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ABSTRACT 

 
 

DIFFERENTIATING ASSOCIATIONS BETWEEN TASKS AND OUTCOMES IN THE 

HUMAN BRAIN 

 
 

In order to successfully achieve their goals in a noisy and changing environment, 

organisms must continually learn both Pavlovian (stimulus-outcome or S-O) and instrumental 

(action-outcome or A-O) associations. A wide range of brain regions are implicated in 

reinforcement learning and decision-making, including the basal ganglia, medial prefrontal 

cortex, the dorsolateral prefrontal cortex (dlPFC), and the anterior cingulate cortex (ACC). One 

possible explanation of disparate findings is that activation depends on the nature of the action or 

response under consideration. To investigate representations of task-reward associations, 

subjects switched between an emotional judgement task and a spatial judgement task, combined 

with either a high or low level of reward. A general linear model (GLM) compared activation for 

different combinations of task and reward. A cluster in the mid-prefrontal cortex was more active 

for right versus left response, whereas a cluster in the midbrain near the brainstem was more 

active for left responses. Performance of the spatial task was associated with activation in the 

ventral occipital cortex and ventral prefrontal cortex. Clusters in the posterior parietal cortex and 

lateral prefrontal cortex were more active during the emotion task. Receiving a large reward was 

accompanied by activation in primary somatosensory cortex and auditory cortex, while receiving 

a low reward appeared to recruit the anterior cingulate cortex. Comparing trials which yielded a 

reward versus trials with no reward revealed activation in the dorsal prefrontal cortex. A 2-way 

ANOVA examining independent contributions of response and reward found an effect of 
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response in cuneus and pre-cuneus, an effect of reward in anterior insula and sensorimotor 

cortex, and an interaction in the post-central gyrus. A 2-way ANOVA of task and reward found a 

main effect of task in several clusters in the medial occipital cortex, a main effect of reward in 

somatosensory cortex and anterior insula, and an interaction in the ventral occipital and anterior 

prefrontal cortex. 
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INTRODUCTION 

 
 

The brain is uniquely adapted to learn associations between contexts, behavioral 

strategies, and reward distributions. Learning these contingencies allows organisms to flexibly 

adapt their behavior depending upon the environment they find themselves in. Furthermore, 

engaging in goal-directed behavior requires cognitive control – the ability to adjust behavior in 

response to changing priorities. Prior research, both in animals and humans, has helped to 

elucidate the regions of the brain which play a role in goal-directed behavior and cognitive 

control. One crucial question is how stimuli, tasks, and outcomes are individually represented in 

the brain, as well as stimulus-outcome (S-O) and action-outcome (A-O) associations. These 

representations are crucial for learning and optimizing behavior. 

Research from multiple fields within neuroscience has begun to shed light on the nature 

of both Pavlovian (S-O) and instrumental (A-O) learning. Single-unit electrophysiological 

recording in rats and monkeys strongly implicates the dorsal anterior cingulate cortex (dACC) in 

the learning of A-O associations, specifically (Amiez et al., 2006; Kennerley et al., 2011; 

Matsumoto et al., 2007; Seo & Lee, 2007). However, research utilizing magnetic resonance 

imaging (MRI) in humans has yielded more nuanced results. A-O associations have been 

detected in several areas in humans, including ventromedial prefrontal cortex (vmPFC), 

dorsolateral prefrontal cortex (dlPFC), caudate, and posterior parietal cortex (PPC) (Fitzgerald et 

al., 2012; Mcnamee et al., 2015; Wisniewski et al., 2015).   

One potential reason for this confusion stems from the nature of the response being 

examined. While the response in animals is typically a simple motor behavior, fMRI studies have 

utilized anything from a right or left button press, to two entirely different tasks. This raises an 
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intriguing question as to how A-O associations might be differently encoded based on how one 

defines the response.  

In order to better understand the encoding of relationships between tasks and outcomes, 

this experiment will examine where in the brain there exists differences in activation for differing 

combinations of tasks and rewards. Based on prior research, I expect the posterior parietal cortex 

to respond to differences in task-outcome associations.  

Computational Models of Instrumental Learning 

 The simplest model to describe operant conditioning, or reinforcement learning, is the 

temporal difference model (O’Doherty et al., 2003). In this framework the expected value of a 

specific stimulus or state is calculated at each time point t. The reward prediction error, then, is 

the difference between the reward received and the learned value. 

 This model can then be expanded to incorporate action. In instrumental conditioning, an 

organism must learn not only stimulus-outcome associations, but action-outcome associations. 

Thus, reinforcement learning (RL) models learn expected values for each state (S) and action (A) 

combination (Sutton & Barto, 1998). The “agent” moves from state to state by performing 

actions. The aim of the model is to maximize reward. It achieves this by maximizing the 

summed, weighted rewards of the current state and all future states. 

Perhaps the most common “flavor” of RL is known as Q-learning models. In this type of 

model, the agent learns a quantity Q, reflective of the quality, or associated value, of a given 

state-action pair, Q (s, a). This type of algorithm is model-free, meaning it is capable of learning 

through trial and error rather than from a mental model (e.g., a rule or hypothesis). It will 

generate optimal behavior for any finite Markov decision process (FDMP), and performs well 

even in the face of noisy transitions and rewards (Jakkola et al., 1994). 
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 Strong similarities exist between RL algorithms and neuronal activity during learning. In 

particular, dopaminergic neurons projecting from ventral tegmental area (VTA) release 

dopamine into the striatum in a manner that correlates strongly with reward prediction error 

(RPE), or the difference between an expected outcome and an actual outcome (Cohen et al., 

2012; Fields et al., 2007). One difficulty with standard RL models, however, is their slowness. 

That is, they do not lead to efficient reward-maximizing behavior in sufficiently few trials to 

mimic animal behavior.  

One solution to this has been hierarchical RL models. Haruno and Kawato (2006) 

propose that reward prediction errors move from loops connecting prefrontal cortex (PFC) and 

caudate, part of a mid-brain structure known as the basal ganglia, progressively to loops in the 

putamen, part of the basal ganglia adjacent to caudate, and motor cortex. Activity in these loops 

begins as coarse representations of reward prediction errors, but the representations become 

progressively more refined. The authors suggest that this gradual transfer of information from 

executive prefrontal regions to motor cortex underlies the transition from goal-directed to 

habitual responding.  

 An altogether different way of describing decision making is to model choice as an 

evolving parameter of time. Whereas RL models calculate static choices that change as a 

function of state-action values, drift diffusion models calculate the evidence for a certain choice 

as it moves towards a critical decision threshold a at rate v, at which point the action is 

performed (Milosavljevic et al., 2010). Greater accuracy and speed both increase v, which is 

typically proportional to the relative values of possible choices. The decision threshold a is in 

turn modulated by conflict, as determined by the relative choice values (conflict is high when 

choice values are similar). Drift diffusion models have been demonstrated to accurately capture 
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such phenomena as choice proportion as well as complete response time distributions (Frank et 

al., 2015). 

