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ABSTRACT

REVEALING AND ANALYZING THE SHARED STRUCTURE OF DEEP FACE

EMBEDDINGS

Deep convolutional neural networks trained for face recognition are found to output face em-

beddings which share a fundamental structure. More specifically, one face verification model’s

embeddings (i.e. last–layer activations) can be compared directly to another model’s embeddings

after only a rotation or linear transformation, with little performance penalty. If only rotation is

required to convert the bulk of embeddings between models, there is a strong sense in which those

models are learning the same thing. In the most recent experiments, the structural similarity (and

dissimilarity) of face embeddings is analyzed as a means of understanding face recognition bias.

Bias has been identified in many face recognition models, often analyzed using distance measures

between pairs of faces. By representing groups of faces as groups, and comparing them as groups,

this shared embedding structure can be further understood. Specifically, demographic-specific

subspaces are represented as points on a Grassmann manifold. Across 10 models, the geodesic

distances between those points are expressive of demographic differences. By comparing how

different groups of people are represented in the structure of embedding space, and how those

structures vary with model designs, a new perspective on both representational similarity and face

recognition bias is offered.
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Chapter 1

Introduction

The deep learning revolution is well underway. Deep neural networks (DNNs) have facilitated

major leaps in performance on tasks from many domains. They have been applied to image- and

video-based problems with great success on many tasks including image classification [10], object

detection [11], semantic segmentation [12], human pose estimation [13], and face recognition [14].

Deep models have become increasingly available for public use via cloud computing platforms

[15–18]. This allows non-expert end users to easily integrate various DNN-based models into their

applications.

In comparison with other techniques, deep models are often difficult to explain. This is in

part due to the size and complexity of deep models, which may consist of billions of param-

eters fit using thousands of GPU hours using millions of training samples and stochastic tech-

niques. Still, many researchers have proposed methods for peering into these black boxes. For

example, it is now commonplace for researchers to offer ablation studies when attempting to jus-

tify a new architecture or training method, testing for performance changes between incremental

modifications (e.g. [19–21]). Others offer qualitative techniques such as activation visualization

(GradCAM [22]) or nonlinear projection of outputs to fewer dimensions which can be plotted (t-

SNE [23], UMAP [24]). In the interest of quantitative comparisons beyond performance, some

choose to measure the similarity between learned representations. These measures can be abstract,

but generally are presented alongside some insights they support, such as: CNNs tend to learn fea-

tures “bottom-up” [2], and early layers tend to be similar across tasks [1]. These representational

similarity techniques are most similar to those studied here. The work presented in this thesis

finds the last-layer representations of various face recognition models trained for the same task

are highly similar, adhering to a shared structure despite their differences in architecture or train-

ing dataset. Subsequently, a method for analyzing this structure is studied as a means for better

understanding face recognition model bias.
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For clarity, representations, features, embeddings, and activations are considered equivalent

terms here, referring to the outputs of hidden units (or layers) of deep neural networks. These

outputs may be fed to another bank of hidden units, or treated as the final output of the model and

used for a given task. Over the course of model training, a representation is learned which distin-

guishes some inputs from others in a way which is useful for the modeling task, as measured by

an objective function. In the models studied here, this objective involves converting the represen-

tation of the model into a prediction, and comparing that prediction against ground truth labels for

training or evaluation. As model designs, training methods, and training datasets differ, the hidden

representations learned by models may also differ. Efforts to understand how representations vary

across different models not only study which models are objectively better, as commonly mea-

sured by task performance, but also shed light on the structure of information extracted by neural

networks. In Section 2.1, notable such efforts to measure, analyze, and utilize representational

similarity are covered in detail.

This thesis covers my efforts to add to the growing body of research aimed at understand-

ing deep models by comparing their learned representations. Where other works may focus on

how representations change between different neural network layers, different steps in training, or

between models trained for different tasks, the work here is concerned with the last-layer repre-

sentations of models of different architecture, trained for the same task. By architecture, I mean

the configuration of learned nonlinear functions which extract information from the input which

is useful to the modeling task. These architectures vary wildly, from the elegant residual skip-

connections of ResNet [25] to the systematically-refined “cell structures” discovered using neural

architecture search [26]. Some architectures will perform better than others, require fewer training

steps, or consume less computing power, as they are each trained from different initial parameters,

many learning within a different parameter space. Despite their differences, however, many archi-

tectures are compared and found to extract very similar information in the early efforts covered

here.

2



Specifically, a linear mapping was fit such that the last-layer activations of one CNN could be

swapped with the other with little change in overall image classification performance. In the early

stages, the last-layer activations of two deep convolutional neural networks (CNNs) trained for

ImageNet [27] image classification, Inception-v4 [28] and ResNet-152 [25], were found to have a

linear relationship with one another [29]. This finding surprised me and also my advisors, since

each model is taking a unique path through a different parameter space, yet arriving on a very

similar target. Since linear mappings are lossless and structure-preserving (when full-rank), the

results of this first experiment suggest that differences in CNN architecture have little impact on

the content of the final representation learned. Encouraged by this finding, this experiment was

expanded to include all 90 unique pairings of 10 ImageNet CNNs. Now covering a much broader

array of architectures, the same linear-interchangeability phenomenon was observed. All models

studied up to this point were trained for ImageNet image classification, chosen for its relative

popularity in the deep neural modeling community. However, a common architectural component

associated with all such models (the final linear classification layer) drew the significance of the

results of those experiments into question. This work was originally presented in my Master’s

thesis [30], summarized in Chapter 3.

To avoid the pitfalls of those previous efforts, the new contributions presented in this thesis

concern models trained for face recognition. Face recognition is of interest for a few key reasons.

First, evaluation of face recognition systems is typically carried out with faces unseen during train-

ing, i.e. open-set evaluation. In contrast, image classification systems are typically evaluated using

images of the same classes used during training. In image classification, convolutional layer out-

puts are converted from abstract embeddings to class-wise confidence scores via linear classifier,

and this shared class-wise score space is what drew the previous results into question. Though face

models may be trained using a linear classification layer, they are subsequently evaluated on new

faces, meaning that classification layer is no longer relevant. Instead, direct comparisons of those

pre-classification representations are emphasized. Second, the face recognition community offers

many datasets, especially evaluation datasets with established protocols and metadata. A detailed

3



description of recent face recognition modeling techniques and evaluation protocols is covered

in Section 3.2. Finally, face recognition has the potential to create massive social impacts, espe-

cially with regards to fairness. Indeed, many have found demographic bias in face recognition. In a

recent massive comparison of commercial face recognition systems, dark-skinned women’s faces

were consistently recognized at lower rates than others’ faces [31]. Many have analysed demo-

graphic bias in biometrics, covered in greater detail in Section 2.2. In short, demographic bias in

face recognition is commonly observed, and is concerning for its potential to reinforce institutional

bias and inequality among demographic groups, as discussed in [32].

In Chapter 4, the representations produced by face recognition models of different architecture

and training protocol are compared, revealing a fundamental similarity between CNNs trained on

the same task, in line with the results of previous experiments using ImageNet models. These

models may vary by architecture, loss function, or training dataset, yet produce highly similar face

embeddings. This fundamental similarity can be thought of as a canonical embedding space, a

compelling and consequential finding which may have implications for other CNN models and

modeling tasks. One implication with regards to security is described, which has already been

applied to extract the identity of individuals thought to be obscured with embeddings in a federally-

funded research program (DARPA AIDA).

Evidence of a shared embedding structure for models trained on the same task invites investi-

gation into the nature of this structure. Each model’s instance of this shared, task-driven structure

may have many interesting properties, dependent upon model designs. In other words, for the task

of separating faces of different people, though the bulk of the learned representation may be shared

between distinct models, fine yet meaningful deviations may be driven by model designs. Since

face recognition datasets often provide face attributes alongside identification labels, a unique bias

analysis opportunity is presented. Learned representations may be analyzed for the purposes of

understanding demographic structure, with implications for face recognition bias.

In Chapter 5 a method for comparing subsets of embeddings as linear subspaces, or points on

a Grassmann manifold, is studied. Prior methods for measuring face recognition bias compare
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embeddings using pairwise distances in the same or similar way as the model is evaluated [33–35].

These methods express meaningful biases in the form of lower recognition rates and different dis-

tance distributions for certain people groups. What is hidden by aggregates of distances, though,

is how bias is or is not also structural in nature. As evidence is found that face representations

conform to a shared structure, comparisons between face representations which are sensitive to

structure are encouraged. Using geodesic distance between points on a Grassmann, face demo-

graphics are represented as groups, and compared as groups. Comparing information about faces

in this way complements the trends of previous experiments, further solidifying the idea that face

models converge to a common representation.

Though the model designer has great incentive to design better models, and a social duty to

reduce bias, the interactions between model designs and learned biases can be complex. In one

study, deep neural networks were found to suppress difficult, yet predictive information in favor

of easy, less predictive information (i.e. shortcuts) [8]. Along similar lines, 3 times more female

faces than male were necessary to prevent gender bias [36]. From another perspective, successful

bias-mitigation efforts involve the obfuscation of demographic information [37–39]. So, some find

that different demographics require different amounts of information, while others find success by

removing demographics altogether.

As the relationships between our semantic understanding of faces and the incentives of a deep

neural network are sure to be complex, this research is intended to offer a new perspective on face

embedding structure, with a focus on demographic bias. This is surely an enormous task, but these

initial results are encouraging. Face structure can be broken down, and this structure is consistent

across models, in line with the results of previous efforts.
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Chapter 2

Related Work

Many have compared models and their learned representations for the purposes of understand-

ing or improving them. These are covered in Section 2.1. As mentioned prior, many seek to

estimate, understand, and mitigate bias in face recognition models. These are covered in Sec-

tion 2.2.

2.1 Representational Similarity

One straightforward method to compare representations is by measuring their correlation after

some sort of alignment. Many works have taken this approach, varying the method of calculating

correlation or alignment. Often included alongside these proposed metrics are effects observed

when measuring representational similarity between different models, at different stages of train-

ing, or using different datasets. While many provide justification for their technique, even in-

cluding examples and comparing other methods, there is no clear consensus on what qualities a

representational similarity metric should have. This issue is remedied in many works by applying

the similarity measure to replicate or reveal a representational phenomenon, providing grounding

to an otherwise potentially speculative technique.

In this section, the activation values produced by the neurons of a neural network are considered

to be their representation, as opposed to their weights. Also again, representation, feature, and

activation all refer to the same thing: the output of some layer in a deep neural network after

feeding it an input, in contrast to the output of the final layer, or the weights themselves. Though

the new work in this thesis only studies the last-layer representations, many works covered here

study other layers as well.
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Figure 2.1: The eight best and worst features chosen by bipartite matching in [5], as measured by correla-

tion. Taken from [5].

2.1.1 Correlation-Based Metrics

What Should Similarity Be Invariant To?

Kornblith et al.2019

Natural Alignment

In 2015, Li et al.looked for axis/neuron alignment between convolutional neural networks

(CNNs) trained on the ImageNet1 [40] by pairing neurons with maximal correlation [5]. They

train a variant of AlexNet [40] on ImageNet [27] using 4 different random initializations. Then

for each network, activations generated from the ImageNet validation set are extracted from all

layers, and correlations are computed between all pairs of neurons from the same layer of different

nets. Correlation is computed by taking the inner product of mean-centered, standardized activa-

tions. Notably, when comparing activations produced by convolutional layers, they choose a point

in each convolutional filter (channel) at random. Correlation scores are then used to compute a

1For reference, ILSVRC2012, commonly referred to as ImageNet, is a large-scale image classification dataset con-

taining 1.3 million images of various sizes across 1000 class labels.
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bipartite match or semi-match between neurons from the same layer of different networks. In other

words, they find one-to-one correspondences for each neuron in network A, layer i by finding the

neuron in network B, layer i which has the highest correlation score, optionally reusing neurons

in network B (a semi-match). They report the mean inter-model correlation at each layer after per-

forming these alignments, and offer examples which activate matched filters such as in Figure 2.1.

Additionally, the authors use a mutual information technique to score pairs of neurons, reporting

observations are “largely similar to that of using correlation similarity.” Later, they find many-to-

many correspondences by spectral and hierarchical clustering techniques, providing examples of

filters which are clustered.

This work is one of the first efforts to measure representational similarity between deep CNNs,

providing evidence that “some features are learned repeatedly in multiple networks, but other

rare features are not always learned.” However, while they report correlation values and provide

qualitatively-similar examples, it is not immediately clear how similar one should expect represen-

tations to be.

In 2018, Wang et al.built upon this neuron alignment effort by searching for minimal subsets

of neurons between networks which represent each other, in a similar effort to the previous work

by Li et al. [5, 6]. In contrast to the previous work, however, they measure similarity by finding

subsets of neurons Â ∈ A and B̂ ∈ B such that every neuron Â can be expressed by a linear

combination of neurons B̂ within some tolerance ϵ. As in [5], they represent neurons as the acti-

vation values produced by each layer of a deep convolutional neural network. Their work provides

comprehensive theory on the properties of various kinds of matching subsets of neurons, and mul-

tiple algorithms for finding them. Similar to Li et al. [5], they perform comparisons between nets

of identical architecture and training dataset but different random initialization. For convolutional

layers, they “randomly sample d from h × w × d outputs to form an activation vector for several

times [sic], and average the maximal matching similarity.” A closer inspection of their published

code reveals that these "neurons" used for similarity measure are randomly sub-selected from all

inputs and all spatial positions, using the same randomly chosen input examples and positions for
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Figure 2.2: Maximal matching similarities of different architectures trained on different datasets at various

matching tolerance ϵ, taken from [6].
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each channel. This random subsampling method is very similar (even equivalent, given more de-

tail) to the method described by Li et al. [5]. Using variants of VGG [41] and ResNet [42]2 trained

on either CIFAR-10 [43]3 or ImageNet [27], they report similarity between the same layer of dif-

ferent networks as the proportion of neurons belonging to a matching subset out of all neurons

in both layers. In summary, they report near-zero similarity for all layer-wise comparisons of the

networks they study, except for layers near the input or output compared with a high tolerance.

For these results, please refer to Figure 2.2. In other words, this work found that the proportion of

neurons in a given layer of one network which can be expressed as a linear combination of neurons

in the same layer of a different network is typically very small.

At face value, this work presents a compelling case for incompatibility between intermediate

layers of deep image classification CNNs. However, as will be discussed in the next chapter, mul-

tiple other works produce contradictory results–that a linear transformation is adequate to transfer

performance between models which differ not only in random initialization, but in architecture or

training dataset as well [7, 29, 44]. While Wang et al.provide rigorous definition of their method,

it is not immediately clear what the significance of their linear combinations of neurons is. As be-

fore, there is no clear baseline for comparing similarity measures aside from the upper and lower

bounds of total linear dependence or independence. More importantly, both Wang et al.and Li et

al.make some key assumptions which significantly narrow the scope of representational similarity

measured.

First, for each filter in a layer, both works randomly sub-sample over the spatially-sensitive ac-

tivations of all input samples. By comparing activations at spatially-sensitive points, these methods

are built on the implicit assumption that similarities in activations be spatially aligned. This as-

sumption is reasonable when representations come from the same model architecture, layer depth,

and input images. However, a small change in image resolution, filter size, or filter stride will

2ResNet is a popular CNN architecture for its use of "shortcut connections" also known as residual or skip connections.

Simply put, these explicitly pass an unchanged representation from early layers to later layers, and are now present

in one way or another in nearly every subsequent CNN architecture.

3For reference, CIFAR is a common image classification benchmark dataset, made of 60k 32x32 color images split

into 10 classes.
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likely destroy such alignment. Moreover, certain areas of images may contain more relevant fea-

tures for classification than others, further biasing this method which weighs all random positions

and samples equally. Other representational similarity works such as SVCCA (discussed in the

following section) note the same, that such spatially-sensitive features are only valid when they

come from the same layer of the same architecture.

Second, both of these works focus specifically on the activations of neurons, and methods for

matching similar neurons to others (or collections thereof). Prior investigative works have found

such "natural bases" defined by individual neurons are semantically indistinguishable from random

bases in activation space [45]. What’s more, for the sake of interpretability some have worked to

remove this effect, producing CNNs which semantically separate visual information by neuron

or filter, so-called "disentangled representations" [46]. By anchoring their metrics in pairings or

subsets which operate on subspaces defined by neurons rather than on relationships between entire

activation spaces, both methods rely upon the assumption that independent features naturally align

with neurons–i.e. with weight vectors. Without a compelling argument or clear evidence for

representational alignment along neurons, this assumption likely produces an arbitrarily narrow

and biased measure of similarity.

In the following subsection, techniques for aligning representations along arbitrary correlated

bases are explored, including methods for comparing the activations of different convolutional

layers or different images. While it is still unclear what these metrics should measure, there is

a sense in which the following results contradict those covered so far, since they tend to indicate

more and more frequent levels of similarity.

SVD Alignment

In all works discussed in this subsection, samples of representations from either source, X and

Y , are centered.

In 2017, Raghu et al.adapt canonical correlation analysis (CCA) to measuring similarity be-

tween the representations of deep neural networks, naming their technique singular vector canon-

ical correlation analysis (SVCCA) [2]. For reference, CCA consists of finding linear transforma-
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tions WX ,WY such that the correlation between two sets of activations X and Y are maximized,

after which correlation between each component in X and Y is reported. Aptly named, SVCCA

first uses singular value decomposition (SVD) to reduce the dimensionality of both matrices before

applying CCA to measure correlation.

