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ABSTRACT OF THESIS 

A METHOD FOR ASSESSING IMPACTS OF PARAMETER UNCERTAINTY IN 

SEDIMENT TRANSPORT MODELING APPLICATIONS 

Numerical sediment transport models are widely used to evaluate impacts of 

water management activities on endangered species, to identify appropriate strategies for 

dam removal, and many other applications. The SRH-lD (Sedimentation and River 

Hydraulics - One Dimension) numerical model, formerly known as GST ARS, is used by 

the U.S. Bureau of Reclamation for many such evaluations. The predictions from models 

such as SRH-lD include uncertainty due to assumptions embedded in the model ' s 

mathematical structure, uncertainty in the values of parameters, and various other 

sources. In this paper, we aim to develop a method that quantifies the degree to which 

parameter values are constrained by calibration data and determines the impacts of the 

remaining parameter uncertainty on model forecasts. Ultimately, this method could be 

used to assess how well calibration exercises have constrained model behavior and to 

identify data collection strategies that improve parameter certainty. The method uses a 

new multi-objective version of Generalized Likelihood Uncertainty Estimation (GLUE). 

In this approach, the likelihoods of parameter values are assessed using a function that 

weights different output variables using their first order global sensitivities, which are 

obtained from the Fourier Amplitude Sensitivity Test (FAST). The method is applied to 

SRH-lD models of two flume experiments: an erosional case described by Ashida and 

Michiue (1971) and a depositional case described by Seal et al. (1997). Overall , the 

results suggest that the sensitivities of the model outputs to the parameters can be rather 

lll 



different for erosional and depositional cases and that the outputs in the depositional case 

can be sensitive to more parameters. The results also suggest that the form of the 

likelihood function can have a significant impact on the assessment of parameter 

uncertainty and its implications for the uncertainty of model forecasts . 

Morgan D. Ruark 
Civil and Environmental Engineering Department 

Colorado State University 
Fort Collins, CO 80523 

Summer 2009 
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1 Introduction 

The use of numerical sediment transport models has dramatically expanded over 

the past three decades. One-dimensional sediment transport models in particular are 

widely used to identify sediment equilibrium conditions (Huang, Greimann and Yang, 

2003), assess historical conditions to determine possible impacts of watershed changes 

(Holmquist-Johnson, 2004), evaluate water supply management (Greimann et al. , 2006), 

manage reservoirs (Greimann and Huang, 2006), and predict impacts of proposed water 

resource systems on endangered species (Holmquist-Johnson, 2004). 

Predictions from sediment transport models always entail uncertainty. Sources of 

uncertainty include: (a) assumptions or simplifications in the model ' s representation of 

physical processes, (b) unknown initial and/or boundary conditions, ( c) errors in the 

observations used to calibrate the model parameters, ( d) errors in the values of model 

parameters, and (e) errors in model inputs or forcing (Clyde and George, 2004; Gourley 

and Vieux, 2006; Refsgaard et al., 2006; Murray 2007). For one-dimensional sediment 

transport models, this uncertainty can encompass orders of magnitude in the computed 

sediment load and amount of material eroded or deposited at critical locations (Simons et 

al. , 2000; Davies et al. , 2002; Eidsvik, 2003). Past research has focused on uncertainty 

arising from sediment transport models or formulae (Davies et al. , 2002; Pinto et al. , 

2006) and the active erosional processes (Daebel and Gujer, 2005; Harmel and King, 

2005; Jepsen, 2006; Ziegler, 2006) as well as methods to manage uncertainty (Osidele et 

al. , 2003). Less attention has been paid to uncertainty throughout the entire parameter 

space, or global uncertainty, (Chang and Yang, 1993) and the implications of parameter 

uncertainty. Parameter uncertainty is rarely considered in practical applications of 



sediment transport models. Models are typically calibrated by adjusting the parameters 

so that the model outputs reproduce a set of available observations. The performance of 

the model for the calibration period is usually reported, but little consideration is given to 

the extent to which that calibration data has constrained the values of the parameters and 

the behavior of the model for the forecast scenario. 

Bayesian methods offer a formal method to assess impacts of parameter 

uncertainty (or other uncertainties) on model predictions (Clyde and George, 2004; 

Kuczera et al. , 2006). Bayesian methods require the modeler to specify a prior joint 

probability distribution for the uncertain parameters. The prior joint distribution is then 

combined with observations of model outputs from the calibration period to generate a 

posterior joint distribution for the parameters (Beven, 2000). The updating of the joint 

distribution is based on a formal assessment of the likelihood of a set of parameter values 

given the observed model outputs (Clyde and George, 2004). The posterior distribution 

of the parameter values is then used in the model for the forecast scenario to determine 

the implied distribution of model outputs. The key advantage of Bayesian methods is 

that they utilize well-defined theoretical foundations including a formal likelihood 

function for updating the joint probability distribution (Clyde and George, 2004; Kuczera 

et al., 2006). Key limitations of Bayesian methods are that they can require inversion of 

large matrices, which can be a computational burden, and they often employ a variety of 

simplifying statistical assumptions including normality, independence, and 

homoscedasticity (Stedinger et al., 2008) that are often violated in sediment transport 

modeling applications. For example, heteroscedasticity is well documented for discharge 
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hydrographs (Sorooshian and Dracup, 1980) and is likely to occur in sediment transport 

applications involving unsteady flow. 

Generalized likelihood uncertainty estimation (GLUE) offers an alternative 

method to assess parameter uncertainty (Beven and Binley, 1992). The GLUE 

methodology has been utilized for a variety of modeling applications including rainfall-

runoff models (Freer and Beven, 1996; Campling et al. 2002; Blasone et al. , 2007), 

groundwater models (Christensen, 2003; Hassan et al., 2008), water quality models 

(Shirmoharnmadi et al., 2006), and atmospheric models (Page et al., 2004), but it has 

received little attention in sediment transport modeling. GLUE follows the Bayesian 

approach, but it utilizes an informal function to estimate the likelihoods of parameter 

values given a set of observations. The benefit of the informal likelihood function is that 

it can be selected based on the model purpose (Mantovan and Todini, 2006), and different 

likelihood functions are known to produce different uncertainty estimates (Freer and 

Beven, 1996; Beven, 2000). However, a series of papers (Christensen, 2004; Stedinger et 

al., 2008) have demonstrated that previously used likelihood functions fail to reproduce 

the known posterior distributions of parameters for simple cases (normally and 

independently distributed errors). For such cases, these authors identify the appropriate 

likelihood function, but this function is not easily evaluated within the GLUE framework 

(Stedinger et al. , 2008). 

Another challenge in the application of GLUE to sediment transport modeling is 

the need to evaluate the model performance with respect to multiple objectives or outputs 

such as sediment size, sediment load, stream velocity, channel geometry, and bed profile. 

Available methods of computing multi-objective likelihood functions include the use of 
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fuzzy set theory (Beven and Binley, 1992; Yang et al. 2004), the successive combination 

of likelihoods (through multiplication), and weighted addition of likelihoods (Beven, 

2000). Such approaches have been addressed elsewhere (Yapo et al. , 1998; Mo and 

Beven, 2004; Chahinian and Moussa, 2007). One problem in the application of a multi-

objective approach is the need to assign weights (or the equivalent) for each model 

output. Such weights are often set ad hoc based on the model ' s purpose, but arbitrary 

weighting can lead to misleading results. In particular, a selected model output may be 

independent of a particular parameter. Thus, it would be inappropriate to strongly weight 

the performance with respect to that output variable when evaluating different values of 

the parameter. 

The objective of this paper is to explore the use of a GLUE-based method to 

assess the implications of parameter uncertainty on the outputs of a one-dimensional 

sediment transport model. This method is intended to measure how well parameter 

values have been constrained during model calibration and to determine how the 

remaining uncertainty in the parameter values affects the model outputs under forecast 

scenarios. As such, the method is intended to aid model development rather than to 

provide a formal assessment of uncertainty for project evaluation. The likelihood 

function used in this paper is based on the one described by Christensen (2004) and 

Stedinger et al. (2008). Global sensitivity analysis (GSA) is employed as a way to weight 

multiple model outputs. GSA and GLUE have been coupled previously (Ratto et al. , 

2001) but not for the purpose of weighting multiple outputs. The GSA-GLUE method is 

applied to SRH-1 D models of two physical experiments ( an erosional case and a 

depositional case) both to identify how well the parameters are constrained by the 
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calibration and to partially explore the implications of various assumptions included in 

the GSA-GLUE methodology. 

