover aspects of spatial heterogeneity at some time 

after fire (Ziegler et al., 2017b), the overall stocking would likely be well under the natural range 

of variation for these forests (Safford and Stevens 2017). This is somewhat counter to findings 

from studies that reported restorative effects from actual wildfires in long fire-excluded forests 

(Churchill et al. 2013a; Jeronimo et al. 2019; Kane et al. 2019). However, these differences are 

likely explained by the variation in fire weather in actual wildfires and pre-fire fuel structures, 

which are likely more variable than fuel models indicate. While finding of divergent postfire 

outcomes between historical and contemporary forests is not new (Brown et al. 2008; Taylor et 

al. 2014), the findings here are novel because they explicitly account for differences in the spatial 

patterns of trees. In doing so, I demonstrated a considerable impact of forests with lower 

densities and heterogeneous tree arrangements, including sizeable horizontal and vertical fuel 

gaps, on mitigating fire-caused tree mortality. Furthermore, these findings serve as quantitative 

evidence supporting the assertion that historical forests' heterogeneity made them relatively 

resistant to fire, even under high fire weather conditions (Safford et al., 2012; Show & Kotok, 

1924; Stephens et al., 2016).  
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The lack of canopy gaps in the contemporary period coupled with overall smaller trees 

allowed for higher intensity fires, which translated to greater predicted tree mortality. These 

findings can be incorporated in forest restoration strategies that seek to balance seemingly 

competing objectives, such as high tree canopy cover versus lower forest density (e.g., USFS, 

2019). These findings suggest that forest restoration efforts that attempt to mimic historical tree 

patterns by retaining clumps of high local tree cover, while also creating gaps and isolated 

individual trees provide a structure that helps reduce wildfire hazard.  

4.4.1. Limitations and Directions for Future Research 

Virtual experimentation permitted us to simulate potential fire behavior in historical and 

contemporary forests. This approach overcame a common limitation of using pattern analysis 

alone to retrospectively infer the effects of processes like fire (McIntire and Fajardo 2009; Lutz 

et al. 2018). However, the single set of burning conditions I simulated was narrower than the 

daily and seasonal variation of fire weather and climate within and across fire seasons. Previous 

research identified that the interaction between fire behavior and the spatial arrangement of fuels 

depends on burning conditions (Linn et al. 2013; Parsons et al. 2017). Had I simulated fires 

under more moderate burning conditions, I might expect fires in 2008 yield more heterogeneous 

forests, similar to the findings of heterogeneity after fire following actual, moderate fires by 

Kane et al. (2019). Furthermore, the variability in fire weather over a fire's duration and 

topographic complexity would be expected to promote heterogeneous residual forest structure. 

Additional research is needed to understand the mediation of forest structural patterns under a 

broader set of burning conditions and its implications on the use of prescribed fires and managed 

wildfires for stand and landscape restoration.  
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This study design purposefully excluded impacts from secondary agents of fire-caused 

mortality, whose effects on tree spatial patterns can confound the effects from direct fire damage 

(Yu et al. 2009). However, the approach I used to predict tree mortality (Parsons et al. 2018), 

while strictly accounting for the effects of direct fire damage, relies on substituting crown 

consumption for crown scorch in empirical tree mortality equations. This substitution, as well as 

additional mortality following delayed ecophysiological processes (Hood et al. 2018), may have 

led to an underprediction of tree mortality, as well as altered patterns of tree mortality (Furniss et 

al., 2019). Because higher severity fires lead to greater homogeneity of forest structure (Kane et 

al. 2019; Koontz et al. 2020), any underprediction of tree mortality may have led to 

overestimated tree spatial heterogeneity after a fire. Additionally, advancements in tree mortality 

predictive models have incorporated species-specific response curves relating crown damage to 

risk of mortality (e.g., Hood and Lutes, 2017); these model forms outperform the predictive 

models from Hood et al. (2007) used here (Grayson et al., 2017), but methodologies to apply 

these mortality models to output from physical heating models are still in development (Hood et 

al. 2018). I echo calls for continued research connecting heating and physical damage from fire 

to tree mortality (Hood et al. 2018; O’Brien et al. 2018). Such efforts will increase the 

applicability of physics-based fire models (Parsons et al. 2018).  

Finally, it is important to recognize that fires are not the only exogenous agents shaping tree 

patterns at fine scales. In frequent-fire forests of the United States, agents such as wind, 

ice/snow, lightning, animals, bark beetles, and defoliators also shape forest structure (Lundquist 

and Negron 2000). Their impacts on tree patterns differ from fire. For example, while creating 

clustered mortality patterns similar to fire (Addington et al. 2018), mountain pine beetles 

(Dendroctonus ponderosae) preferentially attack moderate to larger individual trees. Since larger 
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trees tend to be aggregated, as in this study, tree mortality patterns resulting from mountain pine 

beetle may appear as less density dependent. Adding further complexity, the impacts of these 

disturbances are also conditioned on the tree patterns resulting from preceding disturbances 

(Lundquist and Negron 2000). Larson and Churchill (2012), for example, suggest that elevated 

surface fuel accumulation underneath tree groups, which experienced some previously mortality 

from insects or pathogens would increase the likelihood of fire-caused mortality. This milieu of 

biotic and abiotic agents of mortality, in addition to, and interaction with, patterns of fire-

damaged trees, can produce wholesale shifts in patterns of residual living trees, legacy remnants, 

and tree mortality away from the immediate postfire patterns of live and fire-killed trees (Furniss 

et al., 2020). An increased understanding of overlapping disturbances on the formation and 

modification of tree spatial patterns will aid in the design of restoration treatments and the use of 

tree spatial patterns to interpret site history.  

4.5 Conclusions 

This study investigated patterns of tree mortality and the consequent patterns of surviving 

trees following simulated fires in a historical and contemporary mixed conifer forest of the Sierra 

Nevada. Mortality was biased toward smaller diameter trees in the historical period leading to 

clustered and density-dependent patterns of tree mortality, while maintaining a diverse range of 

residual tree groups characteristic of historical dry forests. In the long-unburned contemporary 

period, fire-caused mortality was widespread, resulting in sparse scatterings of trees and small 

tree groups after fire. Estimated tree mortality and patterns of residual trees were more random 

and less heterogeneous in the contemporary plots than in either their historical counterparts or 

the historical range of variability. This study suggests that high-severity fires in these, and 

similar forests, today are unlikely to reestablish the historically characteristic pattern–process 
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linkages. Relying on fire alone to achieve these structural qualities likely requires multiple 

entries of prescribed fire (Collins et al., 2019) or a fortuitous occurrence of moderate severity 

wildland fire (Kane et al. 2019). Alternatively, mechanical thinning followed by prescribed fire 

may achieve these qualities more quickly while leaving less to chance (Knapp et al. 2017). 

Managed ecological processes and management activities which emulate the characteristics of 

historical forest structure may enhance resistance to modern wildfires imperiling future forests.  
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CHAPTER 5 – FINE-SCALE TREE ARRANGEMENT AFFECTS FUEL REDUCTION 

EFFECTIVNESS 

 

 

 

5.1 Introduction 

Forest fuel reduction treatments are a key management practice to reduce fire hazard and 

undesirable fire effects (Vaillant and Reinhardt 2017). Within dry forests of the western US in 

particular, these treatments seek to rectify changes to forests which have occurred due to a host 

of land use and land management practices occurring since the late 19th Century such as 

suppression of once frequent (intervals of < 35 yr.) fires (Covington and Moore 1994; Battaglia 

et al. 2018; Hessburg et al. 2019). These changes include increases in surface and canopy fuel 

loads, loss of early seral stands, and higher abundance of shade-tolerant tree species, among 

other changes. As a consequence, the potential for large and historically-uncharacteristic severe 

wildfires has been increasing (Fornwalt et al. 2016). Immediate impacts of such shifting fire 

regimes include societal and economic costs associated with smoke impacts and loss of life and 

property (Rocca et al. 2014). Extended impacts include risks of erosion leading to degradation of 

water quality and aquatic habitat in a severely burned landscape (Rhoades et al. 2011), and broad 

scale tree mortality as well as poor forest recovery where large severe patches hinder natural 

regeneration (Ziegler et al. 2017b). Climate change further increases the potential for severe fires 

by increasing the duration of the fire season and frequency of severe weather during which large 

fire growth can occur (Khorshidi et al. 2020). Furthermore, shifts in precipitation patterns can 

increase fuel loads available for burning and stress trees through drought, heightening 

susceptibility to fire-caused mortality (Malone et al. 2016; Stephens et al. 2018a). Annual 

moisture deficits, associated with climate change, has also been linked to increases in tree 
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regeneration failures in recent decades (Stevens-Rumann et al. 2018). To mitigate these 

ecological, societal, and economic impacts of large, severe fires, fuel treatments use silvicultural 

techniques to alter the fuel complex, with the aim of reducing fire behavior and severity 

(Hoffman et al. 2018b). 

