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ABSTRACT

TRANSFORMED-LINEAR MODELS FOR TIME SERIES EXTREMES

In order to capture the dependence in the upper tail of a time series, we develop nonnegative

regularly-varying time series models that are constructed similarly to classical non-extreme ARMA

models. Rather than fully characterizing tail dependence of the time series, we define the concept

of weak tail stationarity which allows us to describe a regularly-varying time series through the

tail pairwise dependence function (TPDF) which is a measure of pairwise extremal dependencies.

We state consistency requirements among the finite-dimensional collections of the elements of a

regularly-varying time series and show that the TPDF’s value does not depend on the dimension

being considered. So that our models take nonnegative values, we use transformed-linear opera-

tions. We show existence and stationarity of these models, and develop their properties such as

the model TPDF’s. Motivated by investigating conditions conducive to the spread of wildfires, we

fit models to hourly windspeed data using a preliminary estimation method and find that the fitted

transformed-linear models produce better estimates of upper tail quantities than traditional ARMA

models or than classical linear regularly-varying models.

The innovations algorithm is a classical recursive algorithm used in time series analysis. We de-

velop an analogous transformed-linear innovations algorithm for our time series models that allows

us to perform prediction which is fundamental to any time series analysis. The transformed-linear

innovations algorithm also enables us to estimate parameters of the transformed-linear regularly-

varying moving average models, thus providing a tool for modeling.

We construct an inner product space of transformed-linear combinations of nonnegative regularly-

varying random variables and prove its link to a Hilbert space which allows us to employ the pro-

jection theorem. We develop the transformed-linear innovations algorithm using the properties of

the projection theorem. Turning our attention to the class of MA(∞) models, we talk about esti-
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mation and also show that this class of models is dense in the class of possible TPDFs. We also

develop an extremes analogue of the classical Wold decomposition. Simulation study shows that

our class of models provides adequate models for the GARCH and another model outside our class

of models.

The transformed-linear innovations algorithm gives us the best prediction and we also develop

prediction intervals based on the geometry of regular variation. Simulation study shows that we

obtain good coverage rates for prediction errors. We perform modeling and prediction for the

hourly windspeed data by applying the innovations algorithm to the estimated TPDF.
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Chapter 1

Introduction

1.1 Motivation

Measuring risk associated with rare events that are extreme in magnitude requires extreme

value methods. Univariate extremes methods are well-developed, but there is a need to develop

easily implementable statistical methods that can describe and model extremal dependence in the

time series context. This dissertation will use transformed-linear operations to construct straight-

forward and flexible models for nonnegative regularly-varying time series.

To motivate our models, consider the time series of hourly windspeeds (m/s) observed at the

March AFB station in Southern California (HadISD (refer Dunn (2019)); revisited in Section

3.9.1). High windspeeds are one of the factors that contribute to wildfire risk. Prolonged ex-

posure to high winds could be a quantity of interest for firefighters. For instance, we can consider

the average run-length in hours over a high windspeed threshold or the mean windspeed over a

12-hour period. Figure 1.1 (upper panel) shows the hourly windspeeds for December 1-10, 2017.

The windspeeds increase for a period of time beginning on December 4, the ignition day of the

Thomas Fire, a wildfire attributed to the weather phenomenon known as the Santa Ana winds.

Windspeed data are not stationary, as there is a diurnal cycle. To remove the diurnal behav-

ior, we subtract off the mean from each hour of a 24-hour cycle creating a time series of wind-

speed anomalies that can reasonably be assumed stationary (Figure 1.1, lower panel, data available

here). Our goal is to model the upper tail behavior of this time series. Exploratory analysis in-

dicates the data at short lags exhibit asymptotic dependence. Two realizations Xt and Xt+h of a

stationary time series with marginal distribution F are said to be asymptotically independent if

χ(h) = limu→1P{F (Xt+h) > u|F (Xt) > u} = 0, and asymptotically dependent if χ(h) ̸= 0

with the value of χ(h) summarizing the magnitude of pairwise tail dependence at lag h. A chi-

plot (not shown) for the upper tail shows that χ̂(1) ≈ 0.55 which is relatively stable at the higher
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quantiles. We do not use χ(·) to describe asymptotic dependence in our time series. Instead we

define a different measure of pairwise tail dependence and show evidence for apparent asymptotic

dependence at lags greater than 1. Classical time series models that do not focus on extremes

tend to not capture asymptotic dependence. Extremes specific models such as the model based

on Markov assumptions (Smith et al. (1997)) capture asymptotic dependence and also fit into the

regular variation framework that we use to model asymptotic dependence in our time series.

Figure 1.1: Time series of hourly windspeed (m/s) for 12/01/2017 through 12/11/2017. The Thomas fire
started on 12/04/2017. Original windspeeds (upper panel) and windspeed anomalies (lower panel): bold
above a threshold of 3.09 (95th percentile).

Linear time series models, which include the familiar ARMA models, have many attractive

qualities such as simplicity, interpretability, and widespread familiarity. Much of classical time

series analysis can be done with only an assumption of weak or second-order stationarity, which

allows one to focus on the autocovariance function (ACVF). Mean and covariance are poorly-suited

to describing tail behavior as they describe the behavior near the center of the distribution. If the
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time series is assumed Gaussian, then elements of the time series are asymptotically independent.

For these reasons, this classical approach is poorly suited for describing extremal behavior, and

classical ARMA models are not designed with tail behavior in mind.

1.2 Outline

In this dissertation, we build time series models via transformed-linear combinations of regularly-

varying terms. The framework of regular variation is useful as it is defined only in terms of the

tail, it is naturally linked to extreme value theory, and it is well-suited for modeling data that ex-

hibit asymptotic dependence. Models take only nonnegative values in order to focus attention on

the upper tail. To construct models that feel similar to linear models, we use transformed-linear

operations which define addition and multiplication in a manner such that nonnegative values are

obtained.

We develop an extremes analogue to weak stationarity in Chapter 2. We construct transformed

linear regularly-varying analogues to ARMA models and study their properties in Chapter 3. We

will show that fitting a transformed-linear model is done easily, and that our fitted model captures

the tail dependence in the windspeed data better than a Gaussian or two classical linear regularly-

varying models. In Chapter 4 we discuss prediction for our transformed-linear regularly-varying

time series models.

1.3 Regular Variation

One of many formal definitions says X is a regularly-varying random variable, denoted X ∈

RV (α), if

Pr (|X| > x) = L(x)x−α,

for x > 0 and a slowly varying function L, that is, limx→∞ L(ax)/L(x) = 1 for all a > 0. The

tail index α describes the power-law-like behavior of the tail. The upper and lower tails can be
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described individually as

Pr (X > x) = uL(x)x−α and Pr (X < −x) = vL(x)x−α, (1.1)

where u, v ≥ 0, u+ v = 1.

X is a p-dimensional multivariate regularly-varying random vector (X ∈ RV p(α)) if there

exists a non-trivial limit measure νX(·) and function b(s) → ∞ as s→ ∞, such that

sPr

(

X

b(s)
∈ ·
)

v−→ νX(·) as s→ ∞, (1.2)

where
v−→ denotes vague convergence in M+(R

p \ {0}), the space of nonnegative Radon measures

on R
p \ {0} (refer Resnick (2007, Section 6)). The normalizing function is of the form b(s) =

U(s)s1/α where U(s) is slowly varying. The limiting measure νX has scaling property

νX(aC) = a−ανX(C),

for any a > 0 and any set C ⊂ R
p\{0}. When described in polar coordinates, νX decomposes into

independent radial and angular components. Given any norm, define the unit ball Sp−1 = {x ∈

R
p : ∥x∥ = 1}. Let C(r, B) = {x ∈ R

p : ∥x∥ > r, ∥x∥−1x ∈ B} for some r > 0, and some Borel

set B ⊂ Sp−1. Then νX{C(r, B)} = r−αHX(B) where HX is the angular measure taking values

on Sp−1. Equivalently,

ν(dr × dw) = αr−α−1drdHX(w).

The normalizing function b(s) and measures νX or HX are not uniquely defined by (1.2), as b(s)

can be scaled by any positive constant which can be absorbed into the limiting measure.

Modeling with the regular variation framework usually involves thresholding in terms of the

norm or the marginals to extract a subset of extreme data, and using this subset of threshold ex-

ceedances for inference. Modeling is primarily concerned with the angular measure H , which

gets difficult to model at high dimensions. The regular variation framework is often used to model
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heavy-tailed data. However, the framework has been used to model extremal dependence for data

which is not heavy-tailed by viewing it as a copula-like dependence framework for extreme behav-

ior. This approach is defended by Proposition 5.10 of Resnick (1987) which says the fundamental

nature of tail dependence is unchanged by monotone transformation of the marginals.

1.4 Transformed-Linear Operations for Regularly-Varying Ran-

dom Vectors

Reconciling linear operations with positive random variables or vectors is not simple. For

example, regular variation restricted to the positive orthant cannot accommodate multiplication by

a negative number. Max-linear approaches (e.g., Davis & Resnick (1989), Strokorb & Schlather

(2015)) have been used to build max-stable models, but linear-algebra operations do not have direct

analogues due to the maximum operation.