Neural Substrates of R-O learning 

Basal Ganglia 

 Researchers learned early on that the structure of the basal ganglia was well suited for 

reinforcement learning. Closed corticostriatal loops span almost the entirety of the cortex, from 

early visual areas to prefrontal cortex, and are therefore well-suited for the integration of 

information across multiple modalities (Yahya et al., 2020). Furthermore, the administration of 

chemicals which induce dopamine release is known to be highly rewarding in rats (Phillips et al., 

2003). Reinforcement learning occurs via the release of dopamine from dopaminergic neurons in 

midbrain structures including the substantia nigra and ventral tegmental area (Fields et al., 2007; 

Morales & Margolis, 2017). 

 The striatum lies within the basal ganglia, and is further divided into the dorsal striatum, 

which contains the caudate and putamen, and ventral striatum, which contains the nucleus 

accumbens. The caudate is strongly associated with goal-directed behavior. Experiments using 

gambling tasks and conditional reinforcement show the caudate to be especially active in early 

learning (Delgado et al., 2005). When models including action are fit to fMRI data, activation in 

the dorsal striatum disappears, supporting the hypothesis that the dorsal striatum is especially 

involved in learning which movements lead to a high reward (McClure et al., 2003).  

The putamen is implicated in habitual responding. When fit to a reinforcement learning 

model, activity in the putamen correlates closely with stimulus-action dependent reinforcement 

prediction, a sensible finding given the corticostriatal loops between putamen and 

motor/premotor areas (Haruno & Kawato, 2006).  
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The ventral striatum, on the other hand, is particularly sensitive to reward. Activity in the 

ventral striatum and subsequent DA release in the forebrain correlates tightly with reward 

prediction error (Hollerman & Schultz, 1998; O’Doherty et al., 2003; Schultz et al., 1992).  

Medial PFC 

 The medial portion of the prefrontal cortex, particularly the orbitofrontal prefrontal cortex 

(OFC) and the ventromedial PFC (vmPFC), receives dense dopaminergic projections from the 

ventral striatum (Groenewegen & Trimble, 2007). Thus, it is not surprising that this region of 

cortex is highly responsive to reward (Haruno & Kawato, 2006; O’Doherty el al., 2003). Medial 

PFC is also sensitive to monetary loss (Tom et al., 2007), and the reward signal is attenuated by 

factors such as delay (Kable & Glimcher, 2007). The vmPFC has been shown to encode many 

reward-related variables, including reward anticipation (Schoenbaum, Chiba, & Gallagher, 

1998), magnitude of reward (Kim, Shimojo, & O’Doherty, 2006; O’Doherty et al., 2001), and 

simple stimulus-reward associations (Tremblay & Schultz, 1999). The vmPFC/OFC is also 

responsive to aversive as well as reinforcing signals (Tom et al., 2007). However, when value 

and salience are dissociated, the vmPFC and OFC have been demonstrated to encode value 

(Kahnt et al., 2014). 

Value representations in vmPFC/OFC seem to be action-independent. For example, when 

subjects viewed faces, activity in the vmPFC correlated with the subject’s preferences, but was 

unrelated to the arbitrary judgements subjects were required to make (Lebreton et al., 2009). This 

does not imply, however, that the vmPFC is not a necessary region for value-guided decision 

making. Lesions to the analogous region in monkeys impair decision making and this 

impairment increases as the choice values become more similar (Noonan et al., 2010). 
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The function of the vmPFC appears to be more complex than pure subjective valuation. 

A particularly interesting study by Boorman et al. (2009) demonstrated that the vmPFC 

represents the difference in value of a chosen option minus an unchosen option, suggesting the 

ability to compare and contrast alternative choices. The vmPFC has also been shown to represent 

abstract task variables, such as the probability of choice A in a given trial in a probabilistic 

learning task (Hampton et al., 2006). Further analysis of this task demonstrated that a structured 

RL model fit these data better than a standard RL model, suggesting the intriguing possibility 

that the vmPFC is not simply learning action-outcome associations independent of one another, 

but is rather learning more complex information about the overall task structure. These studies 

suggest a more nuanced role for the vmPFC than a simple “reward detector”. 

Central Executive Network 

The lateral PFC, particularly dorsolateral prefrontal cortex (dlPFC) and posterior parietal 

cortex (PPC), comprise the central executive network (CEN), which is reliably elicited by task 

performance and top-down control (Petrides, 2000). Activation of this network increases as a 

function of increased cognitive load (Rypma & D’Esposito, 1999). Working memory and task-

switching ability are severely impaired when the frontoparietal network is lesioned (Goldman et 

al., 1971; Dias et al., 1996). 

Lateral PFC is not as directly involved in reward representations as vmPFC and OFC. 

However, RPE-related activity has been demonstrated occasionally in areas such as the inferior 

frontal sulcus and dorsal premotor cortex (Badre & Frank, 2011). When compared to OFC, the 

lateral PFC preferentially encodes action-value representations, a finding which mirrors both 

findings in the putamen and the underlying neuroanatomy (Wallis & Miller, 2003). In contrast to 

regions like the vmPFC, which are more active when the difference in value between choices is 
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large, activity in parietal regions is actually strongest when two choices are similar and therefore 

difficulty is high (Basten et al., 2010). 

The dlPFC is involved in working memory and manipulating mental models. When 

comparing a simple learning task which is deterministic to the same task using probabilistic 

reward, the dlPFC and ACC are recruited preferentially in the probabilistic condition (Yoshida & 

Ishii, 2005). In working memory tasks, activity in frontoparietal regions increases as interference 

demands increase (Bomyea et al., 2017). 

Anterior Cingulate Cortex 

 The dorsal anterior cingulate cortex (dACC) is active for a wide variety of cognitive 

domains, including emotion, pain, movement, and a range of cognitive processes relevant to 

decision-making (Bush et al., 2000). Because the dACC is implicated in so many different 

processes, a “unified theory” of dACC function has proven elusive. Indeed, the dACC receives 

projections to and from a large portion of cortex, including ventromedial PFC, ventrolateral PFC, 

premotor and motor cortex, dorsolateral PFC, and parietal cortex, midbrain structures such as the 

amygdala, thalamus and basal ganglia, and even the spine (Paus, 2001). Lesions of this piece of 

cortex lead, somewhat puzzlingly, to both apathy and impulsive behavior, suggesting that the 

dACC plays an important role in motivated behavior (Njomboro et al., 2012). Electrical 

stimulation induces the sensation of determination, or a will to persevere (Parvizi et al., 2013).  

Early research focused on the role of the dACC in processing pain and unpleasant 

emotion. As more sophisticated techniques became available, the focus shifted to error 

processing. As research expanded, so too did the theories, to encompass the broader category of 

processes known as conflict monitoring. Finally, modern theories often stress a more 
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neuroeconomic view, which centers on the dACC’s role in calculating value in order to guide 

action. 

