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ABSTRACT OF THESIS 

EVALUATING THE PARAMETER IDENTIFIABILITY AND STRUCTURAL 

VALIDITY OF A PROBABILITY-DISTRIBUTED MODEL FOR SOIL MOISTURE 

Models that use probability distributions to describe spatial variability within a watershed 

have been proposed as a parsimonious alternative to fully distributed hydrologic models . 

This study evaluates the performance of a probability-distributed model that simulates 

local and spatial average soil moisture in a watershed. The model uses well-known 

expressions for infiltration, evapotranspiration, and groundwater recharge to describe soil 

moisture dynamics at the local scale. Then, the spatial mean soil moisture is simulated 

by integrating the local behavior over a probability distribution that characterizes the 

spatial variability of soil saturation. Ultimately, the model requires time series for 

precipitation and potential evapotranspiration and calibration of six parameters to 

simulate the dynamics of the spatial average soil moisture. The model is applied to the 

Fort Cobb watershed in Oklahoma using one year of data from September 2005 through 

August 2006. Model performance is evaluated in three main ways. First, the model ' s 

ability to reproduce observed local and spatial average soil moisture through calibration 

is examined. Second, the identifiability and stability of the parameter values are 

evaluated to assess parameter uncertainty and errors in the mathematical structure of the 

model. Third, the identifiability and stability of the sensitivities to changes in annual 
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precipitation and potential evapotranspiration are evaluated to assess the impacts of 

parameter uncertainty and structural errors on forecasts for unobserved conditions. At 

the local scale, the calibrated model reproduces the soil moisture with a similar degree of 

accuracy as a more physically-based model (HYDRUS ID), and both models exhibit 

some structural errors. For the spatial average soil moisture, the calibration is acceptable 

simulating soil moisture with a similar degree of accuracy as the model applied at the 

local scale. Among all the parameters, the standard deviation of soil saturation is the 

most stable and identifiable. The probability-distributed model produces a relatively 

wide range of plausible sensitivities for both the local soil moisture and the spatial mean 

soil moisture, suggesting that parameter uncertainty and model structural errors produce 

significant uncertainty for unobserved conditions. 

Danielle R. Tripp 
Civil and Environmental Engineering Department 

Colorado State University 
Fort Collins, CO 80523 

Summer 2007 
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1 Introduction 

In recent decades, hydrologic models have become increasingly complex. Prior 

to the 1980's, hydrologic models were mainly lumped, conceptual models based on water 

balance. These models typically treat the basin as a single unit using average basin 

characteristics and ignoring spatial variations. Widely-used examples include the 

Stanford Watershed Model (Crawford and Linsley, 1964), Sacramento Soil Moisture 

Accounting Model (Burnash et al. , 1973) and the Xinanjiang model (Zhao et al. , 1980). 

Distributed models were introduced in the mid l 980 ' s and account for spatial variability 

of basin characteristics by dividing a basin into numerous grid cells or other individual 

units. Basin attributes are then specified for each of these units. A few widely-used 

examples of distributed models include the SHE model (Abbott et al. , 1986; Abbott et al. , 

1986), THALES (Grayson et al. , 1992), and GSSHA (Downer and Ogden, 2002). 

The increased complexity of distributed models does not necessarily improve 

their performance for unobserved conditions due to uncertainty in the values of the model 

parameters. An increase in complexity may improve the calibration performance due to 

the increased flexibility in the model behavior, but the ability to identify correct 

parameter values is typically reduced (Bastidas et al. , 1999; Wagener et al. , 2004). 

Parameter sets are typically evaluated by how well they reproduce an observed series of 

discharges or other variables of interest, and the final parameter values are selected to 

minimize some measure of disagreement between the simulations and observations. 

However, it is possible that many parameter sets can reproduce the observations with 



similar accuracy. Generalized Likelihood Uncertainty Estimation (GLUE) is a method 

that aims to assess parameter uncertainty within a model (Beven and Binley, 1992). 

GLUE assigns a likelihood measure to each parameter set and then plots the likelihood as 

a function of the individual parameter values. Parameters that are constrained well by the 

calibration data show high likelihoods over small ranges of the parameter value. Another 

method for assessing parameter uncertainty is the Regional Sensitivity Analysis (RSA) 

(Spear and Hornberger, 1980; Hornberger and Spear, 1981 ), which analyzes the 

sensitivity of model simulations to changes in the parameter value. This analysis 

partitions parameter sets into behavioral and non-behavioral sets. Behavioral sets are 

defined as those that produce model responses similar to the observations. The 

cumulative distribution of each behavioral set is then plotted as a function of the 

parameter value. If the cumulative distribution has a uniform gradient over the parameter 

space, the parameter is not considered important for determining the model ' s ability to 

reproduce the observations. Vrugt et al. (2003) proposed the Shuffled Complex 

Evolution Metropolis (SCEM-UA) algorithm which is a modification of the Shuffled 

Complex Evolution (SCE-UA) algorithm proposed by Duan (1992) . SCEM-UA is a 

Markov chain Monte Carlo sampler that periodically updates the distribution of the 

parameters in an effort to identify a global optimum. With a single optimization run, this 

method simultaneously obtains both the most likely parameter set and its underlying 

posterior parameter distribution, thus providing insight about parameter uncertainty. 

Another issue that affects the reliability of a model is the adequacy of the model ' s 

mathematical structure. Most models rely on assumptions to simplify the mathematical 

description of the physical processes. These assumptions produce errors in the structure 
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of the equations that are used to simulate the processes. To evaluate structural errors, 

Wagener et al. (2003) introduced Dynamic Identifiability Analysis (DYNIA), which is 

based on the GLUE and RSA methodologies. DYNIA divides a calibration time series 

into a sequence of small windows. For each window, it identifies parameter sets that 

allow the model to adequately reproduce the observations and then plots the distributions 

of the preferred parameter values as a function of time. If the preferred values change 

through time, it suggests that the parameters are being adjusted to overcome 

shortcomings in the model structure. Wilby (2005) also analyzed parameter stability 

through time and showed that parameter identifiability and model performance can 

depend on the period (wet/dry) used for calibration. 

Many studies have considered whether the increased complexity of a distributed 

model allows it to outperform lumped models (Refsgaard and Knudsen, 1996; Boyle et 

al. , 2001; Reed et al., 2004; Carpenter and Georgakakos, 2006). The results of these 

studies are mixed. For example, Reed et al. (2004) studied 12 distributed models and 

compared them to the lumped Sacramento Soil Moisture Accounting (SAC-SMA) model. 

They found that the lumped model performed better than the distributed models in a 

majority of the cases for simulating streamflow. These results suggest that the additional 

complexity of distributed models can create parameter identifiability issues that 

sometimes outweigh the improved descriptions of physical processes. 

Probability-distributed models have been proposed as a way to include spatial 

variability while requiring relatively few parameters. Probability-distributed models are 

an extension of lumped models that use some kind of probability distribution to describe 

spatial variation in a watershed . The probability-distributed approach was introduced by 
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Moore and Clarke (1981) then improved by Moore (1985; 1999; 2007). This model 

regards soil storage capacity as a stochastic variable to determine the runoff from 

precipitation events. TOPMODEL shares a certain similarity with this approach. It is a 

semi-distributed hydrological model that uses a distributed topographic-based index to 

describe the spatial distribution of runoff production (Beven and Kirkby, 1979). The 

model can use this index in a spatially-explicit framework or in a frequency-of-

occurrence framework that is similar to the probability-distributed approach (Wolock, 

1993). Famiglietti and Wood (1994) developed TOPLATS, which uses the TOPMODEL 

framework to account for spatial variations in a soil-vegetation-atmosphere water-energy 

balance. Entekhabi and Eagleson (1989) also used probability distributions of 

precipitation and soil moisture to account for variability within the grid cells of a general 

circulation model. Niemann and Eltahir (2004; 2005) used probabi lity density functions 

for soil moisture, precipitation, and potential evapotranspiration ( or wet-environment 

evapotranspiration) to include spatial and temporal variability in a regional water balance 

model and used the model to assess sensitivity to climate changes. 

Parameter uncertainty also affects models that simulate soil moisture, although it 

has received much less attention in this context. Soil moisture is a key hydrologic 

variable for understanding land-atmosphere interactions (Entekhabi and Eagleson, 1989), 

persistence of droughts (Findell and Eltahir, 1997), flood production (Kitanidis and Bras, 

1980), etc. Many rainfall-runoff models simulate soil moisture, but most studies do not 

verify the simulated soil moisture due to the lack of observations. Other studies have 

focused on simulating local soil moisture using models based on the Richards' equation 

(Richards, 1931) such as HYDRUS lD and lD MIKE SHE (Vrugt et al. , 2003; Mertens 
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et al. , 2004; Mertens et al. , 2005; Mertens et al. , 2006). Some of these studies have also 

considered the importance of individual parameters for producing soil moisture using the 

RSA methodology (Mertens et al., 2004; Mertens et al., 2005 ; Mertens et al. , 2006). 

Similarly, Vrugt et al. (2003) used the SCEM-UA algorithm in order to analyze the 

probability distributions of the parameter values. All of these studies assessed parameter 

uncertainty, but they implicitly assume that the model structure is correct. 