The outline of the paper is as follows. The next section, Methodology, details 

how the GSA and GLUE methods are combined to assess the implications of parameter 

uncertainty. Then, the sediment transport model that is used with the GSA-GLUE 

method (Sedimentation and River Hydraulics - One Dimension or SRH-lD) is described. 

Next, the Experiments section summarizes the physical experiments that are simulated 

with the model. The Results section discusses the main results of the GSA-GLUE 

approach, and the Analysis section evaluates the main assumptions of the method. 

Finally, the paper closes by summarizing the conclusions and future directions for 

research. 
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2 Methodology 

In practical terms, the GSA-GLUE method developed in this paper includes three 

main steps. The first step is the GSA. In this step, a sample of parameter sets is 

generated from a jointly uniform distribution within specified ranges. The model is then 

run for the calibration period using each parameter set in the sample. Based on an 

analysis of the model results, the sensitivity of each model output to each parameter is 

estimated. To reduce the number of required simulations, the GSA is performed using 

the Fourier Amplitude Sensitivity Test (FAST), which generates the parameters sets in a 

specific way, although they are still approximately uniformly distributed. Parameters that 

have little effect on any model output of interest can be fixed at this point and excluded 

from further consideration. The second step is the application of the GLUE methodology 

to calculate the likelihood associated with each parameter value, and from those 

likelihoods, to determine updated likelihood distributions for each parameter. 

Likelihoods are calculated based on the model 's ability to reproduce the observations for 

the calibration period when each particular parameter set is used. Because sediment 

transport models typically produce multiple model outputs of interest ( e.g. , sediment size, 

channel profile, etc.), the sensitivities calculated in the first step are used to weight the 

different outputs in the calculation of the likelihoods. This procedure places greater 

importance on reproducing outputs that are more sensitive to a particular parameter. The 

third step is to use Latin Hypercube Sampling (LHS) with the cumulative likelihood 

distributions of the parameters to generate a new sample of parameter sets. The model is 

run for the forecast period using these parameters sets, and histograms are calculated for 

the model outputs. These histograms allow an assessment of the implications of the 
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remaining parameter uncertainty on the forecasts of the model. The following 

subsections describe each of the three steps (GSA, GLUE, and LHS) in greater detail. 

2.1 GSA 

Sensitivity analysis usually aims to quantify how much an output of a model 

changes when a model parameter (or input) is varied (Saltelli et al. , 2008). While local 

sensitivity analysis evaluates these changes around a set of base values for the 

parameters, GSA assesses these changes across specified ranges of parameter values. 

Local analyses usually measure the sensitivity with an index that is related to the partial 

derivative of the output with respect to the parameter. Unfortunately, such measures are 

only well-defined if the output is linearly dependent on the parameter (Saltelli et al. , 

2008). In contrast, the GSA described here uses a variance-based measure of sensitivity, 

which partially overcomes the linearity assumption (Chan et al. , 1997). Two measures of 

sensitivity are calculated here. One is the first order index Sx, which is defined as: 

S =-var_[E_(Y_lx_)] 
x var(Y) 

(1) 

where var(Y) is the total variance of the model output Y when all the parameters are 

varied within their specified ranges, E ( Y IX) is the expected value of output Y for a 

particular value of parameter X, and var [ E ( Y IX)] is the variance of E ( Y IX ) when Xis 

varied over its allowed range. The second measure is the total order index Srx, which can 

be written as: 
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(2) 

where var[ E( YJx)] is the variance of the expected value of Ywhen all inputs except X 

are held constant. The first order index evaluates the direct contribution that a parameter 

makes to the variability of the output. If a model is strictly additive with respect to its 

parameters, then the first order indices will sum to one (Saltelli et al. , 2008). In more 

complex models, the effect of a parameter on the model output may be modulated by the 

other parameter values. The total order index evaluates the total contribution of a 

parameter to the output variability when all interactions between parameters are included. 

Further details about these sensitivity measures and their properties can be found in 

Saltelli et al. (1999). 

FAST offers an efficient way to estimate these variance-based measures of 

sensitivity. FAST was initially developed to study first order effects in coupled reaction 

systems in chemical models (Cukier et al. , 1973) and was later expanded to include the 

total order effects (Saltelli et al. , 1999). The computational efficiency of FAST is 

achieved by varying all parameters of interest simultaneously rather than one-by-one. 

The parameters are varied at non-interfering frequencies (Cukier et al. , 1973; Schaibly 

and Shuler, 1973) within the ranges that are specified by the modeler. The generated 

sequence of parameter sets is used in the model to generate an associated sequence of 

model responses . The model response sequence is then decomposed using a Fourier 

transform, which determines the variance that is associated with each frequency . By 

considering certain groups of frequencies, the first order and total order sensitivity 

indices can be calculated for each parameter (Saltelli et al. , 1999). The sample size, 
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which is the total number of simulations to be performed, must be specified. The 

sensitivity estimates from FAST asymptotically converge to the definitions given in 

Equations (1) and (2) as the sample size becomes large. 

In the present analysis, FAST is used to calculate the importance of each 

parameter to variability in each model output. Use of FAST also allows screening of 

parameters in order to remove those with little influence on model outputs. In particular, 

if the first and total order sensitivities of all the outputs to a particular parameter are 

small, then the parameter can be treated as a constant in the analysis to reduce 

computation time. In addition, the sensitivity indices are used in the likelihood function 

described in the following section to weight the performance of the model in reproducing 

different model outputs. 

2.2 GLUE 

The GLUE method is used next to determine revised, or posterior, distributions 

for the parameters. By running the model with each parameter set and comparing its 

performance to the observed system behavior, we have obtained information about the 

likelihood that the parameter set is correct. In typical applications of GLUE, a Monte 

Carlo sampling of a uniform distribution is used to determine the parameter values that 

are supplied to the model. However, the samples produced by FAST are also 

approximately uniform and can be used in GLUE (Ratto et al. , 2001). 

The likelihood of a parameter value is evaluated based on the model ' s ability to 

reproduce observations when that parameter value is used. Many previous papers have 

used the Nash-Sutcliffe Coefficient of Efficiency or NSCE as the basis of the likelihood 
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function (Beldring et al. , 2003; Arabi et al. , 2007; Engelund et al. , 2006; Engelund and 

Gottschalk, 2002; Uhlenbrook and Sieber, 2003). SCE is calculated as: 

(3) 

where O is an observed value and Mis the model's value,} is an index of locations (or 

times), and l is the total number of locations (or times) where observations are available 

(Nash and Sutcliffe, 1970; Legates and McCabe, 1999). NSCE is 1 when the model 

perfectly reproduces the observations and decreases as the model performance 

deteriorates. 

Recent papers (Mantovan and Todini, 2006; Stedinger et al. 2008) have argued 

that arbitrary likelihood functions, such as NSCE, can produce arbitrary results in the 

GLUE methodology. Stedinger et al. (2008) demonstrated this argument by applying 

GLUE with a likelihood function based on NSCE to a simple case where the appropriate 

likelihood function is known from basic statistics. The case they considered is linear 

regression with normal, independently-distributed errors with constant variance 

(Stedinger et al., 2008). In that case, they argued that the appropriate way to calculate the 

likelihood L for a given parameter set is: 

(4) 

where M represents the model's value when a particular parameter set is used, Jvt1LE is 

the model's value when the parameters are obtained from the maximum likelihood 

estimator (MLE), and K is a normalization constant that ensures that all the likelihoods 
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sum to one. This likelihood function has some similarities to NSCE, but it includes two 

key differences. First, the denominator in Equation (4) implies that the likelihood is 

assessed by comparing the performance of a given parameter set to that of the MLE 

parameter set (Stedinger et al. , 2008). Second, the use of l as a coefficient accounts for 

the number of independent observations that are available to constrain the parameter 

values (Stedinger et al. , 2008). Including l means that poor performance is penalized 

more when many observations are available. 

