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ABSTRACT OF DISSERTATIO 

THE POOLI G OF PRIOR DISTRIBUTIO S VIA LO GARITHMIC AND 

SUPRA-BAYESIA METHODS WITH PPLICATIO 

I FERE CE I DETERMI ISTIC SIMULATIO 

T O BAYESIA 

MODELS 

We consid r Bayesian inference when priors and likelihoods ar both available for 

inputs and outputs of a deterministic simulation model. Det rministic simula-

t ion models are used frequently by scientists to describe natural systems, and the 

Bayesian fram work provides a natural vehicle for incorporating uncertainty in a 

deterministic model. The problem of making inference about parameters in de-

terministic simulation models is fundamentally related to the issue of aggregating 

(i. e. pooling) expert opinion. Alternative strategies for aggregation are surveyed 

and four approaches are discussed in detail- logarithmic pooling, linear pool-

ing, French-Lindley supra-Bayesian pooling , and Lindley-Winkler supra-Bayesian 

pooling. The four pooling approaches are compared with respect to three sui t-

ability factors- theor tical properties, performance in examples, and the selection 

and sensitivity of hyperparameters or weightings incorporated in each method-

and the logarithmic pool is found to be th most appropriat pooling approach 

when combining exp rt opinions in the context of deterministic simulation models. 

We develop an adaptive algorithm for estimating log pooled priors for pa-

rameters in deterministic simulation models. Our adaptive estimation approach 

relies on importanc sampling methods, d nsity estimation techniques for which 

we numerically approximate the J acobian, and nearest neighbor approximations 

in cases in which the model is noninvert ible. This adaptive approach is compared 
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to a nonadaptive approach over several examples ranging from a relatively sim-

ple R1 • R1 example with normally distributed priors and a linear deterministic 

model, to a relatively complex R2 • R2 example based on the bowhead whale 

population model. In each case, our adaptive approach leads to better and more 

efficient estimates of the log pooled prior than the nonadaptive estimation algo-

rithm. Finally, we extend our inferential ideas to a higher-dimensional , realistic 

model for AIDS transmission. 

Several unique contributions to the statistical discipline are contained in this 

dissertation, including: 

1. the application of logarithmic pooling to inference in deterministic simula-

tion models; 

2. the algorithm for estimating log pooled priors using an adaptive strategy; 

3. the Jacobian-based approach to density estimation in this context , especially 

in higher dimensions; 

4. the extension of the French-Lindley supra-Bayesian methodology to contin-

uous parameters; 

5. the extension of the Lindley-Winkler supra-Bayesian methodology to mul-

tivariate parameters; and, 

6. the proofs and illustrations of the failure of Relative Propensity Consistency 

under the French-Lindley supra-Bayesian approach. 
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1.1 Simulation Models 

Chapter 1 

Introduction 

A simulation model is a set of assumptions about how a part icular system 

works, often expressed in the form of mathematical equations and logical rela-

tionships. Simulation models often provide simplified yet reasonably accurate 

descriptions of how systems work, and they can be used to gain a deeper un-

derstanding of systems or to make predictions regarding future output values. 

In simulation modeling, one often studies the underlying system by numerically 

determining the outputs produced by a particular set of inputs. 

1. 1. 1 Classifications 

It is often helpful to classify simulation models along four dimensions as 

described below (the first three have been suggested by Law and Kelton (1991)): 

Static vs. Dynamic. A static simulat ion model represents a system at a par-

ticular time point, or a system in which time plays no role. A dynamic simulation 

model represents a system as it evolves over time. 

Continuous vs. Discrete. In discrete simulation, the system is assumed to 

change at only a countable number of points in t ime. Under continuous simula-

t ion , a system can change continuously with respect to t ime, so that continuous 

simulation models often involve differential equations that give relationships for 

the rates of change with time. 



Deterministic vs . Stochastic. If a simulation model contains no random 

(probabilistic) components, then it is called deterministic; otherwise, it is called 

stochastic. Therefore, a model is deterministic if, given the same inputs , the out-

put is always the same. For instance, a complicated and analytically intractable 

system of differential equations describing a chemical reaction might be a deter-

ministic simulation model, while an inventory system in which demand is a random 

variable following a particular probability distribution might be stochastic. 

Mechanistic vs. Empirical. Mechanistic models attempt to incorporate the 

causal framework of a system, while empirical models are based solely on observa-

tion. Most statistical models are empirical, in that they attempt to describe a set 

of data with a model which is as small and simple as possible, without necessarily 

providing a detailed description of causal relationships. 

In this dissertation, we will focus on simulation models which are often dy-

namic and discrete, and always deterministic and mechanistic. 

1.1.2 Examples of Simulation Models 

In each of the three examples below, a mathematical model is used to simu-

late an actual system. Assumptions are made about how a system works, and the 

system is expressed in terms of mathematical formulas and logical relationships. 

Computers are employed to generate results because of either the complexity of 

the model ( AIDS and whales) or the need for random number generation (bank 

tellers) . Results from the simulation models are then. used to guide decision-

making and enhance understanding of the actual system. Each of our three intro-

ductory examples is dynamic and discrete, and the AIDS transmission and whale 

population models are determinist ic and primarily mechanistic. The bank teller 

example is stochastic and primarily empirical, and it is presented to give a flavor 

of the potential range of simulation mod ls. 
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Multi-teller bank with jockeying (Law and Kelton , 1991) 

A bank with five tellers opens its doors at 9 AM. Each teller has a separate 

queue, and an arriving customer joins the shortest queue, selecting the leftmost 

shortest queue in the case of ties . In addition, customers tend to jockey among 

lines. Thus, if ni is the total number of customers in front of teller i (in service plus 

waiting), then the customer from the tail of queue j will jockey to the tail of queue 

i whenever the completion of a customer 's service at teller i causes nj > n i + l. 
The bank 's management would like to determine the optimal number of 

tellers, considering both the quality of their customer service and the costs of 

operation. For various potential numbers of tellers, the managers would like to 

obtain estimates of the expected time-average total number of customers in queue, 

the expected average delay in queue, and the expected maximum delay in queue. 

A day at the bank can be simulated after making certain assumptions. For in-

stance, the interarrival times of customers may be assumed to be independent and 

identically distributed (i .i.d.) exponential random variables with mean 1 minute, 

and the service times of customers may be assumed to be i.i.d. exponential ran-

dom variables with mean 4.5 minutes. The managers ' desired response variables 

can be obtained by simulating many days with a fixed number of tellers. After 

generating response variables for various numbers of tellers, the managers may 

decide to vary distributional assumptions and repeat the process. 

AIDS in San Francisco (Hethcote et al. 1991) 

Hethcote et al. (1991b; 1991a) developed an epidemiological model of the 

incidence and prevalence of HIV and AIDS among homosexual men in San Fran-

cisco. Using population structure, migration patterns , and interaction patterns , 

Hethcote et al. formed a model which involved the infect ion of susceptib le indi vid-

uals and the progress ion of HIV-infected peo ple through stages leading to AIDS 
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and eventually death. The AIDS model has a compartmental structure in which 

individuals move through the disease stages, interact with other men, alter their 

level of sexual activity, and infect partners with changing probabilities. In this 

way, the authors hoped to reconstruct the HIV epidemic. In fact, the model was 

designed to "incorporate all features considered essential for modeling the sexual 

spread of HIV infections in homosexual men in San Francisco and yet . . . be 

simple enough that estimates of the values of the parameters are possible." 

Because of the abundance of data from sexual behavior studies in San Fran-

cisco, specific values of important model parameters could be set with a good 

degree of confidence in many cases. Important model parameters included frac-

tion of population who were sexually very active, natural mortality rate, migration 

rate, transfer rate from sexually very active to sexually active , number of infec-

tious stages, rate of progression from stage k of AIDS to stage k + 1, relative 

infectivity of stage k men, starting date of the epidemic, starting date for reduc-

tion in average number of partners per month, and several others. Reasonable 

values of input parameters were found by fitting model outputs to estimated HIV 

and AIDS incidence rates, adjusting the most unreliable inputs to produce the 

best fitting outputs. 

Such an AIDS model can serve several roles. In general, a simulation model 

for AIDS "serves as a framework for organizing and coalescing a wide variety 

of data." It describes the mechanisms which bring about disease progression , 

providing an answer to the question "How?" rather than just the question "How 

many?". It allows prediction of future incidences among the homosexual male 

population in San Francisco. It provides a vehicle for evaluat ing the potential 

effect of therapies and the optimal administration strategies. The model also 

allows researchers to test specific hypotheses such as: patients remain in the 

asymptomat ic stage for at least 100 days on average; sex ually very active males 
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have 5 times as many partners per month as other homosexual males; a suscept ible 

male has a 25 percent chance of being infected during an encounter with an 

asymptomatic partner. Even more elaborate hypotheses can be evaluated, such 

as whether the unusual reduction in HIV incidence observed in 1982 was caused 

by oversaturation in the very sexually active group, or by a general reduction in 

sexual activity. 

An application of the Bayesian inferential methods developed here to the 

AIDS model of Hethcote et al. is contained in Chapter 8. 

Population Model for Bowhead Whales (Raftery, Givens, and Zeh, 
1995) 

The bowhead whale Balaena mysticetus was reduced to near extinction by ex-

cessive commercial harvesting in the second half of the nineteenth century. Today, 

the largest remaining stock can be found in the Western Arctic (Bering-Chukchi-

Beaufort Seas), and these whales are protected from commercial harvesting by the 

International Convention for the Regulation of Whaling. The Convention does, 

however , allow limi ted aboriginal subsistence whaling because of the cultural and 

subsistence needs of Eskimo peoples in the area. To protect the maintenance of 

the bowhead stock and prevent a return to near extinction levels, the International 

Whaling Commission (IWC) sets a quota for aboriginal subsistence whaling. To 

determine this quota, the IWC relies on a population model for bowhead whales . 

Raftery et al. (1995) discuss methods of inference for a population dynam-

ics model for bowhead whales developed by Breiwick et al. (1984) . This model 

combines three types of relevant information: recent surveys, historical whal-

ing records, and biological information. Recent surveys contain yearly est imated 

counts from visual surveyance and hydrophone use during migration periods , and 

historical whaling records contain validated yearly kill counts. Biological in forma-

t ion includes birth and death rates as estimated from photoiclentification , exami-
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nation of dead animals, and other sources. Additional inputs into the population 

dynamics model of Breiwick et al. include age-specific natural mortality and fer-

tility that may be density-dependent. Outputs include yearly populations , broken 

down by age and sex. 

IWC policy regarding aboriginal subsistence whaling quotas focuses on one 

particular model output-replacement yield (RY) . RY is the greatest number of 

whales that could be harvested in a given year without decreasing the current 

population. Because they want to set conservative quota levels, the IWC is inter-

ested in not only a point estimate of replacement yield , but also in an expression 

of uncertainty regarding the estimate of RY. 

In addition to helping the IWC form policy, a population dynamics model 

for bowheads can have several other valuable purposes. Such a model provides a 

desc.ription of a natural system rather than merely a means of making predictions. 

Because of its descriptive nature, a bowhead whale population model can be used 

to evaluate hypotheses ( e.g. Do female whales reach maturity at age 20?) , to 

simulate effects of proposed actions ( e.g. What would the long-term effects be if 

no harvesting were allowed next year?), and to trace potential effects of system 

disruptions (e.g. What if there were a major oil spill in the bowheads ' migration 

path?). 

1.1.3 Other examples 

The three detailed examples above illustrate that simulation models can be 

a very effective tool for answering questions and gaining knowledge in a variety 

of areas. In addition, simulation models are used quite heavily in engineering and 

manufacturing applications. One reason is that it is often simpler, more cost-

effective, and less disrupt ive to experiment with a model of a system than the 

system itself. Such cases include an automobile manufacturing plant , where it 
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would be very costly to experiment with the actual assembly line, or the bank 

teller example, where experimentation with the number of tellers could disrupt 

customer service. Another reason for the proliferation of simulation models in 

the engineering and manufacturing arenas is the advantages in terms of time and 

resources which simulation models have over building physical models. Physical 

models, such as wind tunnels for automobiles or models of the surface of Mars 

for space discovery vehicles, are sometimes extremely useful , but often not worth 

the time and expense. Mathematical models can often describe the system as 

accurately and lead to inferences as valid as those from physical models, while 

avoiding construction issues. 

A multitude of applications of simulation models to engineering and man-

ufacturing problems have been described in the literature. For example, Law 

and McComas (1988) used simulation modeling to study a manufacturing facility 

which produced metal parts requiring three distinct subassemblies. They wanted 

to determine optimal numbers of containers, forklift trucks , output queue positions 

for the loaders , and required shifts for the assembler. Pritsker (1986) considers 

the unloading of oil tankers and the supplying of oil to a refinery. Optimal unload-

ing patterns are sought to avoid frequent startups and shutdowns of the refinery, 

which requires a minimum level of oil in storage tanks . 

Deterministic simulat ion models are also frequently used by scientists in di-

verse areas to describe natural systems. In addition to the bowhead whale popu-

lation and AIDS transmission models previously described, we offer a small sam-

pling of examples here. George and Grant (1983) describe a stochastic simulation 

model of brown shrimp population dynamics in Galveston Bay, Texas. This model 

is then used to evaluate the effects of management alternat ives and changing en-

vironmental cond itions on shrimp dynamics. Steinhorst et al. ( 1985) create a 

stochast ic-determinist ic simulation model of canopy cover development of several 
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shrub species. In particular, they focus modeling efforts on the first 15 years 

following clearcutting and burning in moist coniferous fores ts of northern Idaho. 

King and Johnson (1993) model five generations of tree breeding improvement 

using Monte Carlo simulation, where model details are based on the ew Zealand 

radiata pine improvement program. They address the effects of different mat-

ing schemes on both per generation gain and genetic diversity. Gelman et al. 

(1996) estimate parameters in physiological pharmacokinet ic models , illustrating 

their approach with an application to the metabolism of tetrachloroethylene ( a 

potential occupational hazard in dry cleaners). Green and Strawderman (1996) 

develop a Bayesian version of an existing growth and yield model for slash pine 

plantations in the West Gulf region of the United States. Bogstad et al. (1992) 

create a model called MULTSPEC which describes the biology of the Barents Sea, 

modeling processes such as spawning, maturation, feeding , predation, migration , 

fishing, and mortali ty in populations from harp seal to plankton . Finally, many 

scientists ( Cubasch and Cess, 1990; Oglesby et al. , 1989; Henderson-Sellers and 

Robinson, 1986; Simmons and Bengtsson, 1984) use nonlinear partial differential 

equations to create general circulation models for Earth 's climate. 

All of the models described here differ with respect to certain aspects : the 

complexity of the model, which can be extreme; the number of input and out-

put parameters, which can climb quickly into the hundreds in some applications; 

and the level of sophist ication in which current analysis techniques evaluate un-

certainty in parameter inferences. Yet, they are all examples of the class from 

simulation models. 

1.2 Simulation M o dels and Statistics 

Despi te the widespread use of simulat ion models among scientists and engi-

neers, stat isticians have been slow to invest igate associated met hods of inference. 
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Although some work has been done in important areas such as model valida-

tion (Rawlings, 1988) and Monte Carlo simulations (Hammersley and Hanscomb, 

1964), statisticians have been slower to embrace the idea of inference for determin-

istic simulation models. The resistance of statisticians may be strongly related to 

their innate suspicion of models which involve no random variability. Scientists , 

however , often find it easier to think and express themselves in terms of deter-

ministic models, and these models are often very reasonable approximations to 

the truth. The Bayesian framework , under which uncertainty about model inputs 

and outputs can be expressed in terms of prior distributions , provides a natural 

vehicle for incorporating uncertainty in a deterministic model. In addition, the 

Bayesian framework can provide improved methods for building simulation models 

and evaluating the sensitivity of these models to changes in parameter values. 

1.3 Introduction t o Bayesian M ethods 

A frequentist evaluates procedures based on repeated samplings ( or hypo-

thetical repeated samplings) for fixed values of unknown parameters. A Bayesian , 

on the other hand , considers unknown parameters random, and he bases inference 

on the distribution of these unknown parameters conditional on observed data. 

This conditional distribution is called the posterior distribution . 

Under the Bayes approach, we seek an expression which summarizes what 

we know about the model parameter 0 after taking the sample, assuming that 

we know the prior distribution 1r( 0) which summarizes what we know about 0 

before the sample. Thus, we want the posterior distribut ion of 0 given the data 

x, a conditional distribution denoted by p(0 I x). Inference concerning 0 will 

be based on this posterior dist ribu t ion . Often, a vector 77 of hyperparameters 

is introduced, so that the prior distribution becomes 1r( 0 I 77) and the posterior 

distribution becomes p(0 I x, 17 ). Then, Bayes' Theorem is used to obtain the 
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posterior (notation follows that of Carlin and Louis, (1996)) : 

p(0 I x,17) = p(0,x I 77) = f(x I 0)rr(0 I 77) 
p(x,17) J f(x I u)rr(u I 17)du 

f(x I 0)rr (0 I 77) 
m(x I 77) 

where m(x I 77) is the marginal distribution of the data x given the value of 

the hyperparameters 77 , and f(x I 0) is the likelihood function for the data x . 

Specifically, with n independent observations , we have f(x I 0) = TI7= 1 f(x i I 0). 

If 77 is known, it can be suppressed in the notation. Through Bayes ' Theorem, we 

see that the posterior density is proportional to the likelihood function times the 

prior density; we can think of the posterior as the prior after it has been updated 

to reflect the data. 

Bayes' Theorem may also be used seq1,1entially. Suppose we have two inde-

pendently collected samples of data x 1 and x2 . Then (suppressing 77) , 

p(0 I X1, x2) <X f(x1 , X2 I 0)rr(0) 

h(x2 I 0)f1(x1 I 0)rr(0) 

(X h(x2 I 0)p(0 I xi) 

Thus, the posterior for the full data set ( x 1 , x2 ) is obtained by first finding p( 0 I x 1), 

the posterior for 0 given x 1, and then treating p( 0 I x 1) as the prior for finding the 

posterior p(0 I x 1 ,x2 ). With this relationship , updating the posterior when data 

arrives sequentially over time is a trivial matter, although this is an important 

issue in the consideration of "external Bayesianity" in Chapter 2. 

1.3.1 Determining Prior Distributions 

A crucial aspect of Bayesian analysis is the ability ( and willingness) to de-

termine a prior distribution for 0. Feelings about typical values of 0 must be 

quantified in probability distribution form before looking at the data x, often 

relying on previous studies or ex pert opinion. Several approaches have been em-
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ployed for determining 71" ( 0); three common approaches as identified by Carlin and 

Louis (1996) are described here. 

Elicited priors. Under this approach, a distribution is obtained which rep-

resents a subject-area expert's opinion about 0. Common elicitation methods 

include assigning probabilities to possible values of 0 and defining parametric val-

ues for an assumed parametric form. If 0 is discrete, assigning probabilities to 

possible values of 0 is a natural process. If, however, 0 is continuous, probabilities 

can be assigned to intervals on the 0-axis. Although discretizing a cont inuous dis-

tribution may seem less than ideal , it often provides adequate results, especially 

when computation of the posterior requires numerical integration. In the second 

elicitation method, a parametric distribution form is chosen, and the expert must 

merely define a few parameters or quantiles of this distribution. 

Conjugate priors. This is an approach of analytical convenience. It is some-

times possible to select a prior which is conjugate to the likelihood , which means 

that the resulting posterior distribution belongs to the same distributional family 

as the prior. Morris (1983) showed that exponential families , a typical source of 

likelihoods, always have conjugate priors. 

Noninformative priors. This is an approach used if no reliable prior rn-

formation about 0 exists, or if inference based solely on the data is desired. 

A noninformative prior distribution 11"( 0) contains no information about 0 in 

some formal sense- a common sense of noninformativeness leads to the Jeffreys 

prior 11"(0) = [1(0)]112, where 1(0) is the expected Fisher information such that 

1(0) = -E~10 [; ; 2 log/(± 10)] (Jeffreys, 1961). Berger (1985) reviews methods of 

finding noninformative priors. 

1.3.2 Elicited Priors from Multiple Experts 
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Often, a decision maker preparmg to use Bayesian analysis has sufficient 

knowledge about the parameter of interest, 0, to form a subjective prior distri-

bution for 0. In some cases the decision-maker realizes his own knowledge of 0 is 

limited, so she consults an expert about 0 to obtain that expert's subjective prior. 

For example, an individual considering an investment in a particular company 

might consider the expert opinion of a financial analyst regarding that company's 

projected stock price in six months. In certain cases when the problem is deemed 

especially important, the decision maker may obtain opinions from more than 

one expert. For instance, if the investor above is responsible for a portion of a 

college's endowment, she would likely consult with multiple financial analysts. 

The investor now has several subjective prior distributions for 0, but she needs a 

single "consensus distribution" to combine with sample evidence in the form of a 

likelihood function to make Bayesian inference ( or to use as a basis for decision-

making in the absence of sample evidence). This problem of deriving a consensus 

distribution is discussed fully in Chapter 2 . . 

1.3.3 Bayesian Methods and Deterministic Simulation Models 

A common criticism of Bayesian analysis is the difficulty in obtaining reli-

able, well-justified prior distributions. Several studies have illustrated the statisti-

cal and psychological difficulties individuals encounter when attempting to assess 

their own probability distributions , even for parameters with which they are well 

familiar (Tversky and Kahneman , 1974; Savage, 1971 ). For deterministic simula-

tion models , however , reliable priors often exist for many model parameters. In 

both the AIDS and the bowhead whales examples, data describing most model 

inputs exists from a wealth of previous studies. 

In parti cular , consider the AIDS model. A generalized gamma distribution is 

used as the prior distribution for t h AIDS incubation period according to work 
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by Longini et al. (1989; 1990). The size of the homosexual male population in San 

Francisco has been investigated by both Pickering et al. (1986) and Lemp et al. 

(1990). Contact rates between subpopulations can be described by the preferred 

mixing model of Jacquez et al. (1988). Grant et al. (1987) studied the probability 

of transmission per partner. Other model parameters have been the subjects of 

similar independent studies . As a result , the often sticky issue of prior elicitation 

brings about less cause for concern with many of the deterministic simulation 

models we will consider. 

Bayesian inference of deterministic simulation models involves an additional 

step following the elicitation of prior distributions for model inputs and outputs. 

Because a set of inputs completely defines a corresponding set of outputs, a de-

terministic model actually contains multiple priors in input space-those prior 

distributions explicitly defined for the inputs , and those implicitly defined by 

prior distributions for the outputs and the deterministic equation mapping inputs 

and outputs. Similarly, output space also contains multiple priors. The priors 

in one parameter space, for example, must be pooled into a single prior before 

Bayesian inference can be made. It is this problem, especially in the face of 

complex deterministic models, which motivates the work in this dissertation. 

1.3.4 An Introductory Example 

To provide a background framework for the remaining chapters, consider 

the following inference problem involving a deterministic simulation model. Let 

M(0) = (0-3)/4 =</>be a simple model linking an input 0 to an output</>. For in-

stance, M could be a population model in which cp is a growth rate parameter and 

0 is a fertility parameter. The ultimate goal is to make inference about ¢. Sup-

pose an expert on 0 (Expert 1) and an expert on cp (Expert 2) are independently 

consulted and they each offer a prior dist ribution which describes their beliefs 
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Figure 1.1: Priors and implied priors for 0 and c/>, for an introductory example. 

about "reasonable values" of their parameter of expertise and corresponding un-

certainty. Suppose the solicited prior distributions were: 0 ~ p1 ( 0) = N ( 0; 1, 1) 

and c/> ~ p2 ( c/>) = N( c/>; 0, 1), where N(x; µ , a2 ) represents a normal density with 

meanµ and variance a-2 . This example is sketched in Figure 1.1. 

Given M , Expert 2 implicitly professes an opinion about reasonable values of 

0. Similarly, Expert 1 implicitly professes an opinion about"¢. This occurs even if 

each expert has no knowledge of the other 's field. Specifically, the implicit prior 

induced on 0 by p2 (c/>) is p2(0) = N(0;3,16) and the implicit prior induced on c/> 

by P1(0) is Pi(</>)= N(c/>; -½, /6 ). Clearly, p1 and P2 are incoherent , because when 

both are expressed in the same space, they do not agree. 

Suppose now some data DrJ> are observed that provide direct evidence about 

c/> in the form of a likelihood L(DrJ> I ¢) . This permits Bayesian inference about c/> 

if the likelihood is combined with a single prior for ¢. If no evidence is to be lost, 

the two available priors for c/>, p2 (c/>) and p';( c/>), must be pooled to form a single 

prior, p(c/>) . How should the pooled prior p( c/> ) be obtained? This is the question 

that drives t his dissertat ion. Once p( </> ) is formed, we can quantify the coheri zecl 
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posterior for¢ , 1r(¢) oc p(cp)L(D<t, I¢) . Inference about ¢, our primary goal , can 

be based on a sample from the posterior 1r ( ¢). 

1.4 Scope of Work 

In Chapter 2, we review the literature about aggregating expert opinion and 

forming group consensus. The approaches we discuss in detail include linear pool-

ing, logarithmic pooling, supra-Bayesian methods, and group interaction methods . 

Chapters 3 and 4 focus on the log pooling approach. In Chapter 3, we describe 

a general algorithm for obtaining log pooled priors for deterministic simulation 

models. In particular, we detail an adaptive algorithm designed to drastically 

improve sampling efficiency. We illustrate in Chapter 4 how our adaptive impor-

tance sampling approach leads to less biased and more precise estimates of the 

pooled prior in several cases when compared to a simpler estimat ion algorithm. 

Five examples are used to illustrate the performance of the log pool and com-

pare the two versions of the general algorithm in inference problems where priors 

linked by a deterministic simulation model must be pooled. These examples range 

from a relatively simple R1 -+ R 1 example with normally distributed priors and 

a linear deterministic model , to a relatively complex R2 -+ R2 example based on 

the bowhead whale population model. In Chapters 5 and 6, two specific methods 

under the "supra-Bayesian" approach ( a potential alternative to log pooling) are 

detailed and discussed. These methods, denoted the French-Lindley method and 

the Lindley-Winkler method, are applied to the same illustrative examples as used 

in Chapter 4 to examine their propert ies. Then, in Chapter 7, four approaches for 

pooling expert opinion- logarithmic pooling, linear pooling, the French-Lindley 

supra-Bayesian method , and the Lindley-Wi nkler supra-Bayesian met hod- are 

compared and contrasted. Finally, in Chapt r 8 we extend our inferential ideas to 
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a larger (6 input and 6 output parameters), realistic model for AIDS transmission, 

and in Chapter 9 we summarize the important results of this research. 
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Chapter 2 

Aggregating Expert Opinions 

2.1 Simulation Models, Priors, and Likelihoods 

Consider the Bayesian use of a deterministic simulation model , M ( 8) : 8 -+</>, 

where BEE> ~ !Jr and </>Eif>~ lRP . The deterministic simulation models we con-

sider are often carefully crafted to explicitly model the mechanism of interest. 

These are unlike statistical models , which aim to empirically estimate the rela-

tionships between variables. Suppose that likelihoods L( De 18 ) and L( D cf> I</> ) are 

available based on independent data De and Def>- Further, suppose that priors 

p1 (8) and p2 (</> ) are elicited independently on 8 and ¢ , but that the functional 

relationship M is ignored during the development of these priors. Inference is 

desired about </> and/ or 8. 

Why would one ignore M during prior elicitation? Particular variables that 

are inputs or outputs of a simulation model M are often the subject of basic 

scientific research in diverse disciplines. The model itself need not have been de-

veloped when such research was conducted, and the priors implied by the evidence 

gathered may not reflect a thorough understanding of M or even the knowledge 

that M exists. Even when the model is avai lable, no one may have sufficient 

widespread expertise to synthesize knowledge from the diverse disciplines. Fur-

ther, scientists and statisticians may be prevented from using M to synthesize 

the evidence because of the ext reme complexity or noninvertibili ty of M . Finally, 

any model misspecification may make it difficu lt or impossible to synthesize the 



evidence in a manner wholly compatible with M , and virtually all models are 

misspecified to some extent. 

For example, in the whale population model example to which we apply our 

methods in Section 4.6, model inputs include a maximum potential productivity 

parameter, which would be the object of study by biologists relying mainly on 

examination of specimens. Outputs include current population abundance, which 

is estimated by ice-based visual and acoustical census which requires no biological 

expertise. It is not clear how to reconcile these two sources of evidence, even if 

one knows a good population model. 

Even in the case where m = p and Mis a smooth, continuous, invertible map-

ping, the solution to this Bayesian inferential problem is nontrivial. For example, 

consider inference about <p. Likelihoods are invariant to parameter transforma-

tion, so we may re-express the joint likelihood as L( Dq, , D9 I</>). We may also con-

vert the prior p1(8) to </>-space using the Jacobian, obtaining p"i_(cp)= p1 (8) IJ (</J )I, 

where <p = M(8 ) and J(cp) is the Jacobian (Bickel and Doksum, 1977). How-

ever, at this point there are two priors available for <p: p2 ( <p) and p"i_ ( <p ). These 

two priors are unlikely to be equivalent because M was not taken into account 

during their elicitation, and because they represent two independent beliefs based 

on possibly different evidence. We will call p2 ( <p) and p"i_ ( <p) incoherent if they 

do not correspond to equivalent probability measures. The goal is to obtain a 

coherized prior for <p which accounts for both p2 and p"i_. After such coherization 

has reduced p2 (cp) and p"i_(cp) to a single prior , say p(cp) , then standard Bayesian 

inference follows through the combination of p(cp) and L(D¢ , D8 l</J). 

2.2 An Introduction to Aggregating Expert Opinions 

The problem of coherizing p1 ( 8) and p2 ( <p) can be considered to fall under t he 

framework of aggregating expert opinions, an area reviewed by French ( 1985) and 
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Genest and Zidek (1986). In general, a collection of experts, possi-bly separated 

by time or space, express opinions (prior distributions) about the same thing. 

The problem, then, is to pool opinions in a rational way that yields a single 

probability distribution from which inference can be made. How this might be 

done may depend on several issues: 

• Is there a leader or meta-expert whose task is to complete the pooling and 

draw inference, and who may be able to assess the relative expertise, cali-

bration, and correlation of the experts? 

• Can the experts interact? 

• Is there a specific inference problem to be solved? Or is pooling desired so 

that any ( unspecified) arbitrary inference problem may later be solved? Or 

is no inference planned in the future , so pooling is seen only as a method of 

summary? 

Lindley (1985) argues that pooling requires the concept of a meta-expert or 

"supra-Bayesian" ; see Section 2.2.3. Unlike the sorts of problems Lindley consid-

ered, the experts with knowledge relevant to the inputs and outputs of a simulation 

model may work in diverse disciplines. It is much harder to assess the expertise 

and correlation of, say, one oceanographer, one physicist , one biologist , and one 

atmospheric scientist, than it is to assess a group of four scientists all from the 

same narrow field. For this reason, meta-experts may be hard to find for the sorts 

of simulation efforts we describe. 

When simulation modeling results are used by a group of policymakers , it 

would be common for the scientific experts to interact only if they are members of 

that group. Often the experts whi ch would be consulted about the parameters of 

a simulation model are from di ve rse disciplines in scattered geographic locat ions, 

and therefore they are never assembled in one place where interaction may occur. 
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In addition , expert opinions are sometimes gathered through literature reviews 

rather than direct conversations, creating another situation in which interaction 

is extremely unlikely. 

Most simulation modeling exercises are motivated by a specific question , yet 

analysts are rarely inclined to limit their work to a particular inferential problem. 

More often, multiple questions are to be answered by a simulation effort, and many 

questions may not be fully formulated before analysis begins. Thus we focus here 

on pooling as a method to enable arbitrary, unspecified inferences. 

2.2.1 Logarithmic Pooling 

At this point , we must determine a sensible method for synthesizing individ-

ual probability distributions into a single group probability distribution. Genest 

(1984) contends that the experts should summarize " ... their diverse beliefs using 

an externally Bayesian prescription. In this way, they would ensure that once new , 

objective information becomes available, a potential user could update this sum-

mary opinion with the same effect as if the experts themselves had observed the 

data jointly." In other words, Genest maintains that the pooling process should 

produce the same result from combining all expert priors into a single aggregate 

prior and then updating with a likelihood as from updating each expert 's prior and 

then merging the resulting individual posterior distributions into a single group 

posterior. Thus , 

L · T(p1, . .. ,Pk)(0) 
IL. T(p1, ... ,Pk)(0)d0 

where L is a likelihood fun ction , and T is a pooling operator which produces 

to a single, coherized opinion. Therefore, T(p 1, •• • , pk) : 0 • [O, 1] for each 

vector of opinions (p 1 , .. . , Pk), where p;, i = 1, ... , k, is a probability distribution 

reflecting expert i's beliefs a.bout 0, and 0 is the set of all possible values of the 

parameter 0. This condit ion is termed e:r:l ernal Bayesianily by Madau sky ( 1978). 
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"prior to posterior coherency" by Weerahandi and Zidek (1978), and "the data 

independence property" by McConway (1978) . 

Genest (1984) proves that any externally Bayesian pooling operator T must 

be of the form 

T( (0) (0)) ll7=i[pi(0)]Wi 
Pi ,·· · ,Pk = fll7=i[pi(0)Jw;d0 ' (2.1) 

where wi, ... , Wk 0, I:7=i Wi = 1, and Pi(0) is the i th individual prior for some 

parameter 0. His proof requires just one minor condition: for any l > 0, there 

exists Af C 0 with O < µ(Af) < t, where 0 is the set of all possible values of the 

parameter 0 and µ is some dominating measure on 0 (e.g. Lebesgue measure). 

In other words, the group probability distribution at 0 must not depend upon 

densities of values which might have been obtained but were not. In the scenario 

described in Section 2.1 , where two priors p2 (</>) and p~(</>) are reduced to a single 

coherized prior p( ¢, ), we can express the logarithmic opinion pool as 

(2.2) 

where O < a < 1. 

Another axiomatic approach can yield the logarithmic opinion pool. Genest 

(1984) shows that pooling operators T which have "relative propensity consis-

tency" (RPC) must be logarithmic pools. Before defining the property of RPC, 

several quantities must first be defined. Let f2. = (bi, ... , bn) be a vector of opin-

ions , bi : 0 • (0 , oo ), i = 1, . .. , n. Opinions may expressed in many ways, from 

likelihood functions to significance levels to the method on which we will focus , 

probability densities . 0 , then, is the collection of items on which opinions are 

made; the nature of 0 will vary according to the way opinions have been quanti-

fied. For instance, 0 might consist of subsets of parameter values, pairs of odds , 

or discrete events. Letµ and v be arb itrary elements of 0 , and let g_ = (Q,lt , v). 
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Define two functions , RP and H , by RP(d.) = (::f~~ , ... , ::f~D and H(d.) = 
H~f~~. RP(d.) is the vector of ratios of each expert 's opinions about µ and v 

( where µ and v are commonly parameter values or events involving parameter 

values) , and H (d.) is the analogous ratio for the pooled opinion of the experts. 

Then, the pooling operator T has RPC if and only if 

where RP(d.1 ) 2:: RP(d.2 ) refers to componentwise comparisons-i.e., RP(d.1 ) > 

Rp(d ) .f d 1 .f bi(µi) bi(µ2 ) bn (µi) bn(µ2 ) G t (1984) h th t 
-2 l an on y 1 bi(vi) > bi(t12), •.• , bn(vi) > bn(v2 ). enes S OWS a 

RPC pooling operators are always of the form in (2.1) as long as 0 contains at 

least three distinct points. 

We focus attention on a special case of relative propensity consistency. If we 

let d.1 = (b., µ, v) and d.2 = (b., µ, µ) in the definition above, we obtain the following 

result: T has RPC if and only if ~: f > 1, ... , ~:f > 1 implies that > 1. 

That is , T(b_)(µ) 2:: T(b_)(v) must hold whenever bi(µ) 2:: bi(v) for i = 1, ... , n, or 

if all experts favor an event or set of parameter values µ over a corresponding v , 

then the pooled opinion must also favorµ over v . It is this special case, also called 

the dominance consistency property or Pareto optimality (Genest et al., 1984) , 

which we will refer to as relative propensity consistency (RPC) throughout the 

remainder of this dissertation. 