Theories of ACC function 

 Early theories centered on the role of the anterior cingulate cortex in error commissions. 

Indeed, the dACC is strongly responsive to errors (Braver, 2001), and is thought to be 

responsible for the error-related negativity (ERN) in EEG research (Hohnsbein et al., 1990; 

Gehring et al., 1993). Single-unit neuronal recording confirms a clear correlation with the ERN 

(Gemba et al., 1986; Ito et al., 2003). However, it was quickly realized that activation of the 

dACC can be elicited without errors (Aarts, Roelofs, & van Turennout, 2008; Botvinick et al., 

2001). For example, activity in dACC is higher in environments where error is likely but not 

actually committed (Brown, 2005). Modern neuroscientists generally agree that errors are part of 

a broader range of stimuli to which the dACC is sensitive, including conflict, reward, and in 

general, a range of variables relevant to decision making (Amiez et al., 2005; Heilbronner & 

Hayden, 2016).  

` Subsequent theories of dACC function focused on its role as a conflict monitor 

(Botvinick et al., 1999; Carter, 1998; Kerns et al., 2004). One of the earliest findings regarding 

the dACC was differential recruitment in incongruent trials in a Stroop task, suggesting its role in 

either detecting or resolving conflict between competing responses (Pardo et al., 1990; Swich & 

Jovanovic, 2002). The dACC has also been found to correlate with interference in a complex 

working memory task (Bomyea et al., 2017). It is a somewhat vexing problem that although 

conflict signals exist in multiple fMRI and EEG studies, single-unit recordings have essentially 

failed to find them (Nakamura et al., 2005; Amiez et al., 2006; Cai & Padoa-Schioppa, 2012). 
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One potential explanation for this might be that conflict signals are encoded not by single 

neurons, but rather by weak activity of large clusters of neurons (Nakamura, 2005). 

In addition to error and conflict, the dACC represents a diverse range of reward and 

decision-making variables. In monkey studies using electrophysiological recording, neurons in 

the dACC reflect which action will be taken (Matsumoto, 2003; Shima & Tanji, 1998), 

prediction error (Matsumoto et al., 2007), the value of an alternative option (Hayden et al., 

2009), and the average reward associated with a certain task (Amiez et al., 2006). The most 

common findings stress a strong correlation between dACC activity and (signed) reward 

prediction error (Kennerley et al., 2011; Matsumoto et al., 2007; Seo & Lee, 2007), although 

others have reported signals consistent with unsigned prediction error (Bryden et al., 2011; 

Hayden et al., 2011a). Some studies have found neurons increase firing rate with decreasing 

reward (Hayden et al., 2011b, Kennerley et al., 2011), while others have found exactly the 

opposite (Hayden et al. 2009). A particularly intriguing discovery by multiple researchers is that 

reward sensitivity in the dACC is context dependent (Hayden et al., 2011a; Luk & Wallis, 2009; 

Matsumoto et al., 2007). The manner in which neurons in dACC encode reward has been shown 

to change as a function of task (Luk & Wallis, 2013). When reward amount, probability, and 

effort are manipulated, neurons in the dACC track the integrated value with all three variables 

taken into consideration (Kennerly et al., 2009). 

There is some debate whether the primary role of the dACC is as a monitor, as in conflict 

monitor, or a controller, as in a direct part of the cognitive control process which promotes goal-

directed behavior. The dACC is indeed sensitive to errors and conflict, as would be required for a 

monitor, but evidence also exists for a role as controller. Activity in this area is strong when 
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there is a need for control (Johnston et al., 2007; Shenhav et al., 2013). The dACC is also active 

when switching tasks (Rushworth et al., 2002), and when tracking progress towards a goal 

(Hayden et al., 2011b). Activity in dACC is higher when two choice values are similar, reflecting 

perhaps a detection of response conflict, or a need to recruit additional cognitive resources 

(Boorman et al., 2009; FitzGerald et al., 2009). Interestingly, when rewards of the same value 

require different levels of control, neurons in the dACC do not represent absolute reward; rather, 

firing rates rise slowly and to a greater threshold when there is a greater need for control 

(Hayden et al., 2011b). Firing rates rise in response to reward anticipation and are correlated with 

control as measured by accuracy (Shidara & Richmond, 2002).  

 It seems clear that neurons in the dACC encode reward-related variables in a nuanced and 

flexible, context-dependent manner. In particular, these neurons have often been found to encode 

specific combinations of actions and associated outcomes (Cai & Padoa- Schioppa, 2012; Luk & 

Wallis, 2009; Matsumoto, 2003). Furthermore, lesions to the dACC prohibit the association 

between actions and outcomes (Amiez et al., 2006; Hadland et al., 2003; Kennerley et al., 2006; 

Rudebeck et al., 2008). For these reasons, modern theories of anterior cingulate function have 

centered on its role in calculating the value of various actions (Haggard, 2008). Although these 

models vary somewhat in their particulars, they all posit a key role of the dACC in decision 

making which involves ascribing value to various actions.  

 This theory is supported by multiple studies which find that neurons in this region are 

especially active when contingencies between actions and outcomes change, or when switching 

between tasks or strategies. In an experiment in which monkeys switched between two different 

actions for reward, activity in dACC was greatest when the monkeys needed to switch actions to 
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keep receiving reward (Shima & Tanji, 1998). This ability to flexibly shift between tasks is 

impaired in individuals with dACC lesions (Rushworth et al., 2003; Shima & Tanji, 1998). When 

reward is held constant while manipulating the need for adjustment, neurons in dACC predict the 

amount of adjustment; when adjustment is held constant while varying the magnitude of reward, 

they predict the amount of reward (Hayden et al., 2009). Whether the dACC is controlling the 

change in actions, or whether it detects the need for a change and then relays it to other areas, is 

not fully understood. 

 The theory of dACC as controller is supported by a range of studies which find that 

recruitment of this region correlates with self-control. For example, dACC activity tracks 

restraint in inter-temporal choice tasks (Peters & Buchel, 2010;), delay tasks (Narayan & 

Laubach, 2006), and in response inhibition tasks (Floden & Stuss, 2006). Activation of the 

dACC in humans produces intense feelings of determination to persevere (Parvizi et al., 2013). 

 A related cognitive process that the dACC is also closely associated with is learning. This 

is not contradictory but rather complementary to a putative role as monitor and controller, since 

instrumental learning is shaped by the detection of errors, specifically reward prediction errors. 

When learning a task, the dACC is strongly active during the first few trials but less so over time 

(Alexander & Brown, 2011; Kennerly et al., 2011; Rudebeck et al., 2008), and activity in this 

region correlates with the learning rate of an individual (Behrens et al., 2007). This region is also 

more active during exploration phases versus exploitation phases in foraging style experiments 

(Procyk et al. 2012). 

