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PROGRESS IN VISIBILITY MODELING 

K. A. Fuller, Dennis M. O'Brien 
and 

Graeme L. Stephens 

Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523 

Abstract 

The cross section for total scattering by a cluster of spheres is derived from an integration, 
over a closed spherical surface, of the scattered Poynting flux associated with the different 
pairs of spheres in the ensemble. With the use of the addit ion theorem for vector spherical 
harmonics, the integral can be evaluated analytically. The pair-wise cross sections can be 
rearranged into an expression for the scattering cross section of sphere aggregates which is 
analogous to that obtained from Lorenz-Mie theory for a single sphere. This latter formulation , 
however, is more difficult to treat numerically than is the summation over pair-wise cross 
sections. 

The cross section for total scattering by a cluster of spheres thus derived is applied to 
a study of the effects of scavenging and aggregation on the specific absorption of carbon. 
Results are presented for polarization- and orientation-dependent absorption cross sections 
of sulfate haze elements and cloud droplets with small carbon grains (spheres) attached to 
their surfaces. Soot typically occurs as aggregates of carbon spherules. In order to address 
the validity of certain assumptions that are made in the analysis of such structures by fractal 
theory, comparisons between the absorption cross sections of free carbon, linear chains, and 
tightly clumped carbon spheres are also provided. 

Monte Carlo integration of the radiative transfer equation is the technique most easily 
adapted to complex scattering geometries. It is demonstrated that the multidimensional inte­
grals can be evaluated more accurately and more efficiently with quasi Monte Carlo integration 
and that the convergence of the multiple scattering series can be accelerated by estimating the 
rate of decay of the tail of the series. Each of these techniques has been found to be robust 
and applicable to scattering with any geometry. 
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Chapter I. Introduction 

Scattering and absorption of electromagnetic (em) radiation by systems wherein two 
or more spheres may come in contact or in close proximity to one another is relevant to a 
very broad range of topics. Some examples are surface-enhanced Raman scattering, spectral 
hole-burning memories, 「adiative transfer in atmospheres, extinction of microwave signals 
by planetary rings, propagation of radiation through interplanet ary and interstellar dust , 
combustion diagnostics, and colloid electrooptics. A brief historical review·of the study of em 
scatt ering by ensembles of closely spaced particles has been recently given by Fuller.1 

The total scattering cross section, a a , of a particle is given by 

6s = J Energyscattered/unit time/unit solid angle dO. 
n Incident energy flux (energy/unit area/unit time) 

(1) 

For a spherical scatterer, this integral can be solved analytically. The response of a cluster 
of spheres to em radiation derives from the natural modes of the individual spheres, but the 
modes of each sphere couple to those of all other spheres in t he ensemble and the mathematical 
description of the scattered radiation is inherently more complicated than that for isolated 
spheres. With the use of the addition theorem for vector spherical harmonics (vsh), not only 
can the scattered fields of the cluster be determined; the as integral can once again be solved 
analytically. The cross section for tot al extinction , 叩， can be found with relative ease from 
the optical theorem and the absorption cross section of the cluster is simply 

6。= 6e - 6s · (2) 

Without analytic solutions for the cross sections, it is doubtful that t he gram-specific absorp­
tion efficiencies of small, highly absorbing grains attached to (scavenged by) large, weakly 
absorbing haze elements or cloud droplets could be calculated. 

A review of the Lorenz-Mie treatment of the scattering cross sections of spheres is provided 
in the next chapter in order to set down, in a more familiar context, definitions and identities 
that will be used in the study of multisphere systems. That discussion will not assume the 
~ig~ sy~met~y that w?uld_ otherwi~~ be appropriate !~r the tr~atme?t of si°:g_le spher:s. Thi~ 
is done in order to make the transition to systems of interacting spheres a bit smoother and 
to more clearly compare the scattering cross sections of single and multiple sphere systems. 
Paralleling the theory for single spheres, a theory is then developed for the scattering cross 
sections of ensembles of spheres.'freatments of this problem have also been rendered by 
Borghese et al.2 and by Mackowski.3 Detailed comparisons of these works and that presented 
here are best made after a discussion of the theory has been provided and is therefore presented 
in II.4. For completeness, the addition theorem for vector spherical harmonics, as it pertains 
to t he determination of scattering cross sections, is provided in the Appendix. 

In terms of number density, the atmospheric aerosol is dominated by a submicron fraction 
comprised mainly of sulfate species and light-absorbing carbon (soot). These particles not only 
degrade visibility, but are likely, to some degree, to influence climate. The ubiquity of soot 
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and its dominance as an absorber of visible radiation in the atmosphere are well known. In 
anthropogenic haze, individual haze elements frequently occur in the form of sulfate/soot 
composite particles. For example, recent work by Podzimek4 indicates that in a polluted 
urban-marine environment one can encounter haze droplets containing insoluble inclusions 
and with small particles deposited on their surfaces. The concentration of insoluble attached 
particles w邸 found to be comparable to the number of insoluble particles moving freely in air. 
In the above study, it w邸 estimated that the carbon content of the haze w邸～ 1.4 µg/m3 , 
that internally mixed particles accounted for between 1.5 - 10% of the aerosol "surface area," 
and that surface contaminants accounted for between 2 - 9% of the aerosol "surface area." 
The occurrence of carbon on or within cloud droplets is of interest 邸 a possible contributor 
to the so-called cloud absorption anomaly. 5 Light-absorbing carbon may also attach itself to 
dust grains. Soot, in turn, typically occurs 邸 clusters of carbon spherules. Until recently, 
no radiation models existed which could explicitly account for the effects of aggregation and 
scavenging on the absorption efficiency of carbon because no comprehensive treatment of 
scattering and absorption by particles with the relevant morphologies w邸 available.

Numerical studies of the modification of scat tering and absorption cross sections of at­
mospheric carbon grains by scavenging have been conducted 區ed on the theory presented in 
Chapter II and will be discussed in Chapter III. 

Given the importance of Monte Carlo methods in visibility modeling, research into im­
proving the efficiency of Monte Carlo integration of the radiative transfer equation has been 
conducted. This work h邸 already been published [D. M. O'Brien, "Accelerated qu函 Monte
Carlo integration of the radiative transfer equation," J. Quant. Spectrosc. Radiat. Transfer 
48, 41-59(1992)]. For completeness, a copy of this article has been included here as Chap­
ter IV, with consequent independent numbering of equations, figures , tables, and references. 
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Chapter II. Scattering and Absorption Cross Sections of 
Compounded Spheres—Theory 

II.2. Cross Sections for a Single Sphere: Reduced Symmetry Case 

II.2.A. The scattered elect百c fields 
The ability of a particle to scatter light depends upon its characteristic size, x, its re­

fractive index N（入） ， and the wavelength , 入 ， of the incident light in vacuo. Parameters of the 
form kx and Nkx (k = 2可入） are typically used to describe the 'optical' . dimensions of the 
scattering system. For a sphere, xis simply its radius, a. 

The scattering geome切 is depicted in Fig. 1. Rather than restricting the wave vector, 
ko , of the incident radiation to be parallel to e z, we will require only that it lie in the the 
xz-plane, oriented at an angle o: from the z-axis. The angle, specifies the polarization of the 
incident field E。.The incident fields are expanded in the vector space spanned by the vector 

( .) 
spherical harmonics, N詆 and M品， where wave functions with superscripts (1) and (3) 
depend radially on the spherical Bessel functions , 」五 (kr) and the spherical Hankel functions 

(1) of the first kind, h}.t'(kr), respectively. The Ricatt i-Bessel functions are often encountered in 
(1) light scattering and are here defined by the relations (n (x) = x丘(x) and ~n(x) = xh;/'(x). 

Explicit expressions for the vsh are 

M詆＝（M醞eo+M螂立）exp(im</>) (3) 

N鼯＝（NR詆er +N0立逼立）exp(im</>), (4) 

where, for example, if j = 3 

MO{3) = i en(kr) 
mn kr 元nn(cos 0) 

M亜{3) en(kr) 
mn =－寺~Tmn(cos0)

NR(3) = en(kr) 
mn (kr)2 n(n + l)P「(cos 0) 

N0{3) 氐(kr)
mn = kr Tmn(cos O) 

潯(3) 吒'n(kr)
mn = kr Tmn(cos O), 

with 

7r mn(COS()) ＝二院(cos 8), 

d 
'T mn(COS 8) =—P訳cos 8) . 

d() 

、

丿
、
,
'

,

、
l

'

567 ,

I

、

'

I

、
,

＇
,

｀

、
1

J

、
1

」

89 '

_

、
＇

—

、

(10) 

(11) 

4 



s 
E 

y 
^e 

, 

___ 

lllllllIl 

__ 

, - T 

E。(Y＝莖）

Es1. 

k。
Eo(y;-o) 

/ 

乙x

^ 
＿＿＿＇＂＇~卹 ez 

/' 

/' 

5 



P「 (cos 0) are the 邸sociated Legendre functions of order n and degree m . The primes indicate 
differentiation with respect to the argument. 

The sign convention to be adopted here is prescribed by the propagation factor exp(ik • r­
iwt) , and the harmonic time dependence will be suppressed hencefort h. Restriction of ko to 
the xz-plane results in a significant simplification of the coefficients involved in the plane wave 
expansion, without loss of generality, giving 

oo n 

E。 exp（心 - r) = IE。 1互工"(PmnN昷~ +qmnM玭） ， {12) 

where Pmn and qmn are of the form 

n 2n+l (n -m)! r - i -rmn(cosa) 
Pmn = _,n(n+ 1) (n+m) ! [ 7rmn(cosa) ] , ,=戶］ (13) 

and 
2n + 1 (n - m)! f rn mn(cos a:) 

qmn = t"n(n+ 1) (n+m) ! ［七mn(cosa)] , ,=櫺］． (14) 

Recursion relations for 7 mn, 7r mn , Pmn, and qmn have been worked out by Fuller.6 
In Fig. 1, radiation is scattered into an angle f3 , relative t o the k。 direction , with po­

larization components E.,11 and E.,.1.that are, respectively, parallel and perpendicular to the 
plane swept out by the scattering angle. The scattered field can be expanded as 

oo n 

E.=IE心主"(AEmnN昷~+AHm0M玭） ， (15) 

where the expansion coefficientsAEmn and AH mn correspond, respectively, to the transverse 
magnetic (TM) and transverse electric (TE) modes of the sphere. For a single sphere, these 
take on the form 

AEmn = Pmn an 

AHmn = qmn bn , 

where an and 転 are the familiar amplitude coefficients of Lorenz-Mie theory: 

% = N吡(e) 血(n) ＿吣）吡(n)

NCL(o）曲（n) ＿吣）此(n)

bn = N吣）吡（n) －此(e) 血(n)

N吣）心比（n) ＿氐(e) 血(n) '

6 
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with {! and T/ representing ka and N ka, respectively. The expansion of the scattered field in 
the highest symmetry case, i.e., when ko II ez, can be recovered as follows: Write 茌(x) and, 
subsequently,,,. mn and 7r mn as hypergeometric functions 7 and let x -+ l. It is seen that 

禋（士1) =（士1)" 佈 ，m

Tmn（士1) =（士）n+l 差 (n + 1)81 ,m 

n 
'1rmn （士1) =－（士）＂ -(n + 1)81.m, 

2 

where h1,m is the Kronecker delta symbol. Now, 

p;m = (-1严 (n,m) P~, 

where (n, m) = (n - m)!/(n + m)!, and hence 

If 7 ＝計2 then 

and if, = 0 then 

T-m,n = -(-1严 (n,m)T血

辶m,n = (-1严 (n,m)7rmn•

P-m,n = -(-1严 (n, -m)Pmn ,

q-m,n = (-1严 (n , -m)qmn, 

P-m,n = (-1严 (n : -m)Pmn, 

q_m,n = -(-1严 (n, -m)qmn·

The expansion of the scattered fields now simplifies to 

CO 

E,=IE。若＼］二 (ianN甑－加M~~~),

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

for -ex polarization. This is the form that one commonly encounters when the scattering 
properties of isolated spheres are of interest.8 

11.2.B. The cross sections 
The differential scattering cross section of a particle is defined as 

必 Energy scattered/unit time/unit solid angle 
= dn - Incident energy flux (energy/unit area/unit time)· 

(24) 
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The total scattering cross section: a.,, is then found from 

1 1 冧~
g ＝閬苴Re1 [<Ea x H:) · e「 r2 sin 0 d0 d</> , (25) 

where So = E。 x H0 is the Poynting flux of the incident field and < > represents a time 
average over an interval that is much larger than t he period of the stimulating radiation. The 
extinction cross section may be found from the optical theorem, viz. , 

41r 
6e =—Re（瓦（o). e0), k2 

and by conservation of energy, the absorption cross section is 

6a = 6e - 6s· 

(26) 

(27) 

By integrating Eq. (25) over an imaginary spherical surface that is concentric with the scat­
terer, it can be shown that the scattering cross section of a sphere is 

21r 
00 

g ＝戸芝(2n + l)(lanl2 + lb詛）．
n=l 

(28) 

Once again, it will prove useful to carry out this analysis for an angle of incidence, a i= 0. 
In the abscence of free charge and current densities, the free space Maxwell's equations for 
time-harmonic fields lead to 

_t 
Hs =—V XE&. 