In the finite dimensional setting, Cooley & Thibaud (2019) propose a way to link traditional

linear algebra operations to regular variation on the positive orthant. For two vectors X1 and X2

∈ R
p
+ and f : R 7→ R+ applied componentwise to vectors, transformed-linear summation is

X1 ⊕X2 := f{f−1(X1) + f−1(X2)}

and scalar multiplication is

a ◦X1 := f{af−1(X1)},

for a ∈ R. Using the transform f(y) = log{1 + exp(y)}, Cooley & Thibaud (2019) apply

transformed-linear operations to X ∈ RV p
+(α) and show that regular variation is “preserved”,

so long as the lower tail condition

sPr [Xi ≤ exp{−kb(s)}] → 0, k > 0, i = 1, ..., p; s→ ∞, (1.3)
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is met. The lower tail condition prevents any of the marginals from having nonzero mass at 0.

Standard regularly-varying distributions such as the Frèchet meet this condition. If X1, X2 ∈

RV p
+(α) are independent, both with normalizing function b(s) and respective limiting measures

νX1 and νX2 , then

sPr

(

X1 ⊕X2

b(s)
∈ ·
)

v→ νX1(·) + νX2(·), and (1.4)

sPr

(

a ◦X1

b(s)
∈ ·
)

v→











aανX1(·) if a > 0,

0 if a ≤ 0,
as s→ ∞. (1.5)

Any transform f that has a negligible effect on large values, that is,

lim
y→∞

f(y)

y
= lim

x→∞

f−1(x)

x
= 1

and preserves regular variation is a possible candidate function with a corresponding different

lower tail condition.
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Chapter 2

Regularly-Varying Time Series and Weak Tail

Stationarity

2.1 Regularly-Varying Time Series

The recent volume by Kulik & Soulier (2020) provides a comprehensive treatment of regularly-

varying time series. We restrict attention to univariate time series. Following Kulik & Soulier

(2020, Definition 5.1.1), define a regularly-varying time series as a sequence {Xt}, t ∈ Z, of

real-valued random variables whose finite-dimensional distributions are regularly-varying. Letting

Xt,p = (Xt, Xt+1, . . . , Xt+p−1)
T for any t and p > 0, Xt,p is multivariate regularly-varying and

there exists a normalizing sequence b(s) → ∞ as s → ∞ yielding limit measure νXt,p
(·) and

angular measure HXt,p
on Sp−1.

Having defined finite-dimensional limiting measures, Kulik & Soulier (2020, Chapter 5) go

on to define and prove existence of the tail measure ν, which is the infinite-dimensional limiting

measure of the time series. Kulik & Soulier (2020) then characterize the stochastic properties of

the time series by focusing on its behavior respective to t = 0. They define the tail process as a

random element {Yt}, t ∈ Z, with values in E0 = {y ∈ (R)Z : |y0| > 1} and distribution η defined

by η = ν(· ∩E0). Kulik & Soulier (2020) characterize the time series focusing on the spectral tail

process {Θt = Yt/|Y0|}, t ∈ Z, which is independent of |Y0|.

Rather than fully characterizing the tail dependence via the tail measure ν or the spectral tail

process Θt, we will characterize a time series only via pairwise tail dependency summary mea-

sures. While such a specification does not contain the full information of ν or Θt, we believe that a

time series model which matches these summary measures of dependence is useful for answering

many questions and that it can be difficult to infer the full tail dependence structure from data. Fur-

thermore, our approach nicely ties to traditional linear time series modeling, which often focuses
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only on second-order properties. To do so, we require a notion of weak tail stationarity (Section

2.3), contrary to strict stationarity discussed in Kulik & Soulier (2020).

2.2 Consistency between finite-dimensional measures

We present consistency results required of regularly-varying time series. These consistency

results show that our tail dependence summary measure is sensible regardless of the dimension

of the random vector under consideration. Our presentation only requires consideration of the

finite-dimensional distributions.

To focus attention on the upper tail, consider nonnegative time series {Xt}, t ∈ Z. Then

Xt,p, taking values in R
p
+ := [0,∞)p, is multivariate regularly-varying with tail index α, denoted

Xt,p ∈ RV p
+(α). Xt,p has limiting measure νXt,p

for sets in R
p
+ \ {0} and angular measure HXt,p

on S
+
p−1 = {x ∈ R

p
+ : ∥x∥ = 1}.

Let X(−i)
t,p be the (p − 1)-dimensional vector obtained by excluding the ith component of Xt,p.

Then for A1 ∈ R
i−1
+ , A2 ∈ R

p−i
+ , and {0} /∈ A1 × A2, consistency across dimensions requires

νXt,p
(A1 × [0,∞]× A2) = ν

X
(−i)
t,p

(A1 × A2),

or equivalently,

∫

(r,w)∈A1×[0,∞]×A2

αr−α−1drdHXt,p
(w) =

∫

(r,v)∈A1×A2

αr−α−1drdH
X

(−i)
t,p

(v),

where w ∈ S
+
p−1 and v ∈ S

+
p−2. In Proposition 1, the representation of the lower dimensional

marginal angular measure is derived. For ease and generality, we temporarily drop time series

notation, letting X be a p-dimensional random vector.

Proposition 1. Let X = (X1, · · · , Xp)
T ∈ RV p

+(α) with angular measure HX on S
+
p−1. Let

X(l) ∈ RV l
+(α) be the marginal l-dimensional random vector, l < p, with angular measure HX(l)

on S
+
l−1. Let A(l)(r, Bl−1) = {X(l) ∈ R

l
+ : ∥X(l)∥ > r, ∥X(l)∥−1X(l) ∈ Bl−1} where Bl−1 ⊂ S

+
l−1.
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Let A∗
(l)(r, Bl−1) = {X ∈ R

p
+ : ∥X(l)∥ > r, ∥X(l)∥−1X(l) ∈ Bl−1}. Then,

HX(l)
(Bl−1) =

∫

w∈S+p−1:∥w(l)∥
−1w(l)∈Bl−1

∥w(l)∥αdHX(w). (2.1)

Proof: By the relation between limiting measure and angular measure, we have that

νX(l)
{A(l)(r0, Bl−1)} = r−α

0 HX(l)
(Bl−1).

Consider the limiting measure νX{A∗
(l)(r0, Bl−1)}.

νX{A∗
(l)(r0, Bl−1)} =

∫

w∈S+p−1:∥w(l)∥
−1w(l)∈Bl−1

∫ ∞

r=r0/∥w(l)∥

αr−(α+1)drdHX(w)

= r−α
0

∫

w∈S+p−1:∥w(l)∥
−1w(l)∈Bl−1

∥w(l)∥αdHX(w).

By consistency, νX{A∗
(l)(r0, Bl−1)} = νX(l)

{A(l)(r0, Bl−1)}, and (2.1) follows. □

2.3 Tail Stationarity defined via the Tail Pairwise Dependence

Function

We define a notion of weak tail stationarity for regularly-varying time series, analogous to weak

or second-order stationarity of non-extreme time series discussed in Brockwell & Davis (1991) and

elsewhere. Assuming a constant mean, classical time series analysis focuses on the ACVF which

summarizes pairwise dependence, and weak stationarity implies the ACVF is a function only of

lag.

For tail stationarity, we likewise require a measure of pairwise dependence. Many pairwise

extremal dependence measures have been suggested. For example, χ(h) is a specific example of

the more general extremogram of Davis & Mikosch (2009). However, unlike the ACVF, χ(h) is

not nonnegative-definite. So that our dependence measure has properties similar to covariance, we

will henceforth assume {Xt} is a regularly-varying time series with α = 2 and we will use the L2

9



norm to define the angular measures HXt,p
which are defined on Θ+

p−1 = {x ∈ R
p
+ : ∥x∥2 = 1}.

Considering the vector (Xt, Xt+h)
T , define the tail pairwise dependence function (TPDF) as

σ(Xt, Xt+h) =

∫

Θ+
1

wtwt+hdHXt,Xt+h
(w). (2.2)

A nonnegative regularly-varying time series is weakly tail stationary if σ(Xt, Xt+h) = σ(h) for all

t.

The TPDF is essentially the extremal dependence measure defined by Larsson & Resnick

(2012), but for the special case of α = 2 and using L2-norm to define the angular measure. As we

will show in Section 3.4, these restrictions will be important to link the TPDF to an inner product,

which connects our models to Hilbert space ideas in time series (see Brockwell & Davis (1991,

Chapter 2)). We also do not impose that the angular measure be a probability measure on Θ+
1 , as

this would invalidate the relationship between angular measures as given in (2.1). The assumption

that α = 2 may seem restrictive; however, we will show in Section 3.9 that our models are widely

applicable.

In the finite dimensional setting, Cooley & Thibaud (2019) constructed the tail pairwise de-

pendence matrix (TPDM) defined in terms of the p-dimensional joint angular measure of random

vector X ∈ RV p
+(2), and showed that this matrix was nonnegative definite. In the time series

setting, there is no “correct" higher dimension to consider and therefore we consider the bivariate

angular measures as in (2.2). Recall that a real-valued function κ defined on the integers is nonneg-

ative definite if the matrix K = {κ(i − j)}pi,j=1 is nonnegative definite for any p; i.e., aTKa ≥ 0

for all a ∈ R
p \ {0}. Proposition 2 will first show that the TPDF defined in terms of the bivariate

angular measure is equivalent to that defined in terms of the higher dimensional angular measure.

