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ABSTRACT 

A computationally efficient discrete Backus-Gilbert (BG) method is derived that is subject to 

minimization constraints appropriate for footprint-matching applications. The method is 

flexible, since computational cost can be traded for accuracy. A comparison of the discrete BG 

method with a non-discrete BG method shows that the n邙 method can be 250% more efficient 

while maintaining the same accuracy as traditional approaches. 

In addition, optimization approaches are used to further enhance the computational 

performance of the discretized BG method. A singular value decomposit皿唧「oximation is 

applied that increases the computational efficiencies 43% to 106% while maintaining similar 

accuracies to the original discretized algorithm. Accuracies of the optimization were found to be 

scene dependent. In addition, alternative quadrature methods were also tested for several 

idealized simulated scenes. The results suggest that accuracy improvements could be made using 

customized quadrature methods that would be employed along known physical data 

discontinuities (such as along coastlines in microwave irr_agery data). In addition, regul叩zation

behaviors are also discussed; with a particular emphasis on the extension of the method for use 

with unnormalized gain functions. This work demonstrates that for some gain function 

configurations local biases can be intrinsic to the system. 

The flexibility of the discrete BG method allowed for several of the optimizations to be 

performed in a straightforward manner. Many additional optimizations are likely possible. Due 

to the lower computational cost of the method, this work is applicable toward applications in 

which noise may vary d)'11amically (such as in RFI-contaminated environn1ents). The 

computational flexibility of the method also makes it well suited to computationally 

constrained problems such as 4D data assimilation ofremote sensing observations. 



1. Introduction 

The Backus-Gilbert(BG) method (Backus and Gilbert, 1967; 1968; 1970) has 

been employed by various authors to spatially co-register and invert various data sets 

while accounting for different spatial and error propagation behaviors (Twomey 1996). In 

particular, the earth science remote sensing community has employed BG for footprint 

matching between various satellite data channels (usually in the microwave spectrum) 

(Stogryn 1976; Poe 1990; Farrar and Smith 1992; Robinson et al. 1992; Bennartz 2000). 

Fundamentally, this is because microwave sensors typically use a single large antenna 

across a relatively wide spectrum. Depending on the particular sensor configuration (e.g., 

sampling rates and illumination characteristics), this results in footprints that may overlap 

considerably and have spatial half-power beam-widths that are substantially different 

from one another. The reader is referred to Poe (1990) for a more detailed technical 

explanation of the instrument design constraints that lead to this common microwave 

sensor condition. 

The Defense Meteorological Satellite Program (DMSP) Special Sensor 

Microwave/Imager (SSM/I) instnunent is an example of a sensor that ex扣bits this type of 

behavior (see Table 1(Hollinger et al., 1990)). For this sensor, the ratio of the effective­

field-of-views (EFOVs) at 85H GHz and 19H GHz is 4.6 x 3.3 (along-track and cross-

track, respectively) between co-located sensor footprints. This can create a substantial 

problem with regards to the correct interpretation of the brightness temperatures since 

nonunifom1 fields can exist within a single footprint. The challenge of matching various 

data footprints will tend to increase as the number of coincident channels is increased. 

Stogryn (1976) and Poe (1990) provide add山onal discussion and graphical depictions 
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that might be helpful to readers unfamiliar with the application of BG theory to the 

footprint-matching problem. In the interest of brevity, this paper does not attempt to 

replicate that discussion. 

The original work of BG (1970) provides a rigorous mathematical basis for the 

inversion of inaccurate data. Later Stogryn (1976) 唧lied it to the specific problem of 

microwave footprint matching, and further developed concepts from BG that are the basis 

of most BG footprint-matching applications today. A key feature of the BG method is that 

it can be used effectively to trade instrument noise for spatial resolution and vice versa. 

This flexibility is a fundamental strength of the BG approach. The earth science remote 

sensing community has expanded upon the original BG theory through various specific 

applications. However, other research communities have implemented various versions 

and modifications of the original BG method for spatial data analysis work. In particular, 

while initially not very well known among mathematicians （和rsch etal. 1988), the 

mathematics community has subsequently expanded the body of knowledge in this area 

through various techniques (e.g., Snieder 1991; Hansen 1994) some of which will be 

discussed and applied later in this paper. Specifically, t比s paper combines the work of 

Stogryn (1976) and Poe (1990) with that of Hansen (1994). 

This work has implications for the practical utilization of BG methods within the 

earth sciences community. For example, a long-standing problem with the application of 

BG to earth science remote sensing has been the computational expense of calculating the 

coefficients necessary for the method (Galantowicz and England 1991). Current 

applications typically assume that the sensor and noise contributions are stable and that 

the coefficients can therefore be assumed static. However, in an era of increasing radio 

frequency interference (RFI), the relatively beni包1 radiometric operating conditions that 
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the remote sensing community has enjoyed may be part of a passing era. Thus, methods 

that are more dynamic are needed to cope with such possible changes that threaten the 

performance of more traditional BG implementations. Additionally, certain 

computationally intensive applications involving remote sensing (e.g., 4D data 

assimilation) may impose demanding computational restrictions that traditional BG 

methods are not able to accommodate. In this vein, a new discrete BG (DBG) method is 

created which is computationally more efficient, and operationally flexible in its 

configuration. In the new method, it will be shown that computational performance can 

be dynamically traded for method accuracy. This allows the method to expend CPU 

cycles where the spatial data analysis is most critical and vice versa. 

Our purpose in this paper is to introduce the mathematical theory and optimization 

techniques that allow for this type of flexibility and efficiency, and to apply it to several 

simulated data set series. The impact of several integration quadrature rules is also 

explored. In addition, 臨pects of the regularization behaviors are discussed. 
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2. Theoretical Background and Derivation 

As mentioned previously, the new BG method is based on Stogryn (1976) and Poe 

(1990) using the 唧roach of Hansen (1994) (hereafter referred to as S76, P90, and H94) 

Before deriving the new method, a common mathematical framework is introduced 

below to reconcile the notational differences employed by the former works. 