wµo 

The vsh have the property 

V x Mm11 = kNmn and V x Nmn = kMmn• 

Thus 
tk 

oo n 

H:=IE。 1¾.芸主n(AH;n(N琺）• +AE:,n(M鍅）·） ,
and 

6s = [［Re［偉主(.4Emn(N玭）十AH=n(M鼯）） x 

' 

(29) 

(30) 

(31) 

oo n 

芷 2 (AH;,"＇（N趴）• +AE~'n'(M比）•)] · er 戶 sin 0 dB d</>. 
n'=l m'=-n' 

(32) 
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In car可ing out the above integration, it is noted that 

f (Nm,n X N辶） . er 「2 sin() d() d</> = f (Mm,n x M:n, ,n') · er 「2 sin () d() d</> = 0 (33) 

and 

f (Nm,n x M辶）. er 「2 sin() d() d</> = - f (Mm',n' x N:n,n) · er 「2 sin ()_d() d</> = N(m, n) , 

(34) 
where 

N(m, n) 
-41ri n(n + 1) (n + m)! 

m.n1= 
拉 2n + 1) (n - m) ! C認'n6m泗'6n,＂' ·

As noted by Bohren and Huffman,6 the Wronskian of the spherical Bessel and Neuman func­
tions leads to 

(35) 

Re(ie認'~) = -1, (36) 

and thus 
oo n 

41r ~ ~ n(n + 1) (n + m )! 
g ＝百芷芷

) 
n=1m=-n (2n+1) (n- m )! (µE而I'+µ三） (37) 

11.3. Cross Sections for Sphere Aggregates 

Having established the mathematical form of the total scattering cross section of a sphere 
with a scattering geometry that does not exploit the symmetry of a single sphere, one can 
now make the transition to scattering by clusters. The scattering geometry for such a case is 
depicted in Fig. 2. The spheres in the cluster are centered about the to origins, where l is an 
index that identifies specific constituents of a set of L spheres. Let the position vector that 
locates the observer with respect to the £th sphere be given by 

'r= 伊e「+妒e9 + £¢%, (38) 

where, for example, ler is a unit vector in the £th coordinate frame and points in the ~ 
direction. Henceforth, the dimensionless position vector 呤 will be used. In Fig. 2, the unit 
vectors 邸sociated with the l'th origin have been displaced from the l 'x e'y-plane to the 令勻－
plane. The constituent spheres (with radii 句 are now characterized by the size parameter 
琫= lJ and complex refractive index 攷 The dimensionless center-to-center distance between 
spheres l and l'is denoted by kde,e' . The principal or primary coordinate sytem will be that 
in which t he integration of the Poynting flux is carried out and coincides to the case l = 1. 
It will be convenient in such instances to visualize to in Fig. 2 邸 the origin of this system, 

£' and any other t · 0 , l'i= 1 邸 a secondary origin. The L - 1 secondary coordinate systems are 
related to the principal coordinate system by pure translations. 
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II.3.A. The scattered fields 
The first definitive solution to the problem of scattering by more than one sphere was 

obtained by Bruning and Lo,9 and theirs is the notation adopted here. The scattered fields 
are expanded as 

oo n L 

瓦＝芸王玉6戸潭凶Hm為血）
L ' - (39) 

=2 七，
l=l 

where the expansion coefficients ¾Emn and ¾H mn correspond, respectively, to the TM and 

TE modes of the l t h sphere, and ｀紕 and 1.M紕 are the vector spherical harmonics in the 
lth coordinate system. 

In order to apply boundary conditions successfully, one must be able to expand the fields 
scattered by the l'th sphere about the center of any lth constituent of the cluster. This can 
be accomplished through the use of the addition t heorem for vector spherical harmonics10•11 
which states, in part , that 

00 V 

t'M玭＝芷芷 (£Mf」心(kde ,t) + tN~1JB:;1vn(kdt1,t) 
v=l µ= - v 

) 
00 V 

｀玭＝芝芝（國心(kdi' ,t) 訌M~1JB~n(kdt1,i)).
v=l µ=-v 

) 
(40) 

The translat ion coefficients A「?(kd1,, ,i.) and B~n(kd1,, ,1.) are a rather complicated function of 
Clebsch-Gordan coefficients and of the geometry of the cluster. It is seen from the Appendix 
that A闆？（kdU' ） = （ － 1)n+vA闆？（kd1,,,1.) and B闆？（kd1.,1.') = -(-1t+vB闆？（ kd1., ,1.) .

By applying the condition that at any surface the tangential components of both the 
total electric and the total magnetic field strengths must be continuous in conjunction with 
the above addition theorem, one is led to the following set of 2L coupled linear equations 
involving the （臨 yet undetermined) scattering coefficients: 

HEmn = %[£Pmn十蓋雲(l'AEµvA:::'n 占HµvB:::'n)] (41) 

讎mn ='bn ['qmn十辯為('AHµ.A臨 +"A辶B~n)] (42) 

The coefficients of the plane wave expansion about an £th secondary origin are obtained by 
simply multiplying 加mn and 1qmn by the phase factor exp（心· d1 ,e). Eq. (42) can be cast in 
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the form of a matrix equation in which the translation coefficients give rise to the coefficient 
matrix, and the scattering coefficients can then be found by direct matrix inversion. 

Alternatively, the scattering coefficients may be found by the order-of-scattering (OS) 
mehtod of Fuller and Kattawar.12 •13 For ease of 亟ualization , t he following description is 
limited to just two spheres, but the extension to clusters of three or more is straightforward. 
The OS process can be visualized as follows: First , plane wave radiation strikes one sphere 
which then scatters a field (as prescribed by the standard Lorenz-Mie theory) both to the field 
point and to the other sphere. This second sphere then responds to the field incident on it 
from t he first sphere, scattering radiation to the field point and back to the first sphere. This 
process is continued indefinitely, and the total scattered field is obtained as a vector sum of 
these partial fields plus a sum of of the partial fields which arise from plane wave radiation 
incident on the second sphere. 

The total field scattered by the pair is thus 

°' L 
芷芷tE?＼ (43) 
j=Of.=1 

where the j t h-order partial fields I.E尸 are in turn expressed as 

団＝芷(``L`｀翩 ．n,m 
) (44) 

From here, one follows the same routine as was used to derive Eqs. (41) and (42) to arrive at, 
for the case of two spheres, 

(i 一 1)

laC::n = 1心立aµ.vA臨十兄'v一 1) B臨
u µ. 

) 
心＝ 1bn 荳：（兄'V\臨+ %；]一戶n)

( J) （ J 一 1 )

2a~n = 2an ~瓦(la~:1 ) A~n + 1 
(J 一 1 )

A~- +lb.... B~ mn + b µ.v -mn 
V µ. 

) 
(45) 

(i ) （ J 一 1 ) （ J 一 1 )辶＝％芝瓦(lb~:1 > A臨尸a Bµ.v 
V µ. 

~:l) B~n) · 

In addition to quantifying the partial fields which combine to produce the net scattered 
（」一 1)

field , Eq. (45) allows one to see exactly what role each of the vth-degree, µth-order 1a:v 
（」一 1) - (j) 

and 1b~v · modes arriving from sphere 1 play in stimulating the nth-degree, mth-order 2a µ.umn 
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(」)

and 2b~n modes in sphere 2 for any jth order of scattering. The expansion coefficients of the 
total scattered field are then given by 

00 

辱mn = tf,a~n 
j=O 

00 

紐mn ＝芷吣＼．
,.=O 

(46) 

As noted in the following chapter, the OS method h邸 proven to be especially important in 
the efficient calculation of the scattering cross sections 邸sociated with large, lossless droplets 
that have small carbon grains attached to their surfaces. 

II.3.B. The cross sections 
In order to determine the total power, W , radiated from a surface :E enclosing an ensemble 

of scatterers, the integral 

」2 S · 戸 sin BdBd</> = l (E x H*) • i 戶 sin ()d()d<f> 

must be evaluated, where, for a system of L particles, 

L 

E=Eo+L厐
t.=1 

and 
L 

H=Ho + L l.Hs. 
l=l 

The radiated power is thus 

W= 訌（E。 x'H: 訌瓦 xH訂 · er 戶 sin0d0d¢

心」（厐 x 冗）. er 戶 sin 0 d0 d</> 
£ 2 

十芝瓦」 (I.瓦 X l'H:). er r2 sin 0 d0 d</> 
£ £, #£ z 

(47) 

(48) 

(49) 

(50) 

The first integral in Eq. (50) represents the interference between the incident electromag­
netic field and the fields scattered by each of the monomers in the system. As in the case 
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of a single particle, this interference term corresponds to the total power removed from the 
incident beam. The evaluation of this integral will not be pursued at this time since the ex­
tinction cross section is readily found from the optical theorem. The second integral is equal 
to the total power scattered by the lth sphere while the third integral accounts for the fact 
that relative phases of the fields of the lth and l'th scatterers will vary over the surface of 
integration, contributing further to the scattering cross section of the ensemble. The surface 
of integration is henceforth assumed to be a sphere centered about the principal origin. 

The equation for the total scattering cross section is thus 

1 _ ~ ~ r21r r1r 
|〈 So〉柘＝ 5Re22」」（厐 x 「H:) · er 「2 sin 0 d0 d</>. 

£ £' 0 JO 
(51) 

It is noted that the integration is to be carried out in one set of coordinates, but 厐 is

referenced to a second coordinate system and 勺I& is referenced to a yet another. The notation 

g=22 
£ £' 

is now introduced. 
In principle, one could simply evaluate 

U ' 
6s 

211" 1'11" 

6s = j 丨（瓦厐 x 芝 t.'H:) · er 「2 sin 0 d0 d<p 
0 JO £ £' 

numerically but this provides only a rather limited solution to the problem. 

(52) 

(53) 

Use is once again made of the addition theorem. In Eq (39), it is to be understood 
that the transformation of coordinates is carried out at the surfaces of the scatterers and 
thus 店 <kdu, . In this case, the dependence of the translation coefficients on the distances 
between spheres is governed by spherical Hankel functions. When evaluating the integrals 
over a surface that contains all scatterers in the collection , 矽＞ kdll'. The dependence on 
kdu, is, in this case, governed by spherical Bessel functions and the corresponding translation 

coefficients are here denoted as 心(kdt1 ,l) and迂(kdt, ,t ) , The addition theorem takes the 
form 

00 V 

「M琺＝芝瓦（吣心(k如）+ lN~3J恥~n(kde, ,l)
v=1 µ=-v 

) 
00 V ` ＝芝瓦（回心(k吣） 訌M位B;t(kd1.1 ,1.)).

v=l µ=-v 

(54) 

The scattered fields of each sphere can thus be expressed in terms of the basis functions of 
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the principal origin, viz., 

oo n 

厐＝芝芷
n=l ==-n 

［~Em忘主（回心(kd£,1)+1M國~n(kde,i)
v=1µ.＝一V

) 
00 V 

洹心差(1NL9恥~n{kd,,1) + 1Mj;'J心{kd,:,))l 
and 

oo n 

' l'H • ik = s wµo 芷芷n=l m=-n 

［國這：立 (1N~？心（kde1, 1) + 1M位恥~n (kde,,1)) • 
v=l µ=-v 

) 
00 V * 

+ lAE~n芝芷 (1N囧恥~n(kde' 」） +1ML`n(kdm)
v=lµ=-v 

) ] 

(55) 

(56) 

The summations in the addition theorem are uniformly convergent and the series can therefore 
be integrated term-by-term, giving 

仡＝ [ Re22 ll(v+1) (v + µ) ! X 
m,n µ,v (2v 十 l)(v - µ)! 

[ ($!Em為E;. 十 $!Hmn已）芷，（心心')·``'n' )·) 

屯Emn陣；u+讎mn竺）芷，（心（已＇）＊十己心')*)］ (57) 

U'£'t • It is t o be noted that u. a" = (, (,a" and thus 

U'g +£'伝＝ 2Re(U'6,) ． (58) 

This allows the total scattering cross section to be expressed as 

(Js = Lu<Js + 2Re L ll<Js + 2Re L芷 U'(Js, (59) 
£ £ 

£>1 £'>£ 
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demonstrating that , 邸 with the c邸e of a single sphere, a$ is an inherently real quant ity—the 
real part of Eq. (51) need not be taken because the integral itself is real-valued. 

The terms in Eq. (57) can be rearranged to give 

41r'°" n(n + l)(n + m)! 
g ＝弓芸~ (1Amnl2 + IBmn 「) (60) 

where 

Amn ＝荳（瓦』臨邙H』Lun)

Bmn ＝凳；（SI.E』鄰十 SI.H』亞")
(61) 

The structure of this equation is ident ical to that for single spheres, where the amplitude 
coefficients of the natural modes of the sphere have been replaced with amplitude coefficients 
that may be 邸sociated with the natural modes of the cluster. These latter modes depend, in 
turn, on the amplitudes of the normal modes of the monomers in the cluster and on the precise 
information on the geometry of the cluster that is contained in the translation coefficients. 

II. 3. C. Special cases 
As noted in the previous subsection and in Section 4, some important features of the cross 

sections are made visible by choosing different ways in which to write them. Additionallyi there 
are commonly encountered special c邸es and approximations to scattering by more complicated 
particles that require only simplified versions of Eqs. (57) and (60) . 

