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ABSTRACT 

 

 

 

EVALUATING COVARIANCE-BASED GEOSTATISTICAL METHODS WITH BED-

SCALE OUTCROP STATISTICS CONDITIONING FOR REPRODUCTION OF INTRA-

POINT BAR FACIES ARCHITECTURE, CRETACEOUS HORSESHOE CANYON 

FORMATION, ALBERTA, CANADA 

 

 

Geostatistical characterization of petroleum reservoirs typically suffers from problems of 

sparse data, and modelers often draw key parameters from analogous outcrop, numerical, and 

experimental studies to improve predictions.  While quantitative information (bed-scale 

statistical distributions) from outcrop studies is available, translating the data from outcrop to 

models and generating geologically-realistic realizations with available geostatistical algorithms 

is often problematic.  The overarching goal of this thesis is to test the capacity of covariance-

based geostatistical methods to reproduce intra-point bar facies architecture while guiding those 

algorithms with bed-scale outcrop statistics from the Late Cretaceous Horseshoe Canyon 

Formation in southeastern Alberta.  First, general facies architecture reproduction is tested with 

2- and 3-facies synthetic and outcrop-based experiments with variable hard data, soft data 

weight, and soft data reliability.  Next, 3-D sector models compare performance of different 

geostatistical simulation methods: sequential / co-sequential indicator, plurigaussian, and nested 

truncated gaussian.  Findings show that despite integration of outcrop statistics, all conventional 

covariance-based geostatistical algorithms struggle to reproduce complex facies architecture that 

is observed in outcrop.  Specifically, problems arise with: 1) low-proportion facies and 2) a weak 
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statistical relationship between hard data (measured sections) and soft data (probability models).  

Nested modeling partially mitigates low-proportion issues and performs better as a result. 
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CHAPTER 1: INTRODUCTION 

 

 

 

Geostatistical models of petroleum reservoirs guide well planning and risk assessment 

decisions in hydrocarbon exploration and development (Keogh et al., 2007).  These models 

integrate disparate data types of varying resolution, sampling, and error into one framework and 

are used to explore reservoir uncertainty (Deutsch, 2006b; Pyrcz and Deutsch, 2014).  

Furthermore, they are easily visualized as three-dimensional (3-D) numerical representations of 

reservoir properties and quickly modified, which makes them suitable to cross-disciplinary and 

team work. 

Geostatistical characterization of petroleum reservoirs typically suffers from problems of 

sparse data, and modelers often draw key parameters from analogous outcrop, numerical, and 

experimental studies to improve predictions (Dubrule and Damsleth, 2001; Pyrcz and Deutsch, 

2014).  Historically, reservoir characterization and modeling focused on larger, seismically-

resolvable architectural elements (i.e., geobody- to reservoir-scale) with only limited regard for 

bed-scale heterogeneities (Keogh et al., 2007; Colombera et al., 2013; Hassanpour et al., 2013; 

Yin, 2013).  Bed-scale facies heterogeneity can impact fluid flow and, in many cases, it is critical 

to include this impact in flow simulations used for prediction of fluid flow pathways and flow 

performance especially for heterolithic and / or high-viscosity reservoirs (Deschamps et al., 

2012; Martinius et al., 2017; Meirovitz et al., 2021).  However, flow simulation is generally 

performed on more coarsely-gridded (i.e., upscaled) models without regard for this bed-scale 

heterogeneity, so the impact is often unknown (Deschamps et al., 2012; Martinius et al., 2017; 

Meirovitz et al., 2021).  More studies incorporating bed-scale outcrop data into bed- to geobody-

scale models are needed to characterize flow behavior so that its impact can be accounted for in 
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coarsely-gridded flow models (Howell et al., 2014). Unfortunately, incorporating bed-scale 

heterogeneity in models is challenging, and, although quantitative information (bed-scale 

statistical distributions) from outcrop studies is available (See: 2A.2 Geostatistical Modeling 

from Outcrops), the efficacy of translating the data from outcrop to models and generating 

geologically-realistic models with available geostatistical algorithms is problematic (Ma, 2009).  

The focus of this study is a fluvial point bar deposits of the Late Cretaceous Horseshoe 

Canyon Formation in southeastern Alberta (Durkin et al., 2015).  Data from Durkin et al. (2015) 

are utilized in a quantitative outcrop modeling study to test the efficacy of incorporating bed-

scale outcrop statistics in subsurface models.  The overarching goal of this thesis is to test the 

capacity of covariance-based geostatistical methods to reproduce intra-point bar facies 

architecture by guiding those algorithms with outcrop statistics.  The primary objectives are to:  

1) evaluate the accuracy of facies reproduction for a 2-facies experiment (Part 1a) and 3-

facies experiment (Part 1b) with variable hard data, soft data weight, and soft data 

reliability,  

2) use a sector model to test sequential / co-sequential indicator simulation (Part 2a) and 

plurigaussian simulation (Part 2b) and compare results with nested TGS from Durkin 

(Durkin, 2016). 
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CHAPTER 2A: LITERATURE REVIEW 
 
 

 
2A.1 Geostatistical Facies Modeling 

Conventional covariance-based geostatistics is rooted in the intuitive idea that physical 

properties exhibit spatial correlation: closely spaced points will be more alike, while points 

spaced farther apart will be less alike.  This spatial correlation is quantified through variography, 

and used to estimate properties at unsampled locations with kriging, a technique adapted from 

linear regression.  Kriging was formalized as the “best unbiased linear estimator” of spatial data 

in the 1960s and 1970s via theory of spatially regionalized variables distributed by random 

functions (Krige, 1951; Matheron, 1963, 1973).  Conditional stochastic simulation based around 

kriging estimates soon followed; modern methods were developed in the late 1980s and early 

1990s, particularly sequential methods (Alabert, 1987; Journel and Alabert, 1989; Goovaerts, 

1997; Deutsch and Journel, 1998) and related truncated gaussian field methods (Matheron et al., 

1987; Galli et al., 1994). 

All of these methods are easily conditioned to existing hard data (e.g., wireline logs and 

core data), readily incorporate soft data (e.g., seismic and production data) as secondary 

conditioning, and are adopted widely in reservoir facies modeling workflows (Xu et al., 1992; 

Journel, 1999; Dubrule and Damsleth, 2001; Yao, 2002; Keogh et al., 2007).  However, 

covariance-based geostatistical methods (also referred to as variogram-based, kriging-based, or 

two-point) are only guaranteed to reproduce spatial correlations and input distributions or 

proportions, and, in cases, order of transition between categorical data types.  These methods 

poorly reproduce complex patterns (e.g. curvilinear channel features or explicit stacking 

arrangements) due to the essential limitations of an underlying spatial correlation models based 
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on covariance between two points (Strebelle, 2002; Caers and Zhang, 2004; Klise et al., 2009).  

This problem is specifically addressed with multiple-point geostatistics (MPS).  Instead of 

drawing on an underlying spatial correlation model, MPS leverages patterns from a training 

image (TI) and reproduces them in output realizations.  The TI comprises geological properties 

in similar spatial arrangement to the model subject (Mirowski et al., 2009).  While first 

theoretically addressed in the early 1990s (Guardino and Srivastava, 1993), computational 

challenges delayed practical adoption of MPS until the early 2000s (Strebelle, 2002). 

MPS would appear better-suited for detailed outcrop modeling, where architectural 

reproduction is paramount.  However, TIs exert strong character on realizations and must be 

selected carefully (Caers and Zhang, 2004).  While there are methods to screen TIs for their 

statistical suitability for a given dataset, geologic expertise is still required for selection (Boisvert 

et al., 2007, 2010).  In this sense multiple-point methods may require as much effort and 

experience to apply judiciously and effectively as covariance-based methods.  Furthermore, 

while the limitations of covariance-based architectural reproduction are well-understood and 

easily observed, the appropriateness of a given TI is potentially quite subjective.  Additionally, 

most TIs are developed for geobody and reservoir-scale applications and few examples exist at 

bed-scale (Pyrcz et al., 2008). 

2A.2 Geostatistical Modeling from Outcrops 

Outcrop studies may inform field-scale models with bed-scale information not observable 

in subsurface data.  However, transforming outcrop observations into useful modeling data is 

hindered by limitations in geostatistical methods where interpolation or simulation with sparse 

data produces statistically correct, but unrealistic looking models. 
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A growing number of outcrop studies provide more quantitative data that can be 

incorporated into outcrop geostatistical models.  These sedimentological and stratigraphic 

characterizations, often utilizing photogrammetry, differential Global Positioning System 

(dGPS), and / or light detection and ranging (LIDAR), precisely record the position and spatial 

extent of sedimentary data (e.g., facies, grainsize, and net:gross ratios) for both geobodies and 

bedding (Pringle et al., 2004; Bellian et al., 2005; Enge et al., 2007; Pranter et al., 2007; 

Deschamps et al., 2012; Purkis et al., 2012).  This quantitative sedimentologic and stratigraphic 

information is increasingly incorporated directly into outcrop modeling studies.  However, 

integrating quantitative outcrop data into subsurface modeling workflows remains challenging, 

especially when trying to capture geological complexity and realism at the bed-scale. 

Modeling heterogeneous deposits at bed-scale introduces additional challenges in both 

honoring input statistics and generating a realistic model that captures visual observations at the 

outcrop.  Practical limitations prevent exhaustive measurements of 3-D volumes of rock at any 

scale comparable to oil and gas well-spacing, which, at the smallest, would be meters thick and 

hectares wide (Clark et al., 1944; Tucker et al., 1998; Pranter and Sommer, 2011).  Even 

excellent outcrop exposures still amount to a series of two-dimensional slices through a reservoir 

analog (Howell et al., 2014).  While outcrop data (e.g., measured sections, photopans, LIDAR, 

etc.) can be supplemented with outcrop cores and geophysical surveys (e.g., ground-penetrating 

radar (Pringle et al., 2004) or seismic), if that outcrop is to serve as a fully-representative 3-D 

analog, properties must be estimated or stimulated between measured data.  Historically this is 

achieved with a combination of deterministic and stochastic methods depending on the research 

question at hand.  Purely deterministic methods (i.e., not estimation, but deliberate and 

interpretive “geologic” placement of facies within the model) are employed to compare highly-
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specific facies architecture scenarios (Pranter et al., 2007).  For less restrictive cases, subsections 

of the model may be interpreted prematurely to guide stochastic realizations (Deschamps et al., 

2012).  Typically, key stratigraphic surfaces are deterministically emplaced to demarcate zones 

with similar parameters, and facies are simulated stochastically within those zones where outcrop 

is not preserved (Pringle et al., 2004; Bellian et al., 2005; Enge et al., 2007; Purkis et al., 2012). 

Thus, outcrop models themselves carry a degree of uncertainty and / or assumption, 

which is controlled in part by the modeling algorithm.  Algorithms can be ranked by their ability 

to reproduce outcrop characteristics in order to minimize the emergent impacts of inherent 

uncertainties and required assumptions.  Model realizations accurate to their parent outcrops will 

serve as better reservoir analogs than inaccurate or imprecise ones.  This holds whether there is a 

suite of outcrop statistics to reproduce, or more general depositional conceptual model. 

2A.3 Fluvial Point Bar Depositional Environment 

Observations from modern and ancient river systems reveal that point bar sediments 

categorically fine-upward; as the bar form grows it restricts channel flow over its top leading to 

successively lower-energy, finer-grained deposition (Allen, 1970; Thomas et al., 1987).  

However, this simple description belies architectural complexity: episodic changes to stream 

state may cause significant intra-point bar erosion and subsequent rotation of bar accretion 

direction (Brice, 1974). 

Detailed outcrop study (Durkin et al., 2015) shows these intra-point bar erosional 

surfaces dominate overall point bar migration patterns, but that intra-package sedimentation is 

internally complex.  Steeply dipping major erosional surfaces truncate prior deposition and often 

coincide with significant changes to the point bar migration direction (up to 50°).  Sigmoidal 

lateral accretion packages (LAP) deposit between these erosional surfaces, where each LAP 
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contains conformable beds of comparable dip magnitude and dip direction.  The new stream flow 

regime governs internal heterogeneity of each LAP.  This tiered and manifold heterogeneity 

makes point bars ideal for evaluating a geostatistical method’s capacity to reproduce complex 

facies architecture.  The study supplies strong outcrop control, and major surfaces are well-

defined.  Investigative focus is constrained to modeling LAP internal architecture and inferring 

how that architecture impacts flow within and between LAPs. 
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CHAPTER 2B: GEOSTATISCAL MODELING METHODS REVIEW 
 
 
 

A major objective of this study is to investigate the ability of geostatistical methods to 

incorporate statistics from outcrop analog data and to generate models that capture qualitative 

geologic character of those outcrops. Specifically, this research focuses on reproducing realistic 

internal point bar architecture. As such, some fundamental building blocks of geostatistics 

employed in this study are reviewed in this section: 1) variograms, 2) kriging, 3) soft data, and 4) 

simulation. 

2B.1 Variograms 

 Variograms serve as the chief correlation function input for covariance-based 

geostatistics, where a variogram is defined as the series of expected differences of two values 

separated by some incremental distance (Isaaks and Srivastava, 1989).  For a given random 

function Z of a known mean and variance, set of locations, u, and incrementally-increasing 

distance vector, h (“lag”), the variogram is defined as: 

2𝛾𝛾(𝐡𝐡) =  𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌(𝐮𝐮)–  𝑌𝑌(𝐮𝐮 +  𝐡𝐡)] =  𝐸𝐸{[𝑌𝑌(𝐮𝐮)–  𝑌𝑌(𝐮𝐮 +  𝐡𝐡)]2} (𝐸𝐸𝐸𝐸. 2.1) 

 The variogram measures how data becomes more dissimilar as distance between points 

increases and can be related to changes in covariance over those same distances (Gringarten and 

Deutsch, 2001).  The covariance at h = 0, or C(0), is the sample variance, which leads to the 

definition : 𝛾𝛾(𝐡𝐡) =  𝐶𝐶(𝟎𝟎) −  𝐶𝐶(𝐡𝐡)

or 𝐶𝐶(𝐡𝐡) =  𝐶𝐶(𝟎𝟎) −  𝛾𝛾(𝒉𝒉) (𝐸𝐸𝐸𝐸. 2.2)
 

 For cases of dense data, variogram interpretation includes: (1) calculating an 

experimental variogram with a particular lag distance and specified search ellipse to consider 
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spatial anisotropy and (2) fitting a variogram model to the experimental variogram points.  Licit 

variogram models comprise a series of positive definite functions, each composed of a sill (γ 

value where dissimilarity stops increasing; theoretically the variance) and range (lag distance 

where the function reaches the sill).  They yield a γ for any lag distance and direction.  Where 

data is sparse, sample experimental variograms may be noisy or unreliable, and variogram 

models may be inferred based on geologic knowledge. 

2B.1.1 Indicator Formalism and Indicator Variograms 

 Variograms were initially developed to work with parametric data and thus continuous 

variables.  Covariance-based geostatistics of non-parametric data (i.e., continuous variables 

divided by thresholds or, as relevant to this study, categorical variables) relies on indicator 

formalism: each category is binary-coded as present or absent at known data locations. 

For K mutually exclusive (i.e., u belong to only one category at each location) categories zk, k = 

1, …, K: 

𝐼𝐼(𝐮𝐮𝛼𝛼;  𝑧𝑧𝑘𝑘) = �                              1, if indicator 𝑘𝑘 is present at 𝐮𝐮𝛼𝛼
0, otherwise

(𝐸𝐸𝐸𝐸. 2.3) 

The mean of the indicators for each category is therefore the same as global proportion of hard 

data in that category.  Indicator variograms are calculated normally with the indicator-

transformed values: one variogram for each category.  The indicator variogram shows the 

increasing probability that two locations do not belong to the same category as a function of 

distance (Beucher and Renard, 2016).  It is worth noting that only two variogram models are 

mathematically licit as indicator variogram models: spherical and exponential (Dubrule, 2017). 

2B.1.2 Cross Variograms 

 Variogram theory further extends to evaluate spatial “cross-covariance” between two 

different regionalized variables with cross-variograms.  For a suite of categories, each category 
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can be evaluated in the context of each other category.  Indicator cross-variograms capture the 

distance over which one indicator will transition to another particular indicator and whether that 

transition is abrupt or smooth (Beucher and Renard, 2016).  While it is theoretically desirable to 

fit cross-variograms models from experimental data to model the joint spatial relationship (i.e. 

full co-regionalization modeling), it is extremely difficult with sparse data and requires 

significant interpretation (Goovaerts, 1997).  Theoretical simplifications of the cross-spatial 

relationship were developed to handle this problem (e.g., Markov-Bayes models, Bayesian 

updating, locally varying means, etc.) (Hua Zhu and Journel, 1993; Doyen et al., 1994; Deutsch, 

2006a).  These methods make assumptions about the inherent proportionality of the hard data 

covariance and joint covariance to enables joint covariance modeling of the hard and soft data 

together. 

2B.2 Kriging 

 All covariance-based geostatistics has kriging at its core.  Kriging is a linear estimator 

that leverages spatial covariance from a variogram model to estimate values throughout a field 

such that error is minimized and unbiased.  At each unknown location, u, the true value is 

estimated from the weighted linear combination of the sample data spatial covariance by solving 

a system of equations related to two-point covariances and inverting for weights.  This matrix 

inversion step, in part, necessitates that licit variogram models are positive definite (See: 2B.1 

Variograms).  If they are not, the matrices may not invert. 