For reference, SVD decomposes a real (or complex) matrix (e.g., of activations) X into the

product of three matrices X = UΣV . For a decomposition of a matrix X ∈ R
m×n, the matrices

U and V are both orthonormal transformations, and the matrix Σ ∈ R
m×n is a diagonal matrix

with values corresponding to the p = min{m,n} singular values of X . For k < p, a reduced

k-dimension matrix X ′ can be calculated as X ′ = UΣ′V , where Σ′ is produced by multiplying

p − k values along the diagonal of Σ by zero. Since the values of Σ are typically sorted (i.e. by

increasing variance) the latter p − k values of Σ are typically chosen for multiplication so that

the p − k dimensions of X with the least variance are those removed, and the k dimensions of

maximum variance are retained. Raghu et al.demonstrate that these dimensions of low variance

have little impact on performance and contain primarily noise [2].

To validate the use of SVD for dimension reduction, they reduce the dimension of features

from the penultimate layer of a 7-layer CNN trained on CIFAR-10 from 512 to 25, reporting

minor performance penalty. As a sanity check, if they instead either choose k random neurons

or k neurons of maximum activation as means of dimension reduction, far more dimensions are

required to meet the same performance as dimension reduction by SVD. By first reducing the

dimension of data using SVD before CCA, the authors argue that greater similarity distinctions

can be expressed than with CCA alone. They provide a supporting example of this in which

correlated, low variance features would produce high correlation with CCA alone, but are instead

first removed by SVD so that calculations of similarity be restricted to dimensions of high variance.

Such behavior may be desirable when seeking to determine whether two representations simply

contain correlated information, or contain correlated high variance information. Admittedly this

situation seems contrived, and the authors are relatively unclear on the benefits of combining SVD
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and CCA beyond statements such as, "Both SVD and CCA have important properties for analysing

network representations and SVCCA consequently benefits greatly from being a two-step method."

To compute similarity scores for two representations X and Y (e.g. the outputs of hidden

layers from two different networks), the authors first apply SVD to find subspaces X ′ ∈ X and

Y ′ ∈ Y which each express 99% of variance of the original representations. Then, they use CCA to

compute linear transformations U and V such that the correlation of resulting subspaces X̃ = UX ′

and Ỹ = V Y ′ is maximized. The output of CCA is a series of correlation-maximizing orthogonal

bases U for X and V for Y , and the correlations between both transformed representations ρ. The

SVCCA similarity is computed as the mean of the first p correlations 4.

As mentioned in the prior subsection, they describe inherent incompatibilities introduced by

comparing the activations of convolutional layers when there are differences in model architecture,

layer depth, or input image. To deal with different layers or inputs, they propose to compare con-

volutional layer activations by treating each position of each filter as a separate neuron, searching

for linear combinations of these which are high variance and correlated. This approach is certainly

more generalizable than relying on spatially-aligned features, but produces computationally large

spaces to decompose, align, and correlate. In contrast, other methods use global average pooling,

averaging across all spatial locations within each filter. To reduce the size of computation with-

out losing precision, the authors make use of a discrete fourier transform (DFT), for which they

provide ample theoretical support in context of translation-invariant CNN features.

The authors apply this method to multiple models in various ways, revealing interesting trends.

When measuring SVCCA similarity across time-steps during training of a basic 5-layer CNN and

a 30-layer ResNet trained on CIFAR-10, they observe that early layers converge more quickly than

later layers for both networks. This data is provided in Figure 2.3. They apply this finding by

"freeze training" both CNNs, in which layers are progressively frozen from the bottom up during

4It should be noted that SVCCA projects X and Y into fewer dimensions before CCA is computed, not to be confused

with the standard use of SVD in the calculation of orthogonal bases of X and Y . Inspecting the code published

alongside [2], SVD is indeed computed on both sets of activations before CCA and within CCA, in the computation

of SVCCA similarity.
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Figure 2.3: SVCCA similarity matrices of trained and untrained layers of ConvNet (a plain 5-layer CNN,

first row) and ResNet (second row), measured at different training steps (column-wise). Taken from [2].

training, producing modest improvements in test performance and training speed. Next, they use

SVCCA similarity to compare intermediate layer activations with neurons corresponding to a given

class logit (a single neuron of the final softmax output layer), demonstrating that SVCCA similarity

is expressive of semantic differences between classes. Finally, they also compare between repre-

sentations from different architectures, revealing generally low similarity except in early layers.

This last result is somewhat at odds with later representational similarity efforts ( [1, 3]), which

find consistent similarity across intermediate representations of different architectures trained on

CIFAR-10.

Later, Morcos et al.present a refinement of this technique named projection weighted canonical

correlation analysis (PWCCA) [3]. By viewing the sorted singular vectors (orthogonal bases)

produced by CCA over the course of training, they found that the order of smaller singular vectors

varies considerably, increasing variability correlation scores that they hypothesize can be attributed

to noise. To address this, they replace the mean correlation presented by [2] with a weighted mean

which they call projection weighting. These weights, α̃i (one per orthogonal basis produced by
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Figure 2.4: Various distance measurements (y-axis labels) between representations produced by models

trained on true labels (Generalizing), a fixed random permutation (Memorizing), or between either (Inter).

Taken from [3].

CCA) are computed as the sum of absolute covariance between neuron activations xj ∈ X and

each CCA bases ui ∈ U , or

α̃i =
∑

j

|⟨hi, zj⟩|.

Weights are normalized such that Σiαi = 1, allowing (asymmetric) PWCCA distance to be com-

puted as

d(X, Y ) = 1−
∑

i

αiρi.

They apply this similarity measure to uncover and replicate multiple phenomena on 11-layer

CNNs trained on CIFAR-10. By training a model using a fixed random permutation of labels (as

in [47]), they reveal that such "memorizing" networks learn representations which are less similar

than "generalizing" networks trained using true labels. In addition, they observe that this effect

is not expressed using Euclidean and cosine distance as similarity scores. These measures can

be viewed in Figure 2.4. Next, they compare the similarity of models with progressively wider

convolutional layers (number of convolutional filters). They found wider networks tend to learn

more similar representations, also finding tight correlation between similarity and test accuracy,

even when similarity is computed on the training set. Later, they train 200 networks with identical

architecture from different random initializations and with different learning rates, and measure the

similarity between all pairs of models (using activations produced by the 8th layer of each model).

For these 200 initializations and learning rates, they find 5 distinct similarity clusters. When mea-
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suring the cumulative robustness of each model to filter removal/ablation, similar clusters emerge.

Finally, they use a recurrent neural network (RNN, in contrast to a feedforward network such as a

CNN) trained on language modelling tasks. For reference, an RNN is fit using sequential data such

as a time series or text corpus, modelling data seen previously using a hidden state. They find that

PWCCA reveals RNN layers are learned "bottom-up," as was revealed for CNNs by SVCCA [2],

though SVCCA is not expressive of this effect for RNNs. When comparing RNN hidden repre-

sentations at different steps in the sequence of data, however, they find that PWCCA is no more

expressive of changes in hidden representation than cosine or Euclidean distance.

PWCCA provides a substantial improvement over previous representational similarity efforts

in many regards. Instead of comparing convolutional layer activations in a spatially-sensitive man-

ner which is subject to problems of alignment, resolution, and computational size, they average

over all spatial locations for each filter. As stated previously, this method is commonly used on

the final convolutional layer before classification, known as global average pooling. Further, Mor-

cos et al.provide other similarity measures for comparison including the measure which inspired

them (SVCCA [2]), and naive Euclidean or cosine distance. In addition, they also include the stan-

dard deviation for their measures when appropriate. By including experimental controls, baselines,

and uncertainty measurements, this effort stands out as a more justified improvement in represen-

tational similarity methods.

In the most recent correlation-based representational similarity work covered here, Kornblith et

al.begin with an analysis of the necessary properties of a representational similarity index, followed

by a comprehensive overview of previous methods in the representational similarity literature and

covered here prior [1]. Through the lens of transformation invariance, they categorize each method

and describe the strengths, weaknesses, and applications of each category. In particular, they pro-

vide motivation for a similarity metric which is not invariant to invertible linear transformation.

This property is differentiated from CCA and linear regression techniques (such as my own, cov-

ered in the following section). Using a simple proof they demonstrate the necessity for a greater

number of samples than sample dimensions for any such invariant similarity measures, which is
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problematic when comparing very large convolutional layers trained on smaller datasets. Addition-

ally, they cite multiple works suggesting that neural network training is not invariant to invertible

linear transformation of either inputs or activations, arguing that neural networks consistently learn

representations with similar principal components and feature scales, and that arbitrary linear trans-

formations may obscure or even invert this information. Beyond invertible linear transformation

invariance, they argue that a similarity matrix should be invariant to orthogonal transformation

since “training with fixed orthogonal transformations of activations yields the same distribution

of training trajectories as untransformed activations.” They also decide to include invariance to

isotropic (uniform) scaling, which is not explicitly argued for, but intuitively allows for captur-

ing similarity between features which have the same shape but different size. Importantly, they

note that if they were to include invariance anisotropic (non-uniform) scaling with invariance to

orthogonal transformation, this would provide invariance to invertible linear transformation.

In a departure from previous efforts, they choose to first compute the similarity between cen-

tered samples X and itself as XXT , and then compare this inter-example similarity structure with

the structure produced by centered samples Y as Y Y T . These self-similarity matrices are also

known as representational similarity matrices (RSM) and commonly used in neuroscience litera-

ture. Conveniently, the inner product between these two inter-example similarity structures after

flattening them both is equal to the sum of squared inner products between pairs of examples across

representations, or

⟨vec(XXT ), vec(Y Y T )⟩ = ||XTY ||2F

when the linear kernel is used (i.e. the dot product). To maintain invariance to isotropic scaling,

they normalize this score as

||XTY ||2F
||XTX||2F ||Y

TY ||2F

which they note has been discovered thrice prior [48–50]. In the most recent rediscovery, this

method is extended to any positive semi-definite kernel and called centered kernel alignment
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(CKA). In subsequent analyses they include CKA similarity measures using both a linear kernel

and a radial basis function (RBF) kernel.

Besides discussing motivating variances and invariances for their representational similarity

metric, the authors also define the differences between CKA and other metrics in the field. Indeed,

each of the metrics covered prior are included in this section of [1]. In particular, they note that

SVCCA is invariant to invertible linear transformation so long as the same subspaces are found

with SVD, and that PWCCA similarity is very similar to a summary statistic used for linear re-

gression. They go on to state that linear CKA resembles CCA weighted by the amount of variance

explained by the singular vectors of X and Y (i.e. singular values–see equations 13 and 14 of [1]).

To ground their reasoning and chosen metric, they provide a representational similarity sanity

test. This test involves comparing CKA, CCA, SVCCA, PWCCA, and linear regression metrics on

their ability to correctly identify representations produced by the same layer of identical architec-

ture CNNs trained on the same data with different random initializations. For exact formulations of

each summary metric, see Table 1 of [1]. CKA using either a linear or RBF kernel outperforms all

others by a wide margin on this test. Their illustration of the layer-wise similarity structure between

models trained from different random intialization as revealed by different metrics is provided in

Figure 2.5.

The remainder of the paper consists of experiments revealing or replicating representational

similarity phenomena using linear CKA. For all of their measurements, they compare all combi-

nations of layers either within or across models, producing a 2D heat map of similarity. While it is

not explicitly stated in [1], attempts to replicate their results make use of global average pooling to

compare the outputs of convolutional layers.

In their first experiment, they compare deep CNNs trained on CIFAR-10 with varying depth

(number of convolutional layers). They find that increasing depth up to a point increases perfor-

mance, after which depth is "pathological" as performance is degraded and groups of consecutive

layers learn highly similar representations. The same effect is not observed when testing ResNets

( [42]). Next, they use CKA to identify layers of corresponding depth across different architec-
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Figure 2.5: Comparison of various similarity metrics. Each grid corresponds to the similarity between

layers of identical CNNs trained on the same data from different random initializations. Taken from [1].
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tures, finding linear CKA is capable of comparing representations across architectures, while other

similarity metrics fail to reveal cross-architecture correspondence. When measuring similarity be-

tween models of increasing width, they find layers “become more similar to each other and to

wide networks as width increases.” When comparing models trained on CIFAR-10 against those

trained on CIFAR-100, they find models trained on different datasets learn similar representations

especially in early layers. Finally, they compare two identical CNNs trained from different random

initializations by measuring the similarity of each RSM XXT and Y Y T with each eigenvector of

XXT , ui
X . This leads them to conclude that the shared subspace of each RSM is spanned primarily

by the largest eigenvectors.

In comparison to other methods, the work by Kornblith et al.provides far more motivation,

both within context of related efforts and without. Just as CCA-based measures have revealed

more detail than neuron alignment measures, CKA produces far finer expressions of similarity than

many prior works. By (re)defining the properties a deep neural network similarity measure ought to

have, and providing both mathematical definitions of and empirical evidence for the shortcomings

of other measures, this work serves as a model for future efforts in the field.

Despite both the ample and growing empirical and theoretical support of these methods, how-

ever, they are so far limited to analysis of representations. In the following section, methods which

measure similarity by the performance of CNNs on transformed or interchanged representations

are covered. By shifting the focus of representational similarity from relative measures of correla-

tion to concrete measures of performance, the following works provide further, grounded insight

of the properties of deep neural networks.

20



2.1.2 Performance-Based Metrics

What does it mean by two representations

being different?

Feng et al.2020

Instead of measuring the similarity of different representations directly, some reveal insight

by swapping or otherwise altering the representations themselves and measuring the impact on

model performance. Relying on the performance of the model provides an implicit baseline to

compare against, in contrast to the relative differences revealed by correlation-based methods. In a

broader sense, measuring similarity by changes in performance also requires fewer assumptions to

be made about the meaning of representational similarity. While it may be reasonable to assume

that features which are uncorrelated are distinct, it is still an assumption that must be tested (e.g. by

a "sanity check" as in [1, 4]). On the other hand, previous works have shown that some similarity

effects may be hidden by performance metrics alone [2]. Regardless, as long as there are still new

characteristics of neural networks to be uncovered, there will probably be many ways to do so.

What follows is a broader set of experiments attempting to characterize and understand the

relationships between models by relying on performance. In an ideal world, both correlation and

performance would be provided as in many of the works covered prior. By focusing on the source

of representations over the comparison, however, these works provide ample insight into the nature

of deep neural networks.

Franken-CNNs

The work by Lenc and Vedaldi combines many efforts to characterize and understand the in-

variances and covariances of deep CNNs trained for image classification [7]. They study 3 deep

CNNs (an AlexNet [40] variant, VGG [41], and ResNet [42]) trained on ILSVRC2012 for image

classification. Their analysis is divided into two broad efforts.

By rotating, flipping, or scaling images fed to these CNNs, the first effort reveals how such

transformations can be either inverted in later layers (revealing equivariance), or have little to no
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Figure 2.6: Method for creating "Franken-CNNs" for studying the coverage or equivalence of one network’s

representation with another’s, by use of a stitching layer or mapping. Taken from [7].

effect on representations (invariance). For images which have been scaled or horizontally flipped,

attempting to learn equivariant mappings of intermediate CNN representations does not improve

performance over leaving features unchanged, which they attribute to the implicit existence of such

transformations in natural images. They continue, “For vertical flips and rotations, however, the

learned equivariant mapping substantially reduce [sic] the error.”

The second effort consists of an analysis of the coverage and equivalence of features from

different CNNs5. By producing "Franken-CNNs" made of the first m layers of CNN A and the last

n layers of CNN B stitched together with an affine transformation, they study whether the features

from one deep CNN are equivalent to another. An illustration of the method used to construct these

"Franken-CNNs" is provided in Figure 2.6. In essence, if features from one CNN are compatible

with another CNN after simple mapping (e.g. affine transformation), then the representations of

each CNN must contain overlapping information. To fit these affine mappings, they feed training

data to the "Franken-CNN" and backpropagate classification loss, freezing all weights except those

in the affine mapping. They fit affine maps between all combinations of layers of two CNNs,

and measure the performance of each "Franken-CNN." Similarity is measured as the performance

penalty induced by mapping features between CNNs, relative to the performance of either CNN

alone.

5The bulk of equivalence experiments and results are present only in the version of this article published in the Inter-

national Journal of Computer Vision (i.e., please do not refer to preprints hosted by arXiv or Oxford University, nor

the Open Access version hosted by the Computer Vision Foundation).
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To map between convolutional layers of different spatial dimension, they use nearest-neighbor

interpolation for down-sampling, and bilinear interpolation for up-sampling. First, they consider

mappings between one CNN and itself, essentially either skipping or repeating layers using affine

maps. They find that features mapped through repeated layers preserve more performance than

skipped layers, which they summarize as "the deep layers of a neural network cover the earlier

layer [sic], but not vice-versa." They note that there is a strong correlation between the differences

in layer resolution and mapped feature performance. Next, they compare models which have the

same architecture, but different dataset. They train AlexNets on ILSVRC2012, MIT Places [51],

and a combination of both, before fitting affine maps between the features produced by each layer

of each model and the same layer of another model. To be clear, features are mapped between the

same layer of different models, rather than between all combinations of layers. They find accu-

racy is preserved when mapping between the first convolutional layers, and steadily decreases as

mappings are fit to later layers. This experiment reveals a similar pattern as other representational

similarity efforts–that early layers produce rather task-independent features, while later layers spe-

cialize to the task. Finally, they compare models trained on the same dataset (ILSVRC2012) but of

different architecture. In this case, mappings are fit between all combinations of layers of AlexNet,

VGG16, and ResNet50. For most mappings between layers of similar depth, they report modest

performance penalty induced by mapping, suggesting a broad degree of coverage between CNNs

of different architecture. In the case of VGG16 mapped to AlexNet, they find generally poor per-

formance, and in the case of VGG16 mapped to ResNet50, all mappings produce <10% accuracy.