All of the methods find a set of coefficients, a, that provide a linear combination of 

the measurements to estimate the value at a point, x0. These coefficients are used to 

define an averaging kernel or interpolated gain function, 

M 

A(x,x。) ＝ Ia; (x。 )G;(x),
i= l 

(1) 

where Gi(x) is the gain function centered at xi, evaluated at position, x, and i is the i th 

measurement out of M total measurements. If it were possible, the ideal interpolated gain 

function would be a delta function. The interpolated gain function is used to estimate a 

measurement at a point xo, Tes,(x。 )， by convolving it with the spatially-integrated 

measurement, Tmea.Cx), so that, 

Tes, （x。 )＝ fA(x,x。 )T,neas (X) dx (2) 

As an 唧roximation to a typical microwave antenna beam pattern, this paper uses a 

truncated cosine function as the gain function. A 3D plot of a truncated cosine function, 

G ii (x) = cos(llxll) for O ~ llxll 訌 ／ 2, is shown in 柘gure 1. In practice, the pre-launch 

antenna gain patterns, or empirically estimated antenna gain patterns would be employed 

However, the idealized gain function suffices for the method intercomparison analysis 

contained in 邯s work. 
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a. Backus Gilbert Method 

It is shown in Backus and Gilbert (1970) (equation 4.20), that the coefficients we are 

seeking, a;, are given by, 
s 一 1 U

a= Tn -1' u S u 

where S is a M x M matrix, and u is a vector of length M, with the condition 

a· U = 1 

imposed to keep the averaging kernel, A, unimodular (integration area equal to 1), i.e., 

I庫 ＝ 1.

(3) 

(4) 

(5) 

For (1) to be true, (i.e. , its linear independence maintained with regards to the gain 

function, Gi(x)), S must be symmetric and positive definite . It should be pointed out that 

if Gi were a delta function, then at point Xi, a1 = 0 for all 」 #i. In Backus and Gilbert 

(1970), S and u are defined as 

Sij = f G;(x)G/x)J(x,x。 )d.x, (6) 

and 

U, = [G, (x)dx, (7) 

where Su is the i th and 」 th element of a M x M matrix, M is the total number of 

measurements in both spatial directions, ui is the i th element of a vector of length M, and 

J is the criteria function , or penalty function. This function ad」 usts how much influence or 

weight nearby points have on the solution. In the original BG work, J was set to be (xo -

x戶 It was later changed to an arbitrary function in both Hansen's and Stogryn's work 

The larger J is at a point, the less that value is weighted in the solution (due to the inverse 
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of S). P90 set J to unity in order to put all the points on an equal footing (i.e., no sidelobe 

distortions or corrections are used). 

b. Hansen Method 

H94 discretizes the BG method using the simple rule: 

N 

[ G, (x)dx::wkG, (xk) , (8) 
k = l 

where N is the number of discrete integration intervals, and wk are the integration 

weights. Hansen does not necessarily define Xk to be the same set of points as x1 used in 

the kernel or gain function, G1. In our analysis, it was found that a simple trapezoidal rule 

for the weights worked well for a 鉭d of points. The set of points, Xk, can be adjusted to 

increase the accuracy or speed. For real data observations that contain repetitive or 

known spatial data 山stributions, it is possible that a more sophisticated technique for 

determining the integration weights would be beneficial. Discretization of the BG 

integration space is accomplished by substituting equation (8) into the S matrix (6) and u 

vector (7) BG definitions. The discrete BG definitions of S and u then take the following 

form, 

N 

SiJ = f G;(x)G/x)J(x,x。 )dx ：：：： IG,包）G」包） J(xk,x。 )Wk, (9) 
k = l 

and 

N 

u; = f G;(x)dx ~ L G;(xk )w" (10) 
k = I 

If an identity vector of length N is defi ned, e, then the summations over k can be 

forced so that a matrix element form is obtained, so that 
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sij =G;k仞 (J(x。 )） kk Wkkek , (11) 

and 

u; = Gikwkk令· (12) 

where the following H94 matrix element defrnitions are used, 

(G) iJ = G;(x」)， (13) 

(J(x。)） iJ =J(x」 'X。 )8lj' (14) 

and 

(W)ii = w」8lj ＇ (15) 

where 8u is the Kronecker delta, defined as: 

邑＝ []', ;: ~} (16) 

Since J and W are diagonal matrices by definition ((14) and (15)), (11) and (12) can be 

expressed in matrix notation as 

S = GJ(x。 ) WGT , (17) 

and 

u=GWe , (18) 

where S is a M x M matrix, G is a M x N matrix, J and \\,' are N x N diagonal matrices, 

and e and u are vectors of length N and M respectively. 

8 



The last change that is made by H94 is to 唧ly the extremum condition described in 

Appendix A. This leads to the following solution for a at position xo (combining (17) and 

(18) with (3)), 

(S + l 2Ir1G We 
a(x。 ) = 

(GWe)T(S+Ji.21r1GWe' 
(19) 

where 入 is a chosen regularization parameter. Appendix B contains a discussion from 

Lagendijk and Biemond (1991) on the constraints on 入 when error minimization is 

considered. However, in practice, numerical techniques are employed to find an optimal 

入． Since S may be singular, depending on the choice of J(x0), selection of an optimal 入 is

a matter of iteratively converging to a value which provides error minimization. 

In the results of this paper, the optimal A was selected numerically. An arbitrary point 

was selected, X1u and an iterative min血ization technique was used to minimize the square 

of the difference between the estimate and the truth at X11. . The optimal 入 is then applied 

globally. The estimated brightness temperature is not very sensitive to the 入 parameter, so 

determining an optimal 入 to within a few hundredths was sufficient. For each simulation, 

入 was recalculated, since it is dependent on the input data, and the number of integration 

and measurement points, N and M. 

c. Stogryn Method 

S76 adds another criterion to the BG method . Stogryn presents the idea of 

minimizing, with respect to a, another 訕ction of the form, 

Q。 = ［fa,G, （x) － F(x,X。 ) ] 2 J(x,X。 )dx ,
i = I 

(20) 
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with a normalization contraint, 

M 

仡a;G; (x)dx = 1, 
i= l 

(21) 

where Fis a feature extraction function chosen to produce the desired analysis (the reader 

is referred to S76 for discussion related to the feature extraction function 's use and 

design). S76 also introduces an optional additional minimization constraint on the noise 

amplification so that resolution and noise are both minimized simultaneously to various 

degrees by varying a parameter, y. For this work, the case where y = 1 is used to simplify 

the intercomparison analysis. Physically this corresponds to a pure resolution 

minimization constraint. The inclusion of y -f: 1 would require the use of a generalized 

SYD optimization approach (H94), and is discussed in section O as possible future work 

that could be performed. Thus, the functional form represented by (20) suffices for t比s

work. Unless otherwise specified, F was set equal to a normalized 画form function 

within the interval of interest. This choice of F creates a uniformly spaced regular grid of 

square spatial averages that are similar in concept to a numerical weather prediction grid­

volume average (e.g., see Pielke 1994). 

