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ABSTRACT 

Objective Estimation of Tropical Cyclone Wind Structure 

From Infrared Satellite Data 

Given the destructive nature of tropical cyclones, it is extremely important to 
provide quality estimates of intensity, as well as wind structure. The Dvorak technique, 
and an automated version, the Objective Dvorak Technique (ODT) use a method of 
ide.ntifying cloudcharacteristics from satellite images (visible and infrared), to provide 
estimates of current storm intensity. However, these IR techniques provide no 
information on the extent or location of damaging winds. Estimates of wind structure via 
alternate methods have significant disadvantages. Gathering data using aircraft is 
expensive; therefore storms are flown only if they are an immediate threat to the U.S. 
AMSU algorithms for estimating wind structure have proven successful, however the 
instruments fly aboard polar-orbiting satellites, which only pass over the tropics twice a 
ay, and are not contiguous at or near the equator. 

It is apparent that an alternate method of estimating wind structure is necessary; 
one in which data coverage is continuous. While IR data has historically been used to 
estimate intensity, the goal of this research is to extend the use ofIR data to estimate 
wind structure. Theoretically, there should be a solid relationship between deep 
convection and the extent of damaging winds. The database for this work includes 
aircraft reconnaissance data from 91 Atlantic and E. Pacific storms flown during the 
1995-2003 seasons as ground truth, in combination with GOES IR imagery, and storm 
best track information. Using multiple linear regression techniques, with predictors 
derived from the IR data, a radius of maximum wind can be estimated, as well as, more 
accurately, the symmetric tangential winds at a radius of200 km (size parameter). These 
estimated parameters are then fit to a modified combined Rankine vortex model to 
reconstruct the entire symmetric wind field. Given the storm motion vector, and 
researched relationships between storm motion and wind asymmetries, the asymmetric 
part of the wind field can be calculated and added to the symmetric part to provide an 
estimation of the entire tropical cyclone wind field. 

Kimberly Joanne Mueller 
Department of Atmospheric Science 

Colorado State University 
Fort Collins, CO 80523 

Fall 2004 
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Chapter 1 - Introduction 

Over the course of the past century, with the aid of ship reports, satellites, radar, 

buoys and aircraft reconnaissance, location and intensity forecasting of tropical cyclones 

(TC's) has improved dramatically, resulting in a substantial reduction in loss of life. In 

recent years, the annual death toll in the United States has averaged between 50 and 100 

persons (Ahrens, 1999), however with increased tourism and population density in 

coastal states, it is becoming increasingly important to produce accurate intensity, wind 

structure, and track forecasts in order to protect against loss of both life and property. 

Furthermore, Goldenberg et al. 2001 (GOl) note that there has been an increase in 

Atlantic basin TC occurrence recently due to increases in sea surface temperatures 

(SST's), associated with a shift in the thermohaline circulation. The broad periodicity of 

this shift indicates that this upward trend could influence TC frequency for many decades 

to come. While the 2001-2003 seasons were not particularly overactive, the 1995-2000 

seasons combined are the most active on record. The threat of increasing hurricane 

frequency, coupled with increasing coastal populations, drive the continual study of 

hurricane intensity and wind structure forecasting. 

Aircraft reconnaissance is perhaps the best method of estimating hurricane 

winds. Air Force Reserve and NOAA aircraft fly into the Atlantic Basin, including the 

Gulf of Mexico and the Caribbean Sea, and Eastern Pacific Basin storms to provide in 

situ measurements of wind, pressure, temperature, and storm position. The job of the 

reconnaissance crews is to transmit vital information on storm location, strength, size and 

motion via satellite to the National Hurricane Center. However, due to a lack of funds, 



most TC' s are only flown when they become a threat to U.S. land, and are rarely flown 

outside of the Atlantic and Eastern Pacific Basins. Obviously there is a need for an 

equally reliable observation platform that is available at all times at all locations. 

As a result, forecasters often tum to a method developed by Vernon Dvorak in the 

mid 1970's. The goal of Dvorak was to provide estimates of both the current and future 

intensity of tropical cyclones, by identifying cloud characteristics from satellite imagery. 

He employed a model of tropical cyclone development that consists of a set of curves 

representing intensity change with time, and certain cloud features associated with the 

cyclone at different lifetimes (see Figure 1.01). These curves were derived empirically 

by relating satellite intensity estimates to those obtained from official storm histories and 

reconnaissance data (Dvorak, 1974). Hurricane development and weakening are 

proposed to occur along one of three paths (rapid, typical, slow) which are plots ofT­

numbers with time, and development and weakening are assumed to be occurring in a 

homogeneous envirorunent. If, for instance, there appears to be significant sea surface 

:emperature changes, or a change in shear, the expectation must be modified. 

The specific cloud features used in the analysis are categorized into central 

features (CF) and outer banding features (BF). These two parameters taken together, 

with an estimate of cloud depth, comprise what Dvorak terms a T number, which 

describes the current intensity of the cyclone. After a current intensity analysis is made, 

cloud featu_res associated with the cyclone's vertical motions and inflow/outflow are used 

to make an intensity forecast. Typically, an intensifying hurricane will have a very bright 

comma shape to it, indicating deep convection in the central core. Furthermore, the 

cirrus bands will appear to be spreading out from the central features (see Figure 1.02). 

2 



Dvorak also studied current synoptic scale situations to aid him in his forecasts. 

Obviously, however, since this method relies on image pattern recognition, it involves 

some subjectivity on the part of the forecaster. 

In the years since Dvorak developed his original technique, scientists have been 

attempting to automate the method in an effort to produce results that are more objective. 

Following an initial impetus by Dvorak himself to use digital IR data to better the above 

method, Christopher Velden and Timothy Oleander ofCIMSS, along with Ray Zehr of 

NOAAINESDIS at CIRA, developed a method called the Objective Dvorak Technique 

(ODT). A computer based algorithm within the McIDAS system utilizes several 

functions to read and analyze GOES IR satellite data to compute and output an intensity 

estimate for a targeted tropical cyclone (Velden et al, 1998). 

The Geostationary Operational Environmental Satellites (GOES) have 

instruments aboard capable of measuring infrared radiation emitted from the Earth. 

Satellite instruments typically measure infrared radiation between wavelengths of about 3 

µm and 20 µm. This radiation measurement can then be used to make an estimate of the 

brightness temperature of any clouds within the view of the satellite. The ODT uses 

these brightness temperature measurements, along with a computer algorithm, to assign 

an intensity estimate to a tropical cyclone, in a method analogous to Dvorak's study of 

cloud patterns. This technique is not valid for tropical depressions or weak tropical 

storms. Forecasters around the globe use this, or similar methods everyday to identify 

and objectively analyze tropical cyclone intensity. While this automated method can be 

argued to be an improvement because it does not rely on the subjective human eye 

recognizing certain features, but rather relies on an objective computer pattern 
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recognition scheme to assign intensity information, the ODT method is only of 

comparable accuracy to the simple Dvorak technique (Zehr, 2004). This result leads to 

the broad conclusion that since Dvorak developed his methods in the 1970's, there has 

been very little progress made on the use of digital infrared satellite data in the study of 

tropical cyclones. 

While ODT and other similar methods provide vital information about TC 

intensity, a harder parameter to estimate from IR satellite data alone is the actual TC wind 

structure. At operational forecast centers, TC wind structure is primarily determined by 

such parameters as the radius of maximum winds, and the radii of 34, 50 and 64 knot 

winds. These values provide information on how far damaging winds extend from the 

eyewall of the TC. Other parameters can also be used to quantify TC wind structure. For 

the purposes of this research, the wind speed at the outer most radii resolvable using the 

aircraft data (about 200 km) is used as a proxy for the size of the storm. Strong winds at 

a distance of 200 km from the storm center are indicative of a large storm, while weak 

winds signify a smaller storm. It is reasonable to assume that infrared satellite data will 

provide information on TC structure via connections betw吟n the extent and strength of 

deep convection, and the extent of damaging winds. 

While there is a deficit ofresearch revolving around the use of infrared data, 

beginning with the 1997 hurricane season, the Cooperative Institute for Meteorological 

Satellite Studies at the University of Wisconsin-Madison began demonstrating the 

derivation of real-time GOES low-level cloud drift winds in the vicinity of Atlantic 

tropical cyclones. The winds are derived from tracking low-level clouds in sequential, 

high-resolution GOES visible channel imagery (Dun ion and Velden, 2001). Th~se cloud 
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drift winds provide essential coverage in the outer radii of the hurricane, where 

conventional obsen·ations like buoys and ships are sparse. Since then, GOES cloud drift 

winds have been assimilated into the Hurricane Research Division (HRD) surface wind 

analysis. As noted above, cloud drift winds are important for periphery estimations, 

however they provide little to no information about winds near the eye of the hurricane, 

because the cirrus shield tends to block tracers at close radii. 

Furthermore, it has been demonstrated that satellite measurements in the 

microwave portion of the electromagnetic spectrum have been integral in TC wind 

structure algorithm development. Since NOAA launched the Advanced Microwave 

Sounding Unit (AMSU) aboard their polar-orbiting satellite series in May 1998, passive 

microwave warm core measurements of tropical cyclones have been successfully made. 

The science behind the measurement is that vertical temperature soundings can yield 

valuable information about the mean sea level pressure and wind fields within a tropical 

cyclone through thermodynamic and dynamic constraints(Brueske and Velden, 2003). 

Demuth et al. (2004), derived a method for objectively estimating TC wind radii 

via a statistical procedure utilizing AMSU-derived parameters. While AMSU is capable 

of providing this valuable data, since it is a polar-orbiting satellite, it only passes over the 

tropics twice a day, and is not contiguous at or near the equator. Therefore, while AMSU 

instruments fly aboard several NOAA satellites, the instruments can still miss a tropical 

cyclone on one of its passes, and the cyclone will not be observed. Obviously, a rapidly 

deepening cyclone will exhibit dramatic changes between passes and a missed pass can 

be very detrimental to forecasters. Another disadvantage of the microwave instrument is 

that the horizontal resolution is at best 48 km at nadir, and closer to 100 km near the 
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limbs. Upper tropospheric warm anomalies can be on scales that are smaller than this, 

and thus not entirely resolvable by the instrument. 

From the above discussion, it is clear that while aircraft reconnaissance, visible 

and microwave data can provide valid information about TC wind structure, observations 

may not be continuously available, and may not be available near the storm center. A 

major advantage of using infrared satellite data to observe tropical cyclones is that the 

coverage is nearly continuous over the global tropics, whereas polar orbiters only pass 

over a storm twice a day on average, and is available where ship and aircraft data are not. 