Focusing on their latter effort, Lenc and Vedaldi provide evidence for a fundamental overlap

between the features extracted by different image classification CNNs. This work provides a foun-

dation for my later efforts covered in the next chapter.

Franken-CNN works suggest that there is a fundamental way in which the features of CNNs

trained for the same task tend to converge towards similar representations. One possible interpreta-

tion of this effect is that models trained on the same task tend to extract the same features–that the

task determines which target features are most useful and perhaps suppresses those which are not
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useful. Even still, further work is required to understand why and when representations overlap.

For example, recall in the previous section that similarity measured by PWCCA and linear CKA

is correlated with the performance achieved on the model’s target task. This correlation is also

observed in [7] and the next chapter, and may obscure other factors impacting similarity.

The following works focus on variations in modelling task to study the properties of deep

CNNs, finding varied and interesting effects.

Task Swapping

The work by Feng et al.presents a representational similarity metric called transferred dis-

crepancy (TD) [4]. This metric defines the difference between two models as the mean distance

between their predictions on a new task. Predictions are obtained by first retraining each model’s

linear classifier for a new set of labels corresponding to the new task, Training a model on one task

before replacing its linear classifier with one trained to predict labels for a new task is a common

method within the field of transfer learning, called fixed feature extraction. Indeed, others have

measured CNN feature transferability, finding that the performance on ILSVRC2012 is highly

correlated to the transferred performance on a variety of tasks [52].

To elaborate, their features are always produced by the penultimate layer of a CNN, typically

the spatially-pooled output of the final convolutional layer before being converted to classification

predictions by a linear transformation. Then, new task predictions are produced by fitting new

linear classifiers to both sets of features, with the objective of minimizing a loss function against

a new label set (e.g multinomial logistic regression, i.e. softmax regression). By using a different

label set and optionally different input images than those used to train either feature-producing

CNN, this method allows one to measure the difference in transferability of each CNN’s features

to a new task.

The work by Feng et al.differs by presenting TD as a representational similarity metric, offering

extensive theoretical analysis. In contrast to other efforts to characterize representations by their

relative performance, such as those covered in this section prior [7, 44], this work focuses on

the development of a representational similarity metric akin to SVCCA, PWCCA, and CKA [1–3].
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Within this analysis, they show TD’s invariance to orthogonal transformation and isotropic scaling,

its behavior as the number of samples compared approaches infinity, and conditions under which

TD is related to maximum match [6], CCA [2, 3], and linear CKA [1]. Notably, they state that

a CCA goodness-of-fit measure (the mean of squared correlations, R2
CCA) is equivalent to TD

when averaged across “all linearly realizable tasks in the linear probing setting, which makes CCA

downstream-task agnostic.” While comparing representations by their performance on a new task

is far from new, the detailed comparison with correlation-based measures provides new grounding

for using performance to measure representational similarity.

They begin with a "sanity check," comparing TD, linear CKA, and CCA on their ability to

express differences in features produced by models trained on different tasks. They train 32-layer

ResNets [42] on CIFAR-10, CIFAR-5, CIFAR-2, and SVHN (training tasks), before evaluating

each model on CIFAR-10 (downstream task). CIFAR-n is produced by grouping the labels of

CIFAR-10 [43] into n categories, using the same, complete set of images. The Street View House

Numbers dataset (SVHN) consists of images of house numbers taken from Google Street View

images [53]. After training, they feed images from the training and test sets of CIFAR-10 to

each, extracting penultimate layer activations from each model. Linear classifiers are fit using

each model’s features generated from CIFAR-10 training images and labels, after which TD is

computed by comparing the predictions of each of those classifiers using CIFAR-10 test images

and labels. Features generated from the CIFAR-10 test images are also compared directly using

CCA (R2
CCA) and linear CKA similarity scores. This procedure is repeated 10 times, and the

average is reported. The results of this experiment show that models trained on variants of CIFAR

are more similar to each other than to models trained on SVHN. Each metric is also expressive

of relative differences in CIFAR variants, with greater similarity reported for smaller changes in

n (i.e. features from models trained on CIFAR-2 are more similar to CIFAR-5 than CIFAR-10).

The authors conclude that the results of this experiment show that each metric is expressive of

task-driven similarity, though they note differences in the magnitudes of different scores. This and

the following experiment’s results are provided in Table 2.1.
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Table 2.1: Comparisons of TD with CKA [1] and CCA [2, 3]. TD is evaluated on the downstream task.

The top table refers to the "sanity check," and the bottom refers to the experiment on models of different

initialization. Taken from [4].

In a similar experiment, they compare representations produced by models trained from dif-

ferent random initializations. Specifically, they train a pair of models on CIFAR-2, and another

pair on CIFAR-5 (training tasks). TD is measured as before, using CIFAR-10, CIFAR-5, and

CIFAR-2 as downstream tasks. This results in 6 TD scores (one for each pair and each down-

stream task). Since each CIFAR-n consists of only a change in labels, leaving images unchanged,

they report only one CCA and CKA score per pair. This leads them to conclude that TD is more

expressive than CCA and CKA, and "models trained with different initializations can capture dif-

ferent features." These results do show that TD is again expressive of the similarity of CIFAR

variants. However, conclusions drawn from the methodological incompatibilities of TD with CKA

and CCA are dubious at best. Further, since they only report one score for each model pair, it’s not

clear how random initialization has altered the features captured.

In their final set of experiments, they test the effect of various popular training techniques on

TD. For each of these modelling strategies, they train models on CIFAR-5 and transfer to CIFAR-

10. They find that random flips and crops of input images produces better TD scores, as well as

large learning rates, learning rate decay, and adversarial training.

The work by Feng et al.serves as a useful analysis of representational similarity metrics, provid-

ing grounding for performance-based metrics. However, the results they present are very narrow in
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Figure 2.7: Examples from each dataset used in [8].

scope, even seeming contrived when used for comparison with other metrics. With more datasets

and generally finer-grained results, a clearer picture could be produced of the differences between

their methods and others.

In What shapes feature representations? Hermann and Lampinen use synthetic datasets to shed

light on many learning effects of deep neural networks [8]. This work begins with a comprehen-

sive review of related efforts, placing their work among many efforts to study the relationships

between tasks used for deep learning, the effect of dataset statistics and task difficulty on deep

neural networks, and the differences between trained and untrained model representations. Their

work centers around two synthetic datasets, named Trifeature and Navon. By variably correlating

attributes used to generate images, various tendencies of CNNs to learn to extract certain features

over others are revealed.

In the Navon dataset (adapted from [54]), each image is generated and labeled using shape and

texture attributes as seen in Figure 2.7. Images from the Trifeature dataset are similarly generated

and labeled, with the addition of a color attribute. Datasets are generated using a single target

attribute as the classification label, holding out subsets of non-label attributes for validation. For

example, if a dataset were generated for texture classification, then the validation set may contain

squares, triangles, and circles while the training set would not, so that texture classification remain

generalized. Normalized images are then used to train an AlexNet [40] or ResNet50 [42]. Finally,
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a linear classifier (or probe) is used to test the "decodability" of image attributes at many model

layers. Decodability refers simply to the accuracy of such a linear probe in predicting image

attributes from intermediate layer features. They provide a baseline measure of image attribute

decodability using different target attributes, finding target attributes are enhanced while non-target

attributes are suppressed compared to an untrained model. For example, they find that models

trained to recover the type of shape in the input image tend to suppress the color and texture

relative to an untrained model.

In their first experiment, they vary the degree to which one image attribute is correlated with

another, and measure the decodability of each image attribute at various layers. When two at-

tributes are perfectly correlated, they find color is preferred over shape, and shape is preferred over

texture. What’s more, even when both attributes are equally predictive such as this, non-preferred

attributes are less decodable (suppressed) compared to untrained representations. When the corre-

lation between attributes is reduced, the same effect is observed.

Next, they study multi-layer perceptrons (MLP) trained on non-visual binary tasks to study

learning trends in modelling task difficulty. They feed 32-element binary vectors to 5-layer MLPs,

where half of the vector is decodable by a single linear transformation, and the other half is pro-

duced by XOR which requires an MLP [55]. The model is trained to predict a label which is

probabilistically determined by these two features, with varying predictivity of either. When the

linear feature is not predictive, the model learns to extract the label from the non-linear XOR fea-

ture. However, the easier linear feature can suppress the harder non-linear feature, even when the

harder feature is more predictive. This suggests a tendency for deep learning methods to trade off

predictivity for ease of learning.

While they only use toy problems for their experiments, this paper is a model for the study of

representational similarity. Superficially, some results may be intuitive. For example, the tendency

for models to learn easy features even when harder (yet learnable) features are more predictive

may be described by the presence of local optima during (non-convex) optimization. Still, some of

these results suggest behavior that is much less counterintuitive, offering many exciting research
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questions. Why do models suppress predictive information? If texture is preferred less than color

and shape, what similar hierarchy of attributes exists for natural data? Even when possible expla-

nations exist, works such as these offer many opportunities to further understand deep nets.

The next work by Gygli et al.builds upon efforts to analyze and apply representational simi-

larity effects by training architectures which produce compatible representations [9]. Specifically,

they seek a general method for the creation of a library of compatible network components which

are specialized for different tasks. This motivation aligns with the findings of many previously

revealed representational phenomena, namely that models broadly converge to similar solutions,

revealing a degree of waste in the resources used to train and retrain models on existing tasks. The

paper begins with an extremely comprehensive review of related work in the fields of representa-

tional similarity analysis, feature distillation, multi-task learning (MTL), continual learning (CL),

unsupervised domain adaptation, and transfer learning.

In essence, they propose multiple strategies for building compatible components, before apply-

ing combinations of those strategies to train compatible network components. These components

are then tested for compatibility by unsupervised domain adaptation, cross-architecture evaluation,

and transfer learning. In this work, the two components they define are the feature extractor f()

containing all convolutional and pooling layers, and the target task head h() containing the final

classification layer. The three strategies they propose are compatibility through self-supervision

(RP, for rotation prediction), through discriminating common classes (DCC), and through identi-

cal initial weights (IIW).

In the first, they add an auxiliary task which requires no external labels, commonly referred to

as self-supervision. They choose rotation prediction, in which an auxiliary task head must predict

the random rotation applied to an input image. DCC is achieved by computing the sum of losses

on two tasks, relying upon common class labels across tasks. IIW involves simply starting the

training process from the same initial weights instead of a new random initialization, relying upon

identical architectures.
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Figure 2.8: Recombination accuracy for each different compatibility strategy. Numbers refer to the mean

accuracy over 10 runs, with standard deviations indicated by horizontal error bars. The upper bound is

determined by training and evaluating a network without recombination. Taken from [9].

To test for compatibility, they train ResNet56 ( [42]) CNNs with some combination of the 3

strategies on different datasets (CIFAR-10 and STL-10, a very similar image classification dataset

with 9 out of 10 classes overlapping [43, 56]). After training compatibility is measured by swap-

ping the task head for each model and measuring their performance on the test set of the dataset

used to train the feature extractor. Combining all strategies produces the highest accuracy in this

way, indicating that each strategy improves compatibility. The accuracy for each combination is

depicted in Figure 2.8. Interestingly, they find that starting from models pre-trained to another task

produces worse performance, suggesting that compatibility should be encouraged early in train-

ing. They also measure the correlation between features without optimal transformation, finding

features are highly correlated and aligned even when compared to networks trained independently

and compared with optimal transformation (as in CCA).

Next, they apply these techniques for the purposes of unsupervised domain adaptation, cross-

architecture compatibility, and more efficient transfer learning. By training a model on CIFAR-10

and including an auxiliary RP task head, then training the model to perform rotation prediction

on a new dataset without updating the RP task head, they produce a model which is compatible

with both the original dataset and the new dataset. Using this method, they meet the state-of-the-

art performance on unsupervised domain adaptation between CIFAR-10 and STL-10, though not

for the reverse. For cross-architecture compatibility, they begin by training a ResNet-56 [42], a

Wide ResNet-56 [57], and a MobileNet V2 [58] using a single DCC head on 5 of the 10 classes of
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CIFAR-10. By freezing all feature extractors before adding the remaining 5 classes and retraining

the DCC head, they produce test accuracies on each model using the same head, reporting only a

few percent lost over training independently. Finally, they apply a similar method to unsupervised

domain adaptation to achieve high performance transfer-learned models with only 5 epochs of

fine-tuning.

While this method is a departure from previous methods focused solely on characterizing

CNNs, they still provide insight while applying that insight to solve problems. Often the results of

representational similarity efforts, though enlightening, can be difficult to apply. In reality, this can

even make it difficult to publish such findings. Though efforts without application have still shed

light on deep CNNs, applications such as these provide a natural grounding to the phenomena they

reveal.

2.2 Bias in Face Recognition

This section provides an overview of the methods used to analyze and mitigate bias in face

recognition models. However, the methods used in face recognition are not explicitly covered

here. For such an overview, refer to Section 3.2.

2.2.1 Bias Estimation

The authors of a recent survey find many reports of demographically unfair/biased biometrics

systems [35]. They note that the vast majority of literature they survey uses ad hoc methodologies

when discussing algorithmic fairness, citing recent efforts by Howardet al. [34] to introduce “dif-

ferential performance” and “differential outcome” as standard terms for measuring demographic

bias. Differential performance refers to comparisons independent of decision thresholds, and dif-

ferential outcomes refers to comparisons regarding a specific decision threshold. In summary, they

find sex is most frequently studied among demographic covariates, followed by race, then by age.

Further, face recognition systems are found to be most consistently poor for women, and for the

very young or old. For performance comparisons between races, they did not observe a single race
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as more challenging, observing the algorithm’s country of origin as a major factor. Across the stud-

ies they survey, they note inconsistencies in experiment design and bias definition, alongside a lack

of control for dataset size, distribution, and confounding covariates (e.g. pose and illumination).

Though it contains no original face bias experiments itself, this work places efforts to measure bias

in biometrics systems in perspective, especially the methods commonly used.

In the largest experiment of its kind, the National Institute of Standards and Technology (NIST)

“has conducted tests to quantify demographic differences for nearly 200 face recognition algo-

rithms from nearly 100 developers, using four collections of photographs with more than 18 mil-

lion images of more than 8 million people” [31]. These tests measured the performance of com-

mercial face recognition systems on United States government domestic mugshots, immigration

application photos, visa application photos, and border crossing photos, finding varying degrees of

demographic bias. The results of these tests are extensive, with a few broader takeaways. False

negative rates, the proportion of cases where an algorithm falsely predicts two images depict a dif-

ferent face, “often vary by factors below 3” between demographic groups. False positive rates, or

the proportion of cases where an algorithm falsely predicts two images depict the same face, “vary

by factors of 10 to beyond 100 times.” These rates differ between demographic groups, depend-

ing on the algorithm’s country of origin and photo source. Some see variations based on algorithm

country of origin as evidence for an other-race effect (ORE) [59], a phenomenon where people tend

to better recognize faces of their own racial group, which has been researched extensively [60]. For

high quality application photos, “false positive rates are highest in West and East African and East

Asian people, and lowest in Eastern European individuals.” Broadly, false positive rates are higher

for women than men, and for the oldest and youngest individuals. Some have challenged these

broader findings, stating that the most accurate algorithms do not exhibit significant demographic

bias [61]. Still, as of writing it is the largest of its kind, and reveals relevant trends for anyone

studying demographic bias in face recognition.

Using the same dataset studied here, Luet al. [33] compared a range of demographic and non-

demographic face image covariates. They use a fusion of 4 CNN-based models to produce sim-
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ilarity scores for pairs of face images of IJB-B [62] and IJB-C [63]. These similarity scores can

be used to make a same/different decision based on a threshold, after which the rate of correctly

predicted matched (true positive rate) and incorrectly predicted matches (false positive rate) can

be determined. The decision threshold is varied to produce different true/false positive rates, as

in receiver operating characteristic (ROC) analysis. This process is standard for comparing face

recognition models, and also covered in Section 3.2. To analyze the effects of covariates, separate

ROC curves can be drawn for pairs belonging to different covariate groups. The yaw and roll of

the face relative to the camera reduced recognition performance, especially when faces of very

different orientation are compared. Further, male faces were more easily distinguished than fe-

male faces, medium-age faces more than older and younger, lighter skin more than darker, indoor

images than outdoor, and faces with mustaches over other facial hair styles. This work is highly

relevant, since the same covariates are studied here, albeit using a different comparison method

and many newer face recognition models.