 Kriging comes in several variants, e.g.: Simple Kriging (SK; where the mean is 

assumed), Ordinary Kriging (OK; where the mean is unknown), and Universal Kriging (where a 

local trend is employed).  Kriging works for parametric data and indicator-transformed non-

parametric data (i.e., indicator kriging or IK).  For IK, separate indicator variogram models for 
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each indicator are often supplied as inputs (full IK), but a simplified approach (median IK) 

reduces compute times assuming that each indicator variogram model is proportional to a single, 

common model (e.g., the weighted average of each indicator variogram).  With ample computing 

power, full IK is preferred because it allows more specific variogram modeling for each 

indicator.  Kriging can also incorporate secondary data, or soft data, in addition to hard data with 

a method called co-kriging (See: 2B.3 Soft Data and Probability Models). 

Furthermore, estimates from kriging can be leveraged in stochastic simulation.  Each 

estimated value is used to build a local probability distribution function.  Simulation values are 

drawn randomly from these functions.  Many equiprobable realizations that honor the input 

parameters can be generated in this fashion.  Unlike estimated fields, which are locally accurate, 

simulated fields are globally accurate. 

A full accounting of the benefits and downsides of different kriging styles is beyond the 

scope of this study, but some particular problems with OK are worth mentioning as they relate to 

co-kriging and sequential simulation algorithms.  OK may be preferrable to SK because it does 

not require an assumed mean as input and does not hold that mean constant throughout the 

model.  Instead, OK allows the unknown mean to vary locally.  OK is also able to capture any 

trends in the data that exists by estimating a local varying mean.  However, when co-kriging with 

indicators, OK necessitates that soft data weights sum to zero, which means some soft data 

weights are negative causing negative estimates (i.e., order relation deviations).  Additionally, 

co-kriging with OK causes soft data weights to be small and exert limited influence (Goovaerts, 

1994, 1997).  For sequential simulations: (1) SK is theoretically necessary to reproduce the 

sample cumulative distribution function and variogram and (2) OK has a tendency to spread hard 
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data and previously-simulated values beyond their proper range of influence. (Deutsch and 

Journel, 1998; Deutsch, 2006a; Pyrcz and Deutsch, 2014). 

2B.3 Soft Data and Probability Models 

 Sparse hard data can be supplemented with soft data to guide geostatistics in the form of 

prior local probability information that is incorporated into estimates.  Soft data is often 

incorporated directly into the kriging step in a process called co-kriging.  Remote sensing data 

(e.g., seismic reflection and ground penetrating radar surveys) is a common soft data source.  

While this information is generally lower-resolution than hard data and an indirect measure of 

the property of interest, it is generally areally extensive, if not exhaustive to the area of modeling 

interest.  Far more accurate predictions are possible when sparse hard data is augmented with 

ubiquitous soft data. 

For reservoir facies modeling, inverse methods are typically used to convert seismic 

reflectivity to acoustic impedance (Russell, 1988; Yilmaz, 2001).  The resulting inverse model is 

calibrated to collocated wellbore facies data to generate local facies probabilities for the entire 

acoustic impedance volume.  The strength of the calibration between probability volumes and 

true facies occurrence is never perfect due to the nature and resulting resolution of remotely 

sensed data; facies may be poorly distinguished in soft data.  This leaves the practitioner with a 

modeling decision of how to favor soft data against hard data given their imperfect relationship.  

Practitioners often have several options for a given modeling algorithm (e.g., full co-

regionalization modeling via cross-variograms, Markov-Bayes models, locally varying means, 

Bayesian updating, etc.) (Deutsch, 2006a). 
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2B.4 Sequential Indicator Simulation and Co-Sequential Indicator Simulation 

Sequential Indicator Simulation (SIS) is a covariance-based sequential simulation method 

built to work with non-parametric data in indicator space.  This makes it particularly suitable for 

facies simulation (Journel and Alabert, 1989; Deutsch and Journel, 1998).  Spatial correlation is 

supplied with indicator variograms.  Hard data is translated to the grid, and a random path 

through unknown locations is generated.  At each location, the algorithm generates a local 

conditional indicator probability distribution based on surrounding hard data and previously 

simulated values with IK.  Then it draws randomly from that distribution to assign a facies, 

moving to all locations until each has a facies value.  Altering a random number seed changes 

both the random path and facies drawing.  Many equiprobable results may be generated in this 

fashion. 

It is worth noting that sequential indicator methods have an inherent realization noise 

problem.  Realizations often exhibit geologically-unrealistic short-scale variations in the form of 

isolated facies clusters from one to a few cells in size.  This is due to their categorical and 

sequential nature paired, and is compounded by statistical fluctuations found in stochastic 

simulation.  As a result, smoothing (or “image cleaning”) is so often incorporated directly into 

modeling workflows (Deutsch, 2006a).  However, while smoothing may remove isolated, 

spurious pixels it also may smear out the very heterogeneities and details a modeler wishes to 

explore. 

 Co-Sequential Indicator Simulation (COSIS) expands SIS to incorporate soft data.  The 

process is the same as with SIS, except that local conditional probability distributions are 

generated with indicator co-kriging.  For each facies, in theory, the spatial covariance of the 

particular facies’ soft data, hard data, and the cross-covariance of the hard data and soft data 
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together are each required to perform co-kriging at every unknown location.  However, sparse 

data, especially for low-proportion facies, often precludes fitting of cross-covariance models 

from experimental cross-variograms.  Therefore, the cross-covariance between soft and hard data 

is often generalized; one widely-implemented methods is the Markov-Bayes Model of Co-

regionalization. 

2B.4.1 Markov-Bayes Model of Co-regionalization 

 The Markov-Bayes Model of Co-regionalization assumes that, for a given indicator, 

spatial covariance of soft data is intrinsically related to that of the hard data.  As such, their 

cross-covariance can be expressed in terms of the auto-covariance of both the soft and hard data 

(Hua Zhu and Journel, 1993; Almeida and Journel, 1994; Journel, 1999).  For each indicator, k: 𝐶𝐶IS(𝐮𝐮; 𝑘𝑘) = 𝐵𝐵 ∙ 𝐶𝐶I(𝐡𝐡; 𝑘𝑘) 

                          𝐶𝐶S(𝐮𝐮; 𝑘𝑘) = 𝐵𝐵2 ∙ 𝐶𝐶I(𝐡𝐡; 𝑘𝑘), for all 𝐡𝐡 > 0 

                                            = |𝐵𝐵| ∙ 𝐶𝐶I(𝐡𝐡; 𝑘𝑘), for all 𝐡𝐡 = 0 (𝐸𝐸𝐸𝐸. 2.4)

 

where CI(h; k) is the hard data auto-covariance, CS(h; k) is the soft data auto-covariance, and 

CIS(h; k) is their cross-covariance.  B are calibration coefficients between the hard data and soft 

data.  B values are expressed as auto-covariance ratios by manipulating the above equations, or 

calculated from the indicator and soft sample data directly: 𝐵𝐵 =  𝐸𝐸{𝑃𝑃(𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐮𝐮)) | 𝐼𝐼(𝐮𝐮;  𝑘𝑘)  =  1}  −  𝐸𝐸{𝑃𝑃(𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐮𝐮)) | 𝐼𝐼(𝐮𝐮;  𝑘𝑘)  =  0} (𝐸𝐸𝐸𝐸. 2.5) 

where k|soft(u) is the k, soft data value and I(u; k) is the k, indicator value.  In other words, the 

expected value of soft data where indicator, k, occurs less the expected value of soft data where 

indicator, k, does not occur at estimation locations, u (Hua Zhu and Journel, 1993). 

 B values, which range from -1 to 1, indicate how well soft data probabilities differentiate 

their respective indicator (i.e., the reliability of the soft data in guiding indicator predictions).  If 

B is close to 1, soft data values reliably predict their given indicator; the indicator is distinct in 
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the soft data.  If B is close to 0, soft data values weakly predict their given indicator; the indicator 

is indistinct in the soft data.  Negative B values indicate an inverse relationship between soft and 

hard data and, in all likelihood, user error.  B values acting as algorithm inputs, which are 

differentiated in this study as Bi (where i denotes arbitrary user “input”), control COSIS soft data 

weight.  Higher Bi values increase soft data influence on local estimations, while lower Bi values 

discount soft data. 

 One drawback of SIS / COSIS is that any indicator may occur next to any other.  

Sedimentary rocks comprise predictable successions at all scales, and a modeler may wish to 

specify which facies can occur adjacent to one another (i.e., facies stacking patterns).  The 

following sections introduce methods that utilize truncated gaussian fields to build models with 

specified facies order. 

2B.5 Truncated Gaussian Simulation 

Truncated Gaussian Simulation (TGS) is a covariance-based sequential simulation 

method designed to conditionally “truncate” a random continuous gaussian field into spatially 

ordered categorical data (Matheron et al., 1987; Galli et al., 1994; Emery, 2007; Armstrong et al., 

2011; Beucher and Renard, 2016).  With this method, indicators are guaranteed to occur in a 

specified transition order.  Consider, for example, a generic, 3-facies coastline succession: 

coastal-plain facies occur adjacent to shoreface sandstone facies, which is successively bounded 

by offshore muddy facies (Fig. 2.1A).  There is 0% probability that coastal plain will transition 

to offshore and 100% probability that shoreface will occur in between.  This specified order of 

transition is mathematically defined with a gaussian random function (GRF) of the cumulative 

facies probabilities (Fig. 2.1B) and may be visualized with a block diagram called a lithotype 
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Figure 2.1: Example model of a hypothetical coastal succession with the truncated gaussian method.  A) Truncated 

gaussian simulation of three facies with example hard data locations.  B) Gaussian random function describing facies 

proportions and facies truncation thresholds.  Hard data transformation normal scores at the center of each facies are 

marked.  C) Truncated gaussian lithotype rule.
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rule (LTR) (Fig. 2.1C) (Beucher and Renard, 2016).  The relative area of each facies within the 

LTR square corresponds to their respective proportions.  

First, cumulative facies proportion data at each cell is converted to a GRF, where 

spatially adjacent facies are also next to each other under the curve (Fig. 2.1B).  Proportion data 

may not be the same everywhere in the model, but if there is variability, it becomes fixed at this 

step.  Next categorical facies hard data is transformed into continuous data based on the GRF: 

generally, the normal score at the center of the facies area on the GRF is assigned for that facies 

(Fig. 2.1B) (Pyrcz and Deutsch, 2014).  These normal-score values are used to condition a 

continuous gaussian simulation in the model grid.  Various techniques may be used (e.g., 

sequential gaussian simulation or turning bands).  Finally, the gaussian simulation values are 

converted back to their corresponding facies based on the previously-determined thresholds at 

each cell.  This truncation is described as: 

facies at 𝐮𝐮 = 𝑘𝑘 if 𝑦𝑦𝑘𝑘−1𝑡𝑡 (𝐮𝐮) <  𝑦𝑦(𝐮𝐮) ≤ 𝑦𝑦𝑘𝑘𝑡𝑡(𝐮𝐮) (𝐸𝐸𝐸𝐸. 2.6) 

where y(u) are the gaussian simulation values and yt
k(u), k = 1, …, K – 1 are the thresholds. 

Multiple equiprobable realizations are achieved by iterating the seed, generating a new gaussian 

realization, and applying the previously calculated thresholds. 

 Fitting the variogram for TGS is not straightforward.  Unlike indicator simulation, where 

a variogram can be fit for each facies if desired, for TGS, only one variogram can be used to 

describe the spatial continuity of the underlying GRF, and by extension, the joint behavior of all 

facies at once.  Furthermore, while there is a simple relationship between the facies indicator 

variogram and requisite normal-scores gaussian variogram for 2-facies modeling, it does not 

hold for larger numbers of facies (Journel and Isaaks, 1984; Pyrcz and Deutsch, 2014).  For 

models with more than two facies, either the most important indicator variogram, or a weighted 
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average of all the indicator variograms is inverted to produce the underlying gaussian variogram 

(Kyriakidis et al., 1999). 

2B.5.1 Nested Modeling 

 TGS variogram limitations can be circumvented by using a nested modeling approach.  

Consider facies A, B, and C.  First A is modeled with a temporary combined category: B and C.  

The realization is then segregated into A and non-A zones, and B and C are modeled only in the 

reserved non-A zone.  This nested procedure can be expanded to any number of facies, allowing 

specified variography at each step. 

 Nested modeling of this sort is especially advantageous for TGS because, unlike SIS, 

which has only two licit variogram models, TGS can use any licit variogram model because the 

assumed underlying gaussian variable is continuous, not categorical. 

2B.6 Plurigaussian Simulation 

As a natural extension of TGS, Plurigaussian Simulation (PGS) expands the LTR concept 

from one-to-one facies transitions to one-to-many facies transitions.  Each sequence of possible 

transitions is represented by a separate underlying GRF, and all GRFs are simulated at once.  

Most implementations of PGS are limited to two GRFs, but more are theoretically possible 

(Armstrong et al., 2011).  Complex, but ordered, arrangements of facies can be achieved in this 

way.  For instance, consider the 3-facies coastal succession from the previous section, but the 

modeler wishes to include an altered facies within the shoreface (Fig. 2.2A).  The first GRF (Fig. 

2.2B) describes two successions on the LTR “x-axis”: 1) the original; offshore, shoreface, and 

coastal plain, and 2) the new; offshore, altered shoreface, and coastal plain.  The second GRF 

describes transitions between the original shoreface and altered shoreface facies on the LTR “y-

axis” (Fig. 2.2C).  The LTR visualizes all facies proportions and transition behavior (Fig. 2.2D).  
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Figure 2.2: Example model of a hypothetical coastal succession with additional altered shoreface facies.  A) Plurigaussian 

simulation of four facies. B) Gaussian random function describing facies proportions and facies truncation thresholds for 

coastal succession with both shoreface and altered shorface facies on LTR “x-axis.”  C) Gaussian random function 

describing facies proportions and facies truncation for transition between shoreface and altered shoreface on LTR 

“y-axis.”  D) Plurigaussian lithotype rule expanded to four facies with two GRFs.
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For such “2-axis” LTR blocks, facies transitions may occur along either axis.  For instance, the 

shoreface may transition to offshore or coastal plain on the “x-axis,” or it can transition to altered 

shoreface on the “y-axis.” 

Combining multiple GRFs into one field requires non-unique inversion (Pyrcz and 

Deutsch, 2014).  Hard and soft facies data are converted to gaussian space using iterative 

algorithms (e.g., Gibbs sampler) that ensure the final distributions of transformed values are truly 

gaussian (Emery, 2007; Armstrong et al., 2011).  PGS variography is subject to the same 

advantages and limitations of TGS: each underlying gaussian field is controlled by a single 

variogram model, which limits control over individual facies, but the number of licit models is 

high compared to SIS. 

2B.7 Proportion vs. Probability and Other Soft Data Considerations 

 Probability and proportion are related but distinct concepts in facies modeling.  

Generally, modeling proportions are derived from indicator hard data, while soft data brings 

indicator probability information into play.  Judiciously incorporating both into a facies model is 

often subjective.  A probability is a hypothetical model, while proportions summarize 

observations at a specific volume support (Stright et al., 2009).  Many descriptions of methods 

and algorithms appear to use the terms interchangeably.  For instance, when a method inspects 

“local facies proportion” information at a single cell, it is evaluating the probability of facies 

occurrence for the entire cell, not determining what percentage of that cell should be assigned to 

a given facies.  The cell is the representative elemental volume the modeler has decided on and 

not subdivided.  This concept of “local proportion” at a cell is framed as a deviation from the 

global proportions; it should be treated and understood as facies probability. 
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Many soft data integration methods trust soft data as implicitly reliable local proportion 

information or correct facies probabilities in a standardized way prior to simulation (e.g. 

Bayesian updating or locally varying means (Doyen et al., 1994; Goovaerts, 1997)).  From the 

perspective of the reservoir modeler as practitioner, differences among the most robust of these 

soft data integration methods are relatively minor (Deutsch, 2006a).  Assumptions and 

uncertainty about real-world input data are likely to have an outsize effect relative to soft data 

integration procedures.  As such, modeling software packages often make the soft data 

integration decision for the user.  For COSIS, different, widely-implemented software packages 

employ different co-kriging methods, and full co-regionalization modeling is often not an option.  

For instance, SGeMs (Remy et al., 2002) makes use of the Markov-Bayes Model, while Petrel 

(Schlumberger, 2016) uses a form of locally varying means.  TGS (in Petrel (Schlumberger, 

2016) and PGS (in Isatis (Geovariances, 2016)) incorporate soft data prior to simulation into the 

underlying gaussian fields.  Certain implementations will make additional standardized 

corrections to the soft data volume prior to simulation based on the global target facies 

proportions. 

 However, if soft and hard data are poorly matched or the soft data is known to be 

unreliable, inherent trust in soft data may pose problems.  One of the benefits of the Markov-

Bayes Model for COSIS is explicit control over the weight given to soft data.  This proves useful 

when soft data calibration is suspect, or a variable to test. 
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CHAPTER 3: GEOLOGIC BACKGROUND 

 

 

 

The Western Canada Sedimentary Basin (WCSB) is a retro-arc foreland basin that 

formed in response to the eastward advance and crustal loading of the Sevier Orogeny in western 

North America (Leckie and Smith, 1992).  The Horseshoe Canyon Formation was deposited into 

the WCSB during the Late Cretaceous (~73-67 Ma; Campanian-Maastrichtian) (Hamblin, 2004).  