In the present application, a likelihood function is utilized that is similar to the 

one in Equation ( 4) with two key differences. The first difference is that the errors are 

not expected to be independent between observation locations, in contrast to the 

assumptions underlying Equation (4). Thus, the coefficient l is replaced by an effective 

number of independent locations m. The second difference is the need to account for 

multiple output variables or objectives in calculating the likelihoods. This issue is 

confronted by using a weighted sum of likelihoods. In the case where three output or 

response variables are of interest, the resulting likelihood function is: 

l l ±(0i.1 -M1J] l ±(02,J-M2J ] l ±(oJ.j-MJ.j r ]] cs) L = K w exp _ !!!._ , 1• 1 +w exp _ !!!._ , 1• 1 +w exp _ !!!__ ....,_J_•i ___ _ 
1 

2 ~(o .- MMLE )2 2 
2 ~(o -MAILE)2 3 

2 ~(o .-MAILE)2 
L.J l,J l,J L,. 2,/ 2,J L,. 3,J 3,J 

where the subscripts 1, 2, and 3 distinguish the three response variables and thew's are 

the individual weights . The weight for a given output is calculated as the first order 

sensitivity of that output to the parameter of interest divided by the sum of the first order 

sensitivities of all three outputs to that same parameter. Note that a different likelihood is 

calculated for each parameter included in a parameter set because the weights depend on 

the parameter being considered. The weights are calculated using the first order 
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sensitivities from the GSA, but they could also be calculated using the total order 

sensitivities. First order weights are selected because they could eventually be estimated 

using methods that are faster than FAST (Saltelli and Bolado, 1998; Gatelli et al. , 2008), 

such as Random Balance Designs (Tarantola et al. , 2006). The impact of choosing the 

first order sensitivity over the total order sensitivity is evaluated later. 

The performance of the MLE is also required to evaluate the likelihood function 

in Equation (5). The MLE is not generated as part of the GLUE methodology. As an 

approximation, it is assumed that the best performing parameter set in the sample is 

equivalent to the MLE. This assumption is expected to be better when a large number of 

parameter sets are generated. To select the MLE, performance is judged by finding the 

minimum of total error £ where: 

(6) 

and 

(7) 

- 1 / 
and Di=- LDi.1 · 

l J=I 
(8) 

The variances and averages for output variables 2 and 3 are calculated using expressions 

similar to Equations (7) and (8). 

The likelihood function in Equation (5) also requires calculation of the 

normalization constant, which is found from the constraint that all the likelihoods for a 

parameter should sum to one. In practical terms, preliminary likelihoods are calculated 

by neglecting Kin Equation (5) . Then, the sum of these likelihoods is calculated, and the 
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preliminary likelihoods are divided by the sum to determine the final likelihoods. The 

cumulative likelihood for a selected value of a parameter is determined by summing all 

the likelihoods associated with values that are smaller than or equal to the selected value. 

The cumulative likelihoods can be used to generate a posterior cumulative likelihood 

distribution for each parameter. 

The limitations of the GLUE methodology should be emphasized. The likelihood 

function in Equation (5) is assumed rather than derived from a particular set of statistical 

assumptions. In addition, calculation of separate cumulative likelihood distributions for 

each parameter neglects correlation or dependence between the most likely values of 

different parameters. Such limitations disallow using this methodology to rigorously 

assess quantitative uncertainty in model responses. However, the methodology is still 

expected to be useful to roughly assess the extent to which various parameters have been 

constrained by a calibration exercise and the related objectives given earlier. 

2.3 LHS 

The third and final step of the methodology is to use the posterior cumulative 

distributions of the parameters in the model to simulate the forecast period and to 

determine the associated distributions for the model outputs. LHS is used to sample the 

marginal posterior distribution of each parameter (Chang et al. 2005; Hall et al., 2005). 

In contrast to Monte Carlo sampling, which generates random values from the 

distribution, LHS explores the parameter space using regularly-spaced percentiles from 

the distribution. LHS is used here because previous research has shown that smaller 

sample sizes can be used to characterize a distribution for LHS than for Monte Carlo 

simulations (McKay et al. , 1979). Even so, the required number of simulations at this 
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stage of the analysis can be rather large if numerous parameters are treated as uncertain. 

To reduce the number of simulations, the parameters can be screened. Parameters that 

had little impact on the model results in the calibration period (based on the GSA) can be 

assigned to the midpoint of the allowable range. The remaining parameters are treated as 

uncertain and sampled using LHS. In the LHS scheme, the posterior cumulative 

likelihood function for each parameter is obtained from the GLUE methodology 

described earlier. The cumulative likelihood scale is divided into a selected number of 

equally-sized bins, and the midpoints of those bins are determined. Then, the cumulative 

likelihood function is used to find the parameter value associated with each midpoint. 

Because the posterior distributions are typically non-uniform, the parameter values will 

be irregularly spaced. The values for each parameter are then combined with those for 

every other parameter so that every combination is included in the sample. The 

generated parameter sets are then used in the model for the forecast period to determine 

the associated histograms of model responses. 
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3 SRH-1D 

The GSA-GLUE methodology described in the previous section is tested using 

the SRH-1D model. SRH-1D is an outgrowth of the Generalized Stream Tube model for 

Alluvial River Simulation (GSTARS) and is currently used by the Bureau of Reclamation 

to simulate flows and sediment transport in channels and river networks with or without 

movable boundaries (Huang and Greimann, 2006) . The model can simulate steady or 

unsteady flow and can treat cohesive and non-cohesive sediment. The model 

applications considered in this paper use only steady flow and non-cohesive sediment. 

SRH-1D uses one-dimensional flow calculations, including the standard step energy 

method for steady gradually varied flow (Huang and Greimann, 2007). The hydraulic 

component determines flow depths based on volumetric flows, cross-sectional geometry, 

Manning's equation, hydraulic gradient, and other energy losses. Between adjacent 

cross-sections (j andj+l), the energy equation is written: 

(10) 

where z represents the water surface elevation, /3 is a velocity distribution coefficient, v is 

the average velocity at the cross-section, g is gravitational acceleration, h1 represents 

friction loss, and he represents contraction or expansion losses. Evaluation of the friction 

loss in Equation (10) ultimately requires use of Manning's equation and specification of 

Manning' s roughness coefficient n. 

SRH-1D also simulates sediment transport using three main elements: sediment 

routing, bed material mixing, and cohesive sediment consolidation (if cohesive sediment 

is present). For sediment routing, SRH-lD can use either unsteady sediment routing or 
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the Exner equation routing. Because steady flow is considered here, the Exner equation 

is used and mass conservation can be written: 

(11) 

where Qs is volumetric sediment discharge, & is volume of sediment per unit bed layer 

volume (related to porosity), Ad is volume of bed sediment per unit length, and qs is 

lateral sediment inflow per unit length. The Exner equation is integrated over control 

volumes associated with cross-sections and applied separately for each sediment size 

fraction. Lateral inflows are specified by the user and are zero in the present 

applications. Because the cross-sections might be closely spaced in some cases, SRH-lD 

does not assume that the sediment discharge equals the transport capacity. Rather, it 

assumes the capacity is reached over an equalization length. Evaluation of the 

equalization length requires specification of a bedload adaption length parameter as well 

as separate deposition and scour recovery factors. The transport capacity expression used 

here is Parker's gravel equation ( 1990), which ultimately requires specification of a 

reference, or critical, shear stress and a hiding factor, which accounts for differences in 

critical shear stresses for particles of different sizes. 

Bed material mixing is modeled by dividing the bed into a thin active layer and a 

series of underlying inactive layers. Erosion and deposition of sediment can only occur 

from the active layer. Each layer is considered homogeneous within its depth. The 

active layer thickness is determined using the geometric mean of the largest size class and 

a user-specified proportionality constant. When erosion occurs, the active layer shifts 

downward and material from the underlying layers becomes part of the active layer. 