While IR data has been used traditionally to estimate storm intensity (the widely used 

Dvorak Technique and ODT), the aim of this investigation is to extend the use ofIR data 

to estimate storm structure. 

The outline of this research is as follows. Given a digital IR image, a storm 

pJsition (including latitude, longitude, and estimation of the maximum wind) and the 

direction and translational speed of the TC, it is hypothesized that an accurate estimateof 

the wind field (symmetric and asymmetric parts) can be made. From this input, the 

radius of maximum wind and the symmetric tangential wind speed at a radius of202km 

(size parameter) will be estimated. These estimated parameters are fit to a Rankine 

vortex model to reconstruct the entire symmetric wind field. Given the storm motion 

vector, and known relationships between storm motion and wind asymmetries, the 

asymmetric part of the wind field can be estimated, and added to the symmetric part to 

recreate the entire TC wind field. The database used to develop this algorithm includes 

89 cases of Atlantic and east Pacific tropical cyclones from 1995-2003, that have aircraft 

reconnaissance data available as ground truth. 
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Figure 1.01 Dvorak Intensity Curves 
(Dvorak, 1975) 
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Figure 1.02 
Common tropical cyclone cloud patterns and their corresponding T numbers. 

(Dvorak, 1975) 
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CHAPTER2-DATA 

2.1 Aircraft Reconnaissance Data 

Because data are needed from areas where it is impractical, and often impossible, 

to operate ground based observation stations, the Air Force aerial weather reconnaissance 

aircraft often fly long routes to collect and transmit weather observations. Currently, the 

National Oceanic and Atmospheric Administration(NOAA), as well as more frequently 

Air Force Reserve personnel at Keesler AFB, Miss., have the responsibility in the 

Department of Defense for aerial weather reconnaissance, including hurricane 

reconnaissance. 

The Air Force uses a fleet ofWC-130 aircraft to accomplish these missions, 

which are equipped with the Improved Weather Reconnaissance Sys[em (IWRS). Special 

weather sensors mounted on these aircraft measure temperature, dewpoint, barometric 

pressure, actual (radar-measured) altitude of the aircraft, and winds, and calculate a 

complete weather observation every 10 seconds. Furthermore, the IWRS computers are 

connected to the aircraft navigation system in order to obtain an exact position for each 

observation. A key part of the IWRS system is the ability to send data to the National 

Hurricane Center(NHC) in Miami for analysis and initialization of forecast models. 

There is an option of viewing and saving data at up to one-second intervals if needed, 

however data is regularly archived at 10-second intervals. 

Because this study aims to diagnose hurricane wind structure, the use of the 

aircraft reconnaissance wind observations as ground truth was a very important 

component of the research. The winds are computed aboard the aircraft from a variety of 
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sensors. There are two probes measuring changes in pressure across the openings in each 

probe to compute true airspeed and side-slip, while the navigator's Self-Contained 

Navigation System provides ground speed and heading information to complete the wind 

calculation (www.keesler.com). 

This data all gives the user a picture of the storm at flight level. In a developing 

storm, missions are flown at low levels (500-1500 feet), however as a storm gains 

strength, the aircraft are forced to fly at higher altitudes (5000 feet is customary) in order 

to avoid dangerous downdrafts that could force the ~ircraft too close to the ocean surface. 

The Air Force flies a special pattern known as an Alpha Pattern (see figure 2.1). 

Starting in the northwest quadrant, the aircraft actually fly a diagonal route across the 

storm to the southe邸t quadrant, 105 nautical miles on either side of the eye. Next, it is a 

simple case of always making left turns, so the aircraft doesn't have to fight the winds 

that are swirling coW1ter-clockwise. The first turn to the left takes the aircraft to the 

northeast quadrant, at which point the final left turn takes it diagonally across the eye to 

the southwest quadrant. Notice that after two passes through the eye (fixes), the winds in 

all four quadrants have been measured. At this point, the plane would typically continue 

the alpha pattern, making two more fixes before heading home. 

2.2 Passive Infrared Remote Sensing 

All of the information received by a satellite sensor about the earth and its 

atmosphere is received in the form of electromagnetic energy (Kidder and Yonder Haar, 

1995). The electromagnetic spectrum is defined as a continuum of all types of 
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electromagnetic radiation in which each type of radiation is ordered according to its 

wavelength (see Figure 2.03). 

Divisions in the spectrum have grown out of the various methods for sensing each type of 

radiation: 

雇ible (V昀 portion: 0.4 µm to 0.7 µm (400 to 700 nanometers) 

Infrared (IR) portion: 0. 7 µm to 14 µm 

Microwave (MW) portion: l mm to I m 

Remote sensing systems operate in one of several of the visible, infrared, or 

microwave portions of the electromagnetic spectrum. In the visible portion, features are 

observed by virtue of reflected solar energy. By contrast, in the infrared portion, sensing 

of emitted energy predominates. Infrared waves include thermal radiation, that is 

radiation emitted from the earth and the atmosphere, including clouds. One important 

characteristic of the infrared channels, over the visible channels, is their ability to provide 

images at night. This provides continuous coverage of cloud evolution over a full 24-

hour period(Kidder and VonderHaar, 1995). 

Remote sensing data acquisition of surface features is limited to the ' non-blocked' 

spectral regions of the electromagnetic spectrum referred to as atmospheric windows (see 

Figure 2.02). Atmospheric windows define wavelength ranges in which the atmosphere is 

particularly transmissive of energ)'. The visible region of the electromagnetic spectrum 

resides within an atmospheric window in the wavelength range of about 0.3 to 0.9 µm 

while emitted energy from the earth's surface is sensed through windows at 3 to 5 µm and 

8 to 14 µm. Radar and passive microwave systems operate through a window region of 1 

mm to Im. 
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Because clouds absorb and emit as near perfect blackbodies in the infrared portion 

of the electromagnetic spectrum, when clouds are present the infrared radiation being 

emitted from the cloud is coming from ONLY the cloud top. Emission from lower levels 

of the cloud is immediately absorbed by adjacent layers of the cloud. Therefore, the 

radiation that reaches the satellite instrument is related to the temperature at cloud top 

ONLY. This is why Tb is often referred to as cloud top temperature (CTT). High cloud 

tops are often indicative of convection and associated severe weather. The higher the 

cloud top, the colder the temperature at which the cloud is emitting. Thus, intense 

hurricanes, in which there is significant convection in the eye wall and spiral bands, will 

exhibit colder CTI's. This is an important proxy measure for tropical cyclone severity, 

and will be used in this study as a proxy for the storm structure as well. 

The most common infrared channels for meteorological satellites are in the 10-

12.5 micron window, in which the atmosphere is relatively transparent to radiation 

upwelling from the Earth's surface. (See Figure 2.02) When the word'infrared'is used 

alone to describe an image, it is nearly always in the 10-12.5 micron window, rather than 

in another portion of the electromagnetic spectrum(Kidder and VonderHaar, 1995). 

Normally in satellite image processing, images are displayed such that the greater 

the radiance, the brighter the pixel. However, because the atmosphere cools with height, 

and cold objects radiate much less than warm objects do, high cold c.Joud tops would 

appear very dark relative to the warm land surface, using the above convention. 

Therefore, infrared images are typically inverted, meaning that less radiant pixels appear 

brighter than more radiant pixels. This way, high clouds appear very bright, which is 

more appealing for the human eye, and easier to interpret. Furthermore, infrared images 
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are often color enhanced to aid interpretation. Figures 2.03 and 2.04 are color-enhanced 

images from the CIRA IR archive, illustrating two tropical cyclones. Notice that high, 

cold cloud tops appear bright red, which corresponds to a radiating temperature of 

approximately-70 c0, while the surrounding ocean appears gray, corresponding to 

「adiating temperatures on the order of 20 to 30 c0. 

2.3 CIRA Infrared Archive 

An assessment of geostationary IR Imagery of tropical cyclones is described by 

Zehr (2000). There are normally five geostationary satellites positioned along the 

equator, giving nearly global coverage (see figure 2.04). Geostationary satellites have the 

necessary time resolution and the unique capability of pinpointing the exact locations of 

intense updrafts by monitoring overshooting cold cloud tops. 

The CIRA IR Archive includes GOES-7,8,9,10, Meteosat-5,7, and GMS, and uses 

the satellite that provides the best coverage for a particular TC. The GOES suite of 

satellites provide coverage over the western portion of the Atlantic Ocean, and a large 

extent of the Pacific Ocean. Meteosat, run by EUMESAT, provides coverage over the 

Eastern Atlantic Ocean, and western portions of the Indian Ocean. GMS, a Japanese 

satellite, provides coverage over the waters surrounding Japan and Australia (see Figure 

2.04). All digital images are 4 km resolution Mercator remaps in MCIDAS format with 

I-byte pixels. Image size is 640 elements by 480 lines. The standard time interval 

between images is 30 minutes (Zehr, 2000). The location of the sector is changed as 

necessary to keep the center of the TC no more than four degrees latitude within the edge 

of the image. The time period of coverage begins with the first assignment as a Tropical 
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Depression and ends with the last advisory time. There are seldom gaps of more then 3 

hours. Figures 2.04 and 2.05 are examples of images in the CIRA archive. 

Figure 2.01 Alpha Pattern 
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ESTIMATED MINIMUM CENTRAL PRESSURE 948 MB 
EYE DIAMETER 35 NM 
MAX SUSTAINED WINDS 115 KT WITH GUSTS TO 140 KT 

64 KT 75NE 75SE 50SW 50NW 
50 KT 175NE 175SE IOOSW 125NW 
34 KT 275NE 275SE l 75SW 200NW 

12 FT SEAS 400NE 400SE 200SW 225NW 
ALL QUADRANT RADII IN NAUTICAL MILES 
(Courtesy of NHC) 

Figure 2.05 
Hurricane CINDY -0715 UTC 28 Aug 99 
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ESTIMATED MINIMUM CENTRAL PRESSURE 954 MB 
MAX SUSTAINED WINDS 120 KT WITH GUSTS TO 145 KT. 

64KT 
50KT 
34KT 

15NE 15SE 
25NE 25SE 
125NE 50SE 

lOSW 15NW. 
15SW 25NW. 
40SW 60NW. 