2.2.2 Bias Mechanism Analysis

Though neural network face recognition bias is apparent and problematic, its nature is not

clearly understood. More broadly, the ways in which deep models interact with any complex data

are often difficult to interpret, as mentioned in Chapter 1. By measuring model bias as some quality

of the dataset is varied, however, these works shed light on the root causes of face recognition bias.

In Vangara et al., the embedding distributions of Caucasian and African American faces were

found to differ [64]. Essentially, they find that a fixed decision threshold will produce worse facial

recognition performance for African American faces, where subgroup-specific thresholds will lead

to equal or near-equal performance (in this case, false positive and false negative rates). Their re-

sults depend on the model used for embedding faces, but still presents subgroup-specific thresholds

as an important topic for understanding face recognition bias. Besides demonstrating the need for

these subgroup-specific thresholds, they also find little difference in the d-prime statistic between

“imposter” and “genuine” image embedding similarity score distributions for each group, suggest-
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ing the groups are equally distributed for the model studied. For reference, d-prime measures the

distance between two distributions–essentially a measure of how separated two distributions are,

with the difference between imposter and genuine distributions corresponding to the ability of the

model to separate genuine images (of the same person) from imposter images (of different people).

Finally, they note that their evaluation dataset, MORPH [65], contains fewer ICAO-compliant6 im-

ages of African American faces than Caucasian faces, arguing that this may contribute to bias.

Albiero et al.similarly find that images of different gender also produce different distribu-

tions in embedding space, further motivating the use of subgroup-specific thresholds [67]. Unlike

Vangara et al., however, they use more recent, higher-performance models, and more evaluation

datasets (MORPH [65], Notre Dame [68], AFD [69]). Further, they observe that images of male

faces are more easily separated then female faces, as measured by the d-prime statistic. They in-

vestigate whether these differences are due to gender-correlated face image covariates such as face

expression, head pose, forehead occlusion (due to hairstyle), and facial makeup. They find that

each covariate indeed negatively impacts the separability of female faces over male, though the

separability imbalance is not completely remedied once covariate distributions are made equiva-

lent. When balancing for gender in model training datasets, they again find a persisting imbalance

between the distribution separability of male and female faces. In a follow-up analysis, Qiu et

al.find that roughly 3 times more female faces than male are needed during training to obtain

gender-equal performance [36]. Intrinsic differences in morphology due to gender are proposed

as an explanation in [70], finding that the eyes and lips are most useful for classifying a face as

female, while the nose and brow are most useful for classifying a face as male.

In [71], subgroup-specific thresholds are also studied. They evaluate subgroup-specific thresh-

olds for 8 groups (all unique combinations of 4 ethnicity groups and 2 genders), using a new

benchmark dataset named Balanced Faces in the Wild (BFW, after LFW [72]). This dataset is a

subset of the VGGFace2 [73] dataset, and balanced for gender, ethnicity, and images per individ-

6ICAO refers to an image quality standard used by the International Civil Aviation Organization for face images in

travel documents, defined in ISO/IEC standard 19794-5 [66].
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ual. In comparison to single-threshold face verification, their subgroup-specific method results in

improved face verification performance for all groups (though marginally for some).

2.2.3 Bias Mitigation

Producing face models which are unbiased is clearly challenging, as certain groups seem to

be intrinsically more difficult to model. This does not ease the burden of any model designer,

however. This subsection describes model designs efforts to reduce or eliminate bias.

During training, face recognition models often add an angular margin term to the typical soft-

max cross-entropy loss, further encouraging the model to de-correlate face images of different

people during training. In [74], subgroup-specific margins are learned using a reinforcement learn-

ing (RL) technique, where the RL agent controls non-Caucasian loss margins with the goal of

balancing inter- and intra-class distances between Caucasians and non-Caucasians. They provide

two new training datasets sampled from MS-Celeb-1M [75] and online celebrity images: BUPT-

BalancedFace (equally racially balanced) and BUPT-GlobalFace (balanced with the racial distri-

bution of the real world). They train ResNet-34 [25] models with and without their RL-based

subgroup-specific margins for each of: Normface [76], Cosface [77], and Arcface [78]. Evaluating

using the Racial Faces in the Wild (RFW7 [39]) dataset, their method improves average face ver-

ification performance and fairness (as measured by standard deviation) when combined with any

other method. Their method does not produced totally unbiased results, however, with Caucasians

remaining the most easily recognized.

In [39], an information maximization technique named IMAN is presented alongside a new

racially-balanced evaluation dataset, RFW. This technique is inspired by those within unsuper-

vised domain adaptation (UDA) research, where a model learns features which are invariant to

domain (in this case, ethnicity). They break down model training into multiple steps, first training

a network to maximally-discriminate a source domain (Caucasian faces), followed by clustering to

generate pseudo-labels which are used in classifying target-domain images. They add an additional

7Note that they remove overlapping faces from RFW from their BUPT-* training datasets, necessary .
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step where mutual information is maximized between the target domain and the classification out-

put. They train ResNet-34 [25] models using this method or Arcface [78], and evaluate each on

IJB-A [79], GBU [80], and a new dataset named Racial Faces in the Wild (RFW). RFW is derived

from MS-Celeb-1M [75], and inspired by the difficulty of the “ugly” subset of GBU, consisting

of equal-sized Caucasian, Asian, Indian, and African subsets in a similar format as LFW. Their

method outperforms Arcface on the datasets tested, but again does not deliver equal performance

across all races in RFW.

In [38], an adversarial technique named DebFace is implemented for disentangling 4 face at-

tributes from learned representations (gender, age, race, and identity). This method consists of a

CNN which predicts one embedding per attribute, all of which are fed to each of 4 attribute-specific

classifiers. Adversarial loss is applied such that each classifier can predict its single unique at-

tribute. They also train a baseline model which uses the same architecture, but no adversarial loss,

and evaluate both models using a combination of multiple datasets. By removing demographic

information (gender, age, race) from identity representations, DebFace suffers from weakened

average performance. However, each representation is less biased towards other attributes than

BaseFace, even showing near-equal identification performance between genders.

In [37], another adversarial technique is applied for reducing bias, along with a new ethnicity-

balanced training dataset, DiveFace. Their method feeds the outputs of a pre-trained face recogni-

tion CNN to a second model which is trained to remove information predictive of a given attribute

(e.g. gender, ethnicity). They use a ResNet-50 [25] model trained on VGGFace2 [73], then use

the DiveFace dataset to train their second adversarial model, before evaluating on LFW [72] and

CelebA [81]. After adversarial projection, face features were found to offer far reduced gender,

ethnicity, attractiveness, and expression (smiling/not smiling) classification accuracy, with reduced

identification performance. This method shows promise for reducing bias in face embeddings, but

is limited in evaluation, showing mediocre identification performance on easy datasets.

While the methods covered show promise, the challenge to produce effective, high-performance

bias reduction methods remains. In summary, though the models may be incentivized to learn less-
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biased representations, bias remains. These methods are relevant to the work presented in this

thesis, that an underlying representational similarity persists despite architectural changes. Future

works might consider how bias-reduction techniques do or do not impact this underlying similarity.
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Chapter 3

Closed-set Linear Equivalence

This chapter summarizes the work first presented in my Master’s thesis. Since then, small

refinements have been made, but the overall story is largely unchanged.

In this effort, the goal was to compare CNNs which vary in architecture, by their last-layer

embeddings. The models studied are all trained for ImageNet (ILSVRC2012 [27]) image classi-

fication, where last-layer CNN embeddings are converted into image predictions by a final linear

classification layer (after the last CNN layer). By swapping last-layer, pre-classifier embeddings

between CNNs after a simple mapping, a fundamental similarity is observed. In essence, each

model produces embeddings which can be classified by any other model’s linear classification

layer, after simple mapping. Though the simple mapping (a linear transformation matrix) can be

fit empirically using embeddings from different networks, they can be fit far more precisely us-

ing either networks’ linear classifier. Though such classifier-based mappings draw the results of

the empirically-calculated mappings into question, a fundamental similarity between models of

different architecture is still observed.

3.1 Classifier Based Linear Maps

To begin, ten ImageNet-trained networks were obtained which differ in architecture. Each

network and its associated weights was obtained from TensorFlow Hub8 with the exception of

Inception-v4, which was obtained from the TensorFlow-Slim GitHub repository9. See Table 3.1

for details of the networks and their respective top-1 single-crop classification accuracies on the

50,000 ILSVRC2012 validation samples as reported by Google and reproduced by us10.

8https://tfhub.dev/

9https://github.com/tensorflow/models/tree/master/research/slim

10A crop size of 331x331 was used to minimize the difference in features encoded into each network’s feature vectors,

except in the case of MobileNet-v2 which is only available pretrained with a maximum crop size of 224x224. This
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Table 3.1: Classification accuracies of the 10 CNNs studied on the ILSVRC2012 validation set, both re-

ported by Google and verified independently (with respective crop sizes). Also included for reference are

the number of dimensions used in each CNN’s feature space, and the total number of parameters present in

the model.

Reported Observed

CNN Acc. Crop Acc. Crop Dimension # Params

Inception-v1 [82] 69.8% 224x224 71.1% 331x331 1024 5M

Inception-v2 [83] 73.9% 224x224 73.9% 331x331 1024 11M

MobileNet-v2-1.4-224 [58] 74.9% 224x224 74.6% 224x224 1792 7M

ResNet-v1-152 [25] 76.8% 224x224 78.8% 331x331 2048 60M

ResNet-v2-152 [42] 77.8% 224x224 78.7% 331x331 2048 60M

Inception-v3 [83] 78.0% 299x299 78.9% 331x331 2048 24M

Inception-v4 [28] 80.1% 299x299 80.4% 331x331 1536 43M

Inception-ResNet-v2 [28] 80.4% 299x299 81.2% 331x331 1536 56M

NASNet-Large [84] 82.7% 331x331 82.7% 331x331 4032 89M

PNASNet-Large [26] 82.9% 331x331 82.9% 331x331 4320 86M

These networks’ architectures vary widely, from the simple residual connections of ResNets

[25, 42], the hand-built modules of Inception nets [28, 82, 83], the resource-constrained design of

MobileNet-v2 [58], to the heavily optimized NASNet and PNASNet [26,84]. Due to the significant

methodological differences used for constructing these networks, it seems reasonable to assume

they will partition the space used to assign class labels differently.

3.1.1 Classifier Based Metrics

To better lay out this approach, a format that clearly establishes the intended meaning by out-

lining features/embeddings and their connection to object labeling follows.

Each network presented in Table 3.1 may be considered a function, v : Rw×h×3 → R
1000. The

domain consists of w×h pixel RGB images and the range is the R1000 label space; each dimension

represents a network activation corresponding to one of the 1,000 ILSVRC2012 object labels. The

function v can be further divided into two parts:

v(x) = Cf(x). (3.1)

means most networks actually perform slightly better than reported by Google, although MobileNet-v2 performs

marginally worse.
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Here, f : R
w×h×3 → R

d is a highly nonlinear function, mapping from the input image space

to a d-dimensional feature/embedding space. The matrix C ∈ R
1000×d is a linear classifier that

transforms a feature vector into class label activations. The argmax of these activations is typically

used to determine the predicted class. Note that many traditional neural network systems include

some form of bias that would appear to complicate this definition, but by mapping to projective

space (always appending a 1 to vector f ), the last column of C can be used to represent the bias.

The goal here is to measure the extent to which a linear mapping converts between the features

of two networks. Given two networks, vA and vB defined by

vA(x) = CAfA(x)

vB(x) = CBfB(x),

(3.2)

with features of system vA, fA ∈ R
dA , and features of system vB, fB ∈ R

dB , the goal is to measure

the extent to which the functions fA and fB behave similarly. These functions are unlikely to have

identical output or be directly comparable, but the extent to which they have a linear relationship

can be investigated. Specifically, does there exist a matrix MA→B ∈ R
dB×dA such that

fB(·) ≈ MA→BfA(·). (3.3)

Naively, calculating distance between the features fB(x) and fA(x) for each sample in the

ILSVRC2012 dataset using something like Euclidean distance appears tempting, but for a variety

of reasons it is not helpful. Most obvious is the problem of possible representational permutations.

It is well understood that two networks of identical architecture may permute feature dimensions,

yet be in all other ways be equivalent. Additionally, even when setting aside the permutation

problem it is also known that distances in high dimensional spaces can sometimes obfuscate re-

sults [85]. Further, comparing feature spaces is complicated by possible differences in the number

of dimensions from one network to the next.
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It is important to mention that a promising avenue to work around such problems is to employ

methods such as canonical correlation analysis [3,86]. However, because such methods are invari-

ant to linear transforms, they give insight into similarity while not serving the goal of constructing

and understanding the MA→B mappings.

Due to these potential issues with common distance metrics, a useful proxy is to measure

similarity is the top-1 accuracy of network combinations: what accuracy is attained by the system

using the linear mapping:

vA→B(x) = CBMA→BfA(x). (3.4)

As shown in Section 3.1.4, under some conditions when CA and CB are known, a matrix

MA→B may be calculated directly from them. However, the broader case where such knowledge

is not available and hence MA→B must be estimated empirically is explored first.

3.1.2 Empirically Calculated Mapping

Although Euclidean distance is potentially a poor measure of similarity between spaces as a

whole, it may be used as optimization metric to efficiently construct empirical MA→B mappings.

Calculating the mapping is a ridge regression problem over all the 1.3 million images in the training

set, X , using the Euclidean norm || · ||2 and the Frobenius norm || · ||F :

minimize
M̃A→B

∑

xi∈X

||M̃A→BfA(xi)− fB(xi)||2 + ||M̃A→B||F (3.5)

The resulting matrix M̃A→B minimizes total point-wise Euclidean distance between the feature

spaces.

M̃A→B is then used for pairs of networks to construct the mapped networks vA→B as defined

by Equation 3.4. The recognition accuracy for the mapped networks is then calculated over the

ILSVRC2012 test set. This process is completed for each pairwise combination of the 10 pre-

trained CNNs and the results are summarized in Table 3.1. One thing to emphasize here is that
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Table 3.2: Classification accuracies of 121 inter-CNN linear maps. Each cell represents a single instance of

Equation 3.4 with system vA corresponding to the row CNN and system vB corresponding to the column

CNN. The number in large font in each cell indicates the accuracy of this hybrid CNN. Diagonal elements

correspond to identity mappings, so they are the original network accuracies from Table 3.1. The number

in small font indicates the percent change from the original unmapped row/source CNN (i.e. the value in

that row which belongs to the diagonal). The darker the shade of red, the greater the performance penalty

introduced by the mapping, relative to the feature extractor’s own classifier. The last row and column,

gray background, presents comparisons with a random untrained control CNN that is the PNASNet Large

architecture using randomly initialized weights.

neither the ground truth image labels nor the CA and CB matrices are used in when estimating the

linear mappings M̃A→B.

One additional control system is also considered. The control is simply the PNASNet-Large

network using only the initial randomly generated weights. This control is added to provide some

backdrop against which to empirically assess the relative difference between the mapped networks

designed and trained to achieve high recognition accuracy.
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3.1.3 Classifier Based Mapping Results

Table 3.2 presents the performance of all combinations of CNN features and back-end classi-

fiers. All accuracies are reported using the ILSVRC2012 validation set, which was unseen by all

CNNs and mappings during training. In addition, a randomly-initialized PNASNet-Large, denoted

by *, is also included.

When comparing column-wise (feeding different features into the same classifier), accuracies

are sometimes increased when compared to the classifier CNN’s own features. That is, even though

the mappings were trained to reproduce the classifier CNN’s less expressive features, some addi-

tional helpful information is passed through the mapping. As an example, see ResNet-v2-152’s

column and unmapped accuracy of 78.70%. This unmapped accuracy is taking ResNet-v2’s fea-

tures and passing them into ResNet-v2’s classifier. When instead fed a linear transformation of

PNASNet’s features, ResNet-v2’s classifier produces 82.46% accuracy. This is an increase in the

ResNet-v2 classifier’s accuracy of 3.76%! Of course, when analyzing the effects of mappings

on the source CNN’s performance (i.e. the fashion that cells were shaded in Table 3.2), no fea-

ture vectors actually become more discriminative when mapped. Additionally, the sharpest

reductions in accuracy occur for the lowest-accuracy networks. This suggests that as architectures

become complex enough to solve the ILSVCR2012 dataset well, they are converging to similar

solutions (as predicted by Roeder et al. [87]).

The central question is whether the features learned by each trained CNN studied are equiv-

alent. In every case, the percent change in classification accuracy introduced by using another

CNN’s features is no worse than -11.6% (and in most cases, much better). Indeed, the median per-

cent change over all mappings is only -1.90%. This strongly suggests that the features learned by

one CNN are also learned by every other, though some have learned somewhat superior variations.

One additional item of note is that the PNASNet-Large with randomly initialized weights im-

proves from the baseline random accuracy when mapped to the features of other networks. To

be clear, the improvement is dramatic from one perspective, jumping by as much as two orders

of magnitude. However, it is lackluster at best from another perspective, reaching only about 5
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percent accuracy in the best case. This finding lends credence to the view that even just the CNN

architecture itself, independent of learned weights, encodes useful information. Indeed, this prop-

erty of networks has been explored in more depth in a number of different contexts including fast

architecture search — see [88–91].