As a method for creating a group probability distribution from a collection 

of individual expert opinions , the logarithmic opinion pool has several additional 

appealing features. For instance, the logarithmic pool is typically unimodal and 

less dispersed than other options, it is invariant under rescaling of individual 

opinions (Genest and Zidek, 1986), and it has a natural-conjugate interpretat ion 

(Winkler, 1968). 
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Still, some authors have found cause to criticize log pooling. French (1985) 

argues that the selection of weights is arbitrary. In our examples, we take the log 

pooling parameter to be a: = 0.5 so that the pooled prior is the geometric mean of 

the two original priors. In the case of simulation modeling, Raftery et al. (1996) 

point out that results are invariant to relabeling (redefining inputs as outputs, or 

vice versa) for any a: when M is linear, and for a:= 0.5 when M is nonlinear. In 

other settings, a: might correspond to the relative levels of 'faith' the log pooler 

has in P1(8) and P2(</>). 

French (1985) also notes that the honesty of experts can not be verified, 

and calibration-accounting for an expert 's abilities in assessing probability-is 

ignored. In addition, the logarithmic opinion pool has the characteristic that if 

any expert believes that a particular parameter value is impossible, then the group 

probability distribution must reflect a probability of zero for that parameter value. 

Some feel that this charactevistic-the strong version of the zero preservation 

property-is too strong to be desirable (Genest and Zidek, 1986). 

Lindley (1985) contends that external Bayesianity is not desirable m the 

supra-Bayesian (meta-expert) context (see Section 2.2.3). Lindley claims that a 

meta-expert's opinion of an expert may change if the meta-expert knows that the 

expert has acquired an additional piece of knowledge, making external Bayesian-

ity unnecessary. While theoretically correct, Lindley 's contention is often not of 

practical concern. For instance, in the deterministic simulation model setting, 

the decision maker collects prior opinions from experts on input and output vari-

ables, but because she is not an expert herself on any particular parameter, her 

evaluation of an expert will not change if she learns that the expert has learned 

another parameter-specific piece of information. If we can make t he assumption 

(which seems reasonable in many sett ings including the pooling of priors linked 

by simulation models) that the decision maker's opinion about an expert wi ll not 
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change if the decision maker learns that the expert has acquired another piece of 

knowledge, then external Bayesianity is indeed a sensible and desirable property. 

2.2.2 Linear Pooling 

A simplistic alternative to the logarithmic opinion pool is the linear opinion 

pool , under which: 
k 

T(p1 , •••,Pk) = L WiPi 
i=l 

where w 1, ... ,wk 0 and I:7=1 Wi = l. Stone (1961) first proposed this pool-

ing operator, although Bacharach (1979) attributes it to Laplace. McConway 

(1978) shows that "under mild regularity conditions, if the process of finding the 

consensus distribution is to commute with any possible marginalization of the 

distributions involved, then a linear opinion pool must be used." Specifically, 

T(p1 , . . . , Pk) must be of the form I:7=1 WiPi if 

T(p1 , ... , Pk) (A) = G[p1 (A ), .. ·. , Pk(A)] 

for some arbitrary function G: [O, l]k • [O , 1], where A is an event on 0. 

Equivalently, Fren-ch (1985) describes the marginalization property as follows: 

"Suppose that interest is focused on a sub-a-field of that over which the group 

members gave their opinions. It seems intuitively appealing that the same consen-

sus distribution be obtained whether (i) their opinions are first combined into a 

consensus distribution over the complete a-field and then a marginal distribution 

taken or (ii) the group members each give their marginal distributions over the 

sub-a-field and a consensus distribution formed from these." However, Lindley 

(1985) points out that more information is contained under (i) than (ii) , so that 

the equivalence of (i) and (ii) is not necessarily desirable. In addition, the linear 

pool does not allow one to highly weight an expert with particular experti se over 

a speci fi c sub-a-field of interest . Other problems wi th the linear opinion pool in-
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elude the typically multi-modal shape to the group distribution and the absence 

of RPC or external Bayesianity. 

2.2.3 Supra-Bayesian Pooling 

Advocates of supra-Bayesian models take the following viewpoint: to a de-

cision maker, the subjective probability assessments solicited from experts about 

the parameter of interest are random realizations ( data) observed by the decision 

maker. Under this framework, a supra-Bayesian decision maker must be identified. 

This can be the individual who is soliciting expert opinions to address questions 

about a certain quantity 0, or it can be a fictitious construct which represents the 

group's synthetic personality. The supra-Bayesian decision maker is charged with 

the task of evaluating each of the experts in terms of the anticipated accuracy 

and precision of his or her projections, in addition to providing her own (possibly 

noninformative) prior distribution for 0. Then, the supra-Bayesian model pro-

duces a posterior distribution for 0 in which the decision maker's prior is updated 

by a likelihood function which includes the experts' prior distributions for 0, the 

decision maker 's evaluations of the experts, and any applicable data collected to 

provide more information about 0. 

Expert Opinion as Data 

Cooke (1991) points to a growing body of evidence which describes how expert 

opinion can be a very useful source of data. As a source of data, expert opinion is 

cheap and plentiful , and ideally it provides a synthesis of many different data sets 

. and knowledge bases. Cooke is careful, however, to draw the distinction between 

"expert opinion" and "expert knowledge" . Techniques which treat expert opinion 

as data must recognize the inherent uncertainty in assessments provided by experts 

and account for this uncertainty accordingly. Too often , expert opinion can be 

regarded as absolute knowledge- as black and white fact- and decisions made on 
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the basis of expert opinion under this assumption do not reflect the underlying 

uncertainty which exists. 

Supra-Bayesian methods have been developed to treat expert opinion as data 

providing information which is relevant to a particular decision or unknown quan-

tity, while concurrently recognizing the inherent uncertainty in the expert opin-

ions and accounting for this uncertainty throughout the analysis. In general , these 

supra-Bayesian models claim to offer solutions to issues like calibration, honesty, 

correlation , and relative expertise. Those who believe the pooling problem is 

"solved" generally regard supra-Bayesian approaches as the solution . 

However, these approaches are not without difficulty. Supra-Bayesian ap-

proaches can be difficult to implement. Most are derived for consideration of one 

single event , or for a discrete probability space; thus , they are most easily applied 

in problems with a specific, pre-determined inferential goal. In addition , exten-

sions to continuous variables are usually not immediately clear. Supra-Bayesian 

approaches are not externally Bayesian, although by treating the expert priors as 

data rather than probabilities, supra-Bayesian reasoning leads to the conclusion 

that external Bayesianity is not necessarily a desirable property (see Section 2.2.1). 

Under supra-Bayesian approaches, one is required to establish hyperpriors describ-

ing the calibration and correlation of expert opinions, perhaps expressed on a log 

odds scale. However , even a rough guess for these hyperpriors can be difficult 

to provide, particularly when expertise is contributed from diverse fields. While 

mathematically attractive, the use of hyperpriors to assess expert opinions re-

quires a level and range of knowledge rarely possessed or even available. Finally, 

these approaches blur the distinction between data and prior. 

Variations on the Basic Framework 

26 



Many variations on the basic supra-Bayesian framework have been proposed. 

For example, Winkler (1968) proposed probably the first supra-Bayesian model 

in which he assumed that the experts' judgments represented sample information 

which belonged to the natural-conjugate family of distributions. Later , Morris 

(1977) added a calibration function which provides an assessment of each expert 's 

predictive performance based on variables besides the parameter of interest . Cooke 

(1990) obtains a set of optimal weights based on calibration and entropy. 

Lindley (1985) and French (1985) both propose supra-Bayesian solutions for 

the case in which 0 is finite. Basically, they addresses the question: How should 

a decision maker update her belief about an event A after learning the opinions 

of several experts? Each expert is required to give an opinion about A in terms 

of log-odds. To implement the French-Lindley approach, the decision maker must 

evaluate the experts' abilities in terms of the log-odds of event A occurring or not 

occurrmg. 

Winkler (1981) and Lindley (1983) consider continuous 0. They address the 

question: How should a decision maker update her belief about a parameter 0 

after learning the opinions of several experts? For Lindley's version, each expert 

is required to give the first two moments describing his or her belief about 0, 

although a particular distributional form is not required. Then, implementation of 

the Lindley-Winkler model requires that the decision maker evaluate the experts' 

abilities using a set of hyperparameters, including the covariances between experts. 

In the remainder of this section, we survey the early supra-Bayesian ap-

proaches of Winkler (1968) and Morris (1977) , and then in Chapters 5 and 6 the 

models of French-Lindley and of Lindley-Winkler are explored in much greater 

detail. 
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Winkler's Natural Conjugate Approach 

The supra-Bayesian approach has roots in Winkler (1968). Winkler assumed 

that the experts' judgments represented sample evidence which could be described 

by the natural-conjugate family of distributions , so that they could easily be com-

bined with the decision-maker's prior distribution using successive applications of 

Bayes ' Theorem. As Winkler states, the experts' opinions " ... can be thought 

of as being equivalent to sample information from the data-generating process of 

interest ," a concept he illustrates using a Bernoulli data-generating process and a 

natural-conjugate family of beta distributions. While creating Bayesian probabil-

ities which are more mathematically convenient , this method is valuable only if 

the experts ' judgments can be well-expressed in terms of a probability distribution 

from the natural-conjugate family. In addition, the decision maker who solicited 

the expert opinions must be willing to assign weights which reflect the strength 

of each expert and the degrees of dependencies between the experts. 

Morris' Calibration Approach 

Morris (1977) summarizes his basic result as follows : "If the expert is cali-

brated so that he is an accurate probability assessor, then the decision maker 's 

posterior equals the normalized product of the expert's prior and the decision 

maker 's own prior. " Thus: 

p(0 I x ,d) = k · h(0 ) · 1r(0 Id), 

where d is the decision maker 's prior state of information , p( 0 I x, d) represents 

the posterior distribution for the decision maker, 1r( 0 I d) is the decision maker 's 

prior , and h(0) is the composite prior for the experts , whi ch involves the product 

of expert priors times a correction factor for the degree of clep ndence and t he 

lack of cali bration among experts. This model requires two assumptions, whi ch 
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are later relaxed. The first is an invariance to scale, so that an expert's self-

evaluated confidence in his predictive ability provides no information about 0. 

Second, an invariance to shift is assumed, so that the decision maker 's assessment 

of an expert 's bias does not depend on the true value of 0. 

Core to Morris' model is the ability of the decision maker to calibrate the 

experts ' priors by adjusting experts ' probability assessments to reflect measured 

assessment ability. Morris recommends using a Calibration Function, which can 

be determined subjectively, or , even better, from an empirical summary of an 

expert 's past probability assessment record. Thus, good assessment of calibration, 

according to Morris , requires that all experts provide probability assessments on 

the same set of variables for which the true values are or will be known. A 

weakness of this method is its application to multiple , dependent experts because 

of the difficulties in accurately assessing expert dependence. 

Besides providing a general inferential framework for supra-Bayesian models , 

Morris' approach leads to a couple of interesting results. First , he proves the 

existence of a composite prior which measures the joint information contained 

in the subjective probability distributions of a collection of experts. In fact , the 

composite prior is a sufficient statistic for the information contained in the experts' 

probability assessments. Second, with independent and calibrated experts , Morris' 

approach reduces to a weighting scheme similar to that found in Winkler 's natural 

conjugate approach when the experts and the decision maker all have priors from 

the same natural conjugate family. 

2.2.4 Group Interaction Pooling 

Under this behav ioral model, the experts interact with each other, either 

face-to-face or through a distributed set of summary information , and they are 

allowed to revise their individual probabilities based 011 feedback. For example, 
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Winkler (1968) compares two such approaches. In the feedback and reassessment 

technique, each expert is presented with probability distributions from other ex-

perts as feedback, although no direct contact is allowed. In the group reassessment 

technique, the experts are gathered together and allowed to discuss the problem. 

The group can then form a single group probability distribution either while still 

gathered together or after individually updating their beliefs following the group 

discussion. Cox (1991) advocates group reassessment models over aggregation for-

mulae because "communication that allows agents to exchange explanations for 

their opinions, rather than only numerical strengths of opinions ( or of supports 

for beliefs , etc.) , can improve both the efficiency of the consensus-building process 

and the quality of the common-knowledge base finally achieved." 

One difficulty with direct interaction is that it can be challenging for experts 

from different fields to translate their knowledge to others, and to revise their 

beliefs based on evidence that is foreign to them. However, such efforts can also 

be very enlightening. 

Another difficulty arises when the model is too complex to permit immedi-

ate, comprehensible feedback to assist those who want to modify opinions through 

interaction to achieve consensus. However , when such interactive prior transfor-

mations are successfully carried out, it can enable the experts to critique the model 

itself. In this way, prior coherization is related to issues of model validation and 

improvement. 

Unfortunately, when pooling priors linked by a deterministic simulation model , 

group interaction models are rarely feasible. When Bayesian inference is desired 

about a parameter in a determinstic simulation model , often a single person ( or 

group) with knowledge of the model will solicit expert opinion on each input and 

output parameter, obtaining not merely point estimates, but complete probabil-

ity distribu t ions which also reflect t he experts' uncertainty. The expert pnors 
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must then be pooled into a single prior about the parameter of interest. The first 

problem with using a group interaction method for this pooling is that it is rarely 

possible to gather the experts , scattered across scientific fields and geographic 

locations, together at once. Moreover, even if the experts were to meet , it would 

be difficult to focus the discussion on the important parameter. For instance, an 

"input expert" may not even be aware of the model which links his opinion to the 

outputs, and without good understanding of the model would contribute little to 

a discussion about outputs. In addition, many deterministic simulation models 

which are used to model real systems are large and highly complex , so that imme-

diate feedback, such as in the case when an "output expert" changes his opinion 

slightly and wants to know the impact on the inputs, is an impossibility. 

2.3 Summary and Preview 

In Section 2.2 , several theoretical properties were mentioned as a means for 

evaluating and comparing strategies for pooling expert opinion. Here we sum-

marize those properties which we feel are important to consider when evaluating 

potential approaches for pooling priors linked by deterministic simulation models. 

External Bayesianity demands that a pooling process produce the same con-

sensus distribution regardless of the order of pooling and updating upon 

the receipt of new information. Even though Lindley (1985) argued from a 

supra-Bayesian perspective that external Bayesianity is not always desirable , 

we believe that under many pooling scenarios , including priors linked by 

deterministic simulation models, external Bayesianity is indeed intuitively 

sensible and desirable (see Section 2.2.1). 

Relative propensity consistency , in the special case we are considering, de-

mands that the pooled distribution favor c/> 1 over c/>2 whenever each expert 

:31 



favors </>1 over ¢2 . We believe that any reasonable pooling strategy should 

exhibit RPC , otherwise it would be difficult to place faith in the pooled 

results. 

The zero preservation property has two forms-strong and weak. Strong 

ZPP implies that p(</>) = 0 whenever Pi(</>) = 0 for any expert i, while 

weak ZPP requires that p( </>) = 0 whenever Pi(</>) = 0 for every expert i. 

We feel that strong ZPP can be overly restrictive, especially in determinis-

tic simulation model settings when some experts do not even express their 

beliefs in the parameter space of interest. If an "input expert", for instance, 

knew that his prior beliefs, when transformed by the model into output 

space, expressed no probability for certain reasonable output values, then 

the input expert would probably revisit his beliefs or the model itself. \tVeak 

ZPP, on the other hand, is intuitively reasonable and desirable , because if all 

experts feel that a particular parameter value is impossible, then the pooled 

prior has no basis for assigning non-negative probability at that point. 

Based on the theoretical properties of the potential pooling approaches dis-

cussed in this chapter, we favor creating consensus priors via logarithmic pooling. 

Chapter 3 will outline a detailed algorithm for obtaining log pooled priors in the 

deterministic simulation model setting. A theoretically and mathematically at-

tractive method, while possessing a nice foundation, still must perform well in 

realistic situations to be a truly useful method to the practitioner. In Chapters 4-

7, therefore, we evaluate and compare logarithmic pooling and alternative pooling 

methods (linear pooling and two supra-Bayesian methods) over several examples. 

In each example, priors are linked by a deterministic simulation model , and the 

examples cover a range of complexity levels . 
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One point yet to be discussed is the strategy of pooling information which 

conflicts , given a deterministic model. Is it reasonable to average information 

which is not in agreement when expressed in the same parameter space? All of 

the mathematical pooling formulae discussed here are essentially averages. We feel 

that routine application of pooling formulae to obtain inference from simulation 

models is risky unless it is part of a larger effort that includes model validation and 

revision , and interaction between experts. Priors which are severely incoherent 

should not be coherized merely because they can be. Such cases can only be 

resolved when the experts can revise the model and their own opinions. When 

only mild incoherence is present, the averaging of opinion through pooling is 

more reasonable. Such philosophical issues, plus the computational challenges to 

implementing a pooling approach , point to the considerable potential for future 

development in this area. We expect that deterministic models will continue to 

be used in diverse areas of scientific inquiry, and techniques like those described 

here can encourage disciplined statistical thinking and uncertainty analysis in 

deterministic modeling. 



Chapter 3 

Log Pooling via Adaptive Importance Sampling 

3.1 A General Algorithm 

Consider a deterministic simulation model M (B ): 8-+ c/> , where BEE> ~ Rm 

and c/>E~~ RP. Prior distributions p1 ( 8) and p2 ( c/> ) are elicited independently 

on the inputs and outputs, and we wish to make inference about certain model 

parameters , say cf>. The basic approach is to convert p1 ( 8) to ¢-space, to coherize 

the priors with log pooling, then to make inference about cf>. 

When M is too complex to invert or to solve for the implicit priors , only 

p1(8 ), pr(cp ) and p2 (c/>) may be sampled, and only p1(8), p2 (c/>) and the likelihoods 

may be evaluated. ote that p; (c/>) may be sampled by sampling from p1(8 ) and 

applying M to the sample. 

We estimate the posterior distribution for c/> , 7l'(c/>I D) ex p(c/>)L(Dq,, Delc/>) , 

using the steps described below. Obtaining the coherized prior p(c/>) relies upon 

(possibly adaptive) selection of a suitable importance sampling function in 8-space 

whose mapping covers the support of both p2 (c/>) and p~(c/>) . 

Assume M is a smooth, continuous mapping. A general algorithm for es-

timating the log pooled prior distribution p( c/>) ( and subsequently the posterior 

dist ribution 11'( c/>I D)) is as follows: 

1. Let e(B) be a density function that induces a density function in ¢-space 

that is a suitable importance sampling function for the log pooled prior. In 



some cases, e( 8)=p1 ( 8) will suffice. We discuss strategies for choosing e( 8) 

in Section 3.2. 

2. Sample 81 , .. . ,On ~ i.i.d. e( 8). 

3. Calculate </>i =M(Oi) for i = 1, ... , n . 

4. Find a density estimate for pi(</>) using </> i, ... , <Pn· Although many meth-

ods work adequately in some situations, histogram methods (see Wester-

gaard, 1968) are inherently non-smooth and unwieldy in higher dimensions , 

and kernel density methods (Parzen, 1962; Rosenblatt, 1956) can lead to 

severely biased importance weights for densities with bounded support . We 

have had the most success by numerically approximating the Jacobian , so 

Pi(4>i ) = P1(8i) · ji (¢Jj, where <Pi = M(Oi)- See Sections 3.3 and 3.4 for 

methodological details and consideration of noninvertible M . 

5. Find e•(4,J e(Oi) · ji[¢i) j using the same methods as in step 4. 

6. Obtain a representative sample from the coherized prior p( </>) ex 

p2 (</> )°p'j_(</>) 1- 0
• Since this distribution is usually too difficult to sample 

from directly, we use importance weighting (Hammersley and Hanscomb, 

1964) to represent p(</>). The estimated importance weights are Wj ex 

p2 (</>j )°pi(4>j ) 1- 0 j e*(¢j) for j = l , ... , n. Then, the </> j and their cor-

responding Wj represent p( </> ). For further details on importance sampling, 

see Section 3.2.1. 

7. Using additional importance weighting, combine p(</>) with the likelihood 

funct ion L(Dq, , De l</> ) to obtain theposterionr (</> I D ) ex p(</>)L(D¢ , De l</> ). 

This also permits inference regarding other quantities, say 1/J= F(O,</>) for 

some function F . 



A similar algorithm could be followed to make inference about 0 using the 

posterior distribution rr(0 I D) ex p1 (0 )°pTT8) l-o L(De ,D¢l0 ). When M is in-

vertible, we can proceed using pf(iii) = p2 (M(0i)) liftii)j, where the est!mation 

of the Jacobian is performed according to the methods described in Section 3.3. 

The log pooled prior and posterior can be estimated using importance sampling, 

as in steps 6 and 7. When Mis noninvertible, p;(0) , and hence the log pooled 

prior , is not uniquely defined. Described in Section 3.4 is an approach for proceed-

ing in this case; essentially, each possible inversion of p2 (cf>) is equally weighted to 

reflect the ¢ -expert's ignorance about 0. 

The effectiveness of this algorithm depends strongly on the quality of the 

importance sampling function , e( 0) . In Section 3.2.3 we describe the details of a 

cumulative, adaptive mixture strategy for constructing a suitable e( 0). A simple, 

nonadaptive alternative would be to set e(0 )=p1 (0 ). Section 3.2.3 also mentions 

higher dimensional problems and cases when m =J p. 

3.2 Importance Sampling Function, e(0) 

3.2 .1 Importance Sampling 

The SIR (Sampling/Importance Resampling) algorithm is, according to Ru-

bin (1988), "an ubiquitously applicable noniterative algorithm for obtaining draws 

from an awkward distribution. " The SIR algorithm was first proposed by Rubin 

in 1983 and more fully described in 1987 and 1988 articles by Rubin . In order to 

obtain a sample of size m from an unwieldy distribution p(<f,), the SIR algorithm 

follows these steps: 

1. obtain a sampling envelope h( <f,) which ( to some extent) approximates p( <f, ), 

and for which h( <f,) > 0 for all possible </, . 
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2. let ¢1, ... , ¢M be a random sample from h( ¢> ), where M is large relative to 

m. 

3. let w 1 ex p( ¢>1) / h ( ¢>1) be the importance weight for ¢1, i = 1, .. . , M . 

4. let ¢~, ... , </>'m be a random sample from ¢1, ... , ¢M with probabilities pro-

portional to w1. 

Rubin (1 988) shows that as • oo, the points ¢~, ... , </>'m are independent 

selections from p( ¢>) as desired. The choice of a practical ratio to make the 

approximation adequate depends on the adequacy of the sampling envelope h(¢>). 

3.2.2 A Nonadaptive Approach 

The easiest approach is to let e( 0) = p1 ( 0). ote that , in this case, Wi ex 
-- a, P2(</>J 0 /pi(</>J . If the support of p1 (0) covers the support of p2(0 ), then the 

weighted empirical distribution of the sample converges to the log pooled distri-

bution as the number of samples n • oo (Hammersley and Hanscomb, 1964) . 

However , even when this is true, there is a question of efficiency. If Pi ( </> ) and 

p2 ( </>) are not very similar , sampling from p~ ( </>) is not an efficient way to obtain 

points which represent p2 ( </> ), or, hence, p( </> ). Efficiency is an important concern 

when the complexity of M or its Jacobian limits n. We therefore introduce an 

adaptive approach which periodically improves e(0) while accumulating an effec-

tive and efficient importance sample. The increased complexity of the adaptive 

approach can sometimes be offset by even greater gains in sampling efficiency and 

hence in estimat ion performance when n is limited. 

3.2.3 An Adaptive Approach 

The adaptive envelope strategy attempts to determine a sample of poin ts 

which is representat ive of the prior opinions of both experts . Th is is done by 

start ing with a sample of points from p 1 ( 0 ) in t he first iterat ion and t hen searching 
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for points which would map into p2 ( <p ) in the remaining iterations. Therefore, we 

adopt the strategy of aiming for an importance sampling function in 0-space that, 

when transformed into </>-space, can be used for importance sampling of p2 ( <p). 

The rationale for this goal is that if one component of the mixture is p1 ( 0), then 

such a function should also be adequate for sampling the log pooled prior. At 

each iteration, the current mixture is tested for adequacy, and additional mixture 

components are added in the most problematic regions until a suitable e( 0) is 

obtained. An importance weighted sample of ( 0 ,<p) pairs is cumulatively gathered 

and reweighted at each stage, so that_ the results are immediate when the final 

importance sampling function is identified. 

Case 1: 1 input and 1 output (m = p = 1) 

Begin with e1(0) = p1 (0). Take a random sample of size m 1 from e1(0 ). Use 

M to transform these points into ¢-space, where we calculate importance weights 

-for i = 1, ... , m1, As described in Sections 3.3 and 3.4, er( <Pi ) IS based on a 

Jacobian estimate. 

At this point, the true cumulative distribution function , Fp2 , corresponding 

to P2( 4>) is compared with the weighted empirical estimate, F'p2 ( <Pj:m ,) = ~f=1 Hi, 

where <Pi:m, represents the Ph order statistic from the collection of ¢ values, and 

the tl i are sorted in order of the <Pi · We test whether F'p2 satisfies a goodness of 

fit criterion relative to Fp2 with the Kolmogorov-Smirnov test (Kolmogorov , 1933; 

Smirnov, 1939). 

Instead of computing the p-value with the actual sample size, we use an 'ef-

fective sample size' whi ch is more approp ri ate because it corrects for importance 

sam pling ineffi ciency. The effect ive sample size does not count <Pi that have neg-

ligib le tli because they effect ively cont ribute no information to the est imate F P2' 
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The effective sample size is the minimum of the actual sample size and an adjusted 

sample size, calculated as the number of ¢i in a 95% p2 ( ¢) probability interval, 

divided by .95. With this estimation of the number of ¢i that have non-negligible 

p2( ¢) density, those ¢i that contribute little to F'p2 are ignored. 

If the p-value from the K- S test is greater than .05, we stop and conclude 

that the importance sampling function e1 ( 0) = p1 ( 0) is suitable because ( ¢) is 

very similar to Fp2 ( ¢). However , if the p-val ue is below . 05 , we take an additional 

sample from 0-space. These additional points are stochastically selected from 

regions in 0-space where the difference between ( ¢) and Fp2 ( ¢) is greatest. 

Specifically, the ith observation in the additional sample taken at the 2nd iteration 

is distributed according to 

m I 

02,i ~ e2( 0) = L b1 ,rN(01 ,r, vi) 
r=l 

for i = 1, ... , m2, where 

and V1 is a weighted estimate of the variance of p2( 0) _after the first iteration. 

Thus, e2( 0) is a mixture distribution of m 1 normal kernels centered at the 

points 01,1, ... , 01,mp weighted by how inadequately p2 (¢) is represented at ¢1,r = 
M( 01,r ). The overall e( 0) becomes the weighted mixture of the two densities e1 ( 0) 

and e2 (0), since the points from all previous iterations are mixed with the points 

from the current iteration to form a combined current sample. 

Subsequent ej(0) are defined analogously, using all information available at 

iterations 1, . .. , (j - 1). In general, at the j'h iteration, e(0) is the cumulative 

mixture distribution defined by e(0) = (I:i:1 m iei(0)) /I:i:, mi . 

The algorithm continues until a mixture importance sampling function is 

found that produces a weighted empirical distribution function that is not rejected 
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by the goodness-of-fit test when compared to Fp2 , At this point , we conclude that 

the current mixture distribution for 0 is a suitable e(0). Therefore, the sample 

from e( 0), transformed to </>-space and paired with the corresponding importance 

weights Wi ex: P2( <Pi) 0 pf(¢i) l-o / e*(4>i) should produce a reasonable estimate for 

p( <P) . 

Case 2: Higher Dimensions 

Suppose m = p > 1. Denote by Fp2 ,i(</>1),i = 1, ... ,P, the marginal cumula-

tive distribution functions corresponding to the p dimensions of </> , evaluated at 

We treat the multivariate case analogously to Case 1. An initial sample is 

taken from p1 (8), and importance weights Ui are again calculated as in Case 1. -In this case, e*( </> ) is obtained using multivariate Jacobian estimation methods 

as described in Sections 3.3 and 3.4. Then p univariate marginal Kolmogorov-

Smirnov tests are performed to check whether the weighted empirical distribution 

functions, F'p2 ,i( </>1:m,), resemble Fp2 ,i(</> ),i = 1, ... ,p. As before, the goodness-

of-fit test relies on effective sample size, which is based on the number of ¢'s 

within the corresponding multivariate 95% probability interval. If any of these 

tests reject goodness of fit at a .05 significance level, then an additional sample 

is added to the mixture. Although multiple significance tests are being used, no 

adjustment is made because these p-values are being used as summary statistics, 

providing information on how close our empirical estimates of F'p2 ,i is to Fp2 ,i -

A potential alternative to the series of marginal goodness-of-fit tests is the 

application of projection pursuit methods. Under projection pursuit density es-

timation (Friedman et al. , 1984), multivariate functions are estimated by com-

binations of univariate functions of carefully selected linear combinations of the 

variables. Projection pursuit dens ity esti mates of p2 ( </>) are of the form: Puvt( </> ) = 
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P20(</>) TI~=l fm(o:m · </> ), where M is the number of iterations of the procedure, 

p20 ( </>) is an initial estimate for the multivariate density, O:m is a vector specifying 

a direction in ~ P at which relative goodness of fit ( compared to the model at the 

previous iteration) is maximized, O:m · </> = I:f=1 O:mi · </>i is a linear combination of 

the original coordinates, and f m is a univariate function. The idea of projection 

pursuit is worthy of future study for its utility in finding adaptive importance 

samples in higher dimensions. 

The new mixture component for the second iteration is itself a mixture dis-

tribution of m 1 multivariate normal kernels centered at the points 81,1 , ... , 8 1,m 1 

and weighted by how inadequately p2 (¢) is represented at ¢ 1,r = M (8 1,r) - If we 

denote by and Fp2 the multivariate empirical and true cdfs , then the mixture 

weights b1,r can be expressed as 

b1 ,r = P2(<P1 ,r) · IJ\2( <P1 ,r) - Fp2(<P1 ,r )I /tp2(<P1,k) · IFP2(<P1 ,k) - Fp2(<P1 ,k)I · 

is calculated by summing the appropriate Ui oc p2 (<Pi )/ e:rJ>i). Each mult i vari-

ate normal kernel has covariance matrix equal to the weighted sample covariance 

matrix of the Bi with weights proportional to p;,(8i) /e(8 i) - Additional compo-

-nents are accumulated until no marginal empirical distribution function Fp2 ,i, i = 
1, . . . ,P, differs significantly from the truth, at which point e(O) is taken to be the 

resulting mixture distribution. A sample from e( 8), transformed to ¢-space and 

paired with the corresponding importance weights Wj oc p2 ( <Pi )0 pi(ef>j) 1- 0 
/ e"(ef>1) 

should produce a reasonable estimate for p( ¢ ). 

Case 3: Higher, Unequal Dimensions 

It should be possible to reduce such problems to Case 2 by the introduct ion of 

additional nuisance parameters. Raftery and Poole (1998) present a generalization 

for invert ible models wi th m f. p whi ch has att ractive invariance properties. They 

describe a vari at ion of log pooling which is sui tab le for such models and implement 
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it using a nonadaptive importance sampling strategy. We do not consider this case 

further here. 

3.3 Jacobians J (0i ) and J (</JJ with Invertible M 

Let IJ (0i)I denote the Jacobian of¢ with respect to 0, evaluated at 0;. Sim-

ilarly, let IJ( <Pi)I denote the Jacobian of 0 with respect to ¢ , evaluated at <Pi· 
Then, for invertible M : ~ 1 • ~1, the estimated Jacobian ji (Bi) j is obtained 

using a discrete difference approach iterated to a prespecified relative convergence 

criterion. Under this approach IJ (0i)I is estimated with I~ I :::::: M(/Ji+ f~:;- M (/Ji ) . 

An iterative selection procedure is used to select Eij , where as the iteration num-
. . . ji(Bi)I - li (Bi) I 

ber J mcreases , smaller and smaller Eij are used until 
1 1 

i- i < r 
J (0i) 

J-1 

for some predefined convergence limit r , where ji(Bi)ji is the estimate for IJ (0i) I 

based on Ei j • If the convergence limi t is not reached within a specified number 
ji (Oi) j - liftii)I 

of iterations, then we choose Eij such that I '.d.--= j 2-
1 is minimized. For 

J (0i) . 
. J-1 

higher-dimensional problems, liftii) I can also be calculated using discrete differ-

ences. 

With invertible M : ~ 1 • ~1, lif<};i)j is merely the inverse of li (Bi) I. In 

higher dimensions, estimation of IJ ( </JJ I is more complex because the coordinate-

wise discrete perturbations can not be implemented in ¢ -space. 

Instead , directional derivatives can be employed. For instance, in two dimen--sions , we can int roduce discrete perturbations in 0-space, then solve for and - according to: 

where a 11 (0i) is t he direct ional derivat ive of 01 at </J=M(0 ) in t he direction a 12i+ 

a 13j , and a 12 and a 13 are the changes on the ¢ 1- and ¢r axes, respect ively, for a 
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1-unit change along the vector between M(01 + t 1 , 02 ) and M (01 , 02 ). Thus , 

if 11 ·11 denotes Euclidean distance between points. a21 , a22 , and a23 are analogous 

for a perturbation of 02 rather than 01 . i and i can be found using a similar 

set of equations. Finally, the Jacobian can be calculated using these estimates 

of the partial derivatives. A relative convergence criterion is used to choose the 

magnitude of discrete perturbations like t 1 . 

3.4 Estimation under N oninvertible M 

3.4.1 Mapping </>-+ 8 

When M is noninvertible, we assume that there exists a partition of 0 such 

that 0 = 0 1 U . .. U 0 r and 0 i n 0j = 0, Vi =/- j, where M is invertible on 

0 i, Vi = 1, . .. , r. In this case, pi( 8) is not uniquely defined. If p;(i\ 8) is the 

transformation of p2 (</>) onto 0i , let p2(8 j ) = p;(i\8;)/r. With this definition, we 

. can estimate p2(8) using p;(0i) = p2 (M(8i))liftii)l/r. This definition for p2(8 ) 

with noninvertible M , while somewhat arbitrary, is logically sensible. A certain 

</>-value may have been produced by several different 8-values, yet the </>-expert 

likely has no information about which 8 produced a particular </>. Therefore, this 

definition gives each potential 8-value equal weight. 

3.4.2 Mapping 8-+ </> 

Suppose, as before, there exists a partition of 0 such that 0 = 0 1 U .. . U 0 ,. 

and 0i n 0j = 0, Vi =/- j , where M is invertible on 0 i, Vi= 1, ... , r. Then we can 

uniquely define P'i(</>) = L i= I P1(8 ;) • IJ(.¢JI , where </>= M(8i) for i = 1, .. . , r. 

However, although we may know that M is a many-to-one mapping, we may 

not easily be able to identi fy 0 1, 0 2 , • •• , 0 , .. One way to est imate pj(</>;) in 



this instance is to take a weighted sum of all estimates of Pi ( ¢ ) for ¢ 's in a 

neighborhood of c/>i, where the weights are inversely proportional to the probability 

mass near 8 . Thus, our estimate is: 

.- LjEJ P1(8j)l i ("¢Jlw(8j) 
P1 ( c/>i) <X " _ -(8 ·) , 

~JEJ W J 

where, when m = p l , </>j = M(0j ), J = the set of subscripts identifying 

the k nearest neighbors of <Pi, 0j = 0-value which produced <Pj, and w(0j) = 

1 /(e(0J l0j - 0j,I), where j' indexes the nearest neighbor to 0j, In higher dimen-

sions , analogous estimates are used. For instance, if M: R2 • R2 , then l0j - 0j,I 

is replaced by the area of the rectangle whose vertices are (0j, l , 0j,,2 ) , (0j',l , 0j,,2 ) , 

(0j' ,l, 0j,2 ), and (0j,l, 0j,2 ). If r is small and the number of neighbors used for the 

calculation of Pi ( ¢ ) is sufficiently large so that the sampled proportions of each 

inverse image of the ¢-neighborhood approximate the p1 ( 8) mass corresponding 
-to each inverse image, then Pi ( ¢ ) will be a good estimate of Pi ( ¢ ). 

3.5 Convergence 

Suppose the importance weights W j were exact , rather than estimated as in 

step 6 of Section 3.1. Then , for a suitable e(8), importance weighting ensures 

that the weighted empirical distribution of the sample converges to the log pooled 

prior as the number of importance samples n • oo (Hammersley and Hanscomb, 

1964). Thus, by sampling the weighted sample with replacement with probabilities 

proportional to the importance weights , the resulting secondary sample ( of size 

m ) would converge in distribution to the log pooled prior as ;; • oo- this is 

the SIR algorithm (Rubin, 1987, 1988) . A suitable e( 8) is one that has nonzero 

support wherever p2( 8) and p1 ( 8) have nonzero support; it is sufficient that e( 8) 

has nonzero support on 0. 