The main objective of this research is to evaluate the suitability of a simple, 

probability-distributed model (PDM) to simulate local and spatial mean soil moisture. 

The model simulates local , depth-averaged soil moisture dynamics using empirical 

expressions for infiltration, evapotranspiration, and groundwater recharge. The spatial 

mean soil moisture is determined by integrating the local behavior over a probability 

distribution that characterizes the spatial variability of soil saturation. A similar version 

of this model has already been applied to the Illinois River basin to examine the basin' s 

water balance and sensitivity to climate changes (Niemann and Eltahir, 2004; Niemann 

and Eltahir, 2005). In that case, the model could not be thoroughly tested due to data 

limitations. Here, a similar model is applied to the Fort Cobb watershed in Oklahoma, 

which has soil moisture observations available at a 30-minute resolution since September 

2005. The model results for both local soil moisture and spatial mean soil moisture are 

analyzed in three main ways. First, the PDM is assessed in its ability to be calibrated to 

simulate the observations. Second, the model is assessed for parameter uncertainty and 

model structural errors using DYNIA. Third, the sensitivities to changes in annual 

precipitation and potential evapotranspiration (PET) are evaluated in a framework similar 

to DYNIA in order to assess the impacts of parameter uncertainties and structural errors 
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on the model's performance for unobserved conditions. At the local scale, the results are 

also compared to those from a more detailed, process-based model that numerically 

solves Richards ' equation for one-dimensional vertical flow (HYDRUS 1D). 

The outline of the paper is as follows. Section 2 describes the Fort Cobb 

watershed and the available data. Section 3 describes the PDM (Section 3.1) as well as 

HYDRUS 1D (Section 3.2). Section 4 describes the results first for the local soil 

moisture (Section 4.1) and then for the spatial mean soil moisture (Section 4.2). Finally, 

Section 5 summarizes the main conclusions. 
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2 Study Area 

The 813 km2 Fort Cobb watershed in southwest Oklahoma is used to evaluate the 

model. The climate of Fort Cobb is dry sub-humid with an annual precipitation of 

approximately 820 mm and an annual PET of approximately 1850 mm. The Fort Cobb 

watershed contains three major subcatchments: Cobb Creek, Lake Creek, and Willow 

Creek. These subcatchments drain to the 16 km2 Fort Cobb reservoir. This reservoir and 

many of the streams in the watershed have experienced an increase in sediments, 

nutrients, and pesticides from row cropping and livestock, which makes it a widely 

studied area (Storm et al. , 2003; Fairchild et al. , 2004; Geza et al. , 2004). The maximum 

topographic relief of the basin is 182 m. The land cover is approximately 51 % cropland, 

40% pasture, and 7% forest. The remaining percentage is urban, water, and bare soil 

(Storm et al. , 2003). The unconfined Rush Springs aquifer underlies the watershed. The 

water table is always more than 2 m below the ground surface, but its depth fluctuates 

considerably from year to year due to varying irrigation practices (Abbott et al. , 2003). 

The USDA Agricultural Research Service's (ARS) Grazinglands Research 

Laboratory collects meteorological and soil moisture data at 15 Micronet stations in the 

Fort Cobb watershed. Cumulative rainfall , relative humidity, air temperature, and solar 

radiation are collected at 5 minute increments and volumetric water content 

measurements for soil moisture at 3 depths (5 , 25, and 45 cm) are collected at 30 minute 

increments. The soil moisture data collection began in September of 2005 and is updated 

with new data daily. Soil samples were taken during installation of the soil moisture 
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instruments for calibration purposes. Nearly all the samples were determined to be 

predominately sand, a few samples were found to be predominately si lt, and one sample 

was predominately clay (Martinez, 2006). Meteorological data are also co llected by the 

Oklahoma Mesonet at 3 stations near or in the Fort Cobb watershed (Fort Cobb, 

Weatherford, and Hinton). 

One year (September 2005 through August 2006) of precipitation, PET, and soil 

moisture measurements are used to evaluate the model. The precipitation and PET will 

be used as model inputs (see below), and the soil moisture observations will be used for 

calibration and evaluation purposes. From the meteorological data, PET was calculated 

using the ASCE standardized equation (Allen et al., 2005). Short grass is the vegetation 

type most applicable to the area directly surrounding the stations and was used for 

simplicity at all 15 stations. Wind speed data is only available at the three Mesonet 

stations . Wind speeds at the Micronet stations were estimated using a weighted distance 

approach with the Mesonet data. Then, the spatial average precipitation, PET, and soil 

moisture were determined using a thiessen polygon method with the local data from the 

Micronet stations (Figure 2.1 ). Among these variables, only the soil moisture exhibited 

significant spatial variations within the watershed. Thus, precipitation and PET are 

treated as spatially constant in the analysis, whereas the soil moisture is treated as 

spatially variable. When the model was previously applied to the much larger (69,000 

krn2
) Illinois River basin, all three variables were treated stochastically (Niemann and 

Eltahir, 2004). The spatial averages of precipitation, PET, and soil moisture are shown in 

Figure 2.2. The figure shows that precipitation events were less common during the 

winter when the PET was also low. As a result, the spatial average soil moisture depends 
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primarily on the time since the most recent precipitation event. The behaviors at the 5 cm 

and 25 cm depths are relatively similar, but the soil moisture at 5 cm tends to be more 

variable through time. Only the soil moisture at the 5 and 25 cm depths are used in this 

study because the 45 cm data had missing measurements for long periods of the year at 

multiple stations. At the 5 and 25 cm depths, some of the stations had missing data or 

unexpectedly high values for soil moisture at certain times (e.g. , values between 0.6 and 

1.0). Such high values could be a result of the improper instrument calibration or 

instrument installation errors. These values were excluded when calculating the spatial 

averages. 

Figure 2.1. Fort Cobb watershed with the thiessen polygons used to calculate the spatial 
average measurements. 
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3 Model Descriptions 

3.1 Probability-Distributed Model 

The PDM simulates local , depth-averaged soil moisture by applying a simple 

water balance. In this model, soil moisture is considered constant with depth in the 

vadose zone. The model considers two types of locations as shown in figure 3 .1: 

recharge and discharge locations (Niemann and Eltahir, 2004). At recharge locations, the 

soil may or may not be saturated. Precipitation is partitioned between surface runoff and 

infiltration, and groundwater recharge can occur. At discharge locations, the soil is 

assumed to be saturated, and the hydraulic gradient is assumed to be oriented to produce 

groundwater discharge. No infiltration occurs at these points. Discharge locations are 

considered to be wetlands and water bodies, such as creeks or reservoirs, where saturated 

soil conditions are always present. All the soil moisture stations in the Fort Cobb 

watershed would be considered recharge locations, so these locations are the focus of the 

analysis. At a recharge location, the soil moisture balance is described as follows: 

6t 
s =s +-(F-E-G) 

I 1-1 5¢ (1) 

where s is the depth-averaged degree of soil saturation (volume of water per volume of 

voids), c5 is the depth of the soil for which soil saturation is being calculated, ¢ is the 

porosity, Fis the infiltration rate, E is the evapotranspiration rate, and G is the recharge 

to groundwater (or drainage from the base of the soil layer). This soil moisture balance 

can be written in terms of volumetric soil moisture 0 as well , where 0 = s¢. For our 

purposes, c5 is selected to be twice the depth of the soil moisture measurement that the 
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model is used to simulate so that the simulated soil moisture is at the midpoint of the soil 

column. For example, when comparing to soil moisture at a 5 cm depth, o is set to 10 

cm. Any variations in s within this o are neglected by the model. 

Recharge Location 

E 
p 

R 

F 
O<s<1 

G 

Figure 3.1. Diagram of the PDM framework. 

Discharge Location 

E GP~ 

s=1 

The infiltration rate is determined by the smaller of the infiltration capacity and 

the precipitation rate. Specifically: 

(2) 

where F,_ is the infiltration capacity. The infiltration capacity 1s defined as 

F,_. = a(l- s) + K,, where a is an infiltrability parameter and K,, is the saturated 

hydraulic conductivity (Niemann and Eltahir, 2004). Notice that Fe = K,, when the soil 
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is saturated ( s = 1 ), and F,_. increases linearly to F,_. =a+ Kh when the soil is completely 

dry ( s = 0 ). 

Evapotranspiration is described as a function of water availability and the PET. 

Empirical relationships between evapotranspiration efficiency and soil moisture vary 

depending on the vegetative cover and soil characteristics of the area (Lowry, 1959; 

Entekhabi et al. , 1991). Following Rodriguez-Iturbe et al. (1991) and Entekhabi et al. 

(1991), E can be written as: 

(3) 

where E P is the PET and /J is the evapotranspiration exponent, which depends on the 

vegetation characteristics. Lowry (1959) summarized the results of several field studies 

addressing the relationship between evapotranspiration and soil saturation. In a fully 

vegetated area, the evapotranspiration rate was closer to the PET rate for all values of s. 