These fluvial and estuarine sediments form part of an eastward -prograding and -thinning clastic 

sedimentary package that deposited into the intracratonic Western Interior Seaway (WIS) 

(Shepheard and Hills, 1970) (Fig. 3.1A).  East-flowing tributaries, which sourced sediment from 

the northwest-southeast-oriented mountain belt, combined into a major orogen-parallel river that 

discharged southeast into the ocean (Eisbacher et al., 1974; Rahmani, 1988; Leckie and Smith, 

1992; Michaelsen and Henderson, 2000; Hamblin, 2004; Eberth et al., 2012) (Fig. 3.1B). 

 The focus of this research is the Horseshoe Canyon Formation, which outcrops southeast 

of Drumheller, Alberta in the Red Deer River Valley. At this locale, the 12-16 m thick fluvial 

point bar section erosionally overlies Bearpaw shoreface deposits and conformably underlies a 

regional coal seam (Shepheard and Hills, 1970; Ainsworth and Walker, 1994; Vakarelov et al., 

2012; Ainsworth et al., 2015).  The Red Deer River exposes the fluvial point bar Horseshoe 

Canyon deposits subparallel to depositional strike, and a tributary, Willow Creek, exposes the 

deposits subparallel to dispositional dip (Durkin et al., 2015) (Fig. 3.2).  The study interval 

comprises a single point bar and its associated abandonment-channel fill, where major erosional 

surfaces define the internal stratigraphic architecture of the point bar into a series of LAPs (See: 

2A.3 Fluvial Point Bar Depositional Environment) (Durkin et al., 2015) (Fig. 3.3).  While point 

bar migration direction was variable through time, trough-cross stratification indicates paleoflow 
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Figure 3.1: A) Stratigraphic Column for Horseshoe Canyon Formation. B) Paleogeo-

graphic reconstruction of WCSB for Horseshoe Canyon Formation time (modified from 

Hamblin, 2004); modfied from Durkin et al., 2015. Inset map shows location in North 

America (modified from Rahmani 1988; Leckie and Smith, 1992; Hamblin, 2004; mod-

fied from Durkin et al., 2015).
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Figure 3.2: A) Satellite image (Google, 2016 - DigitalGlobe) of outcrops in the Red Deer 

River valley with measured sections locations.  Study location shown on inset. B) 

Map-view interpretation of the point bar and associated abandoned channel deposits.  

Lateral accretion package migration direction varies through time, and deposits become 

more fine-grained from upstream to downstream. C) Paleoflow measurements 

(trough-cross stratification and clast imbrication) D) Depositional surfaces dip direction. 

E) Erosion surfaces dip direction. (Modfied from Durkin et al., 2015)
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Figure 3.3: A) Willow Creek outcrop photomosaic with indicated section locations. B) Cross-sections of all Willow Creek 

measured sections oriented in the depositional dip direction.  Includes field observations and photomosaic analysis. C) 

Corresponding facies correlation of B)  (Modified from Durkin, 2016).

WC-30 WC-31WC-29
WC-6WC-7WC-3WC-2

WC-11 WC-12

WC-2WC-15 WC-3 WC-7 WC-6 WC-29 WC-30 WC-31 WC-11 WC-12 WC-13 WC-14

WC-2WC-15 WC-3 WC-7 WC-6 WC-29 WC-30 WC-31 WC-11 WC-12 WC-13 WC-14

100 200 300 400 5000

2

6

10

14

18

M
E

T
E

R
S

A A’

trough cross

bedding
siltstone clasts siltstone-clast

breccia ripples sandstone siltstone coalBase Horseshoe 

Canyon Fm.

base meander 

belt
erosion

surface

bedding

surface

photo from (A)

METERS

B

C

100 200 300 400 5000

2

6

10

14

18

M
E

T
E

R
S

A’A

METERS

base of meander belt

coal #0

HSC shoreface deposits

F1: sandstone F2: breccia F3: SIHS F4: MIHS F6: siltstone

VE=5x

VE=5x

A

25



 

directions generally to the northwest, while erosional and depositional surface dips are roughly 

orthogonal, to the northeast (Fig. 3.2C-E). 

   Six facies are defined in the point bar deposits (Table 3.1).  High-energy facies include: 

sandstone (F1), siltstone-clast erosional breccia (F2), and sandstone with siltstone and organic 

interbeds (sandy inclined heterolithic strata) (SIHS; F3).  Moderate-energy facies include: 

siltstone with sand and organic interbeds (muddy inclined heterolithic strata) (MIHS; F4), and 

very fine to fine-grained sandstone with ripples (F5).  Low-energy suspension settling deposition 

represented by one facies: siltstone (F6). 

 Sandstone-dominated successions are high-energy accumulations of cross-stratified 

sandstones (F1), associated with breccias (F2), and laterally discontinuous siltstone interbeds 

(F3) interpreted as high-energy point bar growth and lateral migration (Allen, 1970; Jackson, 

1976).  Breccias derived from erosion of previously-deposited material pervade at the base, 

where they are associated with LAP-bounding erosional surfaces, while sporadic SIHS indicates 

lower-energy flows and sedimentation.  IHS-dominated successions record oscillation between 

high-energy, unidirectional flow (F3) and low-energy suspension settling (F4) depositional 

regimes.  The alternation of finer and coarser beds of IHS are likely governed by seasonal 

changes in sedimentation rate.  Breccias (F2) persist locally, indicating lesser bank slumps and 

erosional events.  Siltstone-dominated successions record slow channel flow or standing water 

deposition.  Laminated siltstones (F6) predominate, but are punctuated with minor fine 

sandstones (F5) indicating sporadic periods of faster flow. 

 Overall, the study interval is dominated by sandstone.  While breccias are most common 

at the erosive bases of LAPs, they can occur as minor slumps throughout the deposit.  IHS facies 

become increasingly prevalent up-section and eventually transition into siltstones.  The deposit  
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Table 3.1: Facies of the Horseshoe Canyon Formation in the study area 
Lithofacies Grain Size / 

Sorting 
Sedimentary 
Structures 

Color Bedding Upper / 
Lower 

Contacts 

Process 
Interpretation 

Depositional 
Setting 

F1: Sandstone 
Massive and 
cross-stratified 
sandstone with 
siltstone clasts 

vfU to mL; organic 
detritus; silt clasts 
pebble to cobble; 
sand moderately 
well-sorted 

Trough 
crossstratification, 
cross-set thickness 
ranges from 5 cm – 40 
cm; organics on 
foresets; graded and 
massive beds; coarser 
lags at base of beds 

Sand = light 
gray to white; silt 
= reddish brown 
and gray 

Cross-set thickness 
= 5 – 40 cm; bed 
thickness = 10 - 100 
cm; unit thickness ≤ 
8 m 

Sharp, 
erosional 
base; sharp 
and 
gradational 
upper 

Unidirectional current 
flow; Traction-
dominated bedload; 
erosion of previously 
deposited silt beds 
with moderate 
transport distance 

Channel thalweg 
3D dunes; Lateral-
accreting lower-
point-bar IHS 

F2: Breccia 
Siltstone-clast 
breccia 

vfU to mL sand; 
silt clasts 10 - 200 
cm blocks; 
subangular to 
angular; sand 
moderately well-
sorted 

Imbrication of silt 
clasts; massive sand 

Sand = light 
gray to white; silt 
= reddish brown 
and gray 

Bed thickness = 20 
- 150 cm; unit 
thickness ≤ 4 m 

Sharp base; 
gradational 
upper 
contact from 
breccia to 
sandstone 

Traction-dominated 
bedload; 
unidirectional current 
flow; erosion of 
previously deposited 
silt beds with short 
transport distance 

Channel thalweg 
adjacent to cut-
bank; Lower to 
middle point bar 

F3: SIHS 
Sandstone with 
siltstone and 
organic 
interbeds 

vfL to fU sand; 
organic detritus; 
silt; sand 
moderately well-
sorted 

Horizontal lamination; 
current ripples; wavy 
and discontinuous silt 
and organic lamination; 
organics on ripple 
foresets, double mud 
drapes 

Sand = light 
gray to white; silt 
= reddish brown 
and gray; 
organics = black 

Bed thickness = 
sand 1 - 5 cm, silt 1 
- 5 mm, oranics 1 - 
3 mm; unit 
thickness ≤ 8 m 

Gradational 
lower; sharp 
and 
gradational 
upper 

Low-energy 
unidirectional current 
flow; fluctuations in 
discharge 

Laterally accreting 
lower to middle 
point-bar IHS; 
periodic tidal 
fluctuation 

F4: MIHS 
Siltstone with 
sandstone and 
organic 
interbeds 

vfL to fU sand; 
organic detritus; 
silt; sand 
moderately well-
sorted 

Planar to wavy 
lamination; rare ripples 
in sandstone beds; 
wavy lenticular sand 
lenses 

Sand = light 
gray to white; silt 
= reddish brown 
and grey; 
organics = black 

Bed thickness = silt 
1 - 3 cm, 
discontinuous sand 
1 - 5 mm, organics 
1 - 3 mm; unit 
thickness ≤ 8 m 

Gradational 
and sharp 

Low-energy 
unidirectional current 
flow; fluctuations in 
discharge 

Upper point-bar 
IHS; periodic tidal 
fluctuation 

F5: Fine 
Sandstone 
Very fine to fine 
sandstone with 
ripples 

vfL to fU sand; 
organic detritus; 
sand moderately 
sorted 

Current riiples with 
organic detritus on 
foresets; massive; faint 
planar lamination 

Sand = light 
gray to white; silt 
= reddish brown 
and gray; 
organics = black 

Bed thickness = 
sand 10 - 100 cm; 
unit thickness ≤ 4 m 

Gradational 
lower from 
massive 
sandstone; 
sharp upper 
with 
finegrained 

Low-energy 
unidirectional current 
flow; fluctuations in 
discharge 

Upper point-bar 
IHS; tidal channels 
and drainage 
creeks outside of 
channels in tidal 
flats or overbank 
deposits 

F6: Siltstone 
Laminated 
Siltstone 

Clay to silt Planar lamination; rare 
and discontinuous 
sandstone 
interlamination; 
massive; fissile 

silt = light brown 
and gray; 
organics = black 

Bed thickness = 1 - 
3 cm ; unit 
thickness ≤ 8 m 

Sharp or 
gradational 
at base; 
sharp upper 

Low-energy 
deposition from 
suspension 

Abandoned 
channel or upper 
point bar 

(Modified from Durkin et al., 2015) 
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becomes increasingly finer-grained up-section and downstream, but successively-deposited 

LAPs also become finer-grained through time (Fig. 3.3C). 
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CHAPTER 4: DATA REVIEW 

 

 

 

This study relies on previous: 1) outcrop field work and 2) architectural statistical and 

modeling work based on that outcrop work, which is used as a base framework and comparison 

case.  Measured section data and interpreted stratal surfaces come from a detailed stratigraphic 

study of the Horseshoe Canyon Formation (Durkin et al., 2015).  Previous statistical and 

modeling work developed architectural statistics calculated within stratal packages as a function 

of position within the package (Durkin, 2016).  These include transition probabilities and facies 

proportion curves.  Soft data was derived from interpolated facies proportion curves and 

variography was inferred from outcrop hard data.  A nested TGS model was generated with this 

data to evaluate facies architecture reproduction. 

4.1 Previous Outcrop Work 

4.1 1 Measured Sections  

35 measured sections taken along the outcrop record grainsize, bedding contacts, facies, 

and various sedimentary structures (Fig. 3.2A and B).  Trough-cross-stratification measurements 

indicate paleo current directions for the growing point bar, and inform paleo-channel 

interpretations (Fig. 3.2C-E). 

4.1.2 Stratigraphic Framework 

Major stratigraphic surfaces were walked out and recorded with dGPS.  These surfaces 

were then linked to measured section data locations and outcrop photographs to build a 

georeferenced, 3-D representation of the outcrop data (Fig. 3.3B and C).  Measured section 

locations were imported into Petrel 2016 (Schlumberger, 2016) as wellbores, and digitized facies 

interpretations were assigned to wellbore tracks.  LAPs that intersect the wellbores were added 
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as well tops and combined with dGPS points to constrain 3-D LAP surface construction. Paleo 

dip and azimuth data at measured sections aided accurate surface projection. The resulting 21 

major surfaces define the framework for a point bar comprised of 20 LAPs (Zones 1-20, Fig. 

4.1).  Zones are numbered from youngest (zone = 1) to oldest (zone = 20) and correspondingly 

from most southwestward to northeastward, advancing in the direction of point bar migration. 

At most, the model grid area spans roughly 3.7 km on its long axis (NW-SE) and 0.9 km 

on its short axis (SW-NE), with an approximate modeled area of 2 km2 covering approximately 

68 m of vertical section.  The grid comprises 430 x 457 x 1,111 (i,j, and k respectively) 

truncating cornerpoint-gridded cells that are 5 m x 5 m across and 0.3 m thick.  Cells are layered 

such that they follow their lower bounding surface and are truncated by the overlying erosional 

surface (i.e. follow-base gridding paradigm).  After trunctation, the model contains 2,601,027 

active cells.  Where wellbores intersected cells, facies were assigned to the grid by upscaling.  

That is, the cell was assigned the most abundant wellbore facies within its volume.  Every cell 

with hard data was assigned to a depositional sub-zone: top, top-middle, middle, middle-bottom, 

and bottom, each referring to an interpreted relative position within the point bar (Fig. 4.2).  With 

measured section hard data deterministically emplaced and encoded into a stratigraphic 

architectural framework, outcrop statistics were developed in four spatial categories: zone 

(LAP), sub-zone, true spatial coordinates (x, y, z), and cellular coordinates (i, j, k). 

4.2 Previous Architectural Statistics and Modeling Work 

4.2.1 Transition Probabilities 

Transition probabilities for each facies (to each other facies) were calculated using Markov-

chain analysis.  Vertical transition probabilities were assessed using an embedded Markov 

analysis, which has no spatial dependency.  For each facies, the number of transitions to each 
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Figure 4.1: A) Zone architecture of the geocellular model. Locations of the Willow Creek cross-section and measured-sec-

tion “pseudo-wells” are indicated.  A small sector model taken for testing and transect for visualization are also labeled.  B) 

The sector transect inspects six LAP Zones. (Modified from Durkin, 2016).
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Figure 4.2: Willow Creek measured sections indicating key statistical parameters and 

stratigraphic architecture. (Modfied from Durkin, 2016)

METERS150

HTP A

HTP B

V
PC

base of VPC

top of VPC

Sub-zone 5

Top

Sub-zone 4

Top-Middle

Sub-zone 3

Middle

Sub-zone 2

Middle-Bottom

Sub-zone 1

Bottom

V
T

P

N:G =0.97 

N:G =0.52 

Zone 9

0.3 m layers

Zone 14

Zone 13

Zone 12

Zone 11

Zone 10
Zone 8

Log: WC-31Log: WC-29 Log: WC-30

VPC - 
5

VPC - 
4

VPC - 
3

VPC - 2

32



 

other facies (up-section, along well logs) was divided by the total number of transitions to build a 

matrix of vertical transition probabilities (Table 4.1, Fig. 4.3) (Miall, 1973; Ethier, 1975; 

Burgess, 2016). 

 

 Table 4.1: Vertical Transition Probabilities 

 Sandstone Breccia SIHS MIHS Fine Sand Siltstone 

Sandstone - 0.37 0.17 0.39 0.02 0.05 

Breccia 0.76 - 0.06 0.15 - 0.03 

SIHS 0.13 0.07 - 0.67 0.02 0.12 

MIHS 0.41 0.11 0.36 - 0.07 0.05 

Fine Sand 0.08 - 0.08 0.29 - 0.54 

Siltstone 0.21 0.12 0.33 0.07 0.28 - 

 

Without spatial dependence, facies self-transitions are unobservable and recorded as nulls.  

Horizontal transition probabilities were assessed with using a spatial Markov analysis, which 

considers transitions at a fixed sampling interval (Miall, 1973; Ethier, 1975; Burgess, 2016).  For 

each facies, the number of transitions to each other facies (including itself) along model layers 

was divided by the total number of transition intervals to build a matrix of horizontal transition 

probabilities (Table 4.2, Fig. 4.4) (Schwarzacher, 1969; Ethier, 1975). 

 

Table 4.2: Horizontal Transition Probabilities 

 Sandstone Breccia SIHS MIHS Fine Sand Siltstone 

Sandstone 0.65 0.16 0.05 0.13 0.01 0.00 

Breccia 0.37 0.45 0.06 0.13 - - 

SIHS 0.32 0.20 0.18 0.25 0.01 0.04 

MIHS 0.41 0.19 0.11 0.26 0.02 0.02 

Fine Sand 0.24 0.06 0.19 0.28 0.18 0.06 

Siltstone 0.14 0.12 0.20 0.35 0.01 0.18 
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F5: Fine-sand F6: SiltstoneF3: SIHS F4: MIHSF1: Sandstone F2: Breccia

Figure 4.3: Vertical transition probabilities visualized as Circos diagrams (Circos Table 

Viewer, 2017) where colored bands represent probability of transition between given 

facies.  Tabulated transition probabilities (transitions from a given facies) are reflected in 

the attached series, while the detached series represent tranitions to a given facies.
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F5: Fine-sand F6: SiltstoneF3: SIHS F4: MIHSF1: Sandstone F2: Breccia

Figure 4.4: Horizontal transition probabilities visualized as Circos diagrams (Circos 

Table Viewer, 2017) where colored bands represent probability of transition between 

given facies.  Tabulated transition probabilities (transitions from a given facies) are 

reflected in the attached series, while the detached series represent tranitions to a given 

facies.
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Due to the geometry of the outcrops, transitions at distances greater than 200 m were not 

considered.  For both vertical and horizontal analyses, if a facies never transitions to a particular 

facies (e.g., F2 never transitions to F5 in the horizontal analysis), the transitions are recorded as 

null. 