M 

霾s leads to the condition, f~a;G; (x)G,(x)J(x,x。 )dx = 位（x)F(x,x。 )J(x,x。 )dx.(22)
」

Equation (22) can be expressed more compactly by defining a vector, v, with the 

following elements, v」 ＝位（x)F(x,x。 ) J(x,x。 )dx, (23) 

substituting (6) into (22), and rearranging the summation and integration order, so that the 

following form is ac比eved,

Ia; f G;(x)G」 (x) J(x,x。 )dx = Iaisij = v, 
i = I 

(24) 
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Solving (24) for a in matrix form produces 

ast = s -'v' (25) 

which is the new condition of the Stogryn minimization. The final solution 1s a 

combination of BG coefficients (3), a8G, and Stogryn coefficients (25), ast, so that 

a· u= 1 (4) is vahd. The result is of the fom1 a =aBG+aSt +f(u,v,ast,aBG) . Taking 

a · u and realizing that the first term is already equal to 1, then 

ast · u = - f(u, v, asP a8c) · u must also be true, which results in the following expression 

for a, 

a =aBG+aSt - (u· aSt) aBG · (26) 

Substituting (3) and (25) into (26) produces the BG coefficients with the Stogryn 

minimization constraints imposed (i.e., equations (20) and (21)), 

a(x。) = S尸＼＼T－\1` (27) 

d. Modified Hansen Method with the Stogryn Minimization Constraints 

The Hansen method uses the approximation given in (8) to reduce the BG method into a 

product of vectors and matrices. Using the same 唧「oximation as H94, and the same 

conditions that S76 and P90 impose (i.e., (20) and (21)), a modified set of coefficients, a, , 

can be defined. 

App陌ng the Hansen discretization of the integration space (8) to the Stogryi1 

minimization constraint (20) yields, 

1 1 



Q。 ＝言［雪a,G，包）－ F(x,,x。 )]2 J(xk,X。 )wk · (28) 

This is minimized with respect to a, which results in the following relationship, 

fa;f國wk(J(x。 )） kk 伍 ＝f國(J(x。 )） tk(F(x。 )） kk Wk' (29) 
l =I k=I k = l 

where the previous Hansen definitions are used (13- 15) with the addition of the 

following feature extraction term definition, 

(F(x。 )） iJ =F(x」 ,X。 )8 ij (30) 

We now define matrices for F, G, J , and W , as before, where the new matrix, F, is 

defined as a N x N diagonal matrix (30). Thus, (29) becomes 

Sa = v, (31) 

where S and v are defined as, 

S = G(J(x。)） WGT , (32) 

and 

v = GJFWe . (33) 

The same extremurn condition for a is 唧lied (see also Appendix A). However, u is 

replaced by v and B is set to 1 to match the S76 fom1, given by (25). This)'1elds the 

following solution for a with the extremum condition, 

a St = (S + A. 2rr1 V . (34) 

12 



Again, we must ensure a proper combination of the BG coefficients and the Stogryn 

coefficients are used so that a• u = 1 (4) is valid. The combination that satisfies these 

conditions is given by (26). Therefore, the modified Hansen BG coefficients with the 

Stogryn minimization constraints can be written in matrix form as be wri 

a （幻 ＝M[v+~u , ,uTM u 
(35) 

where 

M = (S+l2It1 . (36) 

As will be seen in the next section, this form ((35) and (36)) has several desirable 

features; in particular, the diagonal matrices allow for some rather straightforward gains 

in computational efficiency. As discussed by H94, this form can also lead to an 

alternative fast approximate implementation under certain conditions. However, for the 

remainder of this paper we will focus on the more general capab山ties of the new method 

for footprint-matching applications. The new method is referred to as the DBG method 

throughout the remainder of this paper. 
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3. Method Intercomparison Results 

The S76 BG method and the DBG method are applied to three simulated truth scenes 

to explore the various behaviors of the methods. The truth scenes are a) a constant 

temperature, T = 200 K, b) the s皿e as (a) but with T= 300 K, for all x > 0, and c) the 

same as (a) but with T = (200 + 50 sin x) K, for all x > 0. The truth scenes were chosen to 

represent various extremes. Scene A represents the simplest case, and tests the methods 

for con為ect implementation details that manifest themselYes as biases and random noise 

behaviors. Scene B is the most harsh example, in that a large discontinuity is present in 

the scene. The range of 100 K is representative of the magnitude of the brightness 

temperature discontinuity observed when transitioning from ocean to land surfaces in the 

littoral regions. As will be discussed later, this case exhibits some of the more significant 

differences in behavior. The last idealized scene, Scene C, represents a contrast between a 

homogeneous region and a region with significant spatial variations. This scene, while 

still significantly idealized, presents a stronger challenge to the BG methods than Scene 

A, and yields insights into the abilities of the methods to perform in regions where 

periodicity of the scene may-be important. 

In the following simulations, a hypothetical microwave sensor is assumed to have a 

known antenna gain function that is represented using a truncated cosine function 

(Figure 1). The overlap between EFOVs is determined by the maximum extent of the 

truncated cosine function which is defined to be 记2 . This results in a small overlap 

between adjacent FOVs, since each measurement is "observed" at each whole interval 

position (e.g., k = l , 2, …, M). It should be noted that the design and configuration of the 

hypothetical sensor used in the fo llowing simulations is not the focus of this work. The 

hypothetical sensor is merely meant to exercise the various BG methods in a manner in 

14 



which the methods themselves can be objectively evaluated. Particular sensor 

configurations may perform better or worse than the results shown here. However, the 

general conclusions regarding the BG method behaviors should be transferable to other 

sensor configurations. 

e. Stogryn Method Results 

The Stogryn method (as discussed in Section c) is applied to the three simulated truth 

scenes (A - C) where 5 K of random noise has been added to the truth scene, thus 

simulating a relatively noisy hypothetical microwave sensor. The estimated temperatures 

from the Stogryn method are shown in Figure 2a-c, using a penalty function of 

J(x,x0) = 1, which is a reasonable choice for satellite footprint-matching applications 

(S76; P90). In all of the following simulations, the feature extraction function, F, is set to 

be the gain function centered at x0. In Figure 2d-f, the results are shown for the case when 

the penalty function is J(x,x0) = (x - x0)2. Simulation results are presented in Table 2 for 

Scenes A - C as root-mean-squared (RMS) differences from the "truth" scene (i.e., the 

scene values before the addition of 5 K of random noise). Standard deviations of the 

RMS values are calculated by aggregating results from several simulation instances. 