The model in Equation (3) represents this condition if /J < 1 . Entekhabi et al. (1991) set 

/J = 0.5 for a semi-humid climate in order to represent vegetation. For bare soil 

conditions, deep rooted plants, or dead vegetation, Lowry (1959) found that the 

evapotranspiration rate decreases more rapidly from the PET rate as the soil moisture 

decreases . The model represents this case if /J > 1 . 

Groundwater recharge is controlled by numerous factors including soi l type, soil 

saturation, water table level, and topography. In this model, recharge to groundwater is 

described using the well-known percolation model, which assumes that the hydraulic 

head in Darcy ' s Law is dominated by the change in elevation. Under this assumption, 

G =Ku, where Ku is the unsaturated hydraulic conductivity. Campbell (1974) wrote 
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unsaturated hydraulic conductivity as Ku = K,,sr , which implies that the recharge can be 

written as: 

(4) 

where r is the recharge exponent parameter, which depends on the soil texture. Lower 

values of r typically correspond to coarser soils such as sands (Clapp and Hornberger, 

1978; Wetzel and Chang, 1987). The equations described above control how the PDM 

simulates depth-averaged soil moisture at the local scale for a recharge location. For a 

given 8 , the parameters a , /J , r, Kh, and ¢ must be calibrated to use the model. 

The PDM is also used to simulate the spatial average soil moisture for the watershed. 

To include some aspects of spatial variability, a gamma distribution is used to describe 

the spatial variation of soil saturation. Entekhabi and Eagleson (1989) described the 

spatial variability of soil moisture using a gamma distribution, however they did not test 

this assumption. The Erlang distribution, a special form of the gamma distribution in 

which the shape parameter is an integer, was found to describe the spatial variability of 

soil saturation in the Illinois River basin by Niemann and Eltahir (2004). The assumption 

of a gamma distribution was also tested for the Fort Cobb watershed. Soil saturation 

values were calculated by dividing the soil moisture observations by the porosity values 

that were determined during the model calibration at each station. In particular, the 

porosity used at each station is the average of the porosities in the 1 % of the simulated 

parameter sets that produce soil moisture with the most accuracy (see details later). The 

gamma distribution was then tested by applying the Kolmogorov-Smirnov test (Salas et 

al. , 2004). For the 5 cm depth, the gamma distribution is accepted at the 10% 

significance level for 98 .9% of the time periods in the dataset. For the 25 cm depth, the 
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gamma distribution is accepted at the 10% level for 96.0% of the time periods. The 

gamma distribution is written: 

0~s <oo. (5) 

In this equation, s is the spatial mean soil saturation, r is the gamma function, and k is 

the squared inverse of the coefficient of variation ( k = s2 
/ CJ 

2 
) , where a is the spatial 

standard deviation of soil saturation. Notice that the gamma distribution allows values of 

soil saturation to be greater than one. When the distribution is used in the model, this 

portion of the distribution is treated as a probability mass at s = 1 , and this mass is 

assumed to correspond to the groundwater discharge locations. 

To constrain the behavior of the spatial variation of soil saturation, Niemann and 

Eltahir (2004) proposed that k is constant at all times and found that this was 

approximately the case for the Illinois River dataset. Here, both k and CJ and were 

examined to determine if either of these can be approximated as a constant. Figure 3 .2 

plots CJ as a function of the spatial average soil saturation for the 12 month period of 

observation at the 5 cm depth. If CJ were exactly constant, the data would plot as a 

horizontal line. If k was exactly constant, the data would plot along a line through the 

origin because 1/ = CJ I s. This plot shows that neither CJ nor k is truly constant for 

this dataset, but it is better to assume that CJ is constant. Note that the most common 

values of CJ are between about 0.05 and 0.15 with lower values occurring when the 

spatial average soil saturation is moderate to low. A similar behavior is observed for the 

25 cm data, so CJ is also assumed to be constant at this depth for consistency. 
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Figure 3.2. A plot of the spatial standard deviation of soil saturation against the spatial 
average soil saturation for the 12 month period of observation. Soil saturations are 
calculated by dividing the observed soil moisture values by the average porosity 
calculated from the 1 % of the simulations with the most accuracy. 

To determine the spatial mean fluxes , the local fluxes are integrated over the 

spatial distribution of soil saturation. Locally, the surface runoff is the portion of the 

precipitation that does not infi ltrate into the soil. The spatial mean runoff R.. is then 

found by integrating the local surface runoff over the spatial distribution of soil 

saturation. In particular, 

(6) 

where P is the precipitation rate, which is considered to be spatially constant due to the 

scale at which the model is applied. The first term represents the recharge locations 

where infiltration can occur, and the second term represents the discharge locations 

where no infiltration occurs. Evaluating the integrals in Equation (6), one obtains an 

analytical expression for the spatial mean surface runoff: 

R = P-(a + K 1, )f(k l s ,k )+ asT(k l s ,k + 1). (7) 
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The spatial mean evapotranspiration E can be determined by integrating the local 

evapotranspiration expression (Equation (3)) over the distribution of soil saturation: 

(8) 

Notice that the po1iion of the gamma distribution with s l is treated as a probability 

mass at s = l , so the evapotranspiration rate is equal to the PET. Equation (8) can be 

analytically solved to obtain an expression for the spatial mean evapotranspiration: 

(9) 

Similarly, the local groundwater recharge (Equation ( 4 )) can be integrated over the 

spatial distribution of soil saturation to determine the spatial mean groundwater recharge 

G . In particular: 

(10) 

The integral does not include the part of the gamma distribution where s > l because this 

portion represents groundwater discharge locations. Equation (10) can be solved 

analytically to obtain an expression for the spatial mean groundwater recharge: 

(11) 

With these expressions describing R, E, and G, one can apply a water balance 

to the region, which implies: 

/1{ [- - - -] s =s +- P-R-E-G . 
I 1-1 8¢ (12) 

otice that the PDM requires one additional parameter (<I) to simulate the spatial mean 

soil moisture. 
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3.2 HYDRUS 1D 

HYDRUS ID is a widely-used, physically-based model for soil moisture 

simulation. Here, the model is used as a point of comparison when evaluating the 

performance of the PDM at the local scale. HYDRUS 1 D has various options within its 

framework that allow one to control the complexity of the resulting model (Simunek et 

al., 2005). Here, the model is applied in a way that requires as few parameters as 

possible. The governing equation for HYDRUS lD is Richards ' equation (Richards, 

1931), which can be written: 

ae =~[K (ah +i)]-R at az II az (13) 

where 0 is the volumetric water content, t is time, z is the vertical coordinate (positive 

upward), K
11 

is the unsaturated hydraulic conductivity, h is the pressure head (negative if 

unsaturated) , and R is a sink term that is used to account for root water uptake. In this 

application, the lower boundary condition is assumed to be free drainage because the 

water table is relatively deep below the root zone. HYDRUS ID numerically solves 

Richards' equation to estimate one dimensional vertical saturated or unsaturated water 

flow. 

The sink term R defines the amount of water that is extracted by plant roots at any 

soil depth to supply transpiration. In this application of HYDRUS, all evapotranspiration 

is assumed to be transpiration for simplicity, which was also assumed by Skaggs et al. 

(2006). This assumption was evaluated by using seasonal variations in leaf area index 

from a similar site in Oklahoma (Gu et al. , 2006) to partition the PET into potential 
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evaporation and potential transpiration usmg the method from Hupet et al. (2003). 

Although this partitioning obviously increases the model's complexity, it was found that 

it does not improve the model's performance at the Fort Cobb watershed. With the 

additional complexity in separating the evapotranspiration, more parameters would be 

required making the parameters less identifiable. The sink term R is based on the 

pressure head, root characteristics, and atmospheric conditions (Skaggs et al. , 2006) and 

can be written as: 

(14) 

where w describes the vegetation's response to water stress, b describes the distribution 

of water uptake as a function of depth in the soil, and E P is the potential 

evapotranspiration, which is assumed to be equivalent to the potential transpiration rate. 

The van Genuchten (1987) S-shaped function is used to define w. When the plants are 

not experiencing water stress (i.e. h = 0 ), w = 1 , and the root water uptake is occurring at 

the PET rate. As h becomes more negative, w approaches zero causing the root water 

uptake to decrease from the potential rate. Specifically, this function is written: 

(15) 

where h50 represents the pressure head where the transpiration is half of the potential rate 

and p determines how gradually w changes as h changes. In the literature, p is 

documented to be 1.5 to 3.0 (Skaggs et al., 2006). Smaller values of p indicate a more 

gradual transition from potential to reduced root water uptake as a function of h. h50 
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ranges from -10 to -50 m in the literature (Skaggs et al., 2006). More negative values of 

h50 force h to become more negative in order to reduce the uptake from the potential rate. 

The normalized root water uptake distribution b describes the variation of the 

water uptake within the root zone, which is controlled by the distribution of roots within 

the root zone. The root distribution is highly dependant on the type of biome in which 

the plant is located (Jackson et al. , 1996). However, nonlinear functions have been found 

to be more accurate in matching measured root distribution data than the traditional linear 

functions (Li et al., 2006). As a result, an exponential distribution is used for b, which is 

similar to the distributions used in previous studies (Raats, 1974; Arora and Boer, 2003; 

Mertens et al. , 2006). Specifically: 

b = ae-a(l-z) (16) 

where a is a positive parameter that describes the decrease in root density and water 

uptake with depth and L is the z coordinate of the ground surface above an arbitrary 

datum. A larger a value indicates less root water extraction deep in the soil. 