4.2.2 Horizontal and Vertical Facies Proportion Curves 

Proportion curves show spatial changes in facies proportion throughout the model hard data: 

in this case horizontally by sub-zone and vertically by model layers (Ravenne et al., 2002).  

Vertical proportion curves (VPC) were calculated for each model layer at all zones: one in 

aggregate and five by sub-zone (Fig. 4.5, 4.6).  Starting with the bottom layer, each facies 

occurrence on that layer is tallied and plotted as a cumulative percentage.  This process is 

repeated for each layer and the resulting curve visualizes facies proportion trends up-section.  

The aggregate VPC considers all measured sections at the same time while sub-zone VPCs only 

include cells coded for a particular sub-zone.  Sub-zone analyses may reveal important 

architectural trend information while aggregate analyses characterize the dataset as a whole.  One 

horizontal proportion curve was collected by sub-zone for all sub-zones (Fig 4.5).  Instead of 

inspecting layers, facies counts were collected for all cells in the sub-zone at once.  This analysis 

captures depositional architectural quantitatively. 

4.2.3 Probability Models (Soft Data) 

Probability volumes based on sub-zone VPCs were developed as soft data to guide 

stochastic modeling.  Recall that each cell of upscaled measured section data has a defined model 

layer (Fig. 4.2) and interpreted sub-zone (i.e., top, top-middle, middle, middle-bottom, and 

bottom) (Fig. 4.6) (See: 4.1.2 Stratigraphic Framework).  Taken together, these values 

correspond to a VPC value for each facies (Fig. 4.6).  Measured section locations were assigned 
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Figure 4.5: A) Global horizontal proportion curve (HPC) by sub-zone, for all zones in the 

geocellular model.  B) Global vertical proportion curve (VPC) for all zones. Probability of 

each facies for each layer in a zone, starting at the base (layer #1) to the top of the 

zone (layer #36). (Modified from Durkin, 2016)
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Figure 4.6: A)-E) Vertical proportion curves (VPC) by sub-zone, for all zones in the 

model. F)-J) with corresponding histograms. (Modified from Durkin, 2016)
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VPC facies proportion values on this basis, and then linearly interpolated along layers between 

other measured section locations to fill the entire model volume with facies probability values 

(Fig. 4.7). 

4.2.4 Variography and Nested TGS Model 

Facies variogram models were inferred directly from outcrop character instead of noisy 

experimental data (Table 4.3) (See: 2B.5 Truncated Gaussian Simulation). 

 

Table 4.3: Outcrop-Inferred Facies Variogram Parameters 

Facies Model 
Hz. Range 

(m) 
Vt. Range 

(m) 
Sill 

(σ2-Normalized)  

Sandstone Gaussian / Exponential 100 0.3 1 

Breccia Gaussian / Exponential 300 0.3 1 

All Others Gaussian / Exponential 600 0.3 1 

 

The variogram model was derived from a combination of: 1) the observed visual continuity of 

facies bedding and thickness and 2) desired qualitative model results based on trial and error.  

Gaussian variogram models were selected because they form smoother, less noisy, more 

geologically realistic facies transitions than, e.g., spherical or exponential models.  Please note, 

while gaussian variogram models were used in the previous work, exponential models are 

substituted for SIS and COSIS simulations with outcrop-inferred variography in this study, as 

indicated in Table 4.3 (See: 2B.1.1 Indicator Formalism and Indicator Variograms). 

Finally, these variograms were used to build a nested TGS model (Fig. 4.8).  The model was 

fully conditioned with outcrop hard data and the probability volumes for each facies.  Facies 

were simulated in order of architectural importance: sandstone, breccia, SIHS, MIHS, fine 

sandstone, and siltstone, with the probability volumes supplying local proportions.  In the final 

model, facies proportions are compared to proportions from logs in order to ensure consistency.  
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Figure 4.7: Probability volumes for all facies visualized at sector model transect.
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Variography
-Hz -- Sand : 100m, Breccia: 300m;
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For this study, the nested TGS model is used as a base case to qualitatively compare other 3-D 

model results against. 
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CHAPTER 5: METHODS 
 
 
 

Facies architecture reproduction is often difficult to quantify and historically relied on 

qualitative evaluations.  One such approach to is to visually inspect map-view and cross-sections 

through model realizations and make general qualitative assessments for each algorithm or 

parameterization tested (Deveugle et al., 2014).  The goals herein are to use simple 1-D 

experiments to better understand how covariance-based simulation methods: 1) honor input data 

and 2) quantitatively reproduce observed sedimentologic architecture. Finally, learnings are 

applied to 3-D problems.  The overarching goal is to close the gap between statistics measured at 

the outcrop and use of those statistics in modeling to reproduce observed architecture.  

Measurements from the outcrop are distilled down into several quantitative data types: 1) facies 

at measured section locations, 2) probability models from interpolated VPC curves, 3) global 

facies proportions, 4) spatial correlation models from variograms, and 5) transition probabilities 

captured in facies LTR.  Several sensitivity variables are considered: number of facies, facies 

proportions, variography, search parameters, kriging style, soft data-hard data calibration, and 

soft data weight for simple, exhaustively-understood cases.  For 1-D experiments, COSIS with a 

Markov-Bayes Model of co-regionalization is used as a test algorithm because of its explicit 

control over soft data weight.  3-D experiments expand general findings of COSIS to PGS and 

nested TGS. 

5.1 Part 1: 1-Dimensional Experiment Methods 

A set of simple 1-D modeling tests were devised to: 1) quantify model accuracy as a 

function of varying soft data reliability (Part 1a) and weighting (Part 1b), 2) quantify model 

accuracy given varying hard data scenarios (i.e., changing abundance and configuration) (Part 
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1b), 3) evaluate variogram impacts (Part 1b), 4) evaluate search ellipse impacts (Part 1b), and 5) 

compare differences between a model with two facies (Part 1a) and three facies (Part 1b).   These 

experiments aggressively test the limits of covariance-based algorithms with respect to facies 

architecture reproduction: realizations are evaluated on how well they reproduce a known spatial 

distribution of facies.  This reaches far beyond the expectation that algorithms reproduce spatial 

correlation, Instead, it provides a quantitative gauge for algorithm performance with respect to 

facies architecture demonstrating how soft data is being utilized in facies reproduction and under 

which conditions soft data influences the results. 

5.1.1 Part 1a: Synthetic 2-Facies Experiment - Soft Data Reliability 

A simple, synthetic, 1-D modeling experiment with two facies (“shale” and “sand”) was 

devised to illustrate and examine limits of soft data influence on facies architecture reproduction 

(Fig. 5.1).  To test the impacts of facies prediction as a function of soft data reliability, or B, 

unconditional simulations (i.e., no hard data) were run with COSIS with soft data volumes of 

varying reliability (i.e., changing B value).  SIS simulations serve as a control, as SIS cannot 

consider soft data. 

 First, an arbitrary 13-cell, 1-D model of a true facies distribution was developed (Fig. 

5.1A).  The model comprises three cells of sand placed at the top, bottom, and middle of a 1-D 

grid separated by beds of shale, each five cells thick.  True facies distribution proportions of 

shale and sand are ~77% and ~23%, respectively (Fig. 5.1C).  From this true facies distribution, 

22 soft data scenarios were systematically developed to test facies prediction impacts of 

incrementally changing B from 1 to -1 (See: 2B.4.1 Markov-Bayes Model of Co-

regionalization).  Total results comprise: 1 SIS simulation (1 SK simulation) and 44 COSIS 
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Figure 5.1: Part 1a: 2-Facies Synthetic Experiment to Test Soft Data Reliability.  A) True 

facies distribution, B) soft data volumes, and C) facies proportions for synthetic 1-D 

experiment.
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simulations (22 SK simulations and 22 OK simulations), each of 100 realizations.  Facies 

indicator variograms were inferred from the true facies distribution hard data (Table 5.1). 

 

Table 5.1: Part 1a: Synthetic 1-D Experiment Variography 

Facies Model 
Range 
(units) 

Sill  
(σ2) 

Sand Exponential 2 0.18 

Shale Exponential 5 0.18 

 

The search ellipse encompassed the entire grid.  Input soft data weight, or Bi, was held at ~1, 

implying full confidence in soft data.  The method is tested for its ability to predict the true facies 

distribution given fixed global proportions and variogram input across a range of soft data 

reliability scenarios. 

Soft data scenarios for COSIS were set up in the following manner.  First, a suite of 22 B 

values was selected ranging from ~ 1 to ~ -1, where each B value corresponds to a soft data 

scenario (Table 5.2).  Probability volumes were then populated for each scenario.  Given that 

facies probabilities must sum to 1 and there are only two facies in this system, a facies’ average 

probability, Pfacies, can be calculated from a given B value: 𝐵𝐵 = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − �1 − 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑠𝑠𝑉𝑉𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐵𝐵 + 1

2
(𝐸𝐸𝐸𝐸. 5.1)

 

The true facies distribution informs where Pfacies is assigned in the soft data grids (Fig. 5.1B).  

For the sand probability volume, sand cells in the true facies distribution are assigned Pfacies, 

while shale facies are necessarily assigned 1 - Pfacies.  The shale probability volume is populated 

in the same fashion.  With this procedure, the probability volumes for each scenario are 

homogenous and diametric, keeping the experiment simple. 
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Table 5.2: Part 1a: Synthetic 1-D Experiment Facies Probabilities and B Values 

Pfacies 1 - Pfacies B 

0.99 0.01 0.98 
0.95 0.05 0.90 
0.90 0.10 0.80 
0.85 0.15 0.70 
0.80 0.20 0.60 
0.75 0.25 0.50 
0.70 0.30 0.40 

0.65 0.35 0.30 
0.60 0.40 0.20 
0.55 0.45 0.10 
0.49 0.51 -0.02 
0.51 0.49 0.02 
0.45 0.55 -0.10 
0.40 0.60 -0.20 
0.35 0.65 -0.30 
0.30 0.70 -0.40 
0.25 0.75 -0.50 
0.20 0.80 -0.60 
0.15 0.85 -0.70 
0.10 0.90 -0.80 
0.05 0.95 -0.90 
0.01 0.99 -0.98 
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5.1.2 Part 1b: Outcrop-Data 3-Facies Experiments - Hard and Soft Data Conditioning 

 A 3-facies, 1-D example from a measured section in the Horseshoe Canyon dataset 

comprises the basis for a second set of 1-D tests (Fig. 5.2; Log 24 of the Horseshoe Canyon 

Outcrop.  See: Fig. 3.2 for section location). These tests were devised to evaluate the impact of: 

1) variable abundance and configuration of hard data and 2) variogram range, search ellipse, and 

soft data weight. These tests utilized both SIS and COSIS simulation. 

To simplify the experiment, facies F3-F6 were aggregated to one category: fine-grained 

facies.  A 31-cell, single-zone portion (only zone 8) of Log 24 was extracted to serve as an 

idealized 1-D vertical true facies distribution (Fig. 5.2C).  This true facies distribution: 1) 

comprises one of the longest single-zone logs, 2) contains the best qualitative example of the 

idealized point bar depositional profile, and 3) exhibits comparable facies proportions to the 

global facies proportions from all measured sections (Table 5.3). 

 

Table 5.3: Horseshoe Canyon Facies Modeling Proportions 

Facies 
Global 

Proportions 
Log 24 

Proportions 

Sector Model 
Probability 

Volume Avg. 
Sandstone 0.56 0.71 0.53 

Breccia 0.13 0.06 0.13 

Fine-
grained 
Facies 

SIHS 

0.31 

0.09 

0.23 

- 

0.34 

0.09 
MIHS 0.14 0.19 0.15 

Fine Sandstone 0.02 - 0.03 
Siltstone 0.05 0.03 0.07 

 

Facies target proportions are drawn only from Log 24 hard data, as opposed to all measured 

sections (Table 5.3).  While providing a limited test case, Log 24 data has the advantage of being 

grounded in measured outcrop data, whereas the 2-facies experiments are entirely synthetic.   
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Figure 5.2: Part 1b: 3-Facies Outcrop-Based Experiments to Test Hard and Soft Data Conditioning.  A) Facies proportions 

in well Log 24.  B) Upscaled geocellular representation of Log 24 in 3-D model.  C) Log 24 upscaled facies flattened to 

idealized 1-D vertical grid. D) Log 24 probability volumes for sandstone, breccia, and aggregated fine-grained facies.
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 Simulations were run with different degrees of hard data conditioning (hard data 

percentage) to test the relative impacts of hard and soft data on facies prediction.  A suite of 156 

hard data scenarios were extracted from Log 24 at six different hard data percentages: 1) 1 

scenario at 0% hard data (i.e., unconditional) and 2) 31 scenarios each at ~3%, ~6%, 12.5%, 25% 

and 50% hard data (Fig 5.3).  For each hard data percentage scenario, hard data was 

systematically spaced and positioned to ensure: 1) a manageable, explicit range and variety of 

data scenarios were tested (i.e., one for each cell in the grid) and 2) data was distributed evenly 

throughout the grid for each scenario.  Given the small number of model cells, clustered adjacent 

hard data may unnecessarily bias experimental results.  Unlike the 2-facies models, soft 

conditioning data (probabilities) were heterogeneous, derived from full-field probability models 

(Durkin, 2016), and held constant in the 3-facies cases (Fig. 5.2D). 

 Through automated processes (Appendix), each of these 156 scenarios was subjected to 

42 parameter sets examining different configurations of variogram range, search ellipse, and soft 

data weight to evaluate impacts on 3-facies 1-D modeling (Fig. 5.4).  This full suite of 

simulations comprises 6,552 different data and parameter configurations, each with 100 

realizations.  Indicator variograms were modeled from experimental data from all outcrop 

measured sections (Fig. 5.5, Fig. 5.6, Table 5.4). 

 

Table 5.4: Part 1b: Outcrop-data 1-D Experimentally Fit Variography 

Facies Model 
Vertical Range 

(m) 
Sill (σ2) 

Sandstone Exponential 2.1 0.25 
Breccia Exponential 2.7 0.11 

Fine-grained Facies Exponential 2.1 0.21 
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Figure 5.3: Part 1b: 3-Facies Outcrop-Based Experiments to Test Hard and Soft Data Conditioning.  Hard Data Scenarios 

extracted from Log 24.  156 hard-data scenarios were tested: 31 at each of 5 different hard data percentages and one 

with no hard data (i.e., unconditional).
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Figure 5.4: Part 1b: 3-Facies Outcrop-Based Experiments Sensitivity Variable Test Tree.  A) Three variogram ranges, two 

search ellipses, and seven soft data weight cases were tested with simple kriging.  *0.3 soft data weights are detailed in  

Table 5.6.  B) 156 hard data scenarios were tested for each soft data weight case.
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Figure 5.5: Horizontal direction experimentally-fit variograms and exponential models:  A) sandstone experimental vario-

gram and model, B) breccia experimental variogram and model, and C) fine-grained facies variogram and model.  Experi-

mental variograms were modeled for 500 lags (5 m separation, 2.5 m tolerance) with 0° azimuth, 0° dip, 90° tolerance, 0 

m bandwidth.  Exponential models are detailed in Table 5.7 for 3-D models (Part 2).  
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Figure 5.6: Vertical direction experimentally-fit variograms and exponential models:  A.) sandstone experimental variogram 

and model B.) breccia experimental variogram and model, and C.) fine-grained facies variogram and model.  Experimen-

tal variograms are modeled for 500 lags (0.3 m separation, 0.15 m tolerance) with 0° azimuth, 90° dip, 1° tolerance, 0.3 m 

bandwidth.  Exponential models are detailed in Table 5.4 for 1-D experiments (Part 1b) and 5.7 for 3-D models (Part 2).  
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Only the vertical variograms models are considered in this 1-D experiment (Fig. 5.6, Table 5.4).  

Three vertical range cases test variogram range impacts: 1) the experimentally modeled range, 2) 

roughly half the experimentally modeled range, and 3) range of one cell (0.3 m thick) (Table 

5.5). 

 

Table 5.5: Part 1b: Outcrop-data 1-D Experiment Variogram Range Sensitivity Cases 
Facies Modeled Range ½ - Modeled Range 1-cell Range  

Sandstone 2.1 m    (7 cells) 1.2 m    (4 cells) 0.3 m    (1 cell) 

Breccia 2.7 m    (9 cells) 1.5 m    (5 cells) 0.3 m    (1 cell) 
Fine-grained Facies 2.1 m    (7 cells) 1.2 m    (4 cells) 0.3 m    (1 cell) 

 

Two search ellipse cases test search neighborhood impacts: 1) a search ellipse equivalent to the 

longest facies variogram range in the test branch, and 2) a 9.3 m (i.e. 31-cell) search ellipse that 

encompasses the entire grid.  Only SK was employed.   

Seven different soft data cases test impacts of varying soft data weight, Bi.  Recall that Bi is 

merely an input value and the modeler may use different values from the true B coefficient of the 

data set (See: 2B.4.1 Markov-Bayes Model of Co-regionalization).  SIS, which does not consider 

soft data at all, was run as a base case.  COSIS was run with five arbitrary Bi value sets and one 

Bi value set with the true B coefficients.  The arbitrary cases employed the same Bi values for all 

facies incrementing from nearly 0 to nearly 1 at intervals of roughly 0.25 (Fig. 5.4).  In other 

words, for cases labeled 0.99, each facies was run with Bi = 0.99, irrespective of the true B value.  

