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PROGRESS IN VISIBILITY MODELING

K. A. Fuller, Dennis M. O’Brien

and
Graeme L. Stephens

Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523

Abstract

The cross section for total scattering by a cluster of spheres is derived from an integration,
over a closed spherical surface, of the scattered Poynting flux associated with the different
pairs of spheres in the ensemble. With the use of the addition theorem for vector spherical
harmonics, the integral can be evaluated analytically. The pair-wise cross sections can be
rearranged into an expression for the scattering cross section of sphere aggregates which is
analogous to that obtained from Lorenz-Mie theory for a single sphere. This latter formulation,
however, is more difficult to treat numerically than is the summation over pair-wise cross
sections.

The cross section for total scattering by a cluster of spheres thus derived is applied to
a study of the effects of scavenging and aggregation on the specific absorption of carbon.
Results are presented for polarization- and orientation-dependent absorption cross sections
of sulfate haze elements and cloud droplets with small carbon grains (spheres) attached to
their surfaces. Soot typically occurs as aggregates of carbon spherules. In order to address
the validity of certain assumptions that are made in the analysis of such structures by fractal
theory, comparisons between the absorption cross sections of free carbon, linear chains, and
tightly clumped carbon spheres are also provided.

Monte Carlo integration of the radiative transfer equation is the technique most easily
adapted to complex scattering geometries. It is demonstrated that the multidimensional inte-
grals can be evaluated more accurately and more efficiently with quasi Monte Carlo integration
and that the convergence of the multiple scattering series can be accelerated by estimating the
rate of decay of the tail of the series. Each of these techniques has been found to be robust
and applicable to scattering with any geometry.



Chapter 1. Introduction

Scattering and absorption of electromagnetic (em) radiation by systems wherein two
or more spheres may come in contact or in close proximity to one another is relevant to a
very broad range of topics. Some examples are surface-enhanced Raman scattering, spectral
hole-burning memories, radiative transfer in atmospheres, extinction of microwave signals
by planetary rings, propagation of radiation through interplanetary and interstellar dust,
combustion diagnostics, and colloid electrooptics. A brief historical review of the study of em
scattering by ensembles of closely spaced particles has been recently given by Fuller.!

The total scattering cross section, o,, of a particle is given by

(1)

S / Energy scattered/unit time/unit solid angle
* " Jq Incident energy flux (energy/unit area/unit time)

For a spherical scatterer, this integral can be solved analytically. The response of a cluster
of spheres to em radiation derives from the natural modes of the individual spheres, but the
modes of each sphere couple to those of all other spheres in the ensemble and the mathematical
description of the scattered radiation is inherently more complicated than that for isolated
spheres. With the use of the addition theorem for vector spherical harmonics (vsh), not only
can the scattered fields of the cluster be determined; the o, integral can once again be solved
analytically. The cross section for total extinction, o, can be found with relative ease from
the optical theorem and the absorption cross section of the cluster is simply

Og = Oc — 0. (2)

Without analytic solutions for the cross sections, it is doubtful that the gram-specific absorp-
tion efficiencies of small, highly absorbing grains attached to (scavenged by) large, weakly
absorbing haze elements or cloud droplets could be calculated.

A review of the Lorenz-Mie treatment of the scattering cross sections of spheres is provided
in the next chapter in order to set down, in a more familiar context, definitions and identities
that will be used in the study of multisphere systems. That discussion will not assume the
high symmetry that would otherwise be appropriate for the treatment of single spheres. This
is done in order to make the transition to systems of interacting spheres a bit smoother and
to more clearly compare the scattering cross sections of single and multiple sphere systems.
Paralleling the theory for single spheres, a theory is then developed for the scattering cross
sections of ensembles of spheres. Treatments of this problem have also been rendered by
Borghese et al.2 and by Mackowski.® Detailed comparisons of these works and that presented
here are best made after a discussion of the theory has been provided and is therefore presented
in IL.4. For completeness, the addition theorem for vector spherical harmonics, as it pertains
to the determination of scattering cross sections, is provided in the Appendix.

In terms of number density, the atmospheric aerosol is dominated by a submicron fraction
comprised mainly of sulfate species and light-absorbing carbon (soot). These particles not only
degrade visibility, but are likely, to some degree, to influence climate. The ubiquity of soot
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and its dominance as an absorber of visible radiation in the atmosphere are well known. In
anthropogenic haze, individual haze elements frequently occur in the form of sulfate/soot
composite particles. For example, recent work by Podzimek* indicates that in a polluted
urban-marine environment one can encounter haze droplets containing insoluble inclusions
and with small particles deposited on their surfaces. The concentration of insoluble attached
particles was found to be comparable to the number of insoluble particles moving freely in air.
In the above study, it was estimated that the carbon content of the haze was ~ 1.4 pug/m?3,
that internally mixed particles accounted for between 1.5 — 10% of the aerosol “surface area,”
and that surface contaminants accounted for between 2 — 9% of the aerosol “surface area.”
The occurrence of carbon on or within cloud droplets is of interest as a possible contributor
to the so-called cloud absorption anomaly.’ Light-absorbing carbon may also attach itself to
dust grains. Soot, in turn, typically occurs as clusters of carbon spherules. Until recently,
no radiation models existed which could explicitly account for the effects of aggregation and
scavenging on the absorption efficiency of carbon because no comprehensive treatment of
scattering and absorption by particles with the relevant morphologies was available.

Numerical studies of the modification of scattering and absorption cross sections of at-
mospheric carbon grains by scavenging have been conducted based on the theory presented in
Chapter II and will be discussed in Chapter III.

Given the importance of Monte Carlo methods in visibility modeling, research into im-
proving the efficiency of Monte Carlo integration of the radiative transfer equation has been
conducted. This work has already been published [D. M. O’Brien, “Accelerated quasi Monte
Carlo integration of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer
48, 41-59(1992)]. For completeness, a copy of this article has been included here as Chap-
ter IV, with consequent independent numbering of equations, figures, tables, and references.



Chapter II. Scattering and Absorption Cross Sections of
Compounded Spheres—Theory

I1.2. Cross Sections for a Single Sphere: Reduced Symmetry Case

I1.2.A. The scattered electric fields

The ability of a particle to scatter light depends upon its characteristic size, z, its re-
fractive index N (), and the wavelength, )\, of the incident light in vacuo. Parameters of the
form kz and Nkz (k = 2m/)) are typically used to describe the ‘optical’ dimensions of the
scattering system. For a sphere, z is simply its radius, a

The scattering geometry is depicted in Fig. 1. Rather than restricting the wave vector,
ko, of the incident radiation to be parallel to &,, we will require only that it lie in the the
zz-plane, oriented at an angle o from the z-axis. The angle <y specifies the polarization of the
incident field Eg. The incident fields are expanded in the vector space spanned by the vector
spherical harmonics, N} and MY, where wave functions with superscripts (1) and (3)
depend radially on the spherical Bessel functions, j,(kr) and the spherical Hankel functions

of the first kind, hs,l)(kr), respectively. The Ricatti-Bessel functions are often encountered in

light scattering and are here defined by the relations (,(z) = zj,(z) and &,.(z) = xh(l)( ).
Explicit expressions for the vsh are

M), = (Mem &0 + M<I>$,’,Le¢) exp(1m¢) 3)
N(J) - (NR(J) 8, +N@(J) & +Nq>$r7'21e¢) exp(ima), (4)

where, for example, if j =3

MO®) = ’5';5") T (COS 6) (5)
e, = 4280 cos) (6)
NRG®) = 6(7;(r) r) n(n + 1)P™(cos 8) (7)
o, = 240 (eost) ®)
No), = 2 1 (coso), )
with
T (c08 0) = s:: =P (cos ), (10)
F nlC080) = (—id—eP"‘(COSO). (11)






P} (cos @) are the associated Legendre functions of order n and degree m. The primes indicate
differentiation with respect to the argument.

The sign convention to be adopted here is prescribed by the propagation factor exp(zk - r—
wwt), and the harmonic time dependence will be suppressed henceforth. Restriction of kg to
the zz-plane results in a significant simplification of the coefficients involved in the plane wave
expansion, without loss of generality, giving

Eo exp(iko 1) = [Eo| 3 3 (pmnNs,tz, +qu$3,L) ,* (12)

n=1m=-—n

where p,,,.. and g,,,,, are of the form

R riir=: ] vt R A I
and _a2nt1 (n=m)! [ pma(cosa) 10
dmn =8+ 1) (n+m)! ["Tm"(cosa)] ’ [W/z] | "

Recursion relations for 7,pn, Tmn, Prnn, and g,,,, have been worked out by Fuller.%

In Fig. 1, radiation is scattered into an angle 3, relative to the ko direction, with po-
larization components E,| and E,, that are, respectively, parallel and perpendicular to the

plane swept out by the scattering angle. The scattered field can be expanded as

E,=[Eo| > Y (AE,,,,,NS&), +AHmnMgL>, (15)

n=1m=-—n

where the expansion coefficients AE,,,,, and AH,,,, correspond, respectively, to the transverse
magnetic (TM) and transverse electric (TE) modes of the sphere. For a single sphere, these
take on the form

AEpn =D On

16
AHmn =Aqmn bn’ ( )
where a,, and b,, are the familiar amplitude coefficients of Lorenz-Mie theory:
Nypn(0) ¥n(n) — ¥n(o) ¥n(n)
"N (o) Yn(n) = €,(0) Yn(n) (17)
b = Nu(0) ¥n(n) — ¥n(0) Yu(n)
" an(g) ¢:1(77) - E,n(g) %(77) ’



with p and 7 representing ka and Nka, respectively. The expansion of the scattered field in
the highest symmetry case, i.e., when kg || €,, can be recovered as follows: Write P}, (z) and,
subsequently, Tmn and 7,,, as hypergeometric functions’ and let z — 1. It is seen that

P™(£1) = (£1)" fo.m
Tmn(£l) = (:}:)"'H 2 —(n+1)61,m (18)

Tmn(£l) = —(£)" (n +1)61.m,
where §; , is the Kronecker delta symbol. Now,
P.™ = (-1)"(n,m) P}, (19)

where (n,m) = (n — m)!/(n + m)!, and hence

Temn=—(-1)"(n,m)Tmn (20)
Temn = (—=1)" (0, M) Tmn.
If ¥ = w/2 then
Pemn =—(=1)™ (n,—m)p,,, (21)
Qemn = (=1)" (1, —M) g,
and if y = 0 then
P = (=1)" (0, =M) Py, (22)
Qemn = —(=1)" (7, —m)qp,.
The expansion of the scattered fields now simplifies to
E, = [Eo Z s (s, - 0 M), (23

for -é, polarization. This is the form that one commonly encounters when the scattering
properties of isolated spheres are of interest.®

I1.2.B. The cross sections
The differential scattering cross section of a particle is defined as

do _ Energy scattered/unit time/unit solid angle
dQ)  Incident energy flux (energy/unit area/unit time)’

(24)
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The total scattering cross section. o, is then found from

1 1 2T o . X 5 s
Oy = WéRe/O /0 (E, x H}) - &, r?sin6d6 dg, (25)

where Sy = Eo x Hj is the Poynting flux of the incident field and <> represents a time
average over an interval that is much larger than the period of the stimulating radiation. The
extinction cross section may be found from the optical theorem, viz.,

O = FRG( s(0) - &p), (26)

and by conservation of energy, the absorption cross section is
Og = O¢ — 0. (27)

By integrating Eq. (25) over an imaginary spherical surface that is concentric with the scat-
terer, it can be shown that the scattering cross section of a sphere is

0y = 23 Yo (2n+ 1)((anl +[bal?). (28)

n=1

Once again, it will prove useful to carry out this analysis for an angle of incidence, a # 0.
In the abscence of free charge and current densities, the free space Maxwell’s equations for
time-harmonic fields lead to

H,- —LVxE, (29)
Who
The vsh have the property
V %X Mg = ENpyn 808d V %X Ny = EM g (30)
Thus
k (e o] n
=Bl S Y (AR (NG 4B (M), (31)
n—'l m=-—n
and
27 00 n
0, = / / Re [zz > ( mn(NG)) +AHm,,(M$32,)> X
0 n=1m=-—
> % ( s (NG ) +AEE, ,,,(Mﬁff’n,)*)] - &, % sin 0 d6 do.
n'=lm'=—n

(32)



In carrying out the above integration, it is noted that
f (N X Ny ) - &, r2sinfdfdg = ]{ (Mmn XM}, ) - & r’sinfdfdp =0  (33)
and

]{ (N X My ) - &, r?sinfdfd¢ = — f (M s X N7, ) - &, 72 sin0d6 d¢ = N'(m,n),

(34)
where
—4min(n+1) (n +m)!