When coordinate translations are constrained to the z-axis we have 

00 

''M玭＝ t ('M砒己(kd,,,,) +'N叫這(k吣））
max(l , m) 

00 

｀玭＝ 2 （國心(k吣）訌M叫這"(kd1.,,t.)) .
ll = 

max(l , m) 

As defined above, kd1 ,1 = 0. As shown in the appendix, 

lim Am,n 
µ ,v = 6 6 

kde,e1 -+ 0 
n ,vvm,µ 

and 
lim Bm,n =0, 

kd£,£＇ 一。
µ ,nu 

16 

(62) 

(63} 

(64) 

(65) 



with the result 

ll' - 41r 
g = ~ReL 

m,n 

n(n + l)(n + m)! 
X 

(2n + l)(n - m)! 

鄒hEm為E;,.n, +'AH mn'AH;,.n'）心' ).+

(¼Em丸H:nn'+ :4Hm為E;＂＇）心')·] .

Obviously, when £ = £'= 1, 

~ -- - _~ _, _, 
A:Vn(A茘｀）拿＝ 6m,µ位，m＇ 6n ,u6n ,n'

B闆？（Brv, n' )．= i闆？（Bru,n' 「 + B農？（i闆：n' 「＝ 0 .

Thus 
11 耘 n(n + I )(n + m)! 

(J~ =己： （2n+1) （n-m)！（ l比Em,n 「 +|11Hm，詛）．
m,n 

(66) 

(67) 

(68) 

(69) 

When l # l , the phase of the scattered fields at points on the surface of integration will 
contain a phase shift that is dependent on the angle into which they are scattered. When a 
sphere of sufficiently large radius is considered, this phase factor can be expressed as 

exp(-ikd1 ,1. cos 布，1.) , (70) 

where 
cos 布 ，1, = sin 01,t sin 0 cos（布 ，£一 <p) + cos 01 ,l COS 0 . (71) 

When R., l'=/ 1 in the integral of the Poynting flux, this leads to an even more complicated 
integrand. On the other hand, if £ = £'then the relative phase of the scattered electric field 
of a particle is exactly canceled by the complex conjugate of t he relative phase of its scattered 
magnetic field. Thus 

u 耘 n(n + l )(n + m)! 
g ＝己芝 (2n+1) （n-m)！（ |AEm,n 「 +|51.Hm ，詛） ，

m,n 
(72) 

which it must if the solution obtained from Lorenz-Mie theory is to be recovered in cases 
where dependent scattering can be ignored. It then follows from Eq. (57) that 

芝（心(kdt,1) （心'(kdt,1)) • + B~n(kdt ,1) （已＇ （ kdt,1 )丫＝ 6m，志，V (73) 
m',n' 

) 
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and that 

芷，（心(kdt,1)（后'(kd,,1))' 十迂(kdm)（心' (kd,,1))') = 0. (74) 

Applying the same argument to Eq. (60) gives 

芷 n(n+1) （n+m) ！
(2n + l)(n - m)! 

（心(kd1. , 1) （心'(kd山）·+恥~n(kd1. ,1)（已'(kd1.,1))*)
m,n 

and 

芷 n(n+1) （n+m) ！
(2n + l)(n - m)! m,n 

= bm,µbn ,11 (75) 

（心(kde,1)（已'(kde,1)「 +B茘"(kdl, 1) （心' (kde,1))*) = 0. (76) 

These relations provide valuable tests for convergence of the series expression of the scattering 
cross section of a cluster. 

11.4. Discussion 

As a means of checking Eqs. (59) and (60) , Eq (53) w邸 evaluated by Simpson's rule for 
函es involving pairs of spheres, linear chains of five spheres, and tightly packed clumps of 
five spheres. Complete agreement with the numerical integration w邸 found in all c邸es. Such 
comparisons are rather limited, however, since the time required to perform the numerical 
integrat ions rises dramatically with modest incre邸es in the size of the largest monomer. For 
this re邸on, comparisons were limited to size parameters of ~ 11 or less for pairs of spheres. 
Available machine memory limited application of the theory for sphere clusters to 钅~ 3 for 
the c邸es involving five spheres. Nonetheless, the excellent agreement that w邸 obtained in the 
comparisons that could be made is believed to be sufficient verification of the theory presented 
here. 

Other work h邸 been conducted on the scattering cross sections of sphere clusters, most 
notably, that of Borghese et al. 2 and of Mackowski, 3 and a discussion of it is warranted here. 
Borghese et al. have developed, independently, a theory for em scattering by clusters of 
spheres and have provided an expression for a., that is similar to Eq. (60). Agreement with 
their formula is e函ly obtained for the cases they considered, but they only tabulated values 
of a., for 0.001 ::; lJ::; 0.1. Although Borghese et al. needed to retain terms through n = 3 in 
their expansions in order to get convergence of the series to four significant figures , such w邸
not the c邸e here. Their spheres are within the Rayleigh limit and dipolar contributions were 
always sufficient in the use of both Eqs. (59) and (60). Borghese et al. also noted that an 
incre函ng number of terms had to be retained in their series 邸 the separation of the spheres 
W邸 incre邸ed. Once again, such a complication was not encountered in the course of the 
comparisons made in the present study. 
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Borghese et al. found that their values of a & failed to converge to the sum of the cross 
sections of independent spheres for their smaller particles when kd口＝ 200ka and attributed 
this to interactions among higher order multipoles. This seems not to be credible, however, 
since in such cases kd1 ,2 < 1. Under such conditions the particles are not significantly out 
of phase in there response to the incident radiation and hence behave approximately as a 
single Rayleigh scatterer with twice the volume of a single sphere. This leads to a scattering 
efficiency that is four times that of the isolated spheres and this is what has been observed. 
The scattering cross section of a pair of identical, noninteracting Rayleigh particles is readily 
distilled from Eq. (59) by retaining only the contributions of the electric dipoles: Here 

6s = %+ %+ 2Re(%) = 2 [% + Re (%)]. 

When,= 計2, Eq. (59) for 丸 reduces to 

9寸a1l2
Re {12aa) = ~ cos (kd cos a) (2a(l, 1, -1, 1, O)j0 (kd) + a(l, 1, -1, 1, 2)」.2 (kd)] k2 

-9寸a112 cos(kd cos a) f (1, \ ~·, _, coskd ＝矽 kd[(~ - 1) sin kd - ~], 

(77) 

(78) 

where kd = kd1 ,2 and an expression for the coefficients a(m, n , µ., 11,p) is given in the Appendix. 
The ratio of the scattering efficiency of the pair to those of the individuals can now be written 
as 

Q.,3cos(kdcosa) ff 1 ~\ _,_,_, coskd 囟改）＝ 1 - 5 kd ) [(~- 1) sinkd- 立－］． (79) 

For sufficiently small kd this ratio is 2, 邸 expected. Any variation from Eq. (79) is a me邸ure

of the strengt h of electrodynamic coupling between the dipoles. 
The above discussion of the work of Borghese et al. should not be interpreted 邸 an

indictment of the validity their theory: on the contrary, in a later paper14 they compared 
the extinction and ph邸e shift efficiencies of pairs spheres of more appreciable size (~ ~ 3) 
to experimental data. The agreement w邸 good and their values have been reproduced with 
the use of Eqs. (26) and (38). It is also worth taking this opportunity to correct an oversight 
made by Fuller1 wherein the latter paper of Borghese et al. w邸 not included in a list of the 
few theoretical treatments of the cluster problem that included some type of experimental 
verification. 

Mackowski3 derives expressions for the cross sections of multiple sphere configurations , 邸
well. As in the work of Borghese et al., his expression for aa is obtained by transforming the 
scattering coefficients of the different spheres into a representation about a principal origin 
(this transformation is the same 邸 that given in Eqs. (61) above) and evaluating integrals 
similar to those in Eqs. (33) and (34). The result is an expression that is nearly identical to 
Eq. (60). 

The more prominent accomplishment of Mackowski's research on the multiple sphere 
problem, ho`rever, has been the development of a set of recursion relations for the translation 
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coefficients that obviates the need for the Gaunt coefficients defined in the Appendix. The 
reduct ion in time and, more importantly, computer memory required for sphere aggregate 
calculations makes this one of the most significant breakthroughs in the problem in thirty 
years and will undoubtedly lead to investigations on aggregates of more and larger monomers 
than would have otherwise been possible. 

In the implementation of Eq. (60) and, most likely, of its counterparts given in the works 
of Borghese et al. and Mackowski, the convergence of the series depends on the maximum 
value of kdt,l'. This requires a larger set of scattering coefficients and hence the solution 
of a larger system of equations. These increases are rapid and make such solutions more 
cumbersome for large separations between spheres l and £'. Fortunately, it was found in the 
course of this research that the increase is not due to couplings between increasingly higher 
multipoles, but simply to an increasing number of terms needed in the addition theorem to 
accurately transform multipole coefficients from one set of coordinates to another. Thus, just 
as larger spheres require more terms in the series expansion of the incident fields to ensure 
that the boundary conditions are matched, so must the number of translation coefficients 
be increased for larger separations to ensure that the fields of the lth sphere are accurately 
transformed to the basis functions centered about the l'th sphere. This requires only the 
calculation of additional translation coefficients—a task which is much easier than solving 
larger sets of equations and made even more so by the work of Mackowski—and computing 
the innermost summations in Eq. (57) . The number of translation coefficients required for a 
prescribed accuracy can be found from the criteria laid out by Eqs. (73)-(76). 
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Chapter III. Scattering and Absorption Cross Sections of 
Compounded Spheres—Calculations. 

III.1. Calculations for scavenging by haze and cloud elements 

Results are presented in this section that illustrate the effects that the dispersion of 
carbon grains onto droplet surfaces may have on the m邸s absorption efficieny of atmospheric 
carbon. The scattering geometry for the surface dispersion calculations is shown in the insets 
of Figs. 3-10. At present, it is 邸sumed that the concentration of the soot component of the 
aerosol or cloud is low enough so that only single grains of carbon need be considered. It 
is furt her assumed that the grains are of a spherical morphology. Soot concentrations that 
would involve two or more grains per aerosol particle will be the subject of future research. 

It is popular (and, at times, useful) to define the efficiency factors for extinction, scattering 
and absorption to be, in order, 

Qe 
6e = G' 

Qs = 
6s 

G' and Q。=—
6a 

G' 
(80) 

where G is the geometric shadow of the particle and a denotes the respective cross sections. In 
view of the complex morphologies of sphere aggregates, however, a better choice for efficiency 
factors is the gram-specific cross section, A, the units of which are m勺g:

(J (J 
A=..:_= 

m - (specific gravity)(particle volume)· 
(81) 

Figs. 3- 10 catalogue the calculated specific absorption cross sections of selected sizes of carbon 
grains attached to nonabsorbing sulfate particles with radii of 0.5 and 1.0µm or to water 
droplets with radii of 3.0 and 5.0µm. The variation in specific absorption with the orientation 
of the particle is displayed for mutually orthogonal polarizations of the incident beam. It is 
noted that for a single sphere of radius a < < >., 

3k _ I N2 -1 A。（入） ＝了Im(芷 +2)
9k INl2 sin (2 tan可Im(N)/Re(N)]) 

= 
(82) 

p [ INl4 + 4(1 + Re2{N} - I記 {N})]

At,\= 5.5 x 10-7 m this gives a specific absorption cross section of~ 3.654 m勺g for a sphere 
of carbon having a refractive index N = 1.80 + 0.5i and specific gravity p = 1.8g / cm3. This 
limit is very near the specific absorption of the isolated O.Olµm carbon grain depicted by the 
narrower line in, for example, Fig. 3. The above wavelength and parameters for carbon are 
assumed throughout the rest of this work. 

The b函c features of the dependence of A。 on orientation can be understood from geo­
metric optics: An optically large sphere with a refractive index of ~ 1.5 will focus light into a 
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region near its surface. If the refractive index is ::::::: 1.33 then lig凪面11 be focused into a volu皿
slightly less than half a radius from the sphere surface. The refractive effects of the sphere will 
prevent most of the incident radiation from reaching regions other than the focal volume on 
the shadow side of the surface. Reflections from the shadow surface of the sphere will produce 
a secondary focal volume narrowly centered about the illuminated side of the droplet. Such 
features of a spherical lense are manifested in the behavior of t he absorption cross sections 
of the carbon grains 邸 a finction of particle orientation in each of Figs. 3- 10. The larger 
the optical size of the host particle, the more accurate the geometric optics picture. When 
carbon grains are found within the focal volumes of the larger particles, their absorption cross 
sections can be enhanced by well over an order of magnitude. 

Carbon spheres with radii of 0.01 , 0.05, and O.lOµm are considered. In each of Figs. 3-
10, A。(a) is displayed for both polarizations. The intermediate-sized grain is considered first 
and, in the figure that immediately follows , both the largest and smallest grains are studied. 
For comparison, the specific absorption cross sections of the corresponding carbon particles in 
isolat ion are also provided. 