Fuel treatments in dry forests of the western US are generally accepted as potentially 

effectual in reducing fire behavior and severity. This stems from a scientific understanding that 

fire behavior is driven by fire weather, topography, and the characteristics of fuels (Hoffman et 

al. 2018b), Of these, fuel treatments directly manipulate the latter. Fuel treatments are oriented 

around four objectives (Keyes and O’Hara 2002; Agee and Skinner 2005): reduce surface fuel 

loads, increase canopy base height, reduce canopy bulk density, and preserve larger fire-resistant 

trees. The reduction of surface fuel loads and lifting of the canopy base height reduce the 

likelihood of fire transition from the forest floor to the canopy while reduction in canopy bulk 

density dampens chance of crown fire spread. Fire modelling and case studies post fire 

demonstrate that silvicultural cuttings following these objectives reduce fire behavior and effects, 

especially when combined with prescribed or managed fires to reduce surface fuel loads (Fulé et 

al. 2012).  

The application of silvicultural targets to achieve these objectives is often applied uniformly 

within stands (Larson and Churchill 2012; Stephens et al. 2021). This may be explicit through 

the use of thinning from below (i.e., low thinning) to raise the canopy base height, and distance-

based specifications which seek to separate tree crowns (Dennis 1983; Johnson 2008; Johnson 

and Kennedy 2019; Alexander and Cruz 2020). Peterson et al. (Peterson et al. 2005), for 

example, propose that trees should be separated by the distance corresponding with the typical 

crown width of codominant trees. Even if prescriptions do not explicitly emphasize these two 
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methods, simplified forest structures after treatment sometimes result from the use of aspatial 

silviculture and fire behavior planning tools and because of a legacy of density management 

practices used for timber production (Underhill et al. 2014; Churchill et al. 2017; Fahey et al. 

2018; Lefevre et al. 2020). 

Recently, there has been a greater scientific understanding that trees in many forests globally 

self-organize into spatially heterogeneous patterns (Puettmann 2009; Fahey et al. 2018). Prior to 

EuroAmerican settlement in dry forests of the western US, trees were arranged in complex 

mosaics with single, scattered individual trees and tree groups of diverse sizes situated among 

openings of various sizes (Larson and Churchill 2012; Lydersen et al. 2013). Spatially variable 

factors facilitated the development of tree groups, which included patchy exposure of mineral 

soil following frequent fires (Larson and Churchill 2012), the amelioration of microclimate by 

larger nurse trees (Fajardo et al. 2006), zoochoric seed caching, among other factors (Vander 

Wall and Joyner 1998). Canopy openings were produced following patchy tree mortality, 

resource competition with understory plants (Abella et al. 2013), or unfavorable microsite 

conditions for tree regeneration (North et al. 2004). These heterogeneous patterns produced 

habitat for wildlife with complex habitat requirements (e.g., northern Goshawk [Accipiter 

gentilis] (Youtz et al. 2008)), diverse composition of understory plants (Matonis and Binkley 

2018), and longer retention of snow pack (Schneider et al. 2019). As many forest management 

projects seek to provide many ecological benefits and services in addition to fire hazard 

reduction, treatments at stand scales are increasingly designed to yield spatially complex rather 

than simple forest structure (Underhill et al. 2014; Puettmann et al. 2015). 

It is commonly noted that the long-term persistence of relatively sparse heterogeneous forests 

historically points to their resilience despite recurring fires (Larson and Churchill 2012; 
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Reynolds et al. 2013b; Hessburg et al. 2015; Addington et al. 2018). Fire modeling work has 

shown that, by reducing canopy fuel, restoration treatments can reduce fire behavior, largely 

through reductions in canopy fuel load (Ziegler et al. 2017a). Similarly, fire modeling in a 

mixed-conifer forest measured in both 1929 and 2008 suggested that fire behavior is greater in 

the modern era because tree densities have since increased. But the investigators observed 

significant potential mortality in dense groups of trees in the 1929 scenario. This provides 

support to claim canopy consumption may be lower if trees had been separated rather than 

aggregated. Similar modeling from Contreras et al. (Contreras et al. 2012) and Hoffman et al. 

(Hoffman et al. 2012) suggest crown fire initiation and spread is less likely when tree crowns are 

lifted from the surface and farther separated. Additionally, higher rates of spread often occur 

after thinning due to higher midflame wind speeds (Reinhardt et al. 2008). This is typically not a 

concern because the thinned overstory is less able to support crown fire; however, large 

openings, such as after restoration treatments, entrain winds which increases both rate of spread 

and fireline intensity, increasing potential for crown fire initiation (Pimont et al. 2009; Hoffman 

et al. 2015a; Atchley et al. 2021).  

The degree to which forest managers may find a tradeoff between ecological restorative (i.e., 

spatially heterogeneous) treatments and fire hazard reduction is an area of active research (Lutz 

et al. 2018; Stephens et al. 2021) though fraught with confounding factors. Recently, Ritter et al. 

(in press)’s modeled fire in a Black Hills (South Dakota, US) ponderosa pine forest following a 

conventional fuel treatment as well as a heterogeneous restoration treatment which left half the 

basal area as the conventional treatment. Though the authors found trivial difference between 

cutting methods, it is unclear to what degree the non-significant results were influenced by the 

arrangement of trees or by differences in canopy fuel load. Assessing any tradeoff between 
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ecological restoration and fire hazard reduction requires consideration that forest stocking, given 

the relationship between fuel load and fire behavior can be more impactful than the arrangement 

of fuel itself (Hoffman et al. 2012; Parsons et al. 2017). Additionally, empirical study of 

wildfires in the Sierra Nevada (California, US) between 1984 and 2017 showed that areas (at a 

scale of 0.8 ha) with lower burn severity were correlated with variability in forest structure, but 

also with lower canopy and surface fuel loads and higher fuel moistures. Burning conditions 

such as fuel moisture warrant an additional consideration. 

This study investigates the potential fire behavior following different possible fuel treatment 

cutting methods. To explore a potential tradeoff between homogenizing, conventional treatments 

and heterogeneous restoration treatments, the cutting methods spanned a range of post-cutting 

forest structures. These methods either retained tree groups at one end or distanced out individual 

trees on the other end. Additionally, cuttings either left small trees in place or targeted these for 

removal. To simulate cuttings, I manipulated lists of mapped trees previously collected in 

ponderosa pine (Pinus ponderosa ex. Lawson) forests of the intermountain western US. I used a 

three-dimensional, physics-based fire model to simulate fire behavior and assess midflame wind 

speed, rate of spread and canopy consumption both before and after cuttings. To control for other 

factors influential on fire behavior, I simulated hypothetical cuttings over a range of residual 

basal areas, surface fuel loads, wind speeds and fuel moistures. This research was motivated by 

two questions. First, how did fire behavior, controlling for retained basal area, vary across 

cuttings? Second, how importance was the cutting method relative to the other controls on fire 

behavior? 

5.2 Materials and Methods 
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The experimental design was set up to examine compare potential reductions in fire behavior 

following six cutting methods that spanned a range of manipulations of horizontal and vertical 

arrangements of forest structure, crossed with varying levels of residual basal area (5, 10, and 15 

m2 ha-1). Cutting methods included random, thin-from-below, distance-based, and variable-

retention; I also included distance-based and variable retention cuttings each with thin-from-

below. I conducted simulations at five sites after cutting, as well as before cutting to provide a 

pre-treatment baseline. Simulations spanned a range of surface fuel loads (0.4, 0.8, and 1.2 kg m-

2), surface fuel moistures (5%, 8%, and 11%), and open wind speeds (5, 10, and 15 m s-1 at 10 m 

above ground level) in order to quantify the relative importance of cutting methods and residual 

basal area relative to these factors which also significantly influence fire behavior. 

5.2.1 Cutting Methods 

I implemented each of the six cutting methods on five stem-mapped sites. These stem-maps, 

provided by Ziegler et al. (Ziegler et al. 2017a), describe the locations and characteristics of trees 

in ponderosa pine (Pinus ponderosa Lawson)-dominated forests in Colorado and Arizona. The 

data used included the (x,y) locations of trees and their respective crown width, crown base 

height, and tree height. 