The Brooks and Corey expressions are used to describe soil water retention and 

unsaturated hydraulic conductivity (Brooks and Corey, 1966). These expressions are 

selected because, when coupled with the free drainage boundary condition, they produce 

a drainage rate at the bottom of the soil column that is similar to G in the PDM. Using 

Brooks-Corey, the soil water retention is defined as : 

S e ={lvhl-11 h < -1/v 
1 h ?.. -l l v 

(17) 
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where se is the effective soil saturation, v is the inverse of the air-entry pressure, and n 

is the pore size distribution index. se is the amount of the pore space that contributes to 

the flow of water and is defined as: 

0-0 
s =--' 

e ¢-0, 
(18) 

where 0, is the residual water content. The inclusion of 0,. is the mam difference 

between the Brooks-Corey and Campbell (1974) formulations. The Brooks-Corey 

unsaturated hydraulic conductivity is written: 

K = K s 21n+1+2 
u h e (19) 

where l is the pore conductivity parameter. In this application, l = 0.5 is used, which is 

the average among many soil types. Specifying this value provides no loss of generality 

in the model (Mualem, 1976; Assouline, 2005). 

The implementation of HYDRUS described above represents the processes with 

relatively few parameters. Eight parameters must be calibrated including 

0, , 0s, v, Kh, n, p, h50 , and a. The main difference between the local formulation in 

the PDM and this formulation of HYDRUS is that HYDRUS explicitly allows and 

simulates vertical variations in soil moisture. 
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4 Results 

4.1 Results for Local Scale 

First the PDM is analyzed in how well it can be calibrated to reproduce observed 

local soil moisture at the 5 cm and 25 cm depths. Since the PDM does not allow 

variation in soil moisture with depth, it must be separately applied and calibrated for each 

depth. The results will be compared to those of HYDRUS lD. The soil depth in 

HYDRUS lD is set to 0.5 m, so it actually simulates both the 5 cm and 25 cm soil 

moisture values simultaneously. In some applications, this may be a significant 

advantage over the PDM. However, for purposes of comparison, it is also calibrated 

separately to reproduce either the 5 cm or the 25 cm soil moisture. The initial soil 

moisture values supplied to HYDRUS 1 D and the PDM are the first observed soil 

moisture values at the appropriate depth. 

To calibrate the PDM, 1000 parameter sets were generated from a uniform joint 

distribution within independent ranges specified for each parameter. Given the 

uncertainty regarding the soil characteristics within the watershed, relatively large ranges 

of parameter values were considered. Specifically, porosity ¢ was allowed to range from 

0.25 to 0.60, which is appropriate for most soil types including silts and sands 

(McWhorter and Sunada, 1985). Kh is sampled from the range 0.001 to 2.0 m/hr, which 

encompasses most sandy soils. For silt and clay materials, K" can sometimes be lower 

than this range (Mc Whorter and Sunada, 1985). Little information is available about the 

dependence of the infiltrability parameter a on the soil type. Niemann and Eltahir 
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(2004) used a value of 0.0036 m/hr for their analysis of the Illinois River basin. Here, 

this parameter is sampled from the same range as K 11 • /3 is allowed to range from 0.5 to 

3, which permits the evapotranspiration equation to represent a broad range vegetative 

covers. r spans from 4 to 30, which represents a broad range of soil types. Sands and 

silts typically have values in the range of 10 to 14. Sands are usually in the lower portion 

of this range, while finer material, such as clays, can be represented by values from 20 to 

30 (Clapp and Hornberger, 1978; Wetzel and Chang, 1987). 

To the extent possible, equivalent parameter ranges were used for HYDRUS lD. 

¢ in HYDRUS lD was allowed to vary from 0.3 to 0.6, where the lower bound is a bit 

higher than the one used for the PDM. 0,. was allowed to range from 0.001 to 0.10, 

which encompasses the average values provided for all soil types from Carse! and Parrish 

(1988). Sands and silts tend to have average values in the range of 0.03 to 0.05. For very 

fine materials such as clays, 0,. often takes values near 0.10 (Carsel and Parrish, 1988) 

but can range up to 0.19 (Isrealson et al. , 1962; van Genuchten et al., 1989). The inverse 

of the air entry pressure v was allowed to vary from 1 to 20 m-1 encompassing the range 

of values representing most soil types (Dingman, 2002; Scanlon et al. , 2002). Soils 

containing especially coarse material such as gravel can have much higher values of v . 

The pore size distribution index n is allowed to vary from 0.1 to 0.6, which allows the 

exponent for the unsaturated hydraulic conductivity function to span approximately the 

same range as r in the PDM. Saturated hydraulic conductivity K 11 is sampled from 

0.001 to 2.0 m/hr. The range is the same as the one used for the PDM. The root water 

uptake parameter p has a range from 0.25 to 3.0, and h50 spans a range from -30 to -0.01 

m. These ranges are slightly different than the root water uptake values reported in the 
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literature where p spans from 1 to 3 and h50 spans from -50 to -10 to m (Skaggs et al. , 

2006). These reported values cause the root water uptake to occur at the PET rate, then 

decrease rapidly to essentially zero when se approaches zero. Smaller values of h50 

allows reduced root water uptake to occur with a less negative value of h. This range 

allows inclusion of the behavior simulated by the PDM, which can produce an immediate 

reduction from potential uptake with reduced water availability. Lower values of p allow 

a more gradual transition from potential to reduced uptake, which is another effect the 

PDM allows. The root distribution parameter a has a range of 2.5 to 10. This range was 

determined by comparing the cumulative root water uptake distribution with the 

cumulative distributions of roots for similar biomes as estimated by Jackson et al. (1996). 

The performance of each parameter set for a given depth was evaluated using the 

root mean square error (RMSE): 

1 N 2 
RMSE = - "°'(0 -0 . ) 

N .L...,; t ,obs t ,s ,m 
1=1 

(20) 

where N is the number of time steps, 0, ,obs is the observed soil moisture value at that time 

step, and 0,,,,,,, is the simulated soil moisture value at that time step. The best parameter 

sets are those that produce the minimum RMSE for a given depth. Other objective 

functions such as the coefficient of efficiency (Legates and McCabe, 1999), absolute 

error, and relative error were considered, but the preferred parameters sets were relatively 

insensitive to this choice. 

Figure 4.1 compares the soil moisture simulated by the two models with the 

observations for station Fl03 at 5 cm and 25 cm. In all cases, the parameter sets with the 

lowest RMSE are used. All stations were calibrated and produce similar results except as 
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explicitly noted in this paper, but only station Fl 03 was selected to be described in detail 

for brevity. Both the PDM and HYDRUS ID produce soil moisture dynamics that are 

comparable to the observations. For the 5 cm depth, the minimum RMSE is 0.022 for the 

PDM and 0.028 for HYDRUS. For 25 cm depth, the minimum RMSE is 0.020 for the 

PDM and 0.021 for HYDRUS. These calibrations were performed with the entire year of 

data, however both HYDRUS and the PDM can be calibrated with the first few months of 

data and similar results will be reached for simulating soil moisture for the remainder of 

the year. The soil moisture dynamics simulated by both models are similar, however a 

closer inspection of the models indicates that they rely on a different partitioning of 

infiltration into evapotranspiration and groundwater recharge. As described in the 

previous section, the PDM determines the evapotranspiration and groundwater recharge 

as functions of soil saturation. In HYDRUS, such explicit relations are not used. Figure 

4.2 evaluates the dependence of these two fluxes on soil saturation by plotting GI Kh and 

E I EP as a function of soil saturation. For HYDRUS, E is the total amount of 

evapotranspiration from the soil column, G is the drainage at the lower boundary, and the 

soil saturation is se at the 25 cm depth. The results from HYDRUS are shown by 

symbols, and the results from the PDM are shown by solid curves. Each line or symbol 

corresponds to one of the top 5 parameter sets in terms of minimum RMSE for the 

respective model. The first interesting observation is the relatively narrow scatter in most 

plots from HYDRUS. This result suggests that the explicit dependence of 

evapotranspiration and recharge on soil saturation in the PDM is consistent with the 

behavior of HYDRUS in most cases. However, the functional relationships produced by 

HYDRUS can be very different than those produced by the PDM. This result suggests 
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that the two models partition infiltration differently. Finally, it is interesting to note that 

the evapotranspiration results produced by the different parameter sets in HYDRUS are 

considerably different from each other. Some of these functions are s-shaped and seem 

to identify the transition between water and energy limited evapotranspiration. Others 

have a straighter shape that is more similar to the calibrated relationships from the PDM. 