 A variety of models have been created in order to best capture the behavior of the dACC. 

One influential model by Botvinick (2007) posits that neurons in this area monitor for conflict. 
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This activity would then become a teaching signal that trains downstream areas of the brain to 

perform correctly in order to generate optimal behavior.  

 Kolling et al. (2013) propose a neural network model of the dACC inspired by foraging 

models, whereby pools of neurons move from reflecting search value initially towards engage 

value during learning. The result is that neurons begin firing at the same time as difficulty 

increases even though no neurons actually reflect difficulty per se, reproducing the observed 

behavior of the dACC from single-unit recordings. Evidence supporting the model derives from 

an experiment in which participants were surprised occasionally by a cue in an unexpected 

location (Posner & Peterson, 1990). Activity in the dACC correlated with surprising cues only 

when these cues provided information about possible reward, suggesting that the ACC may play 

an important role in updating mental models of various response mappings, 

 In contrast, researchers at Princeton University have developed the Expected Value of 

Control Theory (Shenhav et al., 2016). Much as it sounds, this theory posits that neurons in the 

dACC weigh the costs and benefits of recruiting more cognitive control, presumably from 

frontoparietal regions such as the dlPFC. The theory has been recently updated to suggest that 

the strength of this control signal is modulated by how beneficial or costly a given action will be. 

This model is attractive for explaining results incongruent with a pure conflict or error 

explanation, and because it is arguably more generalizable than theories based on foraging.  

The predicted outcome-response (PRO) model is a similar model developed by 

Alexander & Brown (2011). This model is a variant of standard reinforcement learning models. 

In contrast to standard RL models, the PRO model trains outcomes for actions in a given 

stimulus context, as opposed to stimulus-outcome associations. Furthermore, prediction errors 
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are modeled as vectors rather than scalars, allowing for multiple outcomes to be learned 

simultaneously. The signed prediction error is capable of modeling both unexpected non-

occurrences and unexpected occurrences. Negative surprise, or N, represents the probability of 

an expected event not occurring. The model successfully captured many biological phenomena 

such as the error-related negativity. Importantly, the model captures the finding of increased 

mPFC activation in response to prediction error, even after correct responses in congruent trials, 

a phenomenon which would seem to contradict theories based solely on error or response 

conflict.  

.  The debate regarding whether the dACC is fundamentally a monitor or a controller 

hinges on whether the signal generated in this region lies within the decision-making circuity 

(controller), or outside (monitor). The problem is complicated by the highly correlated variables 

under consideration, such as error rate, reward prediction error, and response conflict. A more 

fundamental problem lies in the basic nature of which parts of the brain actually constitute the 

decision-making network. If an area of the brain generates a signal that ultimately informs motor 

output, how would one test whether that signal is “inside” or “outside”? In this sense, all parts of 

the brain could be said to lay within the decision-making circuitry, since all parts of the brain 

function in concert to ultimately bring about goal-directed behavior. For this reason, the 

controller/monitor debate is best set aside. A better use of time is to precisely describe the 

parameters that influence firing in the dACC, what effect this activity has on other regions, and 

the nature of the representations it may encode. 

Single-unit recording and lesion data of action-outcome representations 

As previously mentioned, consensus is emerging that the dACC is particularly involved 

in the learning and representation of action-outcome associations (Rudeback et al., 2008; Procyk 
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et al., 2000). Unlike response conflict, which appears mostly in fMRI studies, the bulk of the 

evidence for action-outcome representations stems from electrophysiological research. 

Matsumoto (2003) trained monkeys to either move a joystick or not in response to 

various stimuli (Go/No-Go task). Importantly, the relationships changed over time, such that all 

possible stimulus-outcome, response-outcome, and stimulus-response combination were 

represented. Neurons in the ACC were found to be responsive to reward and to movement 

preparation, but more strikingly, many of the neurons were found to predict the specific action-

outcome combination reflected in that trial.  

A similar experiment by Hayden & Platt (2010) examined the coding of neurons the 

anterior cingulate cortex of two rhesus monkeys. The monkeys were trained to perform a task in 

which they made a saccade to one of eight visual cues. The color of the cues signaled the amount 

of reward associated with a saccade to the cue. A high percentage of neurons contained 

information about both action and reward. Moreover, 60 percent of neurons encoded information 

about both reward and action. 

Lesions of the ACC selectively impair the learning of action-outcome associations. 

Hadland (2003) directly compared reward-guided selection, in which delivery of a juice reward 

provided information about which action to perform in order to receive a second juice delivery, 

to stimulus-guided selection, in which a visual cue instructed which action to perform. Lesions to 

the anterior cingulate disrupted reward-guided but not stimulus-guided selection, suggesting that 

the anterior cingulate is specifically necessary for the learning of outcome-action, but not 

stimulus-outcome, relationships. 

However, some studies have seemed to contradict this. A single-unit recording study by 

Luk and Wallis (2013) examined activation during action-outcome (A-O) trials and stimulus-
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outcome (S-O) trials. Although they did not find A-O encoding in the ACC, neurons in the ACC 

were more responsive to action during A-O trials, whereas neurons in the orbitofrontal cortex 

(OFC) were more responsive to action during S-O trials.  

There is evidence that the ACC is capable of calculating the summed value of an action 

when there are both negative and positive outcomes (Salamon et al., 1994). When rats are given 

a choice between an arm of a maze with a small reward, and an arm with a larger reward but also 

an obstacle which they must climb, healthy rats learn to choose the arm with the larger reward. 

Lesions to the ACC, however, cause rats to revert to choosing the arm with the smaller reward.  

Multivoxel Pattern Analysis 

 
 For decades, researchers analyzing fMRI data have traditionally used a univariate 

approach. This technique tests each voxel in the brain independently, asking whether there is a 

significant difference in activation between two conditions, such as performing a working 

memory task compared to rest (Friston et al., 1994a). 

 There is much to be said for this traditional analytic approach. Its relatively simple nature 

renders it more difficult to misuse, and the plethora of studies using this technique promotes 

comparability and replicability. Univariate analysis performs well assuming the effect in 

question is relatively large and unidirectional across a reasonably large region, and proper 

corrections for multiple comparisons are implemented (Friston et al., 1994b). However, 

univariate analysis may fail to detect effects that are weak, coded sparsely, or widely distributed 

across the brain.  

 An increasingly popular approach to ameliorate these problems is multivariate analysis, 

or multi-voxel pattern analysis (MVPA). This approach has the advantage of including multiple 

voxels in a model to probe their joint contributions to a pattern. Thus, MVPA is capable of 
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detecting widely distributed, fine-grained representations that would be missed by the univariate 

approach. MVPA, then, is powerful, but lacks specificity (Haynes and Rees 2006, Norman et al., 

2006).  