III.1.A. Carbon on a concentrated sulfate particle 

The refractive index of the host particles considered in Figs. 3- 6 is taken to be 1.52 + O.Oi; 
appropriate for sulfuric acid droplets or ammonium sulfate particles at low relative humidities. 
The absorption cross sections of carbon spheres attached to other particles not only depend 
on t he orientation of the system relat ive to the incident beam, but , as is seen in the figures, 
on t he polarization of the beam, 邸 well . This is primarily because the stucture of the electric 
fields along a specified equator of the host have a strong polarization dependence. In fact , 
the smaller carbon grains act 邸 probes of the source function, E • E* , at the surface. (The 
magnetic fields are not probed since the absorption arises only from the coupling of the local 
electric field to current densities which are themselves proportional to that field .) In this 
regard, att ention is called to the incre邸ed detail seen in A。(a) for the 0.0lµm carbon grain 
considered in Fig. 4 over that for the 0.05µm grain of Fig. 3. On the other hand, A。 (a) for a 
O.lOµm grain is considerably smoother. The larger the grain, the less sensitive its A。 to rapid 
variations in E • E*. This effect of an incre函ng grain size is reminiscent of the convolution of 
a noisy function with a Gaussian profile of incre函ng width. 

For the polarization'Y = 0, the incident elect ric vector h邸 a component that lies along 
the line of centers of the two spheres, giving rise to a radial component of E at their surfaces. 
The electrodynamic coupling of the radial component of the field that arises when'Y = 0 in 
addition to the coupling of the tangential component explains why Aa(a) tends to be larger 
than for the c邸e'Y = 90°. 

The lensing effect is seen to be stronger for the larger sulfate host , 邸 is the refractive 
shielding in the region 30° < a < 90°. This latter effect serves to hide the carbon from the 
incident radiation, thereby offsetting to some degree, the incre邸ed heating of the grain within 
the focal volume of the host. Once again, both of these effets are explained qualitatively by 
the geometric optics picture. Attention is called to the fact that in Fig. 6 A。 (8°) > A。 (0°) for 
the smaller carbon grain. This is a consequence of prominences in the source function near 
the surface of the particle, just off the beam axis. Such prominences are commonly seen in 
source functions 邸sociated with morphology-dependent resonances.1 
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III.1.B. Carbon on a water droplet 

T he absorption cross sections of carbon particles attached to cloud droplets have also been 
investigated and some of the results are displayed in Figs. 7- 10. There is a strong enhancement 
of A。 near a = 0, as expected, and an off axis prominence is evidenced consistently for the 
polarization, = 0. Attention is also called to a second peak in A。 near a = 17°. This second 
peak locates the so-called critical ring.15 

The lensing effect of the water droplets does not enhance the absorption cross sections to 
as great of a degree as it does in the case of the smaller sulfate particles,_ primarily because 
the sulfates have a higher refractive index and hence their focal volume is centered at or very 
near the surface. On the other hand, the intersection of the caustic with the surface of the 
water droplets near a = 17° produces an enhancement in A。 over a somewhat greater range 
in orientation. The caustic more sharply defines a boundary between regions with high values 
of IEl2 and those where IEl2 ~ 0 for the optically large water droplets and hence refractive 
shielding of carbon grains by cloud droplets is more pronounced than by haze elements. 

111.2. Calculations for carbon agglomerates 

Of considerable interest in the study of interstellar and interplanetary dust , extraterres­
trial atmospheres (especially that of Titan), and combustion-generated soot aerosols are the 
optical properties of aggregates of carbonaceous monomers. Two general cases, ramiform and 
aciniform aggregates, are considered here. These cases are represented by, respectively, linear 
chains and tightly packed clusters of five spheres. Although this limited set of examples can 
hardly constitute an exhaustive survey of the optical properties of soot agglomerates, it sub­
jects certain approximations that are fundamental assumptions in the application of fractal 
optics to this problem to comparisons with exact calculations. 

The mass extinction and absorption cross sections for a linear chain of carbon spheres 
are shown as a function of orientation in Figs. 11- 13. Similar results for a tightly packed 
hexahedral cluster are provided in Figs. 14- 16. For comparison, the cross sections for isolated 
monomers and for equivalent-volume spheres are also shown. 

The scattering geometry for the ramified aggregates is shown in the insets of Figs. 11 
and 12. As seen in Fig. 11, extinction by the smallest monomers is due almost entirely to 
absorption. This is not unexpected since the mass scattering coefficient of small particles is 
proportional to their volume, whereas the mass absorption cross section is independent of 
their size1 as seen in Eq. (3). For the same reasons, the extinction cross section of the isolated 
spheres (free carbon) is nearly identical to that of the equivalent volume sphere. Fig. 11 also 
provides a demonstration of how polaroid J-sheet generates polarized light. Extinction by 
the linear chain is about twice as great when the incident field is parallel to the chain than 
when it is perpendicular to it. Such dichroism is also clearly seen in Fig. 12 but the radii 
of t he monomers are five times those in Fig. 11; scattering is no longer negligible and there 
is considerable separation betweeen the curves for extinction and absorption. In Fig. 12 the 
size parameter of the spherules is 1.142 and scattering now accounts for about half of the 
extinction. The polarization dependence of the cross sections is now reversed, with the case of 
endfire incidence now leading to the greatest extinction. It is also noted that in the transition 
from ka = 0.5712 to ka = 1.142 for the primary spheres in the chain, the extinction cross 
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section of the equivalent volume sphere falls slightly while that of the free carbon increases 
by about 70%. The increase for the free carbon is accounted for by an increase in scattering 
and the decrease for the equivalent volume sphere is due to a decrease in absorption. This 
diminished absorption is in turn owed to strong attenuation near the surface of the particle 
which , at this size, is beginning to prevent radiation from interacting throughout the volume 
of the absorber. 

To gauge the magnitude of the effect of electrodynamic coupling on the optical properties 
of the elongated particles under consideration, comparison should be made between the exact 
cross sections and those of the free carbon grains. It is noted that even- though the chain 
with t he smallest monomers displays in Fig. 11 an extinction (absorption) cross section with 
no orientational dependence when, = 90° , this does not mean that the effects of mutual 
polarization are completely negligible: The extinction cross section of the chain for this po­
larizat ion is about 20% lower than for the case of free carbon. (There is, of course neither a 
polarization nor orientation dependence for the cross sections of the noninteracting particles.) 
When , = 0° the optical properties of the chain become very sensitive to orientation, differing 
from those for, = goo the most at a: = goo . This is likely due to the di polar nature of the 
small spherules. The radial components of the electric fields of the grains can be roughly 
proportional to 戶 near the surfaces, providing for a more efficient electrodynamic coupling 
between the particles as a: approaches goo. When, and a: are both goo , the radial components 
of the electric dipolar fields vanish along the line of centers. These observations also apply to 
the results shown in Fig. 11 but , as noted earlier, scattering no longer makes an insignificant 
contribution to extinction. The anisotropy of the scattered field of these larger particles results 
in a stronger coupling between them when they are within each others geometric shadow than 
when they interact through side scattering at a: = go, provided that, = goo . This accounts 
for the values of A。 being higher near 0° and then dropping off as a: increases to goo. If, = 0° , 
the effect of the radial component of E still dominates the interaction as a: increases from 0° 
to goo. In Fig. 13 where the monomers are largest , the forward-scattered field provides for 
the greatest interaction, regardless of polarization. 

For the aciniform (grape-like) clusters considered in Figs. 14- 16, the agglomerates are 
elongated in the direction of E when, = goo , thus for the clusters made from the smallest 
(ka = 0.1142) spherules it is seen in Fig. 14 that this polarization produces extinction cross 
sections which are larger, by about 25%, than those of the free carbon. On the other hand, 
the extinction cross sections for, = 0° is almost identical to that of the noninteracting 
spheres. For the ka = 0.5712 monomers, the absorption cross section at, = 0° is still 
very nearly that of the free carbon (see Fig. 15) , indicating that coupling is still weak, but 
the extinction has increased by about 40% due to the onsset of significant scattering by the 
monomers. Dependent scattering is still relatively strong at, = goo , producing an extinction 
cross section that is about 60% larger than that of free carbon. A similar increase in the 
extinction of the equivalent-volume sphere can also be seen. Fig. 16 shows the absorption 
and extinction cross sections for a cluster made up of primary spheres with ka = 1.142. For 
both polarizations, the absorption cross sections of the cluster are much closer to that of the 
equivalent-volume sphere than to that of the free carbon because the compact cluster serves 
to shield parts of its constituents from the incident light . The extinction values fall in between 
those of the free carbon and equivalent volume sphere. Due to their compact morphology, the 
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clusters display very little orientation dependence in there cross sections. 

III.3. Ensemble-averaged cross sections 

In order to better understand the effects that scavenging of soot by transparent droplets 
may have on the optical properties of haze and clouds, it is necessary to consider the orientation 
and polarization averages of the cross sections presented in Figs. 1- 8. Cross sections for 
single carbon spheres are listed in Table I: The cross sections for spheres of the same size 邸
the spherules that are scavenged or agglomerated are provided , 邸 are the cross sections of 
single spheres having the same volume 邸 five spherules. (This latter set of values will be 
used in further analyses of the extinction properties of the carbon agglomerates.) For a given 
polarization, the orientation-averaged A。 is taken to be 

1 r?r 因＝ 5 [臣） sin(a) da. (83) 

If the particles are constrained to rotate in a plane that is, for example, perpendicular to the 
polarization direction given by 1 = 90° then the averages would take the form 

1 11" 

〈A〉=－」 A(a) da. 
T 。

(84) 

Table II provides a summary of the averaged mass absorption cross sections for both 
incident polarizations. One sees that for, = 90° ~ (A。〉 increases as the size of the carbon 
grains is increased for all four classes of scavenging droplets. The same holds true for, = 0° 
when cloud droplets are involved, but (A。〉 steadily decreases with increasing grain size when 
the grains are associated with the sulfate droplets. 

As noted in the Introduction, an important consideration in the study of visibility and 
climate is the possible alteration of the single scatter albedo of carbon-containing aerosol and 
cloud volumes by dispersion of that carbon onto droplet surfaces. (Absorption by internally 
dispersed carbon grains is the subject of an upcoming publication.16) It is therefore useful 
to compare the mass absorption cross sections of externally mixed carbon to the those listed 
in Table II. Table III displays the ratios of (Aa> from Table II t o the cross sections for the 
free carbon1 say Afc, is shown in Table I. The average of (A。〉 /Af c for the two polarizations 
is also shown. Relative to Afc, (A。〉 is seen to decrease with increasing grain size for most 
of the cases considered and never shows a significant increase. This is tendency is even more 
marked when the polarization-average is taken. 

From Table III, it is also seen that the single scattering coalbedo associated with surface 
mixing can exceed that for externally mixed carbon by almost a factor of 2 when the carbon 
grains and haze elements both assume their smallest values. More importantly, perhaps, is that 
（心 typically lies below Afc when cloud droplets are involved. There is here a clear tendency 
for the droplets to , on average, partially shield the carbon from the incident radiation: The 
strong enhancements of Aa near a = 0 due to lensing effects of the host sphere are washed 
out by the sin a term (i.e. , by the low probability for realizing such an alignment) to a much 
greater degree than is the reduction in A0 that is due to refractive shielding. Carbon on the 
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Table I. Single Particle Cross Sections for 
Carbon Spheres {!li2恆）

Free 
Carbon (fc) 

Equivalent-volume 
sphere 

size 
parameter 

园3. 702 0.004 3.698 I 3.803 
5.192 0.630 4.562 I 7.8蕊
8.512 3.174 5.338 I 7.144 

0.024 
2.507 
3.348 

Table II. Orientaion-Averaged Specific Absorption of 
Scavenged __f:_arbon Grains. <>n Aero~ces (m勺g)

C Radius {A。) Droplet 
(µm) 'Y = 0 'Y = 90 Size/Species 
0.01 8.574 4.893 
0.05 7.896 5.203 0.5 µm sulfate 
0.10 6.503 5.337 
0.01 8.816 2.267 
0.05 6.845 3.072 1.0 µm sulfate 
0.10 5.319 4.747 
0.01 4.136 2.469 
0.05 4.665 3.164 3.0 µm water 
0.10 5.214 4.424 
0.01 4.236 3.586 
0.05 4.673 4.324 5.0 µm water 
0.10 5.013 5.192 

Table III. Ratio of Specific Absorption of 
Scavenged Carbon to Free Carbon 

C Radius Droplet 
(µm) -y=O 'Y= 90 (}7 Size/ Species 
0.01 2.320 1.324 1.822 
0.05 1.730 1.140 1.435 0.5 µm sulfate 
0.10 1.218 0.999 1.109 
0.01 2.386 0.613 1.500 
0.05 1.499 0.673 1.086 1.0 µm sulfate 
0.10 0.996 0.889 0.943 
0.01 1.119 0.668 0.894 
0.05 1.022 0.693 0.858 3.0 µm water 
0.10 0.976 0.828 0.902 
0.01 1.146 0.971 1.059 
0.05 1.024 0.947 0.986 5.0 µm water 
0.10 0.939 0.972 0.956 
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surface of a cloud droplet can thus be expected to absorb slight ly less sunlight than if it existed 
interstitially within the cloud. 

It is not hard to visualize situations where ramified structures would display preferred 
orientations: Filaments aligned aerodynamically to maximize viscous drag or oriented in lam­
inar flows so 邸 to minimize torque are two obviuos examples. There are, however, more 
scattering geometries specific to particular problems than can be considered in this context 
at the present time. The linear chains, therefore, are allowed to 邸sume all orientations and 
Eq. 4 will be used, 邸 it was in the c記5e of the droplet/soot composite particles. It is not 
difficult , given the data provided in Figs. 11- 13, to estimate (A>using Eq.-5 should the need 
arise. 