Cuttings included random, distance-based, variable retention, thin-from-below, distance-

based with thin-from-below, and variable retention with thin-from below. I selected these cutting 

methods to separately manipulate the spatial separation or aggregation of crown fuel in the 

horizontal and vertical dimensions. Each cutting operated by sequentially removing, or retaining, 

trees until a basal area target of either 5, 10 or 15 m2 ha-1 was met. The random cutting sampled 

trees to remove with equal weighting. The distance-based cutting sequentially removed trees 

nearest to another tree. The thin-from-below cutting sequentially removed trees with the smallest 
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DBH. To implement variable retention cuttings, I modified an algorithm previously described by 

Tinkham et al. (2017). This algorithm is similar to the ICO, or individuals, clumps, and openings 

silvicultural method developed by Churchill et al. (2013b). First, half of the basal area was 

removed by placing openings, eliminating all trees within circles of various sizes. Mimicking 

Churchill et al. (2013b), these openings sizes followed a frequency distribution of 24%, 40%, 

20%, 10%, 5% and 1% for openings with radii of 0.75, 2.25, 3.75, 6.75, and 8.25 m, 

respectively. To place openings, I began by calculating a smoothed map of trees per m-2
 with 

Gaussian kernel smoothing; these values were then inverted to provide weights. Thus, openings 

were more likely to be randomly placed in areas with lower tree density. In the second step, the 

algorithm designated groups of trees to retain. I desired to retain tree groups of various sizes at 

frequencies similar to historical ponderosa pine forests, as reported by Clyatt et al. (2016). Here, 

the desired share of basal area within tree groups of 1, 2 to 4, 5 to 9, 10 to 14 and 15 to 25 trees 

were set to 30%, 30%, 20%, 10%, and 10%, respectively. Starting the largest tree group size 

class, the algorithm randomly selected a tree, identified trees with 4 m of the focal tree, and trees 

within 4 m of those identified trees, ad infinitum. If enough trees to create a group were 

identified, that group was retained, provided no member tree was within 4 m of a previously 

retained tree. Once the basal area desired for a given tree group size class was met, the algorithm 

successively found tree groups of the next smallest group size class. 

To ensure that the design of cutting scenarios produced differences in forest structure, I 

examined several attributes: trees per hectare; quadratic mean tree diameter at breast height 

(QMD); mean opening size; coefficient of variation of tree DBH within tree groups; and mean 

distance between neighboring trees. Discrete tree groups were identified as sets of trees wherein 

each member tree was within 4 m of another member tree. I calculated the mean opening size by 
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first calculating all the area within the 4 ha-sites that were over 4 m from any trees; then I 

identified discrete contiguous openings and measured each openings’ area (m2). I measured these 

attributes after implementing each cutting scenario on each site at each level of residual basal 

area. I first tested whether the average values of these attributes, per cutting scenario and basal 

area, differed from pre-cutting using Dunnett’s test for comparing several treatments with a 

control. I used an α of 0.05 for all statistical tests in this study. Second, I applied a Sidak-

adjusted pairwise comparisons procedure to assess whether the least-squares means of these 

attributes varied between cutting scenarios, at each level of basal area. These least-squares means 

were the values predicted by a mixed-effects model, implemented with nlme v.3-1-152 (Pinheiro 

et al. 2021) in R to measure the estimators for each variable, y (Eq. 5.1); site was coded as a 

random variable while basal area (BA) and cutting methods were fixed variables. 

 𝑦 =  𝐵𝐴 +  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝐵𝐴 ×  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝑆𝑖𝑡𝑒, Equation 5.1 

5.2.2 Fire Simulations 

 I simulated fire behavior with the Wildland-urban interface Fire Dynamics Simulator v. 

9977 (WFDS). This model choice facilitates the simulation of fire in a spatially complex and 

temporally dynamic environment (Hoffman et al. 2018a). Using a computational fluid dynamics 

approach, numerical solutions describing fuel, fire, and the atmosphere are solved over a series 

of time steps within a three-dimensional domain composed of voxels. Further model description 

of WFDS’ approaches and evaluation of the model in the context of wildland fire can be found in 

the following references (Mell et al. 2007, 2009; Castle et al. 2013; Hoffman et al. 2015b, 2018a; 

McGrattan et al. 2015, 2020; Mueller et al. 2015; Terrei et al. 2019; Morandini et al. 2019; 

Sánchez-Monroy et al. 2019). 
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Each simulation in WFDS was set up identically except with regard to the factors under 

consideration in this study: open wind speed, surface fuel arrangement, surface fuel moisture, 

and list of trees. The domain was composed of 1 m3 voxels and spanned spanning 900 m × 400 

m × 90 m in the x, y, and z dimensions, respectively (Figure 5.1). Each plane along the 

boundaries had the following prescribed conditions. Wind entered at x = 0 m, wind entered; the 

speed at each height (z) followed a power law function, 𝑢(𝑧) = 𝑢20 × 𝑧2017, where the open wind 

speed, u20, was defined either as 5, 10, or 15 m s-1. 

  

Figure 5.1 WFDS Simulation domain 

Features of wildland-urban interface Fire Dynamics Simulator domains used in this study, including overall 

dimensions, wind direction, location of the initiating fire line, and area of interest. 

Entering wind at x = 0 m followed a power law function, 𝑢(𝑧) = 𝑢20 × 𝑧2017, with speed, u, 

increasing with height above ground level, z, according to a defined 20-m wind speed, U20, 

defined in this study as 6 m s-1. Boundary conditions on lateral sides, y = 0 m and y = 400 m, and 

the and the ceiling, z = 90 m, were mirrored, i.e., free slip and no flux. The boundary condition at 

the outlet, z = 900 m, was open. The terrain along the ground, z = 0, was flat. All simulations ran 

for 2000 s (~33.3 min). A line fire at 448 to 450 m in the x dimension and from 70 to 330 in the 

y dimension initiated at 300 s and freely burned towards the outlet, passing through the 4-ha area 
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of interest. This area of interest spanned from 600 m to 800 m in the x dimension and from 100 

m to 300 m in the y dimension.  

The area of interest contained the locations of trees either before cutting for one of the five 

given sites or retained after implementing a particular cutting for a given residual basal area. All 

tree crowns in the domain were represented as right circular cones defined by the tree height, 

crown base height, and crown width. The material properties I assigned to tree crowns included a 

surface to volume ratio of 4000 m-2 m-3, drag coefficient of 0.159, bulk density of 0.5 kg m-3, 

particle density of 520 kg m-3, and foliar moisture content of 100%.  

 I included additional fictitious trees across the domain, outside the area of interest, to ensure 

that the wind field in the area of interest was well developed and typical of wind flows 

throughout a forest canopy (Figure 5.1). The tree locations outside of the area of interest were 

randomly placed after using the tree locations inside of the area of interest to fit a log-Gaussian 

Cox point process model (Baddeley et al. 2015). Thus, trees outside of the area of interest 

mimicked the spatial arrangements of trees inside the area of interest. I randomly sampled trees 

from the area of interest to attribute heights, crown base heights, and crown widths to these trees 

outside the area of interest.  

There was a unique spatial arrangement of surface fuel to match (1) the respective 

arrangement of trees in a domain for a particular site, either before cutting or after simulating a 

specific cutting method to a given basal area, and (2) a median surface fuel load (0.4, 0.8, or 1.2 

kg m-2). All surface fuels were given the same fuel moisture, either 5%, 8%, or 11%. I distributed 

surface fuel heterogeneously to reflect the influence that canopy cover has on the composition 

and characteristics of the surface fuelbed locally. This process ensured that differing cutting 

methods or residual basal areas had identical median fuel loads even though their spatial 
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distributions differed. First, I calculated the distances from any location to a tree using Spatstat 

(Baddeley et al. 2015) in R v4.1.1 (R Core Team 2016, Vienna, Austria), then inverted these 

distances, and last re-scaled these distances using a triangular distribution with a minimum of 

0.2, maximum of 3.0, and median of either 0.4, 0.8, or 1.2. I used these values to assign fuel 

loads, reflecting an tendency for greater fuel loads to be present near trees and lesser fuel loads in 

openings in the sites (Banwell and Varner 2014; Matonis and Binkley 2018). Where the surface 

fuel load was 0.2 kg m-2, I assigned a fuel bulk density of 2 kg m-3, representing a grass-

dominated fuelbed. For each surface fuel load increase of 1 kg m-2, I increased fuel bulk density 

by 6.25 kg m-3 to account for a greater relative proportion by conifer needles. Surface fuels had a 

surface area to volume ratio of 5800 m2 m-3, particle density of 510 kg m-3 and drag constant of 

0.375.  

5.2.3 Fire Behavior Analysis 

This study had 200 simulations of fire behavior post cutting and 40 simulations of fire 

behavior before cutting. With six cutting methods, three residual basal areas, across five sites, 

and three levels each of open wind speed, surface fuel load, and surface fuel moisture, there were 

2,430 possible simulations post cutting and 135 possible simulations before cutting. I used the C-

optimized Fedorov’s exchange algorithm (Atkinson and Donev 1992) as implemented by the 

AlgDesign v1.2.0 package (Wheeler 2019) in R to reduce the number of simulations down to 

200. This algorithm randomly selects combinations of levels of factors from a full factorial list of 

combinations with the goal of minimizing the variance of best linear unbiased estimators. 

 I calculated mean midflame wind speed, rate of spread (ROS), and canopy consumption 

(CC) after each of the 240 WFDS simulations. Midflame wind speed was calculated by 

averaging the streamwise wind speed across time in the area of interest at 2 m in height in the x 
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direction for one minute, from 240 to 300 s prior to fireline initiation. Average rate of spread was 

calculated by averaging, across each location in the area of interest, the time of fire arrival in that 

location compared to the time of arrival 10 m downstream of the location. I calculated canopy 

consumption on a percentage basis using the dry mass of all tree crowns in the area of interest at 

the start of the simulation compared to the dry mass at the end. 