 While univariate analysis is based upon the classical statistics, MVPA is derived from 

information theory (Hebart & Baker, 2018). Because MVPA is uniquely designed to detect 

information of interest, it is well poised to answer questions about the nature of representations 

in the brain.  

 
FMRI studies of reward and decision-making 

Encoding of reward 

A number of machine learning analyses have now been performed to address how the 

brain encodes various reward-related and decision-related parameters. One particularly notable 

result by Vickery et al. (2011) suggests that reward (win versus loss in a simple game) is 

decodable from nearly every cortical and subcortical region. The question then becomes not 

where reward signals are present, but rather, what distinguishes the types of signals found across 

different regions.  

It is not always apparent in standard RL tasks whether a reward-associated signal reflects 

value directly, or rather a sensory signal which has become associated with value through 

learning. Kahnt et al. (2010) dissociated sensory information from value information by 

attaching separate combinations of sensory attributes to the same value. It then becomes possible 

to decode reward using one stimulus set to train the classifier, and then testing the classifier on 

an independent set. This experiment revealed sensory-independent reward information in the 

OFC and vmPFC. When comparing patterns of activity across anticipation and reward receipt, 

the patterns were found to be similar.  
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One method to address integration of multiple value signals is to have subjects perform a 

task in which various stimulus features such as color, shape, etc., all contain value information 

which then must be integrated to form an overall value signal. Kahnt et al. (2011) used this 

approach and found that the combined value could be decoded from the vmPFC, whereas the 

variability of the different stimulus attributes was decodable from dlPFC activation. 

Clithero et al. (2009) examined coding of reward information across an intertemporal 

delay task and a probabilistic RL task. The pattern of activation in posterior superior parietal 

lobule contained information about which type of task was being performed. They propose that 

the posterior parietal cortex is an early part of a layered process in the computation of value.  

A fundamental question in the neuroscience of decision making is whether there exists a 

domain-independent value signal, or so-called “common currency”. Although this issue remains 

unresolved, there is preliminary evidence in support. One way to assess the common currency 

hypothesis is to train a classifier to distinguish between high and low value items in one domain, 

such as food, and then test its ability to classify high versus low value items from another 

domain. This feat was successfully accomplished by McNamee et al (2013) and has been 

successfully replicated by other researchers (Chikazoe et al., 2014; Gross et al., 2014). Reward is 

decodable from vmPFC/OFC even when reward level is varied within-stimulus and tested across 

stimulus identity (Howard et al., 2015). 

In contrast to the medial portion of the ventral PFC, the lateral PFC may encode specific 

reward identities (Howard et al., 2015; Howard et al., 2017; McNamee et al., 2013). When 

reward outcomes were predicted by specific stimuli, the lateral PFC encoded specific stimulus-

outcome combinations (Klein-Flugge et al., 2013). 

Encoding of decision-making 
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The OFC and vmPFC are evidently crucial for Pavlovian conditioning and the conversion 

of specific outcomes to a common value currency. But where might instrumental learning, e.g., 

specific action-outcome associations, take place? Electrophysiological experiments clearly 

demonstrate the ability of neurons in the anterior cingulate cortex to represent such action-

outcome associations. FMRI studies, however, have been less conclusive. 

Mcnamee et al. (2015) examined the encoding of various decision-making variables 

while subjects underwent a binary decision task. Information about outcome was available in a 

wide range of areas, including vmPFC, OFC, dlPFC, and the caudate. Only the dlPFC was found 

to encode information about action and outcome at time of stimulus presentation, consistent with 

its hypothesized role in goal-directed behavior. The lateral putamen and supplementary motor 

cortex contained information only about action and not outcome, affirming a role in habitual 

(outcome-independent) behavior. Intriguingly, integrated stimulus-action representations were 

found in the caudate nucleus and hippocampus, suggesting a possible function interplay between 

these two disparate memory systems.  

A somewhat different approach was taken by Fitzgerald et al. (2012), who used 

Multivariate Bayes Analysis to probe action-specific value signals. Subjects underwent a binary 

decision task, where they made a right or left button press in response to stimuli that each had 

independent reward probabilities associated with each response. Action-specific value, then, was 

defined as the difference in values of the two responses: AV = QR – QL. The ventromedial 

prefrontal cortex and putamen contained action-specific value representations, as well as the 

thalamus and hippocampus. This finding is in partial agreement with McNamee et al. (2015). 

While prior studies focused on relatively simple action-outcome associations, Wisniewski 

et al. (2015) used MVPA to decode associations between different cognitive tasks and outcomes. 
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In the experiment, subjects switched between a magnitude and parity judgement (A) and 

received either a small or large reward as outcome (O). While task-specific (A) activation was 

found in inferior parietal cortex and premotor cortex, specific task-reward (A-O) associations 

were found only in inferior parietal cortex.  

How can we make sense of these conflicting findings? One important distinction to make 

is that electrophysiology can detect signals from individual neurons, where fMRI cannot. Even 

the smallest level of spatial resolution, the voxel, contains the summed activity of millions of 

neurons. If the coding of action-outcome representations is sparse, or heterogenous, it will not be 

detectable with fMRI. Another important distinction is the differences across experimental 

paradigms, which varyingly compare relatively simple actions or complex tasks. Mcnamee et al. 

(2015) compared two distinctly separate actions, a trackball roll versus a double button press, 

whereas Fitzgerald et al. (2012) compared a right and left button press, and Wisniewski et al. 

(2015) compared two completely different numerical judgement tasks that utilized the same 

responses. We can infer, then, that the parietal cortex may preferentially distinguish anticipation 

of a task, whereas the dlPFC may be more directly involved in learning about outcomes of 

specific motor behaviors. It seems likely that neurons in the dACC do contain information about 

A-O associations; but it may be the case that the number of neurons containing this information 

is so few as to be indetectable with fMRI. 

The current study sought to compare and contrast how the brain encodes associations 

between motor responses and rewards, and higher-level tasks and rewards, using combinations of 

tasks, motor responses, and rewards. Findings from fMRI suggest that action-outcome 

associations may be encoded in different regions depending on the nature of the action or task. 

Previous electrophysiological findings suggest that task-outcome associations may be reflected 
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by activation in posterior parietal cortex. The dorsolateral prefrontal cortex, in contrast, may 

encode associations between reward or outcomes and simple motor responses.  
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METHODS 

 
  

FMRI data was collected from subjects undergoing random combinations of two tasks 

(emotional judgement and spatial judgement) and two levels of outcome (high reward and low 

reward). Each trial included two abstract symbols informing subjects as to which task would pay 

out a large reward or a small reward, followed by a delay. Following this delay, subjects were 

presented with a picture of a human and judged the picture as either happy or sad (emotional 

task) or as having long or short hair (spatial task) using either a right or left button press.  