12 FT SEAS 200NE 150SE OSW ONW. 
WINDS AND SEAS VARY GREATLY[NEACH QUADRANT. RADII IN 
NAUTICAL MILES ARE THE LARGEST RADII EXPECTED ANYW琿REIN
THAT QUADRANT. 
(Courtesy of NHC) 

Figure 2.06 
Hurricane IRIS - 0015 UTC 9 Oct O 1 

16 



CHAPTER 3 - DATA PROCESSING 

3.1 Initial Treatment of the Data 

The aircraft data used in this research comes directly from the NHC air force 

reconnaissance archive. The data used encompasses a large sampling of Atlantic Basin 

TC' s during the 1995-2003 seasons, as well as a smaller sampling of Eastern Pacific 

TC' s over the same time period. There are 89 total storms in the dataset. The air force 

may fly the same storm several times, depending on how much of a threat it is to land, 

and how long lived it is, therefore there may be several flight logs for one storm. Each 

flight log is therefore concatenated into one file per storm, however there may be data 

gaps during periods where the storm was not being observed. 

For each storm, the aircraft data is composited over twelve hour intervals. This 

time interval is chosen so that enough observations are be available to perform an 

objective analysis. It is optimal too because if a larger time interval is chosen, it is 

possible that the character of the storm has changed to such a degree that combining of 

the data over the time interval is not truly representative of the storm. 

3.2 Storm - Relative Coordinate System 

Because a twelve hour time interval is chosen, several air force reconnaissance 

flights may have been flown during the interval, and several separate center fixes may 

have been made due to the motion of the storm over the time period. An example of an 

air force reconnaissance raw wind field of TC Lili in 2002 is shown in figure 3.01. One 

can see that in earth relative coordinates, there are three distinct centers of circulation, 

indicating that three separate flights were flown during this twelve hour time period. · It is 

therefore necessary to adjust all data to storm relative coordinates. 
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To identify the storm center, the NHC best track data is used. The best track data 

is derived post storm using all available data on the TC, and gives a best estimate for 

storm position and intensity at six hour increments over the lifetime of the TC. The 

center location at the time of each wind observation is determined by linear interpolation, 

and the distance east and north of the center is calculated for that observation. If no best 

track data is available for the given ending time, no analysis is performed. This storm 

relative data is assumed to be representative of the wind structure at the end of the 12-

hour interval. An example of storm-relative winds is shown for the same Lili case in'02 

in Figure 3.02. 

3.3 Error Checking 

Several error checks were built into the aircraft analysis, in order to maintain a 

quality dataset. First, several gross error checks were employed to remove data points 

where the information is clearly unrealistic. These error checks are performed on the 

modified raw data that is obtained directly from the air force, prior to any analysis. First, 

any data points in which the wind direction was missing were removed from the dataset. 

Furthermore, data points where the measured wind speed was less then zero were 

removed. Wind direction was measured using degrees, from Oto 360. Any cases in 

which the recorded wind direction was greater than 360 degrees were removed. Another 

important gross error check was concerning the altitude of the plane at the time of the 

measurement. Typically, aircraft fly at 700 hPa in mature tropical storms, and sometimes 

lower in tropical depressions. However, they do "ferry" to the storm, during which time 

they typically fly above 500 hPa. Therefore, since we are not interested in measurements 

taken during this ferrying period, all data points at which the altitude was greater than 
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5000 m where removed from the dataset. Finally, gross errors in speed were checked. 

Category five hurricanes, which are extremely rare, can attain wind speeds of greater than 

135 knots. Therefore, it is necessary to remove data points at which wind speeds are too 

great to be realistic. The threshold chosen was 175 knots, which is quite conservative. 

Once these gross error checks are performed, the x and y coordinate system is converted 

to a radial and azimuthal coordinate system, and winds are decomposed to radial and 

tangential components. 

Next, it is necessary to determine if there is sufficient data within a specified time 

period to perform an accurate analysis. A routine was created to determine the maximum 

azimuthal range without any data. Typically. an aircraft will fly the alpha pattern, 

therefore, there will be four tangential legs to interpolate data from. However, aircraft 

are not continuously flying storms, and during a given 12 hour time period, perhaps only 

one leg is flown. One tangential leg is not sufficient to perform an entire storm analysis. 

First, this routine finds the maximum azimuthal data gap as a function of radius. It 

returns a value for how many legs in the azimuth are data free for each radius. Next, the 

routine calculates how many adjacent radii contain gaps of MORE than 180°. If the 

dataset is missing 180° of data in the azimuth for four or more adjacent radii, then the 

entire dataset is thrown out. It is deemed that there is insufficient data to proceed with an 

analysis 

If the dataset passes both the gross error check and the azimuthal gap error check, 

then a prelimina乃' objective analysis is performed on both the radial and tangential wind 

speed components. A routine was created to perform a variational analysis of the wind 

speed observations to obtain values for wind speed on an evenly spaced grid. The 
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analysis grid consists of 50 data points in the radial direction at 4 km spacing, and 16 data 

points in the azimuthal direction with a spacing of 22.5 degrees. The objective analysis 

routine minimizes the difference between the winds on the analysis grid interpolated to 

the observation points and the original observations. Smoothness constraints provide 

values on the data void portions of the analysis grid. Further details of the objective 

analysis can be found in DeMaria et al (1999). 

Once the preliminary analysis is performed, another error check is built into the 

program to identify bad data not identified by the gross error checks. A routine checks 

for additional bad data by assigning zero weight to observation grid points where the 

difference between the observed value and that from preliminary analysis is greater than 

50 knots. Basically, if the analyzed grid point value is drastically different than the 

observed value, it indicates that the observed value at that grid point was drastically 

different than the surrounding grid point observed values. The difference can be 

manifested as either an inaccurate measurement of the speed or direction of the wind. If 

the percentage of bad points in the dataset is greater than 10 %, the entire dataset is 

thrown out, and the analysis is halted, and no analysis output file is created for that storm 

during that time period. Out of 680 twelve hour time periods during which aircraft were 

flying the storms in the dataset, only 436 of these cases passed the error checking 

process. 

Once all of the error checks are passed, a final objective analysis is performed on 

the aircraft data. It is the same routine that is described above as the preliminary analysis, 

however this time the bad observation data points are set to zero weight, so they have no 

effect on the interpolation. These analyses are written out to a new file per twelve hour 
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i:eriod in the lifetime of the storm, to later be compared the IR data An example of an 

analyzed wind field for the Lili'02 case is shown in Figure 3.03. Figure 3.04 is an 

isotach plot of the analyzed wind field. 

3.2 Matching of the IR data 

The analysis of the aircraft data produced a total of 436 accurate wind analysis 

files for storms from 1995-2003. At this point, these aircraft files must be matched to 

CIRA IR archive fi les that cover the same 12-hour portion of the storm's lifetime. Once 

a match is found, the IR data is read into the analysis. If there is more than one IR image 

hat matches the aircraft analysis time period, than the IR images are averaged. Of the 

436 possible analysis files, 249 cases were matched with IR images, and became a 

member of the final dataset. 

The final members of the dataset were further analyzed in terms of both the wind 

profiles of each storm during each twelve hour analysis period, as well as information on 

the IR properties. The maximum wind (smax), radius of maximum wind (rmax), 

azimuthally averaged maximum wind (samax), azimuthally averaged radius of maximum 

wind (ramax), and radii of 34 knot (r34), 50 knot (r50) and 64 knot (r64) for each storm 

quadrant were calculated from the aircraft wind analysis file. The IR data was analyzed 

to provide information on the percent of pixels colder than a certain threshold for each 

radii. As with the aircraft data, the IR data were calculated at each radii starting at two 

km, and ending at 202 km, with four km spacing. The brightness temperature thresholds 

are zero C0, -10 C0, -20 C0, etc, to-70 C0. Basically, this means that if a large percentage 

of the pixels in a particular radius is cold, then the cloud tops are quite high, and there is 
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probably intense convection occurring somewhere along that radial band. The larger the 

percentage, the greater the extent of the convective activity in the radial band. 

For example, Hurricane Cindy in Figure 2.06 and Hurricane Iris in Figure 2.05 

both exhibit minimum pressure values near 950 mb, and maximum sustained winds of 

15-120 knots. However, the area coverage of cold clouds in Hurricane Cindy is much 

larger than that for Iris. This means that convection is occurring on a much broader scale 

in Hurricane Cindy, but producing the same intensity as a storm with more confined areas 

of convection. Most importantly, the 34 kt wind radii for Cindy are on the order of 200-

275 nm for each quadrant, in contrast to the 60-100 nm 34 kt wind radii in the much 

=-mailer, but equally intense Iris. This is an illustration of an apparent relationship 

between cold cloud shield and wind radii. In the next two sections, it will be determined 

whether quantitative relationships between the IR parameters and the wind structure 

parameters from the aircraft data can be found. 
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CHAPTER 4 - SYMMETRIC WIND FIELD 

ANALYSIS 

The first step in the analysis is to use the infrared brightness temperature (BT) 

data to produce an estimate of the radius of maximum wind, and the symmetric wind 

speed at 202 km. These two parameters, along with an estimate of the maximum wind 

speed calculated using the Dvorak method from the IR image, can then be fitted to a 

Rankine vortex model to recreate the entire symmetric wind field. 

4.1 DATA 

A set of possible predictors is derived using the infrared brightness temperature 

data, as well as storm latitude, and an estimate of the maximum wind. For the 

development phase, a maximum wind estimate is derived from aircraft data, however in 

real-time, a maximum wind can be estimated directly from the IR data via the Dvorak 

method. As mentioned in chapter 3, the infrared brightness temperature data is reported 

as a percentage of pixels colder than a particular threshold at each radius from 2 km to 

202 km, at 4 km intervals. The threshold values are 0, -10, -20, -30, -40, -50, -60 and-70 

C0. An azimuthally averaged brightness temperature is also reported for each radius 

above. 

From this information, several relevant parameters can be derived. First, a storm 

total percentage of pixels colder than each of the above thresholds is calculated. This 

yields an overall estimation of the amount of convective activity in the tropical cyclone. 
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Next, a radius of coldest temperature, as well as a coldest temperature value, are 

calculated for each storm case. 

