
·'

I 

51iL 8qs 

C

徊
什

O)4 Q 
ISSN No. 0737-5352-22 

DATA ASSIMILATION 
AND THE ADJOINT METHOD: 

An Overview 

Gerald D. Taylor 
'Matl 

and 
Center for Geosciences 

Research ~up~orted by U.S. Army Research Office 
under Grant No. DAAL03--86-K-0175 

Cl RA Cooperative Institute for Research in the Atmosphere 



DATA ASSIMILATION AND 1HE ADJOINT METIIOD: 
AnOvezview 

by 

Gerald D. Taylor 

Department of Mathematics 

and 

Center for Geosciences 

Colorado State University 

Fort Collins, Colorado 80523 

This research was supported by ARO 

under Grant No. DAAU}3-86-K-0175 through the 

U.S. Anny Center for Geosciences and CIRA 

May 1991 

I IIIII IIIIII IIIII IIIII IIIII IIIII IIIHIHllll ll lllll llllllii 11111111 

U18400 9372030 



誓4』7
r'\.b ·d-A 
戸L

Abstract 

In this note a general description of the application of the adjoint method for four dimensional data 

assimilation is given. The main focus of this discussion is that this method when applied to a 

discrete model is simply an application of the chair rule of multivariate calculus to compute the 

gradient of a real valued function of several variables. Several different time differencing schemes 

are considered, as well as, two examples of discrete models. 
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DATA ASSIMILATION AND THE ADJOINT METHOD 

G.D. Taylor 

1.General Mathematical Theory 

Data 邸similation, the effective in tegration of observations into predictive dynamical equations h邸 been
a major topic of investigation for some 30 years in meteorology. Using optimization theory, Le Dimet and 
Talagrand (1986) and Talagrand and Courtier (1987a, 1987b, 1990) have proposed a new approach for this 
problem called the adjoint method. Specifically, the following variational approach for the assimilation of 
observations is proposed: Define a real valued function me邸uring the "distance" between the model solution 
corresponding to a given initialization and the available observations. Then, using the adjoint method, the 
gradient of this distance function with respect to the initial condition can be calculated. Using a gradient 
區ed minimization algorithm (e.g. Buckley (1985)) , that initialization for which the distance is a minimum 
is calculated via an iterative process. Thus, using this initialization the model will predict values that most 
closely fit the known observational data. The current wisdom is that this procedure is most effective when 
applied to the actual predictive equations used in the dynamical model. Since these codes are (usually) 
b邸ed upon some sort of discretization, the above minimization problem becomes the minimization of a 
(complicated) function of several variables and the adjoint method reduces to an application of the chain 
rule for calculating the derivative (gradient) of a composition of several functions. 

As an extremely simple example of the setting in which one might wish to apply this approach consider 
the following continuous model : Given uo(z, 0), find u(z, t), for O ~ z ~ L and t > 0, such that 

OU OU 
-+u—=0, 0 ~ z ~ L, t > 0, ot · -oz 

u(O, t) = u(L, t) , t > 0, 

u(z , O) = uo(z, 0) , 0 ~ z ~ L. 

(1) 

Discretizing in space, by setting z; = ih, h = L/N, u;(t) = u(z;, t) for i = 0, • • •, N and applying centered 
differences , gives the initial value system of N ordinary differential equations: 

苧＝－Uj(t) （庄1(t)2-h店－ 1 （t)) ， i=0,·· · ,N-1

ui(O) = uo(zi,O) , i = O,·· · ,N -1 

where uN(t) = u0(t) and u一 1(t) = uN-1(t) for all t ~ 0 

Writing 

x(t) = (uo(t),·..,uN_1(t)f and F(x) = (/0(x) , .. •, 」「N-1(x)f ,
where 

f」 (x) =-U, (U,+l _ h庄 !.) , j=O,···,N -1, 

this system can be rewritten in vector form as 

dx(t ) 
dt 

= F(x(t)) , 

x(O) = xo =佃（0) , · · ·, UN-1(0)? 

(2) 

(3) 

Now, suppose that observations exist for certain values of u(z;, t) at some distinct times t;. Then, one seeks 
to determine an initialization, 

xo= {u(zo, O) , ·· ·,u(zN-1)f, 

1 



for which the model solution of (1) corresponding to this initialization is the" closest" to these observations 
from the class of all possible model solu tions (i.e., for all possible initializations) . 