All of these parameter sets produce similar soil moisture dynamics, but they achieve 

these results by rather different means. The PDM was also used to simulate soil moisture 

at the 5 cm and 25 cm depths for the rest of the stations. At the 5 cm depth, the RMSE 

ranged from 0.015 to 0.066 among the stations. At the 25 cm depth, the RMSE ranged 

from 0.015 to 0.055. 
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Figure 4.1. Observed and simulated soil moisture at (a) 5 cm and (b) 25 cm depths for 
Station F 103 using the parameter sets with the lowest RMSE for both models. 
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Figure 4.2. Comparison of ( a) groundwater and (b) evapotranspiration fluxes as a 
function of soil saturation for HYDRUS lD (symbols) and the PDM (solid curves). For 
each model, the figure shows the results calculated with the 5 parameter sets that produce 
the lowest RMSEs. GIK11 extends up to 0.11 for the PDM during the 12 month 
simulations, but this is not shown for clarity. 

Although both models are capable of reproducing the observed soil moisture after 

calibration, this tendency does not ensure that the models will produce reliable 

predictions of soil moisture for unobserved conditions. In particular, the parameter 

values may be poorly constrained, and the model may have structural e1Tors that become 

important during unobserved periods. DYNIA (Wagener et al. , 2003) is used to evaluate 

these issues. This method examines how identifiable and stable the prefe1Ted parameter 

values are through time. The underlying argument of this method is that the same 

parameter values should be selected to reproduce sub-portions of a calibration dataset if 
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the model structure is correct. If the preferred parameter values change with time, then 

the parameters are likely being adjusted to overcome deficiencies in the model structure. 

This procedure utilizes parts of the GLUE framework (Beven and Binley, 1992) and RSA 

(Spear and Hornberger, 1980; Hornberger and Spear, 1981 ). 

The DYNIA procedure begins with the same 1000 parameter sets that were used 

in the calibration above . For each parameter set, the soil moisture is simulated for the 

entire calibration period (1 year). Then, the results of the simulation are evaluated by 

dividing the calibration record into a series of small windows of time. The windows 

should be large enough that data fluctuations , diurnal effects, and measurement errors do 

not affect the results but small enough that wet and dry periods occur in different 

windows. A window of 2 days was used for this analysis. For each window, the mean 

absolute error (MAE) is calculated for every one of the 1000 parameter sets as : 

1 N, 

MAE=-"le -0 . I N 1,obs 1,s11n 
(21) 

where N represents the number of measurements in the specified window. A likelihood 

value L is derived for each parameter set by calculating an initial likelihood L, as 

L = l - MAE and then calculating a final normalized likelihood as L = L I"°' L . The 
I I I 

most likely parameter sets are those with the lowest MAE. For each window, the top 

10% of parameter sets in terms of their likelihood are identified, and the likelihoods are 

again normalized so that they sum to unity in each window. The cumulative distribution 

of the normalized likelihood is then plotted as a function of the parameter value. The 

parameter space is divided into 20 bins of equal size, and the gradient of the cumulative 

distribution within each bin is calculated. A larger gradient indicates the parameter value 
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is more likely to be contained in that bin. For visualization, the gradient is transformed 

into shading, with darker shading representing steeper gradients or more likely bins. In 

the end, the results of DYNIA can be thought of as histograms of the most likely 

parameter values for small windows of time in the calibration record. It is important to 

note that the DYNIA analysis draws parameter values from a uniform distribution within 

the specified ranges for each parameter, so it neglects the possibility of parameter 

dependence in identifying the likelihood histograms. It also assumes that the 

observations are correct. A more detailed description of the DYNIA procedure can be 

found in the MCAT toolkit (Wagener et al., 2004) or in Wagener et al. (2003). 

Figure 4.3 shows DYNIA results for selected parameters of the PDM and 

HYDRUS for the 5 cm depth. Although the results from the entire year were generated, 

only the first 4 months (fall) are shown for clarity. This period contains a range of wet 

and dry conditions that is representative of the entire year. The solid black curves in each 

part of the figure shows the soil moisture dynamics for reference. The gray shading 

shows the results of the DYNIA analysis. For a selected time, darker shading at a 

particular value of the parameter indicates that that parameter value is more likely based 

on the soil moisture observations in that window. The dotted lines show the 90% 

confidence limits for the parameter value, meaning that there is a 90% likelihood that the 

parameter falls within these bounds. Figures 4.3a and 4.3b show the DYNIA results for 

¢ from the PDM and HYDRUS, respectively. For the PDM, relatively well-defined dark 

areas are present in the figure , particularly during wet periods, which suggests that the 

porosity is relatively well-constrained by the calibration data. However, it also suggests 

that the preferred porosity (indicated by a darker shading at that parameter value) is 
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around 0.45 for wet periods and drops to about 0.3 during the driest periods. Because 

porosity is time invariant in reality, this transition most likely suggests that the model 

exhibits structural errors with the preferred value for porosity changing to compensate for 

the shortcomings in the equations describing the soil moisture dynamics . For HYDRUS 

(Figure 4.3b), the porosity is less well-constrained than it is for the PDM because less 

obvious dark areas are visible in the figure and the 90% confidence limits encompass the 

entire parameter space during most periods. A weak preference is observed for values 

around 0.55 during wet periods, while values around 0.30 are preferred in certain dry 

periods. Overall, however, it is difficult to identify a strong preference for ¢ at any time. 

Figure 4.3c examines the groundwater recharge exponent y in the PDM. The figure 

suggests that r is not as identifiable as ¢ . During all periods of the year, r values are 

constrained to be greater than 10. However, during wet periods, a slight preference is 

visible for values between 15 and 20. The pore size distribution index n in HYDRUS is 

similar to the inverse of y in the PDM. Figure 4.3d shows the DYNIA results for n. 

Lower n values are considered more likely in wet periods, whereas higher n values are 

considered more likely in dry periods. Note the dashed lines in the figure which identify 

the range of the parameter that includes 90% of likelihood changes substantially through 

time, which suggests that there are significant structural errors because n is a time 

invariant parameter. Such structural errors could arise from various sources. It is 

possible that the soil moisture observations contain errors that are related to the level of 

wetness (e.g. , due to the calibration of the instrument). Alternatively, it is possible that 

some of the simplifying assumptions used in constructing the HYDRUS model are 
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invalid (e .g. , uniform hydraulic parameters with depth, water stress functions, root 

distribution functions , etc.). 
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Figure 4.3. DYNIA results for a 4 month period (September 2005 through December 
2005) at station Fl 03 at the 5 cm depth. The gray shading shows the likelihood 
histograms of porosity for (a) the PDM and (b) HYDRUS lD. Similarly, the shading 
shows the likelihood histograms of (c) the groundwater discharge exponent for the PDM 
and (d) the pore size di stribution index for HYDRUS ID. The dashed black lines are the 
90% limits of the parameter histograms (i.e. 90% of the likelihood falls within these 
bounds). The solid black curves show the soil moisture values. The y-axis numbering 
refers to the parameter values, not the soil moisture values. 

Similar results were observed for the parameters that are not shown in Figure 4.3. 

The parameters a and K,. in the PDM exhibit some variation through time, and the 

confidence interval spans nearly the entire parameter space. /3 is relatively identifiable 

during dry periods with preferred values occurring between 1.0 and 1.5. The DYNIA 

results for the 25 cm depth at station Fl03 are simi lar to the 5 cm results . The only 

parameter showing a significant difference is ¢ , which tends towards a lower value 

during all periods and does not show the structural errors that were visible in the 5 cm 
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results. This result makes sense intuitively because one expects porosity to decrease with 

depth in the soi l. When the PDM is applied to other stations in the watershed, similar 

results for parameter identifiability and structural errors were obtained. Appendices A 

and B contain complete DYNIA results for all parameters over the entire year for the 

PDM at the 5 cm depth and 25 cm depth, respectively . Also DYNIA results for station 

Fl 13 are included in Appendix C. Most of the remaining HYDRUS parameters were 

found to be unidentifiable through the year including Kh and v. 0, is unidentifiable 

during wet periods, but shows a concentration of preferred values shifting from 0.08 to 

approximately 0.03 during moderate to dry periods, respectively . This shift also suggests 

that structural errors occur in the model. The root water uptake parameters h50 and a are 

relatively unidentifiable as well. The exponent p shifts values suggesting some structural 

error but is stable and identifiable as a low value during dry periods. DYNIA results for 

HYDRUS at the 25 cm depth typically indicate similar identifiability issues and structural 

inadequacies as those observed for the 5 cm depth, but the results are less pronounced. 

Appendices D and E contain complete DYNIA results for all parameters over the entire 

year for HYDRUS at the 5 cm depth and 25 cm depth, respectively. 

In the end, the calibration and identifiability results suggest that the inclusion of 

vertical dynamics in HYDRUS do not significantly improve the simulation of soil 

moisture dynamics (Figure 4.1) or improve parameter identifiability or structural errors 

(Figure 4.3) when applied to this watershed . Among the two models, only HYDRUS is 

able to simulate vertical variations of soil moisture, but the simplified structure of the 

PDM appears adequate if soil moisture is only required for a single depth or averaged 

over the root-zone. It is important to note that a different conclusion might have been 
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reached if additional data were available to constrain variations in hydraulic properties 

with depth and other details in HYDRUS. 