We again speak of a general p-dimensional vector X .

Proposition 2. Let X = (X1, · · · , Xp)
T ∈ RV p

+(2), p > 2 with limiting measure νX on [0,∞]p \

{0} and angular measure HX on Θ+
p−1. Let (Xi, Xj)

T ∈ RV 2
+(2) be a marginal random vector

10



with ν(Xi,Xj) on [0,∞]2 \ {0} and H(Xi,Xj) on Θ+
1 . Then,

σ(Xi, Xj) =

∫

v∈Θ+
1

vivjdH(Xi,Xj)(v) =

∫

w∈Θ+
p−1

wiwjdHX(w). (2.3)

Proof: By construction, vi = xi/∥(xi, xj)∥ and wi = xi/∥x∥. Therefore,

vi = wi
∥x∥

∥(xi, xj)∥
= wi

√

x21 + · · ·+ x2p
√

x2i + x2j

= wi

√

x2
1

∥x∥2
+ · · ·+ x2

p

∥x∥2
√

x2
i

∥x∥2
+

x2
j

∥x∥2

= wi

√

w2
1 + · · ·+ w2

p
√

w2
i + w2

j

=
wi

∥(wi, wj)∥
.

Similarly, vj = wj/∥(wi, wj)∥. Therefore, by Proposition 1, for l = 2 and α = 2, we have,

σ(Xi, Xj) =

∫

v∈Θ+
1

vivjdH(Xi,Xj)(v) =

∫

w∈Θ+
p−1

wi

∥(wi, wj)∥
wj

∥(wi, wj)∥
∥(wi, wj)∥2dHX(w)

=

∫

w∈Θ+
p−1

wiwjdHX(w).

□

Using Proposition 2, we can show the TPDF σ(h) of a weakly tail stationary time series {Xt}

is nonnegative definite. Let p > 0 and a = (a1, . . . , ap)
T ∈ R

p \ {0} be given. Then

p
∑

i,j=1

aiσ(i− j)aj = aTΣX1,pa,

whereX1,p = (X1, . . . , Xp)
T , and ΣX1,p is the matrix whose i, jth element is

∫

w∈Θ+
p−1

wiwjdHX1,p(w).

Let m = HX(Θ
+
p−1) and let w be a random vector such that

Pr(w ∈ Bp−1) = m−1HX1,p(Bp−1),
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for any set Bp−1 ∈ Θ+
p−1. Then by definition, ΣX1,p = mE(wwT ), and thus for any vector a ∈

R
p \ {0},

aTΣX1,pa = mE(aTwwTa) ≥ 0.

The inequality becomes strict if no element of w is a linear combination of the others.

In the finite dimensional case, Cooley & Thibaud (2019, Proposition 5) additionally show that

the TPDM is a completely positive matrix, that is, there exists a p×q∗, q∗ <∞, nonnegative matrix

A∗ such that ΣX1,p = A∗A
T
∗ . This notion can be extended to the idea of a completely positive

function. Analogous to nonnegative definiteness, we say that a real-valued function κ defined on

the integers is completely positive if the matrix K = {κ(i − j)}pi,j=1 is completely positive for

any p. Thus, the TPDF σ(·) is a completely positive function since ΣX1,p is a completetly positive

matrix by Proposition 5 of Cooley & Thibaud (2019).

Proposition 2 also gives a way of defining the TPDF at lag 0. By (1.2),

lim
s→∞

sPr

(

X1

b(s)
> c

)

=

∫

Θ+
p−1

∫ ∞

c/w1

2r−3drdHX1,p(w)

= c−2

∫

Θ+
p−1

w2
1dHX1,p(w) = c−2σ(0). (2.4)

It is perhaps useful to think of the TPDF similarly to the ACVF in that its value at lag h can most

easily be interpreted with knowledge of the relative scale provided by σ(0), as σ(h)/σ(0) ∈ [0, 1].

For a general (perhaps non-stationary) regularly-varying time series, we will find it useful to rewrite

the left expression in (2.4) by recalling that b(s) = U(s)s1/2 and letting x = cU(s)s1/2 to obtain

lim
x→∞

Pr(Xt > x)

x−2L(x)
= kt, (2.5)

where L(x) is a slowly varying function given by L(x) = (U(s))2 = (b(s))2s−1. We refer to the

left hand side of (2.5) as the tail ratio of Xt. Just as scale information can be passed between b(s)

and νX in (1.2), there is ambiguity in (2.5) as kt and L(x) can be scaled by any positive number.

This scale ambiguity has been handled in various ways. Larsson & Resnick (2012) (see also Kim
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& Kokoszka (2020)) impose that the angular measure be a probability measure, a restriction we

find inconvenient for consistency across dimensions. Cooley & Thibaud (2019) assumed a Pareto

tail letting b(s) = s1/2 pushing all scale information into the angular measure. In Section 3, we

will handle this ambiguity as the normalizing sequence x−2L(x) can be defined by the generating

noise sequence.
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Chapter 3

Transformed-Linear Regularly-Varying Models

3.1 Previous Linear Constructions of Regularly-Varying Time

Series

Researchers have been studying linear regularly-varying time series models for decades. Gen-

erally, {Xt} is defined as

Xt =
∞
∑

j=−∞

ψjZt−j, (3.1)

where {Zt}, t ∈ Z is an iid sequence of regularly-varying random variables with tail index α. If ∃

δ ∈ (0, α)∩ [0, 1] such that
∑∞

j=0 |ψj|δ <∞, then {Xt} can be shown to converge with probability

1 (refer Embrechts et al. (1997, Section 7.2)). Because {Zt} is iid, {Xt} is strictly stationary.

If {Zt} has tail index 0 < α < 2, characterization of dependence via the ACVF is not possible.

Authors still frequently summarize the dependence structure of {Xt} by pairwise summary met-

rics. For a linear time series with infinite variance, Brockwell & Davis (1991, Section 13.3) define

the dependence metric

ρ(h) :=
(
∑∞

j=0 ψjψj+h)

(
∑∞

j=0 ψ
2
j )

, h = 1, 2, · · · .

Much of the previous work considers regularly-varying time series {Xt} which take both posi-

tive and negative values. One could use (3.1) to construct nonnegative time series by setting v = 0

in the tail balance condition (1.1) and restricting ψj ≥ 0 for all j. We will show in Section 3.9 that

transformed-linear constructions which allow for negative coefficients but which still result in non-

negative regularly-varying time series allow for more flexibility than standard linear constructions

restricted to have positive coefficients.
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3.2 Transformed-Linear Regularly-Varying Time Series

For application to extremes, we extend familiar linear time series models by considering

transformed-linear combinations of regularly-varying terms. We say the time series {Xt} is a

transformed-linear process of regularly-varying terms if for all t, it can be represented as

Xt =
∞
⊕

j=−∞

ψj ◦ Zt−j, (3.2)

where
∑∞

j=−∞ |ψj| < ∞, and {Zt} is a noise sequence of independent and tail stationary RV+(2)

random variables. Henceforth, we assume normalizing functions b(s) and x−2L(x) are such that

lim
s→∞

sPr

{

Zt

b(s)
> c

}

= c−2

and

lim
x→∞

Pr(Zt > x)

x−2L(x)
= 1.

We also assume that lower-tail condition (1.3) holds for Zt’s. The TPDF of {Zt} is σ{Zt}(0) = 1

and σ{Zt}(h) = 0 for all h ̸= 0. As α = 2, the condition
∑∞

j=−∞ |ψj| < ∞ guarantees that

the infinite transformed-sum in (3.2) converges with probability 1, which we show in Section 3.4.

As defined, {Xt} is not strictly stationary because the noise sequence {Zt} is not required to be

identically distributed. In fact so long as σ{Zt}(h) = 0 for all h ̸= 0, {Zt} is not really required

to be independent for the following results to hold; however, there seems little practical value in

imagining time series constructed from such noise sequences.

3.3 Transformed Regularly-Varying MA(q) Process

Xt is a transformed regularly-varying moving average (MA) process of order q if for θj ∈ R,

θq > 0,

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ θ2 ◦ Zt−2 ⊕ · · · ⊕ θq ◦ Zt−q. (3.3)

15



We require that θq > 0 because if θq ≤ 0, the TPDF of the MA(q) will be the same as that of a lower

order MA process with the same θj coefficients, j < q. To show that the transformed sum in (3.3)

exists, we need to show that it takes a finite value with probability 1, i.e., lim
x→∞

Pr(Xt > x) = 0.