3.1.4 Analytic Mapping

An important caveat to this accuracy-based comparison is that there is a vacuous sense in which

the accuracy of the mapped systems can be high while similarity of the feature spaces may be low.

Lemma 3.1.1. Consider a mapping CA ∈ R
d×dA and a mapping CB ∈ R

d×dB that is tall (i.e.

d < db) and of full row rank (i.e. rank d). Then, there exists a matrix MA→B such that

CA = CBMA→B (3.6)

where MA→B can be defined as

MA→B = C
+

BCA. (3.7)

Here C
+

B is the Moore-Penrose inverse of CB.

This isn’t necessarily an astonishing fact — it is simply a statement that any matrix with full

row rank has a right inverse and as such we can write

CBMA→B = CBC
+

BCA = ICA = CA (3.8)

However, it has the following unfortunate consequence:

Theorem 3.1.2. Given two systems,

vA(x) = CAfA(x)

vB(x) = CBfB(x)

(3.9)
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as defined by Equation 3.1, if CB is of full rank then then there exists a matrix M
∗

A→B such that

for all x ∈ R
w×h×3,

CAfA(x) = CBM
∗

A→BfA(x). (3.10)

where M
∗

A→B can be defined as

M
∗

A→B = C
+

BCA. (3.11)

Here C
+

B is the Moore-Penrose inverse of CB.

All ILSVRC2012 networks considered here have classifiers that are of full rank.

A few consequences of this theorem:

• For any two linear-classifier based neural networks, there exists a linear mapping such that

vA→B has accuracy exactly equal to that of vA

• This linear mapping and accuracy is independent of fB and the accuracy is independent of

CB.

This means that although high linear similarity in feature space implies high accuracy after map-

ping, one cannot simply say that high accuracy after a linear mapping implies high linear similarity.

As an example, consider a system which when given an image generates a random feature

vector, and which uses a fixed full rank classifier. This system has random performance on

ILSVRC2012, and features from a real neural network cannot be mapped to its changing “fea-

tures” in any meaningful sense. However, when “mapping” to its features using the above analytic

mapping, the performance of the source network is achieved.

This does not necessarily mean this analytic mapping does not transform between feature

spaces well when given features from two networks. It just means that it may not (and clearly

does not, in situations like the random classifier), and that the metric being used does not always

indicate when the metric may succeed or fail.

To avoid this issue using empirical mappings, computation of the matrix M̃A→B is performed

without knowledge of the classifiers and entirely between the two feature spaces. Additionally, the

Euclidean distance between feature spaces is used for the optimization target, rather than the result-

45



ing mapped network accuracy. This means that such a mapping is taking advantage of similarity

in feature space when being calculated, rather than accuracy.

Additionally, the random control system described above is included to highlight the distinction

being drawn here. In particular, the poor performance as seen in Table 3.2 when mapping to this

control system demonstrates that the optimization problem being solved to map between feature

spaces likely does not fall prey to the potential issues in the analytic solution shown to exist by

Theorem 3.1.2.

Perhaps the simplest way to summarize what has been seen so far, is to recognize the following

asymmetry of implications. To start, when Theorem 3.1.2 is applicable there always exists an exact

linear mapping between two CNNs. However, the existence of a linear mapping is not always a

sufficient condition for concluding features are similar. The introduction of the random control

addresses this latter point. This distinction also helps spur interest in studying linear mappings

between CNNs in contexts where there is no common classifier, and as such Theorem 3.1.2 does

not apply.

3.2 Face Recognition

Face recognition modeling offers an exciting area to expand the analyses covered in the pre-

vious section. These models are very similar in many ways, but differ in key areas which enable

clearer conclusions. Most importantly, face models are evaluated on faces unseen during training,

using direct comparison of embeddings rather than a linear classifier. Though linear classifiers are

still commonly used during training, they are removed during evaluation. This section provides an

overview of the differences between image classification and face recognition.

Specifically, face recognition is performed using aligned images of faces, first produced by a

face detection model (e.g. MTCNN [92]). Detected, aligned faces are fed to a CNN to produce an

embedding vector, which is converted into a prediction using a linear classifier followed by soft-

max. Training loss is calculated using the same cross-entropy loss as in image classification, with

an added angular margin penalty which encourages faces of different people (negative examples) to
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be de-correlated from the faces of the same person (positive examples). The method of computing

this angular margin may differ (e.g. Facenet [93], Normface [76], Sphereface [94], Cosface [77],

Arcface [78]). As angular loss does not typically operate on embedding magnitude, face vectors

are typically first unit-normalized. There is no single training dataset used to train face recogni-

tion models, with different datasets leading to different performance (e.g. CASIA-WebFace [95],

VGGFace2 [73], MS-Celeb-1M [75], Glint360k [20]).

What’s more, evaluation is commonly performed using smaller datasets which do not over-

lap with popular large training datasets (e.g. LFW [72], IJB-C [63], AgeDB [96], CFP [97],

WebFace260M [14]). Many datasets prescribe specific image pairs for performing 1:1 face veri-

fication, with IJB-C providing “templates”, or groups of faces to first be aggregated before being

compared using 1:1 verification. Face verification typically consists of computing distances for

each pair prescribed. These distances are also called match scores. Match scores can be converted

to same/different judgements by a simple threshold, after which those judgements can be compared

to ground truth image pair labels.

The rate at which the same/different judgements agree with labels can be reported, as is com-

mon with LFW [72]. Other metrics can also be reported, such as the rate at which same judgements

are correct (true positive rate, or TPR), or similarly the rate at which same judgements are incor-

rect (false positive rate, or FPR). Equivalent to TPR is true accept rate (TAR) and true match rate

(TMR), and equivalent to FPR is false accept rate (FAR) and false match rate (FMR). Some choose

to also report the rate at which different judgements are correct, or true negative rate (TNR, also

true non-match rate, TNMR). Analogously, some also report the reate at which different judge-

ments are incorrect (FNR, FNMR). For reference TPR = 1− FNR and TNR = 1− FPR.

These rates can be reported at different thresholds for a more complete performance profile,

with IJB-C results commonly consisting of TAR (i.e. TPR) at different fixed FAR (i.e. FPR).

Alternatively, a receiver operating characteristic (ROC) curve can be shown, which is the TPR as a

function of FPR at different thresholds. A summary of this ROC curve is the area under the curve,

also the ROC AUC.
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Face recognition is an excellent domain for measuring non-performance metrics as well, as

many datasets include attributes about the face or image, such as age, gender, ethnicity, face orien-

tation, or lighting conditions. As mentioned in Section 2.2, bias analyses often include many ROC

curves for different subgroups of people, highlighting different performance characteristics for dif-

ferent demographics, for example. Indeed, those plots have motivated many to consider different

optimal thresholds for different subgroups [64, 67, 71].
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Chapter 4

Open-set Linear Equivalence

As discussed in the previous chapter, face verification is an excellent task domain for facil-

itating linear correspondence studies. In this chapter, similar experiments are conducted using

models which may vary in architecture, training dataset, or angular loss function. By comparing

models which are not tied together by a common architectural feature, even completely distinct in

training data, these experiments offer clear evidence of a fundamental shared similarity structure–a

canonical embedding space. Additionally, this chapter includes a sensitivity analysis regarding the

number of images necessary to fit a mapping, mappings constrained to rotation, and a discussion

of the security implications of interchangeable embeddings. While linear correspondence between

closed-set image classifiers is certainly compelling, by establishing linear correspondence between

open-set image classifiers, even stronger evidence is established that a fundamental similarity in

learned representations exists between modern deep CNNs.

Ten independently trained face-recognition models of various pedigree and performance were

selected for study. Models were selected to include a variety of performances, training datasets,

CNN architectures, and angular loss functions.

Table 4.3 lists the training datasets, architectures, loss functions, performance on IJB-C, and

GitHub source for the ten models. The training datasets used are described in Table 4.1, ranging

Table 4.1: The datasets used in these experiments. The first five datasets were used to train networks used

in our experiments. The final dataset, IJB-C, is a test dataset used to test mappings between feature spaces.

Dataset # individuals # images/video frames

VGGFace2 [73] 9.1 K 3.3 M

CASIA-WebFace [95] 10.5 K 0.5 M

MS1M [75] 100 K 10 M

MS1MV211 [78] 85 K 5.8 M

Glint360K [20] 360 K 17 M

IJB-C [63] 3.5 K 148.8 K
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Table 4.2: Computational size and complexity of CNN backbones studied.

Model # parameters Flops

MobileNet-v2 1.4 224 [58] 6.1 M 1.2 B

64-CNN [94] 23 M 3.5 B

Inception-ResNet-v1 [28] 24 M 11 B

ResNet-50 [42] 25.6 M 7.2 B

ResNet-100 [42] 44.5 M 13.4 B

Table 4.3: Configuration and accuracy of each model. A shortened name is provided for later reference.

Note that these accuracy values are calculated by internal verification and may differ slightly from the stated

values for each model’s source publication (when available).

*Sources not associated with original publication.

IJB-C (TAR @ FAR)

Short Name Training Dataset CNN Architecture Angular Loss Function 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 Source

M2_R100_A MS1MV2 ResNet100 [42] ArcFace [78] 0.991 0.984 0.975 0.963 0.945 0.898 [98]

V_R50_A VGGFace2 ResNet50 [42] ArcFace [78] 0.994 0.984 0.963 0.928 0.875 0.744 [98]

G_R100_P1.0 Glint360k ResNet100 [42] PartialFC (r=1.0) [20] 0.993 0.988 0.981 0.973 0.960 0.912 [98]

G_R100_P0.1 Glint360k ResNet100 [42] PartialFC (r=0.1) [20] 0.992 0.987 0.981 0.974 0.961 0.872 [98]

M1_R50_A MS1M ResNet50 [42] ArcFace [78] 0.979 0.954 0.918 0.861 0.782 0.701 [99]*

M1_MB2_A MS1M MobileNetV2 [58] ArcFace [78] 0.981 0.940 0.869 0.766 0.629 0.503 [99]*

V_IR1_C VGGFace2 InceptionResNetV1 [28] Center Loss [100] 0.990 0.967 0.908 0.808 0.681 0.518 [101]*

C_IR1_C CASIA-WebFace InceptionResNetV1 [28] Center Loss [100] 0.981 0.929 0.832 0.697 0.534 0.408 [101]*

M1_64S_PFE MS1M 64-CNN+PFE [19, 94] AM-Softmax [102] 0.985 0.970 0.942 0.872 0.757 0.610 [103]

C_64S_PFE CASIA-WebFace 64-CNN+PFE [19, 94] AM-Softmax [102] 0.982 0.949 0.889 0.798 0.678 0.530 [103]

50



from 500,000 images in CASIA-WebFace [95] to 17 million images in Glint360K [20]. The rela-

tive size and complexity of each CNN backbone is listed in Table 4.2, ranging from MobileNet’s

6 million parameters to ResNet-100’s 44.5 million parameters. For more details on models and

datasets, please refer to their respective publications and code sources.

Using four of the worst-performing models, initial experiments were carried out on LFW (see

Appendix A). While these experiments yielded promising results, performance on LFW is highly-

saturated using modern CNNs. This motivated the use of IJB-C, a more recent public face bench-

mark dataset which focuses on unconstrained media, and presents a much greater challenge. IJB-

C includes both still images and video frames along with many pre-defined evaluation protocols.

These experiments are focused on 1:1 verification, which includes pairs of multi-image templates

and a broad range of difficulties. Performance on IJB-C is also typically reported as true accep-

tance rates at fixed false acceptance rates (TAR @ FAR), which allowed finer measurement of the

relative quality of mappings between networks as expressed through ever greater intolerance for

false matches.

4.1 Model Evaluation

All 10 models were downloaded pre-trained from their respective sources, and evaluated on

IJB-C using the 1:1 verification protocol. Each model was evaluated using its own source repos-

itory’s preprocessing steps including face detection and cropping. These may differ in crop size,

aspect ratio, or similarity transform target, however, the same set of IJB-C images were used in all

cases.

Each model was then passed preprocessed images to produce an associated set of embeddings.

Embeddings were all evaluated in the same fashion, using evaluation code adapted from Jia Guo

and Jiankang Deng’s InsightFace project on GitHub [78, 98]. For all 10 networks here, the di-

mensionality of the feature space is 512. However, with the Probabilistic Face Embeddings (PFE)

architecture (models M1-64S-PFE and C-64S-PFE) [19], the output of a second uncertainty mod-

ule was concatenated to features yielding 1024 dimensions. This uncertainty module consisted of
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a network with two fully-connected layers with input and output dimensions of 512, equal to the

dimension of the output of the base CNN model.

IJB-C 1:1 verification consists of generating many templates, each corresponding to one or

more images. In cases where video frames are present in a template, features belonging to the same

video are first aggregated by simple vector average. A single template vector was then calculated

as an L2-normalized sum of all image and video features within that template. Template pairs were

scored by the inner product (dot product), equivalent to cosine similarity since all templates are

unit-length. Finally, a list of template pairs was used for ROC analysis to determine true acceptance

rates at fixed false acceptance rates (TAR @ FAR). In the case of PFE, this differed from their mean

likelihood score, treating σ simply as an additional feature, allowing a uniform distance measure

across all models to be maintained for later cross-model comparisons. The performance of each

model at 6 FARs is provided in Table 4.3.

4.1.1 Calculating Mappings

The extent to which a linear map converts between the features of two networks is the chief

interest of this study. Let XE and XV be the 11,856 enrollment and 457,519 verification images

belonging to the IJB-C 1:1 Verification protocol. For a source network fA and target network fB,

a matrix MA→B ∈ R
dA×dB was fit such that

fB(XE) ≈ MA→BfA(XE) (4.1)

for all input images x ∈ R
w×h×3. Essentially, this approach seeks a mapping which minimizes the

distance between pairs of points in feature space corresponding to the same image, up to differ-

ences in preprocessing. The result of MA→BfA(XE) is also explicitly unit-normalized so that it

corresponds to the output of the models we studied.

Two methods were used to calculate mappings, both using pairs of embeddings generated from

the IJB-C 1:1 verification enrollment set. To elaborate, these 11,856 images were passed to both

models to generate 11,856 pairs of embeddings.
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Linear mappings were computed by solving the ordinary least squares regression problem over

image pairs:

minimize
m
∑

i=1

||M̃A→BfA(x)− fB(x)||2. (4.2)

Rotation mappings were computed using the methods developed by Wahba and Kabsch for

finding the optimal rotation for minimizing the distances between two sets of points [104, 105].

Simply put, this algorithm consists of computing the singular value decomposition of the cross-

covariance matrix of two sets of points fA(XE) and fB(XE), followed by recomposition with

all singular values set to 1. To ensure no flips or mirroring, the last singular value (corresponding

dimension of least variance) is optionally set to -1. In other terms, we calculated rotation mappings

as:

fA(XE)
TfB(XE) = UΣVh

MA→B = UI ′Vh

(4.3)

where

I ′ = diag ([1 1 . . . 1 det(U) ∗ det(Vh)]) .

This produced a linear mapping matrix with the additional constraint of being orthogonal and

having determinant 1, a rotation. Note that fA(XE) and fB(XE) would typically be centered

first to find the optimal rotation axes, but points were left in their original translation (on the unit

hypersphere), so that embeddings are rotated about the origin.

4.1.2 Evaluating Mappings

A natural method for mapping evaluation is to measure impact on performance using a vali-

dation dataset of faces unseen during training of any models. Essentially, mapped features were

produced from the mapping’s source network, and evaluated against features generated by the map-

ping’s target network. As in Section 4.1, templates were generated from collections of embeddings,

except each template in a pair was generated by a different network.
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To be precise, target model templates were calculated from embeddings in the verification set,

fB(XV ), and source model templates were calculated from mapped embeddings generated from

the same images MA→BfA(XV ). As in the previous section, template match scores are computed

as the inner product, equivalent to cosine similarity when templates are unit-length. ROC analysis

is performed to produce true accept rates at various false accept rates (TAR @ FAR), which may

be compared to unmapped model performance.

4.2 Cross-CNN Mapping Results

Mapping evaluation results are summarized in Figure 4.1. Hatched bars along the diagonal

show the same TARs listed in Table 4.3. Off-diagonal elements contain TARs produced by cross-

CNN evaluation as described in Section 4.1.2, with the row label indicating the source model,

and the column label indicating the target model. These labels correspond to each model’s “Short

Name” in Table 4.3. Rotation mapping evaluations are in Figure 4.2.

For the bulk of cross-CNN comparisons, linear mappings seem to convert embeddings effec-

tively and with little performance penalty. When looking for poor mapping performance, Par-

tial FC loss using 10% label subsampling (G_R100_P0.1) seems to produce features which are

more difficult or dissimilar. In contrast, the same model trained using all of Glint360K’s labels

(G_R100_P1.0) consistently produced high performance when mapped (though not necessarily

the highest). This suggests that label subsampling, while impacting single-model verification per-

formance very little, has a relatively large effect on embedding space similarity. The contrast in

mapping performance between these two models which themselves are highly compatible and near

identical in training setting prompts further investigation, as explained in Section 4.4.