The true B coefficients for each facies were calculated as the difference in mean of correct 

classification vs. incorrect classification between the hard data and corresponding probability 

volumes (See: Stright, 2011) and simulations were parameterized with the facies-specific values 

(Table 5.6). 
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Table 5.6: Part 1b: Log 24 Facies Proportions and B Values 
Facies Facies Proportion B 

Sand 0.70 0.28 

Breccia 0.06 0.22 

Fine-grained Facies 0.23 0.40 

Proportion-Weighted Average of B Values 0.30 

 

For presentation purposes, this true B case is labeled as a single value, 0.3.  This number is the 

facies proportion-weighted average of three B coefficients (Table 5.6). 

5.1.3 Quantifying Results from 1-D Experiments 

The ability of realizations to accurately reproduce a true facies distribution is examined 

with probability of misclassification. Probability of misclassification (Pmisclass) examines how 

well facies realizations match expectations (Fig. 5.1A and Fig. 5.2C) given variable hard data 

data configurations, soft probability conditioning, and other parameters, where high 

misclassification values indicate the algorithm poorly reproduces the expectation. 

 This study calculates Pmisclass for suites of realizations with common parameters and data 

scenarios in the following way: 

𝑃𝑃𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓 =  
1𝑛𝑛��1 − 𝑐𝑐𝑉𝑉�𝑛𝑛
𝑓𝑓=1 (𝐸𝐸𝐸𝐸. 5.2) 

where n is a set of evaluated cell locations (i.e., excluding active hard data cells), c is the number 

of times the correct facies is simulated at a given cell, and r is the number of realizations in 

question.  Pmisclass can be applied to each facies individually, or for all facies at once.  When 

applied to all facies at once, n is all unknown locations, u, and when applied to one facies, n 

refers to the subset of u where that particular facies actually occurs in the true facies distribution. 

Fidelity of realizations to soft data is examined with Root Mean Squares Error (RMSE).  

An expected value model, or e-type, is developed for each facies, where each cell location 
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records the simulated facies proportion at that cell across all realizations (Pyrcz and Deutsch, 

2014).  This aggregate of realizations is compared to the prior model of the soft data with RMSE:   

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 =  �1𝑛𝑛�(𝑠𝑠 − 𝑝𝑝)2𝑛𝑛
𝑓𝑓=1 (𝐸𝐸𝐸𝐸. 5.3) 

where n is a set of evaluated cell locations, o is the facies e-type value at a given cell (the 

“observed” value), and p is the facies soft data value at a given cell (the “predicted” value). 

RMSE is collected for each facies individually, and higher values indicate the algorithm poorly 

reproduces soft data. 

Pmisclass was calculated for each facies individually as well as all at once to assess facies 

architecture reproduction.  RMSE was calculated for each facies individually to assess fidelity to 

probability volumes. 

5.2 Part 2: 3-Dimensional Experiment Methods 

The full outcrop model grid comprises over 2.6 million active cells.  In order to rapidly test 

multiple modeling methods and parameter schemes a small sector gridspace of just 112,345 

active cells was extracted (Fig 4.1).  As compared to the full model, which was 430 x 457 x 

1,111 untruncated cells (i,j,k), the sector model is only 51 x 51 x 274 untruncated cells (i,j,k).  

Furthermore, while the full model is approximately 2 km2, the sector model is 343 m x 343 m, or 

0.12 km2 (See: 4.1.2 Stratigraphic Framework).  The sector contains three measured sections 

(Logs 15, 16, and 17; see Fig. 3.2) at the junction between the strike-parallel Red Deer River 

exposures and dip-parallel Willow Creek Canyon exposures.  Modeling workflows were set up 

to test the sensitivity of resulting realizations to: 1) outcrop-inferred versus experimentally fit 

variograms (Part 2a and 2b), 2) facies proportions (Part 2a and 2b), and 3) soft data weights (Part 

2a), and 4) LTR (Part 2b). 3-D experiments expand general 1-D findings for SIS and COSIS to 

57



 

PGS and nested TGS.  Please note, for comparative purposes, the nested TGS model was not re-

run in the smaller sector space; the simulated facies data were extracted directly from the larger 

model (Fig.4.8) (Durkin, 2016). 

5.2.1 3-D Sedimentary Variography 

Sedimentary environments typically exhibit high anisotropy between facies variability up- 

and down-section (vertically) and along bedding (horizontally).  Tabular deposits that exhibit the 

same facies 10s to 1000s of meters laterally can change facies in less than a meter vertically.  As 

such, experimental variograms were assessed for each facies in the model separately for vertical 

(along vertical well sections) and horizontal (along architectural model layers) regimes.  In this 

way, vertical and horizontal facies spatial correlation were decoupled.  Sparse data causes 

difficult experimental variogram fitting, especially in the horizontal direction (Fig. 5.5, 5.6).  For 

fine-grained facies (F3-F6), models were not fit individually due to the low proportion of these 

facies but aggregated into a single indicator category. These facies are depositionally and 

architecturally similar, so grouping them is reasonable. 

SIS and COSIS simulations were generated with outcrop-inferred variograms (Table 4.3) as 

well as traditional experimentally fit variograms (Table 5.7) (See: 4.2.4 Variography and Nested 

TGS Model). 

 

Table 5.7: Part 2: 3-D Modeling Experimentally fit Variogram Parameters 

Facies Model 
Horizontal Range 

(m) 
Vertical Range 

(m) 
Sill 

(σ2 - Normalized) 
Sandstone Exponential 55 2.1 1 

Breccia Exponential 40 2.7 1 
All Others Exponential 45 2.1 1 
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For PGS simulations, given difficulty fitting experimental variogram models from the hard data, 

a variety of ranges were used to assess outcrop character reproduction, while keeping the 

outcrop-inferred variogram ranges in mind.  The previous work nested TGS simulation only 

employed outcrop-inferred variography (Table 4.3). 

5.2.2 Part 2a: SIS and COSIS Experiments 

3-D SIS and COSIS simulations evaluate impact of 1) soft data weight, and 2) outcrop-

inferred versus experimentally fit variograms.  These simulations connect 1-D experiments to 3-

D modeling and serve as a reference frame for PGS and nested TGS results.  Hard data 

comprises three wellbores and soft data is confined to the sector model area.  However, global 

facies proportions are derived from all measured section data, not just the three sector model 

wellbores (Table 5.3). 

Simulations were performed using: 1) outcrop-inferred variogram ranges (Table 4.3) and 2) 

experimentally fit variogram ranges (Table 5.7), both using exponential models.  For each of the 

two variogram sets, one SIS simulation was run in addition to five COSIS simulations with Bi 

values: 0.01, 0.25, 0.5, 0.75, and 0.99 (Fig. 5.7).  Ten realizations were run for each of the twelve 

simulations.  Realizations were examined for qualitative outcrop architecture reproduction. 

5.2.3 Part 2b: PGS Experiments 

PGS realizations evaluated modeling impacts of: 1) variography, and 2) LTRs.  The primary 

objective of PGS simulation was to improve upon previous nested TGS modeling (Fig 4.8).  The 

hypothesis was that adding outcrop facies transition statistics with LTRs would improve facies 

architecture reproduction. 

Two different “best-effort,” LTRs (LTR A and LTR B) were devised to test the impact of 

compromising on certain facies transitions (Fig. 5.8).  LTRs were designed holistically based on 
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Figure 5.7: Part 2b: SIS & COSIS Test Tree.  A) Outcrop-inferred variography tests SIS and five B
i
 values for COSIS.  B) 

Experimentally-fit variography tests SIS and five B
i
 values for COSIS.  Each of the twelve simulations was run for ten 

realizations.
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Lithotype Rule BLithotype Rule A

F5: Fine-sand F6: SiltstoneF3: SIHS F4: MIHSF1: Sandstone F2: Breccia

Figure 5.8: For PGS, complex facies-transition relationships must be simplified into 

Lithotype Rules (LTR) that enforce order of occurrence and transition between facies 

(e.g. in LTR A, Breccia must lie adjacent to Sand or MIHS). These LTR examples are 

symbolic of the mean probability of each facies’ probability volume and

correspondingly the true measured facies proportions.
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transition probabilities (Fig. 4.3, 4.4; Table 4.1, 4.2).  It is possible for each facies to outcrop 

next to any other with the exception of breccia and fine sandstone, which were not recorded 

adjacent to one another in the field.  However, as 2-axis LTRs can only honor so many facies 

transitions, certain transitions were prioritized over others.  When high transition probabilities 

were mutual between facies, that joint transition was prioritized.  For example, sandstone 

transitions frequently to both MIHS and breccia, and both MIHS and breccia transitions 

frequently to sandstone (Fig. 4.3, 4.4; Table 4.1, 4.2).  These mutual transitions were prioritized 

in the LTRs.  Conversely, fine sandstone and siltstone exhibit relatively equitable transition rates 

to other facies, but other facies are unlikely to transition to fine sandstone or siltstone.  As a 

result, transitions both to and from fine sandstone and siltstone were de-prioritized.  On a relative 

basis, LTR A emphasizes sandstone-siltstone transitions at the expense of breccia transitions.  

On a relative basis, LTR B emphasizes breccia transitions at the expense of siltstone-sandstone 

transition, and completely de-prioritizes fine sandstone transitions. 

Total results comprise 29 different parameter and data configurations of 4-10 realizations 

each.  Several variogram regimes were tested, and because the sector model is 3-D, horizontal 

and vertical variogram ranges were tested separately.  Horizontal variogram ranges were 

evaluated from 0 to 200 m at 50-m intervals.  Vertical variogram ranges were evaluated from 0.3 

to 1.2 m at 0.3-m intervals.  Different variogram configurations were evaluated for both LTR A 

and LTR B (Fig. 5.9).  Realizations were examined for qualitative outcrop facies architecture 

reproduction.  Note that PGS, as implemented in Isatis (Geovariances, 2016), takes the input 

facies probability soft data and treats it as reliable local proportion information for use in 

simulations.  As a result, this local proportion information, in aggregate, acts effectively as 

global facies proportion inputs.  A consequence of using probabilities as proportions is that soft 
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Figure 5.9: Part 2b: PGS Test Tree.  A) LTR A tests four vertical variogram ranges at two to five horizontal variogram 

ranges.  B) LTR B tests three vertical variogram ranges at two to four horizontal variogram ranges.

A

B

0.3

0 50 100 150 200

LTR A
Sensitivity 

Variable

Horizontal 

Range 

(m)

Vertical 

Range 

(m)

0.6

100 150

0.9

100 150

1.2

100 150

0.3

100 200

LTR B
Sensitivity 

Variable

Horizontal 

Range 

(m)

Vertical 

Range 

(m)

0.6

50 100 150 200

0.9

50 100 150

63



 

data weight cannot be changed as part of the algorithm workflow.  If soft data is not perfectly 

reliable, it cannot be weighted as a parameter like Bi, but must be adjusted prior to modeling.  

Therefore, facies input proportions for these PGS experiments are equivalent to the average of 

the sector volume probabilities.  These values are comparable to the facies proportions of the 

well logs (Table 5.3). 

5.2.4 Assessing Facies Architecture Reproduction from 3-D Experiments 

Facies architecture reproduction is difficult to summarize quantitatively.  Pmisclass is limited 

in its ability to assess architecture reproduction because it is restricted to known, “true,” hard 

data.  Jackknife (Efron, 1982; Davis, 1987) and other related resampling procedures that can be 

measured with Pmisclass: 1) only assess realization deviation from the sample mean and variance, 

and 2) cannot evaluate geologic essence in a holistic or gradational way.  Realization data away 

from wellbores remains difficult to certify.  If soft data is a strongly representative of facies 

architecture, RMSE from soft data can measure fidelity to that essence in a gradational way, but 

this may be risky given the inherent ambiguity in soft data.  Multiple-point density function 

analysis of outcrop data versus realizations may prove useful, but there are inherent uncertainties 

relating 2-D and 1-D field data to 3-D realizations (Boisvert et al., 2007, 2010).  This study 

employs a graphical method that compares discrepancies in the hard data-soft data relationship at 

each cell for both input well data and realizations.  The assumption being that if input data and 

realizations produce similar discrepancies, facies architecture is better reproduced. 

 Consider the outcrop hard data.  For a given facies, cells are sorted by probability and 

binned.  Then, hard data facies likelihood is calculated for each bin.  Probability bins are plotted 

on the x-axis and facies likelihood is plotted on the y-axis (Fig. 5.10).  In other words, for cells in 

facies probability bin, x, the actual hard data facies percentage is y.  Ideally, facies likelihood 
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Figure 5.10: For well data, binned facies soft data probability is plotted on the x-axis and co-located binned hard data 

facies percentages are plotted on the y-axis.  For cells with facies soft data probability range, y, the actual hard data 

percentage for that facies at those cells is y.

3-D Modeling Probability Plots: Facies Hard Data Likelihood as a Function of Facies Soft Data Probability
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would be the same as probability and would plot on the 1:1 line.  In this sense, these plots are a 

rough graphical proxy for B, where excursions from the 1:1 line show the discrepancies between 

hard and soft data.  The assumption is that these discrepancies are meaningful facies architecture 

signals and that reproducing them is desirable.  These facies likelihood vs. probability plots can 

also be generated for realizations.  If the realization plots tracks the well plots, then the 

architectural signal in the hard data is successfully transmitted to the realization. 

5.3 Hard Data Sparsity Context for Experiments 

 It is important to contextualize the relative data sparsity of the various experimental and 

modeling frameworks in this study, especially as compared to real-world petroleum industry data 

sets.  Excepting unconditional models, which have no hard data, the 1-D outcrop-data 

experiments (Part 1b) have a minimum of 1 hard data cell per 31 cells in the entire grid, or 3.2% 

hard data.  In the original full model (Durkin, 2016), there are 1297 hard data cells in a ~2.5 

million cell volume, or 0.05% hard data.  The sector model (Part 2) has 201 hard data cells in 

112,345 cell volume, or 0.18% hard data.  The 1-D experiments are not only simpler than the 3-

D models, they have much more data; this is an important caveat to their respective performance. 

 Durkin’s 35 measured sections are spread over an area of roughly 2 km2, or ~494 acres, 

which yields an average well-spacing of ~15 acres.  This is relatively dense, but even modern 

onshore oil and gas fields have been drilled at tighter spacing (e.g., 6-8 acres), especially when 

reservoir heterogeneity is high (Clark et al., 1944; Miall, 1988; Tucker et al., 1998; Pranter and 

Sommer, 2011).  These experiments and models are fine-scale, but still relevant to industry 

practice. 

  

66



 

CHAPTER 6: RESULTS WITH INTERPRETATIONS 
 
 
 

Results are presented in the same fashion as the preceding methods section and annotated 

by part.  1-D synthetic and outcrop-data experiments (Part 1) are reviewed first, followed by 3-D 

sector comparative algorithm work (Part 2).  Interpretations are included immediately following 

results to drive home their important aspects, as each part is a related, but stand-alone 

experimental set.  The following discussion section then synthesizes the part interpretations with 

respect to their broader ramifications.  For the purposes of this work, low-proportion facies are 

less than 20%, moderate-proportion facies are 20-50% and high-proportion facies are greater 

than 50%. 

6.1 Part 1: 1-Dimensional Results 

6.1.1 Part 1a: Synthetic 2-Facies Results 

The pure SIS control run of 100 realizations with SK is considered first (Fig. 6.1A).  All 

100 realizations are visualized at once to capture the full spectrum of individual outcomes as 

well as their aggregate character in concert; cell number is indicated on the y-axis and realization 

number is indicated on the x-axis.  No structure or architecture is discernable, but, in aggregate, 

the facies percentages are correctly reproduced and Pmisclass is relatively low (0.34). 

In total, COSIS results, comprise 44 simulation scenarios of 100 realizations for a total of 

4,440 model runs (Appendix).  Selected SK and OK realizations highlight B values: 0.3, 0.6, 

0.98 and -0.6, or weakly informative, moderately informative, strongly informative, and 

moderately incorrectly informative soft data, respectively (Fig. 6.1B-E, 6.2).  All realizations are 

visualized at once in the same manner as the SIS control run. 
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Figure 6.1: Selected 1-D 2-Facies Synthetic Experiment SK realizations. A) Pure SIS control run, B) B = 0.3; weakly 

informative soft data, C) B = 0.6; moderately informative soft data, D) B = 0.98; strongly informative soft data, and E) B = 

-0.6 moderately incorrectly informative soft data.  All realizations are visualized at once.  Lower B values produce realiza-

tions with less fidelity to outcrop, given higher misclassification with respect to the true facies distribution.