We can easily extend (1.4) and (1.5) to the finite linear combination of q + 1 RV+(2) independent

variables to give that Xt ∈ RV+(2) and

lim
s→∞

sPr

(

Xt

b(s)
> c

)

= lim
s→∞

sPr

(

(
⊕q

j=0 θj ◦ Zt−j)

b(s)
> c

)

= c−2

q
∑

j=0

(θ
(0)
j )2, (3.4)

where a(0) = max(a, 0) for a ∈ R. Existence follows as (3.4) implies

Pr(Xt > x) ∼ x−2L(x)

q
∑

j=0

(θ
(0)
j )2 → 0 as x→ ∞. (3.5)

Rearranging (3.5), the tail ratio is

lim
x→∞

Pr(Xt > x)

x−2L(x)
= lim

x→∞

Pr(Xt > x)

Pr(Z1 > x)
=

q
∑

j=0

(θ
(0)
j )2.

To get the TPDF, let h > 0 and let Xt and Xt+h be two elements of the series in (3.3), i.e.,

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ θ2 ◦ Zt−2 ⊕ · · · ⊕ θq ◦ Zt−q,

Xt+h = Zt+h ⊕ θ1 ◦ Zt+h−1 ⊕ θ2 ◦ Zt+h−2 ⊕ · · · ⊕ θq ◦ Zt+h−q.

Let Z = (Zt+h, Zt+h−1, · · · , Zt−q)
T be the h+ q dimensional vector of the regularly-varying noise

terms. Let θt = (0, · · · , 0, 1, θ1, · · · , θq)T and θt+h = (1, θ1, · · · , θq, 0, · · · , 0)T be the coefficient

vectors for Xt and Xt+h, respectively, such that, Xt = θTt ◦Z, and Xt+h = θTt+h ◦Z. By Corollary

A2 and Proposition 2 of Cooley & Thibaud (2019), (Xt, Xt+h)
T has the joint angular measure

H(Xt,Xt+h)(·) =
h+q
∑

j=0

∥θ(0).j ∥22δθ(0).j /∥θ
(0)
.j ∥

(·),
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where θ.j = (θtj, θ(t+h)j)
T = (θj, θj+h)

T , j = 0, · · · , h+ q; θ(0).j = max(θ.j, 0) applied component-

wise and δ is the Dirac mass function. By (2.2), the TPDF is then given by

σ(h) =

h+q
∑

j=0

(

θ
(0)
tj

∥θ(0).j ∥2

)(

θ
(0)
(t+h)j

∥θ(0).j ∥2

)

∥θ(0).j ∥22 =
h+q
∑

j=0

θ
(0)
j θ

(0)
j+h =

q
∑

j=0

θ
(0)
j θ

(0)
j+h, (3.6)

where θ0 = 1 and we drop the final h terms in the last summation since θj = 0 for all j > q. As

the TPDF depends only on lag, {Xt} is stationary.

3.4 Transformed Regularly-Varying MA(∞) Process

Consider the transformed regularly-varying MA(∞) time series model

Xt =
∞
⊕

j=0

ψj ◦ Zt−j, (3.7)

where ψj ∈ R and
∑∞

j=0 |ψj| < ∞. In order to draw on previous results for (standard) linear

regularly-varying time series, we consider the time series of preimages {Yt} where

Xt = f

{

∞
∑

j=0

ψjf
−1(Zt−j)

}

:= f(Yt).

Let Y (q)
t be the truncated series of the first q terms of Yt. This truncated series Y (q)

t is RV (2).

Consider the time series which is the difference in the infinite time series in (3.7) and the

truncated MA(q) time series in (3.3), as

X
(q)′

t =
∞
⊕

j=q+1

ψj ◦ Zt−j = f

{

∞
∑

j=q+1

ψjf
−1(Zt−j)

}

:= f(Y
(q)′

t ). (3.8)

Lemma A3.26 in Embrechts et al. (1997) implies that, as x→ ∞,

Pr(Y (q)′

t > x) ∼ x−2L(x)
∞
∑

j=q+1

|ψj|2 =⇒ lim
q→∞

Pr(Y (q)′

t > x) ∼ lim
q→∞

x−2L(x)
∞
∑

j=q+1

|ψj|2 = 0.
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By Lemma A2 of Cooley & Thibaud (2019), the limiting measure of X(q)′

t also tends to 0 as

q → ∞ and X(q)′

t ∈ RV+(2). Rearranging, we get that the tail ratio of X(q)′

t tends to 0 as q → ∞.

We say that the MA(q) time series converges to the MA(∞) time series in tail ratio, as q → ∞.

Convergence in tail ratio is analogous to mean square convergence in the classical non-heavy-tail

case. Consequently, the infinite series in (3.7) converges since,

Pr(Xt > x) ∼ x−2L(x)
∞
∑

j=0

(ψ
(0)
j )2 → 0, as x→ ∞.

Also, taking limit as q → ∞ in (3.6), the TPDF is

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j+h <∞, (3.9)

where ψ(0)
j = max(ψj, 0) and ψ0 = 1. Thus the infinite series in (3.7) is stationary.

3.5 Inner Product Space V

Before we discuss AR and ARMA time series models, we broaden the discussion to better

understand why we consider α = 2 and use the L2 norm. Consider the space

V =

{

Xt : Xt =
∞
⊕

j=0

ψt,j ◦ Zj,

∞
∑

j=0

|ψj| <∞
}

,

where Zj’s are independent and tail stationary RV+(2) random variables with limx→∞ Pr(Zj >

x)/{x−2L(x)} = 1 and ψt,j ∈ R. It can be easily shown that V is a vector space (Section 4.1.1).

For any Xt ∈ V we can define a mapping T : V → ℓ1 =
{

{aj}∞j=0, aj ∈ R :
∑∞

j=0 |aj| < ∞
}

such that T (Xt) = {ψt,j}∞j=0 ∈ ℓ1. As T is a linear map and an isomorphism (Section 4.1.3), V is

isomorphic to ℓ1.
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Let Xt and Xs be two elements of vector space V. We define the inner product between Xt and

Xs as

⟨Xt, Xs⟩ :=
∞
∑

j=0

ψt,jψs,j. (3.10)

We show (3.10) satisfies the properties of an inner product (Section 4.1.2). For Xt ∈ V, the norm

of Xt is defined as

∥Xt∥ =
√

⟨Xt, Xt⟩ =

√

√

√

√

∞
∑

j=0

ψ2
t,j,

which is finite as
∑∞

j=0 |ψt,j| <∞. Elements Xt, Xs ∈ V are said to be orthogonal if

⟨Xt, Xs⟩ =
∞
∑

j=0

ψt,jψs,j = 0.

If {Xt} is an MA(∞) time series, Xt ∈ V for all t. As {Xt} is stationary, it is natural to think

of the inner product as a function of lag:

γ(h) = ⟨Xt, Xt+h⟩ =
∞
∑

j=0

ψjψj+h.

Because we assume α = 2 and use the L2 norm, the TPDF σ(h) is closely related to γ(h). Clearly,

γ(h) is equivalent to σ(h) if ψj ≥ 0 for all j. In Chapter 4, we discuss prediction for stationary

time series. Although V itself is not a Hilbert space since ℓ1 is not complete in the metric induced

by the ℓ2 inner product, the set of predictors based on previous n observations is isomorphic to a

closed linear subspace of ℓ2 and we can employ the projection theorem.
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3.6 Transformed Regularly-Varying Auto-Regressive Processes

Consider the stationary transformed regularly-varying autoregressive (AR) model of order 1

where Xt is defined as the stationary solution to the equation

Xt = ϕ ◦Xt−1 ⊕ Zt, (3.11)

where |ϕ| < 1. Iterating, we obtain

Xt = ϕ ◦Xt−1 ⊕ Zt = ϕ ◦ (ϕ ◦Xt−2 ⊕ Zt−1)⊕ Zt

= ϕ2 ◦Xt−2 ⊕ ϕ ◦ Zt−1 ⊕ Zt

= · · · = ϕk ◦Xt−k

k−1
⊕

j=0

ϕj ◦ Zt−j.

If |ϕ| < 1, the first term becomes small as k increases.

To show Xt =
⊕∞

j=0 ϕ
j ◦Zt−j is a solution, rearrange (3.11) and rewrite in terms of transform

f to get

Zt = Xt ⊕ (−ϕ) ◦Xt−1 = f
{

f−1(Xt)− ϕf−1(Xt−1)
}

. (3.12)

Brockwell & Davis (1991) define the backward shift operator asBXt = Xt−1. For our transformed-

linear operations, we use the same notation to define the transformed backward shift operator as,

Bf−1(Xt) = f−1(Xt−1),

or equivalently,

f{Bf−1(Xt)} = Xt−1.

Powers of the operator B are defined as Bjf−1(Xt) = f−1(Xt−j). Transformed-polynomials in

B are isomorphic to polynomial functions of real variables and can be manipulated the same way.
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Rewriting (3.12) in terms of the operator B, we get,

Zt = f
{

(1− ϕB)f−1(Xt)
}

= (1− ϕB) ◦Xt.