Aside from the conclusion that the method is performing correctly for all simulated 

scenes, there is an obvious scene distinction in regards to the RMS performances 

(Table 2). For example, the Scene A Sto貊n method estimate (with J(x,x0) = 1) exhibits 

an RMS of 0.71 K, while the RMS results from Scenes B and C are 12.2 K, and 4.4 K, 

respectively. Thus, results from Scene A are considerably better in terms of RMS 

performance. The reason for this behavior is that all points in Scene A share a common 

mean. The theoretical justification for this statement will be discussed in more detail in 
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the lateral boundary condition discussions that follow. The RMS performance for Scene A 

is substantially lower than the initial 5 K random noise component that was added; hence 

the spatial overlap of the gain function is working to the method's advantage. In 

comparison to the other scenes (see Table 2), Scene A is the easiest since it has no spatial 

structures, Scene B is the most difficult to estimate correctly since it has a single large 

discontinuity at x = 0, and Scene C is the next most difficult case of the three. Scene C is 

not as difficult as Scene B since the discontinuity at x = 0 within Scene C has a finite 

slope. The periodicity of Scene C for x > 0 is well represented by the Stogryn method 

The Stogryn method results for J(x,x0) = (x - x訢 (Figure 2d-f) are similar to the 

J(x,xo) = 1 simulations (see also Table 2). A major distinction between the results is the 

lateral boundary condition (LBC) behaviors. In particular, Scene B shows much 

improved LBC behaviors for the J(x,x0) = (x - x0)2 case, and Scene C ex比bits a slight 

improvement for only the right-most LBC estimate. This is exhibited in the RMS values 

as well (Table 2), with a 4 K RMS improvement for Scene B, w扣ch is the extreme 

example. However, the RMS results for Scene C were slightly worse. This behavior 

suggests that a modified J functional form could be used as the data approach the edges 

of a scan. For example, the center of the scan could implement the J(x,x0) = 1 form and 

transition to the J(x,xo) = (x - xo/ form near the edges. An alternate solution would be to 

discard the data near the LBC if J(x,x0) = 1. 

f Discrete Backus-Gilbert Method Results 

Similarly, the DBG method results using penalty functions of J(x,x0) = 1 and 

J(x,xo) = (x - xo)2 are presented in Figure 3 (corresponding to 柘gure 2). Again, a simple 

comparison demonstrates that the DBG method is also able to estimate the truth scenes 
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with some fidelity. The LBC behaviors in Figure 3 are a significant issue for the 

J(x,x0) = 1 case, as was shown for the Stogryn results in Figure 2. Like the Stogryn LBC 

behaviors, the DBG LBC effect is minimized for Scenes A and B with the choice of 

J(x,x0) = (x - x0)2. This suggests that this is a fundamental BG behavior with the Stogryn 

minimization constraints. An RMS comparison between the DBG method and the 

Stogryn method (Table 2) shows that the DBG method is outperforming the Stogryn 

method for the simplest scenes (A and C), and is underperforming it for the most 

challenging scene (B). However, it should be noted that the DBG method simulations are 

for an integration configuration where N = A,f = 50, thus approximating the discontinuity 

at x = 0 with a single integration interval. 

1) THE EFFECT OF L ATERAL BOUNDARY CONDITIONS 

As seen in Figures 2 and 3, the LBC results for the step function scene (Scene B) are 

not well behaved when J(x,x0) = 1. The LBC artifacts can be removed by increasing the 

input range, but not the output range. This has the same effect as discarding the estimates 

near the edges of the scan. For example, if the boundaries are moved£缸her out (e.g., to 

x = 士15), the estimates are computed for the range, x = 士1 2.5 . This procedure effectively 

removes the LBC issues and, for the case when J(x,x0) = 1, reduces the RMS values when 

applied to the previous simulations (Table 3). The results for Scene B are presented in 

Figure 4. Clearly, the LBC effects can be a significant issue if not handled correctly. As 

mentioned previously, an ideal solution would be to transition the functional form of J to 

a non-unity-based form near the edges of the scan, thus retaining the desirable J(x,x0) = 1 

analysis properties for footprint-matc比ng 唧lications.
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2) SPECIAL LATERAL BOUNDARY CONDITION CONSIDERATIONS FOR THE 」(X,Xo) = 1 CASE 

It is important to see that setting J(x,x0) = 1 in the original BG derivation does not 

give a spatially dependent estimate of the brightness temperatures. It is seen from (6) that 

the S matrix is independent of x0 when J is constant. This makes the coefficients, a (3), 

also independent of x0. If the coefficients are independent of xo, then the estimated 

temperature (2) will also be independent of x0, and the BG derivation becomes nothing 

more then an averaging technique. The LBC artifacts arise because the asc term (see 

equation 26) gives the mean of the input w扣le the ast term produces the deviations from 

the mean, providing the correct estimations for the Stogryn minimization constraints. 

Again, if S is independent of x0 then the only dependence for as1 comes from v (23). 

When F is defined to be the gain function, this term decreases rapidly near the 

boundaries. This rapid decrease results in a decrease in the ast term. That is why the LBC 

estimates approach the mean for the J(x,x0) = 1 cases shown in Figures 2 and 3. 

3) COMPUTATIONAL PERFORMANCE VS. ACCURACY CONSIDERATIONS 

Having shown that the LBC effects are a product of the Stogryn minimization 

constraints 唧lied with the condition that J(x,x0) = 1, the biggest practical benefit of 

setting J to unity, other than its physical intuitiveness for sensor applications, is that S 

only needs to be calculated once, and c皿 be reused for each estimate, which decreases 

the computational time. T届s optimization was not implemented for the results presented 

in this paper. Thus, all time intercomparisons within this paper are also generally 

applicable for other J definitions. 
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The Hansen and DBG methods are quite flexible. Since the number of integration 

points is adjustable, 伽s allows for faster, but less accurate, implementations of the 

technique. T比s would be particularly useful in the presence of large signal to noise ratios, 

or when computational requirements are for a particularly fast implementation. 

The Stogryn implementation is optimized using library routines for numerical 

integration and matrix inversion. The DBG method also uses the same matrix inversion 

routine. However, due to its diagonal matrix form, the DBG method can be further 

optimized to speed the matrix multiplications. The ability to exploit the diagonal matrices 

is one of the primary computational advantages of the DBG method. 