Eq. 5 is applied to the tightly packed carbon clusters considered in Figs. 14- 16. An 
extensive investigation of ensemble averages of the optical properties of three-dimensionally 
configured sphere centers would be an appropriate topic for further research, but it is not the 
subject of the present study: Here the averages are taken in order to gain some initial insights 
into the influence of dependent scattering by comparing calculations made thus far with the 
properties of the single carbon spheres listed in Table I. 

Averages, taken 邸 described above, for the extinction, scattering, and aborption cross 
sections of the carbon agglomerates are provided in Table IV. As can be inferred from Figs. 11 
and 14, scattering is negligible for the aggregates comprised of the 0.0lµm spherules. Even 
where scattering is not negligible, it is still dominated by absorption , 邸 is the c邸e for the 
single spheres in Table 1. 

As noted earlier, there are some approximations that are routinely used in the fractal 
analysis of light extinction by soot that can now be tested against exact calculations. The two 
approximations considered here are: (1 ) that multiple scattering within the aggregate is small 
and (2) that absorption by the cluster is proportional to the total volume of the absorbing 
material, i.e., the absorption cross section of the aggregate can be inferred from that of an 
equivalent volume sphere立 Table V lists the ratios of the respective cross sections of the 
straight chain and aciniform aggregates, after polarization-averaging, to those of free carbon 
and of equivalent volume spheres. 

For the O.Olµm grains, the absorption cross sections of the aggregates are seen to be from 
11 to 14% larger than those of the free carbon or of the equivalent volume sphere, with the 
larger difference involving the free carbon. For the 0.05µm spherules, Ate underestimates a0 
for the aggregates by about 10%, where邸 this cross section is overestimated by the equivalent 
volume sphere, although the error is still only a few percent . The reverse is true for the O.lOµm 
monomers and the error in the equivalent volume approximation is found to be about 20%. 
It should be pointed out that Sorensen et al.17 employ monomers comparable to the O.Olµm 
grains. 

A bit of caution is to be used in interpretating the ratios of the scattering cross sections of 
the aggregates to those of the free carbon. The number of monomers in a cluster of identical 
particles is implicit in the particle volume appearing in Eq. 2. For small particles, however, 
the scattering cross section is proportional to the square of the volume so that if a cluster of L 
small spheres is itself smaller than the wavelength, the above ratio would be L if there were no 
cross t alk among the monomers. (This matter is discussed more fully in Section 4 of Part I.) 
The proportionality to L2 is taken into account in fractal research and the scattering cross 
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Table IV. _M皿~Cross Sections for Sphere Aggregates 

Linear Chains ofFive Spheres (m2Jg) 

自目目直言百
'Y = oo'Y = 900 

Close-Packed Hexahedral Cluster 
-y=Oo "(=900 

Ext Sea Abs Ext Sea Abs 
3.720 0.023 3.700 4.740 0.030 4.720 
6.632 2.047 4.583 8.400 2.740 5.666 
7.548 3.358 4.189 7.865 3.771 4.097 

monomer size 

ka=0.1142 
ka=0.5712 
ka=l.1420 

monomer size 

ka=0.1142 
ka.=0.5712 
b.=1.1420 

Table V. Ratios of Aggregate to Single Sphere Cross Sections 

醞「咾［言S臨互[\富三［／三薑eqv

逗了言百s sec;『『＼］［；言／三窰/eqV
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monomer size 

ka=0.1142 
ka=0.5712 
ka=l.1420 

monomer size 

ka.=0.1142 
ka.=0.5712 
ka.=1.1420 



sections of the O.Olµm sphere aggregates in Table V should be divided by another factor of 
five when testing the L2 (Rayleigh) approximation of light scattering employed in the study 
of fractal aggregates. Thus the error in the approximation is about 30%, rather than the over 
600% that one might infer from Table V. The use of the Rayleigh approximation for scattering 
by the 0.05µm grains breaks down and the scattering cross sections of the aggregates simply 
cannot be approximated in terms of free carbon. \Vhen these monomers are tightly clumped, 
their scattering cross section is approximated well by that of an equivalent volume sphere, but 
for the ramified structures, no reasonable approximation for the total scattering is obvious. 
(An equivalent area sphere was also considered, but the error for such an approximation was 
even greater than those for the free carbon and equivalent volume approximations.) The 
interactions between the O.lOµm spheres are not strong enough to produce an error of more 
than about 15% in the scattering cross sections of the aggregates relative to that of free carbon, 
but the agreement with the equivalent volume approximation is better still. 
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Abstract-Backward Monte Carlo integration of the radiative transfer equation is the 
technique most easily adapted to complex scattering geometries. However, backward Monte 
Carlo integration suffers from two disadvantages: the accuracy is often low because the 
solution calls for the evaluation of high-dimensional integrals, and convergence of the multiple 
scattering series is slow if the photons are only weakly absorbed by the medium. In this paper, 
we demonstrate that the errors from both sources can be substantially reduced. First, the 
multi-dimensional integrals can be evaluated more accurately and more efficiently with quasi 
Monte Carlo integration, a technique in which photon trajectories are selected to sample the 
integration domain optimally. Second, the convergence of the multiple scattering series can 
be accelerated by estimating the rate of decay of the tail of the series. Each of the techniques 
described in the paper is both robust and applicab~ to scattering with any geometry. 

I. INTRODUCTION 

There are many problems in atmospheric radiation which require the solution of the radiative 
transfer equation (RTE) in complex media. Examples range from visibility studies, such as those 
undertaken to model haze in the Grand Canyon, 1 to efforts to model the shortwave and longwave 
fluxes transmitted by fields of broken cloud户 Although some attempts have been made to adapt 
techniques for plane parallel media to complex geometries,4·5 essentially by developing the 
optical properties in Fourier series and replacing the RTE by coupled equations for the Fourier 
components, the technique which can be adapted most easily to complex geometries is that 
of Monte Carlo (MC) integration. Indeed, there is a distinguished history of applications of 
MC integration to cloud radiation, dating from the early studies by McKee and Cox,6 which 
demonstrated the importance of the finite dimensions of clouds, through to more recent studies 
of ensembles of clouds. 7 An excellent treatment of Monte Carlo techniques in atmospheric optics 
can be found in the book by Marchuk et al.8 

However, there are two serious difficulties with backward MC integration, both of which arise 
because the simulation of photon trajectories is logically equivalent to summation of the multiple 
scattering series. These difficulties are that (i) each term of the multiple scattering series requires 
evaluation of a high-dimensional integral, a process which can be very costly if high accuracy is 
required, and (ii) the accuracy of backward MC integration is poor when the medium is optically 
thick or has low absorption because the convergence of the multiple scattering series is then slow. 

The first objective of this paper is to draw attention to work on quasi Monte Carlo (QMC) 
integration, a technique which can significantly reduce the costs incurred in the evalution of the 
integrals in the multiple scattering series. It is well known that the error in statistical, or random, 
Monte Carlo (RMC) estimation of integrals has order N - 112, where N is the number of simulated 
photon trajectories. Perhaps less well known in the radiation community is the existence of QMC 
techniques for which the error has order N -1(log N)d, where dis the dimension of the integration. 
Examples will be given in the paper to illustrate the improvement in computational efficiency 
obtained with QMC integration of the RTE. 

The second objective of the paper is to introduce a technique for accelerating the convergence 
of the multiple scattering series. If/• denotes the contribution to the radiance from kth order 
scattering, and if S" denotes the nth partial sum of the multiple scattering series 

Sn= L /._ 
k 一 0
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then the convergence of the sequence Sn to the radiance / is monotonic because the terms It are 
all positive. The error term, En + 1, defined by 

/=Sn+ En +I• 

is unknown because it involves the radiance. However, a related quantity, Rn + 1, obtained formally 
from the error term by setting the radiance to unity, can be computed for negligible extra cost as 
a by-product of the calculation of Sn . The sequence 

Sn 
Qn(v)= ~ . O~v ~ I, 

1-vRn +I 

also converges to the radiance for any v in the range (0, I). It will be shown in this paper that there 
is a critical value of v, denoted v. , for which the convergence of the sequence Qn(v.) is both 
monotonic and optimal, in the sense that it is faster than the convergence of Qn (v) with any smaller 
v. In particular, Qn(v.) converges more rapidly than Sn. The estimation of v. is straightforward 
and computationally inexpensive. The importance of this convergence acceleration technique is 
that it significantly extends the range of optical thicknesses where both QMC and RMC integration 
are efficient. 

Each of the techniques described in this paper is both robust and applicable to scattering with 
any geometry. 

The paper contains four sections. The first is concerned with multiple scattering in an arbitrary 
medium. The second section outlines the essential elements of RMC and QMC integration and 
demonstrates that the standard variance reduction techniques of RMC integration are trivially 
included in QMC integration. Section 3 compares the computational efficiencies of RMC and QMC 
integration in solving the RTE for several test problems. Section 4 describes the convergence 
acceleration algorithm. 

1. MULTIPLE SCATTERING 

Consider a domain X of arbitrary shape containing a scattering medium whose coefficients of 
absorption, scattering and extinction, denoted by oc(x), P(x) and y(x), may depend upon position 
x within X. If there are no sources of radiation within the medium, then the radiance at point x 
in direction specified by unit vector s, denoted /(x, s), satisfies the radiative transfer equation 
(RTE), 

s · V/(x, s) = -y(x)/(x, s) + /J(x) f 畔）IJ)(X, S, S')/(x,s'). 
Cl 

(1) 

In this equation, p(x, s, s') denotes the phase function for scattering from direction s'into 
direction s, and 叩(s')denotes the solid angle centred on t, 

1 
叩(s') ＝一 sin 0'd0 ' d<f, ' , 

41t 
(2) 

where 0 ' and <I> ' arc the zenith and azimuth angles of s'. The solid angle and the phase function 
are normalized so that 

f 畔(s') ＝ l
。

(3) 

and 

f 畔(s')IJ)(X, S, S') = 1. 
。

(4) 

In order to complete the specification of the scattering problem, a condition must be imposed on 
the radiance on the boundary of X. The condition will vary with the problem, but, for the purposes 
of this paper, it suffices to choose the canonical boundary condition in which the inward pointing 
radiance is specified at all boundary points of X. The extensions to cover the cases of polarized 
radiation, internal thermal sources and a partly reflecting boundary are straightforward. 
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Monte Carlo integration of the radiative transfer equation 

Un 

屯

Uo 

Fig. I. Multiple scattering geometry. 

The integral form of the RTE asserts that the radiance at point Xo in direction So is given by 

/(Xo , So)= t(Xo西）I（氏，｀：如（Xo, X1){J(x1) t叩（心（X1,So, S1)/(X1, S1), (5) 

where 11o is the boundary point found by retracing the ray through point Xo in direction So, the line 
integral along the ray from 11o to Xo is denoted by 

『dx1. .., (6) 
吣

the transmittance of the medium between points x'and x is denoted by t(x, x') and given by 

t(x, x') = exp[-/(x, x')], (7) 

with /(x, x') representing the optical path length between the points, 

/(x, x') = f dx"y(x"). 

` 
(8) 

The multiple scattering series solution of Eq. (5) is obtained by iterating the integral equation. 
With reference to Fig. 1, the radiance after n iterations may be written as 

/(xo'So)= L /k(x。 , So)+ En+ I 囚， So), (9) 
k -O 

where Ii。 denotes the radiance transmitted directly from the boundary, 

庫凸）＝ t(x。 'o)l(Uo, So), (10) 

while /*, for k ~ l, denotes the radiance which has been scattered k times, 

［心， So)= I: dx,心這(xI)f 四）p（xl, % S, ) · · · 
吣

... x f.k̀\] dxkt (xk - l, xk)記） f dO(sk)p(xk, sF l , sk)t（辶 u,}/(u., s, }. (II) 
。

In Eq. (11), U; is the boundary point found by retracing the ray through scattering point X; in 
direction S; , i = 0,. .. , k. The remainder after n iterations, En+ 1, still involves the unknown 
radiance, 

E"十泅， So)= ［■o的 dx1心這（x,) i 皿）p(X1 , So, S1)... 

... x [` dxn+ lt(xn , xn+o I)'(xn+ I)f 叩CS.+, }p(x,., , ••• ••+, }/(x,.,, •• +, }. (12) 
•• JO 
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However, under rather general conditions which will be established later, the remainder converges 
to zero as n-－► oo , so the sequence of partial sums, defined by 

n 

Sn (Xo , So ) = L Ik(Xo , So), (13) 
k - O 

converges to the radiance. 

Trans/ ormation of the line integrals 

Each of the line integrals in Eq. (11) can be reduced to integration over the unit interval by 
simple changes of variable. First, the transmittance t '(x, x')and the extinction y(x')are related by 

dt '/dx'= 1(x')t '(x, X'), (14) 

where the prime on t ' indicates that it is to be regarded as a function of x'. This approach permits 
a typical line integral to be transformed as follows: 

窋＝ f.x dx't'(x, X'){J(x') .. . 

` dt ' 
= f dx't{J(x'）丨y(x') ．．．

dx' 

= Ix. ■J dt 'ro(x') · · ·, 
``.) 

where ro(x')is the single scattering albedo, 

ro(x') =/3(x')丨y(x').