Defining function ϕ(B) = 1− ϕB, |ϕ| < 1, we get, Zt = ϕ(B) ◦Xt. We want to find the inverse

π(B) of ϕ(B) such that,

π(B) ◦ Zt = {π(B)ϕ(B)} ◦Xt. (3.13)

To find the inverse π(B), consider ϕ(z) = 1 − ϕz. It can be shown through a Taylor series

expansion that

π(z) =
∞
∑

j=0

zjπ(j)(0)

j!
=

∞
∑

j=0

ϕjzj,

the series being convergent only if |ϕz| < 1. In terms of the transformed backward shift operator

B, π(B) =
∑∞

j=0 ϕ
jBj . Applying π(B) =

∑∞
j=0 ϕ

jBj to {π(B)ϕ(B)} ◦Xt = π(B) ◦Zt, we get,

{

∞
∑

j=0

ϕjBj(1− ϕB)

}

◦Xt =

(

∞
∑

j=0

ϕjBj

)

◦ Zt. (3.14)

Let us first consider the left hand side of (3.14):

{

∞
∑

j=0

ϕjBj(1− ϕB)

}

◦Xt = f

{

∞
∑

j=0

ϕjBj(1− ϕB)f−1(Xt)

}

= f

{

∞
∑

j=0

ϕjBjf−1(Xt)−
∞
∑

j=0

ϕj+1Bj+1f−1(Xt)

}

= f{f−1(Xt)} = Xt. (3.15)

Let us now consider the right hand side of (3.14):

(

∞
∑

j=0

ϕjBj

)

◦ Zt = f

{

∞
∑

j=0

ϕjBjf−1(Zt)

}

= f

{

∞
∑

j=0

ϕjf−1(Zt−j)

}

=
∞
⊕

j=0

ϕj ◦ Zt−j. (3.16)
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Putting together (3.15) and (3.16),

Xt =
∞
⊕

j=0

ϕj ◦ Zt−j. (3.17)

To show uniqueness, given any stationary solution Yt of (3.11),

Yt = ϕ ◦ Yt−1 ⊕ Zt = · · · iterating · · · = ϕk+1 ◦ Yt−(k+1) ⊕
k
⊕

j=0

ϕj ◦ Zt−j.

Rearranging, we get,

Yt ⊕
k
⊕

j=0

(−ϕj) ◦ Zt−j = ϕk+1 ◦ Yt−(k+1). (3.18)

The right hand side of (3.18) is a regularly-varying random variable. The stationary time series

{Yt} has a finite tail ratio. The tail ratio of ϕk+1 ◦ Yt−(k+1) = (ϕ2k+2) × tail ratio of Yt which is

finite. Taking limit as k → ∞,

lim
k→∞

[

tail ratio of {Yt ⊕
k
⊕

j=0

(−ϕj) ◦ Zt−j}
]

= lim
k→∞

[

ϕ2k+2 × tail ratio of {Yt}
]

= 0, (3.19)

as |ϕ| < 1. The limit in (3.19) is 0, indicating that Yt is equal to the tail ratio limit
⊕∞

j=0 ϕ
j ◦ Zt−j

and that the process defined by (3.17) is the unique stationary solution of (3.11).

The TPDF for the AR(1) is then given by,

σXt,Xt+h
= σ(h) =

∞
∑

j=0

ϕj(0)ϕj+h(0)

,

and the tail ratio for the AR(1) is,

σXt,Xt
= σ(0) =

∞
∑

j=0

(ϕj(0))2.
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In the case |ϕ| > 1, the series in (3.17) does not converge as
∑∞

j=0 |ϕj| does not converge.

However, we can write (3.11) for Xt+1 as,

ϕ ◦Xt = Xt+1 ⊕ (−Zt+1)

⇒ Xt = ϕ−1 ◦ {Xt+1 ⊕ (−Zt+1)} = ϕ−1 ◦Xt+1 ⊕ (−ϕ−1) ◦ Zt+1

= · · · = ϕ−k−1 ◦Xt+k+1 ⊕ (−ϕ−k−1) ◦ Zt+k+1 ⊕ · · · ⊕ (−ϕ−1) ◦ Zt+1,

which shows, by the same arguments as earlier that, Xt =
⊕∞

j=1(−ϕ−j) ◦ Zt+j, is the unique

stationary solution of (3.11) as
∑∞

j=1 |ϕ|−j < ∞. Similar to non-extreme time series notion of

causality, we say that {Xt} is causal if Xt can be expressed in terms of the current and past values,

Zs, s ≤ t. Thus for {Xt} defined as a solution to (3.11), {Xt} is causal if |ϕ| < 1, {Xt} is

non-causal if |ϕ| > 1 and there is no stationary solution if |ϕ| = 1.

3.7 Transformed Regularly-Varying ARMA(1,1) Process

Consider the transformed regularly-varying ARMA(1,1) model where Xt is defined as the sta-

tionary solution to the equation

Xt ⊕ (−ϕ) ◦Xt−1 = Zt ⊕ θ ◦ Zt−1, (3.20)

where θ+ϕ ̸= 0. If ϕ = 0 or θ = 0 then (3.20) reduces to a MA(1) and AR(1), respectively. Using

the transformed backward shift operator B as defined in Section 3.6, (3.20) can be rewritten as,

ϕ(B) ◦Xt = θ(B) ◦ Zt, (3.21)

where ϕ(B) = 1− ϕB and θ(B) = 1 + θB. Following Brockwell & Davis (2002), we investigate

the range of values of ϕ and θ for which a stationary solution of the ARMA(1,1) exists. If |ϕ| < 1,
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we can rewrite (3.21) as,

Xt =
[

{ϕ(B)−1}θ(B)
]

◦ Zt = {π(B)θ(B)} ◦ Zt = ψ(B) ◦ Zt, (3.22)

where π(B) =
∑∞

j=0 ϕ
jBj . Expanding ψ(B), we get,

ψ(B) = π(B)θ(B) =

(

∞
∑

j=0

ϕjBj

)

(1 + θB) = (1 + ϕB + ϕ2B2 + ϕ3B3 + · · · )(1 + θB)

= 1 + (ϕ+ θ)B + (ϕ+ θ)ϕB2 + (ϕ+ θ)ϕ2B3 + · · · =
∞
∑

j=0

ψjB
j, (3.23)

where ψ0 = 1 and ψj = (ϕ+ θ)ϕj−1 for j ≥ 1. Substituting (3.23) in equation (3.22), we get,

Xt =

(

∞
∑

j=0

ψjB
j

)

◦ Zt

= {1 + (ϕ+ θ)B + (ϕ+ θ)ϕB2 + (ϕ+ θ)ϕ2B3 + · · · } ◦ Zt

= f [{1 + (ϕ+ θ)B + (ϕ+ θ)ϕB2 + (ϕ+ θ)ϕ2B3 + · · · }f−1(Zt)]

= f{f−1(Zt) + (ϕ+ θ)Bf−1(Zt) + (ϕ+ θ)ϕB2f−1(Zt) + (ϕ+ θ)ϕ2B3f−1(Zt) + · · · }

= f{f−1(Zt) + (ϕ+ θ)f−1(Zt−1) + (ϕ+ θ)ϕf−1(Zt−2) + (ϕ+ θ)ϕ2f−1(Zt−3) + · · · }

= Zt ⊕ (ϕ+ θ) ◦
(

∞
⊕

j=1

ϕj−1 ◦ Zt−j

)

(3.24)

We conclude that the MA(∞) process (3.24) is the unique stationary solution of (3.20), and is

causal.

The TPDF for the ARMA(1,1) is complicated, and is developed from (3.24) in the Section

3.11. In contrast to the MA and AR(1) models where negative parameters θj or ϕ do not affect

the TPDF because of the zero operation, negative parameter values do influence the TPDF of the

transformed-linear ARMA(1,1) which does not match the ACVF of a non-extreme ARMA(1,1).

If |ϕ| > 1, we can express 1/ϕ(z) as a power series of z with absolutely summable coefficients

by expanding in powers of z−1, giving 1/ϕ(z) = −
∑∞

j=1 ϕ
−jz−j. Applying the same argument
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as in the case where |ϕ| < 1, we can obtain the unique stationary solution of (3.20). Letting

ζ(B) = −∑∞
j=1 ϕ

−jB−j , and applying ζ(B) to both sides of (3.21), we get,

Xt =

{(

−
∞
∑

j=1

ϕ−jB−j

)

(1 + θB)

}

◦ Zt

=
{

(−ϕ−1B−1 − ϕ−2B−2 − ϕ−3B−3 − · · · )(1 + θB)
}

◦ Zt

=
{

−ϕ−1θ − (ϕ+ θ)ϕ−2B−1 − (ϕ+ θ)ϕ−3B−2 − · · ·
}

◦ Zt

= f
[{

−ϕ−1θ − (ϕ+ θ)ϕ−2B−1 − (ϕ+ θ)ϕ−3B−2 − · · ·
}

f−1(Zt)
]

= f
{

−ϕ−1θf−1(Zt)− (ϕ+ θ)ϕ−2B−1f−1(Zt)− (ϕ+ θ)ϕ−3B−2f−1(Zt)− · · ·
}

= f
{

−ϕ−1θf−1(Zt)− (ϕ+ θ)ϕ−2f−1(Zt+1)− (ϕ+ θ)ϕ−3f−1(Zt+2)− · · ·
}

= −ϕ−1θZt ⊕−(ϕ+ θ) ◦
(

∞
⊕

j=1

ϕ−j−1 ◦ Zt+j

)

. (3.25)

In this case the solution is noncausal. If ϕ = ±1, there is no stationary solution of (3.20).