A series of simulations were performed in which the number of integration intervals, 

N, was modified to determine the computational cost of the method versus the method's 

RMS accuracy. All results shown in Figures 5-7 have the LBC windowing filter applied 

to remove the LBC artifacts for the J(x,x0) = 1 cases. In each of the figures, the number of 

measures, M, is set to 100. The number of integration points, N, is adjustable. 

Figure 5 presents results for the 画form scene (Scene A). The DBG method RMS 

values are generally lower than the Stogryn RMS values. This is likely due to a more 

optimal integration pattern for the random 中stribution, since the DBG integration is 

evenly spaced. The numerically optimized integration weights used in the Stogryn 

method may also be amplifying the effect of the various random patterns within the data 

set series. The effect of the unifonn placement of integration intervals is even more 

pronoUI1ced for the case when J(x,x0) = (x - x0)2 , where the DBG method is 

approximately 啟ice as accurate as the Stogryn method(Table 2). This suggests that the 

DBG method 's integration pattern flexibility could be used to exploit known structures or 

features within data sets . 
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The trend in the DBG results(Figure 5) is toward lower RMS values with larger N. 

This corresponds to improved integration accuracy with larger N. The CPU consumption 

for the Stogryn method is constant since its integration is not explicitly adjustable. The 

CPU consumption for the DBG method increases with N as ~ N2. The computational 

costs between the methods are approximately equivalent at N ：：：：盆0.

The step function of Scene B is more of a challenge for both the DBG method and the 

Stogryn method (Figure 6). Both the DBG RMS values and the Stogryn RMS results are 

greater than the original noise. The DBG RMS results are not significantly improved by 

going to larger values of N. As can be seen in Figure 3, most errors are concentrated at 

the discontinuity. It is rather obvious that the step function is the harshest test of the DBG 

method. The computational cost for the DBG method is 唧roximately the same as for 

the simple scene (Scene A) results presented in 柘gure 5. 

The results for Scene C(Figure 7) are similar to that of Scene B (Figure 6), but with 

reduced severity. The RMS ranges are below the 5 K random noise level, but Scene C 

RMS values are still larger than the RMS values for Scene A. Most error is again 

concentrated at the discontinuity at x = 0. The DBG method RMS tendency is to decrease 

with greater values of N, hence additional integration intervals are proving to be 

somewhat helpful with this particular scene. Again, the computational cost behaviors to 

process Scene C are similar to that of Scenes A and B. 
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4. SVD Analysis 

The SYD of a general real M-by-N matrix allows the target matrix to be separated 

into left and right singular vectors with the definition of 唧ropriate singular values 

(Anderson et al. 1999). The practical consequence of this is that it allows the matrix to be 

handled via summations, and additional approximations become available to increase the 

overall performance of the method. The following SYD derivation is a modification of 

the approach used by H94 to use the DBG method with the Stogryn minimization 

constraints. 

~ 
A new matrix and vector, G and e are defined as, 

~ 
G = G J "2 w 112 , 

6= 」 一J /2W l /2 e,

(37) 

(38) 

where G is a M x N matrix, 皿d e is a vector of length N. This allows the following 

form for S, which subsequently allows (S +'A21)"1 to be written in a notation more 

suitable for the SYD technique. Thus, (32) - (33) are now, 

, 
T ~G ~G = s 

u=Ge, 

(39) 

(40) 

and 

v = GJFe . (41) 

SVD is now used to decompose G into, 

~ 
G = BI:CT , (42) 
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with BTB = I, cTc = I and I:= diag ((Ji), where(JI~(J彥之 (Jmin(m,n ) ~ 0 are the singular 

values of 1: (Demmel and Kahan 1990). If the noise covariance matrix differs from I , 

then a generalized SYD analysis could be performed (Paige 1986; Bai and Demmel 1993; 

Bai and Zha 1993;Christensen-Dalsgaard et al. 1993). The SYD decomposition (42) 

allows the object of the matrix inversion in (36) to be written as, 

S+l2I =B（立尹1困 ． (43) 

The inverse is then, 

(s+l21t = B忙2辶訂）一] BT (44) 

Following H94, a portion of the numerator term of (3 5) is defined such that, 

正）＝（S+ 訂）-Ill = B區T +A21)一1BTB:EC节 ， (45) 

where (40) and (42) have been substituted into the expression. Through SVD, (45) can be 

expressed as, 

T ~ o· 2 

' 
c . e 

p(x。 ) ＝ 2 ^ --'--b . 
2. o2 - ,' +A2 6 i 6 · I ' 

(46) 

where p , is a vector of length M, and C; and b; are the right and left singular vectors of G 

with length N and M, respectively, where b; are the eigenvectors of (GGT+ 入21). T犀

leads to the following solution for a, 

a = r(x。 ) +
1 - 正）T r(x。 )

p(x。)庫
p伝） ， (47) 

where, 
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p伝）T66=26, （四）＼
, 6 ] +A2 

(48) 

, i 
b 

TC'_
6 2 ,^ 

2
.'+ 

.' 
2 

b 

b 

V~ = 、
I

J
。

x '

_

、

「 (49) 

and 

e= FJe . (50) 

Equations (46) - (50) represent the SYD form of the DBG method. 

In summary, the SYD form of the DBG method converts the matrix form of the DBG 

method into a specialized group of summations. As will be shown later, this results in 

significant computational savings. It should be noted that the SVD computational savings 

are in addition to the computational savings that result from the inherent form of the 

DBG method over traditional methods. The SYD form of the DBG is an explicit 

optimization technique that specifically exploits the DBG diagonal matrix form. 
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5. SVD Results 

The summations in the SVD of the DBG method can be truncated at any desired 

point. Figure 8 shows a sequence of results in which additional terms are progressively 

added to the SVD summation, for the case where M = 100. It can be seen that the effect is 

similar to that of a Fourier series. The first few terms give the general average and scaling 

of the spatial features, and additional terms refine the spatial structure of the results. 