While DYNIA is a valuable tool for assessing parameter uncertainty and model 

structural errors, it does not evaluate the impact of these issues on the model ' s predictions 

for unobserved conditions. For example, it is possible that a parameter is poorly 

constrained but that all plausible values of that parameter produce the same results for 

unobserved conditions. In such a case, the lack of identifiability may not matter. To 

qualitatively assess the impacts of parameter identifiability and model structural errors on 

unobserved conditions, an extension of DYNIA is proposed called Dynamic Sensitivity 

Analysis (DYNSA). The DYNSA procedure starts by generating 1000 parameter sets 

from a joint distribution within specified limits on the parameter values . Each parameter 

set is then used to simulate the observed soil moisture record. For small windows of 

time, the likelihood of a parameter set is calculated based on the MAE. Up to this point, 

the method is identical to DYNIA. However, rather than plotting the likelihood 

histogram for each parameter value in each window, the likelihood histogram of a 

sensitivity is plotted for each window. The sensitivity is calculated by perturbing an 

input variable (in this case, either precipitation or PET) by a fixed percentage at all times 

during the calibration period. Here, precipitation and PET are individually increased by 

10%. The model is then run for each parameter set using the perturbed input to obtain the 

resulting soil moisture values. The sensitivity is calculated as: 

lJ' = M[ s] I E[ s] 
P L'iE[ P] I E[ P] 

(22) 

or 
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depending on whether the precipitation or PET is perturbed. In these equations, 

M[s] / E[s] is the change in temporal average soil saturation relative to the temporal 

average in the calibration dataset. Similarly, t-.E[ P] I E[ P] is the relative change in 

temporal average precipitation, and M[EP]I E[EP] is the relative change in temporal 

average PET. If the absolute value of a sensitivity is greater than one, then the 

perturbation is augmented in the soil moisture. If the absolute value of the sensitivity is 

less then one, the perturbation is dampened in the soil moisture. Once the sensitivity is 

calculated for each parameter set, the likelihood hi stogram of the sensitivities are plotted 

for each window. In this analysis, the sensitivity is used as a measure of the change in 

model behavior as one moves to unobserved conditions. An infinite number of 

unobserved cases can occur and the perturbation represents only one of the possible 

unobserved cases. Yet, the peakedness of the sensitivity histograms gives qualitative 

insights about how well constrained the sensitivity is with respect to the parameter 

uncertainty. In addition, time variations in the sensitivity histograms indicate how much 

the structural errors impact the predictions for this unobserved case. 

Figures 4.4a and 4.4b show the DYNSA results for the PDM at a 5 cm depth for 

station Fl 03 when precipitation and PET are perturbed, respectively. For the sensitivity 

to precipitation (Figure 4.4a), the shading indicates that the histograms have a clear peak 

value. During the wet periods, two distinct bands of preferred values are observed at 

about 0.12 and 0.22 . During the dry periods, one band is preferred between about 0.10 

and 0.20, with more preference towards higher values in this range. No consistent band 
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of preferred sensitivity persists through all of the time windows. Recall that the 

sensitivity that is being plotted is the average sensitivity calculated from the entire record, 

not the sensitivity within the individual windows of time. Thus, the observed variations 

in the sensitivity do not represent actual temporal variations in the response of soil 

moisture to precipitation but rather changes in the long-term sensitivity that arise due to 

variations in the most likely parameter values. It is interesting to note, however, that the 

90% limits remain relatively stable with time. A similar behavior is observed in the 

sensitivity to PET shown in Figure 4.4b. In this case, the preferred sensitivities range 

from about -0 .2 to -0.45 . Higher sensitivities are observed for drier parts of the record. 

Overall , these results suggest that parameter uncertainty and structural errors can result in 

a relatively wide range in sensitivities. Consequently, these issues are expected to be 

important sources of error when applying the model to simulate unobserved conditions. 

Appendices F and G contain complete DYNSA results for the entire year for the PDM at 

the 5 cm depth and 25 cm depth, respectively. 
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Figure 4.4. DYNSA results for the local soil moisture simulated with the PDM for 
station Fl 03 at the 5 cm depth using a 4 month period. The gray shading shows the 
likelihood histogram of sensitivity obtained by increasing (a) precipitation and (b) PET 
by I 0%. The dashed black lines show the 90% confidence limits on the sensitivity, and 
the solid black lines show the observed soil moisture for reference. Note that the y-axis 
numbers refer to the sensitivity values, not the soil moisture values. 

4.2 Results for Spatial Average 

Attention is now focused on the use of the PDM to simulate the spatial mean soil 

moisture. The analysis in this section is the same as the previous section, except it 

considers the spatial mean rather than local soil moisture. The model will be evaluated 

by how well it can reproduce the observed spatial average soi l moisture through 

calibration, how identifiable and stable its parameters are through time, and how stable 

the sensitivities are to changes in precipitation and PET. It is important to note that the 

spatial average soi l moisture exhibits different behavior from soil moisture at individual 

stations. For example, Figure 4.5 plots the local soil moisture at two stations (F l 13 and 

F 110) against the spatial average. As the spatial average soil moisture becomes large, the 
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soil moisture at one of these stations becomes even larger, while the soil moisture at the 

other one remains low. This behavior suggests that even though only 15 stations are 

available in the dataset, the spatial average is determined from a relatively dynamic 

spatial pattern of soil moisture . Also visible in Figure 4.5 are some of the surprisingly 

high soil moisture values that occasionally occur in the dataset, but these points are 

excluded when calculating the spatial average. 
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Figure 4.5. Local soil moisture at stations (a) Fl 13 and (b) F l 10 plotted against the 
spatial average soil moisture for the 5 cm depth. 
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To calibrate the model, 1000 parameter sets were generated from a uniform 

sampling of the parameter space. The model requires one additional parameter CJ' to 

simulate the spatial mean soil moisture because the spatial distribution of soil saturation 

now plays a role. The allowable range for this parameter was selected to be 0.04 to 0.15 

based on the field data shown in Figure 3 .2. Similar to the analysis of local soil moisture, 

the model for the spatial mean is calibrated by choosing the parameter set with the lowest 

RMSE. Figure 4.6 shows the spatial mean soil moisture at the 5 cm and 25 cm depths 

from the calibrated model. At the 5 cm depth, the recession of the mean soil moisture 

after events appears to be a bit more nonlinear in the model than in the observations. For 

both depths, the RMSE of the model results is similar to that obtained in the analysis of 

local soil moisture. 
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Figure 4.6. Comparison of the observed spatial average soil moisture and the spatial 
mean soil moisture simulated by the PDM using the parameter set with the lowest RMSE 
at the (a) 5 cm and (b) 25 cm depths. 

So far, the model has been separately applied and calibrated to simulate either the 

local or spatial mean soil moisture. However, when the model is applied to the spatial 

mean, it implicitly simulates local soil moisture as well . The model structure implicitly 

assumes that a single parameter set can apply to both scales. The only distinction 

between the two scales is that a distribution of soi l saturation is included when simulating 

the spatial mean. To test this assumption, the RMSE obtained at each station is examined 

when using the top 1 % of the parameter sets from the calibration against the spatial 

average soil moisture. This range of RMSE should be similar to the range obtained using 

a local calibration if the model approach is correct. Figure 4.7 shows this comparison. 
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At most stations, the parameters from the spatial mean are less efficient at simulating the 

local soil moisture than the parameters determined from the local calibration at each 

station. For example, the RMSE is typically 2 to 3 times larger when using the 

parameters from the spatial mean at the 5 cm depth. This result is not surprising because 

spatial variability in a region arises from much more than simply variations in soil 

saturation as assumed by the model. Thus, the model can be successfully calibrated to 

simulate either the local or the spatial mean soil moisture, but a single calibration does 

not reliably simulate both simultaneously. 
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Figure 4. 7. A comparison of the ranges of RMSE for local soil moisture when simulated 
with the top 1 % of parameter sets from calibrations to the spatial average and to each 
local gage. The ranges labeled "Local" were calculated by calibrating the local soil 
moisture in the PDM to reproduce the observed local soil moisture at each station. The 
ranges labeled "Spatial" were calculated by calibrating the spatial mean soil moisture to 
the observed spatial average and then applying these parameter sets to simulate the local 
soil moisture at individual gages. Parts (a) and (b) show the same analysis at the 5 cm and 
25 cm depths, respectively. 

The DYNIA procedure 1s also used to evaluate parameter identifiability and 

model structural errors when simulating the spatial mean. Figure 4.8 shows the results 

for all six parameters for the first 4 months of the calibration record at the 5 cm depth. 