(15) 

(16) 

Second, if £'denotes the distance to the next scattering point, expressed as a fraction of the total 
optical path length to the boundary along the ray through x, 

then it is clear that 

t ' - t(x, u) 
£' = 

1 - t(x, u) ' 

0 ~ £1 ~ 1 

and that 

窋＝ a(x, u) L1 d£ 'm(x') · · · , 

where a(x, u) is the absorption along the path from boundary point u to point x, 

a(x, u) = 1 - t(x, u). 

(17) 

(18) 

(19) 

(20) 

The point x'which appears in the integrand of Eq. (19) must be determined from £' by solving 
Eq. (17) for t ' in terms of £', and by solving Eqs. (7) and (8) for x'in terms of t '. It is in these 
calculations that the major cost of MC integration of the RTE is incurred. 

Trans/ ormation of the angular integrals 

In most applications the phase function depends only upon the scattering angle y, ', defined to 
be the angle between the vectors s and s', 

cos 1/1 ' = s · s', (21) 

and not upon the absolute orientation of the vectors. When this is the case, the polar axis of 
integration over s'appearing in a typical angular integration in Eq. (11), 

dJJ = i 畔(s')1/J(X, S, s') · · ·, (22) 
。
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may be aligned withs without changing the value of~- This permits~ to be written in the form 

吲＝『竺 f｀竺 sin y, 'p(x, cosy,') ···. 
。 21t 。 2

(23) 

The integration can be reduced to an integral over the unit square with new variables C'and'I' , 
defined by 

and 

Because 

it follows easily that 

,, ¢ ' 
= 2n 

I 
,, ' ( X, t/1 ') = ~『曲 sin t/lp(x, cos 1/1). 

。

一＝ ½ sin t/1 'p(x, cos t/1 '), 
dn ' 
dt/1 ' 

~=i。I d('i。I d,,' . . ..

(24) 

(25) 

(26) 

(27) 

The integrand in Eq. (27) still depends upon both direction vectors s and s', which must be 
「econstructed from C' and'I ' by reversing the mappings outlined above. 

As a result of the coordinate changes discussed above, the contribution to the radiance from kth 
order scattering can be represented as an integral over the 3k dimensional unit cube, 

屈So)= i。I d£1 i。1 d(1 i。I d'71 ... i。I d£k i。I d(k i。I d'lk 

x m(x1) · · · m(xk)a (Xo, Uo) · · · a (xk - 1, Uk- 1)t(xk, Uk)/(uk, sk ). (28) 

The integral can also be written in the more compact form 

Ik = f fk(z) dz, (29) 

where z denotes the point in the 3k dimensional cube with components 

Z = (Q , C,, " l, c2 , C2 ， 布， ． ．．， ck, Ck, "k ) (30) 

and 

f,,(z) = m{x1) · · · m(x1c)a (Xo, Uo) . . . a(X1c - 1' U1c - 1)t(X1c , U1c)/(u1c'S1c), (31) 

The conditions for convergence of the series are now apparent from Eq. (28): the medium must 
either be absorbing, so that m(x) < 1 for all x, or be finite in optical thickness, so that a(x, u) < 1 
for all x and u. 

It is worth noting the special (but important) case in which the source of illumination consists 
of a collimated beam from direction s. with flux density F, together with a diffuse incident radiance 
denoted by J. The radiance incident upon the medium at boundary point u in direction s becomes 

F 
/(u, s) =-;-= b(s, s.) + J(u, s) 

4冗
(32) 

and the kth order scattering term can be decomposed into a 'solar' component A1c and a'diffuse' 
component B1c, i.e. 

I1c (Xo, So)= A1c(Xo , So)+ B1c(Xo,So), (33) 
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given by 

巫So)= 玉 f。I dcI I。I d(l f。I d,,, . .. i。I dc.k -1 i。I dCk-1 i。I d'lk-1 i。I dc.k 

x m(x,) · · · m(xk)a(Xo , Uo) · · · a(Xt-1 , uk _ ,)t(xt, uk)p(Xt, sk -t• s.) (34) 

and 

B心， So)=I d€.1 i。I d(1 i。I d111 ... i。' d£/c ［可；邨
x ro(x1) · · · ro(xk)a（囧吣 · · · a(x1c _ 1, U1c _ 1)t(_x/e , U1c)J(U/e , S1c) . (35) 

In summary, the contribution to the radiance from processes involving k scattering events can 
be reduced by simple changes of the variables to an integration over the 3k dimensional unit cube. 
If the source is collimated, as m the case of the solar beam, then the dimension can be further 
reduced to 3k - 2. The next section discusses the evaluation of such integrals and their connection 
with the conventional, statistical interpretation of RMC integration, according to which radiances 
are computed as weighted averages of photon trajectories. 

2 . MONTE CARLO INTEGRATION 

The simplest estimate of the integral 

勺/(z) dz 

of the function / over a d dimensional cube is 

l !!.. 
, m=- 2f(zi), 

N , 
f 一 1

(36) 

(37) 

where the points Z;, i = I, 2,.. . , N, are chosen within the cube. The estimate J <Nl is just the average 
value of the integrand at the selected points. Alternatively,f(z」 ) may be interpreted as a statistical 
weight associated with the 'event' Z;, in which case the integral value is the weighted average of 
all the sampled events. For example, in the evaluation of Ik in Eq. (28), the components of each 
point Z; determine a photon trajectory whose associated weight is h, defined in Eq. (31), so the 
integral estimate afforded by Eq. (37) becomes a weighted sum of photon trajectories. Furthermore, 
the weight h has a simple physical interpretation. Each of the factors ro(x;) represents the 
probability of survival of the photon in the corresponding collision. The factor a(x; _ 1, u; _ 1) is a 
weight introduced to remove the bias caused by forcing collisions to occur within the medium along 
the path from u; _ 1 to X;_ 1. The variable change from 航 and r, ' ensures representative sampling 
of the phase function. In the parlance of RMC integration, the purpose of the weight is to bias 
thedIStribution ofphoton trajectories towards . he physical distribution. This process is an example 
of the general procedure of 'variance reduction' . The weights described above are the most 
commonly used because they are universally applicable and do not rely upon specific properties 
of the scattering medium. It is clear that variance reduction is implicit in Eq. (28). 

In RMC integration, the points z;, i = 1, 2,.. . N, are chosen randomly in the unit cube. It is 
well known that the error in the corresponding estimate J<Nl has order N-112: 

'＿，四 ＝ O(N 一 1 /2). (38) 

However, in QMC integration the points Z; are chosen according to a strategy designed to minimize 
the discrepancy of the set of points, a quantity which measures the uniformity with which the points 
are distributed in the unit cube. In order to define the discrepancy, let (i) z denote any point in 
the unit cube, (ii) M (z) denote the number points in the rectangular subregion with its minimum 
vertex at the origin and its maximum vertex at the point z, (iii) ~<N>(z) denote the difference between 
the fraction of points in the subregion and the volume of the subregion, i.e., 

M(z) 
囧(z) =—- Z 」 Z2 · · · Z,1, 

N 
(39) 
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where z 1, z2, · · ·, zd denote the components of the vector z. The discrepancy is the maximum value 
of the function 6<N>(z) as the point z varies over the unit cube, 

D<N> = sup fl1N>(z). 
l 

(40) 

If the points are distributed uniformly, then the fraction of points in any subregion ought to be 
nearly proportional to the volume of the subregion, in which case the discrepancy ought to be small. 

The importance of the discrepancy to QMC integration lies in the following inequality for the 
error in the estimate'邲

,＿，吖~ V(f)D吮 (41) 

where V(f) is the variatio忙 of the function f and D<Nl is the discrepancy of the selected set of 
points. Thus, the error is bounded by the product of two factors, one of which measures the 
'lumpiness'of the function, and the other the'lumpiness'of the distribution of points. Clearly, 
without a priori information regarding the integrand, the best strategy for minimizing the error in 
the estimate of the integral is to choose points with small discrepancy. 

The search for point sets with low discrepancy is an active area of mathematics, whose principal 
results can be found in a survey by Niederreiter.10 However, in this paper attention will be focused 
on one particular set of points, called the Halton 11 sequence, for which 

D面＝ O[N一 1(log N)1. 

The Halton sequence consists of points 

(42) 

Z;= (<pRI (i), <pR2(i), · · ·' <pRd (i)), 

where<pR (i) is the radical inverse function, which maps each integer i into a real number in the 
interval (0, l) by reflecting the representation of i in base R arithmetic in the decimal point. The 
bases R,, R2, ... Rd must be relatively prime and are usually taken to be the first d prime numbers. 
Details of a computationally efficient algorithm for calculating the sequence are given by Halton 
and Smith.12 

Figure 2 compares randomly selected points in two dimensions with the Halton sequence. 
For N = l O there is little to choose between the coverage of the two sets of points, but for N = l 00 

(43) 

Random and Halton points 
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Fig. 2. Distribution of random and Halton points in two dimensions for N = JO, 100, 1000. 

50 



D . M . O'BRIEN 

and N = I 000 the more uniform coverage of the Halton sequence is obvious. In the context of 
integration over the unit square, the Halton sequence will sample the integrand uniformly, whereas 
randomly selected points will m1dersample the integrand in some regions while oversampling in 
others, leading inevitably to greater variance in the estimate of the integral. However, as the panel 
of Fig. 2 with only N = 10 points shows, the advantage of greater uniformity is only obtained if 
sufficiently many points of the Halton sequence are used in the integration. In practice, a good rule 
of thumb appears to be that the Halton points will be significantly more uniformly distributed than 
randomly selected points if N ~ ed12. 

An important feature of the Halton sequence is that the points do not depend upon the number 
N. Consequently, if it is found that the error in the integration is too large after N points, then 
additional points can be generated without affecting the preceding calcula~ions. 

The cost of generating the Halton sequence is typically less than twice the cost of generating a 
corresponding sequence ofrandom numbers. For example, 10,000 points of the Halton and random 
sequences in 60 dimensions were generated on a 386SX PC in 47 and 26 sec respectively. In the 
context of solving the RTE, the additional cost of the Halton sequence is negligible compared with 
the total cost of simulating the photon trajectories. 

The Halton sequence is near optimal, in the sense that most other sequences with the same 
number of points will have a larger discrepancy. As an extreme example, N points selected on a 
uniform rectangular grid in d dimensions have discrepancy 

D<N> = O(d丨N叨． (44) 

If d is large, then it is clear that the discrepancy of this set of points decreases very slowly with 
N. Indeed, once d ~ 4, integration using a rectangular grid of points becomes prohibitively 
expensive. 

3. INTEGRATION OF THE RADIATIVE TRANSFER EQUATION 

In order to demonstrate the greater efficiency of QMC integration of the RTE, both QMC and 
RMCintegration were applied to the following test problems: (i) a uniform slab with conservative, 
isotropic scattering; (ii) a unifo rm slab with conservative scattering prescribed by a Henyey一
Greenstein phase function with asymmetry g = 0.75; (iii) a Gaussian slab with conservative, 
isotropic scattering and an extinction coefficient given by 

y(x) = 2z exp( －兀X勺，

for which the optical thickness varies along the x axis according to 

t(x) = exp(-nx 勺．

(45) 

(46) 

Conservative scattering provides the most stringent test for MC integration because the multiple 
scattering series is then most slowly convergent. Furthermore, the peaked phase function of 
problem 2 and the non-uniform geometry of problem 3 test the robustness and adaptability 
of QMC integration. In each case, the source was assumed to be the solar beam, and no diffuse 
radiance was assumed to be incident upon the medium. 

The computer code followed photons backwards through the medium from collision to collision, 
up to a maximum of n collisions. The photon trajectories were generated from points z in the 
(3n - 2) dimensional unit cube with components 

Z = (£1, (,,'11, £2, (2,'12 , • • • , ln- l • 'n-1 >'In - I• ln). (47) 

For each scattering order k = l,..., n, the trajectory from the exit point to the point of the kth 
collision was computed as follows: £1 determined the distance from the exit point,~. to the previous 
scattering point, x1 , while C1 and'Ii determined the incident direction, s1, of the photon at x1; the 
next three components, £2, C2,'12, determined the distance from x1 to x2 and the incident direction, 
Si, of the photon at x2 , and so on; £k determined the distance from xk _ 1 to xk, where the incident 
photon direction was taken to be that of the solar beam, s.. After computing the kth order 
radiance, the code continued the trajectory to the (k + l)st collision. For QMC integration, the 
point z was selected from the Halton sequence, whereas for RMC integration all components of 
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thickness T = I. The incident and exit zenith angles arc cos 9 • = -0.S and cos 9。 =o. s .
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z were chosen randomly in the unit interval (0, 1). Thus, apart from the mechanism used to generate 
the sampling points, the same computer code was used for both QMC and RMC integration. 

Values are given below for both the individual terms I1c and the partial sums Sn of the multiple 
scattering series. The estimates of these quantities, obtained by either QMC or RMC integration 
with N photon trajectories, are denoted by 坪 and 茫 respectively .