The statistical analysis included calculations of marginal effects of the independent variables 

as predicted by mixed-effects models, the effect sizes for each independent variable, and last 

comparisons between cutting methods. The mixed-effects models on midflame wind speed used 

the form (Eq. 5.2), 

𝑈2  =  𝑈10 +  𝑆𝐹𝐿 +  𝑆𝐹𝑀 +  𝐵𝐴 +  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝐵𝐴 ×  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝑃𝑙𝑜𝑡, Equation 5.2 

which includes midflame windspeed (U2), open wind speed (U10), surface fuel load (SFL), 

residual basal area (BA), cutting scenario, and site. Site was a random variable. The mixed-

effects models on fire rate of spread (ROS) and percent canopy consumption (CC) (Eq. 5.3), 

{𝑅𝑂𝑆, 𝐶𝐶} =  𝑈10 +  𝑆𝐹𝐿 +  𝑆𝐹𝑀 +  𝐵𝐴 +  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝐵𝐴 ×  𝐶𝑢𝑡𝑡𝑖𝑛𝑔 +  𝑃𝑙𝑜𝑡, Equation 5.3 

also included surface fuel moisture (SFM). I present the mixed-effects model results with an 

analysis of deviance test to assess statistical significance of variables. I calculated the marginal 

effect of each fixed independent variable by averaging over other independent variables. Next, I 

measured the effect size of all variables with partial eta squared (η2p) ; partial eta squared 

measures the proportion of total variance explained by each independent variable after 

accounting for the variation explained by all other variables. To contextualize the effect sizes, I 

categorized effect sizes as small, medium, and large η2p was larger than .0099, .0588, and .1379, 
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respectively (Cohen 1969). Last, I applied Sidak-adjusted pairwise comparisons procedures to 

evaluate whether midflame wind speed, rate of spread, or canopy consumption, significantly 

differed between cuttings. If the interaction between cutting and basal area was significant, I 

conducted pairwise comparisons at each level of basal area. 

5.3 Results 

5.3.1 Effects of Cuttings on Forest Structure 

Across sites, the initial basal areas across sites ranged from 22.6 m2 ha-1 to 30.2 m2 ha-1. This 

equated to an average reduction of 43%, 62%, and 82% for the basal area targets of 15, 10, and 5 

m2 ha-1, respectively. The differences in forest structure between cutting scenarios were apparent 

on initial visual inspection (Figure 5.2) and reflected in the pairwise comparisons. 
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Figure 5.2 Demonstration of cutting scenarios 

Example of simulated cuttings on one site, Long John, mapping the locations of residual trees (black dots) given a 

target basal area of 10 m2 ha-1, and the arrangement of surface fuel loads, given a spatial median of 1.2 kg m-2. 

Regarding aspatial measures of forest structure, cuttings significantly reduced trees per ha 

(Dunnett’s test, all p-values < 0.010) from an initial 687 trees ha-1 before cutting. Trees per ha 

averaged 243, 152, and 73 at residual basal areas of 15, 10, and 5 m2 ha-1, respectively. Pairwise 

comparisons tests reflected that trees per ha were highest after random cuttings and variable 

retention harvests, followed by distance-based cuttings, and then any cutting scenario 

incorporating thinning from below (Figure 5.3a). Cuttings that did not include any thinning from 

below component had negligible effect on QMD (Dunnett’s test, all p-values < 0.646), averaging 
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between 22 and 29 cm. Those cuttings with any thinning from below increased QMD (Dunnett’s 

test, all p-values > 0.001) to a level between 38 cm and 56 cm, raising QMD as less basal area 

was retained (Figure 5.3b). 
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Figure 5.3 Impacts of cutting scenarios on forest structure 

Average and standard error changes following simulated cuttings, on (a) tree density, (b) quadratic mean diameter, 

(c) mean size of tree groups, and (d) mean opening size, (e) coefficient of variation of tree diameter at breast height 

within tree groups, and (f) mean distance between neighbor trees, before cutting and at each level of residual basal 

area. 
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Figure 5.3 (cont.). 

Regarding spatial elements of forest structure, all cutting scenarios reduced mean group size 

(Dunnett’s test, all p-values < 0.001). While the average number of trees per group was ~10 

before cutting, the lightest cuttings left ~4 trees per group after random and variable retention 

cuttings, ~2 trees per group after distance-based cuttings, and less than 2 trees per group in any 

of the cuttings including thinning from below. As less basal area was retained, the average tree 

group size after any cutting scenario fell further (Figure 5.3c). Cuttings reduced mean opening 

size (Dunnett’s test, all p-values < 0.0341). Opening sizes were larger among cuttings 

incorporating thinning from below, followed by the variable retention harvest, and then the 

random and distance-based cuttings (Figure 5.3d). For example, the average opening size was as 

over 300 m2, or 1/30th ha, after scenarios including thinning from below. This was twenty times 

larger than the average opening size before any cutting. In contrast, opening sizes averaged 215 
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m2 after variable-retention and 140 m2
 after both random and distance-based cuttings. 

Additionally, only random and variable retention cutting scenarios maintained the variation of 

tree DBH within tree groups (Dunnett’s test, p-values ≥ 0.504; Figure 5.3e) and the average 

distance between trees (Dunnett’s test, p-values ≥ 0.703; Figure 5.3f). 

5.3.2 Effects of Cuttings on Fire Behavior 

All cutting scenarios increased midflame wind speed compared to pre-cutting (Dunnett’s test, 

all p-values < 0.010). Before cutting, midflame wind speeds averaged 1.38 m s-1, but ranged 

from 2.65 m s-1 to 3.39 m s-1 across cuttings. There were also significant differences between 

cuttings (Analysis of deviance, χ2(df = 5) = 294.2, p < .001) and pairwise comparisons identified 

two groups (Figure 5.4a). Those cutting scenarios which included either sole or partial thinning 

from below were similar with a midflame wind speed of ~3.31 m s-1 versus 2.66 m s-1 averaged 

across the random, distance-based, and variable retention cuttings (Figure 5.4b). Of all 

independent variables, open wind speed was the strongest determinant of midflame wind speed 

(Analysis of deviance, χ2(df = 1) = 1468.9, p < .001; Figure 5.4d). Residual basal area was the 

second most important variable (Analysis of deviance, χ2(df = 1) = 291.6, p < .001; Figure 5.4b); 

as residual basal area decreased from 15 m2 ha-1 to 5 m2 ha-1, midflame wind speeds increased 

from 1.5 m s-1 to 4.4 m s-1 (Figure 5.4c). The effect of cutting did not depend on residual basal 

area (Analysis of deviance, χ2(df = 5) = 3.3, p = .660). 
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Figure 5.4 Cutting impacts on wind speed 

Marginal effects of (a) cutting scenario, (b) open wind speed, and (c) basal area following mixed effects modelling 

on midflame wind speed, and (d) effect size of variables. Letters indicate significant differences between cuttings 

using pairwise comparison procedures. 

Fire rate of spread (ROS) was lower after all cutting scenarios relative to pre-cutting 

(Dunnett’s test, all p-values < 0.002). ROS averaged 0.67 m s-1 before cutting, and from 0.48 m 

s-1 to 0.53 m s-1 across cutting scenarios. ROS significantly differed between cutting methods 

(Analysis of deviance, χ2(df = 5) = 24.6, p < .001). Further, while there was no trend with respect 

to residual basal area (Analysis of deviance, χ2(df = 1) = 3.4, p = .064), I found that the 

differences between cuttings increased with lower residual basal area (Analysis of deviance, 

χ2(df = 5) = 13.9, p = .016; Figure 5.5a). At the highest basal area, 15 m2 ha-1, pairwise 

comparisons tests showed that ROS was not different between cutting scenarios, averaging 0.51 

m s-1. But when thinning to 5 m2 ha-1, ROS decreased to 0.47 m s-1 within distance-based and 

random cuttings. Meanwhile, ROS increased to 0.54 m s-1 after variable retention and thin-from-

below cuttings. Thus, significant differences emerge between cutting scenarios at moderate and 

low residual basal areas. 
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Figure 5.5 Cutting impacts on rate of spread 

Marginal effects of (a) cutting scenario × basal area, (b) surface fuel moisture, (c) open wind speed, and (d) surface 

fuel load following mixed effects modelling on rate of spread, and (d) effect size of variables. Letters indicate 

significant differences between cuttings using pairwise comparison procedures. 

Among the other independent variables, surface fuel moisture most explained ROS (Analysis 

of deviance, χ2(df = 1) = 759.9, p < .001; Figure 5.5e), with ROS ranging from 0.42 to 0.69 m s-1 

as fuel moisture decreased from 11% to 5% (Figure 5.5b). Meanwhile, ROS ranged from 0.44 to 

0.58 as open wind speed increased from 5 to 15 m s-1 (Analysis of deviance, χ2(df = 1) = 323.1, p 
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< .001; Figure 5.5c). Surface fuel load was the only variable which did not explain variability in 

ROS (Analysis of deviance, χ2(df = 1) = 0.8, p = .381; Figure 5.5d). 