We can show that the ARMA(1,1) process in (3.20) is invertible, i.e., Zt is expressible in terms

of current and past values, Xs, s ≤ t. Let ξ(z) = 1/θ(z) =
∑∞

j=0(−θ)jzj with absolutely

summable coefficients. Applying ξ(B) to both sides of (3.21),

Zt = {ξ(B)ϕ(B)} ◦Xt = π(B) ◦Xt,

where

π(B) =
∞
∑

j=0

πjB
j = (1− θB + (−θ)2B2 + · · · )(1− ϕB).

As earlier,

Zt = Xt ⊕−(ϕ+ θ) ◦ {
∞
⊕

j=1

(−θ)j−1 ◦Xt−j}.

Following an argument like the one used to show noncausality when |ϕ| > 1, the ARMA(1,1)

process is noninvertible when |θ| > 1, since then Zt is expressed in terms of current and future
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values, Xs, s ≥ t, by

Zt = (−ϕθ−1) ◦Xt ⊕ (ϕ+ θ) ◦ {
∞
⊕

j=1

(−θ)−j−1 ◦Xt+j}.

Analogous to the non-extreme time series case, if θ = ±1, the ARMA(1,1) process is invertible in

the more general sense that Zt is a tail ratio limit of finite transformed-linear combinations of Xs,

s ≤ t, although it cannot be expressed explicitly as an infinite transformed-linear combination of

Xs, s ≤ t. A noncausal or noninvertible ARMA(1,1) process {Xt} can be re-expressed as a causal

and invertible ARMA(1,1) process relative to a new regularly-varying noise sequence {Z∗
t }. Thus,

we can restrict attention to causal and invertible ARMA(1,1) models with |ϕ| < 1 and |θ| < 1.

This is also valid for higher-order ARMA models.

3.8 Transformed Regularly-Varying ARMA(p, q) Process

Consider the stationary transformed regularly-varying ARMA(p, q) model where Xt is defined

as the stationary solution to the equation

Xt ⊕ (−ϕ1) ◦Xt−1 ⊕ · · · ⊕ (−ϕp) ◦Xt−p = Zt ⊕ θ1 ◦ Zt−1 ⊕ · · · ⊕ θq ◦ Zt−q, (3.26)

where polynomials (1 − ϕ1z − · · · − ϕpz
p) and (1 + θ1z + · · · + θqz

q) have no common factors.

We can express (3.26) in terms of the transformed backward shift operator as

ϕ(B) ◦Xt = θ(B) ◦ Zt, (3.27)

where ϕ(z) = 1−ϕ1z−· · ·−ϕpz and θ(z) = 1+θ1z−· · ·−θqz. {Xt} is said to be a transformed

regularly-varying autoregressive process of order p (or AR(p)) if θ(z) = 1, and a transformed

regularly-varying moving average process of order q (or MA(q)) if ϕ(z) = 1.

In Section 3.7 we showed that a unique stationary solution exists for the ARMA(1, 1) if and

only if ϕ1 ̸= ±1. Equivalently, the AR polynomial ϕ(z) = 1 − ϕ(z) ̸= 0 for z = ±1. The
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analogous condition for the general ARMA(p, q) process is ϕ(z) = 1 − ϕ1z − · · · − ϕpz ̸= 0 for

all complex z with |z| = 1. As discussed in Brockwell & Davis (2002, Section 3.1), z could be

complex, since the zeros of a polynomial of degree p > 1 may be either real or complex.

If ϕ(z) ̸= 0 for z = ±1, then there exists δ > 0 such that ζ(z) = ϕ(z)−1 =
∑∞

j=−∞ ζjz
j for

1 − δ < |z| < 1 + δ, and
∑∞

j=−∞ |ζj| < ∞. We can then define 1/ϕ(B) as the linear filter with

absolutely summable coefficients, i.e., 1/ϕ(B) =
∑∞

j=−∞ ζjB
j. Applying ζ(B) to both sides of

(3.27), we get,

Xt = {ζ(B)ϕ(B)} ◦Xt = {ζ(B)θ(B)} ◦ Zt = ψ(B) ◦ Zt =
∞
⊕

j=−∞

ψj ◦ Zt−j, (3.28)

where ψ(z) = ζ(z)θ(z) =
∑∞

−∞ ψjz
j . By similar argument as in Section 3.7, we can show that

ψ(B) ◦ Zt is the unique stationary solution of (3.26).

In Section 3.7 we saw that the ARMA(1,1) process is causal if and only if |ϕ1| < 1. Equiv-

alently, the ARMA(p, q) process is causal, i.e., Xt can be represented as
⊕∞

j=0 ψjZt−j , with
∑∞

j=0 |ψj| < ∞, if ϕ(z) ̸= 0 for |z| ≤ 1, i.e., the roots of the AR polynomial should lie out-

side the unit circle. Similarly, we saw that the ARMA(1,1) process is invertible, i.e., Zt can be

represented as
⊕∞

j=0 πjXt−j , with
∑∞

j=0 |πj| < ∞, if and only if |θ1| < 1. Equivalently, the

ARMA(p, q) process is invertible if θ(z) ̸= 0 for |z| ≤ 1, i.e., the roots of the MA polynomial

should lie outside the unit circle.

As shown in Brockwell & Davis (2002, Section 3.1), {ψj} can be determined by,

ψj −
p
∑

k=1

ϕkψj−k = θj, j = 0, 1, ...,

where θ0 = 1, θj = 0 for all j > q and ψj = 0 for all j < 0. Similarly, {πj} can be determined by,

πj +

q
∑

k=1

θkπj−k = −ϕj, j = 0, 1, ...,
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where ϕ0 = −1, ϕj = 0 for all j > p and πj = 0 for all j < 0. By the causal representation of the

ARMA(p, q), its TPDF is given by (3.9).

3.9 Application to Santa Ana Winds

3.9.1 Data and Preprocessing

Most regularly-varying time series models have been constructed with the aim of modelling

heavy-tailed data. If {X(orig)
t } is a nonnegative regularly-varying time series with tail index α, let-

ting Xt = (X
(orig)
t )α/2 yields a time series with tail index 2, and a transformed linear model could

be suitable for capturing tail dependence after this simple power transformation. Because regular

variation provides a dependence model which focuses on tail behavior and allows for asymptotic

dependence, we think our models can be widely employed to capture dependence in the upper

tail. As mentioned in Chapter 1, the windspeed data appears to exhibit very strong tail dependence

at short lags, and we feel that an asymptotically dependent model is well-suited to capture this

dependence. However, the windspeed data are not heavy-tailed. To model this windspeed data,

we will use our transformed-linear models to capture the tail dependence of this data after it has

been marginally transformed to have regularly-varying tails with α = 2. Separating the marginal

distribution from the dependence structure is justified by Sklar’s theorem (Sklar (1959), see also

Resnick (1987, Proposition 5.15)), and such marginal transformations are relatively common in

extremes (refer Smith et al. (1997) for an example in the time series case).

We return to the March AFB hourly windspeed data for the years 1973 - 2019, first introduced

in Chapter 1. We choose to focus only on the autumn season (September 22 - December 22) as

this is the period when fire risk due to the Santa Ana winds phenomenon is greatest. Our data set

consists of 103,630 hourly observations.

Let {x(orig)
t } be the hourly windspeed anomalies after removal of the diurnal cycle. Based on

mean residual life plots (refer Coles (2001, Section 4.3)), we fit a generalized Pareto distribution

(GPD) to the upper 2.5% of x(orig)
t . The windspeed anomalies appear to have a bounded tail (shape

parameter estimate: ξ̂ = -0.1 (se = 0.02)). Letting µ̂, ψ̂ and ξ̂ denote the empirical .975 quantile,
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GPD scale and shape estimates, respectively, our estimated marginal distribution is

F̂ (x) =















(n+ 1)−1
∑n

t=1 I(x
(orig)
t ≤ x) for x ≤ µ̂,

1− 0.025{1 + ξ̂(x− µ̂)/ψ̂}−1/ξ̂ for x > µ̂.

To obtain data which fits into our regular-variation modeling framework, we define xt = G−1{F̂ (x(orig)
t )},

where G(x) = exp(−x−2). Thus, our transformed time series {xt} will have a marginal distribu-

tion which is approximately Fréchet with α = 2 and σ(0) = 1.

3.9.2 Determination of Model TPDF’s

Our proposed model fitting method is to find the parameters which minimize the squared dif-

ference between the empirical and model TPDF’s. Due to preprocessing, σ(0) is known to be 1.