K2 2n+1) (n—m)

N(m, 'n) = 6 £n m, m’6n n'- (35)

As noted by Bohren and Huffman,® the Wronskian of the spherical Bessel and Neuman func-

tions leads to
Re(1£,£%) = -1, (36)
and thus

Is Z Z (2::1-:) ;: (lAEmn|2 + L4Hmn|2) (37)

n=1lm=-—n

I1.3. Cross Sections for Sphere Aggregates

Having established the mathematical form of the total scattering cross section of a sphere
with a scattering geometry that does not exploit the symmetry of a single sphere, one can
now make the transition to scattering by clusters. The scattering geometry for such a case is

depicted in Fig. 2. The spheres in the cluster are centered about the O origins, where £ is an
index that identifies specific constituents of a set of L spheres. Let the position vector that
locates the observer with respect to the £th sphere be given by

b =5t + 9%y + ey, (38)

where, for example, &, is a unit vector in the £th coordinate frame and points in the o
direction. Henceforth, the dimensionless position vector k‘r will be used. In Fig. 2, the unit
vectors associated with the £'th origin have been displaced from the £z fy-plane to the & -
plane. The constituent spheres (with radii ‘) are now characterized by the size parameter
k‘a = b and complex refractive index ‘N. The dimensionless center-to-center distance between
spheres £ and ¢’ is denoted by kdg . The principal or primary coordinate sytem will be that
in which the integration of the Poynting flux is carried out and coincides to the case £ = 1.
It will be convenient in such instances to visualize ‘O in Fig. 2 as the origin of this system,

and any other €O, £’ # 1 as a secondary origin. The L — 1 secondary coordinate systems are
related to the principal coordinate system by pure translations.

9
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I1.3.A. The scattered fields
The first definitive solution to the problem of scattering by more than one sphere was

obtained by Bruning and Lo,? and theirs is the notation adopted here. The scattered fields
are expanded as

n L
) z(ﬁgmmgﬁ; +54H,,,,.stgz,)

m=-—n f=1

B,

[\”/13

3
Il
—

I
M

~
Il

1

where the expansion coefficients AE,,, and AH,,, correspond, respectively, to the TM and
TE modes of the £th sphere, and ¢NG) and ‘M(s) are the vector spherical harmonics in the
£th coordinate system.

In order to apply boundary conditions successfully, one must be able to expand the fields
scattered by the £'th sphere about the center of any £th constituent of the cluster. This can

be accomplished through the use of the addition theorem for vector spherical harmonics%!!
which states, in part, that

‘M3, = Z Z (lMS‘I,,)A,TJ' kdp e) + ‘N Bmfn(kd""))

v=1p=—v (40)
‘NG = Z Z (‘N(I)A""‘ kdy ¢) +”M§},)B;';"(kde,,z)).
v=1p=—v

The translation coefficients A};*(kde ¢) and B}j;" (kde ¢) are a rather complicated function of
Clebsch-Gordan coefficients and of the geometry of the cluster. It is seen from the Appendix
that A7 (kdee) = (—1)"* AL (kde o) and B (kdee) = —(—1)"t" B (kde o). -

By applying the condition that at any surface the tangential components of both the
total electric and the total magnetic field strengths must be continuous in conjunction with
the above addition theorem, one is led to the following set of 2L coupled linear equations
involving the (as yet undetermined) scattering coefficients:

5‘1E‘mn = t Qn pmn + Z Z Z (‘AE“,,A#'“ + l:'qH#VB#nl;L)] (41)
g#L v

AH = ‘bn Gmnt DD (‘AH JAR ‘AE,,,,B#,‘;)]. (42)
O#EL v

The coefficients of the plane wave expansion about an /th secondary origin are obtained by
simply multiplying 'p,,, and 'q,,,. by the phase factor exp(1ky - d; ¢). Eq. (42) can be cast in

11



the form of a matrix equation in which the translation coefficients give rise to the coefficient
matrix, and the scattering coefficients can then be found by direct matrix inversion.

Alternatively, the scattering coefficients may be found by the order-of-scattering (OS)
mehtod of Fuller and Kattawar.!?!3 For ease of visualization, the following description is
limited to just two spheres, but the extension to clusters of three or more is straightforward.
The OS process can be visualized as follows: First, plane wave radiation strikes one sphere
which then scatters a field (as prescribed by the standard Lorenz-Mie theory) both to the field
point and to the other sphere. This second sphere then responds to the field incident on it
from the first sphere, scattering radiation to the field point and back to the first sphere. This
process is continued indefinitely, and the total scattered field is obtained as a vector sum of
these partial fields plus a sum of of the partial fields which arise from plane wave radiation
incident on the second sphere.

The total field scattered by the pair is thus

o L .
PIPI (43)
J=0£=1

where the jth-order partial fields ‘Eij) are in turn expressed as
‘B = 3 (“om NG + M) (44
n,m

From here, one follows the same routine as was used to derive Egs. (41) and (42) to arrive at,
for the case of two spheres,

1 () 1 2 (-1) o 2 -
Omn = Gn Z Z a‘y.u Amn b;w an
v o p
(7) (G-1) i=1)
1 1 2 uv 2 uv
mn bﬂ Z Z ( bpu Amn + a‘pu an)
" (45)
9 (€)) 2 1 (G-1) v 1 1 v
Ompn = On E Z auu Amn byu an

In addition to quantifying the partial fields which combine to produce the net scattered
G-1)
pv
1,60 . L . g O
and “b,, modes arriving from sphere 1 play in stimulating the nth-degree, mth-order “a,,,,

field, Eq. (45) allows one to see exactly what role each of the vth-degree, uth-order 'a

12



G)
and 2b,:m modes in sphere 2 for any jth order of scattering. The expansion coefficients of the
total scattered field are then given by

LN 0]
UE.. = Z o .
gsi (46)

X, )
) )
AH,., = E .
3=0

As noted in the following chapter, the OS method has proven to be especially important in
the efficient calculation of the scattering cross sections associated with large, lossless droplets
that have small carbon grains attached to their surfaces.

I1.3.B. The cross sections
In order to determine the total power, W, radiated from a surface ¥ enclosing an ensemble
of scatterers, the integral

/ S - #72sin 0dfd¢ = /(E x H*) - £r2sin 0dfd¢ (47)
= z

must be evaluated, where, for a system of L particles,

L
E=E,+) ‘E, (48)
=1
and
L
H=H,+)» *H,. (49)
£=1

The radiated power is thus
W= Z/(Eo x tH, + ‘E, x H}) - &, r’sin0df d¢
z JE
+ E/(‘E, x ‘H.) - &, r*sin 0 df do ' (50)
l 2

+y Z/E(‘E, x YH.) - &, r?sin 0 df dp

e e

The first integral in Eq. (50) represents the interference between the incident electromag-
netic field and the fields scattered by each of the monomers in the system. As in the case
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of a single particle, this interference term corresponds to the total power removed from the
incident beam. The evaluation of this integral will not be pursued at this time since the ex-
tinction cross section is readily found from the optical theorem. The second integral is equal
to the total power scattered by the ¢th sphere while the third integral accounts for the fact
that relative phases of the fields of the fth and ¢'th scatterers will vary over the surface of
integration, contributing further to the scattering cross section of the ensemble. The surface
of integration is henceforth assumed to be a sphere centered about the principal origin.
The equation for the total scattering cross section is thus

2r . .
|(So}|os = %ReZE/O /0 (‘E, x *H.) - &, r*sin 0 d0 do. (51)
e ¢

It is noted that the integration is to be carried out in one set of coordinates, but ‘E, is
referenced to a second coordinate system and ¢ H, is referenced to a yet another. The notation

= Z Z ulaa (52)
L £

is now introduced.
In principle, one could simply evaluate

2T pw
=/ / (Z ‘B, x ) "H,)-é, r?sin 6 df d¢ (53)
0o Jo 7 7

numerically but this provides only a rather limited solution to the problem.

Use is once again made of the addition theorem. In Eq (39), it is to be understood
that the transformation of coordinates is carried out at the surfaces of the scatterers and
thus k% < kdge. In this case, the dependence of the translation coefficients on the distances
between spheres is governed by spherical Hankel functions. When evaluating the integrals

over a surface that contains all scatterers in the collection, k7 > kdgy. The dependence on
kdge is, in this case, governed by spherical Bessel functions and the corresponding translation

coefficients are here denoted as Z,’;‘,,”(kdg' ) and E”I},"(kdp .2). The addition theorem takes the
form

llMgL _ Z Z (ZM(S)Amn kdl',t) ZN(S)an(kdgl ))
v=1p=—v (54)
N(a) _ Z E (EN S)Amn kdgl ) EML"}V)EIILn(kdel'e)) .

v=1p=—v

The scattered fields of each sphere can thus be expressed in terms of the basis functions of

14



the principal origin, viz.,

oo n
‘=3 3
n=1m=-—n
[%Emzl > ( NQ AT (kdy,) + 1MLSJB,’PV"(kde,1)) (55)
v=1p=—v

HHnn > S (NRE (e + MDA () |

v=1 pu=—v

and

Hs=w—,mz Z

n=1m=-—n

["AH* Z E (N(3>A"m kde.,1)+1MﬁL)§,'E,"(kde',1)> (56)
v=1pu=—v
+YAE?, Z Z ( N B ( kde,,l)+‘ML3,)E,'IL"(kdeI,1)) ]
v=1 pu=—v

The summations in the addition theorem are uniformly convergent and the series can therefore
be integrated term-by-term, giving

o v(v+1)(v + p)!
R ZZ (2v + 1)( I/—[t)'x

[(‘AE""‘ A+ A AE, ) 3 (A + BB )

+ (§4Emn ‘AH},, + AH pnn ‘AE;,,) Z ( ATn( BL’:"n' )* + Bmn( A;T.:" )-)} , (57)

It is to be noted that “'a, = “a,* and thus
%o, + %%, = 2Re(%0,). (58)

This allows the total scattering cross section to be expressed as

}: +2Rez1 «+2ReY S ¥, (59)

>1£0>¢
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demonstrating that, as with the case of a single sphere, o, is an inherently real quantity—the
real part of Eq. (51) need not be taken because the integral itself is real-valued.
The terms in Eq. (57) can be rearranged to give

_ 41 =~ n(n+1)(n +m)
k2 (2n+1)(n —m)!

m,n

(|Amn|® + |Bmn|*) (60)

Os

where

Ann =33 (48w A, + 110, B,
TR %

(61)
Brn=)_ ) (54E,‘,, BY +*AH,, A’;"n).

£ pw

The structure of this equation is identical to that for single spheres, where the amplitude
coefficients of the natural modes of the sphere have been replaced with amplitude coefficients
that may be associated with the natural modes of the cluster. These latter modes depend, in
turn, on the amplitudes of the normal modes of the monomers in the cluster and on the precise
information on the geometry of the cluster that is contained in the translation coefficients.

I1.3.C. Special cases

As noted in the previous subsection and in Section 4, some important features of the cross
sections are made visible by choosing different ways in which to write them. Additionally, there
are commonly encountered special cases and approximations to scattering by more complicated
particles that require only simplified versions of Eqgs. (57) and (60).

When coordinate translations are constrained to the 2-axis we have

o
‘M@= Y (lMglzﬁﬁ(kdt',d " fNS,%LEm;*(kda,e)) (©2)
VP =
maz(1,m)
NG L= Y (‘NS&LZm:(kde o) + M), Bmn (kdy ,e))- (63)
Y=
maz(1l,m)

As defined above, kd; ; = 0. As shown in the appendix,

im A™" =& ,6m 64
kdg,gf -0 & ' # ( )
and _
lim B™" =0, 65
kdgp — 0 ™ (65)
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with the result

z [(l‘AEmn %E‘ mn' + llemn %Hmn')(}{mzl )*+ (66)

(lAEm,, “AH?.. +AH., %Emn,)(ﬁ;;:;:’ )*].
Obviously, when £ =¢' =1,
AT (AT ) = S ubom,mt SO (67)
Bmr(Bm™)t = AmM(Bm™ ) + Bt (AR ) = 0. (68)
Thus

n(n+ 1)(n + m)!
e Z:(2n+1)(n m)!