When deposition occurs, the active layer shifts up and material becomes classified as the 
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top inactive layer. As part of the bed material mixing, the user must specify a bedload 

weighting, which controls the importance of bed load in the transfer of material between 

the active layer and the underlying layer. 

In the end, eight parameters are treated as uncertain in this analysis: Manning's n, 

critical shear stress, hiding factor, deposition recovery factor, scour recovery factor, 

bedload adaptation length, active layer thickness multiplication factor, and the weighting 

of bedload fractions for transfer from surface to subsurface. None of these parameters is 

measurable in the field, and they can vary significantly from case to case. Thus, they are 

typically calibrated. Table 1 shows the selected minimum and maximum values of each 

of these parameters used in this analysis. These ranges were chosen because they 

represent a reasonable range of possible parameter values across various model 

applications. 

Table 1. Selected bounds for the uniform distributions describing the eight parameters. 
Parameter Minimum value Maximum value 

Critical Shear Stress 0.01 0.06 

Hiding Factor 0 1 

Active Layer Thickness Multiplier 0.1 2 

Deposition Recovery Factor 0.05 1 

Scour Recovery Factor 0.05 1 

Bedload Adaptation Length 0 10 

Weight of Bedload Fractions 0 1 

Manning's n 0.015 0.065 

SRH-lD produces a large number of outputs including: mass balance, sediment 

load, sediment sizes, bed profile, flow velocity, and sediment concentrations. These 

outputs are available at multiple locations and times for a given simulation. Here, the 
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model response variables of interest were selected to be the length-averaged median grain 

size, flow velocity, and bed profile. The length-averaged median grain size d50 is 

defined as: 

f ( d so1 + dso1• 1 M., . . J 
- ~I 2 ~;+ / 

j= dso = ---------
L,o,at 

(12) 

where & J,J + 1 is the length between cross-sections j andj + 1, d50J is the median grain 

size at cross-section}, and L101a1 is the total length of the reach (the sum of all M's). 

-
Similarly, the length-averaged flow velocity v is defined as: 

I/ (VJ +VJ+I J ~-~M_, + I - 2 j,j 
V = -'-}=_I_:__ _ ____ 

L,otal 
(13) 

where VJ is the average flow velocity at cross-section}. Finally, the length-averaged bed 

elevation P is defined as : 

f(~ +~+I Af_, . J - 2 ; ,; + / 
p = ..:..J=_I_:__ _____ ,_ 

L,otal 
(14) 

where Pl is the average bed elevation of the channel at cross-section}. It is assumed that 

we have observations available for these three outputs for any so-called calibration 

periods. For forecast periods, it is assumed that we want to make predictions for these 

(unobserved) outputs. 
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4 Experiments 

The model was applied to two flume experiments. One experiment is an erosional 

case and the other is a depositional case. These experiments were chosen due to their 

well-documented conditions. In particular, volumetric flow rate, sediment supply, initial 

bed geometry, and initial bed material are known for both experiments. Thus, there is 

little uncertainty about the system configuration or the model inputs. The Ashida and 

Michiue (1971) experiment was designed to simulate river bed degradation and scour 

downstream of a dam. The flume was 0.8 m wide and 20 m long. The experiment used in 

this paper was called Run 6 by the authors. In this case, the initial bed slope was 0.01 

m/m (1 %), a sand-to-gravel particle size distribution was used for the bed material with 

sizes ranging from 0.2 mm to 10 mm and an initial median diameter of 1.5 mm. A clear-

water discharge of0.0314 m3/s was applied at the upstream end of the flume for the ten 

hour experiment. 

Unfortunately, the observations that characterize the resulting system behavior are 

rather limited. The resulting degradation was measured at three locations (7, 10, and 13 

m from the downstream end of the flume) at the beginning of the experiment and at hours 

1, 2, 4, and 10. Bed gradation was also measured at three locations (1 , 10, and 13 m from 

the downstream end of the flume) at the beginning and end of the experiment. Due to the 

lack of an extensive set of physical data, output from a calibrated SRH-lD model was 

used in place of physical observations when evaluating the parameter uncertainty. This 

approach means that any disagreement between model simulations performed as part of 

the parameter uncertainty analysis and the "observed" values is due to errors in the 

parameter values. This approach also allows us to vary the amount of observations 
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supplied to the method in order to determine the impact on the results . The model was 

manually calibrated using comparisons to both the observed bed profile and the observed 

bed grain size distribution. The upstream boundary condition was set to zero sediment 

inflow, and the downstream boundary condition specified the water surface elevation and 

allowed sediment outflow. Actual observations of the bed profile were used as the initial 

conditions for the calibration simulation. Cross section spacing was every 0.5 m, 

resulting in 41 total cross sections, and grain sizes were broken into 9 classifications. 

Figure la compares the bed profile simulated by the calibrated model (using parameter 

values given in Table 2) to the experimental observations. The calibrated model 

compares well to the observations through hour 2. After hour 2, the model appears to be 

overestimating the erosion rate. As erosion happens in this experiment, some bedform 

development occurs, which implies a temporal variation in Manning's n that is not 

properly captured by the model. 

Table 2. Parameter va lues for the two calibrated models that are used to generate the output values 
that are treated as observations. 
Parameter Ashida and Michiue (1971 ) Seal et al (1997) 

Experiment Experiment 
Critical Shear Stress 0.0386 0.0386 

Hiding Factor 0.905 0.905 

Active Layer Thickness Multiplier 1 1 

Deposition Recovery Factor 0.25 1 

Scour Recovery Factor 1 1 

Bedload Adaptation Length 5.0 0.10 

Weight of Bedload Fractions 0 0 

Manning' s n 0.027 0.022 
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Figure 1. Observed bed elevations (points) and the bed profiles produced by the calibrated models 
(lines) for the (a) Ashida and Michiue (1971) and (b) Seal et al. (1997) experiments. 

For the analysis of parameter uncertainty, the Run 6 experiment was divided into 

a calibration period from Oto 2 hours and a forecast period from 2 hours to 10 hours. 

The forecast period has identical conditions to the calibration period aside from the initial 

condition. The initial conditions for all forecast simulations in the analysis are the values 

obtained from the calibrated model (i.e. the "observations"). The Seal et al. (1997) 

experiment was designed to evaluate downstream fining of poorly-sorted sand and gravel 

in a narrow channel and to simulate deposition and armoring processes. Their 

experiments consisted of three separate laboratory flume setups (Runs 1, 2, and 3). The 
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flume used in all three experiments was 0.3 m wide and 45 m long with an initial slope of 

0.002 m/m (0.2%). A discharge of 0.049 m3/s was applied at the upstream end of the 

flume. The durations of the individual setups were 16.83 hours, 32.4 hours, and 65 hours. 

For each setup, a sand to gravel particle size distribution was used for the sediment feed 

with sizes from 0.125 to 64 mm. Sediment feed rates for the three experiments varied 

from 0.05 to 0.19 kg/s. The resulting profile was regularly measured (every half hour, 

every hour, and every 2 hours for Runs 1, 2, and 3, respectively) at 18 locations for the 

durations of the experiments. Sediment sizes of the surface were measured at the end of 

each experiment using standard point counts of 100 grains for 8 to 10 samples over the 

length of the deposit along the flume. Subsurface sampling was also conducted at the end 

of each experiment. For the Seal et al. (1997) experiment, Run 2 was used as the 

calibration case. The duration of Run 2 is 32.4 hr with a sediment feed rate of 0.09 kg/s. 