Cell 

#

Realization #

Pure

SIS

B: 0.3

B: 0.6

B: 0.98

No hard or 

soft data

Soft data 

strongly informs

Soft data

moderately informs

Soft data 

weakly informs

P
misclass

:0.34

P
misclass

:0.34

P
misclass

:0.20

P
misclass

:0.01

B: -0.6
Soft data 

moderately 

informs, 

incorrectly

P
misclass

:0.80

1-D Synthetic Simple Kriging Type Realizations

A

B

C

D

E

68



Figure 6.2: Selected 1-D 2-Facies Synthetic Experiment OK realizations. A) B = 0.3; weakly informative soft data, B) B = 

0.6; moderately informative soft data, C) B = 0.98; strongly informative soft data, and D) B = -0.6 moderately incorrectly 

informative soft data.  All realizations are visualized at once.  Lower B values produce realizations with less fidelity to 

outcrop, given higher misclassification with respect to the true facies distribution.
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Qualitatively, SK realizations in the same scenario distribute facies error more evenly 

throughout each realization and the aggregate appears more homogenous.  OK realizations in the 

same scenario often drastically overrepresent one facies or another; realizations exhibit starkly 

different character from one to the next.  When the soft data is made less reliable (i.e., B is 

reduced) the true facies distribution pattern becomes decreasingly discernable in the aggregate of 

realizations.  When the soft data is made more distinct, but incorrect, (i.e., B is greater magnitude 

but negative) the facies anti-distribution becomes increasingly discernable in the aggregate of 

realizations.  That is, true facies distribution sand cells are simulated as shale, and shale cells are 

simulated as sand.  This reversal is much more obvious with SK than OK. 

Quantitative inspection of Pmisclass as a function of sand probability and corresponding B 

value, confirms qualitative observations (Fig. 6.3).  When B is close to 1 (i.e., facies probabilities 

are distinct and correct), Pmisclass is low.  As B approaches 0 (i.e, facies probabilities are 

indistinct), Pmisclass increases.  As B approaches -1 (i.e., facies probabilities are distinct and 

incorrect) Pmisclass grows even higher.  SK COSIS is vastly more sensitive to changes in facies 

probability than OK.  When B is high and positive, SK outperforms OK.  However, OK appears 

to drastically outperform SK in all other cases, even when B is strongly negative.  SK SIS, which 

is completely insensitive to soft data, plots at the same Pmisclass as OK COSIS with near-perfectly 

indistinct soft data. 

6.1.2 Part 1a: Synthetic 2-Facies Interpretations 

In this experiment, soft data is trusted completely and thus weighted fully (Bi ≈ 1), but the 

actual soft data reliability (B) varies with each scenario.  The result is that soft data reliability is 

inversely related with Pmisclass (Fig. 6.3).  In other words, when soft data is uninformative or 

incorrect, facies misclassification is high and the true facies distribution is not reproduced.  This 
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Figure 6.3: For a B
i
 = ~ 1.0 (i.e., fully trusting the information content of soft probabili-

ties) decreasing soft data reliability is linearly correlated to the probability of misclassifi-

cation of sand.  Conceptually, this relates back to seismic resolvability of thin beds.  

Whether a given facies is high-proportion or not, if it is not distinct in the soft data, it will 

be of little aid in guiding modeling.  Simple Kriging appears to be a better predictor of 

facies than Ordinary Kriging when soft data is reliable (i.e. facies are highly distinct), but 

is a weaker predictor of facies when soft data is less reliable.
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implies that, irrespective of facies proportion, if facies are not distinct in the soft data, then soft 

data will be of little aid in guiding modeling.  Conceptually, this relates back to seismic 

resolvability of thin beds (Widess, 1973; Zeng, 2009).  While well log hard data may indicate 

interbedded thin sands and shales and provide strong reservoir proportion controls, seismic-

derived soft data may not distinguish the two facies.  Indistinct thin beds yield low-reliability soft 

data, which is of limited modeling utility.  SK appears to be a better predictor of facies than OK 

when facies are highly distinct, but is a weaker predictor of facies when soft data is indistinct or 

incorrect (Fig. 6.3). 

As OK is less responsive to soft data than SK generally (See: 2B.2 Kriging), it could be 

expected that SK would benefit from more reliable soft data as compared to OK.  However, it 

was unexpected that the corollary would be true: that OK would perform markedly better with 

unreliable soft data.  This is even more unexpected in light of the fact that so many of the OK 

realizations are qualitatively unacceptable (i.e., 100% sand or shale) (Fig. 6.3).  However, given 

that OK de-emphasizes soft data, it follows that OK will perform relatively better when soft data 

is weakly informative or incorrect.  Model inputs of Bi ≈ 1 over-weights soft data in the vast 

majority of cases; OK corrects this inadvertently.  COSIS with SK is theoretical best practice for 

facies indicator simulation (i.e., as opposed to COSIS with OK).  When B values are low, 

however, incorporating soft data with SK appears to be counterproductive.  This is further 

highlighted by the fact that pure SIS, which does not consider soft data at all, also outperforms 

SK when B is below 0.3, on the basis of Pmisclass.  It is important to consider that accuracy in 

these cases only occurs when assessed over multiple realizations.  Ranking realizations or 

excising problematic ones could significantly change modeling takeaways and interpretations 
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(e.g., removing all OK models with ~100% sand or shale).  Ultimately, if soft data is unreliable, 

COSIS with SK may not be advantageous. 

 

6.1.3 Part 1b: 3-Facies Outcrop-Data Results 

The two search ellipses tested produce indiscernible results.  Therefore, all results shown 

and discussed herein were generated with the unrestricted all-data search ellipse and SK (Fig. 

5.4).  Results are framed in terms of difference from the experimentally fit variogram range (i.e., 

the longest-range parameter set) (Fig. 5.4).  This is a reasonable starting point from which to 

compare other 3-facies 1-D results: the variogram ranges are fit from the hard data directly 

(Table 5.4, Fig. 5.6).  An example type configuration presents the following information: hard 

data percentage, B value, Log 24 true facies distribution, the hard data input, ten realizations, 

Log 24 soft data, the realization e-type, a Pmisclass graph for all facies, and an RMSE table (Fig. 

6.4).  This type configuration exhibits modeling outcomes given: 1) minimal hard data input, 2) a 

calibrated B value for soft data weight input, 3) variography experimentally fit directly from 

outcrop hard data, and 4) an unrestricted search ellipse.  The type configuration is compared to 

other configurations with the same hard data scenarios for context.  Hard data percentage is 

varied to produce different Pmisclass results with soft data weights: Bi ≈ 0.3 (Fig. 6.5) and Bi = 0.75 

(Fig. 6.6).  Soft data weight (Bi) is varied to produce different RMSE results with hard data 

percentages: ~3% (Fig. 6.7) and ~25% (Fig. 6.8).  Additionally, summary figures were generated 

for all 6,552 hard data and parameter configurations (Appendix). 

Hard data impacts are summarized with plots of Pmisclass as a function of hard data 

percentage given a common: a) search ellipse and b) soft data weight (Bi).  Hard data plot groups 

are provided for: 1) the experimentally modeled range (Fig. 6.9), 2) roughly half the 
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Figure 6.4: Part 1b: 3-Facies Outcrop-Data Results - Type Configuration Realizations and Summary Charts.  For dozens 

of parameterizations of each hard data scenario, hundreds of SIS realizations were automated with SGeMS.  RMSE data 

was collected by comparing an E-Type for each facies to the probability volume, and P
misclass

  was calculated from the true 

facies distribution.  Each is a proxy for realization fidelity to soft and hard data, respectively.  *0.3 soft data weights are 

detailed in Table 5.6.
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Figure 6.5: Part 1b: 3-Facies Outcrop-Data Results - Example realizations and P
misclass

 for experimentally-fit variography, 

the unrestricted search ellipse, and soft data weight, B
i
, of 0.3* given varying hard data % with SK.  A) True facies distribu-

tion.  B - G) Hard data scenario and COSIS realizations for hard data %: ≈ 0, 3, 6, 13, 25, and 50, respectively, where C is 

the type configuration from Fig. 6.4.  These example realizations are also represented in associated plotted points in Fig. 

6.9D.  *0.3 soft data weights are detailed in Table 5.6.
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Figure 6.6: Part 1b: 3-Facies Outcrop-Data Results - Example realizations and P
misclass

 for experimentally-fit variography, 

the unrestricted search ellipse, and soft data weight, B
i
, of 0.75 given varying hard data % with SK.  A) True facies distri-

bution.  B - G) Hard data scenario and COSIS realizations for hard data %: ≈ 0, 3, 6, 13, 25, and 50, respectively.  These 

example realizations are also represented in associated plotted points in Fig. 6.9F.

Fine-grained

Facies

Sandstone BrecciaAll Facies Null Cells

C
e
ll 

#
A B C D E F G

0.41

0.62
0.46

0.20

P
misclass

Values

0.41

0.61
0.46

0.20

0.41

0.69
0.45

0.20

0.41

0.63
0.44

0.21

0.38

0.62
0.41

0.20

0.31

0.94
0.29

0.19

B
i
 = 0.75

76



Figure 6.7: Part 1b: 3-Facies Outcrop-Data Results - Example realizations and RMSE for experimentally-fit variography, 

~3% hard data, and the unrestricted search ellipse given varying soft data weight, B
i
 with SK.  Only one hard data % 

scenario is shown for each soft data weight.  A) True facies distribution.  B) Hard data scenario.  C) SIS realizations.  D - I) 

COSIS realizations for soft data weights: 0.01, 0.25, 0.3*, 0.5, 0.75, and 0.99, respectively, where F is the type configura-

tion from Fig. 6.4.  These example realizations are also represented in associated plotted points in Fig. 6.10B.  *0.3 soft 

data weights are detailed in Table 5.6.
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Figure 6.8: Part 1b: 3-Facies Outcrop-Data Results - Example realizations and RMSE for experimentally-fit variography, 

~25% hard data, and the unrestricted search ellipse given varying soft data weight, B
i
 with SK.  Only one hard data % 

scenario is shown for each soft data weight.  A) True facies distribution.  B) Hard data scenario.  C) SIS realizations. D - I) 

COSIS realizations for soft data weights: 0.01, 0.25, 0.3*, 0.5, 0.75, and 0.99, respectively.  These example realizations 

are also represented in associated plotted points in Fig. 6.12E.  *0.3 soft data weights are detailed in Table 5.6.
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Figure 6.9: Part 1b: 3-Facies Outcrop-Data Results - Experimentally fit P
misclass

 vs. Hard 

Data %.  Variography is fit experimentally from outcrop hard data and SK is used.  

Sandstone, breccia and fine-grained ranges are 2.1, 2.7, and 2.1 m respectively (7, 9, 

and 7 cells).  Search ellipse encompasses all data.  A) SIS results.  B - G) COSIS 

results where B
i
 = 0.01, 0.25, 0.3*, 0.5, 0.75, and 0.99, respectively.  *0.3 soft data 

weights are detailed in Table 5.6.
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(Fig. 6.5 example realizations represented here)
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Figure 6.10: Part 1b: 3-Facies Outcrop-Data Results - “1/2 Range” P
misclass

 vs. Hard Data 

%.  Variography is half the experimentally fit range.  Sandstone, breccia and 

fine-grained ranges are 1.2, 1.5, and 1.2 m respectively (4, 5, and 4 cells).  SK is used 

and search ellipse encompasses all data.  A) SIS results.  B - G) COSIS results where 

B
i
 = 0.01, 0.25, 0.3*, 0.5, 0.75, and 0.99, respectively.  *0.3 soft data weights are 

detailed in Table 5.6.
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Figure 6.11: Part 1b: 3-Facies Outcrop-Data Results - “1-cell Range” P
misclass

 vs. Hard 

Data %.  Sandstone, breccia and fine-grained ranges are all 0.3 m (1 cell).  SK is used 

and search ellipse encompasses all data.  A) SIS results.  B - G) COSIS results where 

B
i
 = 0.01, 0.25, 0.3*, 0.5, 0.75, and 0.99, respectively.  *0.3 soft data weights are 

detailed in Table 5.6.
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experimentally modeled range (Fig. 6.10), and 3) range of one cell (0.3 m thick) (Fig 6.11).  Soft 

data impacts are summarized in plots of RMSE as a function of soft data weight given a 

common: a) search ellipse and b) hard data percentage.  Soft data plot groups are provided for: 1) 

the experimentally modeled range (Fig. 6.12), 2) roughly half the experimentally modeled range 

(Fig. 6.13), and 3) range of one cell (0.3 m thick) (Fig 6.14). 

Consider the hard data results for experimentally fit variography (Fig. 6.9).  For SIS (Fig. 

6.7A), as hard data percentage increases, Pmisclass steadily decreases, except for low-proportion 

breccia, which stays unchanged.  For COSIS, the overall trend is similar, except that Pmisclass of 

low-proportion breccia increases at higher hard data percentage and Pmisclass of fine-gained facies 

remain relatively unchanged (Fig. 6.9B-G).  For sandstone and the system as a whole, increasing 

soft data weight reduces Pmisclass for low and moderate hard data percentage, but increases Pmisclass 

at high hard data percentage (e.g., compare Fig. 6.9B and G).  For breccia, increasing soft data 

weight has minimal impact at low hard data percentage, but reduces Pmisclass for moderate and 

high hard data percentage (e.g., compare Fig. 6.9B and G).  For fine-grained facies, increasing 

soft data weight increases Pmisclass for all hard data percentage.  At higher soft data weight, 

realizations are less sensitive to increasing hard data percentage. 

Consider the soft data results for experimentally fit variography (Fig. 6.12).  Increasing 

soft data weight reduces RMSE for all COSIS cases.  For low soft data weight, initial increase in 

hard data percentage reduces RMSE (e.g,. compare Fig. 6.12B and 6.12D), but as higher hard 

data percentage levels, RMSE increases, and the beneficial impact of increasing soft data weight 

is diminished (e.g., compare Fig. 6.12B and 6.12F).  For moderate and high soft data weight, the 

dynamic is simpler: increasing hard data percentage increases RMSE (e.g., compare Fig. 6.12B 
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Figure 6.12: Part 1b: 3-Facies Outcrop-Data Results - Experimentally fit RMSE vs. B
i
.  

Variography is fit experimentally from outcrop hard data.  Sandstone, breccia and 

fine-grained ranges are 2.1, 2.7, and 2.1 m respectively (7, 9, and 7 cells).  SK is used 

and search ellipse encompasses all data.  A - F) Results where hard data % ≈ 0, 3, 6, 
13, 25, and 50, respectively.
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Figure 6.13: Part 1b: 3-Facies Outcrop-Data Results - “1/2 Range” RMSE vs. B
i
.  Var-

iography is half the experimentally fit range.  Sandstone, breccia and fine-grained 

ranges are 1.2, 1.5, and 1.2 m respectively (4, 5, and 4 cells)  SK is used and search 

ellipse encompasses all data.  A - F) Results where hard data % ≈ 0, 3, 6, 13, 25, and 
50, respectively.
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Figure 6.14: Part 1b: 3-Facies Outcrop-Data Results - “1-cell Range” RMSE vs. B
i
.  

Sandstone, breccia and fine-grained ranges are all 0.3 m (1 cell).  SK is used and 

search ellipse encompasses all data.  A - F) Results where hard data % ≈ 0, 3, 6, 13, 
25, and 50, respectively.
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and 6.12F).  SIS outperforms COSIS when hard data percentage and soft data weight are both 

low. 

Altering variogram range does impact realizations.  Relative to experimentally fit results, 

reducing variogram range flattens Pmisclass trends with increasing hard data percentage (e.g., 

compare Fig. 6.9D, 6.10D, and 6.11D) Increasing hard data percentage at half range exhibits 

similar properties to full experimentally fit range: Pmisclass decreases, albeit less so, except for 

breccia, where it increases (compare Fig. 6.10 and Fig.6.11). When range is reduced to 0.3 m, 

Pmisclass curves are nearly flat for all soft data weights, although the experimentally fit range 

trends are perceptible (Fig. 6.11).  Shorter ranges cause all realizations to behave more like they 

have relatively higher soft data weight.  Relative to experimentally fit results, shortening 

variogram range reduces RMSE for COSIS cases even more dramatically with increasing soft 

data weight (e.g., compare Fig. 6.12B, 6.13B, and 6.14B).  Shorter ranges also improve COSIS 

realizations with lower soft data weight over pure SIS ones (e.g., compare Fig. 6.12B, 6.13B, and 

6.14B).  At 0.3 m range, COSIS trends are essentially flat (Fig. 6.14).  Corroborating Pmisclass 

trends, shorter ranges cause all realizations to behave more like realizations with high soft data 

weight. 

6.1.4 Part 1b: 3-Facies Outcrop-Data Interpretations 

For the experimentally fit variography cases Pmisclass decreases with increasing hard data, 

both for sandstone and all facies as a whole (Fig. 6.9).  This is expected: more information 

should produce better results.  Greater soft data weight (i.e., higher Bi input values) reduces 

Pmisclass when hard data is scarce, but greater weight with high hard data percentage is 

counterproductive (Fig. 6.9).  This is also expected: hard data and soft data are only somewhat 
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congruous, with B ~0.3 (Table 5.6).  The soft data is globally accurate to the hard data, but not 

locally. 

The different behavior in fine-grained facies and breccia is instructive.  Moderate-

proportion fine-grained facies (~23%) are clustered in a single occurrence at the top of the 

section (Fig. 5.2).  This strong architectural signal appears to be self-reinforcing, with strong 

reproduction in most cases (Fig. 6.4, 6.5, 6.6, and 6.9).  This is a positive sign that facies 

architecture can be reproduced under certain modeling conditions.  In contrast, however, low-

proportion breccia (~6%), is poorly simulated in all cases, and suffers especially with high hard 

data percentage (Fig. 6.4, 6.5, 6.6, and 6.9).  In these situations, higher-proportion facies cells 

reinforce each other during kriging and have a greater chance of simulating themselves in the 

“rare” breccia locations.  Consistent architecture reproduction for low-proportion facies 

architecture reproduction is very unlikely. 