- ([ABm [ + 4 H ). (69)

When £ # 1, the phase of the scattered fields at points on the surface of integration will
contain a phase shift that is dependent on the angle into which they are scattered. When a
sphere of sufficiently large radius is considered, this phase factor can be expressed as

exp(—1kdy ¢ cos Y1 ¢), (70)

where
cos Py ¢ = sin By ¢ sin 6 cos(¢y1,e — ¢) + cosby ¢ cosb. (71)

When Z,¢' # 1 in the integral of the Poynting flux, this leads to an even more complicated
integrand. On the other hand, if £ = £’ then the relative phase of the scattered electric field

of a particle is exactly canceled by the complex conjugate of the relative phase of its scattered
magnetic field. Thus

w, _ 47~ nlnt 1)(ntm)!
T & (2n +1)(n - m)'

(JAEm |’ + |AHm A]"), (72)

which it must if the solution obtained from Lorenz-Mie theory is to be recovered in cases
where dependent scattering can be ignored. It then follows from Eq. (57) that

N (A""‘(kd“) (Z;;;j"’(kdg,l))' +§;’"‘(kdu)( (kdu))*) = bmubny  (73)

m',n'
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and that

Z(Z"‘"(kdu)(B (kdu))‘+ﬁ,ﬁ't”(kde,n(EL";"'(kdz,l))‘)=0- (74)

m' ,n'

Applying the same argument to Eq. (60) gives

chd Am'n' * n nm'n' *
; ( 2(ni1;én+$; (Amn(kdz,l)(A,’I‘.,n (kdga))™ + Bmr (kdes) (BIo™ (kdey)) )

= Omubny (75)

and

n+ 1) n+m) mn nm'n' * pmn —
Z “ (2n +1)(n — m)! (A (kd, )(B#V (kde,)) +B, (kdll)(A (kdll)) )—0- (76)

These relations provide valuable tests for convergence of the series expression of the scattering
cross section of a cluster.

I1.4. Discussion

As a means of checking Eqs. (59) and (60), Eq (53) was evaluated by Simpson’s rule for
cases involving pairs of spheres, linear chains of five spheres, and tightly packed clumps of
five spheres. Complete agreement with the numerical integration was found in all cases. Such
comparisons are rather limited, however, since the time required to perform the numerical
integrations rises dramatically with modest increases in the size of the largest monomer. For
this reason, comparisons were limited to size parameters of =~ 11 or less for pairs of spheres.
Available machine memory limited application of the theory for sphere clusters to o ~ 3 for
the cases involving five spheres. Nonetheless, the excellent agreement that was obtained in the
comparisons that could be made is believed to be sufficient verification of the theory presented
here.

Other work has been conducted on the scattering cross sections of sphere clusters, most
notably, that of Borghese et al.2 and of Mackowski,® and a discussion of it is warranted here.
Borghese et al. have developed, independently, a theory for em scattering by clusters of
spheres and have provided an expression for o, that is similar to Eq. (60). Agreement with
their formula is easily obtained for the cases they considered, but they only tabulated values
of o, for 0.001 < » < 0.1. Although Borghese et al. needed to retain terms through n = 3 in
their expansions in order to get convergence of the series to four significant figures, such was
not the case here. Their spheres are within the Rayleigh limit and dipolar contributions were
always sufficient in the use of both Egs. (59) and (60). Borghese et al. also noted that an
increasing number of terms had to be retained in their series as the separation of the spheres
was increased. Once again, such a complication was not encountered in the course of the
comparisons made in the present study.
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Borghese et al. found that their values of o, failed to converge to the sum of the cross
sections of independent spheres for their smaller particles when kd; 2 = 200ka and attributed
this to interactions among higher order multipoles. This seems not to be credible, however,
since in such cases kd; 2 < 1. Under such conditions the particles are not significantly out
of phase in there response to the incident radiation and hence behave approximately as a
single Rayleigh scatterer with twice the volume of a single sphere. This leads to a scattering
efficiency that is four times that of the isolated spheres and this is what has been observed.
The scattering cross section of a pair of identical, noninteracting Rayleigh particles is readily
distilled from Eq. (59) by retaining only the contributions of the electric dipoles: Here

Og = 110'3 + 2203 + 2Re (120-’) =2 [1106 5 Re (120")] : (77)

When v = 7/2, Eq. (59) for %5, reduces to

97|a, |? . .
Re (120,) = |k21| cos (kd cos ) [2a(1,1,-1,1,0)jo (kd) + a(1,1,-1,1,2)j; (kd)] .
_ —97|'a;|? cos (kd cos a) U N\aingd - & kd (78)
L kd kd? kd |’

where kd = kd; 2 and an expression for the coefficients a(m, n, u, v, p) is given in the Appendix.
The ratio of the scattering efficiency of the pair to those of the individuals can now be written

- Qs 1 3 cos (kd cos a) 1 cos kd
Q+%Q) ~ 2  kd [(krﬁ kd ]

For sufficiently small kd this ratio is 2, as expected. Any variation from Eq. (79) is a measure
of the strength of electrodynamic coupling between the dipoles.

The above discussion of the work of Borghese et al. should not be interpreted as an
indictment of the validity their theory: on the contrary, in a later paper!* they compared
the extinction and phase shift efficiencies of pairs spheres of more appreciable size (p ~ 3)
to experimental data. The agreement was good and their values have been reproduced with
the use of Egs. (26) and (38). It is also worth taking this opportunity to correct an oversight
made by Fuller’ wherein the latter paper of Borghese et al. was not included in a list of the
few theoretical treatments of the cluster problem that included some type of experimental
verification.

Mackowski® derives expressions for the cross sections of multiple sphere configurations, as
well. As in the work of Borghese et al., his expression for o, is obtained by transforming the
scattering coefficients of the different spheres into a representation about a principal origin
(this transformation is the same as that given in Egs. (61) above) and evaluating integrals
similar to those in Egs. (33) and (34). The result is an expression that is nearly identical to
Eq. (60).

The more prominent accomplishment of Mackowski’s research on the multiple sphere
problem, however, has been the development of a set of recursion relations for the translation

- 1) sin kd — (79)
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coefficients that obviates the need for the Gaunt coefficients defined in the Appendix. The
reduction in time and, more importantly, computer memory required for sphere aggregate
calculations makes this one of the most significant breakthroughs in the problem in thirty
years and will undoubtedly lead to investigations on aggregates of more and larger monomers
than would have otherwise been possible.

In the implementation of Eq. (60) and, most likely, of its counterparts given in the works
of Borghese et al. and Mackowski, the convergence of the series depends on the maximum
value of kdge. This requires a larger set of scattering coefficients and hence the solution
of a larger system of equations. These increases are rapid and make such solutions more
cumbersome for large separations between spheres £ and £'. Fortunately, it was found in the
course of this research that the increase is not due to couplings between increasingly higher
multipoles, but simply to an increasing number of terms needed in the addition theorem to
accurately transform multipole coefficients from one set of coordinates to another. Thus, just
as larger spheres require more terms in the series expansion of the incident fields to ensure
that the boundary conditions are matched, so must the number of translation coefficients
be increased for larger separations to ensure that the fields of the £th sphere are accurately
transformed to the basis functions centered about the £'th sphere. This requires only the
calculation of additional translation coefficients—a task which is much easier than solving
larger sets of equations and made even more so by the work of Mackowski—and computing
the innermost summations in Eq. (57). The number of translation coefficients required for a
prescribed accuracy can be found from the criteria laid out by Egs. (73)-(76).
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Chapter III. Scattering and Absorption Cross Sections of
Compounded Spheres—Calculations.

II1.1. Calculations for scavenging by haze and cloud elements

Results are presented in this section that illustrate the effects that the dispersion of
carbon grains onto droplet surfaces may have on the mass absorption efficieny of atmospheric
carbon. The scattering geometry for the surface dispersion calculations is shown in the insets
of Figs. 3-10. At present, it is assumed that the concentration of the soot component of the
aerosol or cloud is low enough so that only single grains of carbon need be considered. It
is further assumed that the grains are of a spherical morphology. Soot concentrations that
would involve two or more grains per aerosol particle will be the subject of future research.

It is popular (and, at times, useful) to define the efficiency factors for extinction, scattering
and absorption to be, in order,

Qo= = Q,=%, and Qg =

L3 (50)

Ua
E’
where G is the geometric shadow of the particle and o denotes the respective cross sections. In
view of the complex morphologies of sphere aggregates, however, a better choice for efficiency
factors is the gram-specific cross section, A, the units of which are m?/g:

o o
A= —= ‘ 81
m  (specific gravity)( particle volume) (31)

Figs. 3-10 catalogue the calculated specific absorption cross sections of selected sizes of carbon
grains attached to nonabsorbing sulfate particles with radii of 0.5 and 1.0um or to water
droplets with radii of 3.0 and 5.0um. The variation in specific absorption with the orientation
of the particle is displayed for mutually orthogonal polarizations of the incident beam. It is
noted that for a single sphere of radius a << A,

3k N? -1
AG(A) = 7Im(N2 +2)

_ 9k|N|?sin(2tan~! [Im(N)/Re(N)])
~ p[IN]* +4(1 + Re2{N} — Im?{N})]

(82)

At A = 5.5x 107 m this gives a specific absorption cross section of ~ 3.654 m? /g for a sphere
of carbon having a refractive index N = 1.80 + 0.5¢ and specific gravity p = 1.8¢g/cm3. This
limit is very near the specific absorption of the isolated 0.01ym carbon grain depicted by the
narrower line in, for example, Fig. 3. The above wavelength and parameters for carbon are
assumed throughout the rest of this work.

The basic features of the dependence of A, on orientation can be understood from geo-
metric optics: An optically large sphere with a refractive index of ~ 1.5 will focus light into a
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region near its surface. If the refractive index is ~ 1.33 then light will be focused into a volume
slightly less than half a radius from the sphere surface. The refractive effects of the sphere will
prevent most of the incident radiation from reaching regions other than the focal volume on
the shadow side of the surface. Reflections from the shadow surface of the sphere will produce
a secondary focal volume narrowly centered about the illuminated side of the droplet. Such
features of a spherical lense are manifested in the behavior of the absorption cross sections
of the carbon grains as a finction of particle orientation in each of Figs. 3-10. The larger
the optical size of the host particle, the more accurate the geometric optics picture. When
carbon grains are found within the focal volumes of the larger particles, their absorption cross
sections can be enhanced by well over an order of magnitude.

Carbon spheres with radii of 0.01, 0.05, and 0.10xm are considered. In each of Figs. 3—
10, A, () is displayed for both polarizations. The intermediate-sized grain is considered first
and, in the figure that immediately follows, both the largest and smallest grains are studied.
For comparison, the specific absorption cross sections of the corresponding carbon particles in
isolation are also provided.

II1.1.A. Carbon on a concentrated sulfate particle

The refractive index of the host particles considered in Figs. 3-6 is taken to be 1.52+40.0z;
appropriate for sulfuric acid droplets or ammonium sulfate particles at low relative humidities.
The absorption cross sections of carbon spheres attached to other particles not only depend
on the orientation of the system relative to the incident beam, but, as is seen in the figures,
on the polarization of the beam, as well. This is primarily because the stucture of the electric
fields along a specified equator of the host have a strong polarization dependence. In fact,
the smaller carbon grains act as probes of the source function, E - E*; at the surface. (The
magnetic fields are not probed since the absorption arises only from the coupling of the local
electric field to current densities which are themselves proportional to that field.) In this
regard, attention is called to the increased detail seen in A,(c) for the 0.01xm carbon grain
considered in Fig. 4 over that for the 0.05xm grain of Fig. 3. On the other hand, A,(«) for a
0.10pm grain is considerably smoother. The larger the grain, the less sensitive its A, to rapid
variations in E - E*. This effect of an increasing grain size is reminiscent of the convolution of
a noisy function with a Gaussian profile of increasing width.

For the polarization 4 = 0, the incident electric vector has a component that lies along
the line of centers of the two spheres, giving rise to a radial component of E at their surfaces.
The electrodynamic coupling of the radial component of the field that arises when v = 0 in
addition to the coupling of the tangential component explains why A,(a) tends to be larger
than for the case y = 90°.

The lensing effect is seen to be stronger for the larger sulfate host, as is the refractive
shielding in the region 30° < a < 90°. This latter effect serves to hide the carbon from the
incident radiation, thereby offsetting to some degree, the increased heating of the grain within
the focal volume of the host. Once again, both of these effets are explained qualitatively by
the geometric optics picture. Attention is called to the fact that in Fig. 6 A4(8°) > A4(0°) for
the smaller carbon grain. This is a consequence of prominences in the source function near
the surface of the particle, just off the beam axis. Such prominences are commonly seen in
source functions associated with morphology-dependent resonances.!
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III.1.B. Carbon on a water droplet

The absorption cross sections of carbon particles attached to cloud droplets have also been
investigated and some of the results are displayed in Figs. 7-10. There is a strong enhancement
of A, near a = 0, as expected, and an off axis prominence is evidenced consistently for the
polarization y = 0. Attention is also called to a second peak in A, near a = 17°. This second
peak locates the so-called critical ring.

The lensing effect of the water droplets does not enhance the absorption cross sections to
as great of a degree as it does in the case of the smaller sulfate particles, primarily because
the sulfates have a higher refractive index and hence their focal volume is centered at or very
near the surface. On the other hand, the intersection of the caustic with the surface of the
water droplets near o = 17° produces an enhancement in A, over a somewhat greater range
in orientation. The caustic more sharply defines a boundary between regions with high values
of |E|? and those where |E|?> = 0 for the optically large water droplets and hence refractive
shielding of carbon grains by cloud droplets is more pronounced than by haze elements.