In step 6 of Section 3.1 , however, the W j are estimated. For invertible M , 

the degree of approximation in th is es timate is not a fun ct ion of sample size, but 
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rather depends on the quality of the discrete difference approximations of the 

derivatives. The distributional convergence of importance sampling methods is 

not affected by this approximation except that the limiting distribution will be 

approximate if the derivatives are approximate. 

In Section 3.2.3 we described an adaptive approach for selection of the impor-

tance sampling function e( 9). Although this algorithm is also iterative, conver-

gence of the algorithm its elf is not necessary for convergence of the coherized prior. 

Rather, the adaptive algorithm is designed to drastically improve importance sam-

pling efficiency in a few steps. Thus , the algorithm could even be stopped before 

it "converges", as is done in the examples of Section 4.5 and 4.6. Regardless of 

convergence of the adaptive algorithm~ the final results from it are guaranteed 

to be correct in a limiting final step , due to the importance weighting employed 

therein. 



Chapter 4 

Log Pooling: Examples 

4.1 Description 

In this chapter, two versions of the general algorithm in Chapter 3 for ob-

taining the log pooled prior p( </J ) are compared. The nonadaptive version features 

Pi( </J) as the importance sampling envelope, while the adaptive version features 

the adaptively chosen sampling envelope e( </J) as described in Section 3.2.3. 

We begin with simple, low-dimension models M to enable a degree of vi-

sualization of the pooling and results which is difficult with more complex M. 

We also examine performance on a challenging multi-dimensional M , which is 

relevant to a real biological population management problem. 

Hereafter, we focus exclusively on the priors and the estimation of the log 

pooled p( </J ) and p(8), because what follows after obtaining p(</J) or p(8) is stan-

dard Bayesian inference. In addition, we chose to focus primarily on pooled priors 

for the output space for these examples; we chose ¢,-space since inference is com-

monly desired on the output parameters </J. 

4.1.1 Method of Evaluation 

Let the integrated squared error be ISE 

the squared area between the est imated and true cdfs of p( </J ). ISE in 8-space 

is similarly calculated. Izenman ( 1991) states that ISE is a common choice for 

comparing density est imates; in fact , he recommends it as a measure of goodness 



of fit over other commonly used measures. For most of the following examples, we 

have the luxury of knowing Fp( </>) and Fp( 8) so that we can evaluate the relative 

performances of the nonadaptive and adaptive algorithms discussed in Chapter 3. 

Let relative integrated squared error be RISE ISE(adaptive)/ 

ISE(nonadaptive ), so that RISE < 1 indicates that the adaptive algorithm pro-

duced a better fit for log pooled p( </> ) or p( 0). For each example, 20 replicates 

of a pooling analysis (either adaptive or nonadaptive) are run and the RISE is 

calculated. The distribution of RISEs can be used to compare the adaptive and 

nonadaptive methods for log pooling; a mean and confidence interval based on 

the 20 replicates are calculated, where the confidence interval is based on an as-

sumption of normali ty whenever strong evidence of nonnormality does not exist. 

In addition , a 90% confidence interval is used because the 95% upper confidence 

bound is of primary interest. Within each replication, equal numbers of simulat ion 

runs are used to compare the adaptive and nonadaptive methods and to compute 

RISEs; for instance, 4 iterations of 200 model simulations each in the adaptive 

algorithm will be compared to 800 simulations in the nonadaptive algorithm. For 

problems involving higher dimensions , we also evaluate ISEs al_ong each margin. 

Plots from a representative replication are shown to illustrate differences between 

the two algorithms for obtaining log pooled priors. 

4.2 Introductory Example 

Consider the introductory example described in Section 1.3.4. In this case, 

the support for the implicit Pi (</>) does not adequately cover the support for p2 (¢> ). 

Therefore, even with appropriate importance weights w ; to ensure the correct 

limiting distribution for the sample, there is a terrible problem of efficiency; for 

essentially any implementable n, a poor est imate of p( ¢>) resul ts. 
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Figure 4.1: Introductory example: estimated and true cumulative distribution 
functions for p2 ( ¢) . Estimates are based on adaptive (dashed) and nonadaptive 
( dotted) sampling methods, and are shown for the seventh iteration, at which 
point the adaptive method converged. 

Figure 4.1 shows the true (solid) and estimated (dashed) cumulative distri-

bution functions for p2(¢) at the final iteration required to find a suitable e(0) 

by the adaptive mixture envelope strategy (see Section 3.2). In this particular 

replication, seven iterations of 200 simulation runs were required to achieve con-

vergence. To review , the adaptive envelope strategy attempts to determine a 

sample of points which is representative of the prior opinions of both experts. 

This is done by starting with a sample of points from p1 ( 0) in the first iteration 

and then searching for points which would map into p2 ( ¢) in the remaining it-

erations. As a result , the comparison of the true cdf of p2 ( ¢) to estimates of it 

is a key step in the process of estimating p( ¢), and poor performance here will 

lead to poor overall results. For instance, points selected under the nonadaptive 

method produce to a poor estimate (dotted) of Fp2 (¢) in Figure 4.1 , which will 

lead to poorer estimates of Fp(cp). For the adaptive method , the region of ¢>-space 

explored changes qui ckly from what is preferred by p1(0) to what is compat ible 

with bot h priors. Figure 4.2 shows e*(cp) at the final iterat ion ; after starting with 
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Figure 4.2: Introductory example: e*( </>) at the final iteration of the adaptive 
sampling method. 

a sample from Pi(</>) in the first iteration, e*( </>) has become a density suitable for 

importance sampling for both Pi: and p2 , and hence for the coherized prior p( </>). 

Both methods actually perform well in this easy example (see Figure 4.3); 

however , the adaptive method provided estimates of Fp( ¢>) and Fp( 0) which were 

over twice as good as those from the nonadaptive method ( average RISEs of .39 

on the </>-axis and .39 on the 0-axis with 95% upper confidence bounds of .54 and 

.52, respectively). 

The performances of _the adaptive and nonadaptive algorithms by iteration 

are illustrated in Figure 4.4. Each point in the adaptive (dashed) line for exam-

ple, represents the average ISE at a particular iteration for the estimation of Fp( </>) 

over 20 replications of the adaptive method . Each replication was allowed to com-

plete 8 iterations of 200 simulations runs regardless of whether the convergence 

criterion was met earlier. From this plot , we see that the adaptive method out-

performs the nonadap tive method in this example in terms of both efficiency and 

precision. Fp from the adapt ive met hod improves drastically in Iteration 2- t he 

first iteration which contains points other than from p1(0)- after which the rate 

of improvement slows considerably. The degree of improvement in Fp est im atPS 
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Figure 4.3: Introductory example: estimated and true cumulative distribution 
functions for p(<f;). Estimates are based on adaptive (dashed) and nonadaptive 
( dotted) sampling methods, and are shown for the seventh iteration, at which 
point the adaptive method converged. 
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methods. 
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Figure 4.5: Cusp example: priors and implied priors for 0 and ¢ , where 0 is op 
the horizontal axis . The dashed densities correspond to p1 , and the dotted to p2 . 

from the nonadaptive method also decreases with each iteration. At Iteration 2, 

the adaptive method has achieved a mean ISE which the nonadaptive method 

fails to achieve even after 8 iterations of 200 simulation runs each. 

4.3 Cusp Example 

Consider the noninvertible model¢= 50 exp (-2510 - 21) , with priors p1 ( 0) = 

N(0; 2, .042 ) and p2 (¢) = Exp(¢; 2.5) where Exp(x; .X) is the exponential dis-

tribution with mean .X. This example is sketched in Figure 4.5; it provides a 

first examination of how implementation proceeds for noninvertible models , using 

the approach detailed in Chapter 3. For instance, an estimate of Pi ( ¢) under 

noninverti ble !VI is handled using a weighted average of estimates of Pi ( ¢) for 

a neighborhood of points around ¢, where weights are inversely proportional to 

the probability of selecting the 0 corresponding to ¢. In this way, we need not 

explici tly know the partition of 0-space which leads to invertibility within each 

partition in order to determine p~(cp) . 

In this case, the implicit Pi(¢) conflicts with p2 (¢). Although the impor-

tance weights w; for the coheri zed prior p( cp) are calcu lated approp ri ately, many 
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Figure 4.6: Cusp example: estimated and true cumulative distribution functions 
for p2 ( ¢,). Estimates are based on adaptive (dashed) and nonadaptive (dotted) 
sampling methods, and are shown for the second iteration, at which point the 
adaptive method converged. 

0i sampled from p1 ( 0) under the nonadaptive method are wasted because the cor-

responding </:ii receive negligible support by p2 ( ¢,), and therefore by the coherized 

prior too. This can lead to a very biased estimate of the coherized prior , and 

hence a potentially biased poster-ior. In Section 2.3 , we address the wisdom of 

pooling in a case where serious prior incoherence exists. 

For a representative replication from this example, the true (solid) and esti-

mated ( dotted) cumulative distribution functions for p2 ( ¢,) are shown in Figure 4.6, 

where estimation is performed using the nonadaptive algorithm (n = 400 model 

simulations). The bias of the nonadaptive method is due to severe sampling inef-

ficiency. Figure 4. 7 shows the true (solid) and estimated (dotted) coherized prior 

distribution functions. The bias persists. 

Shifting to the adaptively chosen e( 0) fixes the problem. The dashed lines in 

Figures 4.6 and 4. 7 show the results using the adaptive mixture envelope strategy. 

The adaptive st rategy required two iterat ions in this replication ( each with 200 

simulat ions) to find a suitable sample for coherization whi ch covered bot h poss ible 
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Figure 4. 7: Cusp example: estimated and true cumulative distribution functions 
for p( <p). Estimates are based on adaptive (dashed) and nonadaptive (dotted) 
sampling methods , and are shown for the second iteration, at which point the 
adaptive method converged. 

inverse mappings of ¢>-space. The adaptive method provided a better estimate of 

the log pooled prior: the average RISE was .51 on the ¢>-axis and .50 on the 0-axis 

with 95% upper confidence bounds of .87 and . 70 respectively. 

The performances of the adaptive and nonadaptive algorithms by iteration 

are illustrated in Figure 4.8. Each point in the adaptive ( dashed) line, for exam-

ple, represents the average ISE at a particular iterat ion for the estimation of Fp( <p) 

over 20 replications of the adaptive method. Each replication was allowed to com-

plete 8 iterations of 200 simulations runs regardless of whether the convergence 

criterion was met earlier. From this plot , we see that the adaptive method out-

performs the nonadaptive method in this example in terms of both efficiency and 

precision. Fp from the adaptive method improves drastically in Iteration 2- the 

first iteration which contains points other than from p 1 ( 0)- after which the rate 

of improvement slows considerably. The degree of improvement in Fp estimates 

from the nonadaptive method also decreases with each iteration. At Iteration 2, 
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Figure 4.8: Cusp example: mean ISE by iteration for the e~timation of Fp( <p) over 
20 replications of the adaptive ( dashed) and nonadaptive ( dotted) methods . 

the adaptive method has achieved a mean ISE which the nonadaptive method 

fails to achieve even after 8 iterations of 200 simulation runs each. 

4.4 Linear R2 • R2 Example 

Having illustrated the value of our adaptive envelope selection strategy in one-

dimensional problems, we set out to evaluate its performance in multi-dimensional 

problems. To that end, we considered a linear 2-dimensional case with 

P1 ( 0) = N2 [ ( =~ ) , ( -~ ·: ) ] , 
P2 ( ¢) = N2 [ ( ) ' ( _\ ~51 

) l ' 
¢1 = ½01 - ½02 + 2, and ¢2 = ¼01 + ¼02 - 1. 

These priors and corresponding implicit priors through M are sketched in 

Figure 4.9. Note, for example, that a region of agreement between p2 ( ¢ ) and 

Pi(¢ ) exists where the log-pooled prior p( ¢ ) is probably large, but that a sample 

from pi( ¢ ) would not cover the entire support of p2 (¢). 

In the pictured replication , 8 iterations of the adaptive algorithm ( each with 

200 model simulat ions) led to convergence along both ¢ -margins, as shown by the 
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Figure 4.9: Linear lR2 • lR2 Example: priors and implied priors for () and ¢. 
The dashed 95% ellipsoids represent the 8-expert, while the dotted 95% ellipsoids 
represent the ¢-expert. 

marginal plots of Fp2 versus Fp2 in Figures 4.10 and 4.11. As in the lR1 • lR1 

examples, estimates of Fp2 ( ¢) and Fp( cp ) were obtained using equal numbers of 

simulation runs from both the adaptive and the nonadaptive methods (n=l600). 

Bias due to sampling inefficiency under the nonadaptive approach is easily ob-

servable by examining the dotted estimated cumulative distribution functions for 

P2 in Figures 4.10 and 4.11. 

Figures 4.12 and 4.13 then show the true (solid) marginal cumulative distri-

bution functions for p( ¢) compared to the estimates from the adaptive ( dashed) 

and nonadaptive ( dotted) methods. For the adaptive method , the lack of bias 

in estimating p2 ( ¢ ) led to greater efficiency in estimating p( ¢ ) when compared 

to the nonadaptive approach. umerical summary measures support conclusions 

suggested by Figures 4.12 and 4.13: t he average RISE was .25 along the ¢ 1-axis , 

.38 along the ¢ raxis , and the average bi vari ate RISE in ¢ -space was .35 (wi th re-

spect ive 9.5% upper confidence bounds of .4 1, .6:1, and .52). Thus, on average, the 
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Figure 4.10: Linear R2 • R2 Example: estimated and true cumulative distribu-
tion functions for p2 (¢i). Estimates are based on adaptive (dashed) and nonadap-
tive ( dotted) sampling methods, and are shown for the eighth iteration, at which 
point the adaptive method converged . 
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Figure 4.11 : Linear R2 • ~ 2 Example: estimated and true cumulative distribu-
tion functions for p2 (¢2 ). Estimates are based on adaptive (dashed) and nonadap-
tive (dotted) sampling methods , and are shown for the eighth iterat ion , at which 
point the adaptive method converged. 
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Figure 4.12: Linear R2 -+ R2 Example: estimated and true cumulative distribu-
tion functions for p(¢ 1 ) . Estimates are based on adaptive (dashed) and nonadap-
tive (dotted) sampling methods, and are shown for the eighth iteration , at which 
point the adaptive method converged. 
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Figure 4.13: Linear R2 -+ R2 Example: estimated and true cumulat ive distribu-
tion fun ct ions for p(¢2 ). Estimates are based on adaptive (dashed) and nonadap-
tive ( dotted) sampling methods, and are shown for the eighth iteration, at which 
point the adaptive method converged. 
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Figure 4.14: Noninvertible lR2 • lR2 example: contour plots of p2 (</>) (dotted) and 
Pi(</>) (dashed). 

adaptive algorithm produced an estimate of the log-pooled prior in </>-space which 

was nearly t hree times as good the analogous estimate using the nonadaptive al-

gorithm and the same numbers of simulation runs. Even though both estimates 

were based on 1600 simulated points , the adaptive estimates were better able to 

approximate the truth due to more sensible selection of the 1600 points. Similar 

results were observed in 8-space ( average RISEs of .36 along the 01-axis and .15 

along the 0raxis , with 95% upper confidence bounds of .52 and .22). 

4.5 Noninvertible ~ 2 • lR2 Example 

Consider the noninvertible model M:lR2 • ~ 2 in which c/>1 

c/>2 = 01 + 02 , with bivariate normal priors: 

and 

Contour plots of prior distributions are shown in Figures 4. 14 a.n<l 4.1 5; note 

58 



"' ! 0 

-4 

p1 
p2star 

-2 0 

Thala1 

2 4 

Figure 4.15: Noninvertible R2 • R2 Example: contour plots of p 1(0) (dashed) 
and p;(0) (dotted). 

that p"j_ ( ¢,) = 0 for ¢, such that </>1 < </>2 - ¼, since there exists no 0 that produce 

outputs in that ¢, half-plane. 

In each replication, at most four iterations of the adaptive algorithm, with 

400 model simulations per iteration, were used, while the nonadaptive estimates 

were obtained from at most 1600 simulations sampled from p1(0). To attempt to 

account for the noninvertibility, the method described in Section 3.4 was employed, 

using 5 nearest neighbors in ¢,-space to calculate estimates of Pi ( ¢, ) and e* ( ¢, ). 

The adaptive algorithm was stopped manually after 4 iterations because the 

mapping M prevents any e(0) from inducing an e*(<f,) which covers the entire 

support of p2 (¢,). As noted in Section 3.5, however , estimation performance is not 

dependent on convergence of the adaptation mechanism. The 4 iterations were 

often sufficient to achieve a improved importance sampling function e( 0). Initial 

evidence of an improved e( 0) in one representative replication can be found in 

Figures 4.16 and 4.17, which show estimated and true cumulative distribution 

functions for p2 (¢,) along the </> 1- and </Jrmargins. Marginal est imates of the cd fs 

of p( ¢,) for this rep licat ion are presented in Figures 4.18 and 4.19; t he good perfor-

mance of the adaptive algorithm in th is case was clue to the improved importance 
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Figure 4.16: Noninvertible R2 • R2 Example: estimated and true cumulative 
distribution functions for p2 (</>1). Estimates are based on adaptive (dashed) and 
nonadaptive ( dotted) sampling methods . 
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Figure 4.17: Noninvertible R2 • R2 Example: estimated and true cumulative 
distribution functions for p2 ( </>2 ). Estimates are based on adaptive ( dashed) and 
nonadaptive ( dotted) sampling methods. 
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Figure 4.18: Noninvertible ?R2 -+ ?R2 example: estimated and true cumulative 
distribution functions for p( <Pi). Estimates are based on adaptive (dashed) and 
nonadaptive ( dotted) sampling methods. 

sampling function. A comparison of ISEs between the adaptive and nonadaptive 

methods for this example reveals a significant advantage for the adaptive method: 

the average RISE was .79 along the <Pi-axis, .59 along the </>raxis, and .60 in 

bivariate ¢ -space, with 95% upper confidence bounds of 1.14, .83, and .84 respec-

tively. Results in 8-space were also encouraging ( average RISEs of .45 along the 

0i-axis and .74 along the 0raxis with 95% upper confidence bounds of .79 and 

1.02). 

The performances of the adaptive and nonadaptive algorithms by iteration are 

illustrated in Figure 4.20. Each point in the adaptive (dashed) line, for example, 

represents the average ISE at a particular iteration for the estimation of Fp( ¢ ) 

over 20 replications of the adaptive method. Each replication was allowed to 

complete 4 iterations of 200 simulations runs. From this plot, we see that the 

adaptive method outperforms the nonadaptive method in this example in terms 

of both efficiency and precision. Fp from the adaptive method improves noticeably 

between Iterations 2 and 4, while the corresponding estimate from the nonadaptive 

method shows almost no improvement in the 4 iterations. 
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Figure 4.19: Noninvertible R2 • R2 example: estimated and true cumulative 
distribution functions for p( ¢2). Estimates are based on adaptive ( dashed) and 
nonadaptive (dotted) sampling methods. 
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Figure 4.20: Noninvertible R2 • R2 example: mean ISE by iterat ion for the 
estimat ion of Fp( cp) over 20 replications of the adaptive ( dashed) and nonadaptive 
(dotted) methods. 
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4.6 Whale Population Model 

We consider here a density-dependent population dynamics model which is 

applied to data on the Bering-Chukchi-Beaufort Seas stock of bowhead whales , 

Balaena mysticetus. Let the two inputs be 01 = K (the unexploited population 

size or carrying capacity) and 02 = µ (a productivity parameter), and let the two 

outputs be </>1 = Pi993 (population size in 1993) and </>2 = R}"i993 (replacement 

yield in 1993). Replacement yield is the largest number of whales that can be 

hunted in a year without causing the population to decline. Inputs and outputs 

are linked by a recursive discrete-time model under which productivity depends 

on recent depletion (i .e. "density-dependent productivity" ), and 

where Ct are fixed constants representing the number of catches (removals) at 

time t , and Pt is the population at time t. 

Priors for the inputs and outputs may be established from various sources of 

available data (Raftery et al. , 1996; Givens et al. , 1995) . vVe take 01 - 6400 ~ 
Gamma(2.8085, .0002886), where Gamma(s, A) is the gamma distribution with 

mean sf A. The prior for 02 I 01 is derived from the depleted stock yield relation-

ship 02 = (100 · r + .94)(01 - 6081), where r is a productivity parameter for which 

data may in principle be observed and for which a prior is available (Raftery et al. , 

1996)- i.e., r ~ Gamma(8.2, 372.7) . Schweder and Ianelli (1998) show that fail-

ure to account for severe nonlineari ty in r can lead to numerically unreliable or 

intractable models. Figure 4.21 shows the relationship between r and I{ that is 

supported by the priors on outputs, given the model; the near dimension-reduction 

suggests that the model parameterized byµ should lead to more reliable inference. 

We adopt independent priors for </> 1 and </>2 with </> 1 ~ N(7800, 13002 ). Although 

no direct data are available for ¢2 , we use ¢2 ~ N(200 , 752 ) because t his covers 
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Figure 4.21: Whale population model: the relationship between r and J{ that is 
supported by the priors on outputs, given the model. 

a range of catch levels that may be supported by this and similar whale stocks . 

(01 , 02 ) points which produce c/>1 :'.SO are excluded, since the population is known 

not to have been extinct in 1993. 

Several features make this an extremely challenging model from which to 

obtain coherized priors. First , the model still produces a near-dimension reduction 

in some regions of parameter space. Figure 4.22 shows that Pi (cf:>) is concentrated 

on several thin manifolds in ¢-space; a similar problem with the support of p;( 0) is 

seen in Figure 4.23. One result of this problem is that small changes in 0 in certain 

regions of 0-space can bring about extremely large changes in ¢. Second, a large 

degree of incoherence exists between the two priors when they are transformed to 

the same space, as is also evident in Figures 4.22 and 4.23. 

Unless early convergence was attained , 4 iterations of the adaptive algorithm, 

with 400 model simulations per iteration, were used, while the nonadaptive esti-

mates were obtained from 1600 simulations sampled from p1 ( 0). For evaluat ion 

purposes , the true marginal and bivariate cdfs of p2 ( cf:> ) were obtained using a 

sample which was derived from a density specifically tailored, post-hoc , to this 

applicat ion . As with the noninvertible R2 -+ R2 example of Section 4.5, the 
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Figure 4.22: Whale population model: contour plot of p2 ( <p) with points sampled 
from Pi( <p ). 

10000 15000 20000 

Thela1 

25000 30000 

Figure 4.23: Whale population model : contour plot of p1 ( 0) with points sampled 
from p2(0). 
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0 10000 20000 30000 40000 

Phl1 

Figure 4.24: Whale population model: contour plot of p2 ( <p) with points sampled 
from e•( <p ). 

adaptive algorithm was stopped manually after 4 iterations- the 4 iterations were 

sufficient in most cases to achieve an improved importance sampling function e( 8) 

and better estimates of the log pooled prior. Figure 4.24 shows, in </>-space, the 

sample of points we obtained in this instance using the adaptive sampling strat-

egy; a comparison to observations sampled from p1 shown in Figure 4.22 confirms 

that the adaptive sampling envelope provides better coverage of p2 ( <p). As a re-

sult, over 20 replications comparing the adaptive and nonadaptive methods in this 

whale population model , the average bivariate RISE in </>-space was .66 with a 

95% upper confidence bound of .88 . Average marginal RISEs were 1.21 on the 

¢1-axis and .42 on the </>raxis , with respective 95% upper confidence bounds of 

1.63 and .67. A point estimate above 1 on the ¢ 1-axis is not especially unexpected 

or discouraging. The goal of the adaptive approach is to produce better and more 

efficient estimates of the bivariate pooled prior, and marginal comparisons may 

not reflect the more complete picture of the improvements which have occurred. 

Marginal estimates of the cdf of p( <p) for a representative set of simulation runs 

are presented in Figures 4.25 and 4.26. 
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Figure 4.25: Whale population model: estimated and true cumulative distribution 
functions for p( cpi). Estimates are based on adaptive (dashed) and nonadaptive 
( dotted) sampling methods. 
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Figure 4.26: Whale population model: estimated and true cumulative distribution 
functions for p( c/>2 ). Estimates are based on adaptive (dashed) and nonadaptive 
( dotted) sampling methods. 
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This whale population model shows that the log pooling exercise did result 

in modified pooled beliefs about ¢2 , replacement yield , compared to either p~( </>2 ) 

or p2 ( ¢2 ). For example, the prior median replacement yield after log pooling 

is 142, compared to 200 for the initial prior on ¢ and 31 for the initial prior 

on 8 . Results from an analysis like this can enable policy makers to formulate 

whale management advice on the basis of all the evidence: p1 ( 8), p2 ( cp ), and the 

likelihoods. Abandoning the pooling approach would mean ignoring either p1 ( fJ ) 

or p2 ( cp ), which are based on important biological or survey research. Although 

dropping one prior simplifies the problem, such an analysis ignores evidence and 

may lead to inferior estimates and therefore to suboptimal resource management , 

which in this case might endanger the whale stock. 

4.7 Summary 

This chapter compared nonadaptive and adaptive algorithms for obtaining 

the log pooled prior over five examples in which priors were linked by a deter-

ministic simulation model. In each of the examples, the adaptive method outper-

formed the nonadaptive method at a significant level. A numerical summary of 

the examples is provided in Table 4.1, which shows the relative efficiency of the 

two methods as measured by relative integrated squared error. An RISE below 

1 indicates that the adaptive method approximated the true cumulative distribu-

tion function more closely than the nonadaptive method when compared over the 

same number of simulation runs. For the R1 • R1 examples, RISEs are presented 

in both </>-space and 0-space; for the R2 • R2 examples, RISEs are presented for 

marginal distributions in both ¢-space and 8-space and for the bivariate distri-

bution in ¢-space. The exception is the whale example, where RISEs were not 

obtained in fJ -space because of t he difficulties in obtaining t he true p( fJ ). For each 
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Example 

linear R1 

cusp R1 

linear R2 

noninvertible R2 

whale R2 

.39 
( .30 ,.52) 

.51 
(.30,.87) 

.25 
(.16,.41) 

.79 
(.55,1.14) 

1.21 
(.90,1.63) 

RISE Evaluation Space 
joint 

¢2 (¢1,¢2) 01 

.38 .35 
( .23,.63) (.23,.52) 

.59 .60 
( .41,.83) (.43,.84) 

.42 .66 
( .26 ,.67) (.49,.88) 

.39 
(.28,.54) 

.50 
(.35,.70) 

.36 
(.25,.52) 

.45 
( .25,. 79) 

.15 
(.10,.22) 

.74 
(.53,1.02) 

Table 4.1: Logarithmic pooling: average RISEs (adaptive/nonadaptive) and cor-
responding 90% confidence bounds for 5 examples in Chapter 4. 

example, average RISEs and corresponding 90% confidence bounds based on 20 

replications are presented. 

The primary strength of the adaptive technique is in instances when one is 

limited to few iterations and/or small numbers of model simulations. The non-

adaptive alternative will often be effective ( although still less efficient than the 

adaptive algorithm) when the problem allows one to process a sufficiently large 

sample. However, many attractive applications of these inference methods , such 

as climate models, disease transmission models, and biological population models 

can involve dozens of inputs and outputs and highly complex funct ional relation-

ships between modeled quantities. In these cases, concerns about computing time 

and costs may require inference to be based on a fairly small number of model 

simulations , and an efficient sampling envelope like that defined by our adaptive 
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techniques will be a necessity. For these reasons , the results in this chapter were 

particularly encouraging. 
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Chapter 5 

The French-Lindley Supra-Bayesian Method 

The French-Lindley method used in the examples in Section 5.3 follows the 

results contained in French (1981). However , the groundwork for the approach was 

laid in an article by Lindley, Tversky, and Brown (1979, hereafter, LTB). Thus , 

the LTB method will be described first, and then French's extensions (1980,1981 ) 

will be detailed. 

5.1 The Lindley, Tversky, and Brown (LTB) Method 

The general problem of reconciling incoherent probability assessments can be 

illustrated with the following example. Let A be the event that a major earth-

quake hits southern California within the next decade, and let p1 and p2 be two 

different assessments of the probability of A. The probability assessments p1 and 

p2 could represent opinions of two experts or the results of two studies using dif-

ferent approaches, but in either case p1 and p2 will not generally be equal. The 

LTB method strives to reconcile p1 and p2 and produce a single estimate of the 

probability of A in light of p1 and p2 • This reconciled probability is denoted 

p(A I Pi , Pz ). 

LTB offer two approaches to the reconciliation problem, both of which rely 

on a framework in which both a decision maker N and at least one expert E exist. 

The decision maker N is a coherent person- she precisely and unbiasedly knows 

her own subj ect ive probabilities about a particular event A. Incoherent persons 

may evaluate situat ions in a biased manner or be unable to precisely state their 



beliefs in terms of probabilities. As an example, N could be an investor trying to 

decide whether to invest in Corporation X, where A is the event that Corporation 

X's stock price ends the year above 70. Initially, N has a subjective probability 

p0 (A) for the occurrence of A. However, N also obtains an opinion from a financial 

analyst E , who states that his probability for A is A(A). The question LTB address 

is then: How should N change her belief about A in light of E's opinion? 

Under an approach 1TB label as internal, one assumes that an expert E 

has a set of "true" probabilities which are distorted in the elicitation process. 

These "true" probabilities, in addition to accurately reflecting E 's beliefs, follow 

all basic rules of probabilities under summing, conditioning, and other operations. 

The goal is to estimate the expert 's underlying "true" probabilities using observed 

probabilities elicited from the expert. As a result , the internal method is often 

used when an expert E offers several probability assessments about related events 

which are found to be incoherent in light of laws of probabilities. 

A second approach , which 1TB label external, is not concerned with "true" 

probabilities , but attempts to derive a set of probabilities which follow all basic 

probabilistic laws even when the original set of assessments do not. This method 

is often used for cases in which a decision maker N consults a group of experts, 

each of whom offers his or her probability for event A. These expert opinions will 

then form the basis for N's decision. Because we are primarily interested in this 

scenario, we focus our attention on the external approach. 

Assume that E is an incoherent expert and N is a coherent decision maker. 

Both individuals consider a single event A. These ideas can later be extended 

to a sequence of events A = (A 1 , A2 , .•. , Am)- Let 1r(A) be E's true probabil-

ity distribution for A, and let A(A) be E's stated probability assessment for A, 

where 1r(A) and >.( A) are often not equal because of E's difficulties in art iculating 

probabilities. The external LTB method involves three key probabilities: 
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1. Po(A) = N's opinion about A 

2. Po( 7T' I A) = N 's opinion of a coherent E's knowledge of A 

3. p0 (>. I 7r) = N 's opinion of E as a probability assessor 

An assumption is made that po(>. I 7!', A)= p0 (>. I 7r)-i.e. , >. and A are indepen-

dent , given the "true" probability 7T'. 

1TB advocate using log-odds rather than probabilities for >. and 7!' for a cou-

ple of reasons. First , the assumption of constant variance for errors (such as in 

N's assessments of E) becomes more reasonable. Second, it reflects the greater 

accuracy with which people can evaluate high and low as opposed to mid-range 

probabilities. Third, the infinite ranges of log-odds allow one to model expert 

assessments and prior probabilities using normal distributions , which makes cal-

culations easier. In terms of log-odds then , 1TB make the following assumptions 

about their three key probabilities: 

1. Po(A) = a 

2. Po(7r I A)~ N(µ1,r2
), Po(1T' I A)~ N(µ2,r2) 

3. Po(>-17!') ~ N(7r,a2) 

With assumption 3, N views E's assessment of log-odds as unbiased with constant 

variance. With assumption 2, we quantify N's expectations about E's log-odds 

assessments in the cases in which A does or does not occur. In this way, p0 ( 7T' I A) 

is related to Type I and Type II errors from statistics or false positives and false 

negatives in medical diagnostics. For a good probability assessor, µ2 < 0 < p 1 , so 

that his or her average probability for events A which subsequently occur is above 

50% and below 50% for events A which subsequent ly do not occur. 

The LTB external method focuses on estimation of p0 (A I >.) - N's opinion 

about A after accounting for E's stated assessment of A . For the inw'stment 
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example, the investor N will use the financial analyst E's opinion about A (the 

event that Corporation X's stock price ends the year above 70) to update her 

own opinion p0 (A) . As demanded by assumption 2, N must determine, before 

approaching E, what she thinks E will say in the case when A subsequently 

occurs (and similarly in the case when A subsequently does not occur). 

We will now consider the external approach in greater detail. An application 

of Bayes ' Theorem shows that Po(A I .\) ex: Po(>.. I A)po(A). Po (.\ I A) can be 

assessed directly as what N predicts E will say he believes for each event A, or it 

can be derived using Po( A I A) = E1r Po( A I 71' )po( 71' I A). 

With the assumptions above, Po(>.. I A) ~ N(µ 1 , a-2 + r 2 ) and p0 (.\ I A) ~ 
N(µ2 , a-2 + r 2 ). N's log-odds for A after accounting for E's stated assessment of 

the log-odds of A are given by 

5.2 The French Method 

5 .2.1 The Basic Approach: Single Decision Maker 

French (1980) points out a flaw in the LTB approach. He believes that N's 

assessment of E shou ld depend on N's own views about A- i.e. p0 ( 11' I A) depends 
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on p0(A). French justifies this extra conditioning in the following manner (1980, 

p. 45) , with our notation inserted: 

When I come to state my subjective probabilities p0 (>. I A) and p0 (>. I 
A) , I have already made explicit my beliefs about A. In other words , 

when I wonder what E will think about A, I already know what I 

think about A. Furthermore, I am aware why I hold my beliefs about 

A. ow this familiarity with judgments concerning A may well be 

relevant information to my judgments of>.. 

For example, if N and E have tended to agree in the past in similar situations, then 

Po(1r I A) might reasonably peak around 7r = p0 (A). French's method (1980,1981), 

therefore, adds this extra bit of conditioning to the 1TB approach. 

Assume a decision maker N 'is interested in the occurrence of a particular 

event A. At this point , we allow N to solicit opinions from multiple experts. 

Returning to the investment example, N has preconceived notions about the 

probability of A occurring, but she realizes her limited knowledge regarding Cor-

poration X and therefore solicits opinions from one or several financial analysts 

(E1 , •.• , Ek)- Each analyst offers an opinion about the probability of event A , 

so the question becomes: What should N believe about the probability that the 

stock price of Corporation X reaches $70 per share now? In other words , how 

should N update her beliefs on learning the opinions of the experts? 

Let p0 (A) be N's opinions for the probability of A, and let Pi(A ) be Ex-

pert i 's opinion for the probability of A ,i = l, ... ,'k. Additionally, let l0 (A ) = 
log c~~~11l) be the log-odds for N , and let >. i(A) = log c~i~i11)) be the log-odds 

for Expert i, i = 1, . .. , k. The vector of log-odds [l0 (A ), >. 1(A), .. . , >.k(A )]' will be 

denoted by L(A) , and the vector [,,\ 1 (A), ... , >.k(A)]' will be denoted by 1(A). If 

the context is clear, the A will be dropped from l0 (A), >. 1 (A), ... , >.k(A ). The /..; 
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expert opinions, A1 (A) , .. . , Ak(A) , are considered not as probability statements, 

but as data which should be used to update N's prior opinion l0 (A) , forming a 

Bayesian posterior distribution for N's opinion of A. Therefore, we want to find 

an expression for l0 (A 11). 

Similar to the LTB method, French makes the assumption that L I A ~ 
N(m, V) and LI A~ N(m, V) . For instance, LI A~ Nk+I ( [ :~ ] , [ ~: ~: ] ) , 

where m0 is the expected log-odds which N would state in favor of A when A 

is subsequently found to be true, and m 1 = [m1 , ... , mk]' is the vector of log-

odds which N expects E 1 , •.. , Ek to state in favor of A when A is subsequently 

found to be true. Also, Voo is the variance N expects in her own statements, 

Vo1 = ½'o = [0-01 , 0'02 , ... , O'ok] is a vector of expected covariance terms between 

the statements of N and the individual experts E 1 , ... , Ek , and 

O'kI O'k2 O'kk 
is a variance-covariance matrix for experts E 1 , ... , Ek. m is analogous to m, but 

when A is subsequently found to be false. Note that a constant variance structure 

in the two cases is assumed. 