RMSE trends are congruous with Pmisclass trends.  At lower and moderate hard data 

percentage, increasing soft data weight (Bi values) works in concert with the increased hard data 

to reduce RMSE (e.g., Fig. 6.12A-C).  At higher hard data percentage, more cells are populated 

such that they do not match soft data and RMSE increases (e.g., Fig. 6.12D-F).  Arbitrarily 

increasing soft data weight can reduce RMSE somewhat, but does not counteract this impact 

entirely.  Soft data is a secondary consideration for COSIS, so this outcome makes sense.  

Furthermore, increasing soft data weight above calibrated B values (Table 5.6) degrades the 

architectural signal of the fine-grained facies.  This is clear from the aggregated example 

realizations, which grow noisier in appearance with higher soft data weight (e.g., compare Fig. 

6.7F to Fig. 6.7G-I and 6.8F to 6.8G-I). 
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Search ellipse appears to have no impact on realizations.  This makes sense for SK, as it 

works from residuals from the global mean and ensures the entire volume is truly stationary. 

Reduced variogram range, however, has some impact.  Hard data impact is relatively 

diminished with shorter variogram range and soft data impact is increased (e.g., compare Fig. 6.9 

to Fig. 6.10 and 6.11).  Fewer hard data points are significantly weighted with shorter ranges 

leaving soft data greater latitude to inform unknown cells.  Therefore, range reduction increases 

the impact of soft data (e.g., compare Fig. 6.12 to Fig. 6.13 and 6.14). 

6.2 Critical 1-D Findings for 3-D Modeling 

1-D experiments (Part 1) highlight several challenges for SIS and COSIS facies architecture 

reproduction along with some useful observations.  Given their related underlying processes, 

these findings apply broadly to other covariance-based methods as well. 

The synthetic experiment (Part 1a) on soft data reliability demonstrates that low-reliability 

soft data is problematic for SIS and COSIS facies architecture reproduction.  This is important 

for the 3-D models because the soft data reliability for the full model volume is low: the 

proportion-weighted average of the facies B values is only 0.22. 

The outcrop-data experiment (Part 1b) reveals two different challenges.  Most importantly, 

the outcrop-data experiment demonstrates that low-proportion facies suffer in all modeling cases.  

Neither input proportions nor facies architecture are reproduced.  Second, arbitrarily high soft 

data weights can cause problems.  For low hard data percentages, a high soft data weight 

improves outcomes for high-proportion facies and seemingly overall, but this occurs at the 

expense of moderate and especially low-proportion facies.  This is important for 3-D models, 

which have multiple low-proportion facies and extremely low hard data percentages (See: 5.3 

Hard Data Sparsity Context for Experiments).  Also, the aggregate of realizations becomes 
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noisier as hard and soft data conflict more, which indicates that arbitrarily high soft data weight 

may cause problems for 3-D models as well. 

On a positive note, moderate-proportion facies with a strong architectural signal were well-

reproduced.  This means successful facies architecture modeling is possible under certain 

conditions.  Also, it is noteworthy that reducing variogram range increases the impact of soft 

data overall. 

6.3 Part 2: 3-Dimensional Results 

6.3.1 Part 2a: SIS and COSIS Results 

Selected SIS and COSIS realizations, comprising two variogram regimes, and five soft data 

weight (Bi) cases, are examined for qualitative outcrop character reproduction.  Results are 

encapsulated in cross-section slices and facies likelihood vs. probability plots. 

Pure SIS, without a soft data constraint, provides a useful baseline for understanding 

algorithm behavior (Fig.6.15).  Outcrop-inferred variography (Table 4.3), which has longer 

horizontal ranges and shorter vertical ranges compared to those of the experimentally fit 

variography (Table 5.7, Fig. 5.5, 5.6), produces thinner and more-laterally-continuous facies 

packages.  Realizations with experimentally fit variograms are comparatively noisy; transitions 

between packages of varying thickness are more abrupt and frequent, appearing dislocated.  

Outcrop-inferred variography produces more geologically realistic realizations as illustrated by 

comparing Fig. 6.15 with the facies-painted Willow Creek cross-section in Fig. 3.3C. 

COSIS realizations for each variogram regime produce similar results to those of SIS.  

Increasing soft data weight has no discernable effect at lower values, and at higher values 

produces moderately more noisy realizations for both variogram regimes (Fig. 6.16). 
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Figure 6.15: 3-D Sector Model Cross-Section Slice: SIS Variography Comparison.  A) Outcrop-inferred variography 

(detailed in Table 4.3) is compared to B) experimentally fit variography (detailed in Table 5.7, Fig. 5.5, and Fig. 5.6).
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Figure 6.16: 3-D Sector Model Cross-Section Slice: COSIS Variography Comparison.  A 

- E) Outcrop-inferred variography (detailed in Table 4.3) is compared to B - J) experi-

mentally fit variography (detailed in Table 5.7, Fig. 5.5, and Fig. 5.6).  Soft data weight is 

incremented from nearly 0 to nearly 1 at intervals of ~0.25 as a sensitivity variable.
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Figure 6.17: For selected realizations (COSIS in Fig. 6.16E, PGS in Fig. 6.20F, and TGS in Fig. 4.8), binned facies soft 

data probability is plotted on the x-axis and co-located binned realization facies percentages are plotted on the y-axis.  For 

cells with facies soft data probability range, x, the actual realization percentage for that facies at those cells is y.  A) Sand-

stone, B) breccia, and C) fine-grained facies are presented, where fine-grained facies are aggregated to assess and 

compare COSIS runs with PGS and nested TGS.

3-D Modeling Probability Plots: Facies Realization Likelihood as a Function of Facies Soft Data Probability:

Aggregated Fine-grained Facies
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Additionally, facies likelihood vs. probability plots were generated for a selected COSIS 

realization (Fig. 6.16E) to assess facies architecture reproduction (Fig. 6.17).  Sandstone in the 

realization tracks sandstone in the sector wells relatively poorly, with excessive over-

representation at low probabilities and under-representation at high probabilities (Fig. 6.17A).  

Breccia and fine-grained facies track well at low probabilities, but the realization under-

represents these facies at high probabilities (Fig. 6.17B and C). 

6.3.2 Part 2a: SIS and COSIS Interpretations 

There are two important takeaways from this qualitative analysis.  Chiefly, outcrop-inferred 

variography produces more geologically realistic realizations than variography fit from the 

measured section data (e.g., compare Fig. 6.15 and 6.16 with Fig. 3.3).  Strictly fitting 

variograms to sparse hard data in this study over-estimates short range heterogeneity and poorly 

reproduces outcrop architecture.  This suggests geologic context and sedimentological expertise 

will improve variogram modeling over purely hard data-driven efforts. 

Secondly, increasing soft data weight (Bi,) arbitrarily actually increases realization noise. 

Realization noise is a common problem with SIS and COSIS modeling (See: 2B.4 Sequential 

Indicator Simulation and Co-Sequential Indicator Simulation).  This is most obvious when soft 

data weight is raised from 0.5 (Fig. 6.16C and H) to 0.75 (Fig.616D and I) and 0.99 (Fig. 6.16E 

and J).  Effects are more pronounced for outcrop-inferred variogram (Fig. 6.16A-E) realizations 

than for experimentally fit variogram realizations (Fig. 6.16F-J), although experimentally fit 

realizations are noisier to begin with.  Emphasizing the continuous variable soft data might seem 

like a good way to ensure smooth contiguous facies packages, but these test results suggest 

otherwise.  Over-emphasizing soft data may cause the algorithm to discount surrounding 

simulated cells and populate unknown location with highest-probability facies instead, even if 
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offsetting cells are all one other facies type.  Lower soft data weight would have prioritized 

variography and facies continuity over the exacting local reproduction of the soft data. 

1-D Experiments quantitative findings have a direct link to these qualitative interpretations.  

Recall the 1-D outcrop-data experiment (Part 1b) (See: 6.2 Critical 1-D Findings for 3-D 

Modeling).  First, shorter variogram ranges are associated with higher soft data impact.  Second, 

for low- and moderate-proportion facies, arbitrarily high soft data weights are associated with 

poor input proportion reproduction and high Pmisclass.  3-D realization noise, is likely a qualitative 

representation of two phenomenon.  Finally, noisy architecture reproduction for aggregated 1-D 

3-facies experiments (Part 1b) foreshadowed problems for 3-D realizations (See: 6.1.4 Part 1b: 

3-Facies Outcrop-Data Interpretations). 

In these 3-D models, experimentally fit variography is shorter-range than outcrop-inferred 

variography.  This means experimentally fit variogram realizations will act as if they have 

relatively higher soft data weight, systemically reducing architectural reproduction and 

increasing noise.  The impacts are noticeable for outcrop-inferred variography only when soft 

data is very overweight (Fig.6.16D and E), but the compounded effects cause a pervasive noise 

problem for experimentally fit variography (Fig.6.16F-J). 

6.3.3 Part 2b: PGS Results 

Selected PGS realizations, comprising four horizontal ranges, four vertical ranges, and two 

LTRs, are examined for qualitative outcrop character reproduction.  Results are encapsulated in 

cross-section slices, plots of realization facies proportion as a function of selected input 

parameters, and facies likelihood vs. probability plots.  Some realizations exhibit cells or cell 

clusters that are blank: the algorithm leaves certain cells unrealized if proportion data, 

variography, or the LTR conflict irreconcilably. 
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Figure 6.16: 3-D Sector Model Cross-Section Slice: PGS Horizontal Range Sensitivity.  A. - D.) 0.3 m vertical range is 

compared to E. - H.) 0.6 m vertical range.  Horizontal range is increased from 50 m to 200 m at 50-m intervals.  Impact of 

different LTRs is likely low.
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Increasing horizontal variogram range while holding the vertical variogram and LTR 

constant generates progressively thinner and more-laterally-continuous facies packages, but 

effects are less pronounced with larger vertical ranges (e.g., compare Fig. 6.18A - D and then, 

separately, Fig. 6.18E - H).  LTR does not change this effect.  Longer horizontal ranges also 

generate more blank cells (e.g., compare Fig. 6.18E and H).  Increasing horizontal range 

increases sand proportion above the input proportion (Fig. 6.19A).  Conversely, MIHS, breccia, 

and siltstone proportions are decreased (Fig. 6.19B).  SIHS and fine sandstone proportions do not 

exhibit a clear pattern (Fig. 6.19B). 

Increasing vertical variogram range generates progressively thicker and less-laterally-

continuous facies packages, but effects are less pronounced with larger horizontal ranges (e.g., 

compare Fig. 6.20A-D and then, separately, Fig. 6.20.E-H).  LTR also does not change this 

effect.  At highest vertical ranges, noticeably more cells go unrealized (e.g., Fig. 6.20D and H).  

Increasing vertical range decreases realization sand proportion closer to input proportions (Fig. 

6.21A).  Conversely, MIHS, breccia, siltstone, and fine sandstone proportions are increased (Fig. 

6.21B).  SIHS proportions do not exhibit a clear pattern (Fig. 6.21B). 

Changing LTR has only a small effect on realizations: for LTR B sandstone proportion 

appears to increase slightly, and beds are thicker and more-laterally-continuous relative to LTR 

A realizations (e.g., compare Fig. 6.22A-C and then, separately, Fig. 6.22D-F).  In aggregate, 

LTR B generates more sandstone on average, but barely so, and well within standard deviation 

of LTR A realizations (Fig. 6.23A).  This corresponding reduction in other facies is also 

vanishingly small (Fig. 6.23B). 

Additionally, facies likelihood vs. probability plots were generated for a selected PGS 

realization (Fig. 6.20F) to assess facies architecture reproduction (Fig. 6.24).  Overall, the PGS 
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Figure 6.19: 3-D Sector Model Cross-Section Slice: PGS Horizontal Range Sensitivity 

Facies Proportion Trends.  Realization facies proportion averages and standard devia-

tions are plotted against horizontal range for A) sandstone and B) all other facies.  Hori-

zontal colored lines indicate facies input proportions.
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Figure 6.18: 3-D Sector Model Cross-Section Slice: PGS Vertical Range Sensitivity.  A. - D.) 100 m horizontal range is 

compared to E. - H.) 150 m horizontal range.  Vertical range is increased from 0.3 m to 1.2 m at 0.3-m intervals for hori-

zontal ranges of 100 m and 150 m.  All realizations use LTR A.
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Figure 6.21: 3-D Sector Model Cross-Section Slice: PGS Vertical Range Sensitivity 

Facies Proportion Trends. Realization facies proportion averages and standard devia-

tions are plotted against vertical range for A) sandstone and B) all other facies.  Hori-

zontal colored lines indicate facies input proportions.
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Figure 6.22: 3-D Sector Model Cross-Section Slice: PGS LTR Sensitivity.  A - C) LTR A is compared to D - F) LTR B.  

Vertical range is increased from 0.3 m to 0.9 m at 0.3-m intervals for horizontal ranges of 100 m and 150 m.  All realiza-

tions use 100 m horizontal range.
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Figure 6.23: 3-D Sector Model Cross-Section Slice: PGS Vertical LTR Sensitivity Facies 

Proportion Trends. Realization facies proportion averages and standard deviations are 

plotted against vertical range for A) sandstone and B) all other facies.  Horizontal 

colored bars indicate facies input proportions.
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3-D Modeling Probability Plots: Facies Realization Likelihood as a Function of Facies Soft Data Probability: All Outcrop Facies

Figure 6.24: For selected realizations (COSIS in Fig. 6.16E, PGS in Fig. 6.20F, and TGS in Fig. 4.8), binned facies soft 

data probability is plotted on the x-axis and co-located binned realization facies percentages are plotted on the y-axis.  For 

cells with facies soft data probability range, x, the actual realization percentage for that facies at those cells is y.  Sand-

stone, breccia, SIHS, MIHS, fine sandstone, and siltstone are presented (A - F, respectively) to assess PGS and nested 

TGS runs.
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realization follows the 1:1 line better than it tracks the sector wells.  For sandstone, the 

realization over-represents sandstone at lower probabilities and under-represents at higher 

probabilities (Fig. 6.24A).  For breccia, the realization tracks the sector wells at lower 

probabilities and under-represents breccia at moderate probabilities (Fig. 6.24B).  For SIHS, the 

realization tracks the sector wells at the lowest probabilities and over-represents above 0.2 

probability (Fig. 6.24C).  For MIHS, the realization over-represents at all probabilities (Fig. 

6.24D).  For fine sandstone, the realization under-represents at all probabilities (Fig. 6.24E).  For 

siltstone, the realization over-represents at all probabilities (Fig. 6.24F). 

6.3.4 Part 2b: PGS Interpretations 

Changes to variography and LTR have relatively minor impact on algorithm behavior, and 

most impacts appear to result from conflicts between data types.  However, knowledge of these 

changes may aid modelers who: 1) choose to incorporate outcrop data iteratively or holistically 

instead of strictly a priori and 2) need to address data conflicts in a PGS workflow.  Horizontal 

variography, is discussed first, followed by vertical variography, and LTR construction. 

For the horizontal regime, it is expected that longer variogram ranges create more-laterally-

continuous packages (Fig. 6.18).  However, the increase in unrealized cells requires some 

explanation.  Unrealized cells indicate discrepancies between input data and algorithm 

parameters.  It is possible that longer-range structures are more difficult to fit into a given space 

and will cause more conflicts with other inputs and parameters.  This is likely due, in part, to a 

proportion discrepancy between the sector model well data and probability volumes (i.e., a soft 

data reliability problem).  The sector well data have a much higher sandstone proportion than the 

probability volumes and correspondingly lower proportions of other facies than the probability 

volumes.  In contrast, the probability volumes, which are consistently stationary throughout the 
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model (i.e., globally accurate, but not locally), show average facies probabilities in line with 

average of all wellbores.  Long horizontal ranges, especially when paired with short vertical 

ranges, have less flexibility to satisfy proportion objectives. 

High-proportion facies (e.g., sandstone) gain proportion even more at higher horizontal 

ranges, while lower-proportion facies lose proportion (Fig. 6.19A vs. B).  Longer-range 

structures appear more likely to truncate to high-proportion facies, thus over-representing that 

high-proportion facies in realizations.  Necessarily, this over-representation comes at the expense 

of other lower-proportion facies.  The fact that SIHS does not exhibit a clear proportion trend 

may be due to the fact that it is architecturally ambiguous (Fig. 6.19B).  SIHS sits astride the 

coarse and fine-grained facies divide and is architecturally associated with both the upper and 

lower portions of an LAP.  Fine sandstone does not exhibit a proportion trend because its 

proportion is too low to exhibit any signal (Fig. 6.19B).  Its placement is completely dominated 

by other facies. 

For the vertical regime, when vertical ranges are short and beds are thin, they must 

truncate so as to form more-laterally-continuous beds (Fig. 6.20).  For long horizontal ranges, 

this may cause more unrealized cell problems.  For short horizontal ranges, discrepancies are less 

likely, although the impact is mild overall.  Conversely, when vertical ranges are long and beds 

are thicker, truncations need not reach out as far in the horizontal plane.  The algorithm has more 

flexibility to reconcile its inputs and parameters.  Again, this effect is mild, and possibly reverses 

if the vertical range becomes too high. 

High-proportion facies (e.g., sandstone) lose proportion with increasing vertical ranges 

and lower-proportion facies gain proportion (Fig. 6.21A vs. B).  This is also due to the fact that 

the algorithm is given greater flexibility to satisfy its many criteria.  Given the high anisotropy 
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between horizontal and vertical range behavior in Horseshoe Canyon deposits, an increase in 

vertical range lends more flexibility to the algorithm to satisfy the input data and parameters. 