II1.2. Calculations for carbon agglomerates

Of considerable interest in the study of interstellar and interplanetary dust, extraterres-
trial atmospheres (especially that of Titan), and combustion-generated soot aerosols are the
optical properties of aggregates of carbonaceous monomers. Two general cases, ramiform and
aciniform aggregates, are considered here. These cases are represented by, respectively, linear
chains and tightly packed clusters of five spheres. Although this limited set of examples can
hardly constitute an exhaustive survey of the optical properties of soot agglomerates, it sub-
jects certain approximations that are fundamental assumptions in the application of fractal
optics to this problem to comparisons with exact calculations.

The mass extinction and absorption cross sections for a linear chain of carbon spheres
are shown as a function of orientation in Figs. 11-13. Similar results for a tightly packed
hexahedral cluster are provided in Figs. 14-16. For comparison, the cross sections for isolated
monomers and for equivalent-volume spheres are also shown.

The scattering geometry for the ramified aggregates is shown in the insets of Figs. 11
and 12. As seen in Fig. 11, extinction by the smallest monomers is due almost entirely to
absorption. This is not unexpected since the mass scattering coefficient of small particles is
proportional to their volume, whereas the mass absorption cross section is independent of
their size, as seen in Eq. (3). For the same reasons, the extinction cross section of the isolated
spheres (free carbon) is nearly identical to that of the equivalent volume sphere. Fig. 11 also
provides a demonstration of how polaroid J-sheet generates polarized light. Extinction by
the linear chain is about twice as great when the incident field is parallel to the chain than
when it is perpendicular to it. Such dichroism is also clearly seen in Fig. 12 but the radii
of the monomers are five times those in Fig. 11; scattering is no longer negligible and there
is considerable separation betweeen the curves for extinction and absorption. In Fig. 12 the
size parameter of the spherules is 1.142 and scattering now accounts for about half of the
extinction. The polarization dependence of the cross sections is now reversed, with the case of
endfire incidence now leading to the greatest extinction. It is also noted that in the transition
from ka = 0.5712 to ka = 1.142 for the primary spheres in the chain, the extinction cross
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section of the equivalent volume sphere falls slightly while that of the free carbon increases
by about 70%. The increase for the free carbon is accounted for by an increase in scattering
and the decrease for the equivalent volume sphere is due to a decrease in absorption. This
diminished absorption is in turn owed to strong attenuation near the surface of the particle
which, at this size, is beginning to prevent radiation from interacting throughout the volume
of the absorber.

To gauge the magnitude of the effect of electrodynamic coupling on the optical properties
of the elongated particles under consideration, comparison should be made between the exact
cross sections and those of the free carbon grains. It is noted that even though the chain
with the smallest monomers displays in Fig. 11 an extinction (absorption) cross section with
no orientational dependence when v = 90°, this does not mean that the effects of mutual
polarization are completely negligible: The extinction cross section of the chain for this po-
larization is about 20% lower than for the case of free carbon. (There is, of course neither a
polarization nor orientation dependence for the cross sections of the noninteracting particles.)
When v = 0° the optical properties of the chain become very sensitive to orientation, differing
from those for v = 90° the most at a = 90°. This is likely due to the dipolar nature of the
small spherules. The radial components of the electric fields of the grains can be roughly
proportional to 7% near the surfaces, providing for a more efficient electrodynamic coupling
between the particles as a approaches 90°. When < and « are both 90°, the radial components
of the electric dipolar fields vanish along the line of centers. These observations also apply to
the results shown in Fig. 11 but, as noted earlier, scattering no longer makes an insignificant
contribution to extinction. The anisotropy of the scattered field of these larger particles results
in a stronger coupling between them when they are within each others geometric shadow than
when they interact through side scattering at a = 90, provided that 4 = 90°. This accounts
for the values of A, being higher near 0° and then dropping off as a increases to 90°. If v = 0°,
the effect of the radial component of E still dominates the interaction as a increases from 0°
to 90°. In Fig. 13 where the monomers are largest, the forward-scattered field provides for
the greatest interaction, regardless of polarization.

For the aciniform (grape-like) clusters considered in Figs. 14-16, the agglomerates are
elongated in the direction of E when v = 90°, thus for the clusters made from the smallest
(ka = 0.1142) spherules it is seen in Fig. 14 that this polarization produces extinction cross
sections which are larger, by about 25%, than those of the free carbon. On the other hand,
the extinction cross sections for v = 0° is almost identical to that of the noninteracting
spheres. For the ka = 0.5712 monomers, the absorption cross section at v = 0° is still
very nearly that of the free carbon (see Fig. 15), indicating that coupling is still weak, but
the extinction has increased by about 40% due to the onsset of significant scattering by the
monomers. Dependent scattering is still relatively strong at v = 90°, producing an extinction
cross section that is about 60% larger than that of free carbon. A similar increase in the
extinction of the equivalent-volume sphere can also be seen. Fig. 16 shows the absorption
and extinction cross sections for a cluster made up of primary spheres with ka = 1.142. For
both polarizations, the absorption cross sections of the cluster are much closer to that of the
equivalent-volume sphere than to that of the free carbon because the compact cluster serves
to shield parts of its constituents from the incident light. The extinction values fall in between
those of the free carbon and equivalent volume sphere. Due to their compact morphology, the
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clusters display very little orientation dependence in there cross sections.

II1.3. Ensemble-averaged cross sections

In order to better understand the effects that scavenging of soot by transparent droplets
may have on the optical properties of haze and clouds, it is necessary to consider the orientation
and polarization averages of the cross sections presented in Figs. 1-8. Cross sections for
single carbon spheres are listed in Table I: The cross sections for spheres of the same size as
the spherules that are scavenged or agglomerated are provided, as are the cross sections of
single spheres having the same volume as five spherules. (This latter set of values will be
used in further analyses of the extinction properties of the carbon agglomerates.) For a given
polarization, the orientation-averaged A, is taken to be

(A) = % /0 " Agfaysinfe) do. (83)

If the particles are constrained to rotate in a plane that is, for example, perpendicular to the
polarization direction given by = 90° then the averages would take the form

4y =1 fo " A(0) da. (84)

s

Table II provides a summary of the averaged mass absorption cross sections for both
incident polarizations. One sees that for v = 90°, (A,) increases as the size of the carbon
grains is increased for all four classes of scavenging droplets. The same holds true for v = 0°
when cloud droplets are involved, but (A4,) steadily decreases with increasing grain size when
the grains are associated with the sulfate droplets.

As noted in the Introduction, an important consideration in the study of visibility and
climate is the possible alteration of the single scatter albedo of carbon-containing aerosol and
cloud volumes by dispersion of that carbon onto droplet surfaces. (Absorption by internally
dispersed carbon grains is the subject of an upcoming publication.!® ) It is therefore useful
to compare the mass absorption cross sections of externally mixed carbon to the those listed
in Table II. Table III displays the ratios of (4,) from Table II to the cross sections for the
free carbon, say Ay, is shown in Table I. The average of (A,) /Ay, for the two polarizations
is also shown. Relative to Ay, (A,) is seen to decrease with increasing grain size for most
of the cases considered and never shows a significant increase. This is tendency is even more
marked when the polarization-average is taken.

From Table III, it is also seen that the single scattering coalbedo associated with surface
mixing can exceed that for externally mixed carbon by almost a factor of 2 when the carbon
grains and haze elements both assume their smallest values. More importantly, perhaps, is that
(Aq) typically lies below Ay, when cloud droplets are involved. There is here a clear tendency
for the droplets to, on average, partially shield the carbon from the incident radiation: The
strong enhancements of A, near @ = 0 due to lensing effects of the host sphere are washed
out by the sin o term (i.e., by the low probability for realizing such an alignment) to a much
greater degree than is the reduction in A, that is due to refractive shielding. Carbon on the
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Table 1. Single Particle Cross Sections for
Carbon Spheres (m?/g)

Free
Carbon (fc)

Equivalent-volume
sphere

size
parameter

3.702  0.004 3.698 | 3.803 0.024 3.779

ka=0.1142

5.192 0.630 4.562 | 7.828 2.507 5.321

ka=0.5712

Table II. Orientaion-Averaged Specific Absorption of
Scavenged Carbon Grains on Aerosol Surfaces (m?/g)

8.512 3.174 5.338 | 7.144 3.348 3.796

ka=1.1420

C Radius (Aa) Droplet
(pm) =0 =90 Size/Species
0.01 8.574 4.803
0.05 7.896 5.203 0.5 pm sulfate
0.10 6.503 5.337
0.01 8.816  2.267
0.05 6.845 3.072 1.0 gm sulfate
0.10 5.319 4.747
0.01 4.136  2.469
0.05 4.665 3.164 3.0 pm water
0.10 5.214 4.424
0.01 4.236  3.586
0.05 4673 4.324 5.0 pm water
0.10 5.013  5.192

Table III. Ratio of Specific Absorption of
Scavenged Carbon to Free Carbon

C Radius Droplet
(pm) y=0 =90 (), | Size/Species
0.01 2320 1.324 1.822
0.05 1.730 1.140 1.435 | 0.5 pm sulfate
0.10 1.218 0.999 1.109
0.01 2.386 0.613 1.500
0.05 1.499 0.673 1.086 | 1.0 um sulfate
0.10 0.996 0.889 0.943
0.01 1.119 0.668 0.894
0.05 1.022 0.693 0.858 | 3.0 pm water
0.10 0.976 0.828 0.902
0.01 1.146 0971 1.059
0.05 1.024 0.947 0.986 | 5.0 pm water
0.10 0.939 0.972 0.956
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surface of a cloud droplet can thus be expected to absorb slightly less sunlight than if it existed
interstitially within the cloud.

It is not hard to visualize situations where ramified structures would display preferred
orientations: Filaments aligned aerodynamically to maximize viscous drag or oriented in lam-
inar flows so as to minimize torque are two obviuos examples. There are, however, more
scattering geometries specific to particular problems than can be considered in this context
at the present time. The linear chains, therefore, are allowed to assume all orientations and
Eq. 4 will be used, as it was in the case of the droplet/soot composite particles. It is not
difficult, given the data provided in Figs. 11-13, to estimate (A) using Eq. 5 should the need
arise.

Eq. 5 is applied to the tightly packed carbon clusters considered in Figs. 14-16. An
extensive investigation of ensemble averages of the optical properties of three-dimensionally
configured sphere centers would be an appropriate topic for further research, but it is not the
subject of the present study: Here the averages are taken in order to gain some initial insights
into the influence of dependent scattering by comparing calculations made thus far with the
properties of the single carbon spheres listed in Table I.

Averages, taken as described above, for the extinction, scattering, and aborption cross
sections of the carbon agglomerates are provided in Table IV. As can be inferred from Figs. 11
and 14, scattering is negligible for the aggregates comprised of the 0.01xm spherules. Even
where scattering is not negligible, it is still dominated by absorption, as is the case for the
single spheres in Table 1.

As noted earlier, there are some approximations that are routinely used in the fractal
analysis of light extinction by soot that can now be tested against exact calculations. The two
approximations considered here are: (1) that multiple scattering within the aggregate is small
and (2) that absorption by the cluster is proportional to the total volume of the absorbing
material, i.e., the absorption cross section of the aggregate can be inferred from that of an
equivalent volume sphere.!” Table V lists the ratios of the respective cross sections of the
straight chain and aciniform aggregates, after polarization-averaging, to those of free carbon
and of equivalent volume spheres.

For the 0.01xm grains, the absorption cross sections of the aggregates are seen to be from
11 to 14% larger than those of the free carbon or of the equivalent volume sphere, with the
larger difference involving the free carbon. For the 0.054m spherules, A, underestimates o,
for the aggregates by about 10%, whereas this cross section is overestimated by the equivalent
volume sphere, although the error is still only a few percent. The reverse is true for the 0.10xm
monomers and the error in the equivalent volume approximation is found to be about 20%.
It should be pointed out that Sorensen et al.!” employ monomers comparable to the 0.01xm
grains.

A bit of caution is to be used in interpretating the ratios of the scattering cross sections of
the aggregates to those of the free carbon. The number of monomers in a cluster of identical
particles is implicit in the particle volume appearing in Eq. 2. For small particles, however,
the scattering cross section is proportional to the square of the volume so that if a cluster of L
small spheres is itself smaller than the wavelength, the above ratio would be L if there were no
cross talk among the monomers. (This matter is discussed more fully in Section 4 of Part I.)