The percent canopy consumption (CC) averaged 73% before cuttings and significant dropped 

to between 43% and 54% across cuttings (Dunnett’s test, all p-values < 0.001). CC did vary 

between cutting scenarios (Analysis of deviance, χ2(df = 5) = 65.6, p < .001) and explained the 

most variance alone of any variable (Figure 5.6a, e). In general, I found that the cuttings with 

only or partial thinning from below had lower CC than those cuttings without any thinning from 

below; of the latter scenarios, variable retention harvests were the highest at any level of basal 

area. While CC diminished with lower residual basal areas (Analysis of deviance, χ2(df = 1) = 

34.5, p < .001), I identified an interaction with cutting scenarios. Specifically, the spread in CC 

between cutting scenarios was greater with less residual basal area (Analysis of deviance, χ2(df = 

5) = 23.3, p < .001). In general, I found that, as residual basal area diminished, CC dropped 

dramatically among the cuttings with a thinning from below component, dropped marginally 

after variable retention harvest cuttings, and dropped by a moderate amount among the random 

and distance-based cuttings. 
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Figure 5.6 Cutting impacts on canopy consumption 

Marginal effects of (a) cutting scenario × basal area, (b) surface fuel moisture, (c) surface fuel load, and d) open 

wind speed following mixed effects modelling on canopy consumption, and (d) effect size of variables. Letters 

indicate significant differences between cuttings using pairwise comparison procedures. 

Surface fuel moisture was the second most important variable (Analysis of deviance, χ2(df = 

1) = 95.7, p < .001) as CC rose from 42% at 11% surface fuel moisture to 56% at 5% surface 

fuel moisture (Figure 5.6b). As surface fuel loads increased from 0.4 to 1.2 kg m-2, CC averaged 

42% to 51% (Analysis of deviance, χ2(df = 1) = 56.4, p < .001; Figure 5.6c). Last, open wind 
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speed was a significant predictor of CC (Analysis of deviance, χ2(df = 1) = 4.0, p = .045; Figure 

5.6d), but had only a small effect size (Figure 5.6e).  

5.4 Discussion 

This work shows that all cutting methods reduced fire behavior and severity, as measured by 

rate of spread and canopy consumption, respectively. Further, the specifications used during fuel 

treatments influenced the degree of fire hazard reduction. The differences in fire behavior and 

severity emerged as more basal area was removed. This occurred because, as tree removal 

intensified, the forest structure increasingly diverged between methods.  

Notably, cuttings with thinning from below and the variable retention harvests significantly 

increased the size of openings. Variable retention harvests often create openings purposefully 

(Reynolds et al. 2013b; Underhill et al. 2014; Addington et al. 2018), while removal of small 

trees can inadvertently create openings because regeneration of shade-intolerant species can 

cluster in openings between groups of mature trees (Sánchez et al. 2009; Larson and Churchill 

2012; Ziegler et al. 2021). The creation of openings also can lead to higher midflame wind 

speed, as has been measured in situ following variable-retention thinning in Sierran mixed 

conifer forests (Bigelow and North 2012). While wind flow following distance-based cuttings 

can be streamlined and laminar because the dispersed canopy imposes drag on the wind 

uniformly (Figure 5.7a), the creation of openings, however, allows wind to be entrained (Figure 

5.7b). This can lead to locally higher wind speeds, adding to broadscale increases in wind speed 

commensurate with thinning throughout the canopy. 
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Figure 5.7 Wind and fire behavior varies based on tree arrangement 

Demonstration of regimes of pre-fire (a) laminar flow with distance-based cuttings and (b) entrainment of wind 

following variable retention harvest, with wind vectors at 2 m above ground level flowing from left to right. During 

fire spread, (c) fire passed under large trees after distance-based cutting, while (d) groups torched after variable 

retention harvest. 

It is sometimes cautioned that increases in wind speeds throughout the canopy and near the 

forest floor may impair fire behavior reductions (Reinhardt et al. 2008) by increasing surface fire 

rate of spread and intensities, increasing the potential for surface-crown fire transition. As I 

observed however, decreases in canopy bulk density, and, in the case of cutting scenarios with 

thinning from below, the lifting of the canopy base height reduces canopy fuel load and 

continuity. These results confirming the building consensus that, controlling for surface fuel, 

reductions in crown fire hazard outweigh increases in surface fire hazard, as identified by 
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modelling studies (Graham et al. 1999; Parsons et al. 2018) and empirical observations of burned 

treatments (Raymond and Peterson 2005; Crotteau et al. 2016). 

However, the variable-retention harvest scenarios were the least effective at reducing burn 

severity as these cuttings left relatively dense patches with vertical continuous crown fuel. This 

indicates that variable retention harvests seeking to maximize structural variation, may face 

trade-offs between the creation of structural heterogeneity and hazard reduction. The relatively 

higher canopy consumption confirmed the supposition that the retention of tree groups risks the 

potential for group torching and localized patches of mortality (Larson and Churchill 2012; 

Stephens et al. 2021). Whereas distance-based cuttings reduced the potential for tree-to-tree 

crown fire spread (Contreras et al. 2012), group fire initiation and torching was enabled within 

tree groups of diverse sizes (Figure 5.7c,d). Because crown fire initiation and spread is still 

possible in these groups, previous fire modelling by others suggests these cuttings should not 

reduce (Graham et al. 1999), or may even exacerbate (Stephens 1998), fire hazard. However, 

even though variable retention cuttings did not increase tree spacing or the vertical continuity of 

crown fuel, I observed fire hazard reductions. This is likely driven by the presence of openings 

which have been suggested to act as a significant barrier to crown fire spread between tree 

groups (Churchill et al. 2013b). 

These results also suggest there are ways to increase the complementarity of restoration 

treatments with fire hazard reduction objectives, including increasing cutting intensity and the 

management of small trees. First, restoration treatments often leave forest stocking on the upper 

end of historical ranges (Stephens et al. 2015; Lydersen et al. 2019). Restoration treatments in 

the ponderosa pine forests modelled in this study have been retaining a basal area of 10 to 20 m2 

ha-1 (Underhill et al. 2014; Briggs et al. 2017; Ziegler et al. 2017a). In contrast, these forests had 
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historically had an average basal area of 6.3 and density of 97 trees ha-1 (Battaglia et al. 2018). 

Second, these results suggest removal of small trees brings all cutting methods in line with one 

another, regardless of horizontal tree arrangements. There is a perceived tension between 

retention of ‘ladder fuels’ and the benefits of retaining multiple size classes (Briggs et al. 2017). 

Multiple crown strata within tree groups benefits wildlife of concern (Youtz et al. 2008; 

Reynolds et al. 2013b) and retention of small trees bolsters resilience to disturbances which 

target large trees (Churchill et al. 2013b; Baker and Williams 2015). On the other hand, case 

study has found high severities following restoration treatments which retained groups with high 

vertical diversity for wildlife purposes (Johnson and Kennedy 2019). In many contemporary 

forests, small trees are overly abundant since their historical fire regimes have been interrupted 

(Battaglia et al. 2018; Stephens et al. 2018b). In these instances, there is opportunity to retain 

some tree groups without ladder fuel (Churchill et al. 2013b), especially around old, larger trees 

of ecological or cultural significance (Lindenmayer and Laurance 2017; Flanary and Keane 

2020). In other forests, decades of fire cessation has led to a scarcity in small trees of shade-

intolerant, fire resistant species (Knapp et al. 2017); here it may be appropriate to preserve 

clusters of smaller, regenerating tree groups separate from mature trees (Addington et al. 2018). 

Bringing silvicultural prescriptions of restoration treatments in line with the range of historical 

variability, with further reductions in tree density, including judicious removal of small trees, 

may further gains in hazard reduction. 

5.4.1 Considerations 

The design of cutting methods and experimental control of surface fuel loads were 

established to concentrate on differences between horizontal and vertical arrangements of crown 

fuel, under a range of typical burning conditions. The applicability of simulation results may be 
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altered in context of real-world management of forests and fire hazard. First, specific cutting 

methods, in practice, usually are associated with different levels of residual forest stocking, 

dictated by desired objectives and convention (Johnson et al. 2019). For example, Ritter et al. (in 

press)’s modeling efforts found no difference in potential fire severity between fuel reduction 

treatments designed to support uniform timber production (basal area = 12.4 m2 ha-1) and 

restoration treatments designed to provide heterogeneous wildlife habitat (basal area = 6.3 m2 ha-

1). As the results demonstrate, these differences in forest stocking between different silvicultural 

methods—as typically implemented—are likely to impactful as the arrangement of tree crowns. 

Fire behavior and effects studies contrasting different silvicultural methods designed to meet 

differing co-objectives need to take into consideration how forest stocking and fuel loads may 

differ. 

Second, I modelled surface fuel assuming a transition to herbaceous vegetation in open areas. 