The following list of parameters makes up the list of possible predictors derived 

from the infrared data for estimating a radius of maximum wind (RMAX) and a wind 

speed at a radius of 202 km (V202): 

MXWND: Azimuthally Averaged Maximum Wind Speed 

CLDO: 

CLDIO: 

CLD20: 

CLD30: 

CLD40: 

CLD50: 

CLD60: 

CLD70: 

CLDTB: 

RDCLD: 

LAT: 

Percent Pixels Colder than O C0 

Percent Pixels Colder than -10 C0 

Percent Pixels Colder than -20 C0 

Percent Pixels Colder than -30 C0 

Percent Pixels Colder than -40 C0 

Percent Pixels Colder than -50 C0 

Percent Pixels Colder than -60 C0 

Percent Pixels Colder than -70 C0 

Azimuthally Averaged Temperature of Coldest Radius 

Azimuthally Averaged Radius of Coldest Temperature 

Storm Center Latitude 

The above parameters represent subsets of the information available in the IR 

data. An alternate method for finding common patterns in datasets is derived through the 

use of matrix methods from linear algebra. Empirical Orthogonal Function(EOF) 

analysis seeks structures that explain the maximum amount of variance in two 

dimensional datasets. For the purposes of this research, one dimension in the data set 

represents characteristic spatial structures that vary with time, which is what we seek, and 
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the sampling 9imension is time. The EOF analysis produces a set of structures in the first 

dimension, which are called the EOF' s, and which can be thought of as being the 

structures in the spatial dimension. The amplitude of the set of structures in the sampl ing 

dimension (time) are called the principal components (PC ' s), and they are related one-to­

one to the EOF' s. 

Singular Value Decomposition (SYD) is used on the data to simultaneously 

compute both the EOF's and PC' s. SYD produces a set of singular values for the data, as 

well as arrays containing EOF and PC values in the following manner. 

Any real rectangular matrix can be represented as the product of the following 

three matrices: 

A = U~VT 

Where A = M x N data matrix 

U = MxN 

~ = MxN 

V = NxN 

The decomposition of A can be done using eigenanalysis such that: 

U,V = AAr, Ar A 

IfM is the sample space (ie time), the EOF's correspond to the columns in the V matrix, 

which are simply the eigenvectors of the covariance matrix, Ar A, of the original data. 

Similarly, the PC' s are the columns in U, or the eigenvectors of the covariance matrix, 

AA r_ The vector :E represents the singular values of the data, which are actually the 

square roots of the eigenvalues. The singular values are useful in assessing the percent 

of variance explained by each EOF of the data. 
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EOF analysis of the normalized infrared data yields the following additional set of 

possible predictors: 

PClTB: 

PC2TB: 

PC3TB: 

PClGTB: 

PC2GTB: 

PC3GTB: 

Leading PC ·of Azimuthally Averaged Brightness 

Temperature 

Second Leading PC of Brightness Temperature 

Third Leading PC of Brightness Temperature 

Leading PC of the Gradient of Brightness Temperature 

Second Leading PC of the Gradient of Brightness 

Temperature 

Third Leading PC of the Gradient of Brightness 

Temperature 

As a first test of the EOF techniques, it was applied to the symmetric tangential 

winds from the objective analysis. Figure 4.01 represents the first three leading EOF 's of 

the tangential wind data for all storms analyzed. Again, EOF analysis picks out 

structures that explain a significant amount of variance in the original data. EOF 1, the 

black curve on the plot, represents the background mean wind field in a TC. EOF 2 is 

hypothesized to represent the strong winds in the eyewall of the hurricane. Note that the 

sign of the EOF is arbitrary. The negative maximum in EOF 2 near a radius of 12 km 

represents a tangential wind maximum at the approximate radius that the eyewall would 

be located at in an average size, average strength TC. EOF 3 is hypothesized to represent 

strong winds in the spiral bands of the hurricane, as illustrated by negative maximum 

near a radius of 50 km. 
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Figure 4.02 illustrates the amount of variance explained by the first ten EOF's, 

and it is clear that the majority of the variance is explained by the first three EOF's. In 

fact, greater than 800/o of the variance is explained by EOFl alone, and another 12.6% is 

explained by EOF2. The first two EOF's capture a large majority of the variance in the 

tangential wind field, and this variance is likely related to the location of the radius of 

maximum winds. In this study, the EOF analysis of the aircraft analyzed tangential wind 

field is important primarily in determining if the wind structure can be explained by a 

relatively small number of patterns. Figure 4.02 confirms this is true. 

Of greater importance is the EOF analysis of the BT data, as this data will be used 

as possible predictors for diagnosing the wind field. See Figure 4.03. Like EOFl of the 

tangential wind, EOFl of the BT appears to be a manifestation of the mean cold cloud 

shield. EOF2 is more interesting. Again, knowing that the sign of the EOF is arbitrary, it 

appears as though EOF2 is the negative ofreality. The peak near the storm center 

represents a very cold cloud shield, which gradually warms at greater radii. This EOF is 

important, because a bigger cold cloud shield represents a bigger storm. Therefore, 

EOF2 may yield important information on the size of the TC, which is an important 

parameter needed to reproduce the wind field. Finally, EOF3 appears to represent a cold 

TB maximum near a radius of75 km, possibly representing the cold cloud tops 

associated with convection in large eye walls or the spiral bands of the TC. Figure 4.04 

illustrates the variance explained by the first ten EOF's. It is clear that the first three 

EOF's explain nearly 96% of the structural variance in the BT data, therefore they will be 

retained for further analysis. 

29 



It is important to note the similarities between the EOFs of the tangential wind 

and BT. If the sign of the signal is ignored, and only the amplitude is noted, one can see 

that EOF I in both cases picks up the background signal, EOF2 seems to pick up features 

associated with eyewall convection, and EOF3 illustrates features apparently associated 

with spiral banding convection. It is concievable, therefore, that the EOFs of BT can be 

used to effectively predict structures in the tangential wind field. 

Finally, the radial gradient of the BT (GTB) field was calculated for each storm in 

the dataset, and the EOF' s of the GTB were calculated, and are illustrated in figure 4.05. 

In theory, the gradients in the brightness temperature field can provide important 

information on the wind structure in the storm. Areas in which the gradient is large are 

characterized by a sharp change in BT over a short distance, indicating a transition from 

an area of deep convection, to a calmer region of the storm, or vice versa. Typically 

winds are stronger in areas coincident with deep convective bands, especially in the 

eyewall, and drop off with a decrease in convection. Therefore, structures in the GTB 

field may be related to structures in the tangential wind field. 

Finally, SYD was done on the gradients of brightness temperature. Gradients 

were calculated by simply measuring the rate of change of the azimuthally averaged 

brightness temperature between the two radii adjacent to the point in question. See 

Figure 4.05 . EOFI of OTB appears to illustrate the rapid decrease in cloud top 

temperature as one moves away from the eye to the eyewall, which is usually coincident 

with an area of maximum convective activit)·, and very cold cloud tops. EOF2 of GTB 

appears to capture the eyewall convection, and the increase in temperature outside this 

area of very strong convection. 
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4.2 ST A TISTICAL METHODS 

4.2.1 Radius of Maximum Wind Prediction Equation: 

Theoretically, every predictor discussed in the previous section is physically 

relevant to the radius of maximum wind in a tropical cyclone, however the specific 

significance of any particular variable is unclear. Hence, the relationship between the 

predictors and the predictand is analyzed using a multiple linear regression technique. 

Conventionally, y is the symbol for the dependent variable, or predictand, and Xi is the 

symbol for the independent variables, or predictors, where i = 1, 2 '2,.....…,K. For a given 

data set with K predictors, the predictive equation is of the form: 

y=b。 +b1 X1 + b2 冷+. +bK XK [4.1] 

where b。 is the constant of fit, and b 」 ,b2 …，坂 are the regression coefficients. The 

regression procedure chooses the constant and coefficients of the line such that there is 

minimal error in estimations of y given actual observation Xj. Most commonly, this is 

measured by minimizing the sum of the squared error, hence, it is referred to as a least 

squares regression. The error, or residual, is simply the difference between the observed 

and predicted data, defined as, 

Ei = Oi - y (Xi) [4.2] 

Generally, it is not necessary, or valuable, to include every possible predictor in 

the regression equation. Some variables may not be significantly correlated with the 

predictand, while other predictors may be correlated with each other, thus not adding any 

additional information to the multiple regression. Therefore, in order to choose the best 

predictors, several steps must be undertaken. First, each predictor was individually 

correlated with the predictor, the radius of maximum winds. Highly correlated 
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predictors, with t-test scores above 98% significance level, were initially accepted into 

the regression equation. See Figures 4.07 through 4.11 for individual predictor and 

predictand correlations. At this point, each predictor was tested against all others in order 

to determine redundancy. In cases of highly correlated predictors, the predictor with the 

highest correlation to the radius of maximum winds was retained, and all others excluded 

from the regression. 

In the end, five predictors were retained in the linear regression using the radius 

of maximum wind as the predictand. The list of predictors for R血X is as follows: 

MXWND: Maximum Azimuthally Averaged Wind Speed 

CLD50: Percent of Pixels Colder Than -50 C0 

PCITB: Leading PC of Cloud Top Brightness Temperature 

PC3TB: 

CLDTB: 

Third Leading PC of Cloud Top Brightness Temperature 

Radius of Coldest Cloud Top Brightness Temperature 

The resulting regression equation for predicting the radius of maximum winds is as 

follows: 

PRMAX = 177.5 + (-0.3)MXWND + (-0.8)CLD50 + (305.9)PC1TB 

+ (210.l)PC3TB + (0.69)COLDTB [4.3] 

The regression equation indicates that as the maximum wind speed in the storm increases, 

the radius of maximum winds decreases slightly. Similarly, as the percentage of pixels 

colder than -50 degrees C increases, the radius of maximum winds shrinks. Figure 4.07 

and 4.08 illustrate these inverse relationships. There is a positive correlation, however, 
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between PR血X and PCITB, PC3TB, and COLDTB. Figures 4.09, 4.10, and 4.11 

illustrate these relationships. PC 1 TB is related to the mean cold cloud shield, as 

described previously, therefore the regression relationship suggests that the colder the 

mean cold cloud shield, the larger the storm, hence the large the radius of maximum 

winds. Additionally, PC3TB appears to be related to the spiral banding features. As the 

convective activity in the spiral bands increases, the storm size increases, thus the radius 

of maximum will be larger. Finally, the colder the coldest radius, the more intense the 

storm, thus the smaller the radius of maximum winds. 

The correlation coefficient between the predicted radius of maximum wind and 

the observed radius of maximum wind is.577, meaning 34% of the variance is explained. 

Please see figure 4.12, a scatterplot ofprmax and rmax. The solid blue line corresponds 

to a perfect correlation between RMAX and PRMAX. 

Willoughby and Rahn developed a similar empirically determined equation for 

RMAX (Willoughly, Rahn, 2003) as a function of only the maximum wind and latitude. 