For lag h > 0, the model TPDFs with tail ratio 1 for the three models that we fit to the application

data are as follows:

AR(1): σ(h) = max(0, ϕh),

MA(1): σ(h) =















θ
1+θ2

if h = 1, θ > 0

0 otherwise,

ARMA(1, 1): σ(h) =















































































(φ+θ)φh(1+φθ)
1+2φθ+θ2

if ϕ > 0, ϕ+ θ > 0

0 if ϕ > 0, ϕ+ θ < 0

(φ+θ)2φh

1−φ4+(φ+θ)2
if ϕ < 0, ϕ+ θ > 0, h is even

(φ+θ)φh−1(1−φ4)
1−φ4+(φ+θ)2

if ϕ < 0, ϕ+ θ > 0, h is odd

(φ+θ)φh−1(1+θφ3)
1+φ2θ2+2φ3θ

if ϕ < 0, ϕ+ θ < 0, h is even

0 if ϕ < 0, ϕ+ θ < 0, h is odd.
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3.9.3 Estimation of TPDF, Model Fitting, and Comparison

To estimate the TPDF, we use the estimator defined in Cooley & Thibaud (2019) in which the

true angular measure is replaced by an empirical estimate. Assuming (xt, xt+h)
T , (t = 1, · · · , n−

h) be lag-h pairs of observations from a tail stationary time series {Xt} and letting rt = ∥(xt, xt+h)
T∥2,

and w = (wt, wt+h)
T = (xt, xt+h)

T/rt, the TPDF estimator is defined as

σ̂(h) = 2

∫

Θ+
1

wtwt+hdN̂Xt,Xt+h
(w) =

2
∑n

t=1 I(rt > r0)

n−h
∑

t=1

wtwt+hI(rt > r0), (3.29)

where r0 is some high threshold for the radial components, HXt,Xt+h
(Θ+

1 ) = 2 because σ(0) = 1,

and NXt,Xt+h
(·) = 2−1HXt,Xt+h

(·).

It is known that tail dependence estimates tend to have positive bias in the case of weak depen-

dence (refer Huser et al. (2016)). Simulation study (refer Appendix A.1) shows that preprocessing

the data to have σ(0) = 1, thus allowing to consider HXt,Xt+h
(Θ+

1 ) = 2 instead of estimating

HXt,Xt+h
(Θ+

1 ) gives better TPDF estimates. Simulation study also shows that subtracting off the

mean of the time series considerably reduces bias in TPDF estimation. We subtract off the mean

of the transformed time series {xt} and replace the negative observations by 0. We estimate the

TPDF for the first 30 lags using (3.29). The upper left panel of Figure 3.1 gives the empirical

TPDF for the data after bias correction.

Parameter estimates for the three transformed regularly-varying time series models are obtained

using a preliminary method of numerical least squares optimization. Estimation will be further

examined in Chapter 4. The parameter estimates and sum of squared differences (SS) between the

empirical and model TPDF’s are given in Table 3.1, and the ARMA(1,1) has the lowest SS. The

fitted MA(1) model is not flexible enough to capture the dependence and θ̂ = 1, rendering the fitted

MA(1) non-invertible. We can also see from Figure 3.1 that compared to the other two models,

the theoretical TPDF of the ARMA(1,1) model (lower right panel) seems to be a closer fit to the

empirical TPDF (upper left panel).
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Table 3.1: Fitted transformed-linear regularly-varying models

Model Parameter estimates SS
MA(1) θ̂ = 1 2.71
AR(1) φ̂ = 0.9 0.19
ARMA(1,1) φ̂ = 0.93, θ̂ = −0.51 0.01

Figure 3.1: Comparison of estimated TPDF from data (upper left panel) and theoretical TPDF of fitted
models: MA(1) (upper right panel), AR(1) (lower left panel) and ARMA(1,1) (lower right panel).

We generate a realization of the fitted transformed regularly-varying ARMA(1,1) time series

model and transform it to the marginal of the observed hourly windspeed anomalies time series.

Figure 3.2 compares the actual time series (upper panel) with the generated synthetic time series

(lower panel) above a threshold of 1m/s. The two time series look quite similar to each other above

this threshold.

For comparison, we fit three alternative ARMA(1,1) models, each with a two-step procedure.

The first is a linear Gaussian time series model. We transform the marginal to be standard normal,

estimate the ACVF, and then estimate the ARMA(1,1) parameters. The second is a linear regularly-

varying time series model which follows the spirit of the models reviewed in Section 3.1 that take
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values in R. To be comparable, we perform a marginal transformation so that the data is unit

Fréchet with α = 2 in both directions. We then estimate the TPDF for this transformed data,

which differs because the bivariate angular measure is not restricted to the positive orthant. For

this model, the TPDF’s summarized tail dependence is symmetric because it assesses both the

upper and lower tail. Dependence in the lower tail of the windspeed anomalies is not as strong as

in the upper tail (χ̂(1) ≈ 0.4 for the negated anomaly time series). Consequently, the estimated

TPDM (σ̂(1) = 0.49) is not as strong as when focused only on the upper tail (σ̂(1) = 0.71).

The last model for comparison is a (standard) linear regularly-varying time series restricted to

take values in R
+ by imposing that the parameter estimates be positive. This model was fitted

to the same transformed anomalies as our model, and shares the same estimated TPDF. As our

transformed-linear model resulted in a negative θ̂, restricting the ARMA coefficients to be positive

results in θ̂ = 0 and we essentially get an AR(1) fit.

To explore model performance in capturing tail dependence, we calculate some tail summary

statistics, and compare them across the above discussed models. Table 3.2 gives average length

(and standard errors) of run above higher quantiles for the actual time series data, the synthetic

ARMA(1,1) time series generated from our transformed-linear regularly-varying model, and syn-

thetic ARMA(1,1) time series generated from the three alternative models. Table 3.3 gives the

higher quantiles for sum of twelve consecutive time series terms (and bootstrapped standard er-

rors). In both tables, the transformed linear model performs best, and seems to produce reasonable

estimates of these tail quantities. Likely due to its asymptotic independence, or perhaps due to the

fact that it was fit to the entire data set rather than focusing on extreme behavior, the non-extreme

Gaussian model underestimates both quantities. The linear regularly-varying model on R, with

regular variation in both directions, also exhibits a lower dependence in the upper tail because of

the symmetry in the definition of the TPDF. This provides evidence for restricting the model to

the positive orthant when interest is only in the upper tail. The linear regularly-varying model on

the positive orthant, with coefficients restricted to be positive, overestimates the dependence in the
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upper tail as it does not allow for a negative MA coefficient. Hence, the transformed-linear model

provides more flexibility than this restricted model.
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Figure 3.2: Comparison, above a threshold of 1 m/s, of actual windspeed anomalies time series (up-
per panel) and realization of synthetic time series generated from fitted transformed regularly-varying
ARMA(1,1) model (lower panel), transformed to marginal of original time series.

Table 3.2: Average length (standard error) of run above a threshold

Threshold Actual Trans-Lin Reg-Var Gaussian Lin Reg-Var Lin Reg-Var
quantile in R

+ in R in R
+

0.95 2.43 (0.06) 2.60 (0.10) 1.48 (0.02) 1.56 (0.04) 5.41 (0.18)
0.98 2.35 (0.09) 2.60 (0.16) 1.34 (0.02) 1.52 (0.07) 5.74 (0.29)
0.99 2.10 (0.10) 2.66 (0.22) 1.27 (0.02) 1.59 (0.11) 5.93 (0.41)
0.995 1.77 (0.11) 2.61 (0.30) 1.21 (0.03) 1.75 (0.18) 5.83 (0.53)
0.999 1.40 (0.10) 2.21 (0.47) 1.08 (0.03) 2.04 (0.40) 5.78 (1.06)
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Table 3.3: Quantiles for sum (standard error) of twelve consecutive terms

Quantile Actual Trans-Lin Reg-Var Gaussian Lin Reg-Var Lin Reg-Var
in R

+ in R in R
+

0.95 27.70 (0.72) 30.00 (0.62) 24.15 (0.40) 23.80 (0.41) 31.58 (0.65)
0.98 43.74 (1.19) 45.11 (1.10) 33.63 (0.60) 34.75 (0.89) 47.67 (1.22)
0.99 56.65 (1.66) 58.33 (1.80) 41.19 (0.91) 44.82 (1.60) 61.18 (1.73)
0.995 69.67 (2.11) 72.06 (2.63) 48.64 (0.91) 59.77 (3.17) 74.52 (2.47)
0.999 91.89 (3.60) 101.46 (5.15) 63.58 (2.50) 97.51 (5.63) 103.93 (5.04)

3.10 Discussion

This chapter constructs straightforward, flexible, and interpretable time series models by apply-

ing transformed-linear operations to regularly-varying random variables. Unlike other linear time

series models, our time series models only take positive values, allowing one to focus modeling

and inference entirely on the upper tail. As is common in time series, we characterize depen-

dence between pairs of elements, and the TPDF has properties analogous to those of the ACVF.

Our notion of weak tail stationarity helps relax the assumption of iid noise terms and more impor-

tantly allows characterization of the time series’ upper tail via the TPDF. Our transformed-linear

time series models have similar interpretations to and share some properties of their non-extreme

ARMA analogues. Application to the Santa Ana hourly windspeed time series shows that our

models appropriately capture extremal dependence. Fitting the MA(1), AR(1), and ARMA(1,1)

transformed-linear time series models requires only minutes.

Our fitted model’s run length estimate (Table 3.2) seems to exhibit “threshold stability”, com-

mon to asymptotically dependent models. Recent work, mainly in spatial extremes, has aimed

to develop models with more nuanced handling of tail dependence (e.g., Huser et al. (2018),

Wadsworth & Tawn (2019), Bopp et al. (2020)). There are likely time series analyses where

similar models would prove beneficial; but these models and their estimation procedures are quite

complex. We believe that there is value in simple models.