In order to describe the 袖oint method for accomplishing this we return to the general setting. Thus, 
let a dynamical model in the form of a system of ordinary equations be given: 

dx(t) 
dt 

= F(x(t)), (4) 

where x (t) c IR.n for t ~ 0 and F : IR.n - IR.n with F(z) = (/1(z) , · · ·, fn (z)）亡 for z c IR.n and each 
fi : IRn - IR. Further assume that observational data at a set of distinct times O ~ t1 < t2 < · · · < tp 
have been converted to (some or all) grid point values (vector components of x(ti)) that we would like our 
model solution to assume at these times. Next , select a time advecting scheme that predicts model values 
X」 given an init ialization x(O) = x0 for j = 0, • • •, r such that x;, = x(t1) for I = 1, · · ·, p with 咋＝ r. Note 
that this indexing allows for several types of advecting steps between the times at which the observations 
are available. 

For a given initialization x0 define target values xt• corresponding to the set of advected values x」
predicted by x0 by requiring that xt• have the components at times t1 determined by the observational data 
and have all remaining components ident ical with the components of x; . Finally, define a real valued cost 
function J(xo) by 

「

J(xo) = I:(x; - x户）T(x」 -X户）
j=O 

(5) 

Because of the manner in which x户 has been defined, J(x0) is precisely the sum of the squares of 
the differences of the model values and observational values at all components where the observational 
data can be represented . (Note that a weighted cost function could have been used here ; i.e., J(xo) = 
z;＝O( ，户）Tw，(x) -X户）Xj - xi0'YW1(Xj - x r0·) where each W; is a strictly positive definite symmetric n X n wei ighting 
matrix.) In this setting the problem of data assimilation is taken to mean 

solve min{J(xo) : xo c IR叮 ． (6) 

This can be done using a black box gradient based (iterative) minimization routine when one is using the 
adjoint method since this method calculates v'x0J(x0), the gradient of J(x0) at x 0, which is required at each 
iteration step of the minimization scheme. 

We now turn to describing the ad」 oint method for this general setting. Since the form of the adjoint 
method depends on the (time) advection scheme used, we must give a more structured description of the 
advection scheme. Initially, we shall assume that the advection scheme is a one step scheme. That is , that 
the advected vector x; is obtained from the previous advected vector Xj- l • Thus, we shall assume that 
either 

X」; =F」· (xrl)

(an explicit step) or x; is the resul t of one Newton iterat ion applied to 

(7) 

瓦 (x」) = Gj(Xj-1) (8) 

initialized with x;_1 (an implicit step) . Here the fun ctions F; and G」 will depend upon the F of (4) . For 
the case of an implicit step, x; is actually the solution of the linear system 

D在1F; (x;-1 ) (x」 -x; - 1) = G;(x; -1) -几 （x;-1) . (9) 

Note that the quantity Dx;_, Fj(Xj _i) is simply an x n matrix (the Jacobian of Fj evaluated at Xj-l, see 
(A.l) in appendix A for details). Observe that, as described, an implicit step can be used to give a new 
estimate at the same time position as the previous step or an estimate at the next time step . This is one 
reason for the somewhat complicated indexing of the advection vectors relative to the observation times 
given earlier. 
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Returning to the cost function (5), from the derivative rule for the dot product (F(x)f (G(x)) of two 
functions mapping 即 into 吖 one has that 

Dx{ (F(x)f (G(x))} = (DxF(x)f (G(x)) + (F(x)f (D芯(x))

so that 

"vx0J(xo) = 2L(x」- X户）TDx0Xj(xo )
j=O 

where Dx0J(x0) = "vx0J(x0) since J(xo) is a real valued function of x。 and each Xj is a function of x0 via 
the advective iteration . Thus, it is necessary to be able to compute then x n matrices Dx0Xj(xo) in order 
to be able to calculate the gradient of the cost function at a given init」 alization. Note that, by the chain rule 

(10) 

Dx0Xj(Xo) = [Dx」-,Xj(X) 一 1)][Dx;_,x, 一-1(x) 一 2)] · · · (D,Co (11) 