Given these assumptions , we can use Bayes' Theorem and properties of the 

multivariate normal distribution to derive the following results (French, 1981). 

Result 5.1 11 A, lo~ Nk(!:!:_(lo), W) where !:!:_(lo) = m 1 + V10V0c;1(lo - mo) and 

W = Vii - Vio Vac;1 Vo1. 

Proof. First , note that l - m I A~ Nk+t (.Q., V). Then , let 

B = [ f1 x~ 1 Q.'txk ] 
-(Vio Voo )kx 1 h xk 

so that 

B(l - m) = B [ l-~ _- mmo' l [ lo - mo l "' = 1- m, - Vio Voo' (lo - mo) 

76 



is (when conditioned on A) jointly normal with the (k + 1) x 1 mean vector .Q. and 

covariance matrix given by 

Because 1- m1 '- Vio¼i;1(l0 - mo) and lo - mo are independent (given A), the 

conditional distribution of 1 - m1 - Via V01;1 ( 10 - m0) given 10 is the same as the 

unconditional distribution. Therefore, 

and 

Result 5.2 1 I A, 10 ~ N(~(lo), W) where ~(lo) = m1 + Via V01;1 ( lo - mo) and 

W = Vu - VioVoc;1Vo1• 

Proof. Analogous to proof of Result 5.1. 

Result 5.3 

Proof. 

lo(A 11) 1 Po(A 11) 
og -

Po(A I 1) 

1 Po(1 I A , lo)Po(A) og 
Po(1 I A, lo)Po(A) 

I Po(1 I A , lo) l Po(A) og --~- + og ------=-
Po (1 I A, lo) Po (A) 

lo(1 I A , lo) + lo (A) 
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[ 

(21r)k1; 1w11/2 exp { -½(A - f:!:.( lo) yw- 1 (A - f:!:.( lo) )} l 
- log --'---'----'-~--=-------------e- + l0 (A ) 

(21r)kf;IWl1J2 exp {-½(A - E(lo))'W-1(A - E(lo))} 
1 1 - 2(A- f:!:.(lo))'W- 1(A- f:!:.(lo)) + 2(A- E(lo))'W-1(A - E(lo)) 

+lo(A) 
1 

!:!:.Uo)'w- 1 A - E(lo)'w- 1 A - 2!:!:.(lo)'w-1 !:!:.Uo) 
1 

+2E(lo)'W-1E(lo) + lo(A) 

[!:!:.(lo) - E(lo)] w-1 [A - t(f:!:.(lo) + E(lo))] + lo(A ) • 

Thus, Result 5.3 provides a prescription which allows the decision maker N 

to update her log-odds for the event A in light of the opinions of k experts (who 

expressed their assessments of the probability of A in the vector of log-odds A). 

With this approach, l0 (A I A) is essentially the posterior log-odds for the decision 

maker, where the vector of expert log-odds A is treated as data for the decision 

maker, allowing usual Bayesian methods to be applied. By assuming a specific 

parametric form for A I A and A I A, the decision maker is able to account for 

possible miscalibration, dishonesty, and nonindependence among the experts. 

French (1980, p.47) claims that the prescription for l0 (A I A) in Result 5.3 has 

a very natural interpretation. f:!:.( l0 ) - E(lo) is positive if E tends to assign positive 

log-odds to events A which subsequently occur and negative log-odds otherwise. 

A - ½(f:!:.(l0 ) + E(lo)) is positive if E's statement provides more evidence in favor of 

A occurring than the decision maker expects and negative otherwise. w- 1 scales 

the decision maker's belief according to the expected variation in E's statement. 

5.2.2 Combining Beliefs from a Group of Individuals 

In his 1981 article, French was especially interested in how to combine a 

group of individuals' beliefs into a consensus probability distribution. He offers 
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two approaches based on his Bayesian updating scheme for a single decision maker 

presented above. 

First, French suggests that everyone in the group update his or her initial 

opinion as if he or she is the group decision maker, soliciting opinions from ev-

eryone else. This results in a series of log-odds lo(A I A), l 1(A I l0 , .X 2 , ••• , .Xk) , 

... , lk(A I lo, .X 1 , ... , Ak-i). Ideally, at this point the group will have achieved a 

unanimous opinion, so that 

Unfortunately, this is rarely the case, but the group members could proceed to 

inform each other of their new, revised opinions and repeat the Bayesian updating 

process. In fact, this process of sharing and revising could continue indefinitely. 

However, convergence to a unanimous opinion does not necessarily take place. 

French (1981) and others (DeGroot, 1974; Chatterjee and Senata, 1977) have 

considered the question of convergence with indefinite revision, especially in terms 

of stochastic models. French (1981, p.336) concluded that he " ... can find no 

reasonable sets of condition to ensure that we should ( reach a consensus)." 

As a second approach, French (1981) introduces the concept of a group de-

cision maker (GDM), which French views as the group considered in the sense 

of a single rational being. For the Bayesian updating scheme, the GDM be-

gins with no knowledge of the probability of A, so that its prior is vague (e.g. , 

l0(A) = 0). Then, the GDM evaluates the forecasting ability of the group mem-

bers via A I A~ Nk(m , V) and A I A~ Nk(m, V), where m = [m 1, ... , mk]' and 

m = [m1,• .. ,mk]'. Note that (A I A,lo) =(AI A) and (A I A,lo) =(AI A) 

because of the vague prior log-odds of the GDM. Finally, the posterior log-odds 

for the GDM, through application of Result 5.3, is 

lo(A I A)= (m - m)v- 1 [A- ~(m + rn.)] + lo(A). 
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This posterior log-odds for the GDM is then the group consensus log-odds which 

was the original goal. 

It is this GDM approach to the group consensus problem which is used to 

evaluate the French-Lindley method across several examples in Section 5.3. In 

deterministic simulation modeling, often a person ( or group) wishes to make in-

ference about events involving particular model parameters. This person, armed 

with knowledge of the model but usually no expert knowledge of the parameters 

in question, solicits expert opinion about all model parameters. In the determin-

istic simulation model framework , French's first group pooling approach is not 

feasible, since the experts whose opinions are surveyed are scattered throughout 

different fields and geographic locations; they may not even be aware of the model 

which maps their opinion into the parameter space of interest. Thus , we turn to 

French's GDM approach. The group decision maker , like the person who col-

lects expert opinions, contributes no knowledge to the events and parameters of 

interest. Through French's Bayesian updating scheme, the GDM can update its 

noninformative prior by treating expert opinions as data. 

Two significant problems still must be overcome before applying French's 

GDM approach to the deterministic simulation models of Section 5.3. First , the 

group decision maker must accurately evaluate the forecasting ability of all group 

members by estimating the parameters of the normal distributions outlined in 

Results 5.1 and 5.2. Not only must this ubiquitous , omniscient decision maker 

accurately quantify each expert 's bias, inaccurate precision evaluations, and cor-

relations with other experts, but the decision maker must make these evaluations 

using the log-odds scale. In the case of the GDM , the group members are required 

to form a consensus opinion about their own abilities as forecasters. For instance, 

French recommends using the group 's history, if one exists, in evaluat ing simil ar 

events. In general, obtaining beliefs for the GDM whi ch are agreeable to all group 
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members is a monumental task. LTB raise this concern as well, realizing that the 

assessment of p0 ( rr I A) could prove to be a large hurdle from a practical stand-

point. We found it extremely difficult to set reasonable, intuitive parameters in 

applications of the French-Lindley approach in Section 5.3. 

Second, the French-Lindley approach , which was originally developed for bi-

nary events , must be adapted to handle the continuous parameters which are 

commonly found in deterministic simulation models . If we begin with a grid of 

points in the parameter space of interest, we can consider the series of binary 

events A = { event that ¢ < ¢i} which leads to the cumulative distribution func-

tion. Through multiple applications of the French-Lindley method , a pooled dis-

tribution can be approximated. Further details on this adaptation to continuous 

variables are contained in Sections 5.3.1 and 5.3.2. 

5.3 Examples 

In this section, the group decision maker version of the French-Lindley supra-

Bayesian method is applied to the examples from Chapter 4. One ·significant hur-

dle to the practical implementation of the French-Lindley method is the definition 

of reasonable hyperparameter values. The interpretations of the hyperparameters, 

as discussed in Section 5.2, are not often quantities easily appraised or intuitively 

known by the supra-Bayesian, which in this case is the group itself. As a resul t, 

the effect of the choice of hyperparameter values on the resulting consensus prior 

is illustrated in the succeeding sections. Although focus is constrained to ¢-space, 

similar hyperparameter effects would be seen in 0-space. 

5.3.1 lR1 --+ lR1 Examples 

In the examples of Chapter 4 the inpu ts and ou t puts are all cont inuous pa-

rameters; the French-Lindley method , however, was developed for binary events. 

By considering a fine ly nested set of half-in tervals in ¢>-s pace, we can reconst ruct 
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cumulative distribution functions using the methodology of French and Lindley 

to find approximate consensus prior distributions for ¢. Specifically, define an 

equally spaced (width v) grid of ¢'s, ¢1,¢2 = ¢1 + lv, ... ,¢n = ¢1 + (n- l)v, 

such that Pi(¢) and P2(¢) are negligible for ¢ < ¢1 and ¢ > ¢n• Consider a 

series of n binary events A1, ... , An such that A = {event that¢< ef>i} - Thus , 

P(Ai) = F(ef>i) Vi= 1, ... , n where F(¢) is the appropriate cumulative distribu-

tion function. Next, compute Fpr(c/>i) and Fp2 (¢i) for i = l , .. . ,n. ote that Fpr 

and Fp2 are known for the introductory example, and Fp2 is known for the cusp 

example. Although no closed-form expression for Fpr exists in the cusp example, 

p~ is known and can be used to obtain Fpr numerically. From this , the log-odds 

for both experts can be found for each of our n events : 

for i = 1, ... , n. Finally, as described in the group decision maker (GDM) approach 

of Section 5.2, the posterior consensus log-odds can be found using: 

lo(A I A) = (m - m)v- 1 [1- t(m + m)] + lo(A) (5.1) 

for i = 1, ... , n, where the group (size 2 here) must decide on values for 7 hyper-

parameters. m 1 is the log-odds which Expert 1 would ascribe to event A when 

A subsequently occurs, and m 1 is the log-odds which Expert 1 would ascribe to 

A when A subsequently does not occur. m2 and m2 are similarly defined for Ex-

pert 2. s 1 is the standard deviation for Expert l's log-odds predictions about A , 

s2 is the standard deviation for Expert 2's log-odds predictions about A, and p 

is the correlation between the two experts. Finally, let l0(A) = 1, indicating a 

noninformative prior for the GDM. 

At this point , a distribution for French-Lindley's consensus log-odds has been 

derived , but often a probability density will be more useful when forming in ference 
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about ¢. To this end, a consensus cumulative probability distribution function can 

be formed via 

F (</J · I .X) = exp(lo(A I A)) 
Po 

1 
- 1 + exp(lo(A I A)) 

The consensus pdf p0 ( </J I A) ( which will be referred to as p( <P) for short) can then 

be approximated using differences Fp0 ( <Pi+ 1 I A) - Fp0 ( <Pi I A) and scaling p( <P) so 

that it integrates to 1. Where Fp0 (<Pi+ l I A) - Fp0 (<Pi I A)< 0, a failure of relative 

propensity consistency (see Section 2.2.1 and discussed further in Section 5.4) has 

been encountered. In these cases, p( <Pi+i) is set to 0. Although this approach is 

somewhat ad-hoc, we felt that setting p( <Pi+I) = 0 provided a simple, sensible fix 

to a serious flaw in the French-Lindley methodology. Obviously, as a probability 

distribution , p( <Pi+I) can not have negative values. Another potential fix would be 

to add a constant value equal to Cmin = min ( Fp0 ( <Pi+1 I A) - Fp0 ( <Pi I A)) to each 

p( <Pi+i) and scale p( </J) so it integrates to 1. Unfortunately, this fix carries the 

undesirable side effect of changing probability relationships among points. For 
- -instance, if p(<Pj1 ) = 0.3 and p(<Ph) = 0.1 but Cmin = 0.1 is used to adjust negative 

probabilities, then <Pii is only 2 times more likely than <Pi2 under the adjusted 

probability distribution instead of 3 times more likely under the unadjusted dis-

tribution. Setting negative p( <Pi+i) to O preserves probability relationships while 

applying a band-aid to the RPC failure of the French-Lindley method. As a re-

sult, violations of RPC often get hidden even though they are a real and common 

problem as we invest igate in Section 5.4. 

Some adjustments to this procedure are required in higher dimensions; these 

are discussed in Section 5.3.2. 

Introductory Example 

The sensitivity of the pooling to various values of the hyperparameters for 

the int roductory R 1 -+ R 1 exam ple of Section 4.2 is illustrated in Figures 5. 1-
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5.7. In developing these figures, we chose what we felt to be a reasonable set of 

hyperparameters from which variations could be explored. Our original baseline 

set of values was m 1 = m2 = 2, m 1 = m 2 = -2, s 1 = s2 = 1, and p = 0. With 

these settings, the mean probability that an expert assigns to an event A which 

subsequently occurs is .88 with approximate 95% confidence interval (.50, .98) , 

assuming normality in the log-odds. The mean probability that an expert assigns 

to an event A which subsequently does not occur is .12, with approximate 95% 

confidence interval ( .02 , .50). In addition, the two experts are assumed to be 

independent with respect to their information sources which contribute to their 

prior beliefs. Unfortunately, these values, especially s1 = s2 = 1 and p = 0, 

produce extremely narrow, unrealistic pooled distributions. Thus, for illustrative 

purposes, variations are explored from the set of hyperparameters m 1 = m2 = 2, 

m 1 = m2 = -2, s 1 = s2 = 2, and p = 0.7. 

Figure 5.1 shows the effect of changes in variability, assuming that s 1 = s2 = s 

and letting this common standard deviation s vary from 0.5 to 4.0. As expected, 

the variability in the consensus prior increases as s increases. It is disturbing, 

however, that the pooling can be considerably more precise than either of the 

original priors, as is found in plots ( a) and (b) with s s; 1.0. Plots for s =0.5, 1.0, 

and 2.0 show consensus priors with modes between the modes of p2 (¢ ) and Pi(¢) 

as one might expect , but plot ( d) for s = 4 shows an unusual bimodal consensus 

prior that does not correspond to an intuitive notion of what a pooling should 

look like. 

Figure 5.2 allows the correlation p to vary from O to 0.9. As p increases, the 

mode of the consensus prior remains fairly constant while the variability increases 

likely due to the decrease in information about ¢ when the two experts are highly 

correlated. The consensus distribution under the independent case (p = 0) , shown 

in plot (a), again feat ures a dist ribution whi ch is more precise than eit her of the 
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Figure 5.1: Introductory example: p(c/>) using the French-Lindley method. Fixed 
hyperparameters: m 1 = m 2 2, m 1 = m 2 = -2, and p = 0.7. Variable hy-
perparameters: (a) s1 = s2 = 0.5, (b) s1 = s2 = 1.0, (c) s1 = s2 = 2.0, (d) 
S1 = S2 = 4. 0. 

original expert priors- a curious result given the incoherence between p2 ( c/>) and 

Pi( c/> ). 

Figure 5.3 requires that m 1 = m 2 = -m1 = -m2 = m, while allowing the 

common value m to vary. Thus , higher values of m indicate that both experts 

offer higher probabilities for A when A subsequently occurs and lower probabili-

ties when A subsequently does not occur. As m increases , the variability of the 

consensus prior decreases , and its mode shifts slightly toward the mode of Pi'· In 

addition, increasing m , especially m 2: 4, produces a pooling which is more pre-

cise than either expert individually. So, unrealistic poolings resul t from the GDM 

attributing too much expertise (as measured by m) to the experts, even though 

the levels of expertise may appear reasonable on the surface to the GDM. 

Figure 5.4 is similar to Figure 5.3, except that m 2 and -m2 are fixed at 2 and 

only m 1 and -m 1 are allowed to vary, under the constraint m 1 = -m1 = m. Thus, 

the relat ive experti se of Expert 1 ( the narrower prior) compared to Expert 2 is 

increasing as m increases. For m = 1, the consensus prior is basically equivalent 
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Figure 5.2: Introductory example: p( <P) using the French-Lindley method. Fixed 
hyperparameters: m 1 = m2 = 2, m 1 = m2 = -2, and s1 = s2 = 2.0. Variable 
hyperparameters: (a) p = 0, (b) p = 0.3, (c) p = 0.6, (d) p = 0.9. 
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Figure 5.3: Introductory example: p( <P) using the French-Lindley method. Fixed 
hyperparameters: s 1 = s2 = 2.0, and p = 0.7. Variable hyperparameters: (a) 
m1 = m2 = -m1 = -m2 = 1, (b) m 1 = m2 = -m1 = -m2 = 2, (c) m 1 = ni2 = 
-m1 = -m2 = 4, (d) m 1 = m 2 = -m1 = -m2 = 6. 
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Figure 5.4: Introductory example: p( <P) using the French-Lindley method. Fixed 
hyperparameters: m 2 = -m2 = 2, s1 = s2 = 2.0, and p = 0.5. Variable hyper-
parameters: (a) m 1 = -m1 = 1, (b) m 1 = -m1 = 2, (c) m 1 = -m1 = 3, (d) 
m 1 = -m1 = 4. 

to p2 ( <P), while for higher values of m the consensus pnor becomes a narrow 

distribution centered at the mode of p~ ( <P) . The large fluctuations in the pooled 

distributions resulting from slight changes in the relative expertise level of the 

two experts illustrate an unsettling lack of robustness to hyperparameter settings 

for the French-Lindley approach. Figure 5.5 is analogous to Figure 5.4, except 

that the mean log-odds for Expert 1 remains fixed while that of Expert 2 varies. 

Form= 1, the consensus prior is essentially equivalent top;(¢), while for higher 

values of m the consensus prior becomes a narrow distribution centered at the 

mode of P2(</>). 

Figure 5.6 allows s 1 to vary while all other hyperparameters remain fixed. 

Therefore, the mean log-odds for Expert l 's statement about event A when A 

subsequently occurs is fixed at 2, but the variability in this log-odds is allowed to 

vary between 0.5 and 4.0. For small S i, the consensus prior is an extremely narrow 

distribution centered at the mode of p7( <P), while for large s 1 the consensus prior 

approaches p2(</>). Again , pooling produced by the French-Lindley method exhibit 
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Figure 5.5: Introductory example: p( cp) using the French-Lindley method. Fixed 
hyperparameters: m 1 = -m1 = 2, s 1 = s 2 = 2.0, and p = 0.5. Variable hyper-
parameters: (a) m 2 = -m2 = 1, (6) m 2 = -m2 = 2, (c) m 2 = -m2 = 3, (d) 
m2 = -m2 = 4. 

little robustness to variations in precision settings, and unreasonable consensus 

distributions can result from the unfortunate selection of s.1 and s 2 . 

Figure 5. 7 is analogous to Figure 5.6, except that s 2 is the only hyperpa-

rameter allowed to vary. As with Figure 5.6, the consensus prior for large s 2 

approaches pi(¢) , but unusual things occur for small s 2 . At s 2 = 1, the consensus 

prior is a narrow distribution centered near the mode of p2 ( cp ), but at s 2 = 0.5, the 

consensus mode shifts to the right of the mode of p2 ( cp) . Again this suggests that 

any overstatement of precision in the hyperparameters can lead to nonsensical 

French-Lindley poolings. 

Cusp Example 

The sensitivity of the pooling to various values of the hyperparameters for 

the cusp example of Section 4.3 are illustrated in Figures 5.8- 5.10. In Figure 5.8, 

s 1 and s2 are both fixed at 2. Then, plots (a) and (b) show the effect of p. As 

p increases so that the two experts are more strongly dependent , the consensus 

prior flattens out, and its mode shifts le ft. Greater vari abili ty in t he pooled 
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Figure 5.6: Introductory example: p( </>) using the French-Lindley method. Fixed 
hyperparameters: m 1 = m 2 = 2, m 1 = m 2 = -2, s2 = 2, and p = 0.5. Variable 
hyperparameters: (a) s 1 = 0.5, (b) s1 = 1.0, (c) s1 = 2.0 , (d) s 1 = 4.0. 
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Figure 5.7: Introductory example: p(</>) using the French-Lindley method. Fixed 
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Figure 5.8: Cusp example: p( </>) using the French-Lindley method. Fixed hy-
perparameters: s1 = s2 = 2. Variable hyperparameters: (a) m 1 = -m1 = 2, 
m 2 = -m2 = 2, and p = O.l; (6) m 1 = -m1 = 2, m2 = -m2 = 2, and p = 0.9; (c) 
m 1 = -m1 = 1, m2 = -m2 = 1, and p = 0.5; (d) m1 = -m1 = 3, m2 = -m2 = 3, 
and p = 0.5. 

distribution with greater correlation is expected since less information about </> is 

available from the two priors. Plots (c) and (d) fix p = 0.5 but allow m to vary, 

where m 1 = m 2 = -m1 = -m2 = m . As m increases , the consensus prior becomes 

more concentrated about </> == 3.5 , but for m = 1 the consensus prior flattens out , 

with a mode just below ¢ = 1 and an unusual spike near ¢ = 12.5. Reflecting 

a lower estimate of the experts ' abilities, m = 1 leads to more variability in the 

pooled distribution as expected. However , the truncation inherent to this example 

is handled poorly, since p( </>) should not be large for ¢ > 12. 

In Figure 5.9, m = 2 and p = 0.5 are fixed , and different combinations of s 1 

and s2 are analyzed. When s 1 = s2 , as in plots (a) and (b), an effect is seen similar 

to that in Figure 5.8 (c,d) where m was allowed to vary. Low s 1 and s2 produce 

a narrow distribution with mode just below </> = 4, similar to the consensus prior 

produced with high m. On the other hand, the very disturbing consensus prior 

with secondary mode near ¢ = 12.5 is observed when s 1 and s2 are high (as when 

m is low). In plot (c) , s 1 is low an d s2 1s high , and the consensus dist ribu tion 
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Figure 5.9: Cusp example: p( ¢) using the French-Lindley method. Fixed hyperpa-
rameters: m 1 = -m1 = m 2 = -m2 = 2, and p = 0.5. Variable hyperparameters: 
(a) s1 = l , s2 = 1; (b) s1 = 3, s2 = 3; (c) s1 = l ,s2 = 3; (d) s1 = 3,s2 = 1. 

shifts right, away from p2 (¢). In plot (d) , s2 is low and s 1 is high , and the reverse 

is seen- a shift left , towards p2 (¢ ). It seems odd , however, that the consensus 

distribution would have a mode as high as ¢ = 6.5 , since Expert 1 assigns greater 

probability to smaller ¢, and Expert 2 assigns almost no probability near ¢ = 6.5 . 

It is also troubling that the poolings shown here bear very little relationship to 

the original priors , especially in terms of shape. 

In Figure 5.10, s1 and s2 are fixed , and different combinati~ns of m 1 , m 2 , 

-m1 , and -m2 are analyzed for p = 0.2 and p = 0.7, subject to the constraint 

that m 1 = -m 1 and m 2 = -m2 . Plots (a) and (b) feature superior performance 

by Expert 1 (i.e. m 1 > m 2 and m 1 < m 2 ). With p = 0. 7 in plot (a), the consensus 

prior has a mode near¢= 12, while the mode shifts left for p = 0.2 in plot (6) . 

Again these results are not at all appealing; the mode near ¢ = 12 is especially 

illogical. Plots (c) and (d) feature superior performance by Expert 2. As one might 

expect, these consensus distributions resemble p2 ( ¢) much more than p~ ( ¢ ). The 

mode shifts right as p decreases, which seems logical as Expert 1 receives more 
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Figure 5.10: Cusp example: p(</>) using the French-Lindley method. Fixed hy-
perparameters: s1 = s2 = 2. Variable hyperparameters: (a) m 1 = -m1 = 2, 
m2 = -m2 = 1, and p = 0.7; (b) m1 = -m1 = 2, m2 = -m2 = 1, and p = 0.2; (c) 
m1 = -m1 = 1, m2 = -m2 = 2, and p = 0.7; (cl) m 1 = -m1 = 1, m 2 = -m2 = 2, 
and p = 0.2. 

weight than in the case where he is highly correlated with a supposedly superior 

Expert 2. 

5.3.2 ~ 2 • ~ 2 Examples 

Application of the French-Lindley method to examples with 2 inputs and 

outputs follows the procedure outlined in Section 5.3 .1 with a few modifica-

tions . First , an equally spaced 2-dimensional grid of ¢-points ( ¢ 1,i, ¢2,j) is de-

fined for i = 1, .. . , m and j = 1, .. . , n , where ¢1 ,1 < ¢ 1,2 < . . . < ¢ 1,m and 

¢ 2,1 < ¢ 2,2 < .. . < ¢ 2,n. Consider a set of mn binary events, labeled Aj, which 

correspond to 2-dimensional cumulative probabilities. Then P( Aj) = P(¢1 < 

<P1,i,<P2 < ¢2,j) = F (¢1,i,¢2,j ) where F(¢ 1,¢2) is the appropriate cdf. Note that 

Fpr and Fp2 are known for the linear example, and Fp2 is known for the non-

invertible example. Although no closed-form expression for Fpr exists in the 

noninvert ible example, p7 is known and can be used to obtain Fpr numeri cally. 

Equation 5.1 can again be used to find the GDM 's posterior log-odds (i .e. the 
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consensus log-odds for the experts) if the GDM has chosen values for the 7 hy-

perparameters (m1,m1,m2,m2 ,s1,s2,p). In this case, the hyperparameters relate 

to the experts' abilities to state probabilities about areas Aij in ¢-space where 

Aj = { event that ¢1 < ¢1,i and ¢2 < ¢2j}, 

As in the ~ 1 • ~ 1 examples, consensus prior densities p( <;b) can be derived 

from the consensus prior log-odds l0 (Aij I !1) to allow more natural inference 

regarding <;b to be formed. Recall that estimation of the French-Lindley pooled 

probability distribution in ~ 1 • ~ 1 problems followed these steps: 

1. Obtain F1(A2) , F1(A1), F2(A2) , and F2(A1) , where ¢2 = ¢1 +t: and Fi(Aj) = 
Pi(<P < <Pj) for i = 1,2 and j = 1,2. 

3. Derive the French-Lindley GDM posterior log-odds l0 (Aj I !1) = c1 >. 1 (Aj) + 
c2 >. 2 (Aj) + c3 , where the constants Ci , i = 1, 2, 3, are functions of the 7 

hyperparameters. 

4. Convert the GD M's posterior log-odds to cumulative probabilities according 

to 

Fo(A . I >.) = exp(lo(A1 I !1)) 
1 

- 1 + exp(lo(Aj 11)) 

5. Estimate po( ¢2 I !1) by Fo(A2 11) - Fo(A1 I !1). 

So that the estimate of p0 (¢2 I !1) at our final step is legitimate (i.e. non-negative) , 

it is vital that the following conditions hold at each step: 

cumulative probability distributions and ¢2 > ¢ 1 . 



F1(A2) > 1 and 1 - F1(A1) > l • 
F1(A1) - 1 - F1(A2) -

F1(A2) . 1 - Fi(A1) > 1 • 
1 - Fi(A2) F1(A1) -

log ( F1(A2) ) - log ( F1(A1) ) > O • 
l-F1(A2) l-F1(A1) -

-X1 (A2) - -X1 (A1) 2: 0. 

3. lo(A2 I ~) 2: lo(A1 I ~). This holds if relative propensity consistency holds. 

4. Fo(A2 I~) 2: Fo(A1 I~). This holds because: 

lo(A2 I~) 2: lo(A1 I~) • 

( 
Fo(A2 I~) ) ( Fo(A1 I~) ) > 

log 1 - Fo(A2 I ~) - log 1 - Fo(A1 I~) - O • 
Fo(A2 I ~) . 1 - Fo(A1 I~) > 1 • 

1 - Fo(A2 I~) Fo(A1 I~) -
Fo(A2 I~) - Fo(A2 I ~)Fo(A1 I~) 2: Fo(A1 I ~) - Fo(A2 I ~ )Fo(A1 I ~) • 

Fo(A2 I ~) 2: Fo(A1 I~). 

5. Po( <P2 I~) = Fo(A2 I ~) - Fo(A1 I~) 2: 0 following Item 4. 

Thus, in ~ 1 • ~ 1 examples it follows that , using this estimation procedure, 

po( </>2 I ~) 2: 0 if and only if RPC holds. The remaining conditions above are 

always true. 

To extend this estimation process to 2-dimensional <p, one would naturally 

consider using the following relationship: 

Unfortunately, using this relationship can lead to p( </> i ,i,</>2 ,j ) < 0 even in cases 

when RPC does hold. Thi s is because 

lo(A , I~) - lo( r''3 I~) - lo(A2 I~)+ lo(A 1 I~) 2: 0 
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does not imply 

In other words , there is no analogous condition to condition 4 above if we attempt 

to use this conventional 4-event method for estimating 2-dimensional probability 

distributions. 

To obtain valid French-Lindley estimates for the consensus prior p( <p ) with 

2-dimensional </> , we must consider just 2 carefully selected events . This is be-

cause relative propensity consistency will hold for any two events A2 and A1 

whether these events are constructed in one dimension or many, but logical ex-

tensions involving more than two events do not necessarily hold. Thus , we should 

consider the two events Ai = { event that </>1 < </>1,i and </>2 < </>2j} and Bij = 

{ event that ( </>1 < </>1,i-1 and </>2 < </>2j) or ( </>1 < </>1,i and </>2 < </>2,j-i)}. Then we can 

use the process described above, and estimate the French-Lindley pooled prior 

Po( </>1 ,i, </>2,j I~) with Fo(Aij I~) - Fo(Bij I~)- If we find that Po( </>1,i, </>2,j I ~) < 0, 

then RPC has been violated, and the pooled prior is set to 0 at those points. 

Linear R2 • R2 Example 

The sensitivity of the pooling to various values of the hyperparameters for the 

linear R2 • R2 example of Section 4.4 is illustrated in Figures 5.11- 5.13, using 

the same baseline set of hyperparameters described in the introductory example 

s~ction. The French-Lindley joint consensus distribution is illustrated by the im-

age plot , with darker shading indicating regions of higher p( <p). Hyperparameter 

settings in Figures 5.11- 5.13 are identical to those in Figures 5.8- 5.10 for the 

cusp example. Thus, in Figure 5.11, plots (a) and (6) show the effect of p; plot 

(6), with p = 0.9 , shows greater variability in p(</>) since less information about <p 

is provided by highly dependent experts. More variability is also s en in plot (c) 
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Figure 5.11: Linear R2 • R2 example: p( q> ) ( shaded density) using the French-
Lindley method. Fixed hyperparameters: s 1 = s2 = 2. Variable hyperparameters: 
(a) m1 = -m1 = 2 m2 = -m2 = 2, and p = 0.1 ; (b) m1 = - m 1 = 2, m2 = 
-m2 = 2, and p = 0.9; (c) m 1 = -m1 = 1, m2 = -m2 = 1, and p = 0.5 ; (d) 
m1 = -m1 = 3, m2 = -m2 = 3, and p = 0.5. 

compared to plot ( d) due to a more pessimistic evaluation of the mean predictive 

abilities of both experts. 

Note that the mode of p( c/>) does not lie between the modes of pr ( c/> ) and 

p2 ( q>) in these plots as one might expect. This troublesome observation persists 

throughout the remaining linear R2 • R2 example plots. In general , the applica-

tion of the French-Lindley approach to higher dimensional models seems incapable 

of producing sensible poolings for most seemingly reasonable hyperparameter val-

ues. 

In Figure 5.12, m = 2 and p = 0.5 are fixed, and different combinations of s 1 

and s2 are analyzed. A tight distribution is observed in plot (a) with s 1 = s2 = 1, 

whereas much more spread is apparent in plot (b) with s 1 = s2 = 3. The mode 

of the consensus dist ribution shifts down and to the left as the variances increase, 

a trend which is not easily explained. In plot ( c), with Expert 1 's variance on 

log-odds smaller than that of Expert 2, the consensus distribu t ion approaches 

Pi( c/> ). Conversely, in plot (d) with s 1 > s2 , the consensus dist ribu tion approaches 
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Figure 5.12: Linear ~ 2 • ~ 2 example: p( </>) (shaded density) using the French-
Lindley method. Fixed hyperparameters: m 1 = -m1 = m 2 = -m2 = 2, and 
p = 0.5. Variable hyperparameters: (a) s1 = 1, s2 = 1; (b) s 1 = 3,s2 = 3; (c) 
s1 = l,s2 = 3; (d) s 1 = 3,s2 = 1. 

p2 (</>) , although in both cases the French-Lindley pool is located above and to the 

right of the original prior's mode. These plots illustrate that any misstatement of 

precision can largely impact the resulting pooled distribution. 

In Figure 5.13 , plots ( a) and (b) feature superior performance by Expert 1 

(i.e. m 1 > m2 and m 1 < m 2), evaluated at p = 0.7 and p = 0.2. The mass 

of both consensus joint priors is located near the mass of pi(</>) , with a shift to 

the southwest asp increases. In comparison, plots (c) and (d) feature superior 

performance by Expert 2, also evaluated at p = 0. 7 and p = 0.2. The mass of 

p(</>) for p = 0.2 approaches p2 (</>) , although we see again the unsatisfactory trend 

for p(</>) to lie above and to the right of what one might expect. In plot (c), with 

p = 0. 7, the French-Lindley method completely falls apart , due in part to a failure 

of relative propensity consistency and in part to an inability to process seemingly 

reasonable sets of hyperparameter values. 

Noninvertible ~ 2 • ~ 2 Example 
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Figure 5.13: Linear R2 -+ R2 example: p(¢) (shaded density) using the French-
Lindley method. Fixed hyperparameters: s1 = s2 = 2. Variable hyperparameters: 
(a) m 1 = -m1 = 2, m2 = -m2 = 1, and p = 0.7; (b) m1 = -m1 = 2, m2 = 
-m2 = 1, and p = 0.2; (c) m 1 = -m1 = 1, m 2 = -m2 = 2, and p = 0. 7; (d) 
m1 = -m1 = 1, m2 = -m2 = 2, and p = 0.2. 

The sensitivity of the pooling to various values of the hyperparameters for 

the noninvertible R2 -+ R2 example of Section 4.5 is illustrated in Figures 5.14-

5.16. Hyperparameter settings in these plots are identical to those in the past two 

examples. Plots (a) and (b) of Figure 5.14 illustrate increased variability in p(¢) 

with increased p, just as noted in previous examples. Because of the dispersion 

in pi(¢) , the poolings produced in this example are largely influenced by Expert 

2. Plots ( c) and ( d) also show a tendency observed in previous plots-that of 

increased variability in p( ¢ ) with lower performance of both experts, as measured 

by the log-odds conditional on A. ote that this noninvertible model produces a 

line of truncation in ¢-space, where Pi ( ¢ )= 0 above and to the left of the line. 

Many hyperparameter combinations produce areas of high density along the line 

of truncation which are difficult to observe in the plots. 

In Figure ,5.15 , effects of different combinations of s 1 and s2 are analyzed. As 

might be expected, small s 1 = s 2 produces a concentrated p(¢) as in plot (a), 

while larger s1 = s2 produce more dispersed p( ¢ ) as in plot (b ). In add ition , low 
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Figure 5.14: Noninvertible ~ 2 -+ ~ 2 example: p(cp ) (shaded density) using the 
French-Lindley method. Fixed hyperpararneters: s 1 = s2 = 2. Variable hyperpa-
rarneters: (a) m 1 = -m1 = 2, m2 = -m2 = 2, and p = O.l; (b) m 1 = -m1 = 2, 
m2 = -m2 = 2, and p = 0.9; (c) m1 = -m1 = 1, m2 = -m2 = 1, and p = 0.5 ; 
( d) m1 = -m1 = 3, m2 = -m2 = 3, and p = 0.5. 

s 1 corn pared to s2 , such as in plot ( c), leads to p( cp) concentrated near areas of 

high mass for p;(¢) , while low s 2 compared to s 1 as in plot (d) leads to p(cp ) 

concentrated near areas of high mass for p2 ( ¢). Changes in s 1 and s 2 have the 

anticipated effects on the pooled distributions , but p( cp) in most cases seems to 

skirt the mode of Expert 2's beliefs high and right or low and left, generating a 

consensus which is somewhat less than ideal. 