While this relationship naturally occurs in the ponderosa pine forests simulated here (Matonis 

and Binkley 2018), shrubs can rapidly colonize openings in other dry forests (Lydersen et al. 

2013) which may lessen fire hazard reduction in treatments designed to increase opening sizes 

(Crotteau et al. 2016). Moreover, the model of surface fuel transition post cutting ignored the 

addition of activity surface fuel. Treatment of surface fuel is key to reduce the potential for 

crown fire initiation (Agee and Skinner 2005). As demonstrated by these results, the level of 

surface fuel load is a larger determinant on fire severity than any manipulation of the canopy 

fuel. Prescribed fire and management of unplanned ignitions under benign burning conditions, 

are a cost effective secondary treatment to, not only reduce surface fuel, but to further reductions 

in forest stocking, increasing resistance to undesirable fire effects (Stephens and Moghaddas 

2005; Fulé et al. 2012). Previous studies have affirmed these managed fires are especially 
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effective when coupled with restoration treatments because their variable fire effects strengthen 

fuel heterogeneity (Knapp et al. 2017; Huffman et al. 2018). However, the reintroduction of fire 

is often delayed or never completed (Addington et al. 2018; Stephens et al. 2021). Given that 

surface fuel loads are elevated in many contemporary forests with interrupted fire regimes 

(Collins et al. 2016) and that failure to address activity fuel can negate any gains made by 

reducing canopy fuel loads (Stephens 1998; Fulé et al. 2001; Raymond and Peterson 2005), 

reintroducing fire is as critical as cuttings are for restoration (Fulé et al. 2002; Addington et al. 

2018). 

Last, I simulated fires under burning conditions spanning 5% to 11% surface fuel moisture 

and winds of 5 to 15 m s-1. Extending durations of fire seasons and changes in climate patterns 

are increasing the number of days where extreme fire weather and dry fuels align co-occur 

(Khorshidi et al. 2020). The simulated conditions here span the range of typical fire weather 

(Nagy et al. 2018), including average fire weather during extreme fire spread events (DeCastro et 

al. 2022), but topography and fire-driven weather can align to produce extreme conditions at 

stand scales. As many have found failure of treatments under such situations (Reinhardt et al. 

2008), I do not expect these findings of fuel reduction effectiveness to hold under all burning 

conditions. 

5.5 Conclusions  

The simulations here provide evidence that cuttings spanning a range of forest structural 

arrangements can all be effective at reducing fire behavior under moderate to high burning 

conditions. I did find tradeoffs, whereby treatments that maximized structural variability by 

retaining tree groups were less effective at reducing fire severity. However, managers can 
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compensate for these tradeoffs through reductions in surface fuel, and where appropriate, 

targeted removal of small trees and more aggressive tree removal overall.  

 In the context of the landscape planning of treatments, the ecological and social priorities 

should inform the placement of treatments with different designs (Hessburg et al. 2013; Stephens 

et al. 2021). The study here supports the use of uniforming fuel reduction within the wildland-

urban interface (WUI) where protection of life and property is paramount (Stephens et al. 2021). 

Prior modeling from Stevens et al. (Stevens et al. 2016) demonstrated that strategic allocations of 

fuel treatments in the WUI can have an outsized effect on landscape fire behavior; in 

combination with restoration treatments in the wildland, this mix of treatment designs can be 

more effective than random placements of conventional fuel treatments alone. This permits 

greater flexibility to plan a mixture of treatments in such a way that reflects differences in 

biophysical settings and values at risk across landscapes in order to simultaneously meet multiple 

resource management objectives (Hessburg et al. 2015; Stevens et al. 2016; Stephens et al. 

2021).  
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CHAPTER 6 – CONCLUSIONS 

 

In this dissertation I explored: 1) causes of tree spatial patterns in dry fire-frequent forests; 2) 

the consequences of tree spatial patterns on potential fire behavior and effects; and 3) how 

alternate silvicultural strategies targeted at manipulation of tree spatial patterns can influence fire 

behavior and effects. They key findings are reviewed briefly here and in depth below. The 

aggregated patterns of trees commonly observed in dry forests of the western US can form in the 

absence of fire (Chapter 2). Most mature overstory trees are arranged in tree groups, leaving 

open spaces which are available for tree regeneration to establish with minimal competition from 

the overstory. In turn, tree regeneration forms the next generation of tree groups. This pattern of 

clustered tree regeneration forming tree groups also occurs without the driving competition of 

overstory trees (Chapter 3). After stand-replacing fires, topographic variation creates spatially 

heterogeneous niche availability. In addition, co-facilitation among tree regeneration promotes 

the organization of tree regeneration into tree groups. When fires return, clusters of regeneration 

and dense tree groups are most at risk of tree mortality. Subsequently, the trend towards 

aggregation occurring during fire-free periods is reversed momentarily (Chapter 4). After fire, 

tree spatial patterns resume trending towards aggregated distributions of tree groups. This is 

especially true for species such as Pinus ponderosa which benefit from exposed mineral soil 

patches where fire-killed trees were previously present (Malone et al. 2018). Because individual 

tree damage is greatest among small trees and dense tree groups, the silvicultural prescriptions 

that most maximize fire severity are conventional fuels treatments (Chapter 5). Separating 

overstory tree crowns reduces crown fire spread and thinning from below reduces crown fire 

initiation. By reducing canopy and surface fuel loads, restoration-based treatments that maintain 

heterogeneous tree patterns can reduce potential fire severity while meeting other ecological 
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objectives. But conventional and homogenizing treatments remain a key tool for reducing fire 

behavior in areas like the wildland-urban interface where protection of lives and property are 

paramount.  

6.1 Key Findings 

6.1.1 Heterogeneity is Endogenous in Dry, Western Forests 

The first key finding from this research is that dry forests self-organize into heterogeneous 

patterns in the absence of fire. Regenerating trees did not uniformly establish across available 

growing spaces. This is likely because the trees themselves modify the local environment, giving 

rise to new niches (Stoll and Prati 2001; Suzuki et al. 2008). In the Pinus ponderosa forest 

studied in Chapter 2, the patterns I identified suggest large trees were modulating the conditions 

experienced by regeneration. Seedlings preferred establishing, and had greater survivorship, in 

openings likely due to competitive inhibition by mature trees in the overstory. As a result, these 

new cohorts formed their own distinct tree groups, mimicking the clumping pattern of the 

mature, overstory trees.  

Further, these spatial patterns of tree regeneration covaried with climate. This finding has 

two major applications. First, competitive pressures from the overstory lessened under periods 

with harsher climate. As climate was warmer and drier, patterns of regeneration indicted lowered 

repulsion from the overstory and lower mortality rates near the overstory. These patterns are a 

manifestation of the stress-gradient hypothesis which states that the net of facilitative and 

competitive interactions varies inversely across abiotic stress gradients (Bertness and Callaway 

1994). 
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Second, as climate influences the competitive and facilitate interactions between trees, the 

variation in tree spatial arrangement across landscapes could be partially explained by climate 

(Fajardo et al. 2006; Clyatt et al. 2016). For example, the link between climate and overstory—

regeneration interactions offers a potential resolution to disagreements over the proto-typical 

structure of tree groups in Pinus ponderosa forests. In study on tree groups in a Pinus ponderosa 

forest, Cooper (1960) originally stated that these forests are composed of single-aged tree groups 

which experience cycles of whole group replacement by fire. White (1985) explicitly disagreed 

with Cooper (1960). Observing separate forests, White (1985) concluded that tree groups in most 

Pinus ponderosa forests were multi-aged. White (1985) suggested multi-aged tree groups formed 

because regeneration in tree groups replaced selective fire-caused tree death. Chapter 2 

demonstrated that tree—tree interactions responding to a stress gradient over decades can yield 

both single-aged and multi-aged tree groups barring any fire. 

6.1.2 The Abiotic Environment Amplifies Heterogeneous Forest Structure 

Chapter 3 demonstrated that local growing conditions also mediate niche availability and 

influence tree—tree interactions. These further shape tree patterning beyond the impact of 

“global” (i.e., site-wide) resource scarcities imposed by climate. In Chapter 3, I studied the 

spatial organization of tree regeneration following historically uncharacteristic high severity fires 

in ponderosa pine forests. Here, unlike Chapter 2, no overstory trees were present to influence 

the growing conditions of establishing tree recruits. While all stand-replacing disturbances leave 

behind a legacy of remnant material to a degree (Bače et al. 2015), high-severity fires create 

quasi-‘blank slates’. This study provided evidence to support ecological theory proposed 

previously by Donato et al. (2012): sparse reforestation would exhibit rapid heterogeneous forest 

development because no forest canopy remains to moderate growing conditions at a stand scale. 
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This was later observed by Bače et al., (2015) following a bark beetle outbreak in Norway spruce 

(Picea abies (L.) Karst) forests in the Czech Republic, but to date had not been extended to dry 

western US forests. 