3.1. Test problem 1 

Figures 3, 4, 5 and 6 show the convergence of I俛坪， /~N> and S栩 as functions of N, the number 
of photon trajectories, for both QMC and RMC in the case of a uniform slab with optical thickness 
r = 1. The scattering is in the principal plane with incident and exit zenith angles, denoted 0 • and 
O。 , specified by 

µ.=cosB.= - 0.5, Jlo =Cos0。 =0.5.

The faster convergence of QMC integration is clear. However, it is also apparent that the 
improvement in convergence deteriorates with increasing order of scattering. The reason is that the 
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Fig. 5. Third order scattering integral, /陘 for the same conditions as Fig. 3. 

dimension of the corresponding integration also increases, and QMC integration with the Halton 
d/2 sequence requires approximately N ~ edti points in order to cover the integration domain more 

effectively than randomly selected points. Therefore, it follows that the greatest advantage of QMC 
integration of the RTE wiJI occur in optically thin media, where the multiple scattering series 
converges rapidly. 

A more revealing comparison of the performance of QMC and RMC integration is the cost, 
measured in terms of the number of photons (in units of hundreds), required to achieve an accuracy 
of £ %. The cases displayed in Table 1 correspond to scattering in the principal plane, with 

µ.=cos0.= -0.5, 

µ。 =cos 0。 =0.9, 0.5, 0.1, - 0.1, -0.5, -0.9, - 1.0, 

and optical thicknesses in the range 

r = 1 丨 8, 1 丨4, 1 丨2, 1, 2. 

The prescribed error takes the values 

£ = 0.1 , 0.2, 0.5, 1.0. 
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Fig. 6. Sum of the first 30 terms of the multiple scattering series, S~. for the same conditions as Fig. 3. 
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Table I. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy 
of£% for QMC and RMC integration of the RTE for test problem I. An asterisk(•) ind」cates that 
the required accuracy was not reached after 105 photons. The reference values were taken from the 
Tables compiled by van de Hulst.U The column labels Q and R denote QMC and RMC, respectively. 

Also µ•=cos 6 • = -0.S,,io =cos()。

T c /JO= 0.9 /Jo= 0.5 µo = 0.1 郿＝－0.1 郿＝－0.5 郿＝－0.9 郿＝－1.0

% Q R Q R Q R Q R Q R Q R Q R 
1/8 0.1 60 拿 67 670 85 . 43 310 120 拿 53 . 32 拿

0.2 43 730 20 380 8 . 28 200 39 . 44 . 9 970 
0.5 12 14 9 120 4 17 11 130 12 83 10 26 2 13 
1.0 3 12 2 1 2 5 3 15 5 6 4 16 1 2 

1/4 0.1 61 拿 76 670 90 . 60 拿 110 . 71 拿 37 拿

0.2 43 拿 62 380 50 拿 35 260 40 拿 53 . 33 . 
0.5 20 160 14 130 4 18 11 170 16 83 17 29 9 41 
1.0 8 13 4 16 4 12 5 63 8 7 4 21 2 9 

1/2 0.1 200 . 76 970 120 拿 85 . 190 . 95 拿 280 . 
0.2 180 . 71 320 60 . 70 . 40 . 53 . 58 960 
0.5 21 990 45 130 8 65 17 160 13 77 21 77 32 41 
1.0 12 17 12 17 4 18 8 63 8 8 4 17 9 13 

1 0.1 350 . 100 嚀 93 . 650 . 290 拿 580 拿 350 970 
0.2 220 . 88 140 85 . 2却 . 250 . 220 . 95 880 
0.5 35 . 46 100 26 120 77 拿 13 30 20 33 58 50 
1.0 12 25 12 17 4 60 16 32 8 11 17 13 33 40 

2 0.1 380 拿 700 拿 740 . . . 拿 拿 530 拿 410 970 
0.2 240 . 97 . 85 . 960 . 730 . 240 990 350 930 
0.5 180 . 40 80 34 121 140 . 32 220 42 250 58 110 
1.0 30 . 12 16 4 63 39 拿 13 23 31 81 39 90 

The reference values of the radiance were taken from tables compiled by van de Hulst.13 The 
multiple scattering series was summed to 30 orders in order to eliminate errors due to slow 
convergence. Where the specified accuracy was not achieved with 105 photons, an asterisk (*) has 
been inserted in the Table. Several conclusions are immediate. In nearly every case, QMC 
integration achieves the specified accuracy with far fewer photons than RMC integration. The cost 
increases steadily with the required precision for QMC integration, but not for RMC integration. 
Only rarely does RMC integration achieve an accuracy of 0.2% with fewer than 105 photons and, 
on the occasions it does, the cost jumps significantly above the cost of 0.5% accuracy. The cost 
of achieving a specified precision with QMC integration increases with optical thickness. The reason 
is that the contribution of higher order scattering becomes more significant with increasing optical 
thickness, necessitating more photons in order to evaluate the correspondingly higher dimensional 
integrals. 

3.2. Test problem 2 

The cost of obtaining high accuracy radiances increases when the phase function is sharply 
peaked, as in test problem 2. This is not surprising because the integrands in the multiple scattering 
integrals are now'lumpy'functions, so many of the integration points are poorly targeted and fall 
outside the region where the integrands are large. In some problems, where the phase function is 
known only poorly, this problem can be avoided by replacing the phase function by a "ball and 
stick" model, 

p(x, s, s') =g(x)o(s, s') + ( I - g(x))p'(x, s, s'), (48) 

in which g is the asymmetry parameter of p, and p'is a smooth phase function whose asymmetry 
is zero. With this definition, the singular part of the phase function can be integrated analytically 
and the RTE reduces to scattering with phase function p'and modified scattering and extinction 
coefficients given by 

and 

/J'(x) = (I - g(x))/J(x), 

y'(x) = y(x) 一 g(x)P(x).

54 

(49) 

(50) 



D. M. O'BRIEN 

Suin of orders 1... 30 
O.』

。.2

-r = 1, g = 0.75 

• ^ • `.. · ·,..... ··· . .-._.-..... '`.. ......" ., . ..,---.... --.·.........,.. . . ì g' 丨
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Fig. 7. Sum of the first 3J tenns of the multiple scattering series, S閉 plotted as a function of N for QMC 
and RMC integration o:. test problem 2. The scattering is conservative with a Henyey-Greenstein phase 
function with asymmetry g = 0.75. The medium is a uniform slab with optical thickness T = I. The 

inciderrt and exit zenith angles are cos 8. = - 0.5 and cos8。=－o.s .

However, if high accurac> calculations are required for a precisely specified phase function, then 

the additional cost is unavoidable. 

Figure 7 shows the convergence of S蜀 as a function of N, the number of photon trajectories, 

for both QMC and RMC. The optical thickness is r = l , the scattering is in the principal plane, 

and the incident and exit zenith angles are given by 

µ.=cos e. = -o.s, /.'o = cos 0。= - 0 .5. 

Table 2. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy 
of E % for QMC and ~MC integration of the RTE for test problem 2. An asterisk (•) indicates that 
the required accuracy...,as not reached after 101 photons. The reference values were computed by QMC 
integration with 106 pllotons. The column labels Q and R denote QMC and RMC, respectively. Also 

µ = cos 9.-= -0.5, ~ = oos 90 . 

T c 郿＝ 0.9 µo = 0.5 µa= 0.1 西＝－0. 1 郿＝－0.5 加＝－0.9 加＝一1.0
% Q R Q R Q R Q R Q R Q R Q K 

1/8 0.1 . 拿 470 事 97 拿 39 事 2 17 21 240 240 . 
0.2 320 . 110 拿 43 . 10 280 , 2 6 8 220 28 230 
0.5 120 . 30 89 16 . 2 60 1 2 1 14 19 170 
1.0 43 . 7 79 6 4 2 l5 ' 1 1 1 3 3 14 

1/4 0.1 拿 . 890 . 680 . 49 . 2 42 53 360 300 拿

0.2 . 拿 120 260 54 . 39 320 2 17 9 240 230 . 
0.5 290 事 43 94 20 拿 5 220 1 5 8 210 28 220 
1.0 62 . 30 89 6 8 2 34 1 2 2 7 19 130 

1/2 0.1 . * 拿 760 . 拿 450 拿 11 拿 290 . 410 . 
0.2 拿 拿 800 440 520 • 48 590 11 50 51 310 220 . 
0.5 510 . 120 15O 56 . 39 240 2 7 10 220 120 拿

1.0 `i . 13 14O 17 12 24 泅 1 6 2 66 61 210 
1 0.1 拿 . 800 . ,. 拿 690 拿 96 拿 . 事 . 拿

0.2 • 蓴 380 . 拿 . 4印 • 40 170 . . . . 
0.5 890 . 240 180 270 . 160 . 5 50 51 220 350 . 
1.0 490 嶋 63 14O 20 32 49 240 2 7 10 100 140 . 

2 0.1 . 蓴 • . 拿 拿 拿 拿 820 . . 拿 拿 . 
0.2 . 嶋 950 990 . 事 990 拿 96 . . 970 . • 
0.5 920 嶋 380 170 360 . 280 . 61 220 110 540 . . 
1.0 510 牢 68 14O 20 180 85 420 57 83 31 290 900 • 
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Not only does the QMC integration converge more rapidly, but the RMC integration is slowly 
diverging from the correct answer after 105 photons. The faster convergence of QMC integration 
is typical of all the forward scattering directions. 

The cost of achieving a specified accuracy is summarized for QMC and RMC integration in 
Table 2, the format of which is identical to Table 1. The reference values of the radiance were 
computed by QMC integration with 106 photons, sufficient to guarantee convergence. It is apparent 
from Table 2 that the costs are higher than for isotropic scattering, exactly as anticipated. 
Nevertheless, QMC integration is still more efficient. 

3.3. Test problem 3 

The results and conclusions for test problem 3 are very similar to those for problems I and 2. 
In order to make the test more stringent, the reflected and transmitted radiances were evaluated 
at the points (0, 0, 1) and (0, 0, 0) respectively, where the slab has its maximum optical thickness 
(r = 1). Figure 8 shows the convergence of S栩 as a function of N, the number of photon 
trajectories, for both QMC and RMC integration. The scattering is in the principal plane with 
incident and exit zenith angles given by 

µ.=cos 0拿＝ - 0.5, l'o = cos 0。= - 0.5. 

Table 3 shows the number of photons required to achieve an accuracy of £ %. The reference 
values were computed by QMC integration with 105 photons as it was clear that these values 
had converged. Both Fig. 8 and Table 3 demonstrate the superiority of QMC integration in this 
application with spatially varying optical properties. 

Table 3. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy 
of£% for QMC and RMC integration of the RTE for test problem 3. An asterisk(*) denotes that 
the specified accuracy was not reached after 105 photons. The reference values were computed by 
QMC integration with 105 photons. The column labels Q and R denote QMC and RMC, respectively. 

Also µ•=cos 8 • = -0.5, µg = cos 8。 .
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4 . ACCELERATED CONVERGENCE OF THE 
MULTIPLE SCATTERING SERIES 

When scattering is nearly conservative, the number of terms required in the multiple scattering 
series increases so rapidly with the optical thickness that the cost of accurate MC calculations can 
become prohibitive when -r ;;;i: 2. For plane parallel geometry it is possible to estimate the rate of 
decay of the terms of the multiple scattering series, 13 thereby enabling the tail of the series to be 
summed analytically. However, for other geometries it is as costly to estimate the rate of decay 
of the terms of the series as it is to compute them, so other techniques are required. This section 
outlines one such technique. 

After n iterations of the integral equation of radiative transfer, the radiance can be written 

f=Sn+En+I• (51) 

where Sn is the partial sum of the first n terms and En+ 1 is the error term defined in Eq. (12). Because 
the error term involves radiance that has been scattered at least n times, it might be argued in an 
intuitive way that this radiance ought to be diffuse when n is large, in which case the error term 
might be approximated by setting the radiance to a constant value, denoted C. This argument 
leads to 

En+I = CRn+I• (52) 

where 

Rn + I (Xo, So)= J: dx1 t(Xo, X 1四） f 叩(s1)p(x,, So, S1) · · · 

. x f .. % o xn+ It(xn,xn十沭(xn+ I)L叩(s,.,)p(x, +,, s,, •• +,). (53) 

The coordinate changes discussed in Sec. I allow R" + 1 to be reduced to 

Rn+ J (Xo, So)= f d£1 f d(1 f dr,1 · · · f d£" f d(" f dr," f dln+ I 
0 JO JO JO JO JO JO 

xm(x1)·· · m(x"+1)a (Xo, llo). . . a(Xn, Un), (54) 

in which form it is clear that 

O~Rn ~ 1, 

that Rn is a decreasing sequence, 

Rn+I ~ Rn, 

and that 

lim Rn= 0. 
n - 00 

If the radiance is also replaced by Con the left of Eq. (51), so that 

C =Sn+ CRn+ 1, 

then the following s哩gcstive result is obtained: 

l=C= 
Sn 

1-Rn+I. 