where we have used the fact that Dx0x0(x0) = I , the n x n identity matrix. Since for finite difference 
discretizations of the original continuous problem these matrices are usually banded with only a few non
zero diagonals , it should be preferable not to actually use matrix multiplies in any specific coding of this 
procedure. Rather, the product yT[D在lX」 (x;-1)] · · · [D達1 (x0)] may be more effectively calculated by 
writing a special routine based on the structure of each Dx．一 1 x; (x; _ i) only storing the non-zero elements 
of each of these matrices and achieving the desired product of yT and these matrices through a sequence 
of vector dot products (inner products). In the case of spectral discretizations the matrices will most likely 
be full matrices. However, in this case the overall dimension of the discrete problem should be considerably 
smaller due to the increased accuracy of spectral methods for problems having smooth solutions. Here matrix 
operations might be acceptable, although once again, in an actual operational application of this technique 
one should look for any special structure inherent to the problem that can be exploited such as using FFT's, 
for example. 
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where F」 (x) = (ff (x), • • •,/~(x)f with the first equality the definition of the derivative and the second 
equality a notational choice. Next, using (12) define the matrix, 
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where dk = (x{ - x尸） and z = Xj -1• l,'sing this notation an iterative scheme for calculating'ilx0J(xo) can 
be given. This scheme is essentially Homer's method for efficiently evaluating a polynomial (or as noted 
in the literature the adjoint method is equivalent to the backwards integration of the tangent equations 
corresponding to (4) and can be realized as the scheme given here) . Thus, to calculate'ilx0J(x0) one should 
proceed as follows : 

1. Compute the vector 
y; = (xr - X~bJfD炁－ 1Xr(Xr-1) . (14) 
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2. For j = r - 1, r - 2, • • •, 1, compute the vectors 

YJ = {(x} 一 X?＇ V +y『+l}D在1X」 (Xj-1)

3. Set 
立。J(xo ) = 2{(xo - x惡'f +y「}．

(15) 

(16) 

Note that the adjoint method is calculated relative to a given x0 and the corresponding advected values x, 
all must be stored for use in the adjoint sweep. 

To complete the above scheme we must gi_ve formulas for Dx;_ 1 x」 (x) 一 1) . Now, if Xj is the result of the 

explicit step, x, = F,(x;-i) , with F;(x) = (ff (x), · · · , /~ (x)f, then 

Dx;_ , x,(x,-1) = D在1瓦 (x;-1) = 
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Whereas, if x; is obtained by an implicit step, then x; is the result of one Newton iteration applied to 
F; (x;) = G;(x;_1) initialized with x;-i, which is given in (9) . Differentiating equation (9) with respect to 
x;-1, gives a linear equation for Dx，一 , x;(x;-i)- Indeed, using the notat ion introduced above and formula 
(A.5) of the appendix with x = Xj-1 and F(x;-1) = x」 一 x;-1 we have that 

[D在1 瓦（xrl)] ［D在1X,(xJ 一 1)] = D在1G,(x,_1) - r,(x, ,xrl) (18) 

where we are using the Jacobian formula (12) (for both F」 and G;) and (13) which defines the matrix 
f;(x; ,x;-1) . It must be noted that for an implicit step the matrix Dx;_1 x;(x;_i) which in this case is 
no longer the same as D在1 瓦 (x;- i ) will also most likely no longer be sparse and banded in the fini te 
difference setting. However , when Dx;_1 F;(x;_i) is sparse and banded then since D在1X,(xrl) is the 
solution to n linear systems having this matrix as the common matrix of each of the systems, it should be 
possible to efficiently solve them. Furthermore, this same matrix was used to solve a linear system in the 
forward advection step to determine x; from x;_1 and hence a factorization of it from that step or some 
other efficient means of solving these systems may already be available. In addition, since what is desired is 
the product of yT and D在1Xt_(x; _i), one can accumulate the components of the vector yTD在1X,(x1 一 1)

} 
by taking the dot product of yT and t he columns of D巧－洛」 (x;_ 1) as they become available. In particular, 
if a factorization of Dx,_ 1 F; (x;-i) is available then this could possibly be done very efficiently, especially if 
the matrices of the factorization are sparse and banded. Also, note that this column by column approach 
could be useful in creating a parallel code when such hardware becomes common. 

It remains to generalize these results for the case that the advection scheme may be a multistep scheme 
at some or all steps. To do this we must only generalize the derivative matrices ih the above formulas. Thus, 
suppose that x; is the resul t of a two step explicit scheme, say 

x 1 = F 1(x0) 

Xj= Fj(Xj-1,Xj-2), j2:2-
(19) 

In this case for j ~ 2, 
Dx0Xj (xo) = D巧－尤 (x，一 1, Xj- 2) Dx0Xj- 1 { x o) 

+ Dx;_, Fj(Xj-1, Xj-2 )Dx0Xj- 2{xo) 

where we have applied a chain rule for Fj : 凪2n-+ 訊n , having vector form 

瓦{Xj-1 , Xj-2) = (ff {Xj-1 , Xj-2), · · ·,/~(Xj-1 , Xj 一 2)f.