Even when constrained to only rotate embedding spaces, cross-CNN performance is still at or

near single-CNN performance at a FAR of 0.1. While this FAR is very weak, these results provide

a demonstration that mapping between face verification CNNs is possible using linear or rotation

maps. Interestingly, some mappings exceed the performance of their target or source model (but

not both). Compared with linear maps, rotation produce a higher penalty in almost all cases, and
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Figure 4.1: Linear maps reveal consistent overlap between feature spaces of distinct CNNs. Bars indicate

the TAR on IJB-C 1:1 verification at the FAR indicated by the bar color. Hatched bars correspond to the

unmodified performance of each model (also in Table 4.3). Models are sorted according to unmodified TAR

at a FAR of 0.01. Off-diagonal bars correspond to the accuracy obtained when comparing features across

networks, with the “Source” model’s features mapped by linear transformation to approximate the “Target”

model’s features. Models are referred to by their “Short Name” listed in Table 4.3. Best viewed in color.
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Figure 4.2: Rotation maps also reveal consistent overlap between feature spaces of distinct CNNs. See the

caption of Figure 4.1 for figure description.
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the penalty was nearly symmetric when source and target are swapped, due to the structure of

finding an orthonormal solution. The extra constraint of rotation maps further reveals the nature of

cross-CNN relationships.

High TARs were maintained for the most successful networks as the FAR is decreased to 1e-3,

though networks with less representational complexity have less success in representing the more

complex networks. Smaller FARs are listed with our complete results in Figures B.1 and B.2,

including some failure cases which indicated an exciting direction for future work, as discussed in

Section 4.4.

4.2.1 Sensitivity to number of images

To better understand the complexity of mappings between embedding spaces, mappings were

also fit and evaluated using a variable number of paired examples. Specifically, a random subset

of the 11,856 images in the IJB-C 1:1 verification enrollment set were selected, and mappings

were fit as described before using a smaller set of images selected at random. Then, mappings

were evaluated as before, by comparing the mapped embeddings of one network to the unmapped

embeddings of another on the IJB-C 1:1 verification set, after both sets of embeddings have been

aggregated into templates. Average performance was collected over 3 repetitions of this experiment

using independent random subsets. The resulting TARs at a FAR of 0.01 using all (11,856), 1024,

or 256 samples to fit said mappings is illustrated in Figure 4.3. Rotation mappings were used, as

they have fewer degrees-of-freedom and thus require fewer examples. For more sample sizes, see

Figure B.3 in Appendix B.

Though some mappings performed worse with fewer examples, many provided near unchanged

performance. As before, the relative difference in model pairs seem to generally reduce mapping

performance. Since Figure 4.3 is sorted by single-model performance model pairs closer to the

top-left and bottom-right of this figure are further from each other in relative performance, and

also seem to produce generally poorer performance when mapped.
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Figure 4.3: Each bar represents the TAR at a FAR of 0.01 achieved by comparing "Source" CNN features

to "Target" CNN features after rotation mapping. TAR is shown for rotation mappings computed from 256,

1024 and 11,856 pairs of corresponding embeddings.
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These results are broadly encouraging, further confirming the presence of fundamental similar-

ity between embedding spaces. On the other hand, cases where performance is heavily impacted

when using fewer examples reveal the relative difficulty of certain CNN pairs over others.

4.3 Security Implications

Anyone handling embeddings from an operational face recognition system based upon existing

neural networks must ask themselves this question:

What risks might ensue if embeddings from my system become available to others?

In light of what has been presented, risks include naming an individual associated with an "anony-

mous" embedding and possibly even enabling an impersonation attack.

To recap and setup for explaining these risks, the experiments above demonstrated that two

face embedding systems (Systems A and B) are likely to produce the same embeddings, differing

only by a fixed linear transformation. Further, these linear transformations can be determined using

relatively few (hundreds) paired embeddings. In other words, if embeddings from System A can

be obtained, and their corresponding embeddings in System B discovered (e.g. by also obtaining

the faces or identities they represent), then the general linear mapping between embeddings spaces

can be calculated. Note also that to establish a mapping between systems, the paired embeddings

themselves do not actually need to be labeled. To be clear, they must be of the same person, but

the actual identity of the person is not itself used.

Now assuming the mapping between embedding spaces has been determined, how might it be

used? Two examples are highlighted. The first is the risk that, even though those responsible for

System A might hope an unlabeled embedding is anonymous, there is a clear path to discovering

the withheld identity. If System B is tied to a database of labeled faces containing the identity of

the “anonymous” embedding from System A, then a simple identity query to System B with the

mapped embedding will return the associated identity.

For the second example, consider the “Template Reconstruction Attack” described in Mai et

al [106]. In this scenario, an attacker gains access to a face verification model (System A) and
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embeddings corresponding to a target individual. Then, the attacker trains a face reconstruction

model using System A which converts embeddings into 3-D face representations. Once embed-

dings can be reconstructed into faces, the attacker can reconstruct the face of a target individual

and impersonate them when authenticating using the compromised system (System A). Why the

“Template Reconstruction Attack” approach is important here is because, when combined with this

work, direct access to System A may no longer be necessary. Instead, a single embedding from

System A can be mapped into System B’s embedding space and then the reconstruction process

proceeds using System B.

The first example is an approach actually put into practice in the context of processing face

embeddings from two major participants in the DARPA AIDA program. Each of these partici-

pants generated embeddings from a set of images and video frames, associating embeddings with

random unique identifiers. Embeddings were provided alongside other document extractions in

a non-reversible fashion to simulate conditions where primary sources need remain anonymous

(e.g. whistleblowers). The goal of our team was to combine such multi-source extractions into a

knowledge base for downstream participants. By pairing embeddings from different AIDA par-

ticipants with the same unique identifier (thus the same source image and face), we were able to

fit linear mappings between the embeddings of unknown models. Ultimately, this allowed us to

create correspondences between faces which we had never seen, embedded by models we could

not access. The second example, the possibility for enabling an impersonation attack, has not yet

been tried and doing so is beyond the scope of this work. That said, the idea is well founded and

clearly worthy of further exploration.

In closing, note that these vulnerabilities depend upon the reliability of the mapping. As

demonstrated in Figure 4.3, some mappings perform poorly, especially when using fewer exam-

ples. Still, from the perspective of security, even a low-reliability vulnerability is worth consider-

ation. More to the point, the goal in this paper has not been to present detailed end-to-end attack

models. Instead, the emphasis is that the embeddings — despite being the result of extremely

non-linear upstream processes — are not alone sufficient to hide identity. In summary, face em-
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beddings and their associated identities should be treated as sensitive information and stored as

such. Securing face embeddings against the vulnerability we describe here could be accomplished

by an invertible, sufficiently nonlinear transformation applied before storage. For example, strong

encryption of embedding vectors should be adequate to guard against the risks cited above.

4.4 Discussion

I am confident that the results presented here are strong evidence for a fundamental similarity

between common CNN-based face recognition systems. Though only 10 models were studied,

these results suggest that the similarity structure of face CNN embeddings remains stable despite

changes in architecture, dataset, and loss. Although some information does not transfer in these

linear or rotation maps, clearly the bulk of information does. Where one might expect a new

combination and configuration of CNN layers and training examples to produce new learned rep-

resentations, our work demonstrates that embeddings produced by CNN models trained for the

same task approximate a canonical space, which each model appears to converge upon.

Generally, the performance of the poorest-performing model in a pair seems to provide an

upper bound of cross-CNN performance. However, certain cases perform worse, suggesting certain

models have greater compatibility than others, or even that some information is not captured by

poorer-performing models. For example, take G_R100_P0.1 (ResNet100 trained on Glint360k

using Partial FC loss) which performs comparatively well on its own, and in many cross-CNN

mappings. This model is already somewhat distinct in that it uses a random subset of 10% of

identities for computing softmax loss during training [20]. Take note, however, of the target models

which produce poor mapping performance, V_IR1_C, C_IR1_C, and M1_MB2_A. While these

models perform worse already, they seem to have greater incompatibility with G_R100_P0.1 than

others. Roughly speaking, if model A is compatible with model B, and model B is compatible

with model C, then why isn’t A compatible with C? One hypothesis is that, despite evidence

for broad task-driven similarity between CNNs, certain design features of these CNNs do impact

finer aspects of their representation. In other words, it may be that subsampling identities during
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training as with Partial FC biases the resulting model away from a representation found using

InceptionResNet or MobileNet architectures.

While results were demonstrated using 90 pairs of CNNs, it’s unclear how small variations

in preprocessing or model implementation may contribute to mapping performance. While many

architectures and results for a large face dataset were included, finer characterization of these

relationships requires carefully controlling for architecture and training details. Such analysis

will likely come at great resource cost, so a systematic exploration with increased granularity and

controls is left to future works.

Further, this method may be explicitly lossy when features are represented with different num-

bers of dimensions, producing non-square mapping matrices (i.e. non-zero nullity per the rank–

nullity theorem). The work of Gong et al. [107] offers insight along these lines by providing ev-

idence for a far reduced "intrinsic dimensionality" produced by common face verification CNNs.

This suggests that while rectangular linear transformations indeed project information into fewer

dimensions, mapping between two sets of face embeddings may require far fewer dimensions than

the maximum rank of a rectangular matrix.

4.5 Conclusion

The existence of performance-preserving linear mappings between face recognition CNNs

which vary in training and construction suggests this phenomenon depends primarily–if not solely–

upon the modeling task. Subsequently, the existence of task-dependent canonical embedding

spaces suggests there is a high degree of redundancy in the training procedure of bespoke CNN-

based models for a common task, as the bulk of the learned representation is unchanged. Consider

the computational effort required to train and develop these models, given that they each converge

to highly similar solutions. Perhaps there is a richer training signal to-be-developed which takes

advantage of this seemingly universal similarity structure, efficiently guiding training towards so-

lutions found by previous models. Regardless, these results seem to discourage efforts to optimize
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CNN architectures for the purpose of improved performance, so long as the modeling task (i.e. the

dataset) provides the biggest impact on the content of modeling output.

More broadly, if the modeling task most significantly impacts the structure of embedding space,

it prompts further investigations into the relationship between these spaces and the modeling tasks

which produced them. Others have investigated the relationships between modeling tasks, finding

where learned representations of one task help or hurt performance on another task [108, 109].

Besides the impact on performance, cross-task representations could also be studied by their in-

teractions in embedding space structure. Clearly, more work is necessary to understand how these

structures are organized, as our own work depends upon performance as a downstream measure of

similarity. Still, if researchers want models to learn fundamentally new representations, this work

suggests they need new tasks.
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Chapter 5

Analyzing Face Embeddings using Subspace Angles

As discussed in Chapters 1 and 2, deep model bias is prevalent and complex. In Chapters 3

and 4, evidence was found suggesting models trained on the same task learn to extract information

in fundamentally similar ways as represented in their output or embedding spaces. In essence,

models trained with different datasets and/or different architectures produce outputs (i.e. embed-

ding vectors) which can be interchanged by a structure-preserving mapping. This suggests that a

common output space is learned by models which are trained for face recognition, and perhaps

other tasks. In this chapter, the structure of face embeddings is further investigated in an effort

to better understand how information in the face image is represented in embedding space. This

is an attempt to build on the findings of previous chapters, offering a new perspective into how

deep face recognition models encode bias. Bias is defined as a meaningful difference in the per-

formance or outcomes of the model with respect to specific input image covariates. For the face

images studied here, these covariates include both demographic information (age, skin tone, gen-

der) and non-demographic information (lighting, occlusion, orientation). Demographic biases are

of particular interest for their potential to disenfranchise certain demographic groups, especially

those which are already subject to institutional or systemic biases (see [32] for notable examples).

Estimating the degree to which a face model is biased is commonly performed by measuring

the relative performance the model achieves between different covariate groups, such as faces of

different age, skin tone, or gender (see Section 2.2 for an overview and notable examples). Specif-

ically, images are fed to a model which produces high-dimensional embeddings, after which those

embeddings can be compared using an embedding distance measure, such as cosine distance. Sub-

sequently, a decision threshold is used to convert distances (i.e. match scores) into same/different

judgements which are scored against ground truth labels. Typically, the rate at which faces of the

same person are below the threshold (the true positive rate, TPR) is reported at different fixed false

positive rates (FPR), determined using the same match scores but different decision thresholds.
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Though methods for choosing groups of faces and comparing match scores may differ slightly,

this ROC analysis framework describes the bulk of face recognition model bias analysis [35].

The method described in the following section is proposed as an alternative to pairwise similar-

ity metrics (i.e. match scores). Simply put, when different images of the same person are presented

to a good face-recognition CNN, the output embeddings will not identically match, but they will be

similar. Embeddings are nothing more than points or vectors, though CNN-based face embeddings

tend to be in very high dimension space. Embeddings produced by images of the same person will

be closer to each other than to embeddings of new people. Face verification studies (such as in

the previous chapter) will measure the rates at which embeddings of the same person are closer to

each other than to embeddings of new people.

The new work being presented here is investigating a different question: should randomly-

chosen embeddings of female faces be any closer or farther than randomly-chosen embeddings

of male faces? What about other covariates like age, race, or lighting? Pairwise comparisons

have been used to investigate these questions, as covered in Section 2.2, painting a clear picture

that modern face recognition models are indeed often demographically biased, e.g. distinguishing

male faces more accurately than female faces. However, these comparisons do not study how

bias is represented beyond the relative discriminability of each covariate groups’ embeddings.

Instead, the rates at which embeddings of the same person are closer or further to embeddings of

different people are simply split by the respective covariate being studied. When these rates differ

in aggregate, one can say that faces with attribute A tend to be harder or easier to recognize by the

model than faces with attribute B. This is not to say that these studies are not valuable, only that

a more direct and efficient comparison may yield a clearer picture of the ways in which biases are

encoded into deep neural face recognizers. To get to the bottom of the question posed, a method is

needed which compares how embedding groups interact and overlap, not just how well-separated

each group is within itself (i.e. how well each group’s identities are separated).

The new research presented here also builds upon the findings of the previous chapter: models

trained for face recognition produce fundamentally similar embedding spaces. The methodology
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used represents face image covariates as linear subspaces, and compares them using principal

angles. A generalization of linear subspaces is used to facilitate direct and efficient comparison,

called the Grassmann manifold. Within this abstraction, groups of embeddings are represented as

the linear subspaces they each span, or points on a Grassmann manifold. To investigate the question

asked previously, these groups can be selected based on attributes of the face or image used to

produce them, such as whether the embedding represents a face of a person who is male or female.

As an aside, gender is represented as a binary variable here since this is how gender is annotated in

the datasets studied. The separation between these groups can then be measured as the length of the

geodesic between their representative points on a Grassmann, or its prerequisite principal angles

as described in the following section. Face covariate groups which produce embeddings in distinct

subspaces will produce longer geodesics, and conversely covariates which produce embeddings in

overlapping subspaces will produce shorter geodesics.

It is not immediately clear what to expect from these measurements, or how bias is exhibited

by subspace separation. In two bias mitigation efforts, information which is predictive of different

demographics was removed from embeddings, reducing the differences in performance between

demographics (and overall, slightly) [37, 38]. If bias-mitigated embeddings are not predictive of

demographics, then they surely span overlapping subspaces, since separation could be used for

prediction. The converse is not necessarily true, however, as there may be unbiased embeddings

which remain predictive of some facial covariate, thus well-separated in embedding space. In-

stead, it may be that subspaces are distinct, yet still distribute faces of different covariate groups

unequally. Indeed, there is growing evidence that faces of different demographics produce different

distributions in embedding space. In a bias mitigation effort by Wang et al., demographic bias was

reduced by learning specific loss margins (essentially the penalty for wrongly matching two faces)

for each demographic group [74]. In another bias analysis, Albiero et al.found roughly 3 times

more female faces than male faces were necessary during training to achieve gender-equal per-

formance [36]. If the model needs unequal incentives or unequal proportions of training samples

to achieve equal performance, perhaps unbiased face representations do not distribute informa-
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tion equally. It is also possible that subspaces are overlapping in some dimensions, but distinct in

others, perhaps highlighting unequal distributions. Withholding further speculation, more work is

clearly needed to understand how face recognition bias is represented in embedding space.

5.1 Measuring embedding subspace similarity

In this experiment, Grassmann manifolds will be utilized for comparisons of embedding sub-

spaces. From a practical standpoint, representing face embedding groups as points on a Grassmann

manifold facilitates comparison based on the respective regions of embedding space that they span–

their respective subspaces. In more precise terms, the Grassmann manifold Gr(k, V ) is a space

that parameterizes all k-dimensional linear subspaces of the n-dimensional vector space V . Then,

any given point P ∈ Gr(k, V ) represents a specific linear subspace of V . These points can be

defined as the space spanned by collections of face embeddings P = span(Y ).

To compare two points P1, P2 ∈ Gr(k, V ), the length of the shortest path along Gr(k, V )

connecting them (a geodesic) can be measured. This geodesic distance is the two-norm of the

vector of principal angles between these two subspaces,

dist(P1, P2) =

(

p
∑

i=1

θ2i

)1/2

(5.1)

[110]. To obtain these principal angles for two sets of face embeddings Y1, Y2, orthonormal bases

for each are first computed. Here singular value decomposition (SVD) is used,

U1Σ1V1 = Y1

U2Σ2V2 = Y2.

(5.2)

Then, SVD is applied again on the cross-covariance of these bases,

Ud,Σd, Vd = SV D(UT
1 U2). (5.3)
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The values σi ∈ Σd are the cosine of the principal angles between the spaces spanned by Y1, Y2,

also the canonical correlations [111]. These are converted to angles θi = arccos(σi), and used in

the above formula for dist(P1, P2). These angles can also be analyzed individually.