Previous literature suggests that reward should be associated with activation in a wide 

range of regions, including ventral striatum, vmPFC/OFC, and dACC. Response, or which finger 

is pressed, should activate regions including the caudate, dlPFC, and motor and premotor cortex. 

Activation during the spatial task should include more parietal activation compared to the 

emotion task. 

I expected to find the combination of task and reward to be associated with different 

patterns of activation in the parietal cortex. This would have interesting implications for the 

nature of information processing and potentially suggest that the parietal cortex maintains a 

stable higher order task set which is then conveyed to the dlPFC to generate motor output. 

 

Participants 

Ten subjects took part in the experiment. Exclusion criteria included any psychiatric or 

neurological illness, as well as vision deficits. I obtained written consent from all subjects in 

accordance with the Colorado State University and South China Normal University Institutional 
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Review Board. Participants were compensated 100 RMB (approximately $15) for their time as 

well as additional money they earned from correct task performance.  

Experimental paradigm 

The task was created using Psychopy (Peirce, 2007). Stimuli were presented on a grey 

background using an Asus monitor.  

During each trial, subjects saw a picture of a person and judged the picture as either 

happy or sad, or as having long or short hair using the left and right arrow keys (or buttons while 

inside the scanner). Stimuli consisted of forty stock photos of humans taken from the Park Aging 

Mind Lab database (Minear & Park, 2004). Abstract symbols presented at the beginning of the 

trial informed subjects as to which task would give them a high level of reward (30 RMB bonus) 

or a low level of reward (5 RMB bonus). Subjects received instructions to try and learn the 

meanings of the abstract symbols. To encourage accurate performance, subjects were informed 

that one trial would be randomly selected at the end of the experiment and paid out in real cash. 

Each trial began with two abstract symbols (mapping symbols) presented above and 

below the center of the screen for 3 seconds (Figure 1). Each symbol indicated a specific task-

reward mapping; one symbol indicated which level of reward task one (happy/sad judgement) 

was associated with, while the other symbol indicated which level of reward task two (long/short 

hair judgement) was associated with, with one task being associated with a high level of reward 

and the other being associated with a low level of reward. Two redundant sets of visual cues 

were used for the abstract symbols which represented exactly the same mappings. In twenty 

percent of trials the mapping symbols indicated that both tasks would give the same level of 

reward, or that only one task would give a reward. These trials were not included in the analysis. 

This technique has been used previously in order to encourage participants to learn and attend to 
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the individual mappings of each symbol (Wisniewski et al., 2015). The position of the two 

symbols (top or bottom) was counter-balanced across trials. Other variables, including task, 

mapping, cue set, picture, and the correct response (left or right arrow key) were fully 

randomized. Following presentation of these cues was a delay of 4 seconds (Delay 1) during 

which a fixation cross was presented. The four second delay ensured that subjects could not 

prepare for a specific task during the first portion of the trial. The portion of the trial beginning at 

the start of the trial until the end of Delay 1 will be referred to as the “encoding portion” 

hereafter.  

Following the encoding portion of the trial, a message appeared for 1 second indicating 

which task the subject was to perform. After a second delay (Delay 2) of 500 milliseconds, the 

stimulus was presented, and subjects performed the specified task (happy/sad or long/short hair). 

Subjects had 1.4 seconds to respond. The portion of the trial beginning when the task message 

was displayed and lasting until the subject’s response will be referred to as the “task portion” of 

the trial. Following a delay of 2 seconds (Delay 3), a feedback/reward screen was displayed for 

500 milliseconds. If the correct response was made, the screen displayed a message informing 

them they were correct, as well as the amount of money earned (in green font for high reward 

and yellow font for low reward). If an incorrect response was made, the screen displayed 

“Wrong…” in red font. If no response was made, the screen displayed “Time’s up!” in magenta 

font. The feedback screen was followed by a jittered intertrial interval (ITI) of between 1 and 5 

seconds. The four-second delay between cue and task, as well the extensive intertrial interval, 

ensured adequate spacing and separation of BOLD activation at different points in the trial 

(Zeithamova et al., 2017). Subjects performed eight blocks in the scanner with 30 trials per 

block.  
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Pre-training 

Prior to scanning, subjects performed pre-training to familiarize themselves with the tasks 

and symbols. Pre-training began with ten trials in which only the task was performed, without 

the symbol encoding or delay phases. The symbols were then shown to the subject along with 

their meanings (emotional task will give high reward, etc.). Subjects were tested on the meaning 

of each symbol until they reached 90 percent accuracy. Subjects then performed the complete 

task with symbols, delays, emotional or spatial judgement, and feedback, ten times. This whole 

routine, beginning after the presentation of the symbols, was repeated three times.  

 

 

 

FMRI acquisition 

Data was collected at the Brain Imaging Center at South China Normal University using 

a 3.0 Tesla MRI scanner (Siemens) with a 12-channel head coil. A T1-weighted magnetization-

prepared rapid gradient echo sequence was used to collect high-resolution anatomical images for 

Figure 1. Order of events in a given trial. Subjects were presented with two symbols for 3 seconds, each one 
indicating the amount of reward to be earned for one of two tasks. After a delay of 4 seconds, a message 
indicating which task was to be performed appeared for 1 second. After a second delay of 500 ms, subjects 
were shown a photo and had 1.4 seconds to respond. After a final delay of 2 seconds, subjects received 
feedback for 500 ms. 
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spatial normalization and localization (TR = 2530 ms; TE = 2.27 ms; flip angle = 7°; FOV = 

256mm x 256mm; slice thickness = 1.0 mm; voxel size = 1.0 mm x 1.0 mm x 1.0 mm). A T2*-

weighted two-dimensional echoplanar sequence was used to record functional images (time 

repetition, TR = 1500 ms; echo time, TE = 30 ms; flip angle = 90°; 42 slices; field of view 

[FOV] = 192 mm x 192 mm; slice thickness = 3 mm; voxel size = 3.0 x 3.0 x 3.0 mm3). For each 

participant, eight functional runs were performed. Each run lasted approximately six minutes and 

resulted in approximately 200 whole-brain volumes. The first three volumes were discarded from 

all functional runs.  

Analysis 

Preprocessing 

All fMRI data was pre-processed using the Statistical Parametric Mapping toolbox in 

Matlab. Functional data was re-aligned to the first volume, slice-time corrected, co-registered to 

the anatomical image, smoothed, and un-warped using field maps. Low-frequency components 

(128 s) were removed, and the data was corrected for serial auto-correlations. The first three 

volumes of each run were discarded. 

General Linear Model 

Each subject’s pre-processed functional MRI data was entered into a GLM using a 

canonical hemodynamic response (HRF) function. Regressors included the following: Response 

(Right or Left), a 500-ms regressor specifying right or left hand button press that began at the 

time of response, Task (Happy/Sad or Long/Short), a 500-ms regressor beginning at the task 

onset specifying which task was performed (long/short hair judgement or happy/sad judgement), 

Reward (High versus Low), a 500-ms regressor beginning at presentation of reward specifying 
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whether a high or low reward was received, and Reward (Reward versus no Reward), a 500-ms 

regressor beginning at presentation of reward specifying whether or not a reward was received. 