To be consistent with the erosional experiment, a calibrated SRH-lD model was 

developed for Run 2 and used as "observations." The upstream boundary conditions are 

the specified feed rate for sediment inflow, and the downstream boundary conditions 

specified the water surface elevation and allowed sediment outflow. Actual observations 

were used as the initial conditions for the calibration simulation. Cross section spacing 

was every 1 m for a total of 56 cross sections (this total length is greater than the actual 

length of the flume). ine grain size classifications were used. The calibrated model 

was developed by comparing the model results to the observed bed profile and sediment 

size distributions. Figure 1 b compares the bed profile simulated by the calibrated model 

(using parameter values in Table 2) to the experimental observations. The calibrated 

model compares well to the observations, with the largest discrepancies occurring near 
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the downstream end of the depositional wedge. Run 1 and Run 3 were both used as 

forecast cases for the analysis of parameter uncertainty. For both forecast cases, the 

actual observations were used as the initial conditions for the simulations. These runs 

have the same volumetric flow rate (0.049 m3/s) as the calibration case (Run 2). 

However, Run 1 and 3 have sediment feed rates of 0.09 kg/s and 0.05 kg/s and durations 

of 16.8 and 65 hours, respectively. 
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5 Results 

5.1 GSA 

The FAST method, as previously described, was applied to the calibration cases 

of the two physical experiments. The eight parameters identified earlier were varied, and 

the three model outputs were evaluated. Both applications of FAST used sample sizes of 

5000 simulations (smaller sample sizes are discussed later in this paper). 

(a) Ashida and Michiue (1971) Experiment, 
First order sensitivity 

(b) Ashida and Michiue (1971) Experiment, 
Total order sensitivity 

100% ,-.--,--
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(c) Seal et al. (1997) Experiment, 
First order sensitivity 

(d) Seal et al. (1997) Experiment, 
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Profile 

Profile 

Figure 2. First order and total order sensitivity indices for SRH-lD models of Ashida and Michiue 
(1971) and Seal et al. (1997) experiments. Each column refers to one of the three length-averaged 
output variables. The sensitivities are stacked in each column in the same order that they are listed in 
the legend. 

Figure 2a plots the estimated contribution of each parameter to the total variance 

of the three output variables for the Ashida and Michiue (1971) experiment based on the 

first order sensitivity indices. To produce the partitions shown in a given column, the 

first order indices were divided by the sum of the first order indices and plotted as a 
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percentage. Recall that these indices should sum to 1 only if the model is additive with 

respect to the parameters (Saltelli et al. , 2008). Figure 2b shows the results for a similar 

computation using the total order indices. Both Figure 2a and Figure 2b suggest that four 

parameters are primarily responsible for producing variability in the length-averaged 

median grain size, velocity, and bed profiles. These parameters are the critical shear 

stress, hiding factor, active layer thickness multiplier, and Manning's n. In fact , only 

these parameters have sensitivity values above 5% of the summed sensitivities for each 

output. For the d50 output, hiding factor is the parameter that produces the greatest 

sensitivity by far. This result should be expected because hiding factor attempts to 

account for the differences in the mobility of different size fractions. Thus, it should 

have a clear impact on sediment size distribution of the bed. For the velocity output, 

Manning's n is the parameter that produces the greatest sensitivity. This result reflects 

the relationship between Manning's n and velocity as stated in Manning ' s equation. For 

the bed profile output, critical shear stress is the parameter that produces the most 

sensitivity. Critical shear stress impacts bed profile through its role in determining the 

overall erodibility of the bed material. It is interesting to note that these same 

relationships hold whether the first order or the total order sensitivity is considered. In 

general, the contributions of the less important parameters are magnified when the total 

order indices are considered. This behavior suggests that these parameters are primarily 

important because they affect the contributions of the more important parameters, such as 

critical shear stress, hiding factor, and Manning's n. It should be noted that these results 

are specific to the conditions studied in the experiment and are not necessarily applicable 
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to all erosional cases. For example, different grain size distributions may enhance the 

roles of parameters that are unimportant here. 

Figure 2c and Figure 2d show the equivalent results for the Seal et al. (1997) 

experiment. When considering the first order sensitivities (Figure 2c), four parameters 

again have contributions larger than 5%: critical shear stress, hiding factor, weight of 

bedload fractions, and Manning's n. This list is similar to the erosion case, but the 

weight of bedload fractions replaces the active layer thickness multiplier. For the d50 

output, the hiding factor plays a smaller role for the depositional case than it did for the 

erosional case, but it is still the parameter that produces the most variance. For the 

velocity output, Manning 's n plays an even larger role for the depositional case than it did 

for the erosional case. For the bed profile, Manning's n now overtakes the critical shear 

stress as the parameter that produces the most variance. The increased importance of 

Manning' s n to the bed profile is expected because the flow velocity plays an important 

role in deposition. 

The total order sensitivities in Figure 2d show more complex behavior than 

suggested by the first order indices. Similar to the results for the erosional case, the less 

important parameters have a bigger role in the total order indices than they do in the first 

order indices. For the total order sensitivity, a 5% threshold would identify the same four 

parameters as most important for the d50 output. However, for the velocity and bed 

profile outputs, this threshold would identify all parameters as being important. 

Increasing the threshold to 10% for the velocity and bed profile outputs would identify 

the same four parameters included in the first order sensitivity, plus scour recovery factor 

for the bed profile output. Comparing the total order indices from the erosional and 

26 



deposition cases (i.e., Figure 2b and Figure 2d) suggests that the depositional experiment 

is much more complex than the erosional experiment. For example, most of the bed 

profile variance comes from the critical shear stress in the erosional case, but for the 

depositional case, nearly all parameters have roughly comparable influences on the bed 

profile. 

5.2 GLUE 

After the sensitivity analysis was completed for the two experiments, the GLUE 

method was used to calculate the posterior likelihood distributions for each parameter as 

described in the Methodology section. Recall that the likelihood function uses weights 

based on the first order sensitivity indices, which are plotted in Figure 2a and Figure 2c. 

The actual weights are tabulated in Table 3. The likelihood function also requires a value 

for m, the effective number of independent locations. Here, we assume m = I , which is 

the most conservative value for this variable because it produces the largest estimate of 

the parameter uncertainty. The effect that m has on the results is evaluated later. 

27 



Table 3. Weights used in the evaluation of the likelihood function in Equation 5 when median grain 
size, flow velocity, and bed profile are observed. 

Parameter 
Weight of Weight of Weight of 

d50 output Velocity output Bed profile output 

Ashida and Michiue (1971) experiment, first order sensitivity weights 

Critical shear stress 0.027 0.098 0.875 

Hiding factor 0.826 0.022 0.153 

Active layer thickness multiplier 0.589 0.025 0.386 

Manning' s n 0.014 0.942 0.044 

Ashida and Michiue (1971) experiment, total order sensitivity weights 

Critical shear stress 0.061 0.114 0.825 

Hiding factor 0.766 0.050 0.184 

Active layer thickness multiplier 0.419 0.173 0.408 

Manning's n 0.035 0.850 0.115 

Seal et al. (1997) experiment, first order sensitivity weights 

Critical shear stress 0.2 11 0.064 0.725 

Hiding factor 0.857 0.043 0.100 

Weight of bedload fractions 0.458 0.025 0.517 

Manning's n 0.049 0.604 0.347 

Seal et al. (1997) experiment, total order sensitivity weights 

Critical shear stress 0.246 0.280 0.474 

Hiding factor 0.451 0.240 0.309 

Weight of bedload fractions 0.357 0.279 0.364 

Manning's n 0.105 0.591 0.304 
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Figure 3. Posterior cumulative likelihood distributions for (a) critical shear stress, (b) hiding factor, 
(c) active layer thickness multiplier, and (d) Manning's n for the Ashida and Michiue (1971) 
experiment. Dashed lines indicate the uniform distribution for each parameter that was assumed 
prior to simulation of the calibration period. Vertical lines indicate the parameter values used in the 
calibrated model (i.e., the true values). 