LTR appears to have a limited impact on realizations (Fig. 6.22).  However, the 

difference between these particular LTRs are minor: both were designed with the outcrop 

transition statistics in mind (See: 5.2.3 Part 2b: PGS Experiments).  A significantly different 

LTR might have produced a more noticeable effect on realizations.  An explanation for 

marginally higher and more-continuous sandstone content in LTR B realizations is that 

sandstone has fewer permissible transitions: specifically, sandstone cannot transition to siltstone 

and vice versa (Fig. 6.23).  This diminishes heterogeneity of sandstone, the highest-proportion 

facies.  As a result, realizations become marginally more homogenous and sandstone, the 

highest-proportion facies, is increasingly over-represented. 

PGS qualitative outcomes suffer somewhat from low-reliability soft data, especially 

when anisotropy of variograms increases.  Given the highly anisotropic nature of sedimentary 

deposits, the reservoir modeler may not be able to avoid this problem and can only work to 

mitigate it by reducing discrepancy between soft and hard data.  This relates back to the 

quantitative findings of the 1-D experiments in the sense that low-reliability soft data was 

problematic for SIS / COSIS architecture reproduction (See: 6.2 Critical 1-D Findings for 3-D 

Modeling). 

6.3.5 Part 2 Interpretations: Comparing COSIS and PGS to Nested TGS 

 Nested TGS outperforms both COSIS and PGS realizations with respect to facies 

architecture reproduction on the basis of qualitative inspection of realization cross-section slices 

(Fig. 6.25).  Bedding is highly elongate with smooth transitions.  Realizations are relatively 

noise-free and facies grow increasingly fine-grained up-section.  Most telling of all: breccias are 
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very common at LAP bases but may be simulated as minor erosional surfaces anywhere within a 

package.  Further still, these breccias are not scattered noise, but discrete bedforms.  These are 

key qualitative pieces of the outcrop architecture. 

Plots of facies likelihood vs. probability for selected realizations (6.16E for COSIS and 

6.20F for PGS) also show that nested TGS reproduces facies architecture best.  Nested TGS 

tracks sector well data better than COSIS (Fig. 6.17) and PGS (Fig. 6.24), but not perfectly.  

Tracking is strongest in the sandstone, breccia, and MIHS plots, which are the highest-proportion 

facies (Fig. 6.24A, B, and D, respectively).  The poor tracking by other lower-proportion facies 

is likely, in part, due to their lower sample count; their statistics are ambiguous.  COSIS 

performs poorly despite aggregation of fine-grained facies.  PGS, as expected, adheres strongly 

to soft data because the algorithm implementation is biased to full confidence in soft data. 

 Superior performance of nested modeling is likely due to the fact that facies relative 

proportions are increased dramatically when they are modeled one by one (Table 6.1). 

Table 6.1: Nested TGS Facies Proportions vs. Relative Proportions at Time of Modeling 
 True Proportions Relative Proportions 

Facies Facies “Else” Facies “Else” 
Sandstone 0.56 0.44 0.56 0.44 

Breccia 0.13 0.31 0.29 0.71 
SIHS 0.09 0.22 0.30 0.70 
MIHS 0.14 0.08 0.64 0.36 

Fine Sandstone 0.02 0.05 0.30 0.70 
Siltstone 0.05 - - - 

 

The displacement of low-proportion facies by high-proportion facies is diminished with a nested 

workflow.  However, all algorithms over-represent sandstone at low probability, whereas sector 

wells show no sandstone below 20% probability (Fig. 6.17 and 6.24).  Sandstone is over-

represented specifically where fine-grained facies should reside.  The architectural signal of the 

most important facies in the outcrop is systemically degraded in this fashion.  
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CHAPTER 7: DISCUSSION 
 
 
 

The original objective of this study was to improve upon prior modeling efforts searching 

for robust ways to incorporate outcrop statistics into geostatistical models such that those models 

would better reproduce facies architecture in realizations.  Ultimately, those statistics must be 

incorporated into models as hard data, soft data, or an algorithm parameter (e.g., informing 

variography or facies order).  1-D experiments (Part 1) shed light on the certain problems 

incorporating that data and impacts on architecture reproduction.  3-D sector models (Part 2) 

shed light on algorithm performance generally with respect to facies architecture. 

7.1 1-D Experiment Discussion 

Synthetic 1-D modeling demonstrates that incorporating soft data may actually inhibit 

facies architecture reproduction instead of guiding it when that soft data is only weakly 

informative.  This is of particular interest because B values from field data are often low, which 

means weakly informative soft data is the norm (Yao, 2002; Moysey et al., 2003).  Outcrop-data 

1-D modeling demonstrates low-proportion facies are difficult to simulate in their architecturally 

correct positions, even in a relatively simple architectural setting (e.g., upwards-fining LAPs 

with breccias interspersed).  In fact, higher-proportion facies are prioritized at the expense of 

low-proportion facies.  This especially undesirable given the fact that lower-proportion facies 

comprise the architectural heterogeneity of interest.  Simply increasing soft data weight is no 

solution; arbitrarily high soft data weights improve architecture reproduction for high-proportion 

facies, but, again, at the expense of moderate- and low-proportion facies. 

Both of these findings apply to the 3-D modeling effort.  The soft data reliability for the 

full model volume is marginally worse than the 1-D experiment: the proportion-weighted 
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average of the facies B values is 0.22.  Furthermore, there is not just one facies with low 

proportion; five of the six facies have a proportion less than 15% (Table 5.3).  While it is true 

these problems were only demonstrated here with SIS and COSIS, they are also instructive for 

PGS and nested TGS due to similar underlying processes. 

7.2 3-D Experiment Discussion 

 While sensitivity testing of algorithm parameters (e.g., variogram range, LTR 

composition) gives indications on how to approach certain problems (e.g. anisotropy and low-

reliability soft data), the most important difference for facies architecture reproduction is 

algorithm selection.   

COSIS nominally offers greater control of the spatial correlation of each facies through 

full IK.  However, even in a simplified 3-facies setup, outcrop character reproduction was 

mediocre and simulated bedding was very noisy.  PGS offers less explicit control over spatial 

correlation, but builds a more statistically-complex model by incorporating transition 

probabilities and facies ordering.  Realizations reproduce outcrop character somewhat better than 

COSIS, but bedding is still relatively noisy.  Furthermore, conflicting inputs and parameters 

often cause unrealized cells.  It is possible that the simplifications required by PGS to use facies 

transition statistics and set variogram ranges also mean PGS is not well-suited to reproduce 

outcrop character with this level of complexity.  Both algorithms have trouble with low-

reliability soft data and fail to honor low-proportion facies. 

Nested TGS, the control case from previous work (Durkin, 2016), offers explicit control 

over spatial correlation of each facies and more variogram options than COSIS.  Facies 

transitions are user-specified insomuch as they are dependent on nesting order.  For this 

algorithm, outcrop character reproduction is strongest and bedding transitions are smoothest; it is 
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qualitatively the best performer based on inspection of realization cross-section slices.  Facies 

likelihood vs. probability plots also indicate nested TGS realizations better track soft data 

discrepancy plots of the well data.  Nested modeling holds the key to this success by increasing 

relative-proportions of low-proportion facies and thus counteracting the low-proportion-

displacive effects found in covariance-based methods. 

7.3 Implications for Subsurface Modeling  

Both COSIS and PGS prove underwhelming for the bed-scale architecture reproduction 

needs of this study.  Nested TGS poses a “workflow” solution to this particular problem.  

COSIS, a relatively simple method, leaves much to be desired when it comes to facies 

architecture reproduction.  PGS, a more complex and difficult method to implement, performs 

somewhat better.  However, it presents stability issues if input data and parameters are 

incongruous causing unrealized pixels.  Nested TGS combines strong spatial correlation control 

with smooth variography and, most importantly, empowers the modeler to address the problem 

of disparate facies proportions directly.  Given that petroleum industry data is typically sparse 

(See: 5.3 Hard Data Sparsity Context for Experiments) and / or ambiguous, no method is ideal, 

but each is workable for certain applications.  However, more important than method selection, 

the modeler should strive to: 1) organize their facies and facies associations to avoid low-

proportions whenever practical and 2) make their soft data as reliable as possible.  Doing these 

things will improve outcomes more than anything else. 

Nesting is powerful because it can be applied to any data set and any method.  The 

modeler should not think of nesting so much as a binary modeling step, but as an approach to 

data organization that is by modeling objectives.  Many nesting paradigms could be envisioned 

(e.g. interpretive facies importance, petrophysical similarity, architectural or facies association, 
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or most-equivalent proportions).  Knowing that low-proportion facies are problematic, the 

modeler can employ a nesting scheme that considers the difference in proportions at each nesting 

step.  This study does not reveal an optimization strategy that could elevate this workflow design 

to a generalized paradigm for nested modeling.  Depending on the modeling objectives and the 

vagaries of a given dataset, different priorities will require different, possibly tailored, solutions, 

each with their own set of compromises.  

7.4 Modeling Decisions and Impact on Predicting Fluid Flow  

Flow simulations were not performed to test architectural ramifications of displaced fine-

grained rock, but these impacts can be inferred for the Horseshoe Canyon Formation.  Fine-

grained facies (F3-F6) are low-permeability, baffle and barrier facies as compared to sandstone 

(F1), which is a high-permeability reservoir facies.  Realizations displace baffle and barrier rock 

and replace it with reservoir rock.  Fine-grained facies concentrate at the tops of LAPs, thus LAP 

tops will be excessively permeable.  On a relative basis, fluid will flow more easily from one 

LAP into another.  The architectural impact of the fine-grained facies, and by extension, the 

entire LAP framework, is systemically reduced.  The models will be systemically more 

homogenous than the outcrop and therefore more permeable at the geobody-scale.  This is 

unfortunate, as one of the global objectives of this study was to examine bed-scale 

heterogeneities as they pertain to reservoir applications.  Without flow simulation testing, 

however, the severity of the problem is unclear. 
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CHAPTER 8: CONCLUSIONS 
 
 
 

Geostatistical models are a powerful tool to study petroleum reservoir uncertainty (Keogh 

et al., 2007).  Sparse subsurface data often necessitates the use outcrop analog data to inform key 

parameters (Dubrule and Damsleth, 2001; Pyrcz and Deutsch, 2014).  Bed-scale heterogeneity 

can impact reservoir fluid flow (Deschamps et al., 2012; Martinius et al., 2017; Meirovitz et al., 

2021), and while quantitative outcrop data is increasingly available (Pringle et al., 2004; Bellian 

et al., 2005; Enge et al., 2007; Pranter et al., 2007; Deschamps et al., 2012; Purkis et al., 2012), 

incorporating it into models is not straightforward (Ma, 2009).  Detailed outcrop statistics of 

fluvial point bar deposits of the Horseshoe Canyon Formation outcropping southern Alberta 

(Durkin et al., 2015) were previously used to build probability volumes to incorporate outcrop 

facies architecture in nested TGS geostatistical models and qualitatively reproduce intra-point 

bar architecture in realizations (Durkin, 2016). 

The overarching goal of this study was to expand on that preceding work.  1-D 

experiments (Part 1) were devised to explore limitations of covariance-based models with simple 

synthetic (Part 1a) and outcrop-data cases (Part 1b) with particular focus on issues of soft data 

reliability, soft data weight, and low-proportion facies.  3-D sector models (Part 2) test SIS / 

COSIS (Part 2a) and PGS (Part 2b) realizations, and compare them to nested TGS realizations.  

1-D experimental findings inform the interpretations of various problems encountered in sector 

modeling. 

Despite integration of outcrop statistics, covariance-based geostatistical methods struggle 

to reproduce intra-point bar facies architecture.  Myriad minor problems can add up to a fatal 

result, but two particular problems stand out as both severe and pervasive.  One: when there is a 
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weak statistical relationship between hard data and soft data (i.e., the soft data is low-reliability), 

incorporating that soft data may not only be low-utility, it may make realizations worse.  Two: as 

a rule, low-proportion facies are poorly reproduced with respect to both target proportion and 

facies architecture.  This is unfortunate because the low-proportion facies generally comprise the 

heterogeneity of interest; their poor reproduction diminishes the whole value of the modeling 

effort.  Nested modeling partially mitigates low-proportion effects, but this comes at the cost of a 

complex workflow that requires many tailored modeling decisions. 
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CHAPTER 9: FUTURE WORK 
 
 
 

Future work breaks into three categories: 1) low-reliability soft data and low-proportion 

modeling, 2) nested modeling, and 3) sensitivity analysis for outcrop soft data incorporation.  

Several low-reliability soft data and low-proportion modeling questions of varying scope remain. 

Whether COSIS with OK performs consistently better with respect to facies architecture in low-

reliability soft data cases is a specific question.  Generalized performance thresholds and 

guidelines for low-reliability soft data and low-proportions should be investigated along with 

more exhaustive inspection of a possible empirical relationship between facies proportions and 

soft data reliability as they relate to facies architecture reproduction error.  Nested modeling 

performance gains should be tested more comprehensively on ground-truth 3-D volumes with 

COSIS, TGS, and PGS against non-nested workflows.  Low-proportion thresholds and 

architectural complexity are sensitivity variables that may be used to establish when the extra 

effort of nested modeling is worthwhile.  Finally, future work could continue investigations into 

how best to incorporate outcrop statistics.  Incorporating trend information into VPC-derived soft 

data may help increase soft data reliability (i.e., improve the local accuracy of those volumes).  

Transition probabilities, as they are mathematically linked to variography, may be able to serve a 

more generalized role for algorithms other than PGS, possibly with soft data conditioning.  

Summary statistics for architecture reproduction remain elusive: Pmisclass is probably too simple a 

metric.  Multiple point density functions should be investigated further for utility in checking 

covariance-based models against their input data. 
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Appendix: Code Outline 

Two packages of code are described here.  The first is for Part 1a (Synthetic 2-Facies 

Experiment) and the second for Part 1b (Outcrop-Data 3-Facies Experiments).  Code is written in 

Python 2.7.12.  Note that SGeMs internal scripting system requires Python 2 code; this was the 

major driver behind continue with Python 2 instead of transitioning to Python 3.  When this 

project began, Python 2 was still supported, and many third-party libraries were still just 

transitioning to Python 3.  Each package includes scripts, example input files, and Power Point 

file that describes run procedures and problems in some detail.  Various other scripts were 

written to organize files or generate figures in this thesis, but these were essential to generating 

results. 

Third- Party Libraries 

matplotlib                    2.2.2 

numpy                         1.14.2 

Folder: Part1a_2Facies_Synthetic 

- Folder “targets” – folder containing files to properly run plotter2022.py 

- test_uncon.prj – SGeMs project file for soft data reliability tests 

- Automated Soft Data Reliability Test Workflow.pptx – Explainer Power Point 

- long_ordinary.par – example SGeMs model parameter file 

- P0_working.csv – soft data input file for plotter2022.py 

- plotter2022.py – chart and statistics script 

- rlz_runner.py – SGeMs .py script to automate model generation 

- sis.par – example SGeMs model parameter file 
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Folder:  Part1b_3Facies_Outcrop 

- 1d_vert_working.prj – SGeMs project file for 1D outcrop stats 

- Automated 1D Stats Workflow.pptx – Explainer Power Point 

- decimated_grid_0.03_15.gslib – example “mask” input file .gslib 

- decimated_grid_0.03_15.npy – example “mask” input file .npy example 

- gslib_npy_convert.py – file conversion script 

- sgems_decimator.py – SGeMs .py script to automate model generation 

- Simple_797_ADE_cosisim.par – example SGeMs model parameter file 

- Simple_797_ADE_cosisim_B01_0.03_15.gslib – example output from sgems_decimator.py 

- Simple_797_ADE_cosisim_B01_0.03_15.npy – example output converted to .npy 

- vt_stats_plotter_2022.py – chart and statistics script 
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Appendix: Part 1a Positive B Results
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Appendix: Part 1a Negative B Results
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Appendix: Part 1b COSIS Summary Figure Example

Example of COSIS summary figure: Simple_454_ADE_cosisim_B01_0.03_0.svg.  File names carry all relevant attributes 

in order.  “Simple” indicates SK.  “454” indicates variogram ranges for sandstone, breccia, and fine-grained facies, respec-

tively.  “ADE” indicates all-data search ellipse.  “COSIS” indicates agorithm type.  “B01” indicates B
i
 value.  “0.03” indi-

cates hard data percentage.  The trailing “0” indicates the hard data scenario number.
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Appendix: Part 1b SISIM Summary Figure Example

Example of SIS summary figure: Simple_111_LRE_sisim_0.03_0.svg.  File names carry all relevant attributes in order.  

“Simple” indicates SK.  “111” indicates variogram ranges for sandstone, breccia, and fine-grained facies, respectively.  

“LRE” indicates all-data search ellipse.  “COSIS” indicates agorithm type.  For SIS, B
i
 value is ommitted.  “0.06” indicates 

hard data percentage.  The trailing “10” indicates the hard data scenario number.
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Appendix: Part 1b Full Results File Tree

All 6,552 Part 1b Outcrop-Data 3-Facies Experiments are contained in this file structure.  As filenames contain all relevant 

parameter information, the .svg files are not organized beyond the search ellipse and variogram range levels.

111 Range 797 Range

1,092

configuration summary 

figures in each

Longest Range 

Ellipse

Part 1b

Configurations

All Data

Ellipse

454 Range797 Range111 Range 454 Range
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