Plots ( a) and (b) of Figure 5.16 feature superior performance by Expert 1 (i .e. 

m 1 > m2 and m 1 < m 2). With p = 0.7 as in plot (a) , mass ofp(cp ) is concentrated 

near the truncation line as expected, although some mass is inexplicably located 

where both </> 1 and </>2 are unusually high or unusually low. With p = 0. 2 as 

in plot ( b), more of a balance between p; ( ¢ ) and p2 ( ¢ ) is noted. Plots ( c) and 

( d) feature superior performance by Expert 2, and not surprisingly the mass of 

p(cp) is concentrated near p2(¢ ), especially when correlation is high. p( cp ) in 

these plots seems to be a reasonab le synthesis of the beliefs of Experts 1 and 

2 given the hyperparameter sett ings. Note that the French-Lindley method as 
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Figure 5.15: Noninvertible R2 -+ R2 example: p( <p) (shaded densi ty) using the 
French-Lindley method. Fixed hyperparameters: m 1 = -m1 = m 2 = -m2 = 2, 
and p = 0.5. Variable hyperparameters: (a) s1 = 1,s2 = 1; (b) s1 = 3,s2 = 3; (c) 
s1 = l ,s2 = 3; (d) s1 = 3,s2 = 1. 

applied to continuous parameters does not possess the strong version of the zero 

preservation property, so that p( <p) sometimes has significant mass in regions 

above the truncation line, where Expert 1 assigns no probability. 

5.4 Relative Propensity Consistency 

One problem with the French-Lindley method is that it violates relative 

propensity consistency in certain cases. Recall that relative propensity consis-

tency (RPC) (Section 2.2.1), states that if all experts favor an event A 2 over 

another event A1 , then their pooled opinion must also favor A2 over A1. Al-

though RPC is often stated in terms of probabilities, it can be shown to also hold 

when probabilities are replaced by log-odds. Although masked by our convention 

of setting p( <p) to O whenever the French-Lindley estimated pooled density was 

negative, RPC failure did occur in several of our examples. In this section , we 

investigate when and how these violations occur. This demonstration will focus 

on the basic model , in which a single decision maker N wishes to update her 

opinion in light of a second opinion soli cited from an expert E. Similar findings 

100 



(a) (b) 

.., .., -, , ' "' "' I / 

.. --· -..i~·-(:-.. 
____ J:::::~···3/ --;- --;- />~:::~~:: ______ / 

'? '? 

·2 0 2 4 6 -2 0 2 4 6 

Phl1 Phl1 

(c) (d) 

.., 
-

.., 
"' ~,;,:~) ) 

:'" / /' "' 
!;>I !;>I 
.r:; -&. "- --;- I --;-~::::------ ___ ,,,.. / 

'? '? 

-2 0 2 4 6 ·2 0 2 4 6 

Ph11 Phl1 

Figure 5.16: Noninvertible ~ 2 -+ ~ 2 example: p( </> ) (shaded density) using the 
French-Lindley method. Fixed hyperparameters: s 1 = s 2 = 2. Variable hyperpa-
rameters: (a) m 1 = -m1 = 2, m 2 = -m2 = 1, and p = 0.7; (b) m 1 = - m 1 = 2, 
m2 = -m2 = 1, and p = 0.2; (c) m1 = -m1 = 1, m2 = -m2 = 2, and p = 0.7; 
(d) m 1 = -m1 = 1, m 2 = - m 2 = 2, and p = 0.2. 

hold for the GDM model for combining beliefs from a group of individuals (see 

Section 5.4.4). 

Consider that RPC holds under the assumptions for the French-Lindley model 

with just two experts. If, for instance, the decision maker N assigns higher log-

odds to event A2 than event A1 , and if the expert E also assigns higher log-

odds to event A2, then by relative propensity consistency the consensus posterior 

distribution (N's beliefs updated in light of E's opinion) should also favor A2 

over A1. In terms of the notation of this chapter, if the French-Lindley model 

satisfies RPC, then when l0 (A 1 ) < l0 (A 2 ) and ,\ 1 (A 1) < A1(A2 ) , it must be true 

that lo(A1 I ,\i) < l0 (A 2 I ,\ 1 ) for all m > Q., m < Q., and V. The restrictions 

on m and m are necessary to ensure that both experts are in positive accord 

with the truth; if an expert's log-odds for event A become smaller as A becomes 

more likely, then RPC need not hold. We be lieve, however, that most practical 

situations will feat ure m > Q. and m < Q.. No rest ri ctions are required for V, t he 
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covariance matrix describing the variability and correlation which the decision 

maker expects in her own probability statements and those of the expert. 

We will show that RPC does not always hold under the French-Lindley ap-

proach, depending on the beliefs about events A1 and A2 of the decision maker 

and the expert , and on the hyperparameters set by the decision maker. Assume 

l I A ~ N(m V ) = N ( [ mo ] [ ¼o . - . _ , 2 m1 ' ½o ¼1 l) , ½1 

l I A ~ N(- V ) = N ( [ mo ] [ Voo _ m , 2 m , V, 
1 10 

Vo1 ] ) , 
½1 

and 

From Result 5.3 in the case of two experts , we have 

lo(A1 I .\1) = [µ(lo (A1)) - µ(lo(A1))] w-1 [.\1( A1) - i(µ(lo(A1)) + µ(lo(A1) ))] 

+lo(A1 ) 

where: 

Similarly, we have 

A1 I A1,lo ~ 
A1 I A1, lo ~ 
µ(lo(A1)J 
µ(lo(A1)) 

w 

N(µ(lo(A1)), W), 
N(µ(lo(A1)), W), 
m1 + ~(lo(A1) - mo), 
m1 + f (lo(A1) - mo), and 

00 2 Vu - vv.10 = V11(l - p2) . 
00 

lo(A2 I .\1) = [µ(lo( A2) ) - µ(lo(A2))] w-1 [.\1(A2) - ~(µ(lo(A2)) + µ(lo(A2)))] 

+lo(A2). 

Based on the assumptions and deri vations above, the difference in the con-

sensus posterior probability distributions can be simplified as follows: 
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Under our assumptions, A1 (A2) - A1 (A1) > 0, l0 (A2) - lo(A1) > 0, and , if 

RPC holds , lo(A2 I Ai) - lo(A1 I A1) > 0. This implies 

c, (,\,( A2) - ,\ 1 (Ai)] > (c,p~ - 1) (10(A,) - lo(A,)], 

which leads to the result 

Hereafter , let R = ~~~~~~=~1
/,:

1
1,l and !{ = pl'{if; - c

1
1

• Relative propensity consis-

tency, therefore, does not hold in the basic French-Lindley model with one decision 

maker and one expert if R < !{ when c1 > 0 or if R > I\. when c1 < 0. This 

condition depends on the beliefs [0 of the decision maker , the beliefs A1 of the 
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expert, and the hyperparameters describing the abilities of the decision maker 

and the expert. 

5.4.1 Constraint Set 1 

By setting constraints on the hyperparameters, we can illustrate for which 

values of R = RPC failure will occur. We chose two simple but sensi-

ble sets of assumptions under which to investigate RP C failure. Under constraint 

set 1, four constraints are imposed on the hyperparameters used to assess the 

abilities of the two experts: 

1. m i = -mi for i = 0, 1. For each expert , the mean probability for success 

predicted for an event A which subsequently occurs equals the mean proba-

bility for failure predicted for an event A which subsequently does not occur. 

In other words , N is equally adept at forecasting successes and failures , as 

is E. 

2. Yoo = ½ 1 . The variability in the experts' log-odds are identical. 

3. m 0 = am1 . The parameter a describes t he relative expertise between r\/ and 

E. For instance, a > 1 suggests that N offers higher log-odds on average 

than E for events A which subsequently occur. 

4. ½ 1 = bm1 • The parameter b allows the variability of E 's opinions to be 

expressed as a function of his mean log-odds . 

With these constraints , the expression for RPC failure becomes 

if p < ¼ 
if p > ¼ 

after solving for K and simplifying t he expressions for c1 < 0 and c1 > 0. 

Us ing t his expression , we illustrate scenarios for RP C fai lure in Figures 5.17 , 5.18, 

and 5.19 . Each plot represents a different fixed value for the parameter b which 
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Figure 5.17: RPC assessment: constraint set 1, b = ½- Contour levels correspond 
to k where p < ¼ and K where p > ¼ so that smaller contour levels are linked 
with higher chances for RPC failure. RPC failure ultimately depends on the value 
of R _ >q(A2)-.,\i(A1) 

- lo(A2)-lo(A1) . 

describes the relationship between N's assessment of the mean beliefs for E ( ex-

pressed as log-odds) and the variance of those beliefs . In Figure 5.17 b = ½, in 

Figure 5.18 b = l , and in Figure 5.19 b = 3. In these figures, a is allowed to vary 

between .05 and 20 and is presented on the x-axis as log(a). p, the correlation 

between the decision maker and the expert , is allowed to vary between 0 and 1 

and is presented on the y-axis. The contours in Figures 5.17- 5.19, then , illus-

trate combinations of a and p (given a value for b) for which RPC likely holds 

or for which RPC likely fails . RP C failure ultimately depends on the value of 

R = • Contours have been sketched at levels corresponding to i· in 

case 1 ( where p < ¼) and K in case 2 ( where p > ¼) so that smaller contour levels 

are linked with higher chances for RPC failure. Note that case 1 corresponds to 

the left region of each figure and case 2 corresponds to the right region. Although 

we denote in these figures where RP C failure in most likely, it is possible for RPC 

to fail under any combinations of a and p which do not fall in the region marked 

"RP C Always Holds" . 
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Figure 5.19: RPC assessment: constraint set 1, b = 3. Contour levels correspond 
to i where p < ¼ and I{ where p > ¼ so that smaller contour levels are linked 
with higher chances for RPC failure . RP C failure ultimately depends on the value 
f R _ ,\ i(A2)- ,\1 (Ai) 

O - lo(A2)-lo(Ai) . 
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In Figure 5.17 b =½, so that Vu , the decision maker 's expected variance in 

the expert 's statements , is just one-third the value of N 's expected log-odds for E; 

thus, N expects E to be very consistent in stating A1 (A) when A is subsequently 

true. In this figure , RPC always holds in the lower region defined by small corre-

lations between N and E (e.g. p < 0.2). For combinations of a and pin this lower 

region, relative propensity consistency is never violated , regardless of the value 

of R. However, Figure 5.17 is dominated by regions in which RPC will often fail 

depending, of course, of the particular value of R. Failure of relative propensity 

consistency is likely to occur when some dependence between N and E exists ( e.g. 

p > 0.5) regardless of a. RPC failure is also likely whenever a is high, regardless 

of p; high values of a correspond to situations in which N tends to predict much 

higher log-odds than E for events A which are subsequently found to be true. 

In Figure 5.18 b = l, so that Vu = m 1 . Under this setting, there is again 

one large region in which RPC always holds , regardless of the value of R. As in 

Figure 5.17, this RPC region is associated with small values of p, although in this 

case it extends to p < 0.4 for a < l. There are also large regions in which RPC 

will often fail. Failure of relative propensity consistency is most likely to occur 

when a is small (E tends to offer higher log-odds than N) and pis large, or when a 

is large ( N tends to offer higher log-odds than E) and the correlation is non-zero. 

As before, failure of RPC is dependent on R. 

In Figure 5.19 b = 3, so that Vi 1 = 3m1- i.e. N expects that E's log-odds 

for a true event A will be wildly variant. In this case, the region in which RPC 

always holds is larger than in the two previous plots; therefore , failure of RPC is 

less likely with higher b. Still , failure of RPC can occur when N and E are highly 

correlated , or when N perceives that she has greater experti se than E (so that a 

is high ). 
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5.4.2 Constraint Set 2 

A second set of constraints is used to illustrate other conditions under which 

RPC failure can occur. As with constraint set 1, four constraints are imposed on 

the hyperparameters for expert assessment in constraint set 2: 

1. mi = -mi for i = 0, 1 For each expert, the mean probability for success 

predicted for an event A which subsequently occurs equals the mean proba-

bility for failure predicted for an event A which subsequently does not occur. 

In other words , N is equally adept at forecasting successes and failures , as 

is E. 

2. m0 = m 1 . N and E offer the same log-odds on average for events A which 

subsequently occur. 

3. ~=a~. The parameter a describes the relative precision between N 

and E. For instance, a > 1 suggests that N's opinions have less variability 

than E 's. 

4. V11 = bm 1. The parameter b allows the variability of E's opinions to be 

expressed as a function of his mean log-odds. 

With these constraints, the expression for RPC failure becomes 

after solving for K and simplifying the expressions for c1 < 0 and c1 > 0. 

RPC failure under these assumptions is illustrated in Figures 5.20, 5.21, 

and 5.22. As before, each plot represents a different fixed value for the parameter 

b, and contours have been sketched at levels corresponding to ~- in case 1 ( where 

p < ¼) and /{ in case 2 ( where p > ¼) so that smaller contour levels are linked 

108 



C! 

.., 
0 

i 
1: 
0 

RPC Always Holds 

"! 
0 

-2 - 1 0 2 

log(a) 
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Figure 5.21: RPC assessment: constraint set 2, b = 1. Contour levels correspond 
to k where p < ¼ and K where p > ¼ so that smaller contour levels are linked 
with higher chances for RPC failure . RPC failure ultimately depends on the value 
f R _ A1(A2)-,\i(Ai) 
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Figure 5.22: RPC assessment: constraint set 2, b = 3. Contour levels correspond 
to k where p < ¼ and K where p > ¼ so that smaller contour levels are linked 
with higher chances for RPC failure. RPC failure ultimately depends on the value 
of R _ .,\ 1(A2)-.,\1(A1 ) 
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with higher chances for RPC failure. Note that case 1 corresponds to the left 

region of each figure and case 2 corresponds to the right region. 

In Figure 5.20 b = ½, so that N expects E to be very consistent in stating 

,\ 1 (A) when A is subsequently true. In this figure , there are two regions in which 

RPC always holds , associated primarily with smaller values of both a and p. For 

combinations of a and p falling in these two regions , relative propensity consistency 

is never violated, regardless of the value of R. However, there are also two large 

regions in which RPC will often fail , depending on the particular value of R. 

Failure of RPC is most likely to occur when a is near 1 (log(a) is near 0) , so that 

N and E have similar levels of expertise, and p is fairly high. In addition, RP C 

failure is common even for low p when a is above 1-i.e. when N tends to predict 

much higher log-odds than E for events A which are subsequently found to be 

true. 

In Figure 5.21 b = I, so that Vi 1 = m 1. Under this sett ing, there is one large 

region in which RPC always holds, regardless of the value of R. As in Figure 5.20, 
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this RPC region is associated with smaller values of p and a, although in this case 

it extends to p < 0.8 for log( a) < 1. There are also two regions in which RPC will 

often fail. Failure of relative propensity consistency is most likely to occur when 

a is near 1, so that m0 and m 1 are in reasonable agreement, and pis fairly high. 

In Figure 5.22 b = 3, so that ½1 = 3m1-i.e. N expects that E's log-odds 

for a true event A will be wildly variant. In that case, the region in which RP C 

always holds is larger than in the two previous plots ; therefore, failure of RPC is 

less likely with higher b. As with b = 1, RPC failure is most likely when a is near 

1 and p is high. 

5.4.3 Special Case: Zero Correlation 

In the special case in which p = 0, it can be shown that RPC failure is 

impossible when m 1 > 0 and m 1 < 0. This follows because 

K = p {½; - = -~ < 0. V¼o C1 C1 

Thus , we must have >.i(A2 )- >.i(Ai) > p ffu. - .!. which when c1 > 0, ensures 
lo(A2)-lo(A1) V Vo;;- c1 ' ' 

that RPC holds regardless of the other hyperparameter values. As a result , any 

violations of RPC which were observed in this chapter occurred where p > 0. 

5.4.4 RPC under the Group Decision Maker Approach 

Conditions for the failure of relative propensity consistency m the group 

decision maker version of the French-Lindley method can be investigated using 

similar techniques to those we employed with the basic French-Lindley method . 

Assume that a group wishes to arrive at a consensus opinion about two events 

A1 and A2 . A group decision maker who begins with no opinion about A1 and 

A2 solicits opinions (denoted >. 1(Ai) and >. 2 (Ai) for i = 1, 2) from two experts. 
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The GDM can obtain group consensus opinions for these events by deriving its 

posterior log-odds for A1 and A2 in light of the expert opinions according to 

l0 (A I~) = (m - m)v-1 [~ - ½(m + m)] as discussed in Section 5.2.2. In this 

case, the GDM version of the French-Lindley method is said to satisfy relative 

propensity consistency, if lo( A 1 I ~) < lo(A2 I ~) whenever A1 (A1) < ,\1 (A2) and 

,\2(A1) < ,\2(A2) for all m > Q., m < Q., and V. 

To derive theoretical properties under which the relative propensity consis-

m 1 < 0, and m 2 < 0. In addition, assume 

,\ I A~ N(m V) = N ( [ m1 ] [ sf ps1s2 ] ) . 
- _ , . 2 m 2 ' ps1s2 s~ 

Recall that in the GDM case, I A, lo = I A and I A, lo = I A, so that 

Result 5.3 simplifies to: 

lo (A I ~) = [ 
m1 - m1 l v-i [ ,\1(A) - ½(m1 + m1) ] 
m2 - m2 A2(A ) - ½(m2 + m2) 

1 [ 2 - 1 2 2 -2 
2 2( 2) s2(m1 - mi),\1(A) - -2s2(m1 - m1) 

S1S2 1 - p 
1 

-ps1s2(m2 - m2),\1(A) + 2ps1s2(m1 + mi)(m2 - m2) 
1 

+sf(m2 - m2),\2(A) - 2sf(m~ - m~) 

-ps1s2(m1 - mi) ,\2 (A) + tps1s2(m1 - m1)(m2 + m2)]. 

The difference in the GDM's posterior probability distributions can be simplified 

as follows: 
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If RPC holds , lo(A2 11) - lo(A1 11) > 0, which implies: 

if s~(m1 - mi) > ps1s2 (m2 - m2) 

if s~(m1 - mi) < ps1s2(m2 - m2). 

Let R = .\i(A2)- .\i(At) as before and K = P;t2(m..:_-~il-st~mr~2~. Then relative 
.\2(A2) - .\2(Ai) s2 m1 -m1 - ps, s2 m2-m2 

propensity consistency does not hold if R < K when s~(m1-mi) > ps1s2(m2-m2) 

or if R > K when s~(m1 - m1) < ps1s2(m2 - m2). 

Using constraints analogous to those used in Sections 5.4.1 and 5.4.2, we can 

illustrate the values of R = for which RPC fails to hold. Constraint 

set 1 G imposes three constraints on the French-Lindley hyperparameters: 

1. mi = -mi for i = 1, 2. 

2 S
2 _ 

8
2 

· 1 - 2· 

The fourth assumption which introduced the parameter bin Section 5.4.1 is un-

necessary here. We need only consider parameter a, which describes the relative 

expertise between the two experts. With constraint set 1 G, the expression for 

RPC failure becomes: 

if p < ¼ 
if p > ¼-

Using this expression, RPC failure is illustrated in Figure 5.23. As in Fig-

ures 5.17- 5.22, the contours illustrate combinations of a and p for which RP C 

likely holds or for which RPC likely fails. Remember that RPC failure ultimately 

depends on the value of R = .x,(A2 )- .\ i(Ai). Contours have been sketched at levels .\2(A2)-.\2(Ai) 

corresponding to t- in case 1 ( where p < ¼) and K in case 2 ( where p > ¼) so 

that smaller contour levels are linked with higher chances for RP C failure. Note 

that case 1 corresponds to the left region of each figure and case 2 corresponds to 

the right region . 
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Figure 5.23: RPC assessment under group decision maker approach: constraint 
set lG. Contour levels correspond to k where p < ¾ and K where p > ¼ so that 
smaller contour levels are linked with higher chances for RPC failure. RPC failure 
ultimately depends on the value of R = ,\i(A2)-,\i(Ai). 

A2(A2)-,\2(Ai) 

In Figure 5.23, relative propensity consistency always holds for the lower 

region defined by small correlations and/or similar levels of expertise between the 

two experts. On the other hand, failure of relative propensity consistency is likely 

to occur when some dependence between the two experts exists (e.g. p 0.6) and 

one expert is considered to have greater expertise by the group decision maker. 

Expertise in this case is measured by comparing the log-odds which the GDM 

expects each expert to state for an event A which subsequently occurs. Although 

the scenario above describes when RPC is most likely to fail , it is possible for 

RPC to fail for any combination of p and a which does not fall in the triangular 

region in the ~enter of Figure 5.23. 

A second set of constraints analogous to those in Section 5.4.2 further illus-

trate conditions under which failure of relative propensity consistency can occur. 

Constraint set 2G imposes these three constraints on the hyperparameters fo r 

expert assessment: 

1. m; = -m; for i = l, 2. 
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Figure 5.24: RPC assessment under group decision maker approach: constraint 
set 2G. Contour levels correspond to k where p < a and I< where p > a so that 
smaller contour levels are linked with higher chances for RPC failure. RPC failure 
ultimately depends on the value of R = >.i(A2)->.i(Ai) . 

>-2(A2)->.2(A1) 

Again parameter b is unnecessary, and here a describes the relative prec1s10n 

between the two experts. With constraint set 2G, the expression for RPC failure 

becomes: 

{ 

>.i(A2)->.1(Ai) < ap-1 if p < a 
>-2 A2 ->.2 A1 a(a-p) 
>-1 A2 ->.1 A1 > ap- 1 ·f 
>-2(A2)->.2(Ai) a(a-p) 1 P > a. 

RPC failure under these assumptions is illustrated m Figure 5.24. Again 

contours have been sketched at levels corresponding to k in case 1 ( where p < a) 

and I< in case 2 ( where p > a) so that smaller contour levels are linked with higher 

chances for RPC failure . Note that, unlike previous plots, case 1 corresponds to 

the right region of each figure and case 2 corresponds to the left region. 

In Figure 5.24, relative propensity consistency always holds for the lower 

region defined by small correlations and/or similar levels of precision between the 

two experts . On the other hand , failure of relative propensity consistency is likely 
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to occur when some dependence between the two experts exists ( e.g. p 2: 0.8) and 

one expert is considered to have better precision by the group decision maker. 

Precision in this case is measured by comparing the variability in the log-odds 

which the GDM expects from each expert . Although the scenario above describes 

when RPC is most likely to fail , it is possible for RPC to fail for any combination 

of p and a which does not fall in the triangular region in the center of Figure 5.24. 

5.4.5 Conclusions 

The constraint sets and plots of this section were developed for illustrative 

purposes, to show that under the French-Lindley model failure of relative propen-

sity consistency is not only possible, but it can frequently occur under seemingly 

reasonable scenarios. In the examples discussed in Section 5.3, failure of RPC led 

to illogical , unsatisfactory results in several instances. The frequency of RPC fail-

ure under the group decision maker setting is especially vexing, since this setting 

mostly closely approximates the situation in which priors to be pooled are linked 

by a deterministic simulation model. In those cases, often a person or group will 

collect opinio_ns from experts on each of the model parameters and then form a 

consensus from those opinions about an event or parameter of interest. But , like 

French's GDM, the opinion collector in a deterministic simulation model setting 

usually has no expert opinion to offer about any of the model parameters. There-

fore, for inference problems involving deterministic simulation models , as well as 

other problems in which consensus distributions must be formed, it is difficult to 

place confidence in a method such as French-Lindley which leads to violations of 

a basic axiom such as RPC in relatively common situations. 

5.5 Summary 

Our examples and consideration of RP C suggest that the French-Lindley 

supra-Bayes ian method is unsui table for pooling expert opinions to make inference 
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in deterministic simulation models. The examples in Section 5.3 were designed 

to allow examination of potential pooling methods in small-scale versions of de-

terministic simulation models. Typically, a single decision maker (perhaps the 

statistician overseeing the process) will obtain priors from one or more experts in 

input-space and one or more experts in output-space. In order to make inference 

about outputs, for instance, the decision maker should pool the prior distribution 

from the output experts with the implicit prior distribution ( through the model) 

about the outputs from the input experts. 

Although developed with single, discrete events in mind, the French-Lindley 

approach is one viable option for performing this pooling, especially for those who 

adopt the supra-Bayesian perspective and prefer to consider priors solicited from 

experts as data to be used by the ultimate decision maker in forming inference. By 

considering a series of cumulative distribution functions, we adapted French and 

Lindley 's ideas to the case with continuous parameters, which is a more common 

scenario in deterministic simulation models. However, in applying these methods 

to the examples of Section 5.3, several serious problems emerged. 

First , the supra-Bayesian decision maker or GDM must estimate the values 

of a series of hyperparameters to quantify each expert 's bias, inaccurate precision 

evaluations, and correlations with other experts. Moreover , these hyperparame-

ters are based on the log-odds scale. Unfortunately, the examples in this chapter 

show that the pooled distributions formed by French-Lindley methods lack ro-

bustness to changes in hyperparameter values. Thus , small errors made by the 

supra-Bayesian, either through imperfect knowledge of the experts or imperfect 

understanding of the interpretation of the hyperparameters , will greatly impact 

the consensus distribu tion . In fact, even when the supra-Bayesian has not erred , 

seemingly reasonable hyperparameter values can produce nonsensical poolings; 

we discovered this while attempting to define a baseline set of values for plots in 
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Section 5.3. For instance, small s (the assessed variability in an expert's belief 

statements) , small p ( the assessed correlation between experts), and large m ( the 

assessed average log-odds an expert would state about an event A which subse-

quently occurs) often led top( </J ) which were much more precise the corresponding 

individual expert priors. Other factors frequently led to p( </J) with mass concen-

trated in regions of ¢-space which would not intuitively be considered as regions 

of agreement between the experts. These factors included Si < Sj, mi < mj with 

high correlation, truncation in ¢-space, and higher dimensions in general. 

Second, the French-Lindley approach does not guarantee adherence to relative 

propensity consistency. That is , even if all experts believe that event A1 is more 

likely than event A2 , the French-Lindley consensus may state that A2 is more likely 

than A1 . RPC violations are especially noticeable when applying the French-

Lindley approach to continuous variables, since they can result in p( </J) < 0 for 

certain values of¢. Greater detail can be found in Section 5.4. 

Third, the dependence on log:-odds makes it difficult to adapt the French-

Lindley approach to pooling priors linked by deterministic simulation models , 

which primarily contain continuous parameters. In addition to the large barriers 

it creates for a decision maker attempting to set hyperparameter values, the use 

of log-odds makes extension into higher dimensions more difficult. As discussed 

in Section 5.3.2, conventional methods for calculating cumulative distributions in 

two dimensions often produce estimated French-Lindley pooled prior distributions 

which violate laws of probability. 

Fourth, the assumption that N is a coherent individual, while the expert E 

is potentially incoherent , is a tenuous one at best. LTB argue that coherence at 

some point in the process is necessary to ensure the coherence of reconciled values 

and that one does not reach too far to assume the existence of a decision maker 

who can detect and reconcile her own inconsistencies with respect to probability 
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statements. Even though coherent experts are envisioned for many applications 

of deterministic simulation models , the elicitation of prior opinions is an inexact 

science at best, and a certain degree of incoherence is perhaps unavoidable. 

The overwhelming conclusion from our analysis is that the French-Lindley 

approach is unsuitable for pooling prior distributions in deterministic simulation 

models. A person preferring to maintain the supra-Bayesian perspective would be 

best suited by exploring other alternatives. 
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Chapter 6 

The Lindley-Winkler Supra-Bayesian Method 

6.1 The Lindley Method 

6 .1. 1 Univariate Case 

Lindley (1983) motivates his method with the following example. Assume 

that a submarine commander is interested in the range 0 of a possible target . 

The commander obtains estimates of 0 fro"m several sources (e.g. sonar, radar), 

each of which also provides a measure of precision. How should the commander 

combine this information to form her own opinion about 0? In general , Lindley 

asks how should one form a single consensus probability distribution using several 

expert opinions about 0, where each expert offers a mean and standard deviation , 

although not necessarily a particular distributional form. The absence of a re-

quirement that experts specify a distributional form for their prior beliefs about 

0 is a strength of the Lindley approach. 

In notational form, Lindley answers the question: How should N update her 

opinion of 0 in light of the information provided by Ei, i = 1, ... , k? In this case, 

N is the decision-maker interested in a quantity 0, and Ei, i = 1, ... , k , are the k 

experts consulted by N . Lindley applies supra-Bayesian reasoning, forming a like-

lihood function by treating each E/s opinion about 0 as data, and then combining 

this likelihood with N's prior on 0 to form a posterior probability distribution for 



0. This can be writ ten in the form "posterior <X (likelihood) (prior)" as 

p(0 I f1 , ... ,k, H) (X p(f1 , ... ,t. 10, H )p(0 I H), 

where His the background information (other than Ei's information) possessed 

by N, p(0 I H ) is N's prior opinion regarding 0, and £i = (ti, 1, ... , ti,n) is a 

vector of numbers provided by Ei to describe his probability distribution. The 

likelihood p(f1, . . . , tk I 0, H) includes not only each expert 's prior probability 

for 0, but it also incorporates N's opinion of the accuracy and precision of each 

expert 's statement. This will be accomplished through the introduction of several 

hyperparameters , which will be described shortly. 

Start with the case of k experts and a single quantity of interest 0. Assume 

t i, l = m i and t i,2 = Si, where these quantities will typically represent the mean 

and standard deviation , respectively, for Ei's prior for 0. Then, 

p(0 I m1 ,••·, mk ,s1, •• · ,sk) <X p(m1 , ••· ,mk,s1,• •· ,sk I 0)p(0) 

p(m1 , ... , mk I s1, ... , sk, 0)p(s1 , . . . , sk I 0)p(0 ) 

where N's background information H has been suppressed for now. If we let m = 
(s 1, .. ,,sk)', then we have p(0 

<X p(m I §.,0)p(§. I 0)p(0). Assume: 

Assumption 1. p(§. I 0) does not depend on 0 so that p(§. I 0) = p(§.). Thus, 

s 1 , ... , Sk by themselves provide no information about 0. 

Assumption 2. 

P1k11 S !''fkSk 
P2k12S2,kSk 

In other words, p( m I :2, 0) is multivariate normal with means a i + f3iO, standard 

deviations , isi, and correlations Pii · Let er beak x 1 vector of aclclitive bias terms , 
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{}_ be a k x 1 vector of multiplicative bias terms, 1 be a k x 1 vector of precision 

adjustment terms, and R be a k x k matrix of correlations between experts . These 

hyperparameters are set by N and will be explained in greater detail later. 

Assumption 3. p(0) is an improper , flat (noninformative) prior. This is similar 

to Lindley 's third assumption (1983), which also implies that N's knowledge of 0 

is weak compared with the information provided by the experts. 

Under these three assumptions the following result holds. 

Theorem 6.1 If Ei states that 0 has mean mi and standard deviation Si, (i = 
1, ... , k), and Assumptions 1-3 apply, th en the Lindley- Winkler supra-Bayesian 

pooled prior distribution for 0 is normal with mean L i,i {3w ii(mi -ai)/ L i,j f3i a ii /3i 

and variance (Li,j f3i a ii {3j ) - 1, where a ij is the ( i , j/h element of "E , ( i = 1, . . . , k; j = 
1, ... , k) , and a ij is the (i,j) th element of r:,-1. 

Proof. 

p(0lm,~) ex: p(m ,21 0)p(0) 

p( m I 2 , 0)p(2 I 0)p( 0) 

ex: p( m I 2, 0)p( 0) by Assumption 1 

ex: p( m I 2 , 0) by Assumption 3 

Nk(t:!:_, "E) by Assumption 2 
1 

112 exp {--2
1 (m - (a+ /30))' r:,- 1 (m - (a+ /30))} (27r)k/2 l"EI - - - - - -

ex: exp{-~ ((m - g) - [!_0)' r:,-1 ((m - g) - [!_0)} 

exp{-~ [02{}_' "E- 1
{}_- 20{}_'"E - 1 (m - a)+ (m - a)' "E,- 1 (m - g)]} 

{-~ (!3'"-1 /3) [02 - ?0{3'"£,-1 (m. - Q) + 
exp 2 - w - - (!_'"E,-1 {}_ 

(m. - g)' r:,-1 (m. - Q) l} 
[!_' r:,-1 {}_ 
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{-~ (f.l':E-1a) [02 - wfi':E-1 (m - g) + 
exp 2 t:.. t:.. (!_':E-1 (}_ 

(3':E-1 (3 (m. - g)' :E-1 (m - g)l } 
(f!:E-1 {}_)2 

exp{-! (f3':E-1f3) [02 - 20(3':E-1 (m- g) + ([!_':E-1 (m- g))2]} 
2 - - (!_':E-1(}_ ([!_':E-1[!_)2 

{ 

1 ( 0 - /3'~~~~~;g_)) 2 } 
exp -- - -

2 ([!_':E-1 [!_)-l 

N ( {}_':E-1 (m. - g) (f.l':E-1 (./)-1 ) 
oc (!_':E-1 (}_ ' t:.. t:.. ' 

which is a univariate normal distribution with mean L i,j f3i<i1(m1-o:1)/ L i,j f3wij {31 

and variance (Li,j f3wi1(31)- 1 • 
Aside from the priors themselves, Assumption 2 is the dominant influence in 

the pooled prior because it forces N's posterior distribution for 0 to be normally 

distributed. In addition, the decision maker N is required by Assumption 2 to 

set values for several hyperparameters which together express N's opinion of the 

expertise of E 1, ••. , Ek. O:i is the amount by which N expects Ei to overestimate 0 

(thus a negative O:i reflects a tendency for underestimation). f3i is a multiplicative 

bias term for Ei, allowing the bias to vary linearly with 0. The hyperparameter 

'Yi allows N to express how accurately she feels that Ei has assessed his own 

precision. For instance, 'Yi > 1 indicates that N believes that Ei overco!Jfidently 

states his precision in estimating 0. Finally, the correlation terms Pij in the matrix 

R allow N to evaluate the similarities between each pair of experts in estimating 

0- high Pij corresponds to pairs of experts who share a common knowledge base 

or who frequently offer similar opinions about parameters like 0. In all, N must 

choose values for 3k + k(k; t) hyperparameters , which requires N to possess vast 

knowledge of the assessment abilities of the k experts. 
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The requirement that a supra-Bayesian decision maker sets reasonable values 

for all hyperparameters is both the primary strength and weakness of the supra-

Bayesian approach. It is a strength in that, theoretically at least, the supra-

Bayesian can adjust for potential disruptive features such as lack of calibration , 

dishonesty, and significant correlation. These features are important concerns 

in much of the supra-Bayesian literature since the solicitation and production of 

expert opinions is often an inexact science. Certain experts may be consistently 

optimistic, or overconfident in their estimation abilities, or prone to rely on the 

same knowledge base as another expert. Under the supra-Bayesian approach, an 

informed, intelligent supra-Bayesian decision maker has the ability to adjust for 

these potential disturbances . 

However, it is probably very unlikely that any decision maker has the knowl-

edge or the access to relevant data which would allow him to accurately assess 

values for all hyperparameters. Without knowing the truth about 0, the decision 

maker would need to accurately assess additive bias, multiplicative bias, preci-

sion, and correlation for all experts-quite a difficult task. Consider, for instance, 

the pooling problem resulting from attempts to form Bayesian inference about 

parameters in the bowhead whale population model introduced in Section 4.6. 

The decision maker solicits opinions from one or more laboratory biologists about 

the input parameters and from one or more oceanographers about the output 

parameters. Then, the model is used to express opinions in the same parameter 

space, say output space. In that case, the laboratory biologists expressed opin-

ions in terms of carrying capacity and productivity, but their opinions are being 

expressed in terms of population size and replacement yield. The biologists and 

oceanographers, besides working in different fields and different locations with di-

verse research goals , may be unaware that their areas of knowledge can be linked 

by a deterministic population model. The decision maker is unlikely to be an 
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expert in all of these areas, and hence it is difficult to imagine one person being 

able to adequately evaluate all experts. 