The entire year was evaluated but only the first 4 months are shown for clarity. In Figure 

4.8a, the porosity ¢ is relatively identifiable at all times but more identifiable during the 

wet periods. Three stable bands of likely values are visible during the drier calibration 

period, but only the bands at about 0.45 and 0.55 are observed at all time periods. This 
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result is similar to the one observed for the local soil moisture in Figure 4.3a. The 

saturated hydraulic conductivity K1, in Figure 4.8b is only weakly identifiable but shows 

several distinct bands of likely values. The lowest band (between 0 and 0.5) appears in 

all conditions, while the bands at higher values tend to appear and disappear during wet 

and dry conditions. Figure 4.8c shows the results for the infiltrability parameter a . The 

confidence limits on this parameter span nearly the entire allowable range, which 

suggests this parameter is mostly unidentifiable. A weak preference for low values is 

observed during the recession parts of the record. a influences infiltration rates, so it 

makes sense that this parameter is more identifiable from the recessions immediately 

after precipitation events than during prolonged periods without precipitation. The 

evapotranspiration exponent fJ in Figure 4.8d is more identifiable during drier 

conditions. This parameter tends to decrease from 2.5 to 1.8 as the soil dries, which 

suggests some structural errors in the model. The groundwater recharge exponent y in 

Figure 4.8e is more identifiable during wetter periods when its most likely values are 

between about 20 and 25 . It is interesting to note that the models for evapotranspiration 

and recharge are very similar to each other in their mathematical form. The main 

difference is that the evapotranspiration depends on the observed PET, whereas the 

groundwater recharge relies on a constant parameter (saturated hydraulic conductivity) 

instead. Loosely speaking, the model can only distinguish these two fluxes by 

identifying a correlation between PET and changes in spatial mean soil moisture. The 

low identifiability in Figures 4.8d and 4.8e suggests that the relationship between these 

two variables is weak. Figure 4.8f evaluates the standard deviation O'. This parameter is 

identifiable during the entire calibration period, particularly during dry periods. The most 
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likely values are around 0.07. Notice that the actual standard deviation data from Figure 

3 .2 indicates a similar value for the standard deviation during dry periods. It is 

interesting that the model for the spatial mean identifies this parameter value because it is 

given no information about the spatial variation in soil moisture aside from the gamma 

distribution. 
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Figure 4.8 . DYNIA results for the parameters of the PDM applied to the spatial mean 
soil moisture at the 5 cm depth. The individual plots consider the fo llowing parameters : 
(a) porosity, (b) saturated hydraulic conductivity, (c) infiltrability, (d) evapotranspiration 
exponent, (e) groundwater recharge exponent, and (f) standard deviation of soil 
saturation. The solid black curves show the spatial average soil moisture for reference, 
and the dashed black curves show the 90% limits on the parameter values. Only the first 
4 months of the analysis are shown for clarity. 

Similar results are obtained when applying the DYNIA procedure to the spatial 

mean soil moisture at the 25 cm depth. a is the only parameter indicating significant 
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differences between the two depths. At 25 cm, a is not identifiable at all. This result 

makes intuitive sense because it suggests that the soil moisture at a greater depth is less 

indicative of the infiltration characteristics at the ground surface. Appendices H and I 

contain DYNIA results for the entire year for the PDM applied spatially at the 5 cm and 

25 cm depths, respectively. 

The DYNSA analysis was also performed using the spatial mean soil moisture to 

assess the impact of parameter unce11ainty and model structural errors on model 

predictions for unobserved conditions. In this analysis, the precipitation or PET is 

perturbed by 10% and the resulting sensitivities of the spatial mean soil moisture are 

calculated for each parameter set. Figure 4.9 shows the histograms of the sensitivities to 

precipitation and PET from the DYNSA analysis. The histograms of both sensitivities 

are relatively stable through time, although larger values are considered more likely 

during drier periods. It is interesting to compare the sensitivities in Figure 4.9 to the 

sensitivities of local soi l moisture in Figure 4.4. In general, the changes in the most 

likely sensitivities are more gradual for the spatial mean than the local soil moisture. 

Also, the most likely sensitivities to precipitation tend to increase during dry periods for 

the local and spatial mean soil moisture. For the local soil moisture, the most likely 

sensitivities to precipitation are usually between 0.10 and 0.20. For the spatial mean soil 

moisture, the most likely sensitivities are usually between 0.10 and 0.15. The lower 

sensitivity for the spatial mean indicates that the perturbation is softened by including a 

range of soil saturations through the probability distribution. For both the local and 

spatial mean, the most likely sensitivities to PET are between about -0.25 and -0.45 , with 

a preference toward the more negative sensitivities during the drier periods. 
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Figure 4.9. DYNSA results for the spatial mean soil moisture simulated with the PDM 
at a 5 cm depth using a 4 month period. The gray shading shows the histogram of 
sensitivity obtained by changing (a) precipitation and (b) PET by 10%. The dashed black 
lines show the 90% limits on the sensitivity, and the solid black lines show the observed 
spatial average soil moisture for reference. Note that the y-axis numbers refer to the 
sensitivity values not the soil moisture values. 

Recall that the sensitivity plotted in the DYNSA analysis is the sensitivity for the 

entire record, not the sensitivities within the individual windows of time. Thus, the 

observed variations in the sensitivity represent changes in the long-term sensitivity that 

arise due to variations in the most likely parameter values. For comparison, Figure 4.10 

plots the sensitivity to PET that is calculated within each window. In particular, it shows: 

(24) 

where !Ss(i) l s(i) is the relative change in the spatial mean soil moisture for each time 

step i that results from the specified relative change in PET M ,, (i) I E,, (i) , which is 0.10. 

For each window, this sensitivity is calculated for the 10% of the parameter sets that 
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produce the lowest RMSE for the entire calibration period of spatial average soil 

moisture. Histograms of sensitivity are then calculated for each window and plotted in a 

similar format as the DYNIA and DYNSA results. 
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Figure 4.10. Sensitivity of simulated spatial mean soil saturation at each point in time to 
changes in PET. The gray shading is the histogram of sensitivities at each time for the 
top 10% of parameter sets in terms of the RMSE at that point in time. 

Figure 4.10 shows the results of this analysis, which are very different from 

Figure 4.9. Because the same parameters are used at all times in Figure 4.10, any 

temporal variations are temporal variations in the sensitivity of the spatial mean soil 

moisture itself. In the periods immediately after precipitation events, the spatial mean 

soil moisture is very insensitive to changes in PET because the soil moisture is controlled 

by the infiltration process. After these periods, the sensitivity of the spatial mean soil 

moisture increases to a range of values (roughly -0.3 to -0.6) that remains relatively 

constant through time. The sensitivity plotted in Figure 4.9 is in the lower part of this 

range because it is essentially a temporal average of the sensitivities shown here. The 

spread of sensitivities observed in Figure 4.10 is also an indication of the uncertainty that 

results from the parameter identifiability. 

46 



5 Conclusions 

The main conclusions of this analysis are as follows : 

1. The descriptions that the PDM uses to describe the hydrologic fluxes at the local scale 

can be calibrated to reproduce local soil moisture with accuracy that would be 

adequate for many applications. Even though the model relies on only 5 parameters, 

the identifiability of those parameters is limited. In some cases such as porosity, the 

most likely parameter values changed depending on the portion of the calibration data 

that was considered. The most likely explanation of this behavior is that the simple 

mathematical structure of the model has some deficiencies. It is also possible that the 

instrument used to observe soil moisture is not correctly installed or ideally 

calibrated. 

2. A simple application of HYDRUS ID was also calibrated to simulate local soil 

moisture dynamics. This model has the advantage of including vertical variations in 

soil moisture that result from simulating Richard ' s equation and distributed root water 

uptake. However, the model also requires more parameters (8). After calibration, 

HYDRUS 1 D reproduces the local soil moisture observations with similar accuracy 

as the PDM. These results support the point made in various other papers, which is 

that complex models must be supported by additional data in order to produce 

improvements in performance over simple models. HYDRUS 1 D also exhibits 

relatively low parameter identifiability and temporal variations in the most likely 

parameter values in some cases (n). These variations may result from errors in the 
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mathematical structure of the model, variations of the hydraulic properties with depth, 

or data collection problems. 

3. The PDM can also reproduce the spatial average soil moisture after calibration, but it 

cannot simultaneously simulate both the local and spatial mean soil moisture using 

the same parameter sets. This result suggests that the use of a probability distribution 

of soil saturation to treat spatial variations within the watershed has limitations. 

Many of the parameters are also weakly identifiable when simulating the spatial mean 

(e.g., a), and some exhibit changes in the preferred values through time (e.g. , JJ ). 

Interestingly, the most stable and identifiable parameter is the standard deviation of 

soil saturation CJ' , which actually varies with time in the watershed based an analysis 

of the spatial variations of soil moisture between stations. 

4. A new method, Dynamic Sensitivity Analysis (DYNSA), was developed to assess the 

impact of parameter identifiability and model structural errors on predictions for 

unobserved conditions. This method calculates the likelihood distribution of the 

temporal average sensitivities to changes in precipitation and PET in a framework 

similar to DYNIA. When applied to either local or spatial mean soil moisture, the 

method suggests that both parameter uncertainty and structural errors contribute to 

uncertainty for unobserved conditions. 
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Appendix B 

DYNIA results fo r the PDM applied locally at F 103 at 25 cm. 
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Figure B.2. Kh parameter DYNIA results for September 2005 through August 2006 for 
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Appendix C 

DYNIA results fo r the PDM applied at station F l 13 for the 5 cm depth 
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Figure C. 1. DYNIA results fo r porosity, saturated hydraulic conductivity, and 
infiltrability parameters for September 2005 through December 2005 at station F l 13. 
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Appendix D 

DYNIA results for HYDRUS lD applied at F103 for the 5 cm depth 
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Figure D.1. 0, parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS lD at station F103 at 5 cm. 
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Figure D.2. ¢ parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station F103 at 5 cm. 
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Figure D.3. v parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1 D at station F 103 at 5 cm. 
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Figure D.4. n parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1 D at station F 103 at 5 cm. 