With this motivation, define 

Qn(v) = Sn 
1-vRn-i 

(55) 

(56) 

(57) 

for any v in the range (0, 1), and observe that, whatever the value of v, the sequence so deflned 
converges to the true radiance / because R,. + 1 converges to zero. It is easy to establish the following 
result. 
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Let T. denote the sequence, 

T"= 

and let v . denote its minimum value, 

I n 

Rn Sn - R..+ I Sn -I' 

v •=in(Tn. 
n;a,O 

(58) 

(59) 

Then, for all v in the range O ~ v ~ v ••(i)the sequence Q" (v) is monotonically increasing, and (;i) the 
sequence Q" (v •) converges to the true radiance Jaster than Q" (v), 

11-Qn(v)I ~ I/ - Qn(v.)I for all n. (60) 

In particular, Qn(v.) converges to the true radiance faster than SN . Consequently, by computing 
the terms of the sequence Tn and estimating v • by the minimum of the computed terms, it is possible 
to construct a sequence which converges to the true radiance faster than the standard sequence of 
partial sums. 

The proof of the accelerated convergence result is straightforward. First, the condition that 
Qn (v) should be monotonic leads, after a little manipulation, to the result that 

Q篔－ Q層一 1 = 
In+ vQn-1 (Rn+ I - Ra) ~o. 

1 -vRn+I 
(61) 

The denominator is positive because both v and Rn+ 1 are bounded above by l, so the numerator 
also must be positive, 

In+ vQn-1 (Rn+ 1 - Rn)~ 0. 

After insertion of the definition of Qn (v), the inequality reduces to 

/n ~ v(RnSn - Rn + I Sn - I), 

or 
V ~ Tn , 

(62) 

(63) 

(64) 

an inequality which is certainly true for all v ~ v • . In order to prove that Q,. (v •) converges 
more rapidly that Q,. (v), note that 

Qn (V) ~ Qn (V •) if V ~ V • . (65) 

Consequently, 

I - Qn(v) ~ I - Qn(v.). (66) 

Because both sequences Q. (v) and Qn (v •) converge to I monotonically from below, the result 
quoted in Eq. (60) follows. 

Figure 9 compares the convergence of the sequences Sn and Qn(v 勺 for test problem I with an 
optical thickness of r = 2 and incident and exit zenith angles of cos 0 • = -0.5 and cos 0。 =0.5.
The parameter v • was estimated from the first 30 terms of the multiple scattering series, which were 
calculated by QMC integration with 105 photons to minimize errors. It is apparent that the Q. 
sequence converges more rapidly. Figures 10, 11 and 12 show the corresponding results for optical 
thicknesses of r = 4, 8 and J 6. Although the sequence s. shows no sign of convergence in 
Figs. 10, 11 and 12, the Qn sequence converges rapidly and the final values are in error by 0.08, 
1.4 and 6.3% respectively. 

Figure 13 compares the standard and accelerated series for test problem 2 with r = 4 and 
g = 0.75, while Fig. 14 shows the corresponding result for the Gaussian slab of test problem 3. 
In each case the acceleration technique leads to improved convergence, demonstrating that the 
technique is applicable to peaked phase functions and non-uniform spatial distributions of the 
optical properties. If the improvement in the rate of convergence is less dramatic for the Gaussian 
slab, the reason is simply that the cloud is so thin (with maximum optical thickness of 1) that the 
multiple scattering series converges rapidly in any case. 
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The practical implementation of the convergence acceleration strategy calls for the calculation 
of the remainder integrals R" . Fortunately, the additional cost is negligible compared with the cost 
of simulating the photon trajectories. 

The accelerated convergence technique will fail if v • = 0. However, it is possible to prove that 
v 拿 is strictly positive under a wide variety of conditions, perhaps the simplest of which is the 
common assumption that the pha.sefunction is bounded away from zero. More precisely, let 
p<-> > 0 denote the minimum value of p(x, s, s') for any position x in the medium and any incident 
and exit directions s'and s, and let r<- > > 0 denote the minimum of the transmittance t(x, u) for 
any x in the medium with boundary point u determined by the direction of the solar beam. Then 
it follows easily from Eq. (28) that 

/n+I ~缶（一）t（－） f。Id£ 」 f。Id;I ［面」［O＇ dcnf。I dC,, i。I d1'/,, i。Id£,, 十 I
X tI7(X 」)· • · tI7(X,,+1)a(` Uo) · · · a(x,,, u,,). (67) 
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Consequently, if 
F 

C = - （一）＇（ 一）
47t 

p 

then 
In+ I~ cRn+I 

and straightforward manipulation yields that 

Tn~ 
cRn cc 

R冷'~-Rn+ISn - 1 - Sn - f 
>->- > 0. 

(68) 

(69) 

(70) 

This establishes that v • is bounded away from zero. 
It is to be stressed that the technique described here is not particular to any scattering phase 

function or scattering geometry. It is robust and can be applied equally to RMC and QMC, 
although the latter has the advantage that the individual terms of the scattering series will be 
calculated more accurately for less cost. 

CONCLUSIONS 

The numerical experiments described in this paper show that (i) QMC integration with the 
Halton sequence of points is more efficient than RMC integration with randomly chosen points; 
(ii) the efficiency gain is greatest when the medium is optically thin, so that low order scattering 
dominates; (iii) the extra overhead incurred with QMC integration is negligible; (iv) the convergence 
acceleration technique is robust and leads to a significant improvement in the range of optical 
thicknesses to which Monte Carlo integration can be applied efficiently. 
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Chapter V Summary and Conclusions 

An expression for the scattering cross sections of externally aggregated spheres has been 
obtained as a sum over cross sections associated with all realizable pairings of spheres in the 
cluster. This expression can be recast into a form which closely parallels that found for the 
scattering cross sections of single spheres wherein the the Lorenz-Mie coefficients are replaced 
by coefficients that characterize the geometry of the cluster and its electrodynamic response 
to the incident radiation. The summation over pairwise cross sections is found to offer an 
important numerical advantage over the Lorenz-Mie analogue for clusters. 

Four relations satisfied by the translation coefficients have been derived for, it is believed, 
the first time. These relations provide useful convergence criteria for calculation of the pair­
wise cross sections. Comparisons of the scattering cross sect ions found in this work are made 
with those derived in two other invest igations. An expression for the scattering cross sections 
of noninteracting dipoles is also provided. Applications of the theory developed in the present 
work will be made to particles of interest in climate and visibility studies in Chapter III. 

In summarizing the findings of Chapter 2, it is important to first note the numerical 
efficacy of the series expansions for the scattering cross sections of clusters given in Eqs. 59 
and 60 of Chapter I compared to straightforward numerical integration of the Poynting flux. 
The expansions avoid the following pitfalls: (1) The number of oscillations in the differential 
scattering cross section of a droplet increases dramatically with optical size, thereby requiring 
very high angular resolution of the integrand when hosts with large size parameters are in­
volved. (2) When the carbon grains are very small relative to the host particle, the extinction 
cross section of the carbon/ droplet system is dominated almost entirely by the scattering cross 
section of the host. The quantity a e - a., can easily be of the order 10一6 or less and hence 
the integral must be evaluated with a very high precision. (3) The structure of the electric 
field at the surface of the host is quite complicated and therefore the absorption cross section 
of a small carbon grain is extremely sensitive to orientation. Orientation averages require a 
high resolution in a . (The calculations summarized in Tables I-III were based on a sampling 
frequency of 1 °.) This makes it all the more imperative that the integrals over the scattering 
angles 0 and ¢ be evaluated expeditiously. It is here that the order-of-scattering approach5 
plays its most important role, from a numerical standpoint, since the smaller the adsorbed 
grain, the fewer terms are needed in the multiple scattering series from which the scattering 
coefficients and cross sections are found. In fact , only one exchange between the O.Olµm car­
bon grains and droplets was necessary in order to determine a., to the required precision. For 
larger grains, as many as five orders of scattering were needed. (4) When large numbers of 
spheres are involved the intereference between them will impose an additional oscillation in 
the differential cross sections of the clusters. The more monomers there are comprising the 
cluster, the greater the number of these interference fringes. These oscillations are analogous 
to multiple slit diffration patterns. (The number of spherules in the carbon aggregates studied 
thus far has not been sufficient for this effect to have been of significance.) 

The effects of scavenging of atmospheric carbon by haze and cloud droplets has been 
considered in terms of the orientat ions of the resulting composite particles—carbon grains 
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residing on droplet surfaces—with respect to the incident fields . Orientation- and polarization­
averaged absorption efficiencies were then determined and from these it appears that the more 
finely divided the carbon, the more efficient is its absorption of light when it resides on the 
surface of a sulfate host. This efficiency, however, has not been found to be more than about 
a factor of two greater than that of free carbon. Carbon adsorbed onto cloud droplets appears 
thus far to absorb slightly less light than when it exists as isolated grains within the cloud 
volume. 

Approximations of the absorption properties of soot aggregates at visible wavelenghts 
in terms of single sphere properties appear, within the limits of the work -presented here, to 
produce errors of not more than about 10-15% for monomers less than about 0.05µm in radius. 
The scattering properties likewise approximated, tend to produce similar errors for monomer 
radii less than about O.Olµm or on the order of O.lOµm, but there is a transition region which 
includes radii of 0.05µm for which these single sphere approximations for scattering may be 
grossly in error. 
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Appendix 

The translation coefficients A~t and 恥｀n appearing in Eq. (54) are of the form 

n+v 
- _ 

A茘｀ ＝芷 [n(n + 1) + v(v + 1) - p(p + 1)园(l,l';m,n,µ,v) (A.l) 
p=ln-vl 

and 

恥~n (kdt.,t.') = i kdt..t.'[ 2µ cos()u立(l, l'; m, n, µ, v)+ 

sin(),,,, (<v - µ)(v +µ+I; exp[,如］ ；虯旦';m,n,µ+1 , v)+ (A.2) 

exp[-3叩，t.'l 芷虯耳；m, n, µ-1, v)) I, 
p 

) ] 
where 

引i, i'; m, n, µ, v) = (-lti(n-v-p) 
2v+ 1 

X 
2v(v + 1) · · (A.3) 

a(m, n, -µ, v,p) 咋 (kdt,t')P「可cos 0t,t') exp[i(m - µ)如，＇

The a(m, n, µ, 11,p) are known as Gaunt coefficients and are defined by the expression 

and hence 

n+v 
P瓢(cos0)鈣 (cos 0) = L a(m, n, µ, v,p)P;+µ(cos0), 

p=ln-vl 

a(m, n, µ, 11,p) ＝戸(p - m - µ)! [ 
2 (p+m+µ)！一1

P「(x)P~(x)P:;i十1-'(x) dx. p (A.4) 

In Eqs. (A3) and (A4) kd1.,1.'is the line segment joining the centers of spheres£ and£', 0t,l' 
corresponds to the angle between kd1.,t'and the lz-axis, and 如，I.'is the azimuthal coordinate 
of the £th sphere in the £th coordinate system. 

0, if m =Iµ; 

kd』1巴。心(kd,,e) = { :~》巴。已(kdU') ， ifm= µ, (A.5) 
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but 

Thus 

Clearly, 

1 kd》巴。 A:::;:(kd,.,,) = (-1严(2n+ 1)5[1 崆(x)P;m(x)dx
1 (n - m)! [1 = (-1严(2n+1) － J 院(x)P「 (x) dx 
2 (n + m)! l-1 

lim 1霹｀（極，£＇) = 6m，志，v
kd£.£＇一。

lim B的"(kdt,l') = 0 
kdt,t' ~ 0 
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Figure Captions 

Figure 1. The single sphere scattering geometry: reduced symmetry c辜

Figure 2. The scattering geometry for the multiple-origin system used in the study of sphere clus­
ters. 

Figure 3. Gram-specific absorption cross sections for a carbon grain located on the surface of a 
spherical sulfate aerosol. The carbon particle h邸 a radius of 0.05 µm and a refractive 
index of l.80+0.5i. The radius and refractive index of the sulfate particle are 0.50 µm and 
1.52 + O.Oi, re~pectively. The straight line corresponds to the gram-specific absorption 
cross section of an isolated carbon grain. In the inset, the size of the carbon particle 
relative to the sulfate aerosol is drawn to scale. 

Figure 4. Same 邸 Figure 1, but with either a 0.1 or 0.01 µm carbon grain. The heavy and light 
lines show the absorption cross sections of isolated 0.1 and 0.01 µm grains, respectively. 
The inset is drawn to scale for the O.lµm carbon sphere. 

Figure 5. Same as Figure 1, but with a 1.0 µm sulfate particle. 

Figure 6. Same as Figure 2, but with a 1.0 µm sulfate particle. 

Figure 7. Same as Figure 1, but with a 3.0 µm water droplet. The refractive index of water is taken 
to be 1.33 + O.Oi. 

Figure 8. Same as Figure 2, but with a 3.0 µm water droplet. 

Figure 9. Same a.s Figure 1, but with a 5.0 µm water droplet. 

~igure 10. Same as Figure 2, but with a 5.0 µm water droplet. 

消igure 11. Ma.ss extinction and absorption cross sections of a linear chain of five carbon spheres. 
Each of the monomers ha.s a radius of 0.01 µm and a refractive index of 1.8 + 0.5i. The 
respective cross sections of an isolated sphere and an equivalent volume sphere are also 
shown. 

~igure 12. Same as Fig. 9, but with monomer radii of 0.05 µm. 
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~igure 13. Same 邸 Fig. 9, but with monomer radii of 0.10 µm. 

<'igure 14. Same as Figure 9, but the monomers now form a close-packed hexahedron. 

<'igure 15. Same as Fig. 12, but with monomer radii of 0.05 µm. 

<'igure 16. Same 邸 Fig. 12, but with monomer radii of 0.10 µm. 
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