The proportionality to L? is taken into account in fractal research and the scattering cross
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Table IV. Mass Cross Sections for Sphere Aggregates

Linear Chains of Five Spheres (m*/g)

¥v=0° _ v = 90° monomer size
Ext Sca  Abs | Ext Sca  Abs
5.368 0.032 5.335 | 3.118 0.019 3.098 ka=0.1142
8.132 2.103 6.030 | 4.975 1.099 3.873 ka=0.5712
8.926 4.150 4.778 | 7.323 3.076 4.247 ka=1.1420
Close-Packed Hexahedral Cluster
y=0° v = 90° monomer size

0.023 3.700 | 4.740 0.030 4.720 ka=0.1142
6.632 2.047 4.583 | 8.400 2.740 5.666 ka=0.5712

7.548 3.358 4.189 | 7.865 3.771 4.097 ka=1.1420

Table V. Ratios of Aggregate to Single Sphere Cross Sections

Linear Chains of Five Spheres

(Averaged cross sections)/fc  (Averaged cross sections)/eqv

monomer size |

Ext Sca Abs Ext Sca Abs

1.146 6.384 1.140 1.115 1.063 1.116 ka=0.1142
1.262 2.541 1.085 0.837 0.639 0.931 ka=0.5712
0.954 1.138 0.845 1.137 1.079 1.189 ka=1.1420

Close-Packed Hexahedral Cluster

(Averaged cross sections)/fc

(Averaged cross sections)/eqv

monomer size |

Ext Sca Abs Ext Sca Abs

1.143 6.663 1.139 1.112 1.110 1.114 ka=0.1142
1.448 3.799 1.123 0.960 0.955 0.963 ka=0.5712
0.905 1.123 0.776 1.079 1.065 1.091 ka=1.1420
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sections of the 0.01um sphere aggregates in Table V should be divided by another factor of
five when testing the L? (Rayleigh) approximation of light scattering employed in the study
of fractal aggregates. Thus the error in the approximation is about 30%, rather than the over
600% that one might infer from Table V. The use of the Rayleigh approximation for scattering
by the 0.05xm grains breaks down and the scattering cross sections of the aggregates simply
cannot be approximated in terms of free carbon. When these monomers are tightly clumped,
their scattering cross section is approximated well by that of an equivalent volume sphere, but
for the ramified structures, no reasonable approximation for the total scattering is obvious.
(An equivalent area sphere was also considered, but the error for such an approximation was
even greater than those for the free carbon and equivalent volume approximations.) The
interactions between the 0.10xm spheres are not strong enough to produce an error of more
than about 15% in the scattering cross sections of the aggregates relative to that of free carbon,
but the agreement with the equivalent volume approximation is better still.
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Abstract—Backward Monte Carlo integration of the radiative transfer equation is the
technique most easily adapted to complex scattering geometries. However, backward Monte
Carlo integration suffers from two disadvantages: the accuracy is often low because the
solution calls for the evaluation of high-dimensional integrals, and convergence of the multiple
scattering series is slow if the photons are only weakly absorbed by the medium. In this paper,
we demonstrate that the errors from both sources can be substantially reduced. First, the
multi-dimensional integrals can be evaluated more accurately and more efficiently with quasi
Monte Carlo integration, a technique in which photon trajectories are selected to sample the
integration domain optimally. Second, the convergence of the multiple scattering series can
be accelerated by estimating the rate of decay of the tail of the series. Each of the techniques
described in the paper is both robust and applicable to scattering with any geometry.

1. INTRODUCTION

There are many problems in atmospheric radiation which require the solution of the radiative
transfer equation (RTE) in complex media. Examples range from visibility studies, such as those
undertaken to model haze in the Grand Canyon,' to efforts to model the shortwave and longwave
fluxes transmitted by fields of broken cloud.® Although some attempts have been made to adapt
techniques for plane parallel media to complex geometries,*’ essentially by developing the
optical properties in Fourier series and replacing the RTE by coupled equations for the Fourier
components, the technique which can be adapted most easily to complex geometries is that
of Monte Carlo (MC) integration. Indeed, there is a distinguished history of applications of
MC integration to cloud radiation, dating from the early studies by McKee and Cox,® which
demonstrated the importance of the finite dimensions of clouds, through to more recent studies
of ensembles of clouds.” An excellent treatment of Monte Carlo techniques in atmospheric optics
can be found in the book by Marchuk et al.?

However, there are two serious difficulties with backward MC integration, both of which arise
because the simulation of photon trajectories is logically equivalent to summation of the multiple
scattering series. These difficulties are that (i) each term of the multiple scattering series requires
evaluation of a high-dimensional integral, a process which can be very costly if high accuracy is
required, and (ii) the accuracy of backward MC integration is poor when the medium is optically
thick or has low absorption because the convergence of the multiple scattering series is then slow.

The first objective of this paper is to draw attention to work on quasi Monte Carlo (QMC)
integration, a technique which can significantly reduce the costs incurred in the evalution of the
integrals in the multiple scattering series. It is well known that the error in statistical, or random,
Monte Carlo (RMC) estimation of integrals has order N ~'?, where N is the number of simulated
photon trajectories. Perhaps less well known in the radiation community is the existence of QMC
techniques for which the error has order N ~'(log N)‘, where d is the dimension of the integration.
Examples will be given in the paper to illustrate the improvement in computational efficiency
obtained with QMC integration of the RTE.

The second objective of the paper is to introduce a technique for accelerating the convergence
of the multiple scattering series. If I, denotes the contribution to the radiance from kth order
scattering, and if S, denotes the nth partial sum of the multiple scattering series

S,,-_— Z Ik.
k=0
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then the convergence of the sequence S, to the radiance / is monotonic because the terms I, are
all positive. The error term, E, . ,, defined by

I=Sn+En+h

is unknown because it involves the radiance. However, a related quantity, R, , ,, obtained formally
from the error term by setting the radiance to unity, can be computed for negligible extra cost as
a by-product of the calculation of S,. The sequence

Sll
Qn(V)—l—VR,H,l’ 0<v<l~

also converges to the radiance for any v in the range (0, 1). It will be shown in this paper that there
is a critical value of v, denoted v, for which the convergence of the sequence Q,(v,) is both
monotonic and optimal, in the sense that it is faster than the convergence of Q,(v) with any smaller
v. In particular, Q,(v,) converges more rapidly than S,. The estimation of v, is straightforward
and computationally inexpensive. The importance of this convergence acceleration technique is
that it significantly extends the range of optical thicknesses where both QMC and RMC integration
are efficient.

Each of the techniques described in this paper is both robust and applicable to scattering with
any geometry.

The paper contains four sections. The first is concerned with multiple scattering in an arbitrary
medium. The second section outlines the essential elements of RMC and QMC integration and
demonstrates that the standard variance reduction techniques of RMC integration are trivially
included in QMC integration. Section 3 compares the computational efficiencies of RMC and QMC
integration in solving the RTE for several test problems. Section 4 describes the convergence
acceleration algorithm.

1. MULTIPLE SCATTERING

Consider a domain X of arbitrary shape containing a scattering medium whose coefficients of
absorption, scattering and extinction, denoted by a(x), f(x) and y(x), may depend upon position
x within X, If there are no sources of radiation within the medium, then the radiance at point x
in direction specified by unit vector s, denoted I(x,s), satisfies the radiative transfer equation
(RTE),

s VI(x,8) = —y(x)I(x,s) + B(x) J' dQ(s")p(x, s, s)I(x, s"). (1)
0

In this equation, p(x,s,s’) denotes the phase function for scattering from direction s’ into
direction s, and dQ(s”) denotes the solid angle centred on s’,

dQ(s’) = al; sin 8’ d6’ d¢’, )

where 6’ and ¢’ are the zenith and azimuth angles of s”. The solid angle and the phase function
are normalized so that

J d() = 1 3)
(4]

and

J' dQ(s")p(x,s,s8) = 1. 4
(4]

In order to complete the specification of the scattering problem, a condition must be imposed on
the radiance on the boundary of X. The condition will vary with the problem, but, for the purposes
of this paper, it suffices to choose the canonical boundary condition in which the inward pointing
radiance is specified at all boundary points of X. The extensions to cover the cases of polarized
radiation, internal thermal sources and a partly reflecting boundary are straightforward.
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Fig. 1. Multiple scattering geometry.

The integral form of the RTE asserts that the radiance at point x, in direction s, is given by

1(xo, So) = 1(Xo, ug)I (uy, 8y) + f‘odX. t(Xo, X )B(x,) L dQ(s,)p(x,, 8o, $,)1(x,,,), (%)
ug

where u, is the boundary point found by retracing the ray through point x, in direction s,, the line
integral along the ray from u, to x, is denoted by

Xg
J. dx, ..., (6)

u
the transmittance of the medium between points x” and x is denoted by #(x, x’) and given by
t(x, x’) = exp[—/(x, x')], (7

with /(x, x”) representing the optical path length between the points,

I(x, x") = J. dx"y(x"). (8)

X

The multiple scattering series solution of Eq. (5) is obtained by iterating the integral equation.
With reference to Fig. 1, the radiance after » iterations may be written as

000,80 = 3 (80,8 + Epe (30, 5), ©)
where I, denotes the radiance transmitted directly from the boundary,
Io(Xo, 89) = 1(Xo, o)1 (g, So), (10)
while I, for k > 1, denotes the radiance which has been scattered k times,

I (%o, 8) = J‘odxlt(xo, x;)B(x,) J; dQ(s,)p(x,,80.8;) " " -

u

. xJ.“_Ikat(xk—lvxk)ﬂ(xk)Jﬂdﬂ(sk)p(xk’sk—lisk)t(xk’uk)l(uk’sk)' (1D

W

In Eq. (11), u; is the boundary point found by retracing the ray through scattering point x; in
direction s;, i =0,...,k. The remainder after » iterations, E,.,, still involves the unknown
radiance,

Ey (X0, o) = f ® dx, 1 (k. X)B(X,) Ldn(s.)p(x.,so,s.)---
u

.. XJ‘% dx,,+|t(x,.,x,.+l)ﬂ(x..+.)J‘ dQ(S,+ 1)P Xn s 15 Sms Saa 1 M (X s 158041).  (12)
(4]

u,
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However, under rather general conditions which will be established later, the remainder converges
to zero as n — 0, so the sequence of partial sums, defined by

S.(xo,so)=ki01k(xo,so), (13)

converges to the radiance.

Transformation of the line integrals

Each of the line integrals in Eq. (11) can be reduced to integration over the unit interval by
simple changes of variable. First, the transmittance ¢'(x, x”) and the extinction y(x’) are related by

dr’/dx’ = y(x)t'(x, x), ' (14)

where the prime on ¢’ indicates that it is to be regarded as a function of x’. This approach permits

a typical line integral to be transformed as follows:

¥=| dxt'(x,x)p(x")---

*x df,

=| dx'—;
Ja dx

r1

= dto(x) -, (15)

Jf(x,w)

BX)y(x) - -+

where @ (x’) is the single scattering albedo,

o (x’) = B(x")/7(X). (16)

Second, if ¢ denotes the distance to the next scattering point, expressed as a fraction of the total
optical path length to the boundary along the ray through x,

_ ' =1(x,u)

‘= T’ (17)
then it is clear that
0<e' <1 (18)
and that
Z=a(x,u) J: de'm(x’) -+, (19)
where a(x, u) is the absorption along the path from boundary point u to point x,
a(x,u)=1-—1t(x,u). (20)

The point x” which appears in the integrand of Eq. (19) must be determined from ¢’ by solving
Eq. (17) for ¢’ in terms of ¢, and by solving Egs. (7) and (8) for x’ in terms of ¢’. It is in these
calculations that the major cost of MC integration of the RTE is incurred.

Transformation of the angular integrals

In most applications the phase function depends only upon the scattering angle y’, defined to
be the angle between the vectors s and ¢/,

cosy’' =s-§, (21

and not upon the absolute orientation of the vectors. When this is the case, the polar axis of
integration over s’ appearing in a typical angular integration in Eq. (11),

Y= J. dn(s')l’(x, 5, s’) Y (22)
o
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may be aligned with s without changing the value of #. This permits # to be written in the form
2x d¢ ’ n dw ’
= X | Zsiny’ Y oms.
J'o o L > sin §'p(x, cos ¥ *) (23)

The integration can be reduced to an integral over the unit square with new variables {’ and 7n’,
defined by

,_ 9
{'= o (24)
and 7
1 (¥ .
n'(x,¥’)= 3 j dy sin yp(x, cos ¥). (25)
0
Because
d'l' N ’ ’
e Y'p(x,cos ), (26)
it follows easily that
1 1
@=Jd£’jdn’---. 27
0 0

The integrand in Eq. (27) still depends upon both direction vectors s and s’, which must be
reconstructed from {” and n’ by reversing the mappings outlined above.