Here I found that stand recovery—albeit low in stand density relative to that desired by forest 

stocking guidelines—exhibited aggregation of seedlings, akin to the tree groups observed in 

historical ponderosa pine forests with intact fire regimes (Larson and Churchill 2012). In this 

chapter, where facilitation or competition from the overstory was not a possible factor, two likely 

candidate causes of tree spatial patterning. First, topography provided niches, at scales up to 20 

m, which were either hospitable or inhospitable for the germination and establishment of trees. 

For example, conifers ex ponderosa pine were most abundant on northern aspects where heat 

loads are lower, and quaking aspen more abundant in swales, mirroring patterns found in other 

studies (Addington et al. 2018; Francis et al. 2018). In addition to the influence of topography, 

co-facilitation drove development of tree spatial patterns. Here I found the interspecific attraction 

of ponderosa pine to other species suggests proximity to other species might lead to enhanced 

regeneration establishment. This was further evidenced by the presence of a positive correlation 

between seedling height and local seedling density. This may be because clustered seedlings can 

shade one another (Keyes et al. 2009). Since the same time of publication of this chapter, the 

same patterns of co-facilitation among seedlings after fires has been observed in other dry forests 

(Owen et al. 2017; Malone et al. 2018). If post-fire recovery is more sparse than desired, forest 

managers may opt to use artificial plantings. These results suggest artificial plantings after fires 

may have greater establishment success if they cluster seedlings together. In summary, these 

chapter’s findings affirm that heterogeneous forest structures can arise through trees’ self-

organization. 



 

125 

6.1.3 Fires Reduce Heterogeneity of Forest Structure 

In Chapter 4, I found that fires—as a spatial process of retaining surviving trees and 

removing fire-killed trees—function as a uniforming agent. This impact on tree spatial patterns 

was inverse to findings from Chapters 2 and 3 which identified that biotic interactions and 

topographic variation led to aggregations of distinct tree groups. Not only did fires reduce the 

size class diversity of trees and the relative abundance of species with less fire-resistant physical 

forms, but fires also reduced the aggregation of surviving trees relative to fire-killed trees. 

During fire-free periods new groups of small trees form and small trees are recruited into 

preexisting groups (Chapter 2). It was hypothesized that these local areas characterized by 

smaller crown base heights can lead to local group torching and localized mortality (Larson and 

Churchill 2012). To date, most studies on tree spatial patterns following fire relied on 

comparisons between sites with long-interrupted versus intact fire regimes (e.g., Fry et al., 2014; 

Schneider et al., 2016) and could not be applied to confirm or disconfirm Larson and Churchill’s 

(2012) hypothesis. One notable exception was a field-based study of fire-killed and surviving 

tree locations in a Mongolian pine (Pinus sylvestris L. var. mongolica Litv.) forest with an intact 

fire regime (Yu et al. 2009). The results in chapter 4 confirm findings from Yu et al. (2009): 

density-dependent mortality, specifically among groups of small trees, leads to greater 

uniformity of tree arrangement after fire. This suggests many forest types globally with markedly 

heterogeneous and relatively open canopies should respond similarly to fires of low and 

moderate severity. 

I hypothesize that tree spatial patterns followed a cyclic temporal pattern related to fire 

frequency. Historically, stocking, species composition, and fuel load in dry western forests 

varied over the course of fire intervals. In general, tree densities increased, facilitating the 
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potential establishment of shade-tolerant, fire-sensitive species, and surface fuels accumulated as 

time since fire passed (Biswell 1973). When fires occurred, partial mortality, especially of fire-

sensitive species, and consumption in the forest floor abruptly reversed this trend (Pearson 

1950). Analogously, the degree of tree aggregation and sizes of tree groups likely increased with 

time since fire. The results from this study indicate that the first-order effect when fires occurred 

was to shift forest structure to a more homogeneous state. This is because fires selectively 

removed small trees, which tended to aggregate in denser and larger tree groups. The second-

order effect on tree spatial patterns was to create opportunities for recovering heterogeneity. 

Over fire-free periods, trees reestablish in newly created openings and remnant tree groups 

(Chapter 2; Larson and Churchill, 2012; Sánchez et al., 2009), reestablishing the spatial 

heterogeneity of forest structure (Figure 6.1).  

 

Figure 6.1. Cycles of spatial heterogeneity in frequent-fire forests. 

Spatial heterogeneity of forest structure may be cyclical over time in frequent-fire forests. Heterogeneity is initially 

diminished following fire-caused mortality; after a period of time, aggregated tree regeneration restores spatial 

heterogeneity up to the arrival of each subsequent fire. 

Even in contemporary, over-stocked forests, this cycle may be exhibited. In Chapter 4, I 

found that fires are likely to promote greater uniformity (i.e., less spatial aggregation and smaller 

tree groups) in contemporary forests following severe fires just as in historical forests. The key 

difference here between historical and contemporary periods is that reforestation may be 
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prolonged where fires are uncharacteristically severe and few proximate seed sources persist 

(Chapter 3; Stevens-Rumann and Morgan 2019). I hypothesize this would lengthen the 

periodicity of the spatial heterogeneity cycle (Figure 6.1); lower rates of tree regeneration would 

produce a longer period to reestablish heterogeneity forest structure. In circumstances where 

climate change is not expected to diminish the capacity to support reforestation, managers may 

opt to artificially replant trees, expediting the creation of heterogeneity. This provides an 

opportunity for managers to plant seedlings in tree groups and near favorable microtopography 

to synthetically create the spatial heterogeneity which would have rebounded following a less 

severe fire. 

6.1.4 Restoration of Heterogeneous Forest Structures Does Not Maximize Fire Hazard 

Reduction  

It is argued that ecological restoration should mimic the heterogeneous structure of historical 

forests of the western US (Larson and Churchill 2012; Reynolds et al. 2013b; Addington et al. 

2018), given that these forests’ tree spatial patterns almost universally display a tendency to form 

heterogeneous tree patterns during fire-free periods (Chapter 2) and following fire (Chapter 3). 

Restored forest structures provide desirable ecosystem functions such as wildlife habitat (Youtz 

et al. 2008) and understory diversity (Matonis and Binkley 2018) and increase forest health 

(Kolb et al. 1994). Restored forest structures are also presumably effective at reducing fire 

hazard relative to untreated, undisturbed contemporary forests (Reinhardt et al. 2008; Larson and 

Churchill 2012). Historical forests, by their long-term persistence under regimes of fire, insects, 

and other disturbances, are considered resilient ipso facto; therefore, recreating the traits of forest 

structure prevalent historically, including structural heterogeneity, is assumed to be an effective 

means at reducing undesirable fire behavior and effects (Stephens et al. 2021). However, 
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assessments of fire behavior in heterogeneous forests had been limited at the onset of this 

dissertation (Larson and Churchill 2012; Lutz et al. 2018). Recently, Koontz et al., (2020) found 

lower fire severities in heterogeneous forests with lower stocking than in denser, more 

homogeneous forests, but it is unclear whether differences in fire effects are more attributable to 

differences in forest arrangement or canopy fuel load. 

In Chapter 5, I found that silvicultural cuttings aimed at enhancing forest structure 

heterogeneity did reduce fire behavior, as compared to before any treatment. However, spatially 

explicit implementation of fire hazard principles did prove to be the most efficacious; Fire 

severity was maximally reduced when thinning from below and leaving separated residual trees. 

Rate of spread however marginally increased concomitant with higher wind speeds. This 

unintended trade-off may influence difficulty of suppression but did not significantly affect fire 

severity outcomes (Reinhardt et al. 2008). This was because the increase in canopy base heights 

decreased the likelihood for crown fire initiation. 

There are multiple considerations when comparing fire behavior outcomes between different 

potential silvicultural prescriptions. First, the effects of the level of residual basal area and 

surface fuel load are on par with the effect of the prescription. Surface fuels typically increase 

after treatment of the canopy as crown material is deposited on the forest floor (i.e., activity 

fuels), and can partially negate reductions in crown fire potential (Fulé et al. 2012). By following 

up with prescribed fire or judicious management of natural ignitions, fire managers can use fire 

to lower surface fuel loads and further gains in fire hazard reduction (Stephens et al. 2021). 

Second, it is important to recognize that ‘fire-proofing’ or optimizing strictly for fire hazard 

reduction may not be desirable to meet other silvicultural or ecological objectives (Reinhardt et 

al. 2008; Stephens et al. 2021). Forest treatments commonly balance multiple objectives whose 
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maximization of a single outcome may come at the expense of meeting—and possibly 

precluding—other objectives (Franklin et al. 2007; Puettmann 2009). Managers and stakeholders 

may find it reasonable to have minor opportunity cost as restoration treatments still realize 

significant gains in hazard reduction compared to the prior untreated state. Third, I found that 

thinning from below largely nullified any difference in canopy consumption when paired with 

variable retention cuttings versus distance-based retention. The treatment of small trees varies 

between restoration treatment implementations and can include a prioritization of removing 

small trees near larger overstory trees (Reynolds et al. 2013b), to removal of clusters of small 

trees (Larson et al. 2012), to maintaining a mix of both singly-sized and variably-sized tree 

groups (Youtz et al. 2008). Likely, treatments that retain small trees—except those ‘ladder’ fuels 

near larger trees—would reduce fire transition from the surface to the canopy, obviating the 

effect of overstory tree arrangement on crown fire spread. 