Their equation is as follows: 

W血X = 46.29exp[(-0.0153)MXWND + (0.0166)LAT] (4.4] 

The exponential in the equation for WRMAX arises because its distribution function has 

a long tail on the large WRMAX side so that it is more nearly lognormal than normal. 

Using the Willoughby equation, a prediction for W料伍X was computed for the same 

cases as were used to calculate PRMAX via the IR technique. A scatterplot of the 

aircraft observed radii of max winds is plotted against the Willoughby results, with a line 
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drawn in illustrating a perfect correlation (see Figure 4.13). The r/\2 value for the 

Willoughby predictions is 19. 7%, a deterioration on the IR predictions, which had an r/\2 

of 33.4%. In fact, the Willoughby algorithm tends to highly under-predict RMAX. It is 

clear from these results that the addition of satellite data to the prediction equation 

significantly improves the estimations ofR11AX in tropical cyclones. It is important to 

note that the IR algorithm was developed directly from the aircraft data set, while the 

Willoughby method was derived independent of the aircraft data used in this study, 

therefore one would expect the IR method to be slightly better. 

The Riv扒X residuals are shown in figure 4.14. Recall that th.e residuals are 

calculated by subtracting the aircraft observed values from the IR predicted values. 

Therefore, positive residuals correspond to an over-prediction, and negative values 

correspond to an under-prediction. The majority of the predicted values fall between -10 

and +10 nautical miles of the observed values, with more cases being over-predicted than 

under-predicted. In fact, 142 cases are over-predicted using the IR derived algorithm, 

while only 107 are under-predicted. The scatterplot (Figure 4.12) illustrates that the 

over-prediction tends to occur at smaller radii, while there is a slight tendency for the IR 

prediction equation to under estimate at larger radii. 

To determine the significance of the relationship between the PRMAX and 

RMAX, several goodness-of-fit measures are employed. The first measure, the mean­

squared error (MSE) is the average of the squared differences between the predicted and 

observed values. 

MSE= 達（yk -ok)2 
n k=1 

(4.5] . 
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It is an indication of the variability of the quantity being forecast around the forecast 

regression line, thus the smaller MSE, the better the fit. However, since the MSE is 

computed by squaring estimation errors, it is especially sensitive to cases with large 

errors. The root-mean squared error(RMSE) is simply a square root of the MSE, and is 

used as an estimation of accuracy. 

A second indication of the goodness of fit of the regression is the mean absolute 

error (MAE), which is the average of the absolute values of the differences between the 

predicted and observed values. 

MAE=為|yk-0」 [4.6] 

The MAE is a typical measure for predicted errors in a given verification data set. 

The MAE for R!v區 is 27.8 km. The RMSE is 36 km. These numbers indicate 

an adequate, but not necessarily robust goodness-of-fit. 
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4.2.2 PV202 Prediction Equation 

Next a linear regression was done using the wind speed at a radius of202 km as 

the predictand. The wind speed at a radius of202 km will serve as a proxy for the storm 

size. In this case, only four predictors were retained in the linear regression and are listed 

as follows: 

MXWND: Maximum Azimuthally Averaged Wind Speed 

PC2TB: 

PC2GTB: 

Second Leading PC of Cloud Top Brightness Temperature 

Second Leading PC of the Gradiant of Cloud Top 

Brightness Temperature 

LAT: Latitude of the Storm Center 

The resulting regression equation for predicting the wind speed at a radius of 202 km is 

as follows: 

PV202 = -8.8 + (0.5)MXWND + (3 l.9)PC2TB + 

(-58.05)PC2GTB + (.54)LAT 

[4.7] 

The regression equation predicts a positive correlation between the maximum wind and 

the wind speed at a radius of 202 km (see Figure 4.15). This is plausible physically, 

because if the wind speed at the radius of maximum winds is quite large, and this wind 

speed drops off at a predictable rate away from RMAX, then the wind speed at V202 

should also be quite large. Next, PC2TB seems to be a manifestation of the size of the 

cold cloud shield. Figure 4.16 illustrates the fact that if the cold cloud shield grows, it is 

an indication that the storm is growing in size. This will obviously be directly related to 
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the winds at a radius of202km, which is effectively a size parameter. There is also a 

direct relationship between latitude and the predicted V202 (see Figure 4.18). As a 

storm moves north, away from the equator, it will typically grow larger. This is 

consistent with previous studies (e.g. Merrill, 1988) 

The inverse relationship between PC2GTB and the predicted V202 is a little 

harder to understand. As explained above, PC2GTB appears to be capturing the eyewall 

convection, and the rate at which the convection drops off after this maximum. If the 

convection drops off rapidly, the storm is likely to be smaller, thus V202 will be smaller. 

Conversely, if the convection (ie cold cloud top temperature) decreases slowly away from 

the eyewall, the storm will likely be larger, thus V202 will be greater. 

The correlation coefficient between the predicted wind at r=202km and the 

observed wi~d at r=202km is.807, and 65% of the variance is explained. See figure 

4.19, a scatterplot of the predicted versus the observed size parameter values. The solid 

red line represents a perfect correlation between V202 and PV202. One can see that the 

prediction equation is quite robust, as the fit is good, and the scatter is minimal. 

The V202 residual plots indicate that nearly 75% of the cases fall between +10 

and-IO knots of the actual wind speed at a radius of202 km(Figure 4.20). It appears 

that there is a randomness to the over or under prediction in terms of the size of the 

storm. The goodness-of-fit tests indicate that the IR V202 prediction equation is much 

more robust than the IR RMAX prediction equation. The MSE is 7.8 kt, and the RMSE 

is 9.6 kt. 
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Table 4.1 

MAE RMSE 

RMAX 27.8 36 

V202 7.8 9.6 

J\zimuthally Averaged Wind 7.56 10.2 

Field 

4.2.3 Symmetric Wind Field Prediction 

Once the parameters Rlv1AX and V202 are estimated, the next step is to estimate 

the entire symmetric wind field . As Holland (1980) suggests, a valid method of using 

sparse observations to provide objective estimates of destructive wind extent in a tropical 

cyclone is with an analytical model of hurricane wind profiles. The Rankine Vortex is a 

simple vortex model, often called a Rankine combined vortex for the reason that it is built 

from two separate two dimensional flow fields. The interior flow field is one that has 

only a tangential velocity, which increases linearly from zero along the central axis to a 

maximum value at a radius Rm. This interior region rotates like a solid body, with 

constant vorticity, even though it is fluid: 

V /r = constant 

The outer flow is also purely tangential and begins with its maximum velocity at 

radius Rm. The velocity in this outer region is inversely proportional to the distance from 

the origin: 

Yr= constant 
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In this study, a modified Rankine Vortex is considered, where the tangential wind is 

given by: 

V rx = constant 

Thus, the modified Rankine vortex is described by 

x 

丶
囯
'
,

、
~

「
＿R
m
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m
_
r
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丿

、
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「
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(4.8] 

r>R m 

Where V = tangential wind speed, V m = maximum tangential wind speed, r = radial 

coordinate and Rm = radius of maximum wind, and x is unitless, positive number derived 

empirically from existing infrared data. An exponent of unity would signify the 

assumption of conservation of angular momentum, and solid body rotation. According to 

Holland (1980), the value ofx outside the radius of maximum wind is less than unity and 

it usually lies be坪een 0.4 and 0.6, although it can be lower or higher. These flatter 

profiles in the outer radii are a manifestation of the loss of angular momentum 

experienced by inflowing air parcels due to friction and convective processes. Although 

the model is highly simplified, and in actually, a Rankine vortex cannot be exactly 

reproduced in the atmosphere, it is often used as a model for the wind distribution in a 

TC. Figure 4.21 is an example of a modified Rankine tangential wind profile of a 

hypothetical tropical cyclone with a maximum wind speed.at 100 kts, an RMAX of 55 

km, and x set to 0.5. 

An important thing to note when using a Rankine Vortex is that the entire 

symmetric wind field is represented by only tangential wind. The radial symmetric wind 

field is neglected in the Rankine Vortex. This assumption is valid accordin~ to 

calculations performed on the actual aircraft data. The symmetric radial wind calculated 

49 



at each radius is approximately zero (mean of -.72 knots), and is negligible compared to 

the symmetric tangential wind at each radius (mean of 40.4 knots). See Figures 4.22 and 

4.23. Note the scale difference between the radial and tangential mean symmetric wind 

fields. Also observe that the mean tangential wind profile from aircraft data is quite 

closely approximated by a Rankine vortex model, while the radial wind profile has an 

entirely different shape. Since the aircraft is typically measuring the winds at 700 mb, 

the radial wind is quite small and can be neglected in the symmetric mean. If the aircraft 

were measuring wind speeds near the surface, the radial wind would have a larger 

negative component due to friction . In chapter 6, the asymmetric wind field will be 

approximated by the storm motion vector, and the radial wind component will no longer 

be neglected. For the time being, we will assume that the symmetric tangential wind 

field is highly representative of the actual flow field in a hurricane. 

The regression method described above is used to predict a radius of maximum 

wind and a wind speed at a radius of 202 km, from various known parameters including 

infrared BT data and latitude. A maximum wind speed can be calculated using the 

Dvorak technique from the same infrared data. Therefore, in (4.8), Vm and rm are known, 

and x can be determined so that V at r=202 km matches the predicted value. This 

exponent will be different for each storm case. Once, V m, rm, and x are known, (4.8) can 

be used to estimate the entire symmetric wind field. 

4.3 RESULTS 

Figure 4.24 shows the distribution of the correlation coefficient between the 

predicted symmetric, tangential wind field and the actual symmetric, tangential wind 
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field as measured by aircraft for each case. 210 of the 249 cases exhibit overall 

correlations of better than.50, and nearly 90 cases exhibit excellent correlations of 

greater than.90. These results are promising and interesting alone, however, the next 

step is to determine which cases are performing well, and which are performing poorly, 

in terms of radius of maximum wind, maximum wind speed, and storm size. 

Figure 4.25 is a plot of the mean maximum wind speed for all cases with a 

,;;orrelation coefficient above a certain threshold, beginning with all cases on the far left, 

and ending with only those cases with a correlation greater than.98 on the far right. One 

can see that the mean MAXWND for all 249 cases is near 57 kts. As the cases with 

lower correlation coefficients are left out of the calculation of the mean max wind speed, 

the mean M嵓WND increases. The mean M嵓W叩 for cases with a correlation of 

better than.98 is 81 lets. As further evidence, there are 22 cases in which the correlation 

between the predicted and actual wind fields is greater then.97, and the mean 

MAXWND for these high performance cases is 78 kts. Similarly, there are 22 cases in 

which the correlation coefficient between the predicted and actual wind fields is less than 

.40, and the mean MAXWND for these low performance cases is only 40 lets. Thus, 

there is nearly a 40 kt wind speed difference between the 22 worst performing cases and 

the 22 best performing cases. Thus, cases in which the maximum wind speed is greater 

perform significantly better than cases in which the mean MAXWND is quite weak. 