The solid lines in Figure 3 show the posterior cumulative likelihood distributions 

of critical shear stress, hiding factor, active layer thickness multiplier, and Manning' s n 

for the Ashida and Michiue (1971) experiment. Recall that the GSA identified these 

parameters as producing the most variance in the model outputs. In the interests of 

brevity, the posterior distributions of the remaining parameters are not shown. The 

dashed lines show the uniform distributions that were assumed prior to simulation of the 

calibration period and application of the likelihood function. The steep sections in the 

posterior distributions indicate ranges with higher concentrations of likelihood. Such 

sections are seen in the distributions for critical shear stress, hiding factor, and Manning 's 

n. In contrast, the distribution for active layer thickness multiplier does not exhibit such a 

steep section. This result suggests that the active layer thickness parameter is more 
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poorly constrained by the available observations than the other parameters, possibly 

because no output is highly sensitive to active layer thickness multiplier (Figure 2). The 

vertical lines in the figure indicate the true values for each parameter (i.e. the values used 

in the calibrated model that is used to generate the "observations"). For hiding factor and 

Manning's n, the true values fall within the region with the highest concentration of 

likelihood. For critical shear stress, the true parameter value falls in a range that is 

deemed unlikely by the analysis. 
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Figure 4. Posterior cumulative likelihood distributions for (a) critical shear stress, (b) hiding factor, 
(c) weight of bedload fractions, and (d) Manning's n for the Seal et al. (1997) experiment. Dashed 
lines indicate the uniform distribution for each parameter that was assumed prior to simulation of 
the calibration period. Vertical lines indicate the parameter values used in the calibrated model (i.e., 
the true values). The true value for the weight of bedload fractions is 0. 

Figure 4 shows the posterior cumulative likelihood distributions of critical shear 

stress, hiding factor, weight of bedload fractions, and Manning's n for the Seal et al. 

(1997) experiment. These are the parameters found to produce the most variance in the 

model outputs for this experiment. Once again, steep sections are observed in the 

30 



cumulative distributions of hiding factor and Manning's n, indicating that the most likely 

values of these parameters fall within relatively well-defined ranges. The true values for 

these parameters also fall within the ranges that are considered likely. Critical shear 

stress and weight of bedload fractions do not exhibit such large steep sections, suggesting 

that these parameters are more poorly constrained by the available observations. 

5.3 LHS 

After the posterior distributions were calculated, LHS was used to develop 

samples from them. For both physical experiments, the sample size was 1296 parameter 

sets ( other sample sizes are discussed below). Six values were generated for the four 

parameters that produced the greatest sensitivity in the outputs, while a single midpoint 

value was used for the remaining parameters. Selecting only one value for the 

parameters that produced relatively little sensitivity in the outputs effectively neglects the 

uncertainty in the outputs produced by uncertainty in these parameter values. Screening 

out these parameters ultimately allows a much smaller number of simulations to be 

conducted for the forecasting period, which reduces computation time. 

For the Ashida and Michiue (1971) experiment, six values were generated from 

the posterior distributions of critical shear stress, hiding factor, active layer thickness, and 

Manning's n. All other parameters were fixed at the median value from their posterior 

distribution. The first order sensitivity for each of these parameters is less than 1 % of the 

total first order sensitivity for any of the outputs. Figure 5 plots the histograms for the 

length-averaged d50, velocity, and bed profile when the parameter sets generated from 

LHS are used to simulate the forecast period (shown as solid lines). For comparison, the 

figure also shows the histograms of these output variables for the calibration period 
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(shown as dashed lines), where the parameters were generated from a uniform 

distribution via FAST. The vertical axes show relative frequency of occurrence, which 

was calculated using 30 bins for d50, velocity, and bed profile. The vertical lines 

represent the true values for these outputs based on application of the calibrated model to 

the forecast period. 
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Figure 5. Histograms of (a) dSO, (b) velocity, and (c) bed profile for the calibration and forecast 
periods for the Ashida and Michiue (1971) experiment. Vertical lines indicate the output values 
produced by the calibrated model. 

The histograms of the outputs have changed between the calibration and forecast 

periods due in part to differences in the initial conditions and elapsed simulation time. In 

particular, the duration of simulation was only 2 hours for the calibration period while it 
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was 8 hours for the forecast period. Typically, one expects a wider range of output 

values for a longer simulation (i.e., the forecast period) . However, the output histograms 

also reflect the narrower distributions for the parameters used for the forecast period. 

The most likely values of d50 range from 3 to 6 mm for the forecast period,and the true 

value (from the calibrated model) was 4.2 mm. The most likely values for velocity range 

from 0.35 to 0.54 mis for the forecast period, and the true value was 0.47 mis. The most 

common values of the bed profile range from -0.080 to -0.005 m, and the true value was 

-0.020 m. Thus, all of the histograms include the true value for the forecast period. In 

the case of velocity, the actual value is very near the value judged to be most likely from 

the histogram. Among the three output variables plotted, velocity is particularly 

interesting because it is not expected to vary between the calibration and forecast periods. 

Thus, the narrowing of the histogram between the calibration and forecast periods likely 

reflects the degree to which the parameters were constrained by the observations 

available for the calibration period. 

For the Seal et al. (1997) experiment, six values were generated from the posterior 

distributions of critical shear stress, hiding factor, weight of bedload fractions, and 

Manning's n using the LHS method. Single values, based on the midpoints of the 

posterior distributions, were used for the active layer thickness multiplier, deposition 

recovery factor, scour recovery factor, and bedload adaptation length. Again, as can be 

seen in Figure 2, the first order sensitivities for these fixed parameters are all less than 

1 % of the total first order sensitivity for any of the model outputs. Figure 6 plots the 

histograms for the length-averaged d50, velocity, and bed profile for the two Seal et al. 

(1997) cases that are considered as forecast scenarios (shown as solid lines). These 
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histograms were generated using 23 bins for d50, velocity, and bed profile. The figure 

also shows the histograms of these output variables for the calibration period (shown as 

dashed lines), where the parameters were generated from a uniform distribution via 

FAST. The vertical lines represent the true values for these outputs. 
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Figure 6. Histograms of (a) dSO, {b) velocity, and (c) bed profile for calibration and forecast cases for 
Seal et al. (1997) experiment. Vertical lines indicate the output va lues produced by the calibrated 
model. 

Overall, the true values for the forecast cases typically fall within the histograms, 

although not always at the most likely value. The histograms also indicate a substantial 

range of plausible values for all three outputs under the forecast scenarios. 

34 



6 Analysis 

The results described in the previous section rely on several decisions made in the 

application of the GSA-GLUE methodology. These decisions include: (1) the sample 

size used in FAST to assess the sensitivities of the outputs to the parameters, (2) the use 

of the first order sensitivities rather than the total order sensitivities to calculate the 

weights in the likelihood function, (3) the assumed effective number of independent 

observations, m, (4) the mathematical form of the likelihood function, (5) inclusion of 

observations of d50, velocity, and bed profile to constrain the parameters, (6) neglecting 

the possible correlation between the posterior distributions of the parameters, and (7) the 

sample size used in the LHS method for the forecast period. The impact of each of these 

decisions is examined below using the Ashida and Michiue (1971) experiment. 

The impact of the sample size used in FAST is examined first. In the previous 

section, a sample size of 5000 simulations was used. To test whether this sample size is 

adequate to quantify the sensitivities, a second sample of equal size was generated and 

used in FAST to estimate the sensitivities for the Ashida and Michiue (1971) experiment. 

Figure 7a and 7b compare the first order sensitivities calculated based on these two 

samples (Figure 7 was generated in the same manner as Figure 2). For both samples, the 

same parameters are identified as being most important in explaining the variance of each 

output, but the numerical values for the sensitivities change somewhat. Smaller sample 

sizes of 1160 and 968 simulations were also generated and used to estimate the 

sensitivities with FAST (Figure 7c and Figure 7d). Both of these show good qualitative 

agreement with the sensitivity analysis of the initial sample, but again the quantitative 

results change somewhat. A sample size of 520 simulations was also tested. At this size, 
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the sensitivity analysis fails to identify the same parameters that were found to produce 

the most variance in the outputs with larger sample sizes. Thus, this sample size is 

clearly too small to produce reliable estimates of sensitivity and would greatly impact the 

assessment of parameter uncertainty for this experiment. 