As a result of the coordinate changes discussed above, the contribution to the radiance from kth
order scattering can be represented as an integral over the 3k dimensional unit cube,

1 1 1 1 I 1
Ik(xo,so)=J déIJ‘ d&f drh"'J' dekj deJ dn,
0 0 0 0 0 0

X w(X,) " @(X)a(Xo, Ug) - - @(Xpe_ gy W) ) (X, W) (0, 5,).  (28)

The integral can also be written in the more compact form

Iy= Jfk(Z) dz, (29)
where z denotes the point in the 3k dimensional cube with components
Z2=(€,81,M,€58 M55 €s oy M) (30)
and
fe@) =w(x,) - o(X)a(Xo, o) - -~ @(Xp_y, W ) (X, W) (uy, 8;). (31

The conditions for convergence of the series are now apparent from Eq. (28): the medium must
either be absorbing, so that w(x) < 1 for all x, or be finite in optical thickness, so that a(x,u) <1
for all x and u.

It is worth noting the special (but important) case in which the source of illumination consists
of a collimated beam from direction s, with flux density F, together with a diffuse incident radiance
denoted by J. The radiance incident upon the medium at boundary point u in direction s becomes

I(u,s) = 4—1;5(s. s,)+J(u,s) (32)

and the kth order scattering term can be decomposed into a ‘solar’ component 4, and a ‘diffuse’
component B,, i.e.

I (%o, 89) = Ax(Xo, ) + Bi(Xo,8), (33)
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given by

F [ I 1 1 1 1 1
Ap(xg,8)=—| de; | d{, | dn,--- de_y | Al | dm_, | de
an J, 0 0 0 0 0 0

X@(X)@(X)a(Xo, Wo) ** * @(Xg 5 W )1 (X, W )P (X, Sy, s,) (34)
and

1 1 1 1 1 1
Bk(XOvs0)=J d€|f dClJ‘ d"l'“J‘ dfkj. deJ' dn,
0 0 0 0 0 0

X w(X;) (X )a(Xo, W) - @(Xy_y, “k—l)t('xlu u )J (U, s.).  (35)

In summary, the contribution to the radiance from processes involving k scattering events can
be reduced by simple changes of the variables to an integration over the 3k dimensional unit cube.
If the source is collimated, as in the case of the solar beam, then the dimension can be further
reduced to 3k — 2. The next section discusses the evaluation of such integrals and their connection
with the conventional, statistical interpretation of RMC integration, according to which radiances
are computed as weighted averages of photon trajectories.

2. MONTE CARLO INTEGRATION
The simplest estimate of the integral

Ii= J‘f(z) dz (36)
of the function f over a d dimensional cube is
l N
S =3 f(z), (37)
NS
where the points z,,i = 1,2, ..., N, are chosen within the cube. The estimate 4™ is just the average

value of the integrand at the selected points. Alternatively, f(z;) may be interpreted as a statistical
weight associated with the ‘event’ z,, in which case the integral value is the weighted average of
all the sampled events. For example, in the evaluation of 7, in Eq. (28), the components of each
point z; determine a photon trajectory whose associated weight is f;, defined in Eq. (31), so the
integral estimate afforded by Eq. (37) becomes a weighted sum of photon trajectories. Furthermore,
the weight f, has a simple physical interpretation. Each of the factors @(x;) represents the
probability of survival of the photon in the corresponding collision. The factor a(x;_,,u;,_,) is a
weight introduced to remove the bias caused by forcing collisions to occur within the medium along
the path from u,_, to x;_,. The variable change from ¢’ and n’ ensures representative sampling
of the phase function. In the parlance of RMC integration, the purpose of the weight is to bias
the distribution of photon trajectories towards the physical distribution. This process is an example
of the general procedure of ‘variance reduction’. The weights described above are the most
commonly used because they are universally applicable and do not rely upon specific properties
of the scattering medium. It is clear that variance reduction is implicit in Eq. (28).

In RMC integration, the points z;, i =1, 2, ... N, are chosen randomly in the unit cube. It is
well known that the error in the corresponding estimate #™ has order N '/

|f —FM|=0(N'?). (38)

However, in QMC integration the points z, are chosen according to a strategy designed to minimize
the discrepancy of the set of points, a quantity which measures the uniformity with which the points
are distributed in the unit cube. In order to define the discrepancy, let (i) z denote any point in
the unit cube, (ii) M (z) denote the number points in the rectangular subregion with its minimum
vertex at the origin and its maximum vertex at the point z, (iii) A*Y(z) denote the difference between
the fraction of points in the subregion and the volume of the subregion, i.e.,

AM(z) = MT -2z, 2, (39)
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where z,, z,, ' -, z, denote the components of the vector z. The discrepancy is the maximum value
of the function A™(z) as the point z varies over the unit cube,

D™ = sup AM(z). (40)

If the points are distributed uniformly, then the fraction of points in any subregion ought to be
nearly proportional to the volume of the subregion, in which case the discrepancy ought to be small.

The importance of the discrepancy to QMC integration lies in the following inequality for the
error in the estimate S™:

|£ = FM| < V(f)DP, (41)

where V(') is the variation® of the function f and D™ is the discrepancy of the selected set of
points. Thus, the error is bounded by the product of two factors, one of which measures the
‘lumpiness’ of the function, and the other the ‘lumpiness’ of the distribution of points. Clearly,
without a priori information regarding the integrand, the best strategy for minimizing the error in
the estimate of the integral is to choose points with small discrepancy.

The search for point sets with low discrepancy is an active area of mathematics, whose principal
results can be found in a survey by Niederreiter.'” However, in this paper attention will be focused
on one particular set of points, called the Halton'' sequence, for which

D™ = O[N~'(log N). (42)
The Halton sequence consists of points
z,= ((Pkl(i), @r, (1), - . ., @g, (7)), (43)

where ¢g(i) is the radical inverse function, which maps each integer i into a real number in the
interval (0, 1) by reflecting the representation of i/ in base R arithmetic in the decimal point. The
bases R,, R,, . .. R, must be relatively prime and are usually taken to be the first 4 prime numbers.
Details of a computationally efficient algorithm for calculating the sequence are given by Halton
and Smith."”

Figure 2 compares randomly selected points in two dimensions with the Halton sequence.
For N = 10 there is little to choose between the coverage of the two sets of points, but for N = 100

Random and Halton points

Random

Halton

N=10 N=100 N = 1000

Fig. 2. Distribution of random and Halton points in two dimensions for N = 10, 100, 1000.
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and N = 1000 the more uniform coverage of the Halton sequence is obvious. In the context of
integration over the unit square, the Halton sequence will sample the integrand uniformly, whereas
randomly selected points will undersample the integrand in some regions while oversampling in
others, leading inevitably to greater variance in the estimate of the integral. However, as the panel
of Fig. 2 with only N = 10 points shows, the advantage of greater uniformity is only obtained if
sufficiently many points of the Halton sequence are used in the integration. In practice, a good rule
of thumb appears to be that the Halton points will be significantly more uniformly distributed than
randomly selected points if N ~ e??.

An important feature of the Halton sequence is that the points do not depend upon the number
N. Consequently, if it is found that the error in the integration is too large after N points, then
additional points can be generated without affecting the preceding calculations.

The cost of generating the Halton sequence is typically less than twice the cost of generating a
corresponding sequence of random numbers. For example, 10,000 points of the Halton and random
sequences in 60 dimensions were generated on a 386SX PC in 47 and 26 sec respectively. In the
context of solving the RTE, the additional cost of the Halton sequence is negligible compared with
the total cost of simulating the photon trajectories.

The Halton sequence is near optimal, in the sense that most other sequences with the same
number of points will have a larger discrepancy. As an extreme example, N points selected on a
uniform rectangular grid in 4 dimensions have discrepancy

D™ = O(d/N". (44)

If d is large, then it is clear that the discrepancy of this set of points decreases very slowly with
N. Indeed, once d >4, integration using a rectangular grid of points becomes prohibitively
expensive.

3. INTEGRATION OF THE RADIATIVE TRANSFER EQUATION

In order to demonstrate the greater efficiency of QMC integration of the RTE, both QMC and
RMC integration were applied to the following test problems: (i) a uniform slab with conservative,
isotropic scattering; (ii) a uniform slab with conservative scattering prescribed by a Henyey—
Greenstein phase function with asymmetry g =0.75; (iii) a Gaussian slab with conservative,
isotropic scattering and an extinction coefficient given by

y(x) = 2z exp(—nx?), (45)
for which the optical thickness varies along the x axis according to
7(x) = exp(—nx?). (46)

Conservative scattering provides the most stringent test for MC integration because the multiple
scattering series is then most slowly convergent. Furthermore, the peaked phase function of
problem 2 and the non-uniform geometry of problem 3 test the robustness and adaptability
of QMC integration. In each case, the source was assumed to be the solar beam, and no diffuse
radiance was assumed to be incident upon the medium.

The computer code followed photons backwards through the medium from collision to collision,
up to a maximum of 7 collisions. The photon trajectories were generated from points z in the
(3n — 2) dimensional unit cube with components

z=(€l’ChrII9€2’C2a’72’ AL "Cn-l’Cn—lv ”n-lven)- (47)

For each scattering order k =1, ..., n, the trajectory from the exit point to the point of the kth
collision was computed as follows: ¢, determined the distance from the exit point, x,, to the previous
scattering point, x,, while {, and », determined the incident direction, s,, of the photon at x,; the
next three components, ¢,, {,, n,, determined the distance from x, to x, and the incident direction,
s,, of the photon at x,, and so on; ¢, determined the distance from x, _, to x,, where the incident
photon direction was taken to be that of the solar beam, s,. After computing the kth order
radiance, the code continued the trajectory to the (k + 1)st collision. For QMC integration, the
point z was selected from the Halton sequence, whereas for RMC integration all components of
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First order scattering T7=1,9=0

0.75 -
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Fig. 3. First order scattering integral, I{", plotted as a function of N for QMC and RMC integration of
test problem 1. The scattering is conservative and isotropic. The medium is a uniform slab with optical
thickness t = 1. The incident and exit zenith angles are cos§ = —0.5 and cos 6, = 0.5.

z were chosen randomly in the unit interval (0, 1). Thus, apart from the mechanism used to generate
the sampling points, the same computer code was used for both QMC and RMC integration.

Values are given below for both the individual terms , and the partial sums S, of the multiple
scattering series. The estimates of these quantities, obtained by either QMC or RMC integration

with N photon trajectories, are denoted by 7{™ and S™ respectively.

3.1. Test problem 1
Figures 3, 4, 5 and 6 show the convergence of IV, IV, I and S as functions of N, the number

of photon trajectories, for both QMC and RMC in the case of a uniform slab with optical thickness
7 = 1. The scattering is in the principal plane with incident and exit zenith angles, denoted 6, and

0,, specified by
Ue=cosf,=—0.5 p,=cosf,=0.5.

The faster convergence of QMC integration is clear. However, it is also apparent that the
improvement in convergence deteriorates with increasing order of scattering. The reason is that the

7=1 ¢g=0

- Second order scattering

=== Halton nodes
Lssshveisonsssssstosmmdiedsuvssdscesnd ...... e n-mm .....

-
n

.zo H . .
40 60 80 100

"Number of photons (in thousands)
Fig. 4. Second order scattering integral, /{", for the same conditions as Fig. 3.
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Third order scattering 7=1, g=0
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Fig. 5. Third order scattering integral, I{*, for the same conditions as Fig. 3.

dimension of the corresponding integration also increases, and QMC integration with the Halton
sequence requires approximately N ~ e“? points in order to cover the integration domain more
effectively than randomly selected points. Therefore, it follows that the greatest advantage of QMC
integration of the RTE will occur in optically thin media, where the multiple scattering series
converges rapidly.

A more revealing comparison of the performance of QMC and RMC integration is the cost,
measured in terms of the number of photons (in units of hundreds), required to achieve an accuracy
of €%. The cases displayed in Table 1 correspond to scattering in the principal plane, with

pye=cosf, =05,
Mo=cos §,=0.9,0.5,0.1, —0.1, —0.5, —0.9, — 1.0,
and optical thicknesses in the range
t=1/8,1/4,1/2,1,2.
The prescribed error takes the values
€=0.1,0.2,0.5, 1.0.

, Sum of orders 1 ... 30 T=1 ¢g=0
’. 5 . H
AN
H H "0.'4‘:.-.‘.":.,.. : :
‘e_ o I:M D ‘s..--o...-‘~--v.”-- . —
P — g N ———
& : : : :
&
=
c
Legend
K | EeRree Hellonnodes [ wmepmsmiinns:

=== Random nodes

0 20 40 60 80 100
Number of photons (in thousands)

Fig. 6. Sum of the first 30 terms of the multiple scattering series, S, for the same conditions as Fig. 3.
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Table 1. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy

of €% for QMC and RMC integration of the RTE for test problem 1. An asterisk (*) indicates that

the required accuracy was not reached after 10° photons. The reference values were taken from the

Tables compiled by van de Hulst." The column labels Q and R denote QMC and RMC, respectively.
Also p_=cosf_ = —0.5, yy=cosb,.