Physically this is reasonable because more intense storms tend to be better organized, 

thus they are structured in a manner than is easier to predict from IR data. 

Figure 4.26 is a similar plot, however in this case, a mean radius of maximum 

winds is calculated for all cases with a correlation coefficient greater then certain 

51 



thresholds, again from.00 to .98 and above. The relationship is not quite as robust as the 

relationship described between the mean max wind speed and performance, however, it is 

clear that cases in which the correlation is higher do tend to exhibit a larger RMAX. The 

mean RMAX for all cases is near 72 km, whereas the mean RMAX for cases with a 

correlation of .90 or better is approximately 78 km. It is therefore likely the storms with 

a larger 1Uv扒X tend to perform slightly better than small !Uv區 storms. Perhaps a 

better measure of this assertion is to compare the best 22 cases to the worst 22 cases, in 

the same manner as described above. The 22 best performing storms (those with a 

correlation coefficient greater than.97) exhibit a mean RMAX of 82.9 km. Conversely, 

the 22 worst performing cases (those with a correlation coefficient of less than.40) 

exhibit a mean 吣1AX of only 31 .3 km. There is greater than a 50 km difference 

between the best and worst performing cases, thus, the evidence clearly supports the 

assertion that storms with a larger 1Uv扒X do perform better in the Rankine Vortex 

model. 

A final means of stratifying the cases is to calculate the mean wind speed at a 

radius of 202 km, a proxy for the storm size. Figure 4.27 illustrates that the mean V202 

for all 249 cases is approximately 33 kts, while the mean V202 for all cases with a 

correlation coefficient of.98 or better is 50 kts, a significant difference. Again, the best 

and worst cases were compared, resulting in a 30 kt difference between the best and 

worst performing cases. Thus, one can speculate with confidence that larger storms tend 

to perform better in the Rankine Vortex model. 

From this stratification analysis, it is clear that larger, stronger storms tend to be 

easier to recreate in terms of the symmetric tangential wind field via a regression 
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technique and the use of a Rankine Vortex model. Not surprisingly, these storms perform 

better because they have a structure that is more organized, and predictable using a 

simple model. Weaker, disorganized storms are much harder to recreate from simply an 

estimation of a radius of maximum winds and a size parameter, because the wind 

structure is more complicated, and does not follow any sort of model for mature cyclone 

structure. 

Figures 4.28 through 4.33 illustrate both high performance and low performance 

cases. Figure 4.28 is a plot of the actual wind field against the predicted wind field from 

Hurricane Felix in the Atlantic in 1995. The red line represents a perfect correlation 

between the predicted azimuthally averaged, tangential symmetric wind field and the 

actual wind field as measured by aircraft, for all 51 radii. The diamonds represent the 

actual correlation. Figure 4.29 contains plots of both the actual and IR predicted wind 

fields as a function of radius. One can see that this was a very high performance case, 

however it is not perfect. The model tends to under-predict the wind field, especially 

outside the radius of maximum winds, however it does an excellent job of reproducing 

RMAX via the regression technique. Figures 4.30 and 4.31 are the same plots for another 

high performance case, Dennis in the Atlantic in 1999. Again, the regression technique 

accurately predicts the radius of maximum winds, and the Rankine Vortex model 

accurately describes the flow field, especially inside RMAX. An important feature to 

note is that in both of these high performance cases, the maximum wind speeds are high, 

66 kts in the case of Felix, and 77 knots in the case of Dennis. 

Conversely, Figures 4.32 and 4.33 illustrate a case that performed very poorly, 

Edouard in 2002, and in this case the maximum wind speed is only 27 knots, again 
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emphasizing the higher quality of analysis for bigger, more intense storms. The aircraft 

observed wind field in Figure 4.33 is highly sporadic, with a pair of weak wind 

maximums, instead of one prominent RMAX. Thus, the regression technique proved 

quite unsuccessful at predicting RMAX, and the Rankine Vortex model is unable to 

resolve two wind maximums. It is increasingly evident that complex, weak, disorganized 

systems do not perform well using the combined regression Vortex model method. 

The same goodness-of-fit tests were applied to the deriv~d wind field as were 

applied to the predicted radius of maximum wind and the predicted wind speed at a 

radius of202 km. The MAE for the wind field for all 249 cases is calculated to be 7.2 

kts, and the RMSE is 10.2 kts. 

100 
Hvpo{he{ical Rankine Vortex 

^ 
`z `~ ' 80 
t 
。g 
u 

• `滘多 6 0 

囹
<( 。> 4O 

全

£ 
5 

.< E ;;; 2O 

50 1 00 1 50 200 
Rodiol Distance from Center of TC 

Figure 4.21 

54 



Radial Symmetric Wind Field os a Function of Rad ius 
0 .5 

0.0 

5O 01 
一
＿

(f0
U
)
1〉
菡

-
,
d
5
PU!M 

IDJPOcj 

- 1.5 
Meon = - 72 kr,o1e, 
Sdev = 70 kno1s 

-2.0 

。 10 20 30 
Rodiu,; (km) 

40 50 

Figure 4.22 

Tangential Symmetric Wi nd Fie ld as a Function of Radius 
50 

40 
(
\Ou~) 

0 

0 

3

? 

p;iJdS 

pu!M 

1onu;i6uo1 

10 
NIeon = 4U.4 knoIs 
Sd今＝ 10 0 knots 

。。 10 20 30 
Radius (km) 

40 50 

Figure 4.23 

55 



Histogram of Wind Field Correlation Coefficient 

90 

80 

70 

60 

50 

Frequency 
40 

30 

20 

10 

Oto .10 .10 to .20 .20 to .30 .30 to .40 .40 to .50 .SO to .80 .60 to .70 . 70 to .80 .80 to .90 .90 to 1.0 
Co"elatton Coefficient 

Mean Observed Max 
Wind Speed (kt) 

Figure 4.24 

Mean Max Wind Speed for Increasing Correlation Coefficient 

85 

80 

75 

70 

65 

60 

55 

50 
> 0.0 >.10 >.20 >.30 >.40 >.50 >.60 >.70 >.80 >.90 >.95 >.98 

All Cases > Given Correlation Coefficient 

Figure 4.25 

56 



Mean Radius of Max Wind for Increasing Correlation Coefficient 

Mean Observed Max 
Radius (km) 

Wind Speed at 
r=202km (kt) 

55 

50 

45 

40 

35 

30 

25 

95 

90 

85 

80 

75 

70 

65 

60 
> 0.0 >.10 >.20 >.30 >.40 >.50 >.60 >.70 >.80 >.90 >.95 >.98 

All Cases > Given Correlation Coefficient 

Figure 4.26 

Mean V202 for Increasing Correlation Coefficient 

> 0.0 >.10 >.20 >.30 >.40 >.50 >.60 >.70 >.80 >.90 >.95 >.98 

All Cases > Given Correlation Coefficient 

Figure 4.27 

57 



BO 
1995 AT Feli)(8/18 OOZ 

0 

0 

0 

642 

0\DP 

ellEo,; 

P.IP!P.IJd 

so 

Pl.JU 

PU!M 

◊ ◊ / ◊ 。 。 。/ 
。 , O' 

L0 

OA0

' 
。

。

20 40 60 
Wind Field os Observed by Aircroft 

80 

Figure 4.28 

80 
1995 AT Felix 8/18 OOZ 

。
。
。

642 
pa~s 

puJM 

paDDJa>VA=04inEJZV 

/ 
/ 

/ 
／

日

\\- 

\ \ 

才/
[ 

IR Predic1ed 
Aircraft Observed 

50 100 
Rodii 

Mollwind: 66 kts 

150 200 

Figure 4.29 

58 



BO 
1 999 AT Dennis 8/29 12Z 

0OO 642 

2DP 

ellEOJJ 

PilFJ!P;JJd 

so 

Plill.:I 

PU!M 

。

OO 

函

ooo 

00 

/ 

& ' 

。。 20 40 60 
Wind Field as Observed by Aircraft 

80 

Figure 4.30 

80 

尸
p
u
-
;

『J
a
>
V
K
=
g

』
』
[
／

O
L。

1999 AT Dennis 8/29 12Z 

IR Pr函k1ed

Aircraft Observed 

50 100 
Rodii 

Maxwind: 77 kts 

150 200 

Figure 4.31 

59 



30 
2002 AT Edouard 9/03 12Z 

5O5O 2211 
0lDP 

~IEOJJ 

P<IP!P.IJd 

SD 

PJa!j 

PU!M 

鉯°
沒°>

。
。
。
。
。
。
。

。

。

。
00 

。

5 
。

00 
00 

。

。

。

。。
d5 

10 15 20 
Wind Field os Observed by A.ircroft 

25 30 

BO 

Figure 4.32 

2002 AT Edouard 9 /03 12Z 

00O 642 p
a史
1
S
p
u
l
M
p
a
D
O
A
a
>
V
A
=
0
4
~
n
E
l
Z
<

Aircraft Observed 

。。 50 100 
Rod ii 

Moxwind: 27 kls 

150 200 

Figure 4.33 

60 



CHAPTER 5 -ASYMMETRIC WIND ANALYSIS 

Chapter 4 is devoted to describing a technique to recreate the symmetric wind 

field in a tropical cyclone from infrared satellite data. In this section, a method to add an 

asymmetric wind component is presented. For the purpose of this analysis, the storm 

motion will be assumed to be the only contributor to tropical cyclone asymmetry. In 

reality, there are most likely several parameters that become important factors, such as 

wind shear over the storm domain. Basically, this portion of research revolves around 

answering the question of how much asymmetry can be explained by the storm motion 

alone, and can it be used in conjunction with the symmetric wind analysis to more 

accurately portray the wind field in a tropical cyclone. 