These regressors were modeled at the single-subject level before being passed on to the 

group level, resulting in the following contrasts: Response (Left versus Right), Response (Right 

versus Left), Task (Happy/Sad versus Long/Short), Task (Long/Short versus Happy/Sad), 

Reward (High versus Low), Reward (Low versus High), Reward (Reward versus No Reward), 

and Reward (No Reward versus Reward). Results are presented at a threshold of p < 0.001, 

uncorrected. 

ANOVA 

 Two two-way ANOVAs were performed. The first ANOVA examined the independent 

effects and interaction between Response and Reward, at the time of receipt of reward. The 

second ANOVA examined the independent effects and interaction between Task and Reward, 

also at the time of reward. 
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RESULTS 
 

Behavioral Results 

 Subjects achieved a high level of performance. Overall accuracy was 0.82; the proportion 

of misses was 0.12 and the proportion of incorrect trials was 0.07. The average reaction time was 

1.09 ± 0.13 seconds. T-tests of reaction time and accuracy revealed no significant differences 

across tasks.  

FMRI results 

General Linear Model (GLM) 

 The following T-contrasts were created: Response (left versus right and right versus left, 

modelled at time of response for 500 ms), Task (emotion task versus spatial task and spatial task 

versus emotion task, modelled at task onset for 1 second), Reward (High versus low and low 

versus high, modelled at time of reward for 500 ms), and Reward (Any reward versus no reward 

and no reward versus any reward, modelled at time of reward for 500 ms). Due to the low sample 

size and preliminary nature of the results, all findings are reported at a threshold of p < .001, 

uncorrected. 

A small cluster of activation in the midbrain was found when comparing left-handed to 

right-handed responses (Fig. 2). Right-handed compared to left-handed responses, by contrast, 

were associated with activation in the mid-prefrontal cortex.  

A contrast of performance of the spatial task versus the emotion task yielded several 

clusters in the ventral occipital cortex and in the mid-prefrontal cortex (Fig. 3). The reverse 

contrast, emotion task versus spatial task, resulted in a cluster of activation in posterior parietal 

cortex and lateral prefrontal cortex.  
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Figure 2: Comparison of trials in which subjects responded with left hand versus right hand (left), and right hand versus left 

hand (right), at time of response. P < .001, uncorrected 

 

Figure 3: Activation for emotion task versus spatial task (left) and spatial task versus emotion task (right) at time of task 

performance. P < .001, uncorrected. 

 

 
Receiving a large reward compared to a small reward was associated with activation in 

the auditory cortex and primary somatosensory cortex (Fig. 4). A low reward, on the other hand, 

was accompanied by activation in the anterior cingulate cortex. 
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A comparison of trials for which any reward was received versus trials in which no 

reward was received revealed a cluster in the dorsal prefrontal cortex (Figure 5).  

 

Figure 5: Comparison of trials in which subjects received reward versus trials in which subjects received no reward, made at 

time of feedback. P < .001, uncorrected.  

Figure 4: Comparison of high reward and low reward trials, made at time of feedback. P < .001, 
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Analysis of Variance (ANOVA) 

Two separate ANOVAs were performed to examine the interactions between Response 

and Reward and Task and Reward, respectively. ANOVAs were modeled at the time of reward, 

and used response and reward and task and reward, respectively. 

The first ANOVA revealed a main effect of response in the precuneus, cuneus, 

cerebellum, and other clusters along the medial wall of the occipital and parietal lobes (Figure 6). 

Neurons near the somatosensory cortex and also within the insula appeared sensitive to the main 

effect of reward. The interaction between response and reward was associated with differences in 

activation in the post-central gyrus.  

For the second ANOVA, several clusters along the medial surface of the occipital lobe 

showed a main effect of task (Figure 7). Neurons near the somatosensory cortex and also within 

the insula appeared sensitive to the main effect of reward. The interaction between task and 

reward was associated with differences in activation in the ventral occipital cortex and anterior 

prefrontal cortex. 

 

 

 
Figure 6: ANOVA of response (right or left) and reward (high or low) at time of reward. Main effect of response (A), reward (B), 

and interaction ( 
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Figure 7: ANOVA of task (emotional or spatial task) and reward (high or low) at time of reward. Main effect of task (A), reward 

(B), and interaction (C).  
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DISCUSSION 

 

The aim of this study was to examine how the brain learns associations, both between 

simple motor responses and outcomes, and more complicated, higher order goals and outcomes. 

My a priori hypothesis suggested that the dorsolateral prefrontal cortex may encode associations 

between simple motor responses and outcomes, whereas the posterior parietal cortex plays a 

larger role in learning associations between higher order information (the task being performed) 

and outcomes/rewards.  

2-way ANOVAS revealed that the interaction between a simple motor response and an 

outcome was reflected by activity in primary somatosensory cortex. When considering the 

interaction between a higher order goal (which task is being performed) and an outcome, 

however, this was reflected by activity in the frontopolar cortex. Although these findings are not 

in line with the proposed hypothesis, that the posterior parietal cortex plays a key role in learning 

about higher order variables like the task being performed, they do make sense with what is 

known about these regions, in particular the frontopolar cortex. 

A region in the midbrain was more active for left-handed than right-handed responses. 

The midbrain is known to contain strong projections to and from motor cortex (Parent & Hazrati, 

1995). It is not immediately apparent why a left-handed versus a right-handed response would be 

associated with stronger activation. If the majority of participants were right-handed, however, it 

is possible that responding with the non-dominant hand required greater recruitment of neural 

resources. Prior research has demonstrated that when subjects prepare to respond with their non-

dominant hand, activity in the dominant hemisphere is downregulated and activity in the non-
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dominant hemisphere is increased (Poole et al., 2018). It is possible that the observed differences 

function to compensate for shifting to a less-preferred way of responding. 

Performance of the spatial task appeared to recruit the occipital cortex. The occipital 

cortex is well known to play a primary role in visual processing (Brewer et al., 2005; Clarke & 

Miklossy, 1990). The nature of both tasks was heavily visual since both tasks involved making 

judgements about photographs. Thus, this finding is sensible given that a spatial judgement 

would require visual resources. These results could also point to a potential role of the occipital 

lobe in spatial processing.  

Performing an emotional judgement, in contrast, was associated with activation in the 

posterior parietal cortex. Prior research has implicated the parietal cortex in emotion judgements, 

with one study using computer-generated faces finding increased recruitment of the inferior 

parietal lobule for an emotion task versus gender judgement (Sarkheil et al., 2012). In another 

study, when performing an emotional delayed match-to-sample task, trans-cranial magnetic 

stimulation (TMS) of the inferior parietal lobule (IPL) specifically improved processing of 

fearful stimuli (Engelen et al., 2015). Another study which had participants rate their emotions 

while watching a video of a dance found a correlation between and emotional rating and 

posterior parietal activation (Grosbras et al., 2012). One potential avenue for future research 

would be comparing and contrasting activation elicited by different emotions.  