The RMS performances of the SYD results are calculated for three simulated truth 

scenes as before. The results (Table 4) are defined as ratios in which the SYD DBG RMS 

results are normalized relative to the non-SYD DBG RMS results. Corresponding 

standard deviations are also calculated. RMS ratio results less than one indicate an 

improvement using the SYD 唧roach. The computational cost ratio is defined s画larly,

with the cost ratio being defined as the SYD cost relative to the non-SYD cost. The 

computational costs are independent of the specific scene. These results show that the 

RMS errors decrease as the number of summation terms is increased. Table 4 also shows 

a linear relationship between computational costs and the number of summation terms, 

which is expected due to the summation nature of each term. In practice, 20% of the 

terms generally gave sufficient structure, low RMS values, as well as minimizing 

computational costs for the particular simulated scenes e洄ored here. However, it should 

be pointed out that performance was dependent on the particular scene. For the uniform 

scene, all SYD RMS results were significantly improved, with RMS values less than 50% 

of the non-SYD RMS results, while the step function scene results were only marginally 

improved. The sine wave scene was the most difficult scene for the SYD approach and 

resulted in errors that were 30% greater than the non-SYD results. The choice of where to 
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truncate the SVD series will in general be dependent on the specific 唧lication and its 

associated error tolerance requirements. It is also worth noting that if J(x,x0) is constant, 

then the SVD of G only needs to be performed once. This improves the run times by a 

factor of 3 or more, and does not change the output. 
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6. Quadrature Sensitivities 

In this work, the integrations in the BG method were discretized using equation (8). Since 

(8) uses the same set of points, xk, for the integral approximation, and is independent of 

the choice of the discrete gain positions, xi, the total summation for each gain function 

may actually differ slightly, though the non出scretized integral would not. This can lead 

to certain areas being emphasized more or less than other areas. This emphasis can be 

especially useful to improve the estimates at certain locations. 

The quadrature points, Xk, and the quadrature weights, wk, can be selected using 

simple integration estimates, such as the trapezoidal rule, or by more advanced 

techniques, like Gaussian quadrature, or Fejer quadrature (Davis and Rabinowitz 1975). 

Here we compare, both grap扣cally and statistically, the results of using three different 

quadrature rules on a step function (200 K x < 0, 300 K x > 0). The gain function used is 

a truncated cosine function with width of 2n. The width is wider than the prior analysis 

configuration to enhance the region of transition from 200 K to 300 K. This allows the 

differences between the quadrature methods to become more pronounced. 

The three different quadratures are: 

1. Trapezoidal, d ·1 for all points except the end points, which are (2d)·1, where dis 

the separation between neighboring points. All points are equally separated. 

2 1 /2 
2.F祺r-1, with a weight of 1: (1-(x/b)'") , where b is the maximun1 value of x. 

3. Fe_」在2, with a weight of(x-a)(b-x): (1-(xlb)2严 weight, where a is the minimun1 

value of x and b is the maximum value of x. 
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Graphical depictions of the three weighting functions are shown in Figure 9. It can be 

seen from these weighting functions that the Fe_」在2 quadrature has a much sharper peak 

at x = 0 than either the of the other quadrature methods. 

DBG estimated temperature results using each quadrature rule are presented in 

Figure 10. The Fejer-2 quadrature results have a much sharper slope at the discontinuity 

than the other quadrature methods. T届s increase in slope definition is exchanged for a 

decrease in the accuracy of the uniform parts of the scene. The RMS results for each 

quadrature method are presented in Table 5 for the three idealized scenes. It is important 

to note that the choice of the quadrature technique can improve the RMS performance. 

睏s is significant and suggests that customized quadrature methods could be employed 

along known physical data discontinuities (such as along coastlines in microwave 

imagery data). 
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7. Regularization Behaviors Due to Unnormalized Gain Functions 

If the gain function is unnormalized (not the averaging gain function, which must be 

normalized) biases are introduced into the estimated temperatures. An example of this 

type of bias is shown in Figure 11, where the step function truth is T = 200 for x :S 0, and 

T= 300 for x > 0, and where a gain function area of 2 is used. When 入 is set to 0 

(Figure 11 a), neither the left side nor the right side of the step reaches the value it should 

(200 Kand 300 K respectively), instead both sides overshoot the truth. If A is allowed to 

vary, the bias can be removed. For example, given the case in Figure 11, where the gain 

function has an area of 2, if A is set to 4, then the results no longer contain a bias (see 

Figure 11 b) . However, if the gain function is normalized, A = 0 removes any bias. The 入

regularization parameter, therefore, acts to unbias the estimates. 

The effect that different A values have on the temperature estimates when different 

width gain functions are used is shown in Figure 12. It can be seen in Figure 12 that if the 

gain function has an area less than 1, then no matter what value A has, there is a bias. It is 

also important to note that as A increases, the estimated temperahrre 唧roaches the 

average temperature of all the measurements. For the step case, the biases are 

independent of the gain function width; ho:vever, in general, this is not the case. If a sine 

function is used instead of a step function, then the results are dependent on the gain 

function width. Figure 13 contains the temperature estimate results at the local minimum 

of the sine function as a function of 入 and of the gain function width (for reference the 

local minimum truth value is 150K). Eve巧 curve corresponds to a gain function area of 

1, but with varied gain function widths. It can be seen that as the gain function width 

increases, the minimum gets pushed closer to the average (200K). This makes intuitive 
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sense, since the local minimum is estimated from surrounding points, and the addition of 

more points to the average (i.e., a wider gain function) results in the estimate being 

moved away from the true minimum and toward the global average. W届le this is an 

extreme example, t比s demonstrates that for some gain function configurations, local 

biases can be intrinsic to the system. This behavior will be most apparent for certain 

spatial structures or patterns such as the sine wave scene. 
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8. C onclusions 

A DBG method has been created that is a modification of the H94 BG method with 

the Stogryn minimization constraints. Several behaviors were observed. In particular, the 

LBC RMS behaviors, for the J(x,x0) = 1 case for both the Stogryn and the DBG methods, 

were explained as a consequence of the Stogryn minimization. It is suggested that 

alternative forms for J should be explored to minimize this effect, so that data near the 

SC皿 edge is not simply discarded. A composite functional form for Jin which the center 

of the scan implements a J(x,x0) = 1 functional, 皿d toward the edges of the domain the 

J(x,xo) = (x - x訢 form becomes domin皿t, was suggested as a possible c皿didate .

Additionally, the RMS performa11ce of each method was shown to be dependent on the 

individual scene structure. The DBG method with regularly spaced integration weights 

was able to outperform the traditional Stogryn method for a 画form scene with r皿dom

noise. For the more challenging scenes, the Stogryn method performed slightly better due 

to the application of a more sophisticated spatial integration method 

As a practical consequence, the DBG method c皿 be employed as a less costly 

footprint-matching algorithm. If necessary to increase the overall method's perform皿ce,

modifications to the distribution 皿d number of integration weights could be made. In a 

similar vein, if conditions waiTant, the Stogryn method could be applied for structures 

that are particularly difficult to spatially resolve. Additional work is needed to examine 

the criteria and conditions for when such a switch between methods should be made. 