Churchill et al., (2013b), state ‘There is no single, optimal stand-level approach to 

maximizing resilience and adaptive capacity for all future conditions… Thus, it is sensible to 

vary patterns and structure types between stands…”. By deploying multiple silvicultural 

strategies across a landscape, bet-hedging is one strategy to deal with uncertainty in outcomes. 

Individual treatments may be adapted to site-specific considerations. For example, where 

prioritization of hazard reduction is greatest, such as the wildland-urban interface, conventional 

fuels treatments may be ideal; conversely, ecological restoration treatments may be more 

appropriate in the wildlands where ecological objectives have a higher weight (Addington et al. 

2018; Stephens et al. 2021). Bet-hedging minimizes tail-risk, the possibility of low probability 

events with significant losses. In the context of forest management, the retention of stands with 

trees of varying size and spatial distributions maintains flexibility for adaptation through time as 
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climates shift (Hessburg et al. 2019), disturbances occur (Stephens et al. 2018a), and forest 

health issues emerge (Long et al. 2018). For example, some small tree retention across stands can 

hedge against the loss of the overstory (Baker and Williams 2015). Furthermore, by treating only 

a portion of the landscape at each entry over long durations of time, the whole of the landscape is 

perpetually in a state of recovery, thus simultaneously retaining the ecological and social services 

provided by reestablishing, intermediate, and mature stands (Franklin et al. 2007). 

6.2 Future Research Opportunities 

One of the key barriers to widespread adoption of complexity-oriented silviculture is a lack 

of information (Puettmann et al. 2015). Unlocking the information embedded in tree spatial 

patterns (e.g., the underlying processes and interactions driving the self-organization of trees) 

can aid in the management of heterogeneous tree arrangements for multiple resource objectives, 

including restoration. At the moment, reference conditions —datasets describing the structure, 

abundance, and pre settlement arrangement of forest structure of forests—remain one of the key 

tools to guide the development of restoration silvicultural prescriptions (Churchill et al. 2013b; 

Franklin et al. 2013). But these reference conditions are limited in geography and represent a 

snapshot in time, limiting their applicability (Larson and Churchill 2012). Therefore, translating 

desirable characteristics of tree spatial patterns and forest structural heterogeneity from science 

to management remain broad, describing generic qualities rather than quantifiable metrics upon 

which treatments can be evaluated (Reynolds et al. 2013b; Addington et al. 2018). This stands in 

contrast to the precision of silvicultural guidelines and metrics used to developed prescriptions 

for other goals such as timber management (Puettmann et al. 2015) or wildlife habitat (e.g., 

Youtz et al., 2008).  
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As a further complication, societal demands are continually changing, regional and global 

changes to the biotic and abiotic environment are ongoing, and legacies of a fire suppression era 

can limit the usefulness of a return to pre-settlement forest structures (Fulé 2008). Thus, some 

future forests may be transitioning to ‘no-analog systems’ where the reference conditions 

describing the historical range of variability may no longer serve as an appropriate template 

(Puettmann 2011). The goal of a research theme extending this dissertation could strive to 

overcome the limitations of reference conditions and aid the intentional engineering of forest 

structure to meet objectives in a no-analog future. 

One framework for extending this dissertation research is complex adaptive systems (CAS). 

As explained by Puettmann (2011), CAS framework focuses on interconnectedness of agents 

which exhibit bottom-up control endogenously, mediated by exogeneous top-down conditions, 

and the nonlinear relations and feedback loops between agents and exogeneous conditions. 

Ecosystem processes (e.g., nutrient fluxes, mortality, and natality rates) are driven by 

decentralized agents (e.g., trees); it stems from this view that ecosystems can self-organize, i.e., 

adapt to changing exogeneous conditions. This implies that ecosystem processes are determined 

by the ‘rules’ which govern agents’ nonlinear interactions. In the context of forests, examples of 

rules include physiological responses to resource availability, temperature or damage thresholds 

for necrosis, and light-response curves. Discovery of these rules can inform researchers and 

managers of how exogenous conditions shape the interactions of agents. These feedbacks can be 

positive, such as where exogeneous perturbations change to interactions between agents leading 

to dramatic re-organization. Conversely, negative feedbacks occur where interactions buffer 

against perturbations. Examples of perturbations include discrete disturbances such as fire, wind, 

and drought, as well as slow changes such as the rate and magnitude of change in precipitation or 
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temperature, or immigration and emigration of species. Further elaboration of the application of 

CAS for ecological management is provided by Anand et al. (2010), Puettmann (2011) and 

Fahey et al. (2018). 

 

Figure 6.2. Tree spatial dynamics in fire-prone systems as a complex adaptive system 

In fire-frequent forests, tree patterns are emergent properties stemming from the self-organization of trees and 

modified by fires, soil, precipitation, insects, temperature, light, and understory vegetation among other factors. 

These emergent properties influence complex adaptive behaviors such as growth, mortality, nutrient, and energy 

flux. Which in turn, feedback to modulate individual trees (Adapted from Puettmann 2011). 

The application of a CAS-based framework for forest management is still under development 

(Puettmann 2011; Fahey et al. 2018). But such a concept may help guide research priorities. In 
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dry forests of the western US, the ecosystems studied in this dissertation, applying a CAS 

framework (Figure 6.2) can help structure future research. I propose three topics of high priority.  

First, fuel treatments are designed and evaluated, generally, by their immediate impact 

(Tinkham et al. 2016). However, fuel treatments may wait years or decades before experiencing 

a fire event. In the interim, ecosystems will self-organize in response to the initial perturbation of 

treatment as well as continual, dynamic exogeneous conditions. Specifically, as concluded by 

Chapter 2, tree ingrowth patterns will reflect changing climatic conditions. Under harsher 

conditions associated with shifting regimes of climate in the future, tree ingrowth may be biased 

towards establishing near existing tree groups. With greater frequency of multi-storied tree 

groups, fuel treatments may be less effective over time due to increased vertical continuity of 

canopy fuels(sensu Chapter 5). Future investigations can explicate the role of climate change on   

spatial niches of tree regeneration and the subsequent impact on potential fire behavior and 

effects. 

Second, most analyses of fire-mediated tree spatial patterns in the western US have focused 

on the effects of wildfires alone. On the other hand, it is known that overlapping disturbances can 

have synergistic or antagonistic effects, depending on the balance on negative and positive 

feedbacks (Linn et al. 2013; Hoffman et al. 2015a). Different disturbances will have varying 

impacts on tree spatial patterns. One example (Case 1) might be the presence of bark beetles 

followed by wildfire. Bark beetles such as mountain pine beetle homogenize forest structure by 

removing large trees within denser tree groups (Churchill et al. 2013b). The generation of 

available surface and crown fuels within tree groups following death of beetle-killed trees might 

exacerbate fire behavior and mortality within tree groups (Larson and Churchill 2012). This is a 

potential example of a positive feedback loop, wherein one exogeneous perturbation with a 
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uniforming effect on tree spatial patterns follows another. In contrast (Case 2), a prescribed fire 

under benign burning conditions could consume small trees within tree groups (Larson and 

Churchill 2012), making a subsequent wildfire less prone to broadscale mortality within tree 

groups (Chapter 5). The prescribed fire might create a more uniform pattern of trees after fire, 

but buffer against potential homogenization of tree patterns after a later wildfire. In Case 1, 

surviving trees would have greater tree-to-tree distances and experience less resource 

competition, than Case 2. Consequently, a forest stand in Case 1 might have more growth on a 

per tree basis than Case 2, all else equal. 

Third, a key barrier I found in this dissertation, specifically Chapters 4 and 5, is the linkage 

between physiological tree responses and physics-based fire models. In Chapter 4, I used canopy 

consumption as a surrogate for crown volume scorched to estimate tree mortality. This approach 

underestimates potential tree mortality (Parsons et al. 2018). Learning from this, I used canopy 

consumption as a generic metric of fire severity in Chapter 5. The development of methods to 

better link tree death to physical quantities of fire and combustion is still needed to extend the 

utility of physics-based fire modeling (Hoffman et al. 2018a; Hood et al. 2018). One of the 

limitations remaining is the ability to computationally resolve the scales of fire behavior 

occurring over hectares while resolving the scales at which heat flux affects plant tissues (Hood 

et al. 2018). A second is further clarification of the heat-response curve resulting in necrosis, i.e., 

the magnitude and duration of heat flux. Approximate methods are being developed for post-

processing physics-based model outputs, assigning mortality based on a lower bound particle 

temperature of 60 °C for 1 s (A. Atchley, pers. comm.). Using this rule, FIRETEC simulations 

adequately replicate experiments by Van Wagner (1973). Application of this method can 
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improve the use of process-based physical fire models to investigate the interactions of tree 

spatial patterns and fire effects.  
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