68 



2.0 

1.5 

Kh 1.0 

0.5 

9/1 9/21 10/12 11/2 11/23 12/14 
Date (2005) 

1/1 1/20 2/10 3/3 3/24 4/14 
Date (2006) 

5/1 5/21 6/11 7/2 7/23 8/13 
Date (2006) 

Figure D.5. K" parameter DYNIA results for September 2005 through August 2006 for 
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Figure D.6. h50 parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS lD at station F103 at 5 cm. 

70 



p 

p 

p 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

3.0 

2.5 

2.0 

1.5 

9/1 

1.0 

0.5 ,. 

1/1 

9/21 10/12 11/2 11/23 12/14 
Date (2005) 

1/20 2/10 3/3 3/24 4/14 
Date (2006) 

3.0 r.:-,=,,~ -::-.,.::-,,c:-:., ,-, =~~· =•~=~=-,-= .....,,....,.=, =--,~ =~~=cw,,-, .,.....,,.-, -=-----=,•,=,~=,-:,:--~..,,.....,,., 
11 - 1t,i' ~- -- .. ,., .. /'"r ,i. J I!.". t-·--"\~ "->w•;~-- --- ---····--·(~-JR . , 

2.5 

2.0 

1.5 

1.0 

0.5 

5/1 5/21 6/11 7/2 7/23 8/13 
Date (2006) 

Figure D.7 . p parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS ID at station F103 at 5 cm. 

71 



10 
9 
8 
7 

a 6 
5 
4 
3 

9/1 9/21 10/12 11/2 11/23 12/14 
Date (2005) 

10 
9 
8 
7 

a 6 
5 
4 
3 

1 /1 1/20 2/10 3/3 3/24 4/14 
Date (2006) 

10 
9 
8 
7 

a 6 

4 
3 

5/1 5/21 6/11 7/2 7/23 8/13 
Date (2006) 

Figure D.8. a parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS lD at station F103 at 5 cm. 
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Appendix E 

DYNIA results for HYDRUS lD applied at F103 for the 25 cm depth 
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Figure E. 1. 0, parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station F103 at 25 cm. 
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Figure E.2. ¢ parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station Fl03 at 25 cm. 
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Figure E.3. v parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station F103 at 25 cm. 
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Figure E.4. n parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station F103 at 25 cm. 
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Figure E.5. Kh parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1 D at station F 103 at 25 cm. 

77 



-25 

-20 

hso -15 

-10 

-5 

9/1 9/21 10/12 11/2 11/23 12/14 
Date (2005) 

-30 

-25 

-20 

hso -15 

-10 

-5 

1 /1 1/20 2/10 3/3 3/24 4/14 
Date (2006) 

-30 

-25 

-20 

hso -15 

-10 

-5 

5/1 5/21 6/11 7/2 7/23 8/13 
Date (2006) 

Figure E.6. h50 parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1D at station F103 at 25 cm. 
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Figure E.7. p parameter DYNIA results for September 2005 through August 2006 for 
HYDRUS 1 D at station F 103 at 25 cm. 
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Figure E.8. a parameter DYNIA results fo r September 2005 through August 2006 for 
HYDRUS lD at station F l03 at 25 cm. 
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Appendix F 

SIA results for the PDM applied locally at station F 103 at 5 cm 
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Figure F.1. SIA results from September 2005 through August 2006 for the PDM applied 
locally by increasing precipitation by 10% at station F 103 at 5 cm depth. 
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Figure F.2. SIA results from September 2005 tlu·ough August 2006 for the PDM applied 
locally by increasing E P by 10% at station F 103 at 5 cm depth. 
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Appendix G 

SIA results for the PDM applied locally at station Fl 03 at 25 cm 
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Figure G. l. SIA results from September 2005 through August 2006 for the PDM applied 
locally by increasing precipitation by 10% at station Fl 03 at 25 cm depth. 
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Figure G.2. SIA results from September 2005 through August 2006 for the PDM applied 
locally by increasing E P by 10% at station F 103 at 25 cm depth. 
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Appendix H 

DYNIA results fo r the PDM applied to simulate the spatial average at 5 cm. 
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Figure H.1 . ¢ parameter DYNIA results fo r September 2005 through August 2006 for 
the PDM applied spatially fo r the 5cm depth. 
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Figure H.2 . K,, parameter DYNIA results fo r September 2005 through August 2006 for 
the PDM applied spatially for the 5cm depth. 
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Figure H.3 . a parameter DYNIA results for September 2005 through August 2006 for 
the PDM applied spatially for the 5cm depth. 
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Figure H.4. /3 parameter DYNIA results for September 2005 through August 2006 for 
the PDM applied spatially for the 5cm depth. 
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Figure H.5. r parameter DYNIA results for September 2005 through August 2006 for 
the PDM applied spatially for the 5cm depth. 
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Figure H.6. CY parameter DYNIA results for September 2005 through August 2006 for 
the PDM applied spatially for the 5cm depth. 
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Appendix I 

DYNIA results fo r the PDM applied to simulate the spatial average at 25 cm. 

0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 _.· ·'··•1'·1 ! 11. \ ~./ ·• • .,i · - , - _...• .. .. _ .. ·----
0.25 

9/1 9/21 1 0/ 12 11 /2 11 /23 12/14 
Date (2005) 

0. 60 r,;---; __ ,.,.. __ ..,,,_=_ ,=-~=--=~-=--=--=-_= __ = __ = __ =_ ,= __ = __ =_ ;;-=;;;=----===;;;;;_=~ _= __ =_=_ .. = .. ,-,.;_,,;,,;--'", 
0.55 
0.50 

rp 0.45 
0.40 
0.35 
0.30 
0. 25 "-'-----''-----'---'---'---'-'----'----'-----'---'----'----..___ 

0.60 
0.55 
0.50 

rp 0.45 
0.40 
0.35 
0.30 
0.25 

1/1 

5/1 

1/20 

5/21 

2/10 3/3 3/24 4/14 
Date (2006) 

6/11 7/2 7/23 8/13 
Date (2006) 

Figure I.1. ¢ parameter DYNIA results fo r September 2005 through August 2006 for the 
PDM applied spatially fo r the 25cm depth. 
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Figure 1.2. K,, parameter DYNIA results fo r September 2005 through August 2006 for 
the PDM applied spatially for the 25cm depth. 
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Figure I.3. a parameter DYNIA results for September 2005 through August 2006 for the 
PDM applied spatially for the 25cm depth. 
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Figure 1.4. /3 parameter DYNIA results for September 2005 through August 2006 for the 
PDM applied spatially for the 25cm depth. 
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Figure 1.5 . y parameter DYNIA results for September 2005 through August 2006 for the 
PDM applied spatially for the 25cm depth. 
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Figure I.6. a parameter DYNIA results fo r September 2005 through August 2006 for the 
PDM applied spatially for the 25cm depth. 
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Appendix J 

SIA results fo r the PDM applied to simulate spatial average soil moisture at 5 cm depth. 

yp 

Yp 

yp 

0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 

:··~t·/~ 
: I :~ : 

' 
' ' 

0. 00 ...___.,____._____. _ ___., _ ___._ _ __._ _ _,_ _ _.__ _ __.__ _ _.___.,____.. 
9/1 9/2 1 10/12 11/2 11 /23 12/14 

Date (2005) 
0.40 
0.35 

;, (- \ -, ,. ' i.._1I: (~1: ,, ,, 
0.30 

,, ' ,r- , 
,, ,"~ ' ' ' •- , 

0.25 ;', '' ' 

0.20 
0.15 
0.10 
0.05 ····------•." ·----• .. -
0.00 

1/1 1/20 2/10 3/3 3/24 4/14 
Date (2006) 

0.40 __ J1•,_ . '-••• ~ • ' .-v i • 

0.35 
\ ·-:__;~ ,''',.,' '\-' -_, •• r 
• ,. ! 

" 0.30 1 

0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

5/1 5/21 6/11 7/2 7/23 8/13 
Date (2006) 

Figure J.1 . SIA results from September 2005 through August 2006 for the PDM applied 
spatially by increasing precipitation by 10% at station Fl 03 at 5 cm depth . 
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Figure J.2. SIA results from September 2005 through August 2006 for the PDM applied 
spatially by increasing E P by 10% at station F 103 at 5 cm depth. 
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Appendix K 

SIA results for the PDM applied to simulate spatial average soil moisture at 25 cm depth. 
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Figure K.1. SIA results from September 2005 through August 2006 for the PDM applied 
spatially by increasing precipitation by 10% at station Fl 03 at 25 cm depth. 
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Figure K.2. SIA resu lts from September 2005 through August 2006 for the PDM applied 
spatially by increasing potential evapotranspiration by 10% at station F I 03 at 25 cm 
depth . 
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