Ashida and Michiue (1971) Experiment, First order sensitivity 
(a) Original 5000 samples (b) A second 5000 samples 
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• Critical Shear Stress 
lil Hiding Factor 
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• Active Layer Thickness Multiplier 
ISi Deposition Recovery 

d50 Velocity 
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Profile 

d50 Velocity Profile d50 Velocity Profile 

Figure 7. Comparison of first order sensitivities for the SRH-10 model of the Ashida and Michiue 
(1971) experiment using different sample sizes. Sensitivities are stacked in each column in the same 
order that they are listed in the legend. 

Next, the impact of using the first order sensitivities to determine the weights in 

the likelihood function in Equation (5) is examined. While the total order includes 

parameter interactions in judging the impact of a given parameter on the outputs, using 

first order sensitivities potentially allows application of faster methods to estimate the 

sensitivities in the future (Saltelli et al. , 2008; Gatelli et al. , 2008). Figure 8 shows the 

posterior cumulative likelihood distributions for critical shear stress, hiding factor, active 
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layer thickness multiplier, and Manning's n, using both the first order and total order 

sensitivities to determine the weights. 
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Figure 8. Comparison of posterior cumulative likelihood distributions for (a) critical shear stress, {b) 
hiding factor, (c) active layer thickness multiplier, and (d) Manning's n when the likelihood function 
uses the first order or total order sensitivity. Dashed lines indicate the uniform distribution that wa 
assumed for each parameter before the model was applied to the calibration period. Vertical lines 
indicate the parameter values used in the calibrated model. All results are for the Ashida and 
Michiue (1971) experiment. 

The weights used in this comparison are shown in Table 3. As can be seen from 

Table 3, the weights are similar for the two cases, so the resulting posterior distributions 

are very similar in Figure 8. In fact, the cumulative likelihood distributions for critical 

shear stress are visually indistinguishable. This analysis provides preliminary evidence 

that the use of first order instead of total order weighting may have relatively little impact 

on the assessment of parameter uncertainty. However, the results may not apply to 

systems with different grain size distributions, unsteady flow, different reach lengths, etc . 

The same analysis was performed for the Seal et al. (1997) experiment, which produced 

posterior cumulative likelihood distributions for critical shear stress, hiding factor, weight 
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of bedload fractions, and Manning's n. Among these parameters, only the cumulative 

distribution for hiding factor showed a visible difference depending on the weighting 

used. Specifically, the cumulative likelihood distribution for hiding factor shifted 

noticeably towards a uniform distribution when total order sensitivity weights were used. 

Another key assumption in the methodology above is the effective number of 

independent observations m. Previously, m was assumed to be 1 due to the expected 

dependence of the errors at different cross-sections in a simulation. Here, the practical 

effect of m on the results of the analysis is examined. Using the Ashida and Michiue 

(1971) experiment, posterior cumulative likelihood distributions for critical shear stress 

and hiding factor were generated using values of m varying from 1 to 20 in Figure 9. 
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Figure 9. Impact of the value of m, the effective number of independent observations, on the 
posterior cumulative likelihood distributions for (a) critical shear stress and (b) hiding factor. 
Dashed lines indicate the assumed initial uniform distribution for each parameter. Vertical lines 
indicate the parameter values used in the calibrated model. All results are for the Ashida and 
Michiue (1971) experiment. 

1.0 

As can be seen in this figure, an increase in m creates a posterior distribution with 

a more erratic shape, where a very small number of parameter values begin to dominate 

the distribution. Overall, a larger value of m increases the likelihoods of the parameter 

values that produce results that are very similar to the observations and penalizes the 

parameter sets that produce more dissimilar results. The true values of critical shear 
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stress and hiding factor from the calibrated model were 0.0386 and 0.905, respectively, as 

seen in Table 2. While the true value for the hiding factor is located at a jump in the 

cumulative distribution (Figure 9b ), the true value for critical shear stress is located at a 

relatively flat portion of the distribution, or a region with a lower concentration of 

likelihood. The hazard of a large value of m is that the method might over-penalize small 

disagreements with the observations and miss plausible values of the parameter. 

The form of the likelihood function was also assumed in generating the results in 

the previous section, based on a conceptual extension of the likelihood function presented 

by Stedinger et al. (2008). However, alternative likelihood functions could be devised. 

For example, one might instead calculate the likelihood by normalizing each output 

variable and then including it in the function presented by Stedinger et al. (2008). A 

likelihood function based on this approach would be: 

I 
) 1 2 ) 1 2 ) 1 2 

-2 I(o,.j - M,.J + -2 I(o2_j - M 2.j ) + -2 I(o3.j - M3_j ) 
-3m a a, j=I a a, ;=1 a a, j=I 

L = exp -2-·_1 ~(o . -MMLE )2 + - I ~(o . - M MLE )2 +-I ~(o . - M MLE )2 
2 L., I.; I,; 2 L., 2,J 2,J 2 L., 3,J 3,; 

a a, j=I a a, j=I a a, j=I 

(15) 

where the indices 1, 2, and 3 are the different system outputs, and a 0
2 

, a 0
2 

, and a~ are 
I 2 l 

the variances of the observations for each output. The MLE values in this likelihood 

function are calculated in the manner described earlier. 
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Figure 10. Comparison of the effect of the mathematical form of likelihood function on the posterior 
cumulative likelihood distributions for (a) critical shear stress and (b) hiding factor using Equation 5 
and Equation 15. Dashed diagonal lines indicate the assumed initial uniform distribution for each 
parameter. Vertical lines indicate the parameter values used in the calibrated model. All results are 
for the Ashida and Michiue (1971) experiment. 

Figure 10 shows the posterior cumulative likelihood distributions for critical shear 

stress and hiding factor when likelihoods are calculated using Equations 5 and 15. In 

both cases, m = 1. The likelihood function in Equation 15 assigns nearly all of the 

likelihood to a single parameter value, creating a stair-step cumulative distribution. The 

parameter set selected by this function is the MLE parameter set. Part of the reason for 

this result is that the observations used in this analysis are actually model results, so the 

MLE parameter set is capable of reproducing the results with very little error. Thus, it is 

judged to have a very high likelihood. However, it should be noted that the parameter 

values associated with the MLE are not necessarily the true values used to generate the 

"observations." In particular, notice that the critical shear stress that is identified in 

Figure 1 0a is not the true value of the critical shear stress. Overall, these results 

demonstrate that the form of the likelihood function can have major impacts on the 

results of a GLUE analysis because it contains hidden assumptions about the 

measurement error and the importance assigned to exactly matching the observations. 
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The use of calibrated model outputs in place of actual observed data allowed the 

inclusion of a larger number of observations to constrain the parameters than were 

actually available. In many cases, smaller numbers of observations or observations of 

fewer variables are available. To test the impact of the available observations on the 

results, it is assumed now that no observations were available for d50. In such a case, the 

likelihood function includes only two outputs rather than three. Figure 11 compares the 

posterior cumulative likelihood distributions for critical shear stress, hiding factor, active 

layer thickness multiplier, and Manning' s n, developed using observations for d50, 

velocity, and bed profile, and developed using only velocity and bed profile. The 

posterior distributions for critical shear stress and Manning's n (Figure 1 la and Figure 

1 ld) do not change noticeably. 
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Figure 11. Comparison of posterior cumulative likelihood distributions for (a) critical shear stress, 
(b) hiding factor, (c) active layer thickness multiplier, and (d) Manning's n when dSO is observed or 
unobserved. Dashed lines indicate the uniform distribution that was assumed for each parameter 
before the model was applied to the calibration period. Vertical lines indicate the parameter values 
used in the calibrated model. All results are for the Ashida and Michiue (1971) experiment. 
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In this model, d50 is not sensitive to critical shear stress or Manning's n, so 

observations of d50 have little impact on the likelihood distributions for these parameters. 

The posterior distribution for hiding factor (Figure 11 b ), however, shows a dramatic 

change when d50 observations are unavailable, moving closer to a uniform distribution. 

Because the hiding factor is assumed to be uniformly distributed in advance of the 

simulating the calibration period, this implies that the observations from the calibration 

period are not effective at constraining the value of this parameter. Similarly, the 

posterior distribution for active layer thickness multiplier (Figure 11 c) moves closer to a 

uniform distribution, implying that the velocity and bed profile observations are of 

limited effectiveness in constraining this parameter. 