4 
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The derivative matrices in (20) are given by 

哥(z)
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where z = {xj-1,Xj-2) and Xk =因，...,吐）T . Now it can be shown in this case that'v x0J(xo) can be 
found iteratively as follows: 

1. Set 
Vr = 0 and Wr = Xr - X户

2. For j = r - 1, r - 2, • • •, 1, compute the vectors 

wf =wf+lDX,F,+1(x,,xrl)+ (x, - X;bsV +vf+1 

v; = w'f+ 1 Dx,一 1F,+1(x,,xrl)

3. Set 
VxoJ(xo) = 2{wfDxoF1(xo) + (xo - Xob•f + V「}

(23) 

{24) 

(25) 

A systematic procedure for constructing these iterative schemes can be developed by an approach similar 
to the method of Lagrange multipliers for calculating the minimum of a function subject to constraints. 
Indeed, if an auxiliary function H(x0 , • • •, x「 ，乩.. ·,入r) , corresponding to the above example is defined by 

H(xo, · · ·, x「 , >-1' 心＝芷（x, －沖）T(x; - X户）十芷可 (F;(x; -1 , x;-2)-x;) (26) 
j=O i= l 

where we have set x_1 = 0 so that F1(xo, x一 1) = F1(xo) as in (19). Now, considering all the arguments of 
H to be functions of x 0 we have by the chain rule that 

「

立。H(x0 , • • •, x「入 ， ． .' 旵＝芷［2(x, ＿沖）T+祐1DX,F,+1(xJ,X, － 1)
i= O 

十入r+2DX,F,+2(x,+1,X,) －可］ Dx0Xj
「

十 I:(F; (Xj-1, Xj-2) - X」 ) TDxo).」
,.= l 

(27) 

where Ar+l = Ar+2 = 0. Next, note that if one requires that Xj = F1(x1_1,x1 一 2), j ~ 1 (so that 
x 1 = F1(x0) since we have notational set x一 1 = 0) then H(x0, • • ·, x「 ,A1 ,..., 旵＝ J(xo)- In add山on , the 
above formula (27) for 立。H in this case reduces to 

立。H(x0 , · · ·, x「 ' A 1,..., 旵＝ [2(xo -茫）T+ 刈D心(xo) + A沉。瓦(x1,xo)]

十立 [2(x; - x'' f + -'f+1Dx;F;+1(x;,x;-1) 
j=l 

+..\『+2DX, F,+2(x1+1,X,) _ Af]DXoX, 
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where the parameters, >.1 」. ..,).「 ,are still free to be chosen in any manner we please. If one now selects 
them to force all but the first term of the remaining sum in (28) to be zero, then one obtains the recusive 
formulas 

刈＝ 2(x, －茫）T+ 祐1DX,F,+1(xJ,xrl) + Af+2DX,F,+2(xJ+1, x」)， j = r, r - 1, • • ·, 1, (29) 

and 
'ilx0J(xo) = 2（面－ X护）T +刈Dx01訂 (xo) + >.「Dxo氏（x1,xo),

where Ar+l = Ar+2 = 0 . Note that each of these formulas are precisely determined by the condition that 
Dx;H = 0 which is one of the determining equations in the method of Lagrange multipliers. 

As a last general example, consider a 2-step advection scheme where x; for 」 2: 2 can be either an 
explicit 2-step as in (19) or the result of one Newton iteration applied to the equation 

F,(x」) = G, （x3 一 1,X;-2)

initialized with x;_1 . That is, x; is the solution of the linear n x n system 

D在1 瓦 (x;-1)(x; - x;-1) = G;(x; 一 1 內－2)- F;(x;-1) 

Now, the gradient of the cost function J(x0) is defined by (10) , 

,. 
"v x0J(xo ) ＝ L(x」 -X户）TDx0 x;(xo ),

i=o 

(30) 

(31) 

regardless of the advection scheme. Hence, the task of describing the adjoint method for a given advection 
scheme really reduces to defining recursive formulas for the derivatives Dx0x;(x0) in terms of the derivatives 
with resp ect to x0 of those Xk for j ~ k on which x; directly depends. Now, if x; is the result of an explicit 
step 吟 described in (19) then Dx0x; (x0) is given by (20)-(22). On the other hand, if x; is determined by 
the linear system (31) then Dx0 can be found by applying the chain rule to this system. Since 