5.1 THE ASYMMETRIC WIND FIELD 

The asymmetric wind field is defined to be the difference between the aircraft 

observed tangential wind at each of 51 points along 16 radial legs in the analysis grid, 

and the aircraft derived azimuthally averaged wind at each of the 51 radii. The 

asymmetric wind at each of 16 points in the azimuth, for each radii separately, is then 

projected onto a sine function using Fourier decomposition. The phase and amplitude of 

the asymmetric wind field at each radii is then compared to the phase and amplitude of 

the storm motion vector, also projected onto a sine function. For the purposes of 

comparing the aircraft data wind asymmetries and the storm motion vector, 322 cases are 

retained, versus the 249 used for the IR derived symmetric wind field. This is because 

we are not constraining our analysis cases to matching IR cases. 
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The principle of Fourier analysis consists of decomposing an arbitrary function 

s(t), possibly periodic, into simple wave forms, i.e. into a sum of sine and cosine waves in 

the case of a periodic wave form, and into an integral over sine and cosine waves, if the 

wave form is not periodic. This way one obtains a representation of the original wave 

form that allows one to identify easily which frequencies are contained in the wave form. 

Let V(0) be the entire wind field function, defined in the interval (0,2n) and 

having the period 2 n. The Fourier Series, or Fourier expansion corresponding to V(0) is 

defined to be: 

° ° 
V(0) = b。 +Lan sin(n0) + Lbn cos(n0) 

n=I n=I 

Since b。 is simply the constant term, which is defined as the mean of the function V(0), 

we can replace b。 with V。, the azimuthally averaged wind speed at a particular radii, and 

the equation becomes: 

oo oo 

V(0)-V0 = Lansin(n0)+ Lbncos(n0) 
n=I n=I 

where the Fourier Coefficients an and bn are defined as: 

2, 
I 

an=— I[v(0) －吐in(n0)d0
2冗

。
2, 

I 
bn=— I化(0) -V,, ]cos(n B)d 0 

2冗
。

The subscript n corresponds to the wave number, or wave form. Wave number zero is 

the mean flow field, and the higher wave numbers represent the storm asymmetries. In 

order to simplify the calculations, in can be shown that the wave number one component 

of the asymmetric wind field captures quite closely the original function. Figure 5.01 

illustrates the contributions of higher order wave numbers. The heavy blue line 
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represents the original tangential asymmetric wind field for a specific case at a specific 

radii. The x-axis represents a point along each of 16 radial legs, and the y-axis is the 

amplitude of the function . The red line is the wave #1 contribution to the wind 

asymmetry. It is already highly representative of the total asymmetry. The orange line is 

the wave #1 plus the wave #2 contribution, and it is clear that the addition of the wave #2 

asymmetry leads to a slightly more accurate approximation of the total function . The 

addition of wave numbers 3,4 and 5 all bring the representation slightly closer to the 

original function . If all wave numbers are combined, the exact original function will be 

recreated. However, because the addition of the higher-order wave numbers is only a 

slight improvement upon the wave #1 approximation; for simplicity, they can be ignored 

in further calculations. This simplifies our 囟uations to the following: 

v' (0) = vc(0)cos0+ v, (0)sin0 

u' (0) = uc(0)cos0 + u, (0)sin0 

Figure 5.02 illustrates the wave #1 sine and cosine contributions to the wave #1 

asymmetry. Also plotted is the actual tangential wind field asymmetry. In this case, the 

original tangential wind field asymmetry is closely approximated by the cosine portion of 

the wave # 1 contribution. The addition of the sine contribution brings the solution closer 

to the actual asymmetry. 

The wind asymmetry as a function of radius can also be calculated in terms of 

phase and amplitude, to later be compared to the phase and amplitude of the storm 

motion vector. This is done via the following equations: 

4 ＝二
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4＝二

where A, and Au represent the amplitude of the tangential and radial components of the 

wave number one wind asymmetry, and 

叭＝ tan-1乜］

¢U =tan4仁］

represent the phase of the tangential and radial components of the wave number one wind 

asymmetry. 

5.2 THE STORM MOTION ASYMMETRY 

If it often assumed that tropical cyclone wind asymmetries are due in large part to 

the motion of the storm itself. lfthis is true, then by incorporating the storm motion into 

our analysis, an accurate approximation of the windfield will be possible, both in the 

symmetric mean, and with asymmetries. 

It is necessary first to understand how storm motion asymmetries contribute to the 

total asymmetry of the storm. It can be theorized that there is a relationship between the 

phase of the storm motion vector and the phase of the asymmetry. For instance, the 

storm motion vector may be acting in one direction, but the asymmetry reacts at some lag 

to that direction. Furthermore, there should be a relationship between the amplitude of 

the storm motion vector and the amplitude of the asymmetry. Most likely, the storm 

motion vector contributes to the asymmetry, but because other factors are also probably 
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affecting the asymmetry (such as wind shear, relative flow field and convective 

asymmetry), the ratio of amplitudes will not be one. 

Data used to calculate a storm motion vector comes from the NHC best track. A 

storm motion vector is calculated using the latitude and longitude from - 12 hours and the 

00 hour (analysis time) latitude and longitude, which corresponds to the twelve hour time 

period used in the complimentary aircraft analysis. 

The storm motion vector is calculated in terms of a speed in the both the x and y 

directions, and an· amplitude (Ac)and phase 慎）， in the manner described above. The 

motion vector is plotted in fourier space versus the wind asymmetries for several cases in 

Figures 5.03, 5.04, and 5.05. Note in figure 5.03, the storm motion vector quite closely 

approximates the wind asymmetry, however this is not true for the subsequent cases. In 

figure 5.04, the amplitude of the motion vector is very small, 0.7 mis. Thus, it is not 

contributingly significantly to the wind asymmetry. In figure 5.05, the amplitude of the 

motion vector is of the same magnitude as the wind asymmetry, however the phase is off 

by nearly 180 degrees. It is clear that the amplitude and phase relationship between the 

storm motion vector and wind asymmetry is complicated. 

5.2.1 Simple Model 

We are now dealing with only 249 cases in which the aircraft analysis has 

matching infrared data. The first step in calculating the asymmetric wind field is to 

translate the storm motion vector into a coordinate system that is comparable to the 

symmetric wind field grid system. Thus, the x and y direction stonn motion vector 

components must be converted to radial and tangential components in the cylindrical 

coordinate grid system. The first asymmetric wind field calculations are made without 
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taking into account any phase bias or amplitude ratio relationships. Instead, it is assumed 

that the storm motion vector is contributing one - to - one to the wind asymmetries via 

the following relationships: 

［訌 ＝［二。。 －C：［了］訂
Where 0 denotes degrees in the azimuth, from zero to 360, at 22.5 degree spacing. 

V(r,0) = A· cv + V(r) 

U(r ,0) =A· cu+ U(r) 

However, because the radial wind is assumed to be zero in the symmetric mean, the 

radial asymmetric wind field equation simplifies to: 

U(r ,0) = A· cu 

and A is assumed to be equal to unity. A total asymmetric wind field is calculated using 

the radial and tangential components. 

From these simple equations in which the storm motion vector is simply added to 

the symmetric wind at each grid point, an entire asymmetric wind field can be estimated 

and compared to the aircraft data for the same case. A correlation coefficient is 

calculated for all 249 cases using this method. Figure 5.06 is a plot of the frequency of 

ranges of correlation coefficient. The mean correlation coefticient between the observed 

and derived total wind fields for all 249 cases is.652. A significant number of cases are 

highly correlated, however there are a handful of low, and even negatively correlated 

cases as well. The RMSE for this model is 13 .4 knots (see Table 1). 

The IR derived 3D symmetric wind field is not as highly correlated to the aircraft 

observed total wind fie ld as the IR derived symmetric wind field plus motion vector (see 
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Figure 5.07). The mean correlation coefficient is.500 for the IR symmetric and aircraft 

total wind field. This suggests that the addition of a storm motion vector is actually 

greatly improving the wind field analysis. 

While it appears as though the algorithm is performing very well as it is, recall 

that while the 20 symmetric wind field correlations were quite high for most cases, there 

were some cases that were very poorly correlated. If a case is already a poor estimate in 

the symmetric mean, then there is little hope that by adding asymmetry it will become 

closely correlated to the actual wind field, and in fact it might even move it farther from 

the truth. As stated before, the IR algorithm for reproducing the symmetric wind field 

performs poorly on weak, disorganized disturbances, but performs very well on strong, 

well-organized tropical storms. Figure 5.14 is an illustration of the observed wind field 

for Dennis in 1999 (a), and the symmetric (b) and asymmetric (c) IR derived wind field 

analyses. Dennis was a fast moving, 77 knot tropical cyclone, with a pronounced 

asymmetry. The symmetric wind field analysis (5.14b) is quite unrepresentative of the 

actual wind field, however, the once the motion vector is added (5.14c), there is a clear 

asymmetry, of similar magnitude, phase and shape as the actual wind asymmetry (5.14a). 

Clearly, in this, and many cases of fast moving, medium strength to strong tropical 

cyclones that performed well in the symmetric wind analysis, the addition of a motion 

vector is enhancing the wind field re-creation.· It is therefore informative to disregard 

cases that performed poorly in the 2D symmetric wind field analysis, and concentrate on 

a subset of cases that performed well. 

Taking into account only those cases where the symmetric tangential wind field 

was correlated at.70 or better (176 cases) to the actual symmetric wind field indeed 

improves the mean correlation coefficient to.741 (see Table 1), and improves the RMSE 

to only 12.4 knots. The mean maximum wind for this subset of cases is 62 knots, or 

roughly the designation between a tropical storm and a tropical cyclone. Thus, we are in 

effect disregarding weak systems. This simple model suggests that the addition of a 
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s!orm motion vector improves the wind field analysis quite significantly, especially when 

only tropical cyclone strength systems are considered. 

5.1.2 Adjusted Model 

In order to study the relationship in detail, an tangential amplitude ratio and a 

tangential phase bias are calculated for each radius: 

AR(r) = Av (r) 

A 
C 

¢B(r) ＝ 叭（r) - </Jc

The amplitude ratio and phase bias are calculated at each radii for each of 322 cases in 

which adequate aircraft data is available. AR (r) and ¢8(r) are then averaged over each 

case and plotted as a function of radius in figures 5.06 and 5.07. The cases are also 

stratified by the amplitude of the storm motion vector. Fast moving storm cases may 

behave differently than those that are moving quite slowly. 

Figure 5.08 is a plot of ¢8 (r). The phase bias differs between slow and fast 

moving cases. All cases averaged exhibit a mean phase bias of 20 degrees at inner radii, 

and up to 50 degrees at outer radii. Before studying the stratification by storm motion, it 

is necessary to mention that the standard deviation of phase bias for all cases is 79 

degrees. This is a very large standard deviation given a mean phase bias of only 60 

degrees. It can thus be concluded that the phase bias contains large scatter, and a direct 

relationship based on these biases is not valid. Note that with a phase bias of zero 

degrees, the maximum positive asymmetry will act 90 degrees to the right of the storm 

heading. 
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Figures 5.09 and 5.10 explore the phase bias relationship from an optimization 

perspective. The mean correlation coefficients for phase biases (~¢) from -90 degrees 

to +90 degrees, at IO degree increments, are calculated after adjusting the tangential and 

radial motion vector components via the following phase adjusted rotation matrix. 