The DBG method was also optimized using a singular value decomposition method. 

The result is increased computational efficiencies between 43% and 106% while 

maintaining similar accuracies. By incorporating the Stogryn'Y parameter (Stogryn 1976), 
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the optimization approach is also be able incorporate the simultaneous minimization of 

resolution and noise; however, doing so would require using a generalized SVD 

approach, since several key matrices are no longer purely diagonal, and become 

interdependent on the gain function. In this paper, the additional complexity of a GSVD 

method was avoided, but it deserves future exploration. 

The examination of several alternative quadrature methods demonstrates the 

sensitivity of the DBG method to the choice of the quadrature rules employed, and 

suggests that further optimization methods may)'leld additional increased performance, if 

some a priori information exists regarding the overall scene structure. An example of 

where these a priori conditions may exist include microwave imagery data sets in littoral 

zones where a high signal contrast exists due to the radiometric behaviors of the 

geographic features. 

The regularization sensitivity studies indicate the potential for improper 

regularization when used with unnormalized gain functions. This is a caution worth 

noting, in that data analysis operators used for data assimilation purposes may diverge 

from traditional remote sensing footprint-matching gain function behaviors, which are 

commonly normalized functions (Stogryn, 1976; Poe, 1990). This work also 

demonstrates a formalism to identify and constrain such possible biases. In practice, 

when using unnormalized gain functions, it is suggested that simulations be used to verify 

the accuracy of the method with the particular gain function . Developing a formalism that 

rigorously considers all possible functional forms for the gain function was beyond the 

scope of this work. 

The flexibility of the DBG method allows it to trade computational cost for accuracy 

in most conditions, thus lending it to several challenging research 唧lication areas. In 

31 



particular, the use of a more flexible method would serve well in applications where the 

BG coefficients need to be routinely recalculated, depending on conditions, such as in a 

RFI contaminated environment. The flexibility of the DBG method also allowed for 

several of the optimizations to be performed in a rather straightforward marmer. Many 

additional optimizations are likely possible. 

Future work will include investigating additional computational enhancements and 

testing the scope and validity of those assumptions. Additional research will also be 

conducted to exploit the flexibility· of the DBG Method for dynamic resolution and noise 

adjustments based on the signal to noise content. The new work will be applicable toward 

dynamic RFI minimization techniques, and dynamic enhancement of littoral features 

(based on content). The computational flexibility of the DBG method is well suited for 

computationally constrained problems such as 4D data assimilation. Our immediate plans 

include the incorporation of a temporal analysis component into the DBG spatial filter for 

use within a functional data assimilation system to investigate the remaining practical 

implementation challenges specific to data assimilation use. It is our hope that the 

flexible framework of the DBG method will foster additional BG implementations that 

resolve some of these remaining challenges. 
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FIG. 2. T虹ee scenes as estimated by the Stogryn method with J(x,x0) = 1, with a random 

measurement error of 5 K imposed on the "true" scene 師ctions which are: a) a constant 

temperature, T = 200 K, b) the same as (a) but with T = 300 K, for all x > 0, and c) the 

same as (a) but with T = (200 + 50 sin x) K, for all x > 0, d) , e), and f) are the results that 

correspond to a), b) and c), respectively, except that J = (x - x0)2 

36 



T ,st (x) Test (x) 

a 206 d 206 

204 204 

202 202 

. ......... .. .......-2. O「r---~ ... 、..... . ^ ^ .-- · -

198 198 

196 196 

X X 
-10 -5 5 10 一 10 -5 5 10 

b T.,1 (x> e T.,1 (x) 

300 .·--. 300 ..... ...".II--.... 
. . 

280 . 280 . . . 260 • 260 • 

24O ' 240 

. . 22, 22~ 

. . . . X 
-5 ．．一·

X 
一 10 -5 5 10 -10 5 10 

T,,1 (x) 
f 

T es1(X) 

C 260 260 

.. . .. 240 ... 240 . . . . . . . .. . 220 . 220 . . . . 
11111:r" 'Ul I II` ̀  " 4訕 . ...., .11o,,111111N、.＇＂＂0吋 . . . . . . 180 . . 180 . . . . . . . . ... . 160 ••• 160 .. •• 

X X 
-1O -5 5 10 -10 -5 5 10 

FIG. 3. The same as 柘gure 2, except as estimated by the DBG method, where 
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FIG. 8. The summations in the SV'D of the DBG method can be truncated at any desired 

point with reduced fidelity. A sequence of results are shown in which additional terms are 

progressively added to the SVD summation, where M = 100, and a) has 1 % of M tem1s, 

b) 3%, c) 5%, d) 10%, e) 15%, and f) 100% 
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FIG. 9. Quadrature weights, wk, and positions, xk, for a) Trapezoidal, b) Fe」 er- 1 , and c) 

Fejer-2 quadrature. 
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FIG. 10. DBG temperature estimates of the step function scene using a) Trapezoidal, b) 

Fe」er-1, and c) Fe」 er-2 quadrature. 
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FIG. 11. DBG temperature estimates of the step function scene using an unnormalized 

gain function that has a gain function area of 2, with a) 入＝ 0, and b) 入＝ 4. This 

demonstrates how the A regularization parameter acts to unbias the estimates for 

unnormalized gain functions. 
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FIG. 12. DBG temperature estimate results at the maximum of the step function scene as a 

function of A and of the gain function area. For reference, the maximum truth-value is 

300 K. From top to bottom, the gain functions areas are 4, 2, 1, and 0.5, respectively 
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FIG. 13 . DBG temperature estimate results at the local minimum of the sine function 

scene as a function of A 皿d of the gain function width. For reference, the local minimum 

truth-value is 150 K. From top to bottom the widths are 2n, n, and n/2 respectively. While 

this is an extreme example, this demonstrates that for some gain function configurations, 

local biases can be intrinsic to the system. 
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TABLE 1. SSM/I instrument characteristics (adapted from HoUinger et al., 1990). 

Polar- Effective-field-of- EFOV Ratio Sensitivity 
Channel Frequency ization view(EFOY)* with respect (NE!)..T)** 
number (GHz) (Hor V) (km) to Channel 7 (K) 

1 19.35 V 69 X 43 4.6 X 3.3 0.45 

2 19.35 H 69 X 43 4.6 X 3.3 0.42 

3 22.235 V 60 X 40 4.0 X 3.1 0.73 

4 37.0 V 37 X 28 2.5 X 2.2 0.37 

5 37.0 H 37 X 29 2.5 X 2.2 0.38 

6 85 .5 V 15 X 13 1.0 X 1.0 0.69 

7 85.5 H 15 X 13 1.0 X 1.0 0.73 

* 3 dB limits . 
* * Average of laboratory measurements. 
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TABLE 2. Simulation results for Scenes A - C. Results ar~ presented as root-mean­

squared(RMS) differences from the "truth" scene before 5 K of random noise was added. 