6. 1.2 Multivariate Case 

Lindley did not consider the case in which fl is a vector of parameters rather 

than just a single quantity of interest. However, multivariate fl is a common and 

important possibility. Deterministic simulation models used to model phenomena 

such as global climate, AIDS transmission, and wildlife population can easily 

involve tens or even hundreds of output and input variables. To form Bayesian 

inference about parameters in these models. a decision maker needs to pool two 

multidimensional distributions . As a result , we extended Lindley 's ideas to the 

case of multivariate fl. Before stating Theorem 6.2 for multivariate fl , new notation 

must be defined and several assumptions made. 

Let O'.ij be an additive bias term, /3ii be a multiplicative bias term, and iii be 

a precision adjustment term for Ei's estimate of 0 j, i = 1, ... , k and j = 1, .. . , m. 

In addition, let Piajb be N's assessment of the correlation between Ei's estimate of 

0 a and Ei 's estimate of 0b , i =/= j , whereas Piab is Ei 's own assessment of correlation 

between his estimates of 0a and 0b. Then, consider the case in which the supra-

Bayesian decision maker N solicits opinions from k experts regarding the m x 1 

vector of parameters fl. Each expert E i, i = 1, .. . , k , provides a mean vector 

m i = ( mi1 , ... , mim )' and a covariance matrix 
2 

Sil Pi12S i 1 Si2 Pi1mSi1Sim 

P i 12 Si1 $i2 
2 

Pi2mSi2Sim 
S;= 

S;2 

Pi1m Si 1Sim Pi2m Si2Sim 
2 

Sim 

for his estimate of the joint prior of fl. The necessary assumptions can be gener-

alized from those above as follows: 

Assumption l'. p( .S'i, ... , sk I fl.) 
information. 
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Assumption 2'. p(m1 , •• . ,mk l,S1 , ... , Sk,Q) is distributed according to the 

following multivariate normal distribution: 

N (I~: 11 : 2

\ 
mk . , • . . . . 

!!:..k Bk1 

where 

µ. = 
- 1 

for i = 1, .. . , k, 

2 2 
'"'fil Sil 

P i 121'i 1 Si11'i2S i2 

for i = 1, . .. , k, and 

B12 • · • B1k 
A2 ... B2k 

O'. i 1 + /3i101 

O'.i2 + /3i2 02 

P i ljl '"'fi l Sil )'j l Sjl 

Pi2j l 1'i2Si2'"'fj1 Sj1 

P i l j2'"'f il Si l )' j2S j2 

P i2j21'i2 Si21' j2 S j2 

P i lm1'i1Si1 t im Sim I 
Pi2m ti2Si2timSim 

~y2 s2 im im 

P i l jm ti l Sil 1jmSjm 

Pi2jm 1'i2 Si2t jm S jm 

for i = 1, . .. , k, j = 1, ... , k, and i -/: j . ote that B ij = B ji, so that Piajb = Pibia• 

Assumption 3'. p(Q) is an improper, flat (noninformative) prior; in other 

words, N 's knowledge of Q is weak compared with the information provided by 

the experts. 

We can then generalize Theorem 6.1 to multivariate Q. 

Theorem 6.2 If Ei states that Q has mean mi and covariance matrix Si, (i = 
1, ... , k), and Assumptions 1' -3' apply, then the L indley- Winkler supra-Bayesian 

pooled prior distribution for Q is multivariate normal with mean vector 

f = VZ'Diag(Q_)E- 1 (m - g) 
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and covariance matrix 

where 
au /311 

aim /Jim 
a21 /321 

I I I-
a= ,(}_ = 

/J2m 
, and Z = 

a2m 

ak1 f3k1 

akm f3km 
Also, Diag((i) is a km x km matrix with {3;i terms along the diagonal and zeros 

elsewhere, and Im is an m x m identity matrix. 

Proof. 

<X p(m1 , • • · , mk, S1 , • • •, sk I ft)p(ft) 

p(m1 , · ·· , mk I S1 ,• •· , sk ,ft)p(S1,• •·,sk I ft)p(ft) 

(X p(m1 , .. . ' mk I S1 , ... ' sk, ft)p(ft) by Assumption 1' 

(X p(m1 , ·· . ,mk I S1,•• .,sk ,ft) by Assumption 3' 

Nmk(/!_, E) by Assumption 2' for /!_ , E defined previously 

(2rr )mk~2 IEI 1; 2 exp { - ( m - ( a + Diag((}_) Zft))' E- 1 
( m - ( a + Diag((}_)Zft)) } 

ex exp {-~ [(m - a)' E-1 (m - a) - 2 (m - a)' E-1Diag((}_)Zft+ 

fl' Z'Diag((}_)E- 1 Diag((}_)Zft] } ( 6.1) 
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At this point, let V = ( Z'Diag(~)E- 1 Diag(~)Z )-
1 

and£= V Z'Diag(~)E- 1 (m - a). 

Note that 
Q1v-1Q 
£'v-1Q 
dV- 1£ 

Q' Z'Diag(,B)E- 1 Diag(,B)ZQ 
(m - a)'E-1Diag(,B)ZQ 
(m - a)' w- 1 (m _-a) , 

where w- 1 = E-1 A(A'E- 1 AJ-1 A'E- 1 and A= Diag(~)Z, and assuming that E is 

nonsingular and ,Bij =/- 0 for all i = 1, ... , k and j = 1, ... , m. 

Therefore, Equation 6.1 can be rewritten as 

- ((m- a)' E- 1 (m - a) - (m -a)'w-1 (m - a)]} 

ex exp {-i (Q - £)' v- 1 (Q - £) } ex Nm(£, V) 

which is a multivariate normal distribution with mean vector £ 

V Z'Diag(~)E- 1 (m - a) and covariance matrix V = ( Z 'Diag(~)E- 1 Diag(~)Z )-
1 • 

For multivariate Q, the number of hyperparameters required from the supra-

Bayesian decision maker N is considerable. Similar to the case with univariate 0, 

the decision maker must assess the additive bias, multiplicative bias , and error in 

the precision evaluation for each expert and each outcome variable. In addition , 

the decision maker must also assess the correlation between each pair of outcomes 

within each pair of experts. With k experts and m outcome variables, this trans-

lates to 3mk+ ½m2k(k-1) hyperparameter assessments for the decision maker- a 

daunting task indeed. In fact, this model could be extended even farther to allow 

N to adjust the within-expert correlation terms (Piab for i = 1, ... , k , a = l, ... , m, 

and b = l , ... , m). The multivariate version of the method presented here requires 

N to accept the Piab-values assessed by Ei , but N could be given more flexibility 

with the int roduction of even more hyperparameters. 

Assumptions l' - 3' can be relaxed to make the method more realistic in 

certain sit uat ions. For instance, Assumption l' would be unrealistic if N feels 
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that certain experts will have more difficulty estimating 01 for large values of 01. 

Lindley offers two suggestions in this case-apply a logarithmic transformation to 

01 and assume no scale information, or make a distributional assumption for s}, 

such as v A. 2 0} / s2 ~ x~ for suitable A. and v. Assumption 3' can also be relaxed 

especially to cases in which p( 0) is normal , conjugate to the likelihood. 

Assumption 2' is potentially the most unrealistic, yet at the same time the 

most influential assumption. While admittedly convenient, the assumption of 

multivariate normality forces the resulting posterior distribution for fl. to also be 

multivariate normal. This may be unrealistic, as we illustrate with several exam-

ples in Section 6.4. Moreover, the dependence on a supra-Bayesian decision maker 

to provide accurate values for the vast array of hyperparameters is extremely op-

timistic. A few suggestions can be made in this regard. First, model restrictions 

can be imposed to limit the number of hyperparameters the supra-Bayesian must 

define. For instance, no bias would imply a = Q. and §_ = 1, or no correlation 

between any pair of experts would imply P iajb = 0 for i -::J j, a = l, . . . , m, and 

b = l, .. . , m. Second, any uncertainty in the determination of certain hyperpa-

rameter values can be incorporated through a hierarchical Bayes model. In fact , 

Lindley considers I to be the toughest parameter to assess, so in the case with 

k = l and m = 1, he proposes assuming that vc2 / 1 2 ~ x~ for suitable v and 

c. The density for I is therefore proportional to exp [-vc2 /21 2 ] ,-( 11+1), so that 

log(,) is approximately normal with mean log(c) and variance (2v)- 1 . With this 

hierarchical Bayes model, the posterior distribution of N 's judgment about 0 has 

a t-distribution instead of a normal distribution, and Lindley illustrates several 

advantages of the t-distribution. When m = 1 and k > l, Winkler (1981) sug-

gests using an inverse Wishart distribution to model the covariance mat rix of rn . 

Although th is assumption leads to a t-distribution for the posterior of 0, it is 

severely limited by only having one parameter avai lab le to exp ress uncertainty. 
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6.2 The Winkler Method 

At this point , a short summary of Winkler (1981) is appropriate, since Lind-

ley and Winkler developed overlapping methods after attacking the problem from 

different perspectives. Lindley required each expert to provide the first two mo-

ments of the prior distributions for the quantity of interest 0, and then he focused 

on the parameterization of a supra-Bayesian decision maker's opinion of the ex-

perts. The decision maker 's updated opinion of 0 (in light of the expert opinions) 

is formed using Bayes' rule, treating the expert opinions as data. Winkler , on the 

other hand, focuses on stochastic dependence among the experts' errors of estima-

tion. Winkler assumes no particular general form for the consensus distribution. 

If the decision maker has a prior density h0 ( 0) for a single parameter of interest 

0, then the posterior consensus distribution for 0 is expressed as: 

h(0 I 91 , • • •, 9k , f , ho) <X ho(0)f(µ1 - 0, • • •, µk - 0) , 

where f = the decision maker's density of (µ1 - 0, .. . , µk - 0), 9i = Expert i's 

prior distribution for 0, µi = the mean of Expert i's prior, and µi - 0 = the 

error of estimation for Expert i. Winkler assumes that (i) y_ = ( u 1 , . .. , uk)' = 

(µ 1 - 0, .. . , µk - 0)' is location-invariant, and (ii) 9i has been calibrated to reflect 

biases or incorrect precision assessment which the decision maker feels exists in 

Expert i's prior. 

In particular, Winkler applies his pooling method to the case in which f is 

restricted to the family of k-variate normal densities such that 
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Thus, Expert i 's (calibrated) distribution of 0 is approximately N(µi, a-;) , while 

the dependence between Experts i and j is captured by the correlation term 

Pij = O"i j / aia j for i :/:- j. 

With E known and a noninformative prior for 0, the posterior density for 

0 is proportional to N(µ* , a*2
) whereµ*= §.'E-1!!:_l§.'E-1~ , a*2 = 1/§.'E-1~ , and 

= the k x 1 vector [1 , . .. , l]'. This is the same result produced by the Lindley 

method for the case with m = 1, k > I , g_ = Q_, [}_ = ~, 1 = ~, and R assumed 

known-i.e. the case in which the decision maker makes no adjustments to the 

experts' priors, or the experts ' priors are perfectly calibrated. 

When Eis unknown , Winkler recommends the inverted Wishart distribution, 

a natural-conjugate prior distribution for the covariance matrix of a normal pro-

cess, as a satisfactory approximation for the distribution of E. In this case, with 

f(f:!:.. - 0) ex Nk(Q_ , E) and a noninforrnative prior, the consensus distribution is a 

t-density. 

6.3 Extensions to the Lindley-Winkler Method 

Several enhancements or additions have been proposed to this Lindley-Winkler 

method in recent years. Agnew (1985) extended the method under Winkler 's 

framework to multivariate fl. In the general case, Agnew assumes that the mk x 1 

error vector 1! = !:!:.. - fl ~ Nmk(Xfl, E) , where X = Im ® ~k · Um is an m x m 

identity matrix, ~k is a k x 1 vector of ones , and ® is a Kronecker product.) 

With E supplied by the decision maker (i .e. , E is known) and a noninforma-

tive prior , the decision maker 's posterior distribution for fl is proportional to 

Nm((X'E- 1 X)- 1 X'E-1 f:!:.. , (X'E- 1 X)- 1 ). This parallels Theorem 6.2 for the case 

in which the decision maker decides that no adjustment of the experts ' priors is 

necessary. If E is unknown , an inverted Wishart distribution for _, can be used, 

leading to a multi variate-t posterior distribu t ion for fl. 



Agnew discusses in detail some special cases of his general multivariate nor-

mal model for dependence. In particular, he considers dependent experts with 

independent random variables, and independent experts with dependent random 

variables. Under the former scenario, Agnew obtains the posterior density for 0 

proportional to N(µ*, 0-*
2

) from Winkler 's model extended to multivariate f. This 

is the same result we derived based on the Lindley framework , given that Piajb = 0 

for i i= j, a= l , ... , m, and b = l , ... , m. 

West (1988) extends the Lindley framework to situations in which the experts 

express their opinions about 0 in partial terms, using quantiles of the distribution 

for 0. A key aspect of West 's development is the assumption that the distribution 

of these quantiles is implicitly determined by a Dirichlet process with precision 

parameter o. Then, if p(0) represents the decision maker 's prior for 0, the decision 

maker's posterior distribution is 

p(0 I H) ex p(0) exp(-oD(0 )), 

where 

D(0) = 1: a[F(X)]f(X) log [i;t1)] dX. 

D(0) is a measure of divergence between the target density Mo(x ) and the stated 

expert density f( x ) for each 0. Mo( x ) is the anticipated form of the distribution 

of the median conditional on the true value 0, adjusting for the bias and lack 

of calibration. a[U] is a density function whose domain is the unit interval. If 

M0(x) is (x I 0) ~ N(c + 0, W) and if a single expert offers a mean and standard 

deviation for his prior distribution of 0, then West's method produces the same 

likelihood and posterior distributions as Lindley 's method with a si ngle expert and 

a single quantity of interes t. West 's method is not restri cted to distributions in the 

exponential family (which are strongly dependent on locat ion parameters), which 



he illustrates with an example involving the Cauchy distribution, but extension 

of West 's method beyond a single expert and single outcome would not be trivial. 

Gelfand (1995) builds on both Lindley and West. He allows experts to express 

their beliefs about a quantity of interest 0 in one of two partial ways-by providing 

probabilities for disjoint , exhaustive intervals in the domain of 0 , or by providing 

a set of quantiles for the distribution of 0. Gelfand advocates handling opinions of 

both types using the family of mixtures of beta distributions. He illustrates exten-

sions of his model to multiple experts, but not to multivariate~- This approach is 

more computationally demanding than other supra-Bayesian approaches outlined 

here, with its reliance on the Gibbs sampler to handle missing-data likelihoods. 

6.4 Examples 

In this section, we apply the Lindley-Winkler supra-Bayesian method to the 

examples from Chapter 4. One significant hurdle to the practical implementation 

of the Lindley-Winkler method is the definition of reasonable hyperparameter val-

ues. The interpretations of the hyperparameters, as discussed in Section 6.1.1 , are 

not often quantities easily appraised or intuitively known by the supra-Bayesian. 

As a result , we investigate the effect of the choice of hyperparameter values on the 

resulting consensus prior, using variations from a set of baseline parameter values. 

For examples with one input and one output , we set a 1 = a 2 = 0, /31 = /32 = 1, 

11 = , 2 = 1, and p = 0. With these settings, the supra-Bayesian adds no in-

formation to the two expert priors , as she considers each expert to be unbiased, 

uncorrelated , and a perfect assessor of his own precision. Thus, as a baseline 

reference point we parallel the logarithmic pooling method of Chapter 4, in which 

no attempt is made to adjust for systematic imperfections in the experts. These 

particular baseline settings are also most appropriate for many of the determin-

istic si mulation model inference problems which might be considered. Often the 



supra-Bayesian who solicits and collects expert priors on model parameters is not 

an expert herself on the model parameters. Without thorough knowledge of the 

field of each expert , she can not accurately quantify characteristics such as bias 

and precision. In addition, one might argue that less expert calibration is required 

in the deterministic simulation model setting, because experts surveyed have often 

spent years or decades studying the model parameters in question, and they con-

sider it a natural exercise to express their beliefs about the parameters in terms 

of probability distributions. 

Settings for the Lindley-Winkler model applied to R2 • R2 examples are 

merely multivariate extensions of these R 1 • R1 settings. Also note that , al-

though focus is constrained to ¢-space, similar hyperparameter effects would be 

seen in 8-space. 

6.4.1 R1 • R1 Examples 

The Lindley-Winkler method was developed for continuous variables , so ap-

plication of this method to the two R1 • R1 examples requires no major adjust-

ments. To begin , the first two moments of Pi' ( ¢>) and p2 ( ¢>) must be derived . In 

both examples, the mean and standard deviation of p2 are known. In the intro-

ductory example the mean and standard deviation of Pi' are also known, while for 

the cusp example these values can be easily estimated numerically. A consensus 

prior is then given by Theorem 6.1, which states that 

(
/J'Y:,-1 (m - a) ( )-1) p( 0 I m , ~) ex: N /3''2:,~ /3 - , (i'y:,-t {i , 

- -
where values for a , [i , and certain components of '2:, must be determined by Lind-

ley 's Bayesian decision maker N. With R 1 • R1 models, N must assign values 

to 7 hyperparameters: a;, i = 1, 2, is the additive bias for Expert i; /3;, i = 1, 2, 

is the mult iplicati ve bias for Expert i ; "Ii, i = 1, 2, is a multiplicat ive precision 

adjustment for Expert i; and , p is t he correlation between experts. 
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Figure 6.1: Introductory example: p( ¢) using the Lindley-Winkler method. Fixed 
hyperparameters: /31 = /32 = 1, 1 1 = 12 = 1, and p = 0. Variable hyperparame-
ters: (a) 0:1 = 0 , 0:2 = 0 , (b) 0:1 = l , 0:2 = 1, (c) 0:1 = l , 0:2 = 0 , (d) 0:1 = 0 , 0:2 = 1. 

Introductory Example 

The effects on the pooled Lindley-Winkler prior of varying hyperparameter 

values for the introductory R1 • R1 example of Section 4.2 are illustrated in 

Figures 6.1- 6.3. Figure 6.1 shows the effects of the additive bias term o: . P lot 

( a) represents baseline settings of all hyperparameters , reflecting a judgment by 

the decision maker N that the experts are unbiased , uncorrelated , and accurate 

estimators of their own precision. These settings produce p( ¢) which closely re-

sembles p;:( ¢). In plot ( b) , both experts were judged to have overestimated ¢ 

(0:1 = o:2 = 1) , so that p(¢ ) is shifted left when compared top(¢) in plot (a). 

Plots (c) and (d) allow one expert at a time to have nonnegative additive bias. 

o: 1 = 1 shifts p( ¢) left by approximately one unit , but o:2 = 1 has little effect 

on p( ¢ ). These panels show that the Lindley-Winkler pooled prior is influenced 

mainly by the more precise of the two original priors , which in this example is that 

of Expert 1. In addition , caution must be exercised when sett ing hyperparameter 

values to reflect lack of calibrat ion by a n expert, si nce t he pooled prior qui ckly 

moves into regions not supported by t he original two priors . The resulting pooled 
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Figure 6.2: Introductory example: p( ¢) using the Lindley-Winkler method. Fixed 
hyperparameters: a 1 = a 2 = 0 (except (d)), 11 = 12 = 1, and p = 0. Variable 
hyperparameters: (a) /31 = 1.5,/32 = 1.5, (6) /31 = 1.5,/32 = 1, (c) /31 = 1,/32 = 1.5, 
( d) a1 = 1, /31 = 1.5, /32 = 1. 

distribution can change greatly based on a single judgment of N-a judgment for 

which data rarely exists. 

Figure 6.2 illustrates the effects of the multiplicative bias term {3. Multiplica-:-

tive bias of 1.5, for instance, indicates that the expert tends to overestimate ¢ 

by 50%. In plot (a), {31 = {32 = 1.5, which pulls p(¢) towards O and reduces its 

variability. Plots (6) and (c) allow one expert at a time to have multiplicative bias 

of 1.5. {31 = 1.5 has basically the same impact as /31 = /32 = 1.5, while /32 = 1.5 

produces only slight location and scale changes in p( ¢) . Again the pooled prior 

is influenced mainly by Expert 1, the more precise of the two experts. Finally, in 

plot (d), Expert 1 has both additive and multiplicative bias (a1 = 1,/31 = 1.5). 

The multiplicative bias, in this case, tempers the shift left caused by a 1 = 1 and 

reduces the variability in p(¢). 

Figure 6.3 illustrates the effects of the precision adjustment terms ( 1 1 and ,2) 

and the correlation term (p ). A precision adjustment of 2, for instance, indicates 

that the expert was overconfident in stat ing his precision , and that standard 
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Figure 6.3: Introductory example: p( </>) using the Lindley-Winkler method. Fixed 
hyperparameters: a 1 = a 2 = 0, and /31 = /32 = 1. Variable hyperparameters: ( a) ,1 = 2,,2 = 2, p = 0, (6) ,1 = 2,,2 = 1, p = 0, (c) ,1 = 1,,2 = 2, p = 0, (d) 
')'1 = 1,,2 = 1, p = 0.9. 

deviation terms must be adjusted up by a factor of 2. In plot (a) , 1 1 = , 2 = 2, 

which increases the variabili ty in p( </> ). Plots (6) and (c) require one expert at 

a time to adjust his precision by a factor of 2. 11 = 2 has basically the same 

impact on the variability of p( </>) as 1 1 = 12 = 2, while also producing a slight 

shift right. 12 = 2 has very little impact on p( </> ), causing a very small variance 

increase and shift left when compared to 12 = 1. Finally, plot ( d) introduces 

strong dependence between the two experts (p = 0.9) . The mode of p( </>) is 

actually below the modes for both p;(</>) and p2(¢) . In addition, p(</>) exhibits a 

reduced variance, which seems counterintuitive since high correlation implies that 

less information is provided than by the two independent experts. 

Cusp Example 

Hyperparameter sensitivity for the cusp example of Section 4.3 is illust rated 

in Figure 6.4 . Plot ( a) represents basic settings of all hyperparameters- essenti ally 

perfectly c_alibrated and independent experts. p(</>) is a normal di st ri bution cen-

tered near </> = 4.5. One thing to immediately note about the application of the 
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Lindley-Winkler approach to this example is that the zero preservation property, 

even the sensible weak form, is not followed. Because of the Lindley-Winkler 

method 's requirement (through Assumption 2) that the pooled prior be normally 

distributed , p( </>) assigns non-negligible probability to </> < 0, where both Pi and 

p2 are 0, and to </> > 12.5, where Pi is 0. This feature , especially the fact that 

the pooled probability can be positive where all experts assigned zero probabil-

ity, is disturbing. Furthermore, visually and intuitively, this consensus prior does 

not seem to capture the regions of greatest agreement between the two experts , 

probably because it is difficult for a normal distribution to adequately describe 

the pooled beliefs about </> of the two experts in this example. 

In plot (b) /32 = 0.5 and in plot ( c) 11 = 2; both settings display the effects 

one would expect based on Figures 6.2- 6.3 for the introductory example. The 

pooled density shifts away from 0 and spreads out in plot (b) as Expert 2's prior 

was adjusted for alleged underestimation of q>. In plot ( c), the pooled density flat-

tens slightly as Expert 1 's prior is adjusted for alleged overly optimistic precision 

estimates. Plot ( d) features highly dependent experts (p = 0.9) , and p( </> ) shifts 

toward the more precise original prior (p2 ) while also displaying greater variability 

because of the information loss from dependent sources. Note that in plots (c) 

and (d) , significant amounts of pooled probability are nonsensically located where 

</> < 0, a region in which both experts assigned zero probability. 

Since the restriction that p( 0 I m , :i) be normally distributed produced in-

adequate consensus distributions in this example, we considered a modification 

of the Lindley-Winkler framework. We primarily hoped to obtain priors which 

better represented a consensus about </> between the two experts while avoiding 

values of </> which both experts agreed had no probability of occurring. As a re-

sult , we modified the Lindley-Win kler approach so that p(0 I m ,!2.) is di stribu ted 

as a log-norm al dist ri but ion . First , assume that each expert offers an op ,111 011 
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Figure 6.4: Cusp example: p( </>) using the Lindley-Winkler method with nor-
mality. Fixed hyperparameters: a 1 = a 2 = 0, /31 = 1, and 12 = 1. Variable 
hyperparameters: (a) /32 = 1, 11 = 1,p = 0, (b) /32 = 0.5, 11 = 1,p = 0, (c) 
/32 = 1,,1 = 2,p = 0, (d) /32 = l,,1 = 1,p = 0.9. 

about ~=log(</>) in the form of a mean (m) and standard deviation (s) . Then, 

Assumptions 1-3 must be made, where in each case e is substituted for 0, so that: 

2. p( m I ~, e) is multi variate normal with means O'.i + /Jl, standard deviations 

,i Si, and correlations Pii; and, 

3. p(O is an improper, flat (noninformative) prior 

Through an application of Theorem 6.1 , 

(
/3''f,-1(m-a) (, 1 )-1) p( e I m, ~) ex N {!"£,-: (!_ - ' (!_ r,- (!_ . 

Thus, </> is distributed log-normal, or 

{ 

( ,B 'E-1(!!!_-9.))2 } 
ms ex .!_ ex _! log(</>)- (!_'E-1(!_ 

P( <I> I _ , _) ,I., r 2 ( )-1 · 
<p (!_' 'f, - 1 (!_ 

Hyperparameters in this case describe the decision maker's evaluat ion of each 

ex pert 's stated opinion about = log( ¢ ). One immediate concern, therefore, is 
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that the decision maker must not only evaluate the abilities of each expert, but 

she now must base hyperparameter values on effects of the experts' shortcomings 

on their evaluation of log( 4> ). As an example, non-zero additive bias on the log 

scale turns into nonlinear bias with respect to ¢. Nevertheless, sensitivity of the 

Lindley-Winkler log-normal pool to choices of the hyperparameters is illustrated 

in Figures 6.5- 6.7. Figure 6.5 shows the effects of the additive bias term a. Plot 

( a) contains basic settings for all hyperparameters; for these basic settings, the 

log-normal pool appears to do a better job than the normal pool at defining a 

region of consensus and avojding ¢ < 0 where p;(4>) = p2 (4>) = 0. Distribution 

functions other than log-normal are also feasible. 

In plot (b) both experts were judged to have overestimated log( 4>) and pre-

dictably the mass of p( cp) shifts left, although p( cp) is now more precise than either 

of the two original priors. In plot ( c), Expert 1 overestimated log( cp) but interest-

ingly ( and counterintuitively) the mass of p( cp) shifts right when compared to an 

unbiased Expert 1 from plot ( a). In fact, despite evidence through the hyperpa-

rameters than Expert 1 overestimated log(¢) ( and in turn overestimated cp), the 

pooled density in plot (c) has considerable mass where¢> 12.5, a region of zero 

probability according to Expert 1. In contrast, plot ( d) illustrates the impact of 

overestimation by Expert 2, and the mass of p( 4>) shifts left of the comparable 

p( cp) featuring an unbiased Expert 2. 

Figure 6.6 illustrates the effects of the multiplicative bias term /3. Interpre-

tation of /3-parameters under log-normality is especially difficult. As j3 increases, 

p( 4>) should concentrate near ¢ = 1. As j3 decreases, however , the effect on p( cp) 

must be described in two cases. If ¢ < 1, p( cp) shifts left, while if ¢ > 1 p( cp ) 

shifts right. In all cases, the effect of changes in /3 on p( cp) are nonlinear in nature. 

In plot (a) , with .SO% overestimation by both experts , the mass of p( cp ) is indeed 

pulled toward l. With overestimation by only a single expert (plots (b) and (c)) , 
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Figure 6.5: Cusp example: p( </>) using the Lindley-Winkler method with log-
normality. Fixed hyperparameters: {31 = {32 = 1, 11 = 12 = 1, and p = 0. Variable 
hyperparameters: (a) a 1 = 0,a2 = 0, (b) a 1 = 1,o:2 = 1, (c) o:1 = 1,a2 = 0, (d) 
a1 = 0, 0:2 = 1. 

p(</>) shifts left as in plot (a) , but to lesser degrees . Overestimation by Expert 1 

has a larger effect on the consensus distribution than similar overestimation by 

Expert 2. Finally, with Expert 1 exhibiting both additive and multiplicative bias 

on log(</>) , p( </>) is pulled strongly toward 4> = l (plot ( d)) , and the pooled density 

becomes highly concentrated. 

Figure 6. 7 illustrates the effects of the precision adjustment terms ( 1 1 and 

12 ) and the correlation term (p). Again, the hyperparameters relate to experts ' 

assessments of log( 4> ), so interpretation in terms of 4> is not very intuitive. Plots 

(a)-(c) exhibit an adjustment of one or both experts ' standard deviation claims up 

by a factor of 2. As expected, these precision adjustments increased the variance 

of p(</>), in a few cases indi cating significant pooled probability for 4> > 12.5, 

where Expert 1 assigned zero probability originally. As we have noted previously, 

when the variability in Expert 1 's prior increases, Expert 2's prior has a stronger 

influence on the consensus distribution, and vice versa. This effect is illust rated 

in plots (b) and (c). Finally, plot (d) ex hibits a dist urbingly counterintui tive 
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Figure 6.6: Cusp example: p(</J) using the Lindley-Winkler method with log-
normality. Fixed hyperparameters: a 1 = a 2 = 0 (except (d)) , 11 = 12 = 1, and 
p = 0. Variable hyperparameters: (a) /31 = 1.5,/32 = 1.5, (b) /31 = 1.5,/32 = 1, (c) 
/31 = 1, /32 = 1.5, (d) a1 = 1,/31 = 1.5,/32 = 1. 

p( <P) formed under strong dependence between the two experts-the probability 

associated with ¢ peaks near ¢ = 10 and basically ignores smaller values of ¢ 

where . both experts assign fair amounts of probability. 

6.4.2 R2 • R2 Examples 

Extension of the Lindley-Winkler method to multidimensional parameter 

space is described in Section 6.1.2. Here we examine some applications for deter-

ministic simulation models with 2 inputs and 2 outputs. Each expert must report 

a mean vector with corresponding covariance matrix to describe his or her beliefs 

about ¢. In both examples , the mean vectors and covariance matrices of p2 are 

known. In the linear example the mean vector and covariance matrix of Pi are also 

known , while for the noninvertible example these values can be easily estimated 

numerically. A consensus prior is then given by Theorem 6.2 , which states that : 

p(p_ Im, , m2 , S'i , 52) ex exp {-t (fl - r) ' v-l rn. - r) } ex Nm(r, V) 
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Figure 6. 7: Cusp example: p( <P) using the Lindley-Winkler method with log-
normality. Fixed hyperparameters: a 1 = a 2 = 0, and /31 = /32 = 1. Variable 
hyperparameters: (a) 11 = 2,,2 = 2,p = 0, (b) , 1 = 2,,2 = l , p = 0, (c) 
, 1 = l , ,2 = 2, p = 0, (d) ,1 = l,,2 = l,p = 0.9. 

which is a multivariate normal distribution with mean vector f 2x 1 

VZ'Diag(~)I;- 1 (m - a) and covariance matrix ½x2 = ( Z'Diag(~)I;-1 Diag(~)z) .-1 

Hyperparameter values again must be determined by the decision maker N. With 

R2 -+ R2 models , N must assign values to 16 hyperparameters: Q = 
[a11 , a 12 , a 21 , a 22]', where aii is the additive bias for expert i and outcome vari-

able j; /3 = [/311 ,/312, /321 , /322]', where /3ii is the multiplicative bias for expert i and 

outcome variable j; 1 = [,11 , , 12, ,21, ,22]', where tii is the multiplicative precision 

adjustment for expert i and outcome variable j; and , e_ = [p11 , p12, p21, P22l' , where 

Pii is the correlation between Expert l 's assessment of outcome variable i and 

Expert 2's assessment of outcome variable j. 

Linear R2 -+ R2 Example 

The sensitivity of the Lindley-Winkler pool for the linear R2 -+ R2 example 

of Section 4.4 to hyperparameter values is illustrated in Figures 6.8- 6.11. The 

Lindley-Winkler joint consensus di stribu t ion is illustrated by the grey-scale image 

plot , with darker shading indi cating regions of higher p(cp ). The contours repre-
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Figure 6.8: Linear R2 • R2 example: p(c/>) (shaded density) using the Lindley-
Winkler method. Fixed hyperparameters: /3 = l, , = l , and p = _Q_. Variable 
hyperparameters: (a) Q = [0 , 0, 0, 0]' , (b) a--::... [1 , 1,1 , 1]', (c) a~ [1 , 0, 1, 0]' , (d) 
a = [1 , 0, 0, OJ'. 

sent the original priors Pi and p2 • Figure 6.8 shows the effects of the additive bias 

term Q. Plot ( a) represents basic settings of all hyperparameters, reflecting a judg-

ment by the decision maker N that the experts are unbiased , uncorrelated, and 

accurate estimators of their own precision with respect to both outcome variables. 

The basic settings produce a p( c/> ) which appears to be a reasonable compromise 

between P"i (c/>) and p2 (c/>); its closer proximity to p'j_ (c/>) stems from the smaller 

level of uncertainty associated with Expert l 's opinion. In plots (b)-(d), additive 

bias is assigned to various combinations of experts and outcome variables. As 

expected, p( c/> ) undergoes a location shift but not a scale shift. For instance, in 

plot (b) p( c/> ) is shifted both in the ¢1 and · ¢2 directions , while in plot ( c) p( c/> ) 

is only shifted in the </J i-direction since additive bias only exists for the </J i-terms. 

Although changes in Q produce the changes in p( cf>) which would be intuitively ex-

pected, the plots in Figure 6.8 underscore the extreme caut ion the decision maker 

must use when choosing values for the hyperparameters. The introduct ion of bias 
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Figure 6.9: Linear ~ 2 • ~ 2 example: p(</>) (shaded densi_ty) using the Lindley-
Winkler method. Fixed hyperparameters: a = Q, 1 = 1, and p = Q. Vari-
able hyperparameters: (a) {3 = [l.5,1.5 , 1.5,1.5]', (b) {3 = [1.5) , 1.5, 1]', (c) 
[}_ = [0.5 , 0.5, 0.5, 0.5]', ( d) [}_ [1, 0.5 , 1, l]'. -

correction, often based on a single, uninformed judgment by the supra-Bayesian, 

changes p( </>) markedly and must not be taken lightly. 

Figure 6.9 shows the effects of the multiplicative bias term [}_. Changes in 

[}_ affect both the location and scale of p( </> ). For example, with all /3ij terms set 

to 1.5 in plot (a), indicating 50% overestimation by each expert on each variable, 

the adjusted p( </> ) is less variable and has modes closer to 0 on both axes. In 

contrast, with all f3ij terms set to 0.5 in plot (c), indicating 50% underestimation 

by each expert on each variable, the adjusted p( </>) is more variable and has modes 

farther from 0 on both axes. In plots (b) and ( d), it can be seen that the effect of a 

change in /3ij with respect to just one variable is restricted to that one variable. For 

instance, in plot (b) /311 = /321 = 1.5, and p( </>) undergoes location (left) and scale 

(reduced) shifts along the ¢ 1-axis but not the ¢raxis. These plots in Figure 6.9 

illustrate the large effect on p( </>) that the introduction of multiplicative bias can 

cause, and again suggest that the supra-Bayesian must be extremely confident 

and careful when sett ing hyperparameter values. 
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Figure 6.10: Linear ~ 2 • ~ 2 example: p(</>) (shaded density) using the Lindley-
Winkler method. Fixed hyperparameters: a = Q., /3 = l, and p = Q.. Variable 
hyperparameters: (a) , = [2,2,2, 2]' , (b) , = [2 , 2,1 , 1]', (c) , [1 , l , 0.5,0.5]', 
(d)1=[2, 1,2,1]'. - - -

Figure 6.10 shows the effects of the precision adjustment term 1- In plot (a) all 

'Yii terms are set to 2, reflecting N 's evaluation that each expert overstated their 

confidence with respect to each variable, so that all stated standard deviations 

should be doubled. As expected , the adjusted p( </>) ( compared to fixing all ,i/s 

at 1) shows greater variance in all directions and no location shift. In plots (b) 

and (c), the precision statements of only one of the two experts are adjusted , 

and in these cases changes in both location and scale are noted. In plot (b ), 

, 11 = 1 12 = 2, and p(</>) is more variable and shifted closer to p2 (</> )because of 

the greater uncertainty in Expert l 's beliefs. In plot ( c) , 1 21 = 1 22 = 0.5, and 

p(</:>) is less variable. In addition , p(</>) again shifts toward p2 (</> ), reflecting the 

increased relative confidence associated with Expert 2's opinion. Finally, plot ( d) 

allows 1 11 = 121 = 2. Thus, both experts overstated their confidence regarding 

their opinion about </> 1 . In this case, p( </> ) expands along the </> 1-axis to reflect 

greater uncertainty, bu t its locat ion remains the same. Changes in 1 produced 

the corresponding changes in p( </> ) which one might intuitively ex pect, but care 
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must be exercised when introducing a precision adjustment , since it will alter p( </>) 

in terms of overall spread and which expert 's opinion exerts more influence. 