The resulting histograms for the simulated d50, velocity, and bed profile outputs 

for the calibration and forecast periods are shown in Figure 12. When only velocity and 

bed profile are observed in the calibration period, the histogram for d50 in the forecast 

period resembles the histogram from the calibration period, with a most likely value of 

5.2 mm. This similarity occurs because hiding factor, which is most important in 

controlling d50 (see Figure 3), was poorly constrained by the calibration observations. 

Active layer thickness multiplier, also known to impact the d50 output, is similarly 

unconstrained. The histograms of velocity and bed profile after the forecast period are 

similar irrespective of whether d50 was observed or not. Because velocity and bed 

profile observations were available for the calibration period, the most important 

parameters that impact velocity (Manning's n) and bed profile (critical shear stress) were 

about equally constrained irrespective of whether d50 was observed. This analysis 

suggests that it is beneficial during the calibration period to observe any output variable 
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for which forecasts will be required. Such observations help constrain the parameters 

that impact the same output variable. In the circumstance where direct observations of 

the desired output are not possible, the GSA provides a tool to determine whether other 

more measurable outputs depend on the same parameters. 
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Figure 12. Histograms of length-averaged (a) dSO, (b) velocity, and (c) bed profile for the calibration 
and forecast periods for the Ashida and Michiue (1971) experiment, when dSO is either observed or 
unobserved during the calibration period. Vertical lines indicate the true values of the output for the 
forecast period from the calibrated model. 

Another key assumption in the methodology is the choice to neglect correlation 

between the most likely values of the different parameters. All posterior distributions 

shown in this paper are marginal distributions, which integrate over all values of the other 
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parameters. These distributions are then used in the LHS method, which implicitly 

neglects any correlation or dependence in the joint distribution of the parameter values . 

Figure 13 plots the value of Manning' s n against the value of the critical shear stress for 

the parameter sets used in the calibration period for the Ashida and Michiue (1971 ) 

experiment. 
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Figure 13. Plot of critical shear stress against Manning's n va lues for parameter sets with likelihoods 
greater than 0.0001 (see legend), using Equation 5 with equal weights for all outputs to ca lculate 
likelihoods. Results are for the Ashida and Michiue (1971) experiment. 

In this plot, only the best performing parameter sets ( or the parameter sets with 

the highest likelihoods) are shown. If all points were included, the points would be 

uniformly distributed. The lines of points visible in the plot occur due to the FAST 

sampling method described earlier. For this figure, performance was calculated using the 

likelihood function in Equation (5) with equal weights for d50, velocity, and bed profile. 

The figure shows that most likely values for critical shear stress and Manning 's n are 

clustered within a particular region. In addition, the most likely values for Manning's n 

tend to be larger when the critical shear stress is larger (although much scatter is 
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observed). Based on this observation, some dependence between the distribution of 

critical shear stress and Manning 's n is likely. Similar dependences are suspected 

between critical shear stress and hiding factor, hiding factor and active layer thickness, 

and hiding factor and Manning's n. Additional examination would be necessary to 

determine how such dependences change the overall assessment of the impacts of 

parameter uncertainty. 

Finally, the impact of the sample size in the LHS method was examined. As 

described earlier, 6 values were generated for the 4 most important parameters, while the 

other parameters were fixed at their midpoints. This approach produced a total of 1296 

simulations for each experiment. To assess the impact of the sample size, the nun1ber of 

values was varied from 4 to 9 for each parameter, producing sample sizes of 256, 625, 

1296, 2401 , 4096, and 6561 simulations. Sample sizes of 625 and greater produced very 

similar histograms for the three outputs. The most likely value varied up to 1.6% for the 

d50 output (comparing to the value from the 1296 sample size), up to 0.5% for the 

velocity output, and up to 3 .4% for the bed profile output. The sample size of 256 was 

found to be unsatisfactory. 
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7 Conclusions 

In this paper, a new method was developed to assess the degree to which 

parameter values are constrained by calibration data and the impacts of remaining 

parameter uncertainty on sediment transport model forecasts. The method begins by 

assuming the parameters are uniformly distributed within specified bounds and then 

updates these distributions by comparing the results of simulations based on these 

parameter values against observations for a calibration period. The distributions are then 

updated using a likelihood function that extends the one proposed by Stedinger et al. 

(2008) to include multiple output variables. In the likelihood function, the output 

variables are weighted using the first order global sensitivities, which are calculated using 

FAST. The updated distributions of the parameters are then sampled using LHS to 

produce histograms of model outputs for the forecast period. The main conclusions from 

the application of this method are as follows : 

1. The sensitivities of length-averaged median grain size, flow velocity, and bed 

profile to the model parameters can be quite different for erosion and deposition cases. In 

the erosional experiment by Ashida and Michiue ( 1971 ), median grain size is most 

dependent on hiding factor, velocity is most dependent on Manning ' s n, and bed profile is 

most dependent on critical shear stress. For the depositional experiment by Seal et al. 

( 1997), median grain size is most dependent on hiding factor and weight of bedload 

fractions, velocity is most dependent on Manning' s n, and bed profile is most dependent 

on critical shear stress and Manning's n. Also, the outputs for the depositional case tend 

to be sensitive to more parameters than the outputs for the erosional case. For example, 

for the erosion case considered here, median grain size is most sensitive to hiding factor 
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and relatively insensitive to the other parameters. For the depositional case considered 

here, median grain size is sensitive to critical shear stress, hiding factor, weight of 

bedload fractions and Manning's n. 

2. The analysis of global sensitivities suggests the importance of calibrating 

against observations of variables that will be included in the forecast. For example, if the 

forecast includes median grain size, then the model should be calibrated using 

observations of median grain size. This approach assists the calibration method in 

constraining the parameters most important to the variables included in the forecast. If 

the variables included in the forecast cannot be observed directly during the calibration 

period, then the global sensitivities can be used to identify alternate output variables that 

depend strongly on the same parameters. These alternate variables could then be used to 

constrain these parameters, reducing the uncertainty in the forecast. 

3. Based on the evaluation of the impacts of parameter uncertainty presented 

here, weighting the different output variables based on the first order sensitivity in the 

likelihood function appears to be an adequate substitute for use of the total order 

sensitivity. This approximation is potentially beneficial because faster methods are 

available to estimate the first order sensitivity than the total order sensitivity. Further 

testing is needed to determine the generality of this result and to identify model structures 

and applications where the total order sensitivity might produce substantially different 

results. 

4. By using two mathematical forms of the likelihood function, it was observed 

that the choice of the likelihood function can produce widely differing estimates of the 

parameter uncertainty remaining after calibration, and thus the uncertainty in the model 
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forecasts due to parameter uncertainty. Similarly, the choice of the variable m, the 

effective number of independent observations, has a significant impact on the results. 

These issues are related to implicit assumptions about measurement and other errors in 

the analysis. Further research is needed to determine the applicability of the likelihood 

function. It is recommended that this research begins by applying the methodology to 

cases where the error and model structures are simple and the likelihood function is 

known from basic statistics and then transitions towards more complex but interesting 

sediment transport cases. 

5. In the sampling of the posterior distributions for the parameters, any 

dependence between the most likely values of different parameters is neglected. 

Anecdotal evidence in this analysis suggests that dependencies do occur. If present, these 

dependencies could affect the histograms for the forecasted model outputs. Further 

research should investigate methods to estimate the joint likelihood function so the 

dependence is included. 

Overall, the research described in this paper should be expanded to consider other 

cases to establish the generality of the results. Additional cases might include more 

flume-scale experiments, such as deposition in wide and sandy channels (Toro-Escobar et 

al. , 2007), and erosion in alluvial channels. They should also include river-scale models, 

where a sufficient set of field observations exists. Testing could also consider additional 

output variables such as channel width, flow depth, d 16, d84, and sediment load. Other 

sediment transport equations such as Meyer-Peter Muller (1948), Laursen (1958), and 

Ackers-White (1973) could be examined to see how the relationships between model 

parameters and outputs change. 
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