T € [ po=09 || po=0.5 || po=0.1 || po=—0.1| po=—0.5| po=-0.9 || po =-1.0
% Q| R Q[ R| Q| R R Q R Q R Q R

1/8 0.1 60| *|[ 67(670( 8 | *| 43| 310 | 120 *| 53 *1 32 *
0.2 43 (730 20|38 8| *| 28| 200 39 *| 44 * 9| 970

05( 12| 14 9 (120 4 17| 11| 130 12| 8| 10| 26 2( 13

1.0 3| 12 2 1 2 5 3 15 5 6 4 16 1 2

1/4 01| 61 *1 76 670 | 90 *| 60 * ] 110 *I 1 * 37 *
02 43| *| 62|380| 50| *| 35| 260 40 *1 53 * 33 *

0.5 20|160 || 14 | 130 4| 18| 11| 170 (| 16 8| 17 29 9 41

1.0 8| 13 4| 16 4| 12 5| 63 8 7 4| 21 2 9
1/2/01200 | *f 76(970 120 *| 85 * 11 190 *1 95 * | 280 *
0.2 || 180 *II 71[320) 60| *| 70 *| 40 *| 53 *| 58| 960

0.5 21|990| 45]130 8| 65( 17| 160 | 13| 77| 21| 77| 32| 41

1.0 12| 17| 12| 17 4| 18 8| 63 8 8 4| 17 9| 13

1 o135 *J100( *| 93| *| 650 * 11 290 * | 580 * 1 350 | 970
02122 | *| 8 |140| 85| *| 240 * || 250 * 1 220 *1 95| 880

05| 35| *| 46|100( 26 (120 77 *I 13| 30 20| 33| 58| 50

10 12| 25| 12| 17 4| 60 16| 32 8| 11§ 17| 13| 33| 40

2 [[01(380| *[700| *f740| * * * * * 1 530 * | 410 | 970
02240 | *| 97| *| 8| *|960 * | 730 * | 240 | 990 || 350 | 930
05180 | *| 40| 80 34121 | 140 *I 32| 220 42| 250 || 58 | 110

1.0 30| *| 12| 16 4| 63| 39 *| 13| 23) 31| 81| 39| 90

The reference values of the radiance were taken from tables compiled by van de Hulst." The
multiple scattering series was summed to 30 orders in order to eliminate errors due to slow
convergence. Where the specified accuracy was not achieved with 10° photons, an asterisk (*) has
been inserted in the Table. Several conclusions are immediate. In nearly every case, QMC
integration achieves the specified accuracy with far fewer photons than RMC integration. The cost
increases steadily with the required precision for QMC integration, but not for RMC integration.
Only rarely does RMC integration achieve an accuracy of 0.2% with fewer than 10° photons and,
on the occasions it does, the cost jumps significantly above the cost of 0.5% accuracy. The cost
of achieving a specified precision with QMC integration increases with optical thickness. The reason
is that the contribution of higher order scattering becomes more significant with increasing optical
thickness, necessitating more photons in order to evaluate the correspondingly higher dimensional
integrals.

3.2. Test problem 2

The cost of obtaining high accuracy radiances increases when the phase function is sharply
peaked, as in test problem 2. This is not surprising because the integrands in the multiple scattering
integrals are now ‘lumpy’ functions, so many of the integration points are poorly targeted and fall
outside the region where the integrands are large. In some problems, where the phase function is
known only poorly, this problem can be avoided by replacing the phase function by a “ball and
stick” model,

p(x,s,8) =g(x)i(s,s) + (1 —g(x))p'(x,s,s), (48)

in which g is the asymmetry parameter of p, and p’ is a smooth phase function whose asymmetry
is zero. With this definition, the singular part of the phase function can be integrated analytically
and the RTE reduces to scattering with phase function p’ and modified scattering and extinction
coefficients given by

B'(x) = (1—-g(x)B(x), 49)

and

Y'(x) = y(x) — g(x)B(x). (50)
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Fig. 7. Sum of the first 3D terms of the multiple scattering series, S%, plotted as a function of N for QMC

and RMC integration o test problem 2. The scattering is conservative with a Henyey—Greenstein phase

function with asymmetry g = 0.75. The medium is a uniform slab with optical thickness t = 1. The
incident and exit zenith angles are cos 8, = —0.5 and cos 6, = —0.5.

However, if high accuracy calculations are required for a precisely specified phase function, then
the additional cost is unavoidable.

Figure 7 shows the convergence of S as a function of N, the number of photon trajectories,
for both QMC and RMC. The optical thickness is 7 = 1, the scattering is in the principal plane,
and the incident and exit zenith angles are given by

pe=cosf,=—05 py=cosfy=—0.5.

Table 2. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy

of €% for QMC and RMC integration of the RTE for test problem 2. An asterisk (*) indicates that

the required accuracy was not reached after 10° photons. The reference values were computed by QMC

integration with 10° photons. The column labels Q and R denote QMC and RMC, respectively. Also
u,=cosf = —0.5, po=cos b,

T € lpo=09] =05 | po=0.1 || po=—-0.1| po=—-0.5| po=-0.9 || o =-1.0
% Q| R Q] R| Q] R| Q] R| Q Rl Q R Q| R

1/8 [ 0.1 *| *| 470 *{ 97 *1 39 * 2| 17| 21| 240 (| 240 *

02320 *| 110 * 43 * 10| 280 2 6 8| 220 28| 230

05120 *| 30| 8| 16| * 2| 60 1 2 1 14 19| 170

10 43| * 7| 79 6| 4 2| 15| 1 1 1 3 3| 14

1/4 0.1 * 1 %1890 * || 680 *1 49 * 2| 42| 53| 360 || 300 *

0.2 *| *[120 260 || 54 *1 39| 320 2| 17 9| 240 | 230 ¥

05(290 *| 43| 94| 20 * 5| 220 1 5 8| 210 28| 220

10 62| *| 30| 89 6 8 2 34 1 2 2 7 19| 130

1/2 0.1 =l * * | 760 - * 1l 450 * 11 * 1 290 * [l 410 *

0.2 * (| 800 | 440 | 520 * 48| 590§ 11| 50| 51| 310 || 220 *

05510 *( 120|150 || 56 *I 39| 240 2 7 10| 220 || 120 .

10 55| *| 13(140 17| 12| 24| 34 1 6 2| 66 61| 210

1 0-1 * * sm * * * 690 * 96 * * * * *

0.2 L * 380 * * * 450 L 40 170 * * * =

0.5 890 | * | 240 | 180 || 270 * | 160 * 5| 50| 51 220 || 350 *

101490 | *| 63|1401 20| 32| 49| 240 2 7 10| 100 | 140 *

2 o.l * » * * * * * * 820 * £ * * *

0.2 *| * | 950 | 990 » * 1l 990 *1 96 . *| 970 * *

05920 * (380 (170360 * | 280 *1 61| 220 | 110 | 540 - *

10510 *| 68)140( 20|180 | 85| 420 )| 57| 83| 31| 290 [| 900 *
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Fig. 8. Sum of the first 30 terms of the multiple scattering series, SY, plotted as a function of N for QMC
and RMC integration of test problem 3. The scattering is conservative and isotropic. The medium is a

Gaussian slab with optical thickness 7 = | at the observation point. The incident and exit zenith angles
are cos 6§ = —0.5 and cos 6, = —0.5.

Not only does the QMC integration converge more rapidly, but the RMC integration is slowly
diverging from the correct answer after 10° photons. The faster convergence of QMC integration
is typical of all the forward scattering directions.

The cost of achieving a specified accuracy is summarized for QMC and RMC integration in
Table 2, the format of which is identical to Table 1. The reference values of the radiance were
computed by QMC integration with 10° photons, sufficient to guarantee convergence. It is apparent
from Table 2 that the costs are higher than for isotropic scattering, exactly as anticipated.
Nevertheless, QMC integration is still more efficient.

3.3. Test problem 3

The results and conclusions for test problem 3 are very similar to those for problems 1 and 2.
In order to make the test more stringent, the reflected and transmitted radiances were evaluated
at the points (0, 0, 1) and (0, 0, 0) respectively, where the slab has its maximum optical thickness
(t = 1). Figure 8 shows the convergence of S} as a function of N, the number of photon
trajectories, for both QMC and RMC integration. The scattering is in the principal plane with
incident and exit zenith angles given by

py=cosf,=—0.5 py=cosfy=—0.5.

Table 3 shows the number of photons required to achieve an accuracy of €%. The reference
values were computed by QMC integration with 10° photons as it was clear that these values
had converged. Both Fig. 8 and Table 3 demonstrate the superiority of QMC integration in this
application with spatially varying optical properties.

Table 3. Comparison of the number of photons (in hundreds) required to achieve a specified accuracy

of €% for QMC and RMC integration of the RTE for test problem 3. An asterisk (*) denotes that

the specified accuracy was not reached after 10° photons. The reference values were computed by

QMC integration with 10° photons. The column labels Q and R denote QMC and RMC, respectively.
Also p, =cosb = —0.5, yy=cosb,.

7] € | po=09po=0.5 po=0.1] po=—0.11 po=—-0.5] po=-0.9 |l po= -1.0
% Q] R Q] R Q R Q R Q R| Q R{ Q R
10161 * {1 57 | 510 | 93 *139 | 280 | 190 * || 43 * | 57 L
0.2 35 * 1l 54 | 330 || 17 *119| 140 ) 18| 99| 17 79 || 51 *
0514 | 581 12| 60| 7| 120 11 82 8| 80| 4 14 || 22 24
1.0 8| 14 2| 16 1| 58| 3 21 1 1 1 11 2 13
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4. ACCELERATED CONVERGENCE OF THE
MULTIPLE SCATTERING SERIES

When scattering is nearly conservative, the number of terms required in the multiple scattering
series increases so rapidly with the optical thickness that the cost of accurate MC calculations can
become prohibitive when t > 2. For plane parallel geometry it is possible to estimate the rate of
decay of the terms of the multiple scattering series,'® thereby enabling the tail of the series to be
summed analytically. However, for other geometries it is as costly to estimate the rate of decay
of the terms of the series as it is to compute them, so other techniques are required. This section

outlines one such technique.
After n iterations of the integral equation of radiative transfer, the radiance can be written

I=S,+E,,,, ' (51)

where S, is the partial sum of the first n terms and E, | | is the error term defined in Eq. (12). Because
the error term involves radiance that has been scattered at least »n times, it might be argued in an
intuitive way that this radiance ought to be diffuse when » is large, in which case the error term
might be approximated by setting the radiance to a constant value, denoted C. This argument
leads to

E,,+|=CR,,+|, (52)

where

X0
Rn+.(xo,so)=f

u

dx, 1(xg, X, )ﬂ(xl)J’n dQ(s,)p(x,,89,8,) "

Xy
"X ‘[ dx, 4 1 7(X,, xn+l)p(xn+l)J' dQ(s, 4 1 )P(Xns158ns 8us1)-  (53)
u, Q
The coordinate changes discussed in Sec. 1 allow R, ., to be reduced to

R, (%o, so)—J‘ dél‘[ dG[ dn,-- f de, J d¢, J’ d’InJ- de, 4

xw(x))  O(X,41)a(Xo, W) * - A(X,, 0,), (54)

in which form it is clear that

O<R, <1,
that R, is a decreasing sequence,

R,.\<R,,
and that

lim R, =0.

n -

If the radiance is also replaced by C on the left of Eq. (51), so that

C=8,+CR,,), (35)
then the following suggestive result is obtained:
S,
I=C=——7F"—.
1= R4y £
With this motivation, define
S,
0.(v)= W (57)

for any v in the range (0, 1), and observe that, whatever the value of v, the sequence so defined
converges to the true radiance / because R, , , converges to zero. It is easy to establish the following
result.
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Let T, denote the sequence,

i
= . 58
T" Rnsn—Rn+ISn-l, ( )
and let v, denote its minimum vclue,
v,=inf T,. (59)

n20

Then, for all v in the range 0 <v <v,, (i) the sequence Q,(v) is monotonically increasing, and (ii) the
sequence Q,(v,) converges to the true radiance faster than Q,(v),

=0, =11 —Q,(v,)| for all n. , (60)

In particular, Q, (v, ) converges to the true radiance faster than Sy. Consequently, by computing
the terms of the sequence T, and estimating v, by the minimum of the computed terms, it is possible
to construct a sequence which converges to the true radiance faster than the standard sequence of
partial sums.