Standard deviations of the RMS values are calculated by aggregating results from several 

simulation instances. For the scene simulations within this table, M = 50, and N = 50. 

Scene A Scene B Scene C 
Penalty Homogenous Step Function Sine Function 

Method Function Case Case Case 
J(xo) RMS Std. Dev. RMS Std. Dev. RMS Std. Dev. 

(K) (K) (K) (K) (K) (K) 

Stogryn 
1 

0.71 0.14 12.2 0.08 4.4 0.08 

DBG 0.61 0.14 12.3 0.07 4.5 0.15 

Stogryn 2 0.51 0.14 8.2 0.06 5.8 0.13 

DBG 
(x - xo) 

0.33 0.06 10.4 | 0.08 5.3 0.13 
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TABLE 3. Same as Table 2, except that a lateral boundary cond山on spatial filter has been 

applied to the results. The spatial filter has the effect of "windowing" the results to a 

region such that -12.5 < x < 12.5. These results minimize the lateral boundary condition 

effects for the J = 1 simulations, and are therefore more indicative of the discontinuity at 

x = 0 for Scenes B and C. For the scene simulations within t届s table, M = 100, and 

N= 100. The data within this table corresponds to Figures 5-7. 

Scene A Scene B Scene C 
Penalty Hornogenous Step Function Sine Function 

Method Function Case Case Case 
J(xo) RMS Std. Dev. RMS j Std. Dev. RMS Std. Dev. 

(K) (K) (K) (K) (K) (K) 

Stogryn 
1 

0.64 0.07 9.9 0.03 3.6 0.06 

DBG 0.65 0.07 9.9 0.06 3.6 0.12 
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TABLE 4. RMS performance ratios are defined as the SVD DBG RMS results relative to 

the non-SYD DBG RMS results . Corresponding standard deviations are also calculated. 

RMS ratio results less than one indicate an improvement using the SVD approach. The 

computational cost ratio is defined similarly, with the cost ratio being defined as the SYD 

cost relative to the non-SYD cost. The computational cJsts are independent of the 

specific scene. 

Uniform Step Sine Cost 
%M RMS o· RMS 6 RMS 6 AVERAGE (J 

100 0.50 0.09 0.991 0.003 1.30 0.03 0.699 0.009 
50 0.47 0.05 0.993 0.004 1.31 0.03 0.580 0.006 
20 0.43 0.07 0.992 0.004 1.31 0.03 0.519 0.010 
10 0.43 0.07 1.062 0.004 1.46 0.03 0.486 0.002 
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TABLE 5. DBG RMS performance using three different quadrature rules for three 

simulated scenes. 

Scene 
Trapezoidal Fejer-1 Fejer-2 

RMS 。 RMS o· RMS o· 

Uniform 0.40 0.09 0.43 0.11 0.50 0.09 
Step 11.24 0.04 11.37 0.04 10.26 0.09 

Sine 10.00 0.08 10.00 0.07 6.11 0.1 0 
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Appendix A : Backus-Gilbert Inclusion of A Regularization 

This appendix is after Twomey (1996), pages 160-162. The following constraints are used 

in BG: 1) a· a::; canst, to prevent error magnification, 2) J G; (x)心＝ 1 °".' a · u = u · a, to 

make the scanning function unitary, and 3) G;(x) is centered around x; to approximate a 

delta function. With the above mathematical properties, the extremum condition is: 

上伊S a - f3 a · u - fJ u · a + A2 a · a] = 0 , 
8ak 

where two Lagrangian multipliers are employed, -2~, and 泛 This condition yields, 

eTS a + aTSe 一 f3 e · u - f3 u · e + A2 e • a ..,... A2 a · e , 

where e is an identity vector. This simplifies to 

Sa+ 足 a = /3u ,

which yields, 

(S + l 2 I) a = /3 u , 

or alternatively, 

a = /3 (S + A21)-1 u . 

~ is found by using the knowledge that u • a = 1, so that 

/3 = 
1 

u T (S +).2 I) 一 I ll
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(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 



From (AS), a is then 

(S + 22 1) 一Ill
a= 

uT (S + 22 I)-1u · 
(A7) 

The 入 regularization parameter dictates the error magnification and the averaging gain 

function width. When 入 is large, the width is large and error is small. When A is small, 

the width is small, but the error is large. According to the purpose of the analysis, 入

should be adjusted to optimize these behaviors. 
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Appendix B: Regularization Analysis 

This Appendix is based on the discussion in Lagendijk and Biemond (1991) pages 38 

and 39. If there exist measurements, TmeasCx), with noise w, and an estimate given by 

Tesr(x). The real function given by Texact(X), and a gain function, G(x,xi), maps T exact into 

the same space as T meas• T届s leads to 

Tmeas (x;) = f G(x,x;)Texac/x)dx + W. 

To keep the estimate within the errors gives the condition 

O(Tes, （x, ））＝ ||Tmeas (x, ）－［ G(x,x, ）Tes, （x)心l ' ~IHl=E,

(Bl) 

(B2) 

where <I> is the error measurement function which measures the error, e. 

A regularization operator, C, is defined with the function, n, 

Q(Test (xi))= 11cres/ (x;) II , (B3) 

so that the regularization solution now reduces to m而mizing n with the constraint 

<D = llwll. Using the method of undetermined Lagrange multipliers, the following 

relationship is to be minimized 

0(Tes, （x, ））＝ ||Tmeas (x, ）－［ G(x,x, ）Tes, （x)心l|2 +A2||CTes, (x, )|| 2 (B4) 

with respect to Test• The Tikhonov-Miller Regularization is then based on replacing the 

minimization above with an upper bound on the error, E, so that 

Q(Test (x;)) = 11cres1 (x;)II~ E . (B5) 
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This leads to the following constraint in the context of the Lagrange multipliers, 

O(Tes, (x, ))= ||Tmeas (x,)- IG(x,x, )TesI(x)dxI|2 +(e/E)2||CTes,(x, )I| 2 $2c 2 (B6) 

which yields, 

入 ＝ （e／E) ． (B7) 

When C = I and A= 0, the filter becomes the pseudo-inverse filter, which minimizes the 

norm. 
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