Figure 6.11 shows the effects of the correlation term f!...· In general , changes in 

f!... alter location slightly, but their biggest impact are in the size and shape of the 

density cloud for p(</>) . In plot (a) all Pij terms are set to 0.9 , indicating a high 

level of dependence between experts for each pair of variables. The resulting p( </>) 

exhibits more spread, likely from a decrease in available information compared 

to independent experts, and a positive correlation, due to high levels of p12 and 

p21 . When all Pij terms are set to O. 2 in plot (b), the resulting p( </>) looks similar 

to p( </> ) under no correlation , except with less of a negative correlation. In plot 

( c), correlation is assumed to exist only between experts ' opinions on the same 

variable. The resulting p( </> ) has a similar negative correlation but greater overall 

spread than p( </>) under zero correlation. Finally, plot ( d) evaluates p( </> ) for a f!... 

which could be realistic in certain situations-strong correlation between experts 

with respect to ¢ 1 , fair correlation between experts with respect to ¢2 , and low 

(but non-zero) correlation between experts with respect to opposite cp's . 

Noninvertible ~ 2 • ~ 2 Example 

The sensitivity of the Lindley-Winkler pool for the noninvertible ~ 2 • ~ 2 

example of Section 4.5 to hyperparameter values is illustrated in Figures 6.12- 6.15. 

Hyperparameter settings in these plots are identical to those in the linear ~ 2 • ~ 2 

example. One thing to note about the application of t_he Lindley-Winkler approach 

to this example is that the strong form of the zero preservation property is not 

followed. Even though p"{(</>)= 0 in the region above ¢ 1 = ¢2 - ¼, the Lindley-

Winkler p( </>) need not be O for these </>-points; in fact, some hyperparameter 

settings produce p( </>) with significant mass in that region . Of course, the strong 

form of ZPP is probably too restrictive to be desirable, so the lack of strong ZPP is 
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Figure 6.11: Linear R2 • R2 example: p(</J ) (shaded density) using the Lindley-
Winkler method. Fixed hyperparam~ters: a: = Q, /3 = l, and , = 1- Variable 
hyperparameters: (a) p = [0.9,0.9,0.9,0.9]', (b) p [0.2,0.2,0~2,0.2]', (c) p = 
[0.5,0,0,0.5]', (d) f!. = [o.9, 0.2,0.2,0.5]'. - -

not necessarily a negative feature, but rather a result of the normality assumption 

employed. 

Figure 6.12 shows the effects of a: . Plot (a) represents basic settings of all 

hyperparameters , and p( <p) in this case follows very closely to p2 ( <p ); because Pi ( <p) 

has its probability mass spread over a much broader region than p2(¢), pi(¢) has 

very little influence over the pooled distribution. In plots (b )-( d) , additive bias is 

assigned to various combinations of experts and outcome variables. As expected, 

p( <p) undergoes a location shift but not a scale shift. For instance, in plot (b) 

p( <p) is shifted both in the ¢ 1 and ¢ 2 directions , while in plot ( c) p( <p) is only 

shifted in the ¢i-direction since additive bias only exists for the ¢ 1-terms. In plot 

( d) , a correction for Expert 1 's overestimate of ¢ 1 produces only a small shift 

left in p( ¢ ). As in the other examples in this chapter, Figure 6.12 illustrates 

that simple changes in the hyperparameter settings can cause significant changes 

in p( ¢ ). Sometimes a certain shi ft in p( <p) will be expected and desired by the 

supra-Bayesian , but troubling changes such as in plot (c) can also occur, where 
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Figure 6.12: Noninvertible lR2 • lR2 example: p(</>) (shaded density) using the 
Lindley-Winkler method. Fixed hyperparameters: j3 = l, 1 = l , and p = .Q.. Vari-
able hyperparameters: (a) a= [0,0,0,0]', (b) g_ = [1 ,1 , 1;1]', (c) a -[1 ,0, 1,0]', 
(d) a= [1 , 0, 0,0]'. 

nearly half of the · mass of p( </> ) 1s in a region of ¢>-space originally considered 

impossible by Expert 1. 

Figure 6.13 shows the effects of /3 . Changes in(}_ affect both the location and 

scale of p( </> ). For example, with all /3ij terms set to 1.5 in plot ( a) , indicating 50% 

overestimation by each expert on each variable, the adjusted p( </> ) is less variable 

and has mode closer to 0 on the ¢ 1 -axis. (The mode of p( </> ) on the ¢raxis is 

essentially 0 under the basic settings.) In contrast, with all /3ij terms set to 0.5 

in plot ( c), indicating 50% underestimation by each expert on each variable the 

adjusted p( </>) is more variable and has ¢ 1-mode farther from 0. In plots (b) and 

( d), it can be seen that the effect of a change in /3ij with respect to just one variable 

is restricted to that one variable. For instance, in plot (b) f3u = /321 = 1.5, and 

p( </>) undergoes location (left) and scale (reduced) shifts along the ¢ 1 -axis but 

not the ¢raxis. The shifts in p( </> ) observed in Figure 6.13 match closely with 

intuition , but one also notes t he dominance of Expert 2's op inion and the poten t ial 

for sign ificant changes in p( </> ). 
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Figure 6.13: Noninvertible R2 -+ R2 example: p(</J) (shaded density) using the 
Lindley-Winkler method. Fixed hyperparameters: a = Q_, 1 = 1, and p = Q_. 
Variable hyperparameters: (a) /3 = [1.5 , 1.5, 1.5, 1.5]', (b) /3:;;;;; [1.5, 1, 1.5,1]' , (c) 
{!. = [0.5 , 0.5 , 0.5 , 0.5]' , (d) {!. = [l, 0.5 , 1, l]'. -

Figure 6.14 shows the effects of the precision adjustment term 1- In plot (a) all 

iii terms are set to 2, reflecting N's evaluation that each expert overstated their 

confidence with respect to each variable, so that all stated standard deviations 

should be doubled. As expected , the adjusted p( <p ) ( compared to fixing all "/;j's 

at 1) shows greater variance in all directions and no location shift. In plots (b) 

and (c) , the precision statements of only one of the two experts are adjusted, 

and in these cases changes in both location and scale are noted. In plot (b), 

111 = 1 12 = 2, and p( <p) is more variable, reflecting the greater uncertainty in 

Expert l 's beliefs. In plot ( c) , 121 = 122 = 0.5, and p( <p) is less variable. o 

location shift as occurred with these settings in the linear ~ 2 -+ R2 example is 

noticeable, possibly due to the lack of influence of p'j_ (¢). Finally, plot (d) allows 

111 = 121 = 2. Thus, both experts overstated their confidence regarding their 

opinion about c/> 1. In this case, p(</J) expands along the c/> 1-axis to reflect greater 

uncertainty, but its locat ion remains the same. F igure 6.14 again illust rates t he 
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Figure 6.14: Noninvertible ~ 2 • ~ 2 example: p( <:p) (shaded density) usmg 
the Lindley-Winkler method . Fixed hyperparameters: a = Q., f3 = l, and 
p = Q_. Variable hyperparameters: (a) 1 = [2,2,2,2]', (b) 1 = [~2, 1,1]', (c) 
1 = [1, 1, 0.5, 0.5]', ( d) 1 = [2, 1, 2, 1]'. -

strong influence of Expert 2 and the potential changes in p( <:p) which adjustments 

in precision can bring through one judgment of the decision maker. 

Figure 6.15 shows the effects of the correlation term f!.: In general, changes in 

f!._ alter location slightly, but their biggest impact are in the size and shape of the 

density cloud for p(</J). In plot (a) all Pii terms are set to 0.9 , indicating a high 

level of dependence between experts for each pair of variables. The resulting p( ¢) 

exhibits more spread, likely from a decrease in available information compared 

to independent experts , and a positive correlation, due to high levels of p12 and 

P2i- When all Pii terms are set to 0.2 in plot (b) , the resulting p( <:p) looks similar 

to p( <:p) under no correlation, except with a small positive correlation . In plot 

( c) , correlation is assumed to exist only between experts ' opinions on the same 

variable. The resulting p( <:p) has greater overall spread than p( <:p) under zero 

correlation. Finally, plot ( d) evaluates p( <:p ) for a f!.. which could be realistic in 

certain situations-strong correlation between experts with respect to ¢ 1 , fair 

correlation between experts with respect to ¢2 , and low (but non-zero) correlation 
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Figure 6.15: Noninvertible ~ 2 • ~ 2 example: p(<f>) (shaded density) using the 
Lindley-Winkler method. Fixed hyperparameters: a = Q, /3 = l, and 1 = 1-
Variable hyperparameters: (a) p = [0.9, 0.9, 0.9 , 0.9)' , (b) p [0.2, 0.2 , 0.2, 0.2]' , 
( c) e_ = [0.5, 0, 0, 0.5)' , ( d) e_ = [0~9, 0.2, 0.2, 0.5]'. -

between experts with respect to opposite </>' s. Because of the strong influence of 

p2 ( <f>) , changes in e_ had little effect until Pii approached 1. 

6.5 Summary 

In general , the Lindley-Winkler supra-Bayesian method for pooling expert 

opinion performed reasonably well in certain cases, but limitations of the method 

prevented it from performing well in other cases. In the following paragraphs, the 

strengths and limitations of the Lindley-Winkler method will be outlined in the 

context of pooling priors linked by a deterministic simulation model. 

The requirement that the pooled density be normally distributed can be 

unduly restrictive. The normality assumption simplifies the mathematics , allows 

for a closed-form expression of the decision maker 's updated prior , and provides 

for intuitively appealing hyperparameters. These features are appealing compared 

to the French-Lindley framework. However, the bottom line is sti ll to obtain a 

pooled dist ribution which represents a reasonable consensus between the beliefs 
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of the two experts , and the assumption of normality can prevent achievement 

of the bottom line. In some situations, such as the noninvertible R2 -+ R2 and 

cusp examples, a normal pooled density does not adequately represent certain 

aspects of the problem, such as t runcated distributions or decidedly non-normal 

expert priors. Under normality, the Lindley-Winkler method does not necessarily 

adhere to the weak version of the zero preservation property, which states that 

the pooled probability should be zero wherever all individual expert priors are 

zero. In the cusp example, we felt compelled to relax the normality assumption in 

favor of an assumption of log-normality. Our resulting poolings seemed to better 

represent a consensus between experts, but removing the normality assumptions 

brought other problems, such as in the interpretation of hyperparameters. By 

extending it to different or more general classes of distributions , the Lindley-

Winkler framework becomes more applicable to a variety of practical situations, 

as long as the hyperparameters remain intuitive to the decision maker. 

As with any supra-Bayesian method , careful and accurate assessments of ex-

pert abilities and the expression of these assessments with appropriate values of 

hyperparameters is of extreme importance. A strength of the Lindley-Winkler 

method-one supported by the examples in this chapter- is the intuitive nature 

of the hyperparameters. Changes in hyperparameter values lead to the expected 

corresponding changes in the pooled densities , in most cases. However , the re-

sulting Lindley-Winkler poolings are tied too closely to the final hyperparameter 

values to make this method useful in most inference problems involving deter-

ministic simulation models. In all the examples we investigated , small changes 

in a si ngle hyperparameter could produce significant changes in the pooled prior. 

Thus, one judgment by the supra-Bayesian decision maker, often made in the 

absence of adequate data, can great ly impact the final result. In determinist ic 

simulation modeling, the decision maker is often someone (such a.s a stat ist ician) 
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who possesses some general knowledge of the field but none of the specific knowl-

edge regarding individual model parameters that the surveyed experts do. In 

addition, the '1input experts" and the "output experts" may work in mostly un-

related fields. As a result , the chances are small that a single, omniscient decision 

maker holds enough knowledge and insight to accurately evaluate each expert 

with respect to bias, precision, and correlation. And without such a decision 

maker, the Lindley-Winkler poolings can not easily be trusted. A misinformed 

or biased decision maker can too easily generate pooled densities which either do 

not sufficiently represent a consensus opinion or too closely reflect the beliefs of 

the decision maker. 

Deterministic simulation models create another complication for the Lindley-

Winkler or any other supra-Bayesian method. If we are interested in obtaining 

a consensus opinion about output parameters ¢ , then the supra-Bayesian deci-

sion maker must determine hyperparameter values for all experts in terms of ¢. 

However, in a deterministic simulation model, one of the opinions to be pooled 

comes from an expert who expressed an opinion about input parameters 0, and 

then his opinion is transformed through the model into ¢-space. Evaluating the 

ability of this "input expert" to state opinions about <pis a nearly impossible task , 

since the "input expert" may not even have knowledge of the model which maps 

inputs into outputs. Hyperparameters set in 0-space would require an appropri-

ate transformation into ¢-space and would probably lose interpretability in the 

process. 

Another characteristic of the Lindley approach which is both an advantage 

and a shortcoming is the requirement that each expert offer a mean and standard 

deviation to reflect his or her beliefs about the parameter of interest . On one 

hand, it greatly simplifies the prior solicitation process by not requiring experts 

to express their beliefs in terms of entire dist ributions. It is much more realist ic 
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to expect that experts can convert their opinions into two descriptive statistics 

rather than an entire probability distribution . On the other hand , the mean and 

standard deviation do not adequately describe many common dis tributions . In 

both the noninvertible ~ 2 -+ ~ 2 and the cusp examples, information about the 

shapes of the priors was lost by soliciting only a mean and a standard deviation. 

As discussed in Section 6.3, the Lindley-Winkler framework is currently being 

extended to allow experts to express their beliefs in terms of sets of quantiles or 

sets of probabilities for disjoint intervals. These efforts should make the Lindley-

Winkler method applicable to a wider range of situations. 

In conclusion, the Lindley-Winkler method performs nicely under controlled 

circumstances when the normality assumption does not become too restrictive, 

but it is limited by its reliance on sound, sensible hyperparameters determined by 

the supra-Bayesian decision maker. 
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Chapter 7 

A Comparison of Four Pooling Approaches 

7.1 Description 

In Chapter 2, several methods for combining expert opinion were summarized, 

their strengths and weaknesses sketched out. Then, in Chapters 3- 6, three specific 

approaches were discussed in greater detail , and their performances in several 

examples were evaluated. 

In this chapter, we compare and contrast pooled prior distributions stem-

ming from various approaches with respect to five different examples. The pooling 

approaches being compared are: logarithmic pooling, the French-Lindley supra-

Bayesian approach, the Lindley-Winkler supra-Bayesian approach, and linear 

pooling. The pooled priors under these approaches will be denoted by Plog ( cp ), 

PFL(¢ ), PLw(¢), and Piin(¢) , respectively. Although linear pooling was not cov-

ered in detail in Chapters 3- 6, it is a common, easily-implemented approach 

which is natural to include in a large comparison of possible approaches to the 

problem of combining expert opinion. The five examples- introductory, cusp , 

linear ~ 2 • ~ 2 , noninvertible ~ 2 • ~ 2 , and whale population model- are first 

discussed in Chapter 4. 

The goal of this comparison is to examine which method(s) are most suit-

able for pooling priors linked by deterministic simulation models. We consider 

suitability to depend primari ly on three factors. First , the theoreti cal properties 

of a method must be considered. Properties such as external Bayesianity, rela-



tive propensity consistency, and the zero preservation property are introduced in 

Chapter 2, and their merits and desirability are discussed in Section 2.3. Methods 

which satisfy many of these desirable properties reduce the chances of encounter-

ing unanticipated difficulties with an application. Second, theoretically justifiable 

methods must exhibit robustness in practical situations-performing well over 

a wide variety of examples and applications. In this chapter, we evaluate each 

method over 5 examples ranging from single dimensions , normally distributed 

priors, and linear mappings to higher dimensions , non-normally distributed priors 

with truncation, and noninvertible models. Ideally, a good method will provide 

a pooled prior in each example which represents a reasonable consensus between 

experts . Third, the selection and sensitivity of hyperparameters or weightings 

incorporated in a method must be evaluated. The hyperparameters or weightings 

should be intuitively meaningful and easy to set, their influence on the pooled prior 

should match expectations 1 and the pooled prior should not be highly sensitive to 

small changes in these parameters. 

One tricky yet unavoidable issue is the level at which hyperparameter values 

should be set for the supra-Bayesian approaches in these comparisons. A priori , 

even before generating the examples contained in Chapters 5 and 6, we selected 

values for all hyperparameters according to our best intuition in light of the def-

inition and purpose of each hyperparameter. For the Lindley-Winkler approach 

with one input and one output , we set a 1 = a 2 = 0, {31 = {32 = 1, 1 1 = 12 = 1, and 

p = 0. With these settings, the supra-Bayesian essentially adds no information 

to the two expert priors, as she considers each expert to be unbiased, uncorre-

lated , and a perfect assessor of his own precision. Settings for the Lindley-'Winkler 

model applied to R2 • R2 exam ples are merely multivariate extensions of these 

R 1 • R 1 sett ings. For t he group decision maker approach of French-Lindley, we 

set: m 1 = m 2 = 2, m1 = m 2 = -2, s 1 = s 2 = 1, and p = 0. Unfortunately, the 
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French-Lindley approach does not have a convenient, meaningful set of default 

hyperparameters as in the Lindley-Winkler approach. With the settings chosen, 

the mean probability that an expert assigns to an event A which subsequently 

occurs is .88 with approximate 95% confidence interval (.50, .98), assuming nor-

mality in the log-odds. The mean probability that an expert assigns to an event 

A which subsequently does not occur is .12 , with approximate 95% confidence in-

terval ( .02, .50). In addition, the two experts are assumed to be independent with 

respect to their information sources which contribute to their prior beliefs. For 

linear pooling and logarithmic poolings, both experts are assigned equal weights 

of½-

7.2 Introductory Example 

Pooled priors from each of the four approaches applied to the introductory 

example of Section 4.2 are presented in Figure 7.1. The logarithmic pool is a 

reasonable compromise between the two experts-p10 g( </>) modifies Pi ( </>) to account 

for the greater uncertainty and higher mode of p2 ( </>) . The linear pool Plin ( </>) is 

also a fairly reasonable compromise, with a larger right tail to reflect the beliefs 

of Expert 2. The consensus prior under the Lindley-Winkler approach seems to 

overweight Expert 1 's opinion, in that PLW ( </>) closely follows p'"i_ ( </>) with an even 

smaller variance. One would expect a larger variance in p( </>) than P'i ( </>), however , 

since knowing the opinion of Expert 2 adds uncertainty to the beliefs of Expert 

1 instead of providing solid confirmation. Finally, the consensus prior under the 

French-Lindley approach is the most extreme, exhibiting a reasonable mode but 

an unreasonably small variance. 

7.3 Cusp Example 
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Figure 7.1: Introductory example: p(ef>) under the (a) logarithmic pool, (6) linear 
pool, ( c) French-Lindley pool , ( d) Lindley-Winkler pool. 

Pooled priors from each of the four approaches applied to the cusp example 

of Section 4.3 are presented in Figure 7.2. This example is difficult to assess 

because of the strong incoherence between the two experts , so what represents a 

reasonable consensus is quite subjective. Plog( ¢>) is perhaps the most sensible of 

the four poolings. It provides balance between the two experts ' assessments with 

its 1arge concentration of mass below ¢ = 4, where Expert 2 assigns nearly all 

of his probability, and its long right tail to reflect Expert l's uncertainty. Plin(ef>) 

is maximized near ¢ = 0 and minimized at ¢ = 12.5, but the probability at the 

maximum point is only 2 or 3 times that at the minimum. Although a reasonable 

representation of a consensus, Plin ( ¢) fails to recognize regions of high agreement 

between the experts . PLw ( ¢) is centered near ¢ = 4, a level of ¢ to which both 

experts assign a reasonable level of probability, but its normal shape is inadequate 

for capturing the agreement between these two experts. One may consider relaxing 

the Lindley-Winkler assumptions to allow non-normal distributions for the pooled 

prior to be explored in this example. Finally, PFd ¢) is concentrated even more 

tightly around ¢ = 4, ignoring the uncertainty and incoherence expressed by the 

experts. 
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Figure 7.2: Cusp example: p( ¢) under the ( a) logarithmic pool , (b) linear pool , 
( c) French-Lindley pool , ( d) Lindley-Winkler pool. 

7.4 Linear lR2 • lR2 Example 

Pooled priors from each of the four approaches applied to the linear lR2 • lR2 

example of Section 4.4 are presented in Figure 7.3. The logarithmic pool and the 

Lindley-Winkler method give very similar pooled priors which are both reasonable 

consensuses of the two expert opinions. The modes of both Plog( </> ) and PLW ( </>) 

lie between the modes of P2 ( </> ) and Pi ( </>) , shading toward p'j_ ( </> ) since Expert 1 

has less uncertainty than Expert 2 with respect to beliefs expressed in ¢-space. 

Plin ( </>) is too similar to p'j_ ( </>) , overlapping Expert 1 's prior for the most part 

and conceding the differing opinion of Expert 2 only through an extension toward 

p2 ( </>) in the tail. Finally, PFL ( </>) does a poor job of coherizing the two experts' 

beliefs, concentrating mass in regions of ¢-space in which ¢2 is too large to be 

likely under Pi ( </> ) and ¢ 1 too large to be likely under p2 ( </>) . 

7.5 Noninvertible lR2 • lR2 Example 

Pooled priors from each of the four approaches applied to the noninvertible 

lR2 • lR2 example of Sect ion 4.5 are presented in Figure 7.4 . Plog( </> ) and Plin( </> ) 
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Figure 7.3: Linear R2 • R2 example: p(<p) (shaded density) under the (a) loga-
rithmic pool, (b) linear pool, ( c) French-Lindley pool , ( d) Lindley-Winkler pool. 

have similar attributes; the largest densities are found near the intersection of the 

truncation line of p"j_( <p) and p2 ( <p ), and further density contours fan out toward 

the maximum density of p2 ( <p ). As a result, these two approaches probably offer 

the most sensible poolings in this example. PFd <p) is also somewhat similar to 

Plog( <p) and Plin ( <p) , except that it lies above and to the right of the other two 

pooled densities , which makes little sense since in doing so it avoids those <p to 

which Expert 2 ascribes the highest probability. Finally, PLw(¢) basically mirrors 

p2 ( <p), with the only effect of the opinion of Expert 1 being a small positive 

correlation. By constraining the pooled density to be multivariate normal, the 

Lindley-Winkler method also allows significant mass to be assigned to the region 

in ¢-space which Expert 1 considers to have zero probability. 

7.6 Whale Population Model 

Pooled priors from each of the four approaches applied to the bow head whale 

population model of Section 4.6 are presented in Figures 7.5. As with the cusp ex-

ample, this example is difficult to assess because of the strong incoherence between 

the two experts when their beliefs are both expressed in ¢ -space. In Figure 7.5, 
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the contour plots representing Pi ( q>) are not smooth; most of the mass of Pi ( q> ) 

is concentrated along a horizontal line at ¢2 = 35 running from ¢1 = 12, 000 to 

¢1 = 25,000. Regions of lower probability extend from this line , so that those 

points which intersect p2 (</> ) have fairly low probability under p;(</>) . Plog(</>) ap-

pears to best capture the regions of agreement between Experts 1 and 2, although 

it tends to overweight p2 (</>) slightly. PLw(</>) also does a fairly reasonable job of 

quantifying a set of pooled beliefs, although its normality restriction prevents it 

from fully capturing the uncertainty and shape of the consensus region. Plin ( q>) 

and PFd </> ) suffer from the same flaws which plagued them in the linear R2 • R2 

example- p1in(</>) follows too closely to Pi(</>) , recognizing p2 (</>) only with small 

tail probabilities, and PFd q> ) is located in regions where both experts assign neg-

ligible probability. 

7. 7 Summary: Recommendations on Pooling Methods 

An examination of these five examples , which constitute just a small set of 

pooling problems which emerge in inferential situations involving deterministic 
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Figure 7 .5: Whale population model: p( </>) ( shaded density) under the (a) loga-
rithmic pool , (b) linear pool , (c) French-Lindley pool, (d) Lindley-Winkler pool. 

simulation models , the logarithmic pool seems to be the most consistently reason-

able coherization of the two experts ' beliefs. However, as described in Section 7.1, 

performance over a range of appropriate examples is just one factor in determining 

which method(s) are most suitable for pooling priors linked by deterministic sim-

ulation models. In the following paragraphs , we evaluate each of the four pooling 

methods in light of all important suitability factors. A summary of this discussion 

can be found in Table 7 .1. 

7. 7 .1 Logarithmic Pooling 

Theoretical Properties . The logarithmic pool stands on strong theoretical 

ground . It is the unique pooling method which is externally Bayesian, so that the 

order of pooling and updating does not' mat ter when forming Bayesian probabili-

ties. It is the unique relative propensity consistent pooling method , ensuring that 

the pooled distribution must favor event A 2 over A1 whenever all experts favor 

A 2 over A1 . It also possesses the strong version of the zero preservat ion property, 

so that p( </> ) is O whenever any expert assign O probability to </> ; th is version of 

ZP P can be a bit rest ri ct ive. 
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Log pool Linear pool FL pool LW pool 

Theoretical Properties: 
externally Bayesian yes no yesa nob 

RPC yes yes no /Ac 
ZPP (weak) yes yes yes nod 

ZPP ( strong) yes no noe nod 

Performance in Examples: 
linear ~ 1 good good terrible poor 
cusp ~ 1 good fair terrible fair1 

linear ~ 2 good fair terrible good 
noninvertible ~ 2 good fair poor poor 
whale ~ 2 fair fair terrible poor 

Hyperparameters: 
number required 1 1 7 m(m + 6)9 

intuitive / easy to set yes yes no somewhat 
robustness yesh yesh no no 

aobeys a variation of external Bayesianity defined by French (1985) . 

bHowever, Lindley (1985) argues that external Bayesianity is not a desirable property under 
the supra-Bayesian framework. 

cNot applicable because Lindley-Winkler framework only requires first two moments from 
each expert. 

dConceptually, non-normal models using the Lindley-Winkler method can sometimes be 
found to obtain ZPP; however, deriving such a parametric form can be difficul t or impossible in 
practice. 

e o strong ZPP for the manner in which we apply the French-Lindley method to continuous 
parameters; however , strong ZPP does hold for individual events. 

f Performance could be improved by using log-normal rather than normal model (see Sec-
tion 6.4 .1) . 

9 Assumes m outcome variables. 

h Examples not described in this dissertation suggest that this method is not overly sensitive 
to reasonable changes in the pooling hyperparameter. 

Table 7.1: Comparison of 4 pooling methods. 
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Robustness. Over the range of our examples, the logarithmic pool consistently 

produced reasonable consensus distributions. 

Hyperparam eters. Only one parameter must be set when pooling priors ac-

cording to the logarithmic pool-a such that p( q>) ex: p2 ( q> )°pi ( q> )1
-

0
• a can be 

thought of as the relative levels of faith the decision maker has in the two experts, 

although how to choose a specific a based on data or informed opinions is not 

entirely clear. We have consistently set a= ½ for two reasons: (i) often there is 

no justifiable a priori reason to assume that one expert is superior to another, and 

( ii) results are invariant to relabeling for any M with a = ½ · evertheless, the 

logarithmic pool is not overly sensitive to reasonable changes in a. 

7.7.2 Linear Pooling 

Theoretical Properties. The linear pool possesses some desirable theoretical 

properties but lacks others. It is not externally Bayesian, so that a Bayesian pos-

terior distribution formed under linear pooling might be different depending on 

whether one pools expert opinions together and then updates the pooled distribu-

tion with a data-driven likelihood function , or whether one updates each expert 's 

prior distribution individually and then pools the expert posteriors. However, the 

linear pool is relative propensity consistent, and it possesses the weak version of 

the zero preservation property, so that p( q> ) is O whenever all experts assign 0 

probability to q>. 

Robustness . Over the range of our examples, the linear pool produced consen-

sus distributions which were usually appealing. The biggest negative is that one 

expert can often exert undue influence on the linear pool , marked by long tails and 

locations driven almost exclusively by one expert. In addition, the linear pool can 

sometimes be bimodal , which reflects its tendency to average probabilities rather 

than zeroing in on regions of agreement. 
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Hyperparameters. Only one parameter must be set when pooling priors ac-

cording to the logarithmic pool-a such that p( <P) ex: a · p2 ( <P) + ( 1 - a) · p; ( <P ). a 

can be thought of as the relative levels of faith the decision maker has in the two 

experts, although how to choose a specific a based on data or informed opinions 

is not entirely clear. As in logarithmic pooling, we consistently set a = ½ to 

reflect an a priori belief of equal experts even though the linear pool is not overly 

sensitive to reasonable changes in a. 

7. 7 .3 French-Lindley supra-Bayesian Pooling 

Theoretical Properties. The French-Lindley method follows the weak form 

of the zero preservation property. On the other hand, a pooled prior formed un-

der the French-Lindley approach does not possess external Bayesiani ty. However , 

Lindley (1985) argues that, under the supra-Bayesian philosophy of treating ex-

pert priors as data for the decision maker, external Bayesianity is not necessarily 

desirable. In addition , French (1985) shows that the French-Lindley pool adheres 

to a variation of external Bayesianity assuming that the decision maker knows 

the new data which the experts have observed. The French-Lindley pool 's biggest 

theoretical shortcoming is the failure of RPC , which can arise depending on the 

hyperparameter settings. These failures have been described in Section 5.4. 

Robustness. Consensus distributions from the French-Lindley pool were, in 

general, very unsatisfying. In R1 • R1 examples, for instance, the pooled priors 

had too little variability, while in the R 1 • R1 examples the pooled priors were 

often concentrated in regions favored by neither expert. 

Hyperparamet ers. The hyperparameters required to evaluate the experts' 

bias, correlation, and precision assessments are difficult to use. Their interpreta-

tions are not int ui tive, seemingly reasonable sett ings are capable of producing un-

reasonable poolings, and the pooled distribution is extremely sensit ive to changes 
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in the hyperparameters. For instance, some could argue that we happened to select 

a poor set of default hyperparameter values for the examples in this chapter, and 

that a wiser choice would have presented the approach in a better light. Although 

further experimentation shows that more reasonable pooled densities can emerge 

from the French-Lindley approach in some cases (like the introductory example), 

in other cases (like the linear R2 -+ R 2 example) we were unable to form any 

reasonable pooling. Furthermore, it is inappropriate to experiment post-hoc until 

a pooled density seems satisfactory with real examples. Thus, the French-Lindley 

method seems ill-suited for the multi-dimensional, multi-event pooling required 

for use with deterministic simulation models. 

7. 7.4 Lindley-Winkler supra-Bayesian Pooling 

Theoretical Properties. As with the French-Lindley supra-Bayesian approach, 

the Lindley-Winkler pool does not possess external Bayesianity, although Lindley 

(1985) argues that external Bayesianity is not a desirable property for supra-

Bayesian methods. For the Lindley-Winkler approach, RPC is not necessarily 

applicable, since experts are not required to offer event probabilities or entire 

distributions expressing their beliefs-they must only summarize their beliefs via 

a mean and a standard deviation. The biggest theoretical shortcoming of the 

Lindley-Winkler approach is its failure to adhere to the zero preservation property 

in its weak form , although this is not a fatal flaw. Because of the normality 

assumption, the Lindley-Winkler pool can ascribe significant probability in regions 

where no expert has assigned any positive probability. 

Robustness . Where the normality assumption is appropriate , the Lindley-

Winkler pool performs well , but it other cases it performs rather poorly. In 

earlier experiments with the cusp example of Section 4.3 we relaxed the normality 

assumption to allow the pooled prior to be distributed log-normal ; this seemed to 
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produce a better consensus distribution, but at the expense of parameter inter-

pretability and generalizability. 

Hyperparameters. The Lindley-Winkler hyperparameters are much more in-

tuitively meaningfulthan their French-Lindley counterparts, and they appear to 

have the expected effect on the pooled prior. However, choosing a sound set of 

hyperparameter values is still a monumental task for the decision maker because 

of the sheer number of them and the vast knowledge base required to evaluate 

all experts. In addition, the pooled prior is very sensitive to changes in the hy-

perparameters , placing further stress on the already tenuous task of assigning 

appropriate values to the hyperparameters. 

7.7.5 Conclusion. 

After examining all factors , we recommend logarithmic pooling as the most 

suitable method for pooling prior distributions linked by a deterministic model. 

In obtaining log pooled prior distributions , we recommend the adaptive version 

of the algorithm described in Chapter 3, especially in many inference problems 

involving deterministic simulation models when one is limited to few iterations 

and/or small numbers of model simulations. 
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Chapter 8 

An Application of Log Pooled Inference 
Methods to an AIDS Transmission Model 

8.1 Hethcote's Model: Background 

AIDS (Acquired Immunodeficiency Syndrome) is caused by a retrovirus, HIV-

1, which infects T-helper cells. This virus eventually causes T-helper cell counts to 

fall , which allows opportunistic infections that are signs of the immune deficiency 

to appear. The virus can also invade the brain, giving sign of dementia. HIV 

is transmitted by sexual intercourse, by transfusion of infected blood, and by 

sharing needles during drug use. The first known American case of AIDS was 

a male homosexual living in Los Angeles whose symptoms were diagnosed in 

March, 1978, but some evidence points to unrecognized cases as far back as the 

1960s (Pickering et al., 1986; Jacquez et al., 1988). The early cases in the United 

States were primarily homosexual men and IV drug users , but it spread quickly 

beyond those two groups. As of late 1996, the United States has had the highest 

number of reported AIDS cases in the world , with over 581 , 429 cases and 326, 000 

deaths (Centers for Disease Control, 1997). 

Early in the epidemic, statisticians and mathematical modelers began collab-

orating with epidemiologists , medical researchers , and public health officials to 

gain understanding and predi ct the course of the epidemic. The modeling effort s 

have been reviewed by Isham (1988) and Foulk s (1998). Models hav been use-

ful in understanding the progress ion of the HIV infect ion , in recognizing social 



and biological variables which can affect transmission rates , in forecasting future 

AIDS cases, and in evaluating clinical assumptions or providing guidance on policy 

choices. 

In particular, Hethcote et al. (19916; 1991a) developed an epidemiological 

simulation model for HIV transmission. The Hethcote model requires parameter-

ization of the population structure, interaction patterns, transmission dynamics , 

and disease progression in order to describe the system by which AIDS spreads. 

The model of Hethcote et al. describes the transmission of AIDS in the popula-

tion of homosexual and bisexual males in San Francisco. Because blood samples 

were saved from participants in a hepatitis B vaccine trial starting in 1978, San 

Francisco is the only place where pre-1984 data on HIV incidence are available 

(Hethcote et al. , 1991a) , so data from San Francisco has been used in several 

AIDS modeling efforts. In addition , San Francisco has proven to be a good site 

for behavioral surveys because of the large open community of homosexual men 

there. Models developed using the San Francisco data can often be generalized to 

other populations. 

The progression from HIV infection to AIDS and death can be described in 

several stages. Longini et al. (1989; 1990) modeled the natural history of HIV 

as a 5-stage process: 1) infected but antibody negative, 2) antibody positive but 

asymptomatic, 3) symptoms begin developing, especially abnormal hematological 

indicators, 4) clinical AIDS , and 5) death. The course of infection and progression 

to AIDS is highly variable. Longini has estimated median waiting times of 1.5 

months before antibodies are developed, 36.5 months before symptoms appear, 

43.6 months before the T-helper cell count drops enough that the opportunistic 

infections that signal clinical AIDS begin , and 16.3 months until eventual death 

due to AIDS. Identification of these stages is important in model development 

because the infect iousness and the sexual act ivity patterns of infected persons 
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can vary considerably in the different stages. In addition to the stages of HIV 

progression, two assumptions are made which further differentiate AIDS models 

from typical models of transmission for infectious diseases. First, the latent period 

(the time from when a person is infected with HIV to when he can pass on the 

disease to others) is assumed to be short enough to be ignored in a model. Second, 

HIV infectivity is assumed to continue for life, since no evidence exists that the 

virus ever leaves the host, even if it never develops into clinical AIDS. 