Dx0[Dx,一 1 F;(x, 一-1) (x」 -X」 -1 )](xo) = [Dx,一 1F, （x,-l) （x, － X,-1)]Dx。x;-1(xo)

by the chain rule, and the first derivative on the right hand side of this expression is given by (A .5), it follows 
that Dx0x; (xo) satisfies 

Dx;-, Fj(Xj-1)Dx0Xj (xa) = Dx;_ , Gj(Xj-1 , Xj- 2)Dx0Xj-1(xa) 

+ DX,－2G,(xJ-1,x1 一 2)Dx0Xj-2(xo) - rj(Xj, Xj-1) Dx0Xj-1(xo), 
(32) 

where Dx」一 1 巴 (x;-1 內－2) andDx;_2G;(x;-1,X) 一 2) are defined in(21) and (22). To continue the devel
opment of this example one would now use these formulas to attempt to build recursive formulas for the 
gradient as done in the explicit 2-step discussion. However, at this juncture we wish to actually construct 
some adjoint methods for some specific advection schemes and also illustrate the precise form of the Jacobian 
matrices for two finite difference settings. 

2. Some Specific Examples 

In this section we give explicit formulas for the adjoint method applied to a system of ordinary differential 
equations corresponding to some standard advection schemes. We will also illustrate the form of some 
Jacobian matrices in two settings. Thus , we assume that the continuous model has been discretized in space 
resulting in a time dependent problem of the form of (4) 

dx 
dt 
=i-;- = F(x) , x(O) = xo 

6 



with x an n vector of time dependent model values. We further assume that this system is to be solved at 
discrete t imes via a specific time advection scheme. 

For our first example we shall assume that the time advection scheme is the following Runge-Kutta 
method of order 2: 

h 
X」 =x;-1 + i [F(x;-1) + F(x;-1 + hF(x;-1))], (33) 

for j = 1, 2, • • •, where h denotes the time step increment and x。 is a given initialization. Note that we have 
tacitly assumed that F of (4) does depend explicitly on t and that equal time steps are being used. Here 
Xjis an approximation for x(ti) , ti = jh. In a more general problem where F is of the form F(t , x(t)) with 
F : IRn+1 -+IR" and unequal time steps were taken the equations (33) would be replaced by 

X, ＝ x）一1+ 与 [F(tj-J,Xj-1) + F(t;, Xj-1 + hj +F(t，一 1,X;-d))

where to = 0 and t」 =ti- 1 + h; for j ~ 1. (Of course, the use an unequal time step Runge-Kutta 
would be highly unusual.) Returning to (33) , we must calculate D x0x;(x0) in terms ofDx;_,x;(x;-1) and 
Dx0x;-1(xo)- This is easily done using the chain rule. Indeed, writing DxF(y) for the Jacobian of F 
evaluated at y t ]Rn we have that 

Dx0Xj(Xo) = D在1 ｛杯1 十~ [F(x; -1) + F(xi-1 + hF(xj-1)）］｝严－心）

= [1 +引吣(x; _i) + DxF(x; -1 + hF(x;-1)){ I+ DxF(x;-1)}]] Dx0Xj-1 (xo) 

(34) 

Hence 
「

"vxJ(xo) = 2 L (x; - x户）TDx0X」 (xo)
j=O 

can be obtained iteratively as follows: 

1. Set 
Wr = (xr - x~6') , 

y「＝寸I+ 引吣（x「-尹吣{xr-1 + hF{x「-1)){ I+ DxF(x曰）｝］l
2. Forj=r-1,r-2,···,1,set 

Wj = (x」 -xt')+Yi+l,

yf ＝引I+ 引叨(xj -1) + DxF(xj-1 + hF(xj-1)){I+ DxF(xj-1)}]] 

3. Finally, set 
'ilx0J(xo) = 2((xo 一 xgb•f + yi) . 

Note that this i is is precisely the scheme given in the general explicit one step discussion with F j(Xj-l) given 
by (33) and 

Dx，一 1 瓦 (xj-1) =护抨泣(xj-1) + DxF(xi-1 + hF(xi-1)）｛巨吣(xj-1)}]]
Now, if F(x) is given by (2) so that 

F(x) = (/o(x) , · · · , /n(x)f 

where we have written n for N - l and each 

f, (x) ＝引
Ui+l 一 Ui -1

2h) , i = O,· · ·, n 

7 



with x = (uo, ··· ,Un) T ,u一 1 = Un and Un+l = uo . In this c邸e , we have that DxF(x) is a sparse (n+l)x(n+l) 
matrix. Indeed , using the notation 