The proof of the accelerated convergence result is straightforward. First, the condition that
Q,(v) should be monotonic leads, after a little manipulation, to the result that

_In+in—l(Rn+l _Rn)
Ql_Ql—l_ I—VR,H,l 2>

0. (61)

The denominator is positive because both v and R, ,, are bounded above by 1, so the numerator
also must be positive,

In+in—I(Rn+l—Rn)>0' (62)
After insertion of the definition of Q,(v), the inequality reduces to

I,,?V(R,,S,,—R,,.,.VS,,_]), (63)

or
v<T,, (64)

an inequality which is certainly true for all v <v,. In order to prove that Q,(v,) converges
more rapidly that Q,(v), note that

2.(v\)<Q,(v,) if v<v,. (65)
Consequently,

1-0,(V)21-0,(,) (66)

Because both sequences Q,(v) and Q,(v,) converge to I monotonically from below, the result
quoted in Eq. (60) follows.

Figure 9 compares the convergence of the sequences S, and Q,(v*) for test problem 1 with an
optical thickness of 7 =2 and incident and exit zenith angles of cos 8, = —0.5 and cos 6, =0.5.
The parameter v, was estimated from the first 30 terms of the multiple scattering series, which were
calculated by QMC integration with 10° photons to minimize errors. It is apparent that the Q,
sequence converges more rapidly. Figures 10, 11 and 12 show the corresponding results for optical
thicknesses of T =4, 8 and 16. Although the sequence S, shows no sign of convergence in
Figs. 10, 11 and 12, the Q, sequence converges rapidly and the final values are in error by 0.08,
1.4 and 6.3% respectively.

Figure 13 compares the standard and accelerated series for test problem 2 with 7 =4 and
g =0.75, while Fig. 14 shows the corresponding result for the Gaussian slab of test problem 3.
In each case the acceleration technique leads to improved convergence, demonstrating that the
technique is applicable to peaked phase functions and non-uniform spatial distributions of the
optical properties. If the improvement in the rate of convergence is less dramatic for the Gaussian
slab, the reason is simply that the cloud is so thin (with maximum optical thickness of 1) that the
multiple scattering series converges rapidly in any case.
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Fig. 9. Convergence of the sequences S, and Q,(v*) for test problem 1. The scatterihg is conservative and
isotropic. The medium is a uniform slab with optical thickness = = 2. The incident and exit zenith angles
are cosf = —0.5 and cos 6,=0.5.
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Fig. 10. As for Fig. 8 except 1 =4.
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Fig. 11. As for Fig. 8 except  =8.
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Fig. 12. As for Fig. 8 except 7 = 16.

The practical implementation of the convergence acceleration strategy calls for the calculation
of the remainder integrals R,. Fortunately, the additional cost is negligible compared with the cost

of simulating the photon trajectories.

The accelerated convergence technique will fail if v, = 0. However, it is possible to prove that
v, is strictly positive under a wide variety of conditions, perhaps the simplest of which is the
common assumption that the phase function is bounded away from zero. More precisely, let
p~) > 0 denote the minimum value of p(x, s, s’) for any position x in the medium and any incident
and exit directions s’ and s, and let =) > 0 denote the minimum of the transmittance 7(x, u) for
any x in the medium with boundary point u determined by the direction of the solar beam. Then

it follows easily from Eq. (28) that

F 1 1 1 1 1 1 1
In+l > —P(-)t(-).[ d‘l .[ d:l J‘ d’]l e J. dan‘ anJ- d"nJ‘ d£n+l
4n 0 0 0 0 0 0 0

X u-"(xl) e m(xu+l)a(x09 “o) e a(x,,,u,,).

r=4, g=0.75

12

I..’.M ..............
...-.W
——Accolorated @ |
. 0 10 20 20
‘Number of orders of scattering

Fig. 13. Convergence of the sequences S, and Q,(v*) for test problem 2. The scattering is conservative
with a Henyey-Greenstein phase function with asymmetry g = 0.75. The medium is a uniform slab with
optical thickness t = 4. The incident and exit zenith angles are cos §, = —0.5 and cos 6, = 0.5
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Fig. 14. Convergence of the sequences S, and Q,(v*) for test problem 3. The scattering is conservative
and isotropic. The medium is a Gaussian slab with optical thickness t = 1 at the observation point. The
incident and exit zenith angles are cos 6 .= —0.5 and cos 6, =0.5.

Consequently, if
F
= (=)g(=)

then
I, =cR,,, (69)

and straightforward manipulation yields that

cR, c
>R,,S,,—R,,+,S,,_,>S,,?I>0' (70)
This establishes that v, is bounded away from zero.

It is to be stressed that the technique described here is not particular to any scattering phase
function or scattering geometry. It is robust and can be applied equally to RMC and QMC,
although the latter has the advantage that the individual terms of the scattering series will be
calculated more accurately for less cost.

o

T,

CONCLUSIONS

The numerical experiments described in this paper show that (i) QMC integration with the
Halton sequence of points is more efficient than RMC integration with randomly chosen points;
(ii) the efficiency gain is greatest when the medium is optically thin, so that low order scattering
dominates; (iii) the extra overhead incurred with QMC integration is negligible; (iv) the convergence
acceleration technique is robust and leads to a significant improvement in the range of optical
thicknesses to which Monte Carlo integration can be applied efficiently.
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Chapter V Summary and Conclusions

An expression for the scattering cross sections of externally aggregated spheres has been
obtained as a sum over cross sections associated with all realizable pairings of spheres in the
cluster. This expression can be recast into a form which closely parallels that found for the
scattering cross sections of single spheres wherein the the Lorenz-Mie coefficients are replaced
by coefficients that characterize the geometry of the cluster and its electrodynamic response
to the incident radiation. The summation over pairwise cross sections is found to offer an
important numerical advantage over the Lorenz-Mie analogue for clusters.

Four relations satisfied by the translation coefficients have been derived for, it is believed,
the first time. These relations provide useful convergence criteria for calculation of the pair-
wise cross sections. Comparisons of the scattering cross sections found in this work are made
with those derived in two other investigations. An expression for the scattering cross sections
of noninteracting dipoles is also provided. Applications of the theory developed in the present
work will be made to particles of interest in climate and visibility studies in Chapter III.

In summarizing the findings of Chapter 2, it is important to first note the numerical
efficacy of the series expansions for the scattering cross sections of clusters given in Eqgs. 59
and 60 of Chapter I compared to straightforward numerical integration of the Poynting flux.
The expansions avoid the following pitfalls: (1) The number of oscillations in the differential
scattering cross section of a droplet increases dramatically with optical size, thereby requiring
very high angular resolution of the integrand when hosts with large size parameters are in-
volved. (2) When the carbon grains are very small relative to the host particle, the extinction
cross section of the carbon/droplet system is dominated almost entirely by the scattering cross

section of the host. The quantity o. — o, can easily be of the order 10~° or less and hence
the integral must be evaluated with a very high precision. (3) The structure of the electric
field at the surface of the host is quite complicated and therefore the absorption cross section
of a small carbon grain is extremely sensitive to orientation. Orientation averages require a
high resolution in a. (The calculations summarized in Tables I-III were based on a sampling
frequency of 1°.) This makes it all the more imperative that the integrals over the scattering
angles  and ¢ be evaluated expeditiously. It is here that the order-of-scattering approach’®
plays its most important role, from a numerical standpoint, since the smaller the adsorbed
grain, the fewer terms are needed in the multiple scattering series from which the scattering
coefficients and cross sections are found. In fact, only one exchange between the 0.01ym car-
bon grains and droplets was necessary in order to determine o, to the required precision. For
larger grains, as many as five orders of scattering were needed. (4) When large numbers of
spheres are involved the intereference between them will impose an additional oscillation in
the differential cross sections of the clusters. The more monomers there are comprising the
cluster, the greater the number of these interference fringes. These oscillations are analogous
to multiple slit diffration patterns. (The number of spherules in the carbon aggregates studied
thus far has not been sufficient for this effect to have been of significance.)

The effects of scavenging of atmospheric carbon by haze and cloud droplets has been
considered in terms of the orientations of the resulting composite particles—carbon grains
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residing on droplet surfaces—with respect to the incident fields. Orientation- and polarization-
averaged absorption efficiencies were then determined and from these it appears that the more
finely divided the carbon, the more efficient is its absorption of light when it resides on the
surface of a sulfate host. This efficiency, however, has not been found to be more than about
a factor of two greater than that of free carbon. Carbon adsorbed onto cloud droplets appears
thus far to absorb slightly less light than when it exists as isolated grains within the cloud
volume.

Approximations of the absorption properties of soot aggregates at visible wavelenghts
in terms of single sphere properties appear, within the limits of the work presented here, to
produce errors of not more than about 10—15% for monomers less than about 0.05xm in radius.
The scattering properties likewise approximated, tend to produce similar errors for monomer
radii less than about 0.01xm or on the order of 0.10xm, but there is a transition region which

includes radii of 0.05um for which these single sphere approximations for scattering may be
grossly in error.
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Appendix

The translation coefficients ZZ‘U" and E;ﬁ," appearing in Eq. (54) are of the form

n+v
AT = " [n(n+1)+v(v+1) - p(p+ D]idp(L, £5m,n, p,v) (A.1)

p=|n—v|

and
E"":,"(kde,y) =1kdg e [Zu cos Og ¢ z wp(L, s mym, p,v)+
P
sin O ¢ ((V — p)(v+ p+ 1) explegee] Z wp(L,l'sm,n, p+1,v)+ (A.2)
P
exp[—31de,e ] Z wp(L, 'y myn, p—1, V))] ,
P
where
Wp(L, €'sm,n, p,v) = (—1)“2("""_”)2—3(1-;—-*:*_% X (A3)

a(m,n, =, v,p) jp(kde,e ) Py =" (cos bp,e ) expls(m — p)de e
The a(m,n, p, v, p) are known as Gaunt coefficients and are defined by the expression
n+v
P} (cos @) Pt (cos ) = Z a(m,n, u, u,p)PI,"*’“(cos 0),

p=|n—v|

and hence

P} (z) Ph(z) Py t¥(z) dz. (A.4)

_—m -\
afm,n, p,v,p) = 21— m— i) /

2 (p+m+p)J,

In Eqgs. (A3) and (A4) kdg e is the line segment joining the centers of spheres £ and £/, 0 ¢

corresponds to the angle between kdg ¢ and the £;-axis, and ¢e,er is the azimuthal coordinate
of the £th sphere in the ¢th coordinate system.

0, if m # p;

im  A™M(kdee) = i A™M(kdpp), ifm=p, (A.5)
kd(,[' -0 B, kde,e,ln_) 0 m,n( £,L )’ K
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but

- 1
lim OAg;;:(kd,,,,)=(-1)m(2n+1)% / PP () P;™(z) dz

kdlytl =p -1
— m 1 (TL — m)' ! m m
=(-1)"(2n+ 1)2 (ntm) /;1 Py (z) Py () dx
Thus _
lim AT (kdee) = 6m pybny
kdlfe/ 5 0 ., ( ev‘ ) - ’
Clearly,

Lim Em;;n kdp o =0
kdg,gl -0 = ( l’t)
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Figure 1.

Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

figure 10.

figure 11.

figure 12.

Figure Captions
The single sphere scattering geometry: reduced symmetry case.

The scattering geometry for the multiple-origin system used in the study of sphere clus-
ters.

Gram-specific absorption cross sections for a carbon grain located on the surface of a
spherical sulfate aerosol. The carbon particle has a radius of 0.05 ym and a refractive
index of 1.80+0.5¢. The radius and refractive index of the sulfate particle are 0.50 ym and
1.52 + 0.0z, respectively. The straight line corresponds to the gram-specific absorption
cross section of an isolated carbon grain. In the inset, the size of the carbon particle
relative to the sulfate aerosol is drawn to scale.

Same as Figure 1, but with either a 0.1 or 0.01 gm carbon grain. The heavy and light
lines show the absorption cross sections of isolated 0.1 and 0.01 pgm grains, respectively.
The inset is drawn to scale for the 0.1ym carbon sphere.

Same as Figure 1, but with a 1.0 um sulfate particle.

Same as Figure 2, but with a 1.0 um sulfate particle.

Same as Figure 1, but with a 3.0 um water droplet. The refractive index of water is taken
to be 1.33 + 0.0:.

Same as Figure 2, but with a 3.0 um water droplet.

Same as Figure 1, but with a 5.0 pm water droplet.

Same as Figure 2, but with a 5.0 um water droplet.

Mass extinction and absorption cross sections of a linear chain of five carbon spheres.
Each of the monomers has a radius of 0.01 gum and a refractive index of 1.8 4+ 0.5:. The
respective cross sections of an isolated sphere and an equivalent volume sphere are also
shown.

Same as Fig. 9, but with monomer radii of 0.05 pym.
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‘igure 13.

‘igure 14.

figure 15.

“igure 16.

Same as Fig. 9, but with menomer radii of 0.10 ym.

Same as Figure 9, but the monomers now form a close-packed hexahedron.

Same as Fig. 12, but with monomer radii of 0.05 pm.

Same as Fig. 12, but with monomer radii of 0.10 xm.
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