Receipt of a small reward versus a larger one was associated with activation in the 

anterior cingulate cortex. This finding is intriguing given the well-established role of the anterior 

cingulate cortex in situations requiring cognitive control (Botvinick et al., 2001; Bush et al., 

2000). It may be that, because receipt of a smaller reward signals a need to improve 

performance, the cingulate cortex is either detecting the need to recruit additional resources to 
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improve performance or is more directly involved in exerting the increased effort. Carefully 

designed studies are needed that are able to tease apart these differing explanations of anterior 

cingulate cortex function.  

Both the auditory cortex and primary somatosensory cortex appeared to be more active 

during receipt of a large reward. This finding is somewhat unexpected since other regions such 

as the basal ganglia and ventromedial prefrontal cortex are more commonly associated with 

representing reward-related information (Delgado et al., 2005; McClure et al., 2003). Some 

research has connected reward with somatosensory cortex, however. In a task where subjects 

discriminated sensory stimuli on index fingers, the corresponding somatosensory cortex was 

found to “reactivate” at the time of reward delivery in a manner that corresponded with the 

magnitude of reward (Pleger et al., 2008). This suggests the intriguing possibility that, rather 

than directly representing reward, somatosensory cortex is encoding salient task features such as 

motor response, which is then re-activated at time of reward to “link” it with the experienced 

outcome. Future research should test the replicability of this finding, potentially with different 

tasks or rewards, to see if these findings persist. If the activation of somatosensory cortex 

encodes the response being made, it should vary in a predictable manner based on whether the 

response is, for example, a button-press or a verbal response. 

The first ANOVA showed a main effect of response in the precuneus and cuneus. The 

cuneus and surrounding regions play an important role in visual processing, but also support 

many higher order cognitive functions such as language and memory (Palejwala et al., 2021). 

Indeed the precuneus and cuneus seem to form an important part of a general sensorimotor 

network connecting visual processing with appropriate motor output (Karmonik et al., 2016). 

Although this is a less common finding, these regions have been shown in the past to be sensitive 
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to motion (Malouin et al., 2003). Differences in activation have been reported in the cuneus for 

obese versus healthy-weight individuals during performance of a stop-signal task (Hendrick et 

al., 2012). The cuneus has also been found to be recruited as part of a sensorimotor network 

during a 1-back matching task using letters (James & Gauthier, 2006). 

The second ANOVA demonstrated a main effect of task in similar regions as the main 

effect of response in the first ANOVA, namely the medial wall of the occipital lobe including the 

precuneus and cuneus. This is sensible given that these regions are part of a general sensorimotor 

network as previously stated. The regions also support linguistic processing, which the 

judgements of happy or sad or long or short probably recruit to some degree (Palejwala et al., 

2021). It would be worthwhile to compare these tasks to tasks that require less linguistic 

processing to test whether they also recruit these regions.  

Interestingly, both ANOVAs showed a main effect of reward in much the same location. 

Prior research suggests that the main effect of reward should impact activity primarily in 

midbrain structures such as the basal ganglia and the medial prefrontal cortex (Fields et al., 2007; 

McClure et al., 2003; Morales & Margolis, 2017). Both ANOVAs in the present study, however, 

demonstrated a main effect of reward in somatosensory cortex. It is worth noting that this is the 

same area that was found to be more active for receipt of a large reward versus a small reward 

(Fig. 4). Some prior research has shown an effect of reward on somatosensory decision making 

(Pleger et al., 2008; Pleger et al., 2009; Stice, Burger, & Yokum, 2013).  

As previously mentioned, one way to explain these findings is that the correct response is 

being “reactivated” in order to link it with reward. Another possible explanation is that higher 

rewards provide increased saliency and the resultant increase in attention increases processing in 
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somatosensory regions. One possible future direction for research could be to test these opposing 

theories.  

The interaction between response and reward affected activation in the post-central gyrus. 

The post-central gyrus is known to contain somatic representations of the entire body, with 

cortical excisions in this region interfering with sensation in the corresponding body part 

(Corkin, 1970). Neuroimaging research confirms the involvement of the postcentral gyrus in the 

representations of the body (Nelson & Chen, 2008). Thus, it is not surprising that this region 

would show differences in activation for different motor responses. What is surprising is that this 

region would be sensitive to the interaction between motor response and reward.  

Interestingly, the interaction between task and reward was associated with differences in 

activation in frontopolar cortex. Although this finding is not congruent with my initial 

hypothesis, that the parietal cortex is especially involved in the learning of associations between 

higher order tasks and outcomes, it does make sense in light of the importance of frontopolar 

cortex to organizing behavior and maintaining higher-order task sets. Indeed, managing 

competing goals has been postulated to be a critical function of the frontopolar cortex (Mansouri 

et al., 2017). Damage to the frontopolar cortex impairs multi-tasking (Dreger et al., 2008). The 

current study provides support for the importance of the frontopolar cortex in managing multiple, 

competing goals.  

There are several important ways in which the current study might be improved. The 

primary limitation is sample size. The study contained only ten subjects, which is commonly 

considered insufficient even for simple general linear models. Flaws in several runs for many of 

the subjects further reduced statistical power. It is entirely possible that different findings would 

occur given a larger sample size.  



 

37 

 

Future research could expand on the current findings in a variety of ways. Different tasks 

could be used to examine the correspondence of action-outcome encoding across tasks, in 

addition to different motor responses. Similarly, differing rewards, such as food, could be 

incorporated.  

The current study only examined encoding of reward at the time of receipt of reward. An 

important question is how representations of actions and outcomes change across time, such as 

during anticipation of reward rather than at the time of delivery of reward. New research should 

examine encoding of reward, and action-reward associations, not just at the time of reward 

delivery but at other time points.  

A possible avenue for future research might be to have subjects learn symbols which 

inform them ahead of time which task and which reward they will experience. This would 

eliminate covariates related directly to motor response or task performance and isolate the key 

variables of interest. 

Another intriguing possibility would be to utilize multivariate methods such as 

multivoxel pattern analysis. Such methods are inherently suited to the question of action-

outcome encoding since this is a question of the relationship between two variables. Future 

research could utilize models such as support vector machines to examine encoding of tasks, 

motor responses, and outcomes at any point during the trials.  

The present study sought to examine how and where the brain encodes associations 

between actions and outcomes. The results suggest that the frontopolar cortex may become 

especially involved when learning to associate higher order goals such as tasks with outcomes. 

More research is needed to verify this and to elucidate exactly how the frontopolar cortex is 

involved in learning associations.  
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