000:·Cn 
····· 

~
~
~
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~
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(35) 

we have for this particular F that 
1 

D誤(x) =—T(c;, a;, b; ; n) 
2h 

(36) 

with 

c; = -x;, i = 0, • • •, n 

a;= x;+1 一 X；一 1, i=O,···,n 

b; = x;, i = 0, · • ·, n, 

(37) 

where u_1 = Un and Un+i = u0 . Hence, for the formula given in step 1 above writing x」= (z{ ,· · ·, z;V, 
the matrix DxF(x「-1 + hF(xr_i)) is given by (36) with 

c; = -(z~-l + hf,尸 (xr-1))

a. ＝年i + hf,冨(x曰） －元二｝ - M．雪 (x「 -1)
b; = x~-1 + hf,尸(Xr-1) ,

(38) 

where, as abov~, 甿才＝ z尸 and x霜＝ z尸． Thus, in this step and suceeding steps of this method _!,he 
evaluation of yT can be done efficiently by using recursive formulas that compute products of the form zT A, 
for z f JR.n and A an (n+ 1) x (n+ 1) trid」 agonal matrix, which avoid matrix operations. 

For our second example we consider the two step explicit method given by the Adams-Bashforth method 
of order 2. Thus, the formulas of {19) become 

x1 = xo + hF(xo) 
h 

X」 =Xj-1 + ;;-[3F(xj_i) - F(xj-2)) 」 2:: 2, 
2 

(39) 

where F is the function of (4) . Once again using the notation that DxF(y) denotes the Jacobian of F 
evaluated at y we have that the formulas (21) and (22) for the Jacobians of a general explicit 2-step scheme 
reduce to 

3h 
Dx;_1F;(x;-1, x;-2) =I+ 了DxF(x;-1)

and 
h 

D巧－ 2F;(x;-1,x;-2) = -~広F(xj一2)

(40) 

(41) 

With these formulas, the iterative scheme (23)-(25) can be utilized to give the adjoint method for a scheme 
using the Adams-Bashforth method of order 2 as it 's advection scheme. If the system being solved is that 
given by (2) and (3) then the matrices in (40) and (41) are the tridiagonal matrix given in (36) and (37) 
evaluated at the appropriate x value. Before leaving this example, we shall illustrate the Lagrange multiplier 
approach for generating the associated adjoint method. Let F denote the function of (4) and let DxF(y) 
denotes the Jacobian of F evaluated at y . Writing 

，）心引 h 
H(xo, · · ·, x凸団＝芷(x」 -X户）爭，－ Xobs xJ 一 1 + %(3F(x;-1) - F(x;-2)) -x」] (42) 

i=o i=1 2 
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where we have set F(x_i) = F (xo) so that xo+ 钅 (3F(xo) - F(x一 1)) = x0+hF(x0) as defined in (19) . Now, 
considering all t he arguments of H to be fu nctions of x。 we have by the chain rule that 

v'x0H(xo, · · ·, x「'札 ．．．， 旵＝ ［2(xo －這）T +>.「+硐－扭）Dx0 F(xo)]
r 

十 t [2(x; -x户）T+ 祐1 十釒 (3Af+l －鄢Dx; F(x」) －可］ Dx0x;
i=l 

(43) 

!:__ r J.., T 

十瓦［巧－1
h 

i=1 2 
+ -(3F(xrl) - F(x司） - X)] DXoA, 

Since we are assuming that we are using the Adan卫,-Bashforth method as described in (39) as our time 
advection scheme, the last summation of (43) is zero and in this case the functions H and J are identical. 
Now using the fact that (43) is true for any choice of the parameters >.1 , · · ·, >.「， we recursively select them to 
give a recursive procedure for calculat ing'ilx0J(x0). Setting >-r+ l = >-r+2 = 0, we define these parameters 
recursively by requiring that 

汀＝ 2(x, －沖）T+ 祐1 + ;(3Af+l －祐2)Dx;F(x」) (44) 

for j = r , r - 1, • • •, 1. Finally, using the vectors 舄'and 刈 determined in (44), we have that 

"vx0J(xo) = 2(xo - xgb•f +Ai+ h（刈－扭）Dx0F(xo) (45) 

As a final note, we wish to observe that the above development could be done completely componentwise 
using summations rather than matrices and vectors. Although this approach would probably be more tedious , 
it would actually exhibit the precise dependence of all the variables and probably lead to correct Jacobians 
in a somewhat more straight forward manner. It would seem that this approach should be most effective 
when coupled with a symbolic algebra package to compute the needed partial derivat ives. If one could couple 
with this a symbolic package that could also determine the structure of all matrices involved that would 
take effective advantage of sparseness and other special structure then this would be real close to giving an 
effective au tomated procedure for the adjoint method . 