Hethcote 's model is compartmental, where the compartments are defined by 

not only the stages of progression from HIV infection to AIDS , but also by the 

sexual activity of members of the study population. The population is divided into 

men who have many different sexual partners (very active) , those who have only a 

few different partners (active), and a third category for those who emigrate. The 

flow of subjects among the compartments is governed by many parameters. These 

input parameters can be divided into three groups- those related to population 

size, those related to stages of infection, and those related to sexual activity levels. 

The population category contains parameters such as 

• total population size, 

• fraction of population who are sexually very active , 

• ratio of partnership rates for very active and active men , 

• natural mortality rate , and 

• transfer rate between very active and active states. 

The stages of infedion category contains parameters such as 

• number of infectious stages, 

• rate of progress ion from stage k to stage k + l , 
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• relative infectivity of stage k men compared with asymptomatic men , and 

• relative sexual activity of stage k men compared with asymptomatic men. 

The sexual activity category contains parameters such as 

• starting date of the epidemic, 

• probability of transmission to partners by infected asymptomatic men, 

• average number of partners per month at the start, 

• starting date for reduction in average number of partners per month ( as 

awareness about AIDS increased), 

• stopping date for reductions, 

• yearly reduction factor, and 

• fraction of new partnerships distributed by proportionate mixing. 

8.1.1 Our Version of Het hcote 's Model 

For our purposes, we consider a version of Hethcote's model with 6 input 

variables and 6 output variables , fixing all other variables at levels suggested by 

Hethcote. Specifically, we consider the following 6 input variables: 

1. 01 (PPM)= average number of partners per month before an overall decrease 

in sexual activity was observed (i.e. prior to August 1981 ). 

2. 02 (RDN) = yearly reduction factor in number of partners per month be-

tween August, 1981, and December, 1986. Sexual activity as measured by 

PPM is assumed to have been constant until August, 1981 , when awareness 

of the seriousness of the AIDS epidemic and its transmission methods be-

came more widespread. Sexual activity decreased geometrically from then 

at rate RD until December, 1986, at which point it leveled off. 
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3. 03 (EMF) = external mixing fraction, or the proportion of sexual partner-

ships which were governed by proportionate mixing between active and very 

active groups . 1-EMF, then, represents the percentage of contacts which 

were strictly internal to one's sexual activity group. 

4. 04 (MMP) = monthly migration percentage. 

5. 05 (PT) = probability of transmission when an infected individual has sexual 

intercourse with a non-infected (susceptible) individual. 

6. 06 (PHM) = total size of population of homosexual males in San Francisco. 

The population is assumed to remain constant at this level throughout the 

epidemic. 

The 6 output variables which we consider are: 

1. c/>1 (HIVINC) = 1995 HIV incidence, where incidence refers to the number 

of new HIV infections occurring among the homosexual male population in 

San Francisco in 1995. 

2. c/>2 (AIDINC) = 1995 AIDS incidence-the number of HIV-infected individ-

uals who developed clinical AIDS in 1995. 

3. c/>3 (AIDDTH) = 1995 deaths due to AIDS. 

4. c/>4 (STG2VA) = prevalence of very active HIV-infected men who were in 

Stage 2 at the end of 1995. Prevalence refers to the total number of very 

active men in Stage 2, whether or not they entered Stage 2 in 1995 or earlier. 

Recall that Stage 2 is the point at which an individual is antibody positive 

but not showing symptoms. 

5. c/>5 (STG2A) = prevalence of active HIV-in fected men in Stage 2 at the end 

of 199.5. 
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6. </>6 (STG2EM) = prevalence of emigrated HIV-infected men in Stage 2 at 

the end of 1995. 

The input variables were chosen because a significant amount of uncertainty 

was associated with their values or because they exhibited high sensitivity to HIV 

and AIDS incidence estimates. In addition, obtaining good estimates of these 6 

inputs would be very important to a physician, medical researcher , epidemiologist , 

or public health official. Knowing the distribution of partners per month (PPM) 

would help health officials decide if a behavioral change in sexual activity, as mea-

sured by partners per month, had potential to reduce the spread of AIDS. The 

reduction rate (RD ) provides a measure of how successful AIDS awareness cam-

paigns were between 1981 and 1986. The external mixing fraction (EMF) would 

interest an epidemiologist attempting to describe the sexual activi ty patterns of 

the homosexual male population through mixing models. The monthly migration 

percentage (MMP) helps an epidemiologist estimate how quickly an epidemic like 

AIDS can spread from one core population. The probability of transmission (PT) 

is vital in forecasting the rate of spread of the epidemic and in understanding the 

risks associated with unprotected sexual intercourse with a potentially infected 

individual. Finally, the population size (PHM) is important when one wishes to 

generalize to populations other than homosexual males in San Francisco. 

The 6 output variables were also chosen because of their importance to per-

sonnel from the health field as well as to the general public. At the time Hethcote's 

model was developed (1990) , predictions to 1995-5 years out- would have been 

very interesting to persons concerned about the continuing impact of the AIDS 

epidemic. In particular, health officials were interested in estimates of new cases 

of HIV infection (HIVI C), cases of clinical AIDS (A IDI C), and deaths due 

to AIDS (A IDDTH ) in 1995 to forecast resource needs. In addition , recall that 

Stage 2 in the progress ion from HIV infec tion to AIDS includes patients who are 
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antibody positive but asymptomatic. Since they are infected but not displaying 

symptoms, these men in Stage 2 are most likely to spread AIDS to their partners , 

but because they are antibody positive, their infectivity could be diagnosed at 

this stage and their sexual activity discouraged. Thus, estimates of the number 

of men in Stage 2 represent those at risk of spreading the disease who could po-

tentially be diagnosed through an aggressive awareness and testing program. We 

stratify the estimate of Stage 2 men into three compartments-those sexually very 

active (STG2VA), those sexually active (STG2A), and those who have emigrated 

(STG2EM). 

8.2 Prior Distributions for the Bayesian Model 

In each case above, for both inputs and outputs, it is helpful to express knowl-

edge about a particular parameter in terms of an entire probability distribution 

rather than just a point estimate. Consider an example. A health official may al-

locate resources for AIDS medical care and counseling programs based on a point 

estimate for the HIV in~idence level in 1995 . . However , depending on how accurate 

this estimate is , the AIDS programs may be vastly under-resourced, or vital re-

sources may be wasted. With a single, imperfect prediction guiding policy, in the 

best case officials will find themselves scrambling to add or redeploy resources as 

the time approaches. If an estimate of the HIV incidence level was instead given 

as a complete probability distribution, then officials could formulate a plan which 

covers the range of likely scenarios for HIV incidence. For instance, they could 

base plans on a "worst case scenario" -say the 95th percentile of the probability 

distribution for HIV incidence-and scale back if it looks like the worst case wi ll 

not be realized. 

Hethcote used numerous sources to estimate values of input and output pa-

rameters. He realized t hat the information he gathered was subject to uncertainty, 
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so he performed sensitivity analyses to investigate the impact of this uncertainty. 

In these sensitivity analyses, Hethcote held all variables except one constant, al-

lowed the test variable to vary within its range of possible values, and checked the 

impact those changes had on output values. Our Bayesian inferential approach 

outlined in this dissertation provides a more systematic and formal approach to 

achieving the goals of Hethcote's sensitivity analysis. Our method requires ex-

perts to provide prior probability distributions which express their beliefs about 

realistic values for model parameters which lie in their areas of expertise. Then, 

these expert priors are all transformed into the same parameter space, where they 

can be pooled into a single prior for that parameter. The benefits of this Bayesian 

pooling approach for a simulation model such as Hethcote's AIDS transmission 

model are twofold. First, better estimates of important outputs (like 1995 AIDS 

incidence) can be obtained-estimates which combine the expertise of all experts 

from whom priors were solicited and which provide an entire probability distri-

bution for likely values of the output. Second, we can check if values for input 

parameters seem to be reasonable in light of the opinions of other experts and 

the model. If, for instance, the prior from the expert on probability transmission 

(PT) does not agree with the implicit prior about PT from the output experts; 

then the model or the individual priors may need to be revisited. 

Hethcote 's goals in creating a simulation model for AIDS transmission were: 

to organize and coalesce many sources of data, to obtain good parameter estimates 

to better explain how the AIDS epidemic is spread, to investigate the sensitivity 

of the model by evaluating the effect of uncertainties in the input parameters, 

and to compare outputs of the modeling process to independent assessments of 

output parameters. All these goals can be addressed using our Bayesian analysis 

framework for making inferences with deterministic simulation models. Thus, 

we set out to apply our adaptive importance sampling algori thm for obtaining 
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log pooled priors to Hethcote's AIDS transmission model. The first step is to 

define priors for the 6 input variables and the 6 output variables in our version 

of Hethcote 's model. For some parameters sources were plentiful, and for others 

there was less information available. Greater details on the selection of prior 

distributions is contained in the next two sections. 

8.2.1 Input Variables 

Our prior distribution p1 ( 8) for the input parameters will be a multivariate 

normal distribution N6 (!:!:_, E) , where the mean vector !:!:_, the standard deviation 

vector Q., and the correlation matrix R are all based on expert opinions from the 

AIDS literature, and E = Diag (Q.)RDiag(Q.) , where Diag(Q.) is a square matrix 

with Q.-terms along the diagonal and O's elsewhere. 

Information on average number of partners per month (PPM) comes from 

several sources. Research and Decisions Corporation, in a report prepared for the 

San Francisco AIDS Foundation (1984), found that homosexual males in San Fran-

cisco had sex with an average of 2.6 different men over the past 30 days ( =492). 

In the San Francisco City Clinic Cohort (SFCCC), a group of homosexual men 

participating in a hepatitis B study between 1978 and 1980, interviews showed 

that the mean number of non-steady partners during a 4-month period in 1978 

was 29.3 per person (median 16) (Centers for Disease Control , 1987), although 

there is evidence that these men were more sexually active than most homosexual 

men in San Francisco. Participants in an SFCCC vaccine t rial reported PPM=l.4 

before 1981 , and those in the San Francisco Men 's Health Study (SFMHS) re-

ported PPM=l.7 before 1984 (Hethcote et a/., 1991b). Finally, Pickering (1986) 

cites a poll by McKusick which places the average number of sex partners per 

month at 5.9 in ovember, 1982. Taking all 5 of these studies into considerat ion 
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we decided that our input prior distribution p1 ( 8) should reflect a mean of 2.5 

and a standard deviation of 1 for 01 , with a lower bound of 0. 

Information on yearly reduction rate (RD ) is also plentiful. In the sample 

from the SFCCC hepatitis B study, median partners per 4-month period decreased 

from 16 to 1 over a 7-year period from 1978 to 1985, producing a yearly reduction 

factor of (1/16) 117 = 0.67 (Centers for Disease Control, 1987). In these studies, 

reduction was also expressed in terms of a decreased risk index for anal inter-

course with ejaculation with nonsteady partners and insertive anal intercourse 

with nonsteady partners; these two measures produced estimates for RDN of 0.59 

and 0.67, respectively. An additional study about HIV was performed on SFCCC 

participants who tested negative for hepatitis B. The yearly reduction factor for 

these men between 1981 and 1987 was 0.43 (Hethcote et al., 1991b). Finally, 

the poll by McKusick (1986) shows that the average number of sex partners de-

creased from 5.9 per month in 1982 to 2.5 in 1984, giving an estimated RD of 

(2.5/5.9) 112 = 0.65. Incorporating all of these studies , we set the prior mean for 

02 at 0.61 , with a standard deviation of 0.11 and a lower bound of O (note that 

an unlikely 02 > 1 indicates that an increase in PPM actually occurred between 

1978 and 1985). 

Jacquez (1988) illustrates how HIV transmission can be effectively modeled 

using a population with two subgroups (sexually very active and sexually active) 

and an assumption of preferred mixing. Under preferred mixing, a fraction (1-

EMF) of each group 's contacts occur strictly internally, while the rest are subject 

to proportional mixing assumptions. EMF is estimated at .82 according to a study 

by Hethcote and Yorke (1984) on gonorrhea transmission in a similar population. 

The prior standard deviation for 03 is set at .15 to allow a 95% lower bound near 

.. 5. Absolu te lower and upper bounds are set at O and 1. 
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The aforementioned study by Research and Decisions Corporation (1984) 

found that 26% of homosexual males surveyed had lived in San Francisco less 

than 5 years (N=500). Based on this, a constant immigration rate of 5% was 

chosen. Furthermore, since the immigration and emigration rates must be equiv-

alent if the assumption of constant total population is to hold , (5/12)% can be 

used to estimate the monthly emigration rate (MMP). A standard deviation of 

1
1
2 J<·5~b~so) = .002 can be used in the prior distribution for 04 , along with lower 

and upper bounds of O and 1. 

Grant et al. (1987) found that the mean probability of infection through 

unprotected receptive anal intercourse was .102 per sex partner for 672 men stud-

ied in the SFMHS. He also reports a 95% confidence interval for his estimate 

of (.043,.160). Since the average relative infectivity (compared to asymptomatic 

men) of the infected persons contacted by the men in the SFMHS is assumed to 

be 2, Grant 's estimate for PT, the probability of transmission of HIV to sex part-

ners of active asy"mptomatic infected persons , would be .05 with 95% confidence 

interval (.021,.080). As a result , the prior distribution should reflect a mean value 

for 05 of .05 with standard deviation of .015 and lower and upper bounds of O and 

1. 

Two reliable estimates for the population of homosexual males in San Fran-

cisco (PHM) were cited by Lemp (1990) . First, Research and Decisions Corpo-

rat ion provided an estimate of 69 , 122 openly gay or bisexual males from their 

telephone surveys (N=500) (1984) . This total was based on an estimate that 24% 

of the 290,377 men over 15 are gay. With an approximate 95% confidence interval 

for the percentage of gay men of (.20 ,.28), this translates into a 95% confidence 

interval of (.58, 000 ,81, 300) for PHM. Second, an estimate for PHM of 42,509 was 

obtained by ext rapolating the ratio of AIDS cases in the SFMHS to the enti re 

city. Lemp averaged these two est imates together to get 56,000, a figure that the 
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San Francisco Department of Public Health relies on when projecting AIDS mor-

bidity and mortality. Thus, p1 ( 8) should reflect a mean of 56,000 and a standard 

deviation of 12,000 for 06 , with a lower bound of 0. 

Finally, correlations among the 6 input variables must be estimated. Rela-

tively high correlations ( .5-. 7) were assumed among 01 - 03 • A greater starting 

average number of partners per month (01 ) , for example, provides greater oppor-

tunity for high reduction rates (02), and a higher external mixing fraction (03 ) 

means that men in the population have a larger network of sexual coritacts, lead-

ing to more partners and more potential for_ reduction. The only other strongly 

positive correlation is between partners per month (01 ) and total population (06 ). 

Certain correlations were zero or near-zero, especially those involving probabil-

ity of transmission ( 05 ) , since PT is biologically determined and not affected by 

population dynamics. 

In conclusion, our prior distribution p1 ( 8) for the input parameters , based on 

expert opinions from the AIDS literature, is a multivariate normal distribution 

with mean vector 

!!:. = [2.5 , .61 , .82, .05/12, .05, 56000]' , 

corresponding standard deviation vector 

q_ = [1.0, .11, .15, .002, .015, 12000]' , 

and correlation matrix 

1 .5 .7 .3 0 .6 
.5 1 .5 .1 .2 .1 

R= .7 .5 1 .3 0 -.1 
.3 .1 .3 1 0 .3 
0 .2 0 0 1 0 
.6 .1 - .1 .3 0 1 

8.2 .2 Output Variables 
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Our prior distribution p2 ( cp) for the output parameters will be a multivariate 

normal distribution N6 (!:!:._, I:) , where the mean vector !:!:._ , the standard deviation 

vector fl., and the correlation matrix R are all based on expert opinions from the 

AIDS literature, and I: = Diag(Q.)RDiag(fl.), where Diag(Q.) is a square matrix 

with Q.-terms along the diagonal and O's elsewhere. 

Whereas information for the input priors was collected mainly from epidemi-

ological and biological sources, information for the output priors comes mainly 

from survey sampling studies . The Centers for Disease Control (1995) provide 

yearly data by metropolitan area on the number of AIDS cases diagnosed and the 

number of deaths due to AIDS. This data can be broken down even further by 

exposure risk group (e.g. homosexual and bisexual males). In 1995, the estimated 

AIDS incidence (AIDINC) among homosexual males in San Francisco was 1387, 

and the corresponding estimated number of deaths due to AIDS (AIDDTH ) was 

1323. Thus , the prior distribution, p2 (¢ ), for the outputs should reflect means of 

1387 and 1323 for </>2 and </>3 respectively. A standard deviation of 300 for each 

variable was selected to represent the potential inaccuracies and biases in the CDC 

counts, stemming from sources such as underreporting, incorrect diagnoses , and 

incorrect classification into exposure risk groups. 

To obtain priors for </>1 , </>4 , </>5 , and </>6 (HIVINC , STG2VA , STG2A, and 

STG2EM), we rely on est imated HIV incidences and prevalences from two reports 

prepared by the San Francisco Department of Public Health . The first (San Fran-

cisco Department of Public Health AIDS Office, 1993) provides estimates of the 

prevalence of HIV infection in San Francisco in 1993. Estimates are based on " ... 

numerous studies conducted in San Francisco in recent years , including probability 

samples of San Francisco neighborhoods, cohort studies of gay and bisexual men, 

random digit-dial telephone surveys, clini c-based unlinked serosurveys, studies of 

young men who have sex with men, surveys of childbearing women , st udies of het-
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erosexual partners, street-based studies of injection and non-injection drug users, 

and screening of blood donors ." (1993 , p. 3). The second (San Francisco Depart-

ment of Public Health AIDS Office, 1997) describes estimates of the prevalence 

and incidence of HIV infection in San Francisco in 1997 based on expert opin-

ions of researchers, epidemiologists, and service providers attending the 1997 HIV 

Consensus Meeting. At the meeting, recent empirical data on HIV prevalence and 

incidence in San Francisco was presented and discussed, and the opinions of the 

participants were sythesized using a modified Delphi process, which is a feedback 

and reassessment technique under which experts reconsider their assessments after 

being presented with summary statistics regarding the assessments of all experts . 

In 1993, HIV prevalence was estimated at 24,978, or 43.1 % of the estimated 

MSM (men who have sex with men) population of 58 , 000. In 1997, HIV preva-

lence was estimated at 13,135, or 30.5% of the estimated MSM population of 

43, 100. No HIV incidence was estimated in the 1993 report, but the panel of 

experts in 1997 estimated HIV incidence for that year at 336, or 1.1 % of the 

29 , 965 susceptible MSMs. The lower level of HIV prevalence in 1997 compared to 

1993 was attributed to more accurate information about at-risk populations and 

decreased rates of new infections. Using linear interpolation, we can estimate the 

1995 HIV prevalence at 19,056; this will be used later to construct estimates of 

the Stage 2 counts. To estimate the 1995 HIV incidence (RIVI C) , an estimate 

for the 1993 HIV incidence must first be obtained. A total of 33, 022 suscepti-

ble MSMs was estimated in 1993. Furthermore, an HIV incidence rate of 1.5% 

in 1993 can be assumed- the rate of new infections is known to have decreased 

during the 1990s, and this represents the high end of the 1997 range. As a result , 

we have an estimate for 1993 HIV incidence of 495, and linear interpolation gives 

an estimate of 41 -5 for the 1995 HIV incidence ( ¢ 1 ). A range of 0.5% to 1.5% in 
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the 1997 estimates for HIV incidence rate suggests that the standard deviation 

for </>1 might be set at 200. 

Prior estimates for stratified Stage Z prevalances (STG2VA, STG2A , 

STG2EM) can be derived from the estimated 1995 HIV prevalence of 19, 056. 

Longini 's (1990) transition rate estimates describing his 5 stages in the progres-

sion of AIDS suggest that approximately 40% of patients infected with HIV in 

1995 would be in Stage 2 (asymptomatic). ote that 40% of 19, 056 is 7622 men 

in Stage 2, some of which are classified as very sexually active and others as ac-

tive. Although 10% of the total population is very active, we assume that 20% 

of the Stage 2 men in 1995 are very active because of the higher prevalance of 

HIV among the very active subgroup. This suggests that </>4 = STG2VA can be 

estimated by 1524 and </>5 = STG2A by 6098. </>6 = STG2EM can be estimated 

at 381-the product of the assumed emigration rate (5%) and the estimated total 

Stage 2 prevalence (7622) . A range of 24% to 38% in the 1997 estimates for HIV 

prevalence rate suggests that the standard deviations for </>4 , </>5 , and </>6 might be 

set at 400, 1000, and 300, respectively. 

Finally, correlations among the 6 output variables must be estimated. In 

general , enough of a time lag exists between HIV infection ( </>1 ) and both devel-

opment of clinical AIDS ( </>2 ) and death due to AIDS ( <f>3) that </>1 should not be 

highly correlated with either variable. However , the time lag between </>2 and ¢3 

is short enough that these variables should exhibit a strong posit ive correlation. 

Other strong positive correlations (p > .5) are likely to occur among the variables 

¢4 , ¢5 , and ¢6 , since as overall HIV prevlance increases, each of these counts of 

infected men in Stage 2 will also increase. Smaller positive correlations are likely 

between an incidence ( ¢ 1 - ¢3 ) and a prevalence ( ¢4 - ¢6 ) . 

In conclusion , our prior distribution p2 ( </J) for the output parameters, ba. eel 

on actual counts and survey sam pling results, is a multi variat normal distribution 



with mean vector 

µ = [41 5, 1387, 1323, 1524, 6098, 381)' , 

corresponding standard deviation vector 

= [200, 300,300,400, 1000, 300)' , 

and correlation matrix 

1 .2 .2 .3 .4 .3 
.2 1 .6 .2 .2 .1 

R= .2 .6 1 .1 .1 0 
.3 .2 .1 1 .7 .5 
.4 .2 .1 .7 1 .5 
.3 .1 0 .5 .5 1 

8.3 Generalization of Our Log P ooling Algorithm for Higher D imen-
sional Models 

For the most part, t he generalization of the adaptive importance sampling 

algorithm for log pooling given in Chapter 3 follows naturally. Bivariate densities 

become multivariate densities in 6 dimensions , two concurrent marginal tests for 

convergence become six concurrent marginal tests, and a 2-by-2 covariance matrix 

governing the selection of new points for the envelope becomes a 6-by-6 covariance 

matrix. Certain aspects of the algorithm do not change at all, such as importance 

weights and the method for estimating densities with noninvertible M . However, 

a few aspects of the algorithm are different; these differences -are described in the 

remainder of this section. 

First, this example illustrated the importance of performing calculations 

within the algorithm using standardized values ( centered and scaled) of variable 

in any multivariate situation. Problems with unstandardized variables are exag-

gerated in input space, where the population PHM has scale 10,000 times larger 

than any ot her input variable. Specific problems when large differences in scale 
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exist include misleading calculations of nearest neighbors and biased est imates of 

densities. 

Second, mixture weights b1 ,r (see Section 3.2.3) for the envelope sampling dis-

tribution are now based on the differences between the six marginal distributions 

ff;;,i and Fp2 ,i, i = 1, .. . , 6. Although mixture weights could still theoretically be 

based on ,~ - Fp2 j, where both~ and Fp2 are 6-dimensional cdfs, the comput-

ing time required to evaluate the 6-dimensional cdfs is prohibitive. Therefore, for 

this 6-dimensional example, we set 

where b1,r is the mixture weight for the r th point generated after the lth iteration . 

Using the adaptive method with these mixture weights should lead to a more 

precise and efficient estimate of the log pooled prior than the nonadaptive method. 

Third , Jacobian estimation proceeds analogously to the case with 2 inputs 

and 2 outputs (see Section 3.3) , but because of the extra complexities introduced 

by higher dimensions, it is worth specifying a few details . As before, let IJ (8i)I 

denote the Jacobian of</> with respect to 8 , evaluated at 8;. IJ (8;)1 is merely the 

determinant of the matrix J of estimates of partial derivatives, where 

Ju J12 )13 ]14 ]15 ]16 

J21 ]22 ]23 ]24 ]25 ]26 

J= ]31 ]32 ]33 ]34 ]35 ]36 

]41 ]42 ]43 ]44 ]45 ]46 

]51 ]52 ] 53 ]54 ]55 ]56 

]61 ]62 ]63 ]64 ]65 ]66 

)kl= (</>c:.1,k - <Pk )/l1 and <Pc:.1,k = Mk(01 , ... , 01 + lt, ... , 05) . 

IJ ( </>;) I is the Jacobian of 8 with respect to </> , evaluated at <pi. As with 2 

inputs and 2 outputs , directional derivatives can be used to estimate IJ (</>;)I in 

the case with 6 inputs and 6 outputs. Estimating the :36 partial derivat ives in the 

.Jacobian mat ri x requires solving 6 sets of 6 equat ions and 6 unknowns involving 
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appropriate directional derivatives. The Jacobian can be constructed one row at 

a time; each row features the solutions ;J;. to the linear system A;J;. = Q, where 

c/>t::.1,1 - c/>1 c/>t::.1,2 - c/>2 c/>t::. 1,3 - q>3 c/>t::.1,4 - q>4 c/>t::.1,5 - q>5 c/>t::.1,6 - q>5 
c/>t::.2,1 - c/>1 q>t::,,2,2 - c/>2 ef>t::.2,3 - q>3 q>t::,,2,4 - q>4 c/>t::.2,5 - q>5 c/>t::.2,6 - q>5 

A= q>t::,,3,1 - c/>1 q>t::,,3,2 - c/>2 c/>t::.3,3 - q>3 q>t::,,3,4 - q>4 q> t::.3,5 - q>5 q>t::,,3,6 - q>5 
q>t::,,4,1 - c/>1 q> t::.4, 2 - c/>2 q> t::.4 ,3 - q>3 q>t::,,4,4 - q>4 c/>t::.4,5 - q>5 q> t::.4,6 - q>5 
q>t::,,5,1 - c/>1 q>t::,,5,2 - c/>2 q>t::,,5,3 - q>3 q>t::,,5,4 - q>4 q>t::,,5,5 - q>5 q>t::,,5,6 - q>5 
q> t::.6, 1 - c/>1 q> t::.6 , 2 - c/>2 q> t::.6 ,3 - q>3 q> t::.6 ,4 - q>4 q> t::.6 ,5 - q>5 q> t::.6,6 - q>5 

To obtain the first row, let b' = [t1 , 0, 0, 0, 0, 0], to obtain the second row, let 

b' = [0 , t 2, 0, 0, 0, 0], and so on. A relative convergence criterion is used to choose 

the magnitude of discrete perturbations like t 1 . 

8.4 Results and Interpretations 

In order to estimate log pooled prior distributions, the adaptive importance 

sampling algorithm was applied to our version of Hethcote's AIDS transmission 

model with 6 inputs and 6 outputs. In this example, two different sources of 

AIDS information are being combined-epidemiological and biological opinions 

about inpu~ priors for Hethcote's transmission model, and actual counts and sur-

vey sampling results regarding outputs from Hethcote's model. By combining 

this information using our Bayesian inferential methods for priors linked by de-

terministic simulation models , we can achieve three important goals. First, the 

incorporation of information from an epidemiological model for AIDS improves 

our estimates of model outputs, which were previously based on sampling data 

only. Second, information about the model outputs from the sampling data can 

help indicate if our expert prior distributions for model inputs are reasonable. 

Third, we obtain formal assessments of uncertainty for both inputs and outputs. 

Priors on the input and output parameters were defined in Sections 8.2.1 

and 8.2.2. The adaptive algorithm was stopped after 4 iterations, each with 500 

simulation runs . One measure of the quality of the sampling envelope is the 
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- -Figure 8.1: Marginal prior distributions in </>-space for p2 (</J), pr(</>) , and the log 
pooled p( <p) obtained under adaptive importance sampling. 

6-dimensional standardized Euclidean distance from each simulated point to the 

mean of p2 ( </>). The 420 standardized simulated points following the first iteration 

had a median distance of 49.1 from the mean of p2 ( <p ), while the corresponding 

1570 points following the fourth iteration had a median distance of 29.9. This 

suggests that our adaptive sampling envelope is more representative of the prior 

opinions of both experts-and hence a more suitable importance sampling enve-

lope for the log pooled prior-than a nonadaptive envelope. 

The results of our log pooling estimation in </>-space are shown in Figure 8.1, 

and similar results in 0-space are shown in Figure 8.2. Of particular interest is 

the inferences which an AIDS researcher might draw from the results contained 

in Figures 8. 1 and 8.2. In the marginal plot for <Pi (Figure 8.1), the input experts ' 

implicit opinion Pi' (<Pi) ( through the AIDS transmission model) is much broader 

and extends to much larger HIV incidence levels than the opinion of the output 

experts. As a result , the marginal log pooled prior p(<f>i) exhibits a higher mean 

and greater variability than p2 (</> i). The most likely 1995 HIV incidence level, 

using all availab le information , is around 700, rather than the estimate of 415 

obtained strictly from sampling-based data. 
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Figure 8.2: Marginal prior distributions in 8-space for p1(8) , p;(B ), and the log 
pooled p(O) obtained under adaptive importance sampling. 

The introduction of information from Hethcote's model and the correspond-

ing priors on model inputs produces a few other noticeable marginal changes in 

</>-space. The mode of the pooled distribution of c/>4 (the prevalence of very sexu-

ally active Stage 2 men) is about 550, compared to 1524 under p2 ( </> ). Similarly, 

the mode of the pooled distribution of c/>5 (the prevalence of sexually active Stage 

2 men) is about 3000, compared to 6098 under p2 ( </> ). In both cases, the input 

experts' implicit opinion (pi(</>)) favored smaller prevalences than the correspond-

ing opinion of the output experts. With respect to other marginal distributions , 

such as those for c/>2 and c/>3 , the pooling of priors led to small location shifts and 

greater variability in p( cf>) when com pared to p2 (cf>). 

Note that occasionally marginal results can be counterintuitive. Consider, 

for instance, results for c/>4 in Figure 8.1. In this case, the mode of the pooled 

prior distribution is smaller than the modes of both p2 (c/>4 ) and p;'(c/>4 ). This 

illogical result could emerge from several factors. First, the multivariate log pooled 

prior may be a sensible consensus between the experts even if it does not seem 

sensible over a particular margin. Second, the adapti ve algorithm used to obtain 

an estimate of the log pooled prior distribut ion was des igned to produce good 
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estimates of the multivariate p( </>) without specifically considering the marginal 

distributions. Third , the precision of log pooled prior estimates could be improved 

by increasing the number of simulation runs made from the sampling envelope, 

especially with the high number of dimensions in this AIDS transmission model. 

In Figure 8.2, the reasonableness of the input experts priors can be assessed 

in light of the output experts' implicit beliefs (through the model) about typical 

values of the input parameters. For example, the output experts ' prior beliefs 

about </> tend to correspond to an average number of partners per month ( 0i) 

near 1.2, which is below the mean of 2.5 ascribed to 01 by the input experts. The 

log pooled marginal prior for 01 reflects this disagreement with its skewness to 

the left. Pooled marginal distributions for 04 (monthly migration percentage) and 

06 (total population size) are also examples of cases in which the input values 

which lead to the most likely values of p2 ( </> ) are not necessarily the input values 

considered most likely under p 1(8). The output experts implicitly favor lower 

levels of 04 than the input experts (modes of .002 vs. .004) , and the output 

experts implicitly favor lower levels of 06 than the input expert (modes of 30,000 

vs. 56,000). In both cases, p( </>) strikes a balance between the two differing 

opinions. For other input variables , such as 03 ( external mixing fraction) and 05 

(probability of transmission), the implicit opinion from the output experts (p;(0)) 

provides validation of the input experts' prior beliefs. In these cases , the marginal 

p( 0) closely resembles marginal p1 ( 0). 
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9.1 Summary 

Chapter 9 

Summary and Conclusions 

This dissertation focused on making inference about parameters in determin-

istic simulation models. These models are used by a wide variety of scientists 

and engineers , in diverse fields such as animal population modeling, epidemio-

logical modeling, global climate modeling, and tree growth and yield modeling. 

A Bayesian approach provides a good framework for the statistical analysis of 

deterministic simulation models , permitting: 

1. formal assessments of uncertainty about model inputs and outputs, 

2. evaluations of the sensitivity of the model to differing input values, 

3. comparisons of model output estimates to independent assessments , 

4. evaluations the reasonableness of model inputs in light of information about 

the outputs , 

5. identification of applications where the model itself might need rethinking, 

6. and systematic organization of all available information about a model. 

In Chapters 1 and 2, we illust rate that the problem of making Bayesian infer-

ence about parameters in determinist ic simulation models is fundamentally related 

to the issue of aggregat ing ex pert opinion . In Chapter 2 we review the li terat ure 



about pooling expert opinion , and in Chapters 3-7 we detail and compare 4 par-

ticular pooling approaches-linear pooling, logarithmic pooling, French-Lindley 

supra-Bayesian pooling, and Lindley-Winkler supra-Bayesian pooling. These 4 

approaches are compared with respect to three suitability factors-theoretical 

properties , performance in examples, and the selection and sensitivity of hyper-

parameters or weightings incorporated in each method. A summary of this com-

parison is presented in Chapter 7. Based on the three suitability factors described 

above, we concluded that the logarithmic pool is generally the most appropriate 

pooling approach when combining expert opinions in the context of deterministic 

simulation models. 

Given that logarithmic pooling is recommended for making inference about 

model parameters, the next issue becomes how to obtain estimates of log pooled 

prior distributions for inputs and outputs. To address this issue, we offer a general 

algorithm in Chapter 3. In addition, we detail an adaptive sampling algorithm 

which leads to better and more efficient estimates of the log pooled prior than a 

simpler estimation algorithm, as illustrated.in Chapter 4. Our adaptive est imation 

approach relies on importance sampling methods, density estimation techniques 

for which we numerically approximate the Jacobian, and nearest neighbor ap-

proximations in cases in which the model is noninvertible. In Chapter 8 we apply 

our adaptive approach for estimating log pooled priors to a large, realistic model 

for AIDS transmission. Prior distributions for input and output parameters are 

justified through the AIDS literature, and interpretations of results are offered . 

9.2 Contributions 

In this dissertation , several unique contributions were made to the statistical 

discipline. These cont ributions are described below. 
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1. Although it has been proposed at meetings of the International Whaling 

Commission Scientific Committee (Raftery et al. , 1996), the idea of applying 

logarithmic pooling to inference in deterministic simulation models has not 

appeared in the published literature. The idea of using a Bayesian framework 

to make inference about parameters in deterministic simulation models was 

first proposed by Raftery, Givens, and Zeh (1995). However, their inferential 

method was subject to the Borel paradox, under which different results can 

occur if parameters are expressed on a different scale (Wolpert, 1995). The 

Borel paradox results from having two different prior distributions on the 

same quantity; logarithmic pooling ( as well as the other pooling approaches 

considered in this dissertation) resolves the Borel paradox. 

2. The algorithm developed here for estimating log pooled priors (Section 3.1) 

using an adaptive strategy as outlined in Section 3.2.3 is new. The improve-

ments which the new, adaptive approach offer over a nonadaptive approach 

are quantified and illustrated in Chapter 4. 

3. The Jacobian-based approach to density estimation in this context (Sec-

tion 3.3) , especially in higher dimensions , i·s a novel approach to the best of 

our knowledge. The use of directional derivatives to estimate sets of partial 

derivatives allows higher dimensional Jacobians to be estimated, and this 

provides an attractive alternative to multivariate histogram density estima-

tion or multivariate kernel density estimation . 

4. The extension of the French-Lindley supra-Bayesian methodology to con-

tinuous parameters is new to this dissertation , as is the extension of the 

Lindley-Winkler supra-Bayesian methodology to multivariate parameters. 

5. The proofs and illustrations of the failure of Relat ive Propensity Consistency 

under the French-Lindley supra-Bayesian approach are new. 
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9.3 Conclusions 

The marriage of statistical ideas and deterministic simulation models through 

the Bayesian approach outlined in this dissertation is exciting for statisticians and 

scientists alike. Scientists can combine diverse sources of model information and 

assess uncertainty and sensitivity in a more formal and thorough manner than 

current ad-hoc procedures allow; statisticians can witness applications of these 

ideas to a fascinating variety of scientific models. Hopefully these mutual benefits 

to statisticians and scientists will encourage the use and improvement of the ideas 

in this dissertations in the years ahead. 
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