For illustration, imagine taking a unit vector from the subspace which spans all male face

embeddings, and another from the subspace which spans all female face embeddings. These two

vectors need not be represented in the original set of embeddings used to generate them, and may

instead be a linear combination of either set of original embeddings. For the first principal angle,

the two vectors are chosen such that they maximally correlate. If the two subspaces overlap, this

angle will be zero. The next principal angle is found in the same way, with the added constraint

that the maximally-correlating vectors be orthogonal to those chosen for the prior principal angle.

In other words, the space spanned by the two vectors measured for the first principal angle (i.e. a

hyperplane) is taken out of consideration for subsequent principal angles. If the subspaces overlap

along multiple orthogonal directions (i.e. dimensions), this angle will again be zero. This process

is repeated, measuring the angle between vectors of maximum correlation which are orthogonal to

all previously-chosen vectors, for a specified number of iterations, or until all directions spanned

by either subspace have been exhausted.

The description above accurately captures the essential quality of principal angles, but com-

putationally they are solved in terms of a generalized eigenvalue problem (e.g. see the appendix

of [2]), computed using the steps listed in the previous paragraph. Still, the angles represent those

illustrated–the angle between the closest linear combinations of face embeddings in either space

(and orthogonal to prior combinations).

Now that principal angles are obtained, they may be analyzed. In essence, these angles describe

how similar two sets of images are in embedding space. If many angles are close to zero degrees,

the spaces are highly overlapping, meaning the model represents those faces in a similar manner. If

many angles are close to ninety degrees, the spaces are minimally overlapping, indicating that the

model represents those faces differently. In the context of face recognition model embeddings, the
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profile of angles between subspaces depicts how similarly the model represents faces from either

subspace.

5.1.1 Addressing noise through dimension reduction

As the CNNs studied operate on natural images subject to pixel noise, the baseline similarity

measured as proposed is likely to be generally high and inexpressive. If for no other reason, this is

because pixel noise will span the space given sufficient samples. Essentially, though the model’s

task requires it to extract a useful signal, its outputs still contain some of the noise present in any

given set of natural images. If each subset spans all dimensions, then they will each have perfect

similarity as measured by principal angles. So, a dimensionality reduction process is included,

where dimensions of low variance are removed with the hope of removing noise. Thankfully,

researchers have found that dimension-reduced face embeddings of some CNNs can still be used

to perform accurate face verification, using linear dimension reduction by principal components

analysis from 512 to 128 dimensions with negligible performance change [107].

Reducing dimensionality in the calculations above is performed by removing columns of the or-

thonormal bases U1 and U2 generated using SVD as described in Equation 5.2. For reference, each

of the models here produces embeddings in 512 dimensions. The number of remaining columns

is either fixed at 64, for example, or can be determined using a target variance proportion. As an

example of the latter, if the first 59 squared values along the diagonal of Σ1 sum to 99% of all

squared values along the diagonal of Σ1, then only those first 59 columns of U1 are used to cal-

culate principal angles. As the number of values of Σ1 expressing a given proportion of variance

may differ from the respective number of values of Σ2, the number of columns removed from U1

and U2 may also differ, meaning the matrix product Û1

T
Û2 cannot be computed. In this case, the

maximum of the two numbers of columns is kept for both U1 and U2.

This work includes results for different levels of dimension reduction, to test the notion that

dimensionality reduction is favorable for the noisy, sparse, high-dimensional embeddings stud-

ied here. If there is meaningful separation to be found between subspaces, projecting them into
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fewer dimensions expressing the greatest variance will facilitate greater distinction than the origi-

nal high-dimension low-variance ambient space. Dimension reduction efforts must be conducted

carefully, as too few dimensions removed may not remove enough noise to meaningfully separate

the respective spans of each subset.

5.1.2 Baseline similarity estimation

Though this method is motivated by the concept of comparing subspaces, it is ultimately an

empirical measure based upon samples of embeddings. As such, determining baseline similarity

is also an empirical task. After all, even when two faces are highly distinct regarding their covari-

ates, they still both likely have eyes, a nose, etc. Therefore, a baseline level of similarity is first

measured.

This baseline should represent the “average face”, and thus not be biased towards any spe-

cific covariate group. In other words, a roughly equal number of male and female faces should

be present in each random subset, along with other covariates like age, skin tone, etc. Specif-

ically, many random, non-overlapping embedding subsets will be gathered such that covariate

groups are roughly equally represented. Then, the principal angles they produce can be deter-

mined as described previously. Many principal angles can be gathered from new random subsets,

and aggregated to produce a baseline similarity profile for faces which is independent of covariate

differences.

5.1.3 Embedding generation and selection

With a method for baseline-aware, noise-insensitive subspace comparison defined, now the

subspaces themselves can be constructed. This experiment builds upon the previous chapter using

the same 10 models for study. Recall that these models are trained on one of many datasets, using

one of many architectures and losses. Filtering to those with annotations, 141,226 images and

video frames were obtained from the IARPA Janus Benchmark – C (IJB-C, [63]) dataset. Images

are preprocessed (face detection, cropping, similarity transformation, and normalization) in the

same manner as each model was trained, before being fed to that model. Each model consists of a
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deep convolutional neural network, using many convolutional layers to transform the input image

into an output embedding vector and then unit-normalized, as is standard for each.

There are several relevant face covariates included for the face images in the IJB-C dataset.

This allows embeddings to be grouped according to different labels, such as female vs male. These

covariates are the age, gender, and skin tone of the person pictured, along with whether the image

was captured indoors or outdoors, the orientation of the face relative to the camera, and which

parts of the face are occluded in the image [63]. Gender is provided as a binary variable, female

or male. Here, age is grouped into the same categorical ranges as [33], namely 0-19, 20-34, 35-

49, 50-64, and 65+. Skin tone is provided as one of 6 types within the Fitzpatrick scale used by

dermatologists [112]. Demographic covariates (age, gender, skin tone) are of particular interest to

the research community, and to the greater public concerned with bias in face recognizers. Non-

demographic covariates (facial hair, indoor/outdoor, yaw, roll, occlusion) are of less interest, but

still present an opportunity to better understand embedding space structure. Unfortunately, as there

are relatively few images annotated within the facial hair, yaw, roll, and occlusion covariate values,

they are not included in this analysis.

5.1.4 A Sanity Check

Prior works have successfully revealed many ways in which face recognition models are bi-

ased (see Section 2.2). In this work, groups of faces are represented as groups and compared as

groups, with the hope that such Grassmann-based measures will provide further insights on this

bias. To facilitate clear comparisons between these two methods, pairwise distance metrics are

also included here.

In short, pairwise angles will be computed for every unique combination (i.e. the Cartesian

product) of two sets of embeddings, and averaged. The same sets will be used as discussed in

prior subsections, both for establishing baselines and for comparing covariates. These averaged

distances can be compared alongside geodesic distances, allowing validation of either as a more

expressive metric for comparing sets of embeddings.
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Figure 5.1: The 10 models studied cover a broad range of singular value distributions.

5.2 Results

5.2.1 Effects of dimension reduction

As mentioned previously, some dimension reduction is necessary to prevent noise in each sub-

space from spanning the ambient space. Though each model produces embeddings vectors in R512,

some express information more “compactly” than others. This is illustrated by the singular val-

ues of each model, displayed in Figure 5.1 using the short model names listed in Table 4.3. This

figure includes a vertical dashed line for each model, showing the number of dimensions neces-

sary to express 90% of its embedding space variance. The variety of dimensional “utilization” has

implications for measuring geodesic distance between points on a Grassmann manifold, as each

manifold Gr(k, n) is parameterized by the dimension of the subspaces and ambient space, k and

n.

Two methods of dimension reduction are considered, fixed and variance-proportional. For both

of these methods, the singular value decomposition of a subset of each model’s embeddings is used

to determine which dimensions are removed, i.e. those with the smallest variance. Again, dimen-

sions in which the data varies the least are removed with the intuition that such dimensions contain

a greater proportion of pixel noise, reducing the expressivity of subspace angles. With fixed di-

mension reduction, each model’s embeddings are projected to the first N dimensions, where N is
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Figure 5.2: Reducing dimensionality of features to a fixed number (here 128) results in non-uniform

changes in performance, while variance-proportional dimension reduction produces more uniform, consis-

tent changes. The IJB-C 1:1 verification TAR is reported at FAR=1e-2. Models are sorted by the proportion

of variance retained at 128 dimensions.

fixed for all models. With variance-proportional dimension reduction, the proportion of variance

is fixed for all models, thus N may vary between models. Essentially, fixed dimension reduc-

tion yields embeddings which are all the same dimensionality, while variance-proportional yields

embeddings which contain the same proportion of their original embeddings’ variance.

Naturally, fixing the number of dimensions to 128 leads to different proportions of variance

retained for each model. Compared to variance-proportional, fixed dimension reduction has a less

uniform effect on performance, as illustrated in Figure 5.2. For the first few models, the red bar

(performance at 128 dimensions) is above the others (variance-proportional dimension reduction),

while the trend is reversed for the latter models. In the interest of preventing the “compactness”

(i.e. relative proportion of variance) of each model’s embedding space from confounding other

experimental controls, a variance-proportional strategy is chosen.

5.2.2 Summarized results

As there are 10 models, 4 covariates, and many combinations of covariate values therein, these

experiments have produced extensive results. Each covariate value combination (e.g. Female
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Table 5.1: Configuration and accuracy of each model, including after dimension reduction retaining 90% of

variance. A shortened name is provided for later reference. For full performance and model sources, refer

to Table 4.3.

IJB-C (TAR @ FAR=1e-2) Number of Dimensions

Short Name Training Dataset CNN Architecture Angular Loss Function 100% Variance 90% Variance 100% Variance 90% Variance

M2_R100_A MS1MV2 ResNet100 [42] ArcFace [78] 0.984 0.981 512 183

V_R50_A VGGFace2 ResNet50 [42] ArcFace [78] 0.963 0.984 512 124

G_R100_P1.0 Glint360k ResNet100 [42] PartialFC (r=1.0) [20] 0.988 0.986 512 238

G_R100_P0.1 Glint360k ResNet100 [42] PartialFC (r=0.1) [20] 0.987 0.986 512 388

M1_R50_A MS1M ResNet50 [42] ArcFace [78] 0.954 0.950 512 76

M1_MB2_A MS1M MobileNetV2 [58] ArcFace [78] 0.940 0.937 512 45

V_IR1_C VGGFace2 InceptionResNetV1 [28] Center Loss [100] 0.967 0.967 512 39

C_IR1_C CASIA-WebFace InceptionResNetV1 [28] Center Loss [100] 0.929 0.938 512 58

M1_64S_PFE MS1M 64-CNN+PFE [19, 94] AM-Softmax [102] 0.970 0.967 512 245

C_64S_PFE CASIA-WebFace 64-CNN+PFE [19, 94] AM-Softmax [102] 0.949 0.946 512 138

vs Male) yields N principal angles when comparing subspaces of RN . Principal angles can be

aggregated into geodesic distances along the Grassmann manifold Gr(k, n), though there are still

many distances to compare given the number of models and covariates. Further, as discussed

previously, a pairwise distance metric is also included for comparison, doubling the number of

distances to analyze. With this in mind, 4 models are highlighted here, with the remainder in

Appendix C. These 4 models are selected such that none of them use the same training data, neural

network architecture, nor angular margin loss. For the names, configuration, and performance of

these models, see Table 5.1.

See Figure 5.3 for the geodesic distances between face embedding subspaces organized by em-

bedding model and covariate. Each colored cell corresponds to the geodesic distance between two

subspaces spanned by different face embeddings. Cells are grouped according to their prerequisite

embedding model (by figure column) and covariate (by figure row). The upper-rightmost cell in

each grid is annotated in italics with the geodesic distance between subspaces spanned by random

faces, with no shared identities. All other cells are annotated according to comparisons between

face embeddings belonging to specific covariate values (e.g. Female vs. Female, Female vs. Male)

again with no shared identities. Cells along the diagonal represent comparisons between subspaces

of the same covariate value, but different identities. Each distance is the result of 7 random samples

of up to 2,000 face embeddings, with the standard deviation annotated in parentheses. Cells corre-
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sponding to the 0-19 age group are the exception to this, as only 1,170 embeddings are available

for comparison. For the remaining models, see Figure C.1 in Appendix C.

At first glance, Figure 5.3 illustrates a few broader trends for those hoping to measure bias

using geodesic distance between covariate-valued points on the Grassmann. Scanning left to right

(comparing models), each column spans a narrow range of the color bar, which seems to be related

to the number of embedding dimensions. Scanning top to bottom (comparing covariates), each

row includes a similar relative pattern, where colored cells along the diagonal are near the baseline

distance.This figure presents values along a single color scale in an effort to present results as

plainly and objectively as possible.

Interestingly, cells in the bottom-left tend to set the upper bound for each model. For covariates

with more than 2 values (age range and skin tone), the trend is more consistent, that the further

a cell is from the diagonal (i.e. the larger the difference in face age or skin tone), the larger the

geodesic distance. These trends support the notion that the studied geodesic distance measure is

expressive of semantic differences in demographics. Comparing face image embeddings captured

indoors or outdoors in the last row, distance measures are least absolutely distinct from random

baseline, though still slightly different as seen by their numeric annotations.

Recall that aggregated pairwise angles (i.e. inverse cosine of cosine similarity) are also studied

for comparison to subspace angle distances. More precisely, the average angle between all combi-

nations of two groups of embeddings is used in place of geodesic distance between the subspaces

those two groups span. These angles are depicted in Figure 5.4, which is in the same format as the

previous Figure 5.3. The same procedure is followed, including reporting the mean and standard

deviation of the angles between 7 repeated random samples. For consistency, pairwise angles are

reported between the same dimension-reduced embeddings as with geodesic distances, though the

effect of noise on pairwise angles is not as large of a concern as evidenced by the lack of dimension

reduction during typical face verification performance evaluation.

Again scanning column by column, the dimensionality of each model’s embeddings seems

to affect the range of the distances observed. Though the random baseline is shifted, the relative
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Figure 5.3: Geodesic distances express differences in gender, age range, skin tone, and lighting (best

viewed in color, magnified). Distances are calculated according to the method described in Section 5.1,

without any normalization or standardization. This figure is organized as a grid of grids, with each colored

cell corresponding to a geodesic distance between subspaces spanned by IJB-C face embeddings. Each

figure row corresponds to a different covariate, while each figure column corresponds to a different face

embedding model. In each grid, the upper triangular cell(s) are colored according to each model’s baseline

geodesic distance between random sets of faces belonging to different individuals. The diagonal of each

inner grid depicts the distance between subspaces of the same covariate value (e.g. Female vs. Female),

but different individuals. The lower triangular cell(s) depict the distance between subspaces of different

covariate values (e.g. Female vs. Male). The closer a cell is to the bottom left corner, the more semantically

distinct the subspaces are. Each cell is the result of 7 random samples, with the standard deviation annotated

in parentheses below the mean. Each sample involves comparing subspaces consisting of approximately

2,000 embeddings (except those involving the 0-19 age group, which includes only 1,170 embeddings).

(Nav table)
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Figure 5.4: Pairwise angles express some differences, though less consistently and clearly than geodesic

distances (best viewed in color, magnified). Angles are calculated according to the method described in

Subsection 5.1.4, without any normalization or standardization. This figure is organized in the same manner

as Figure 5.3, as a grid of grids, with each colored cell corresponding to the mean pairwise angle between

two groups of IJB-C face embeddings. (Nav table)
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spread of pairwise distances also seems to be dependent on the embedding dimensionality, perhaps

due to the “curse of dimensionality.” Comparing rows, female faces, those with an age over 65, or

those with darkest skin tone are consistently closer to faces of the same demographic than random

baseline. This is in contrast to geodesic distance measures, which tend to be bounded below by

values near the random baseline.

Looking at the annotated numeric values in either set of heatmaps, one can continue to find

interesting trends hidden by near-imperceptible color differences. In the interest of comparing re-

sults in a model-agnostic fashion using this color map style, a normalized iteration of both figures

is also presented. These figures are in the same format, illustrating the same values, with two min-

imal changes. First, each value is divided by the random baseline similarity, with the assumption

that the separation of subspaces of random faces is a reasonable “yardstick” for a given model’s

embeddings. Next, a diverging color map is used, centered around the each model’s scaled base-

line distance, i.e. 1.0. This second iteration is presented in Figures 5.5 and 5.6 (as well as for the

other 6 models in Figures C.3 and C.4 in Appendix C).

In both figures, the trends observed previously are emphasized. Specifically, geodesic distances

tend to increase with demographic distinction (i.e. as cells are further from each grid’s diagonal).

What’s more, this format highlights sub-baseline geodesic distances for faces of the same gender,

similar to the sub-baseline pairwise angles found for faces aged 65+ or having skin tone Type VI.

Though the two measures don’t necessarily emphasize the same groups, sub-baseline distances

may be of interest for bias research. This intuition requires further confirmation, however, as it is

not yet understood whether the ideal bias-mitigation strategy is to remove demographic informa-

tion (as in [37–39]), or to compensate for groups which are more difficult to model (as suggested

by [36, 67, 70]).