Next, we consider the case that the advection scheme is given by combining the above Adams-Bashforth 
explici t scheme with a second order Adams-Moulton correction to get a combined explicit and implicit 
scheme. Thus, if F denotes the function of (4) and DxF(y) denotes the Jacobian of F evaluated at y then 
the advection scheme becomes 

x1 = xo + hF(x o) 
h 

Xj = Xj-1 + ~ [3F (xj-t) - F(xj - 2)], 」~ 2 and even , (46) 

h 
[I - ~DxF(xj-1)] (xj 一 Xj_i) = hF(xj 一 1) , j ~ 3 and odd, 

where this last equation is one Newton iteration applied to 

h h 
X」 - - F(xj) = Xj - 1 + iF(xj - 1) , 2 2 

(47) 

initialized with x;_1 , Note that the third equation of (42) is a linear system that determines x」 and must 
be solved at each odd numbered step of the advection scheme. When the mat rix I -粗広F(x;-1) is banded 
then this may be done efficiently. Also, since the same system wi th different right hand sides will have to be 
solved to find the mat rix D在1 x;(x0) , the same linear systems solver should probably be used in this case. 
Now for these odd steps, the matrices D杯洛」 (xo) are the solution to the linear equations 

h h 
[I_ ＿広F(x;- 1 )]D巧－1X」 (xo ) = J + i- DxF(x; -1) + r(x; -1 , X; -2) 

2 2 
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(49) 

with dk =囯－丑一1) and z = Xj -l • Now, in the adjoint steps one does not need the matrix Dx;_,x;(xo X，一 ,x;(xo)
but rather the product of wTD在,x;(x0) . Thus, if a banded LU factorization for I -紅広F(xrl) was 
available from the forward implicit step , say, then this same factorization could be used to find the columns of 
D在, x; (x0) , where the inner product of these columns and w could be calculated as they become available, 
avoiding matrix operations. 

For our last example we begin the development of the adjoint method for a FORTRAN code given 
in appendix F of the book "An Introduction to Three Dimensional climate Modeling" by Washington and 
Parkinson. This code is a benchmark weather prediction program for comparing the performance of su
percomputers that was coded by P. Swarztrauber in 1984 at NCAR. It is based on a paper by Sadourny, 
(1975) studying the dynamics of finite difference models of the shallow water equations. The continuous 
model of the shallow water equations used here is one where the Coriolis terms have been dropped and 
the potential vorticity is employed in the advection terms. The finite difference scheme is a staggered grid 
scheme that conserves potential enst rophy. The time differencing method is a centered difference scheme 
with a ·small amount of smoothing between successive time steps to damp out high oscillations. This scheme 
can be realized formally as a 3-step explicit method . To do this, we first introduce the predicted grid val
ues u , v , and p , the east-west and north-south velocities and the pressure/density, respectively. Using a 
grid spacing of -6.x with M grid points in the x direction and a grid spacing of -6.y with N grid points in 
the y direction and assuming all dependent values are periodic in both directions, these vectors are given 
by u = {u;;} N+l,M N,」+ 1

v= 的｝1＝ 1,J =2 , p= ｛祠
N,M 

i=2,i=1 , I=1J=1 , where each vector is ordered lexicographically 

i.e. , u = (u21, u22,· ··, U2M , ua1,· · ·, uN+1 ,1,· ··,uN+1,Mf, etc.). Also, the periodicity assumption re
quires that u1」 =UN+i ,j , un = UN+1 ,M+1, etc. Wri te x = (u ,v,pf and define F : 凪3NM -+ 凪3NM by 
F(x) = (f1 (x), f2(x) , f3(x))T where each fk :凪3NM -+ ]RNM and corresponds to the steps of the code giving 
UNEW , VNEW and PNEW, respectively. For example, 

(f1(x) = (/J1(x) , · · · , /却 (x) , /出 (x), · · · , fh+1 ,1 (x) , · · · , fh+1°,M(x)f 

where 

f,; (x) = [ 声包，J+ l 一功－ l ，rl ) －瓦包，J+ 1 一 U，， ） 幸（u, －吣1」) －式（u,， －吣－ 1 ）
Pi-1 」 +Pij + Pi,i+ l + Pi-1 ,j+l. Pi -1 ,' 一 1+P, '， 一 1+P, 」 +Pi -1 ,j