［十[cos(O - A¢) - sin(O -A¢)] [g 
g sin(O-A¢) cos(O-A¢) cj 

Note in these figures that the correlation coefficient is optimized at a phase lag of zero 

degrees. The MSR is also optimized at a phase lag of zero (where the error is the 

smallest). Therefore, the phase of the storm motion asymmetry will not be adjusted due 

to a systematic bias. 

Figure 5.11 is a plot of AR (r). Notice the bright blue line illustrates the 

tangential asymmetry amplitude ratio for only slow moving cases (Ac< 5.0 knots). At 

inner radii, the tangential asymmetry is almost a factor of six times greater than the storm 

motion, and it 喲1mptotes to a ratio of approximately two. Conversely, the red line 

illustrates only fast moving cases (Ac> 10 knots). The amplitude ratio for the tangential 

wind asymmetry v叮sus the storm motion asymmetry is close to unity, meaning that the 

storm motion vector is a full contributor to the wind asymmetry. It is clear that that 

amplitude of the asymmetric response to the storm motion is a function of the speed of 

the tropical cyclone motion. 

Because the amplitude ratio for slow moving cases is 6, it is tempting to increase 

the contribution of the storm motion asymmetry in the wind analysis. However, this ratio 

is most likely due to the fact that the majority of the actual wind asymmetry in slow 

moving cases comes not from the small motion vector, but from other factors, such as 

wind shear and convective asymmetries. Thus, it is not valid to simply force the small 

motion vector asymmetry to contribute significantly. 
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Thus, in an effort to isolate an effective contribution amplitude, relationships are 

explored using the same optimization method described above, adjusting A between 0.5 

and 1.7 in the following equations to build the asymmetric wind field: 

V(r,0) =A · cv + V(r) 

U(r,0) = A·cu +U(r) 

Figures 5.12 and 5.13 illustrate that the correlation coefficient is optimized at a ratio of 

1.4, while the MSR is optimized at 1.2, therefore a compromise is met at an amplitude 

ratio of 1.3. Thus A becomes 1.3 in the above equations. 

After ru皿ing all 249 cases (this number becomes smaller due to the availability 

of concurrent IR data) with the adjusted amplitude ratio, a new set of statistics is 

available. The mean correlation coefficient for the adjusted cases is a slight improvement 

over un-adjusted cases, at.659. The error statistics remain the same, at 13.4 knot RMSE. 

Figure 5.15 is an example of an improvement due to the addition of amplitude 

adjustment. Figure 5.15(a) is the observed wind field for Hurricane Erin. Figure 5. l 5(b) 

is the symmetric wind field, and 5.15(c) is the un-adjusted total IR derived wind field. 

Note that the analysis provides useful information about the location of the maximum 

positive asymmetry, however, the amplitude of the asymmetry is slightly low. Figure 

5.15(d) is the amplitude adjusted wind field, and it is clear that the higher wind speeds in 

the wind maximum are now resolvable, however the area magnitude is still slightly off. 

Conversely, the addition of the adjusted wind field can harm the analysis. For instance, 

referring back to the case of Dennis, Figure 5.14(d) is the amplitude adjusted wind field. 

Increasing the amplitude of the response to the motion vector degrades the analysis by 

overestimating the amplitude of the wind asymmetry. 
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Furthermore, notice that although the correlation coefficient for a given case 

might seem quite low, between.40 and.60, it does not necessarily mean that the analysis 

has performed poorly. For example, Figure 5.16 is an example of Hurricane Juliette in 

the east Pacific. Again, the correlation coefficient between the actual and IR derived total 

wind fields is quite low, only.547, however the analysis is quite good at predicting the 

magnitude and phase of the asymmetry. Unfortunately, the Rankine vortex model is 

unable to resolve the rapid wind speed changes near the tiny eye of Juliette, which is 

likely causing the correlation coefficient to be smaller. In spite of this drawback, there is 

clearly valuable information in the IR derived wind analysis. 

5.3 CONCLUSIONS 

It is clear that questions asked at the beginning of the chapter have been 

answered. A majority of asymmetry can be explained by storm motion asymmetry for 

medium to fast moving cases. The storm motion vector for slow moving cases is too 

small to largely affect the asymmetry, and other factors are most likely playing a larger 

role. The storm motion asymmetry can effectively be applied to the symmetric wind 

field derived in chapter four to produce valid and highly infonnative estimations of the 

tropical cyclone wind field. 
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71 knots maxwind, 130.7 degree, 11.9 knot heading. 
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Table 5.1 

CASE cc MSR RMSE 

Symmetric Wind Field .500 11. 7 kts 15.5 kts 
All Cases (249) 

Symmetric + Storm Motion Wind Field .652 9.8 kts 13.4 kts 
All Cases (249) 

Symmetric + Storm Motion Wind Field .659 9.8 kts 13.4 kts 
Amplitude Adjusted 

All Cases (249) 

Symmetric Wind Field .606 10.6 kts 14.4 kts 
> .70 2D Correlation 

(176) 

Symmetric + Storm Motion Wind Field .741 9.6 kts 12.9 kts 
> .70 20 Correlation 

(176') 

Symmetric + Storm Motion Wind Field .743 9.5 kts 12.8 kts 
Amplitude Adjusted 
> .70 2D Correlation 

(176) 
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Chapter 6 - Conclusions and Future Work 

6.1 CONCLUSIONS 

With coastal and island populations booming, and the increased possibility of 

increased tropical activity due to shifts in the climate, it is necessary to develop a reliable, 

continuously available method for estimating the wind struc匯e in a tropical cyclone. 

Because instruments that measure infrared radiation are currently aboard geostationary 

satellites that provide constant global coverage in the tropics, it is important to utilize this 

data to predict hurricane wind structure. There are currently no other products that 

provide continuous monitoring of tropical cyclone activity. 

Using aircraft data from 1995-2003 as ground truth, and CIRA infrared archive 

brightness temperature data, algorithms for objectively predicting the radius of maximum 

wind and the azimuthally averaged wind speed at a radius of200 km are developed. 

Subsequently, a modified Rankine vortex model is used with the IR-derived estimates of 

radius of maximum wind and wind speed at 200 km to estimate the two-dimensional 

symmetric wind field in 249 12-hour time periods. Furthermore, the addition of a phase 

lagged storm motion vector wind asymmetry is added to the 2D symmetric wind field to 

produce estimates of the total wind field. 

The results of this study suggest the IR derived technique for predicting TC wind 

structure is a dramatic improvement over any other IR derived wind structure estimates. 

It also appears to be at least as accurate, and more often superior to many any other 

satellite derived wind structure estimates, if for the simple reason of data availability. 

Because infrared data from geostationary satellites is nearly continuous with a temporal 
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resolution of 30 minutes, or better in some cases, there is the capability of producing real­

time estimates of hurricane wind structure at least every 30 minutes. 

The algorithms work best for tropical cyclone strength cases (>64 knots) that are 

well organized and moving relatively quickly. Weak tropical depressions and storms are 

highly un-organized and have complicated structures that are not well represented by a 

modified Rankine vortex model. Because the entire asymmetric wind field is calculated 

using a storm motion vector only, slow moving storms are not represented well in the 

total wind field calculations. The asymmetric wind field in slow moving storms is likely 

due to factors besides storm motion. 

These analyses, theoretically available every 30 minutes, will provide useful 

information for a variety of people and businesses. First and foremost, the ability to 

accurately diagnose the location of the maximum wind in a TC, versus simply the 

magnitude of the maximum wind, is important for ships and islands in the open ocean. A 

ship will not be safe traveling into an area of greater than gale force winds, therefore, 

with the aid of the IR derived algorithm for predicting wind structure, the ship will be 

able to avoid the highest winds. Furthermore, the data is useful to people inhabiting 

islands in the ocean, for insurance purposes, and ofcourse the purpose of personal safety. 

Also of great importance and usefulness is the ability to use this data to intialize 

weather and wave forecasts. Wave modelers will find information of the location of high 

winds important for the modeling of storm surges. Weather forecasters will use the 

additional information about the extent and location of winds to initialize forecast 

models, to better predict the track and intensity of tropical cyclones. 
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6.2 FUTURE WORK 

Future work in this field is possible and should be undertaken. First and foremost, 

because the IR algorithm is derived using aircraft data from 1995-2003 as ground truth, it 

will be necessary to validate the algorithms for the 2004 hurricane season in which the IR 

data is independent. It can be anticipated that the error might increase slightly, however 

because the original study consists of a large sample, 249 cases, it is likely that the results 

will not be significantly worse using independent data. 

Clearly, the storm motion vector is not capturing ~he entire asymmetric flow field 

for each case, especially for those cases that are slow moving. Therefore, it would be 

interesting to research the relationship between wind asymmetry and other parameters, 

including convective asymmetries, relative flow field , and wind shear over the domain. 

By adding other factors into the asymmetric wind analysis, a closer approximation of the 

actual wind field should be possible. 

It would also be informative and interesting to extend the analysis to include 

systems in other ocean basins than the Atlantic and East Pacific. The Air Force and 

NOAA only fly into storms that are a threat to the United States, therefore in order to get 

ground truth measurements of the wind off of which to base the algorithms, the study had 

to be confined geographically to the Atlantic and E. Pacific. Clearly, an extension of the 

analysis to ocean basins in which TC' s are NEVER flown is an important step. 

Finally, it would be instructive to look into cases in which a concentric eyewall is 

present, and be able to model these cases using a separate vortex model. Intense tropical 

cyclones will often have two eyewalls nearly concentric about the center of the storm, the 

outer eyewall surrounding the inner one (http://amsglossary.allenpress.com/glossary). A 
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local wind maximum is generally present in each eyewall. Sometimes more than two 

eyewalls occur. It will be a challenge to incorporate such a vortex model, and to identify 

cases in which there is a concentric eyewall structure. 

Finally, the Aircraft Reconaissance dataset that was developed as part of this 

project will provide useful and valid information for numerous studies of tropical 

cyclones. The dataset includes measurements of temperature, dewpoint, altitude, 

pressure, winds, and location that are highly quality control checked. 
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