Though proportional measures emphasize the trends observed earlier, they do not produce the

same results for each model. This is not necessarily expected, as the relative distances between

subspaces may not scale linearly with variance proportion. Worse, two models which are equal

in their dimension-wise distribution of variance and produce equal baselines may still be able to
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Figure 5.5: Proportional geodesic distances highlight consistency between models (best viewed in color,

magnified). The data and format of this figure are the same as Figure 5.3, except each value has been

divided by its model’s random baseline geodesic distance. This means each data point now represents the

proportional change from baseline, with 1.0 representing no change. The color map is centered such that

1.0 corresponds to gray, and values above or below correspond to red and blue, respectively. Each cell is

again annotated, here using the proportional distance and proportional standard deviation. (Nav table)
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Figure 5.6: Proportional pairwise angles highlight inconsistency between models (best viewed in color,

magnified). The data and format of this figure are the same as Figure 5.4, except each value has been divided

by its model’s random baseline average pairwise angle. Scaling pairwise angles (linearly) does not produce

the same cross-model consistency as scaling geodesic distances. In other words, the scale of pairwise angles

seems to change at a different rate than the scale of geodesic distances with respect to dimensionality. (Nav

table)
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produce different embedding structures. In other words, while the results of the previous chapter

support the existence of canonical face embeddings, determining which embeddings are nearest

to canonical structure remains a challenge. Therefore, determining an appropriate strategy for

normalization is difficult, as it relies on assumptions regarding which embedding space details are

meaningful or not. Further normalization efforts12 are thus outside the scope of this work.

5.2.3 Principal angle curves

Recall that each of the colored cells of the previous figures represents the geodesic distance on

a Grassmann manifold between two points. The geodesic distance is calculated using the principal

angles between those subspaces which are represented as points on a Grassmann. In the interest

of illustrating results with minimal assumptions, the principal angles used to calculate geodesic

distances are also presented. In Figure 5.7, selected principal angle curves are displayed in a similar

format to previous “heatmaps,” with each figure column corresponding to a different embedding

model, and each row corresponding to a different covariate.

Each line is an “expanded” view of the geodesic distances in the figures presented previously.

The dotted line depicts the principal angles between two sets of faces which are randomly selected,

but contain no identities in common–an expanded view of the previous baselines. Similarly, the

dashed line depicts principal angles between two subspaces spanned by faces of the same covariate

value (e.g. Female vs. Female), corresponding the the first and last values along the diagonal

of each grid in the previous figures. Finally, solid red line depicts the principal angles between

subspaces spanned by faces which are most semantically distinct13 within a given covariate (e.g.

darkest skin tone vs. lightest). Due to the limited space in this format, each plot contains only these

4 lines. Each line is the average of 7 repeated random samples within these conditions, with the

area spanned by 1 standard deviation shaded in gray. For the remaining 6 models, see Figure C.5

in Appendix C.

12To be clear, variance-proportional dimension reduction and baseline-proportional distance scaling certainly rely upon

assumptions regarding what information is meaningful.

13The 0-19 age range is excluded to emphasize same-size embedding subsets.
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Figure 5.7: Principal angles show distinction between face embedding subspaces spanned by different co-

variate groups. These four selected models use different training datasets, architectures, and loss functions.

Dotted lines show the principal angles between randomly selected faces of different identity. Dashed lines

show the same, except all faces belong to a specific covariate group. Solid lines show the principal angles

between faces of different covariate groups. Many more combinations exist than are depicted here, with

the emphasis instead on those comparisons which are most distinct (i.e. the corners of the previous colored

grid figures). Angles are converted to degrees here, where the geodesic distance and pairwise angles were

calculated using radians. Each line is the mean of 7 measurements between repeated random samples, with

the gray shaded area representing 1 standard deviation. (Nav table)
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At a glance, this figure illustrates a similar trend as the previous ones: face embeddings sub-

spaces of distinct demographic groups tend to be further from those of the same demographic

group, or a random baseline. The shape of the principal angle curves, however, offers finer details.

Each principal angle curve starts near 0 degrees, remains relatively flat, then rises to end at 90 de-

grees. This suggests much of embedding space is still spanned by any sufficiently large set of faces,

even after dimension reduction. Conversely, this means there are some subspaces which are quite

sensitive to face identity and/or demographics. Interestingly, one model “V_IR1_C” (last column)

produces principal angle curves with a sharp jump, even when comparing subspaces spanned by

random faces, where the other models produce smooth curves which diverge sooner. For another

example of this behavior on the other extreme of dimensionality, see model “G_R100_P0.1” in

Figure C.5.

Looking at subspace separation angle by angle, it is not immediately clear which angles (i.e.

which dimensions) are most important for the modeling task. To better understand which principal

angles are within the most expressive dimensions, the principal angle curves for the gender co-

variate are displayed at different levels of variance-proportional dimension reduction in Figure 5.8.

The figure is in the same format as the previous principal angle curves, except each row corre-

sponds to a different proportion of variance kept when performing dimension reduction, and all

plots concern the gender covariate.

Scanning row by row, the number of near-zero principal angles is consistently reduced as the

amount of variance retained is reduced. This suggests that the dimensions of least variance are

also those which lead to the smallest principal angles. This is supported by the earlier notion that

dimension reduction is necessary to remove pixel noise, and that dimensions where noise is present

will not be expressive of subspace separation.

5.3 Conclusion

What’s most interesting about this work is that it has not been done before, and the results were

not necessarily easy to predict. This work applies a method for describing groups of embeddings as
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Figure 5.8: Low-variance dimensions lead to more near-zero principal angles, confirming that dimensions

which are most expressive of different subspaces are also those containing the greatest proportion of vari-

ance. The format of this figure is the same as Figure 5.7, except each row shows a different proportion of

variance removed during dimension reduction, instead of a different covariate. This figure only includes

comparisons within the gender covariate. (Nav table)
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groups, and comparing them as groups (i.e. subspaces). When applied to face embeddings, faces

of different demographics are distinguished, even when pairwise distances are inconsistent. Face

embeddings are structural in nature and this method confirms that demographic-specific subspaces

are descriptive of that structure. Furthermore, the consistency in relative geodesic distances among

different models further supports the implications of the previous chapter–that there is fundamental

similarity in the structure of learned face representations.

Though the results of this work are extensive, it is difficult to make conclusions that are not

subjective. Still, the results of this chapter suggest that demographic information is learned in a

consistent way, as evidenced by each model’s tendency to further separate face embedding sub-

spaces of further skin tone, age, and gender14. Regardless, there are many ways in which this work

could be extended to better understand the relationship between bias and model design.

First and foremost, more measures of bias need to be included to validate how bias is related to

subspace angles. Though subspace angles are expressive of demographic differences, it is not clear

how subspace angles relate to the rate at which models produce biased outcomes. A performance-

based bias measure would be sufficient, as is common in other bias analyses.

Second, though the models chosen here cover a wide array of designs, bias-mitigated models

would be of special interest for future works. Some bias-mitigation efforts rely on demographic

obfuscation, which would likely lead to inexpressive demographic subspace angles (e.g. [37]). In

contrast, others not necessarily studying bias rely on effective modeling of auxiliary information

in order to make predictions which are well-informed of factors which confound the model task.

In one work, an auxiliary quality estimator is used to make predictions that are sensitive to un-

certainty [19], and in another the pose of the head in the image is linked to the embedding space,

facilitating superior pose-aware predictions [113]. It would be interesting to investigate whether

subspace angles also can provide some auxiliary information for producing better-informed mod-

els, especially for the purposes of controlling bias.

14As gender is annotated using a binary variable, “further” can be replaced with “different.”
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Surprisingly, another major source of limitation is the dataset. Though IJB-C includes other

covariates (pose, occlusion, facial hair), the number of samples within each prevents their study

using subspace angles. Even within the covariates considered, only 1170 images are available

within the 0-19 age group, where the next group (20-34) contains over 36k images. Further, this

dataset is not constructed such that each covariate group is roughly equally distributed among

other covariates (e.g. female faces tend to be younger than male faces). There are many other

demographic-annotated datasets for consideration when studying bias, such as MORPH [65] and

RFW [39]. For non-demographic information such as occlusion, color standardization, or head

pose, systematic image augmentation is also an option, as in [113].

Finally, as mentioned previously, significant work is necessary to understand how to fairly and

objectively compare measures between different models. This is a difficult task, since it requires

a solid understanding of the nature of embedding structure as it relates to ambient dimensionality,

the distribution of variance across dimensions, the structural feature being measured, and probably

far more. In that sense, efforts like this one are in their infancy.

Regardless, these experiments are new and the results are encouraging. Geodesic distances

between subspaces spanned by face embeddings representing different ages, genders, or skin tones

are larger than a random baseline, and are larger-still as differences in age and skin tone increase.

These results are consistent for a wide array of face model designs, supporting the previous results

that face models converge to a common learned representation. As the shared structure of learned

representations is better understood, better bias-mitigated models can be designed.
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Chapter 6

Conclusion

A key takeaway from this work is that it is hard to make good assumptions about the learned

representations of deep convolutional neural nets. Deep learning research can be challenging for

any scientist to navigate, since the significance of many advances is measured chiefly by their re-

spective improvements to benchmark dataset performance. The breakout AlexNet CNN trained

for ImageNet image classification achieved 63.3% accuracy [40], whereas a recent state-of-the art

CNN achieves 90% (EfficientNet trained using Meta Pseudo Labels [114]). The way in which

these models are trained has certainly changed, but a reasonable assumption regarding the ad-

vances made in the last decade of research is that architecture is key to building better CNNs. Yet,

the results presented in this thesis suggest that the structure of learned representations is mostly

unchanged by differences in architecture.

The earliest efforts along these lines were covered in my Master’s thesis. They reveal that there

is a yet-unknown set of architectures which consist of distinct combinations of operations, yet do

not each learn to extract fundamentally distinct information. This was determined by testing for

the interchangeability between the last-layer embeddings of 10 different ImageNet-trained CNN

models. In order to successfully swap representations between networks, only a linear mapping

was necessary in order to preserve a high level of performance between all 90 heterogeneous pairs.

A link between these models threw those results into question, however. Essentially, each model

was learning to map the same images to the same set of labels, and this created a correspondence

in the precursor to label predictions–the embeddings studied for interchangeability. This vacuous

sense of representational similarity challenged the idea that CNNs are learning the same thing

despite their differences, instead highlighting the shared set of training targets (ground truth labels)

as the primary driver of last-layer representational similarity.

In response, a similar set of experiments was conducted using facial recognition models. Be-

yond architectural differences, these models are not necessarily trained on the same dataset, nor
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using the exact same loss. Because training datasets may differ, there is no explicitly-similar ar-

chitectural component between such models as in those studied prior. Since these models are

evaluated by direct comparison of their embeddings (rather than classifier scores as in ImageNet),

it is even easier to measure the success of an effort to convert between embedding spaces.

Between these models with arguably fewer similarities, the same fundamental representational

similarity phenomenon was observed. By use of a linear mapping, the face embeddings of one

model could be converted into those of another model while retaining high face verification perfor-

mance. Even when restricting that mapping to only perform rotations, cross-model face verifica-

tion could be performed using the embeddings of models which were trained on a different dataset,

using a different architecture, and a (perhaps marginally) different loss target. If only rotation is

required to convert the bulk of embeddings between models, there is a strong sense in which those

models are learning the same thing.

Architecture is clearly not the only driving force behind the structure of learned representa-

tions. Within the architectures studied, architecture seems to not even be the primary driver of

learned representation. This is not to say that architecture is meaningless, only that there are likely

other factors which have a greater impact on the structure of learned representations. One potential

explanation for this phenomenon is that models trained to perform the same task are targeting the

same information, thus arranging information in a highly similar way. One way to extend this

work would be to consider the role of task in shaping representations, but such a multi-task effort

is beyond the scope of this thesis and left for future work (see Taskonomy [108] for relevant re-

sults regarding cross-task relationships). Besides looking for the mechanisms which impact this

similarity between tasks, another natural step is to consider what factors impact representational

similarity within task. Indeed, in each of the experiments discussed so far, some models’ represen-

tations were more easily interchanged than others. Fortunately, within face recognition modeling

there are those working to understand the structure of embedding space, especially as it varies

due to model design. Therefore, the final experiments in this thesis regard the content of face

embedding similarity for another worthy cause: bias in face recognition.
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Face recognition bias is a compelling and worthwhile topic on its own, but this research also

targets how the structure necessary to separate faces is dependent on how the model was trained,

and even the architecture. Since this thesis is concerned with structural similarity, groups of faces

are represented as subspaces, and compared as subspaces. By comparing groups as subspaces,

this method is grounded in the shared representational structure revealed prior. By comparing how

the faces of different people (and different imaging conditions) are represented in the structure of

embedding space, and how those structures vary with the designs of the model, a new perspective

on face recognition bias is offered. Specifically, the results of these last experiments support the

notion that face embeddings are similarly structured, and that demographics are members of that

structure. Face models are known to be biased, and (recently) known to produce embeddings

which adhere to a common structure, so measuring bias in that structure offers an exciting new

perspective.

Paradoxically, the experiments which motivate the latter experiments suggest that differences

in CNN architecture do little to change the structure of the learned representation. Yet, the goals of

the latter experiments are to use representational structure to separate and qualify model designs,

including architecture. In truth, the relationships between a neural network’s learned representa-

tion, its architecture, and its modeling task are complex, requiring further effort. Regardless, the

work here offers key insights on this topic: that architecture is not the primary driver of learned

representations, and that understanding the structure of learned representations is possible given

the right tools.
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Appendix A

Pilot experiment on LFW

LFW verification consists of generating pairs of embeddings for 6,000 predefined image pairs.

Then, accuracy was measured by performing 10-fold cross-validation as specified by the Unre-

stricted, labeled outside data protocol documented in LFW [72]. Accuracy on LFW is highly-

saturated by modern CNNs, so four of the worst-performing models were evaluated. For this

performance, see the hatched bars of Figure A.1.

Linear mappings were fit using the same method described in Section 4.1.1, and evaluated

using the same method described in Section 4.1.2, instead reporting the mean accuracy obtained

on each of the ten cross-validation folds. More precisely, one fold was held out for testing while the

remaining nine are used to find a linear mapping. Then, the held out fold was used for cross-CNN

evaluation. This process was repeated ten times, once for each fold. The mean accuracy obtained

on held out folds is reported in Figure A.1.

Sensitivity experiments can also be carried out as in Section 4.2.1, using a random subset of

embedding pairs. For each fold, a mapping is fit on a random subset of training fold embeddings,

and evaluated on the remaining test fold. The mean accuracy obtained at different sizes of training

subsets is reported in Figure A.2.

Though these experiments are carried out on an easier dataset, they suggest that this linear

correspondence phenomenon is not necessarily dependent on evaluation method or dataset.
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Figure A.1: Linear mappings are sufficient for converting between the features of different CNNs with

minimal drop in performance. Cross-hatched bars indicate the performance when evaluating a model against

its own embeddings, without mapping.
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Figure A.2: When using a reduced number of images, linear mappings still convert between the features of

different CNNs with high performance.
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Appendix B

Extended Face Mapping Results

Figures containing the full results from the cross-CNN IJB-C 1:1 verification experiments are

provided using a linear map (Figure B.1), a rotation map (Figure B.2), and a restricted training

sample size using a rotation map (Figure B.3).
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Figure B.1: Full linear mapping performance results, in the same format as Figure 4.1.
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Figure B.2: Full rotation mapping performance results, in the same format as Figure 4.2
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Figure B.3: Full mapping sensitivity results, including the same data presented in Figure 4.3 and following

the same format. All performances represented here are generated from mapped features (i.e. no single-

model performance is included).
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Appendix C

Extended Face Subspace Angle Results

Table C.1: List of figures in Appendix C, including corresponding same-format figures from Section 5.2.

Figure type 4-model version (Section 5.2) 6-model version

Geodesic heatmaps 5.3 C.1

Pairwise heatmaps 5.4 C.2

Baseline-proportional geodesic heatmaps 5.5 C.3

Baseline-proportional pairwise heatmaps 5.6 C.4

Principal angles by covariate 5.7 C.5

Principal angles by variance proportion 5.8 C.6

As mentioned in Section 5.2, 4 of the 10 models studied were selected for initial discussion of

results. The equivalent figures are each replicated here for the remaining 6 models, with similar

patterns and trends. One edge case stands out, model G_R100_P0.1, which expresses variance

across the greatest proportion of dimensions, and produces unique principal angle curves (Fig-

ures C.5 and C.6). Table C.1 is provided to facilitate easier navigation and comparison between

these figures.
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Figure C.1: Figure content and format is exactly the same as Figure 5.3, except in the models studied. (Nav

table)
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Figure C.2: Figure content and format is exactly the same as Figure 5.4, except in the models studied. (Nav

table)
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Figure C.3: Figure content and format is exactly the same as Figure 5.5, except in the models studied. (Nav

table)
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Figure C.4: Figure content and format is exactly the same as Figure 5.6, except in the models studied. (Nav
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Figure C.5: Figure content and format is exactly the same as Figure 5.7, except in the models studied. (Nav
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Figure C.6: Figure content and format is exactly the same as Figure 5.8, except in the models studied. (Nav

table)
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