] 

X ~ [(Pi ,j+l + P,」） x vI,) +1 + (p,- 1,m + p, － 1 」 ) X Vi-1,j (50) 

+ (Pi -1,」 +p，一 1 ，rl) x v，一 l ,j + (Pij + Pi,j-1) X Vi;] 

＿正 [p,，+ 4(u?+l ,， +u?， + u?，J+ 1 十 碭）－ p，-1 ,'- i(u?， +u?-1,,+ u?-1社1 + V辶）］

In actually setting these equat ions up one must also use the periodicity of these vectors whenever possible 
in order that the vector components that occur in these equations are in the primary range as listed above 
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· .. 

(i.e., the first index of u must be in the range 2 to N + I and the second index in the range 1 to M). The 
other equations for the two remaining component vector functions of F can be likewise written from the 
code. Given this notation , the advection scheme of this code for given initial fields xo = (uo, vo , P。户 can
be described as: 

h 
X1 = xo + iF(xo) 

2 
X2 = x1 + hF(xi) 

Xj = Xj-2 + a(Xj-1 + 2x) 一 2 + Xj-3) + hF(xi 一 1)

for j 2:: 2 where a is the smoothing parameter and is given the value of.001 in the code as presented. 
Note that the same vector valued function F occurs in every step of this iterative scheme. Furthermore, the 
Jacobian of this function can be written in terms of the Jacobian functions of its three component functions . 
Indeed, 

吣(y)= rn荳｝）
where the rows of Dxf1 (y), say, are found by taking the partials of the component functions of f1 having the 
same row position as the row sought in Dxf1(y). Note that Dxfj(Y), for j = 1, 2, 3 can depend on any of 
the components of x, although , the actual number of components of x on which a given component function 
depends is quite small. Thus, the following recursive formulas hold for the adjoint method in this problem: 

h 
Dx0x1(xo) =I+ iDxF(xo) 

2 

Dx0x2(xo) = [I+ hDxF(x1)]D這1 (xo) 

Dx0Xj(xo) = Dx凶－2(xo) + o(Dx凶－1(xo) + 2Dx凶－2(xo) + Dx0 X} 一3(xo))

+ hDxF(xj_i)Dx0Xj-1 (xo) 

for j ~ 3 where the matrices on the right handed side are now defined recursively. 
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Appendix A 

In this appendix we summarize some mul tidimensional derivative facts . However, at first let us observe 
that with the symbolic algebraic packages currently available (i.e., Maple, Mathematica, etc.) the task 
of calculating J acobians could either be relegated to these codes or double checked by these codes . That 
is , the task of finding the derivatives described below could be completely automated; although , questions 
concerning effective computation with the resultant expressions would seem to still need individual attention . 
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Thus, let F : IRn-+ IRm with F(x) = (fi(x), · · ·, fm(X)）仁 for x £ ]Rn and each J」 :IRn -+ IR, j = l, · · ·, m 
Then 
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where x = (x1, • • •, xnf, so that DxF(x) is a m x n matrix. For the special case that m = 1 so that 
F = f : IR-+ IRn one has that 

Dx/(y) ='vx/(y) 

＝（$-(y),.. . 旦
OX1 

(y), 
'OXn 

(y)) (A.2) 

which is simply the gradient off evaluated at y. 
Next , let A: 凪n-+ 1Rn xn be defined by 
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where each a;j : ]Rn --+ JR. Here D這(y) is a linear mapping of A : Rn--+ ]Rn xn and using the definition of 
DxA(y) it can be shown for z € ]Rn that 

[DxA(y)](z) = （訌悶：
V汪n1(Y) · z
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where Vxaii(Y) • z represents the dot product on the two n-vectors Vxa;j(Y) (the gradient of the function 
a;;(x) with respect to x evaluated at y ) and z. 

Finally, consider H : ]Rn .....]Rn where H (x) = A(x) F(x) with A(x) and F(x) (for m = n here) are 
defined in the above paragraph. Then DxH(x) is a linear mapping of ]Rn.....]Rn. Thus, for z l IRn , using 
the "product" rule we have that 
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Hence, 

[D洱(x)] =（闆闆
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(/1(x)管(x)+··. ·+fn (x)管(x))

(f1(x)鉕(x)+ +fn(x)鴕(x)）)
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