A current challenge in extremes is tail dependence estimation, which was evident when estimat-

ing the TPDF, particularly in cases of weak tail dependence. We are confident that tail dependence

estimation methods will continue to improve, aiding in TPDF estimation.
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The fact that the transformed linear MA(∞) class of models can be linked to a Hilbert space

opens avenues for further exploration. In future work we aim to investigate method-of-moments

estimation procedures analogous to traditional time series methods such as Yule-Walker or the

innovations algorithm. We would also like to investigate forecasting methods for transformed-

ARMA models.

3.11 Derivation of the TPDF expression for a transformed-linear

regularly-varying ARMA(1,1) time series model

The general form for the TPDF of a transformed-linear regularly-varying ARMA(1,1) time

series is given as,

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j+h,

where ψ0 = 1, ψj = (ϕ+ θ)ϕj−1 for j > 0, ψ(0)
j = max(ψj, 0), and

∑∞
j=0 |ψj| <∞. We consider

different cases of ϕ and θ below.

Case 1: ϕ > 0 and ϕ+ θ > 0, so that ψ0 = 1 and ψj > 0 for all j.

For h > 0,

σ(0) =
∞
∑

j=0

ψjψj+h = ψ0ψh +
∞
∑

j=1

(ϕ+ θ)2ϕj−1ϕj+h−1 = (ϕ+ θ)ϕh−1 + (ϕ+ θ)2
∞
∑

k=0

ϕ2k+h

= (ϕ+ θ)ϕh−1 + (ϕ+ θ)2ϕh

∞
∑

k=0

ϕ2k = (ϕ+ θ)ϕh−1 +
(ϕ+ θ)2ϕh

1− ϕ2

= (ϕ+ θ)ϕh

{

1

θ
+

(ϕ+ θ)

1− ϕ2

}

=
(ϕ+ θ)ϕh(1 + ϕθ)

1− ϕ2
. (3.30)

For h = 0,

σ(h) =
∞
∑

j=0

ψjψj = ψ0ψ0 +
∞
∑

j=1

(ϕ+ θ)2ϕj−1ϕj−1 = 1 + (ϕ+ θ)2
∞
∑

k=0

ϕ2k

= 1 +
(ϕ+ θ)2

1− ϕ2
=

1 + 2ϕθ + θ2

1− ϕ2
. (3.31)
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Case 2: ϕ > 0 and ϕ+ θ < 0, so that ψ0 = 1 and ψj < 0 for all j > 0.

σ(h) =















1, if h = 0,

0, if h > 0.

(3.32)

Case 3: ϕ < 0 and ϕ+ θ > 0, so that ψ0 = 1, ψj < 0 if j is even, and ψj > 0 if j is odd.

For h > 0,

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j+h = ψ

(0)
h + ψ1ψ

(0)
h+1 + ψ3ψ

(0)
h+3 + ψ5ψ

(0)
h+5 + · · · , as ψj < 0 if j is even,

=















0 + ψ1ψh+1 + ψ3ψh+3 + ψ5ψh+5 + · · · , if h is even,

ψh, if h is odd,

=















(ϕ+ θ)ϕ0(ϕ+ θ)ϕh + (ϕ+ θ)ϕ2(ϕ+ θ)ϕh+2 + (ϕ+ θ)ϕ4(ϕ+ θ)ϕh+4 + · · · , if h is even,

ψh, if h is odd,

=















(ϕ+ θ)2ϕh + (ϕ+ θ)2ϕh+4 + (ϕ+ θ)2ϕh+8 + · · · , if h is even,

(ϕ+ θ)ϕh−1, if h is odd,

=















(ϕ+ θ)2ϕh (1 + ϕ4 + ϕ8 + · · · ) , if h is even,

(ϕ+ θ)ϕh−1, if h is odd,

=















(φ+θ)2φh

1−φ4 , if h is even,

(ϕ+ θ)ϕh−1, if h is odd.

(3.33)

For h = 0,

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j = 1 + ψ2

1 + ψ2
3 + ψ2

5 + · · ·

= 1 + (ϕ+ θ)2
(

1 + ϕ4 + ϕ8 + · · ·
)

= 1 +
(ϕ+ θ)2

1− ϕ4
=

1− ϕ4 + (ϕ+ θ)2

1− ϕ4
(3.34)
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Case 4: ϕ < 0 and ϕ+ θ < 0, so that ψ0 = 1, ψj > 0 if j is even, and ψj < 0 if j is odd.

For h > 0,

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j+h = ψ

(0)
h + ψ2ψ

(0)
h+2 + ψ4ψ

(0)
h+4 + ψ6ψ

(0)
h+6 + · · · , as ψj < 0 if j is odd,

=















ψh + ψ2ψh+2 + ψ4ψh+4 + ψ6ψh+6 + · · · , if h is even,

0, if h is odd,

=















(ϕ+ θ)ϕh−1 + (ϕ+ θ)ϕ(ϕ+ θ)ϕh+1 + (ϕ+ θ)ϕ3(ϕ+ θ)ϕh+3 + · · · , if h is even,

0, if h is odd,

=















(ϕ+ θ)ϕh−1 + (ϕ+ θ)2ϕh+2 (1 + ϕ4 + ϕ8 + · · · ) , if h is even,

0, if h is odd,

=















(ϕ+ θ)ϕh−1 + (φ+θ)2φh+2

1−φ4 , if h is even,

0, if h is odd.

(3.35)

For h = 0,

σ(h) =
∞
∑

j=0

ψ
(0)
j ψ

(0)
j = 1 + ψ2

2 + ψ2
4 + ψ2

6 + · · ·

= 1 + (ϕ+ θ)2ϕ2
(

1 + ϕ4 + ϕ8 + · · ·
)

= 1 +
(ϕ+ θ)2ϕ2

1− ϕ4
=

1 + ϕ2θ2 + 2ϕ3θ

1− ϕ4
(3.36)
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Putting together (3.30) to (3.36), for ARMA(1,1) with tail ratio 1, i.e. σ(0) = 1, the TPDF for lag

h > 0 is given by,

σ(h) =















































































(φ+θ)φh(1+φθ)
1+2φθ+θ2

if ϕ > 0, ϕ+ θ > 0

0 if ϕ > 0, ϕ+ θ < 0

(φ+θ)2φh

1−φ4+(φ+θ)2
if ϕ < 0, ϕ+ θ > 0, h is even

(φ+θ)φh−1(1−φ4)
1−φ4+(φ+θ)2

if ϕ < 0, ϕ+ θ > 0, h is odd

(φ+θ)φh−1(1+θφ3)
1+φ2θ2+2φ3θ

if ϕ < 0, ϕ+ θ < 0, h is even

0 if ϕ < 0, ϕ+ θ < 0, h is odd,
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Chapter 4

Transformed-Linear Innovations Algorithm for

Modeling and Forecasting of Time Series Extremes

A primary aim of time series analysis is forecasting. In Chapter 2 and 3 we developed transformed-

linear time series models, a class of time series which are nonnegative and regularly-varying but

which are similar to familiar ARMA models in the non-extreme setting. We showed that these

models can capture dependence in the upper tail of the time series. Now let us address the problem

of forecasting.

Our approach for forecasting is to develop innovations algorithm for transformed-linear time

series. The innovations algorithm, which relies on the autocovariance function, is a well known ap-

proach in classical time series for forecasting. In traditional time series analysis and elsewhere, the

best linear predictor X̂t is the one which minimizes mean squared prediction error (MSPE) given

by E[(Xn+1 − X̂n+1)
2] and Gaussian assumptions are usually used to create prediction intervals.

However, expected-squared error is not a natural or intuitive measure of loss for extremes. Despite

these differences, we show that the form of the transformed-linear predictor is of the same form as

in the non-extreme setting.

The innovations algorithm gives us more than just a method for prediction. The innovations

algorithm also has implications for modeling. Using the innovations algorithm we show that if the

true model is in our transformed-linear space then applying the innovations algorithm iteratively,

our parameter estimates converge to the true parameters. Furthermore we show that even if the

underlying model is not a transformed-linear model, applying the innovations algorithm will yield

a transformed-linear model whose TPDF matches closely the estimated TPDF of the underlying

model.

We construct a vector space V of a series of absolutely summable transformed-linear combina-

tions of nonnegative regularly-varying random variables. We show that V is an inner product space
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and is isomorphic to ℓ1, the space of absolutely summable sequences. Although V itself is not a

Hilbert space, we show that the set of predictors based on previous n observations is isomorphic

to a closed linear subspace of ℓ2, the space of square summable sequences, and we can employ

the projection theorem. Using the properties of the projection theorem we develop a transformed-

linear analogue of the classical innovations algorithm that allows us to do modeling and prediction

iteratively. We show that the class of transformed-linear regularly-varying MA(∞) time series is

dense in the class of possible TPDFs. We also develop a transformed-linear analogue of the Wold

decomposition. To demonstrate the richness of the class of transformed-linear regularly-varying

MA(∞) models we run the innovations algorithm on data simulated from two different models.

The first model is a GARCH(1,1) process and the second model is a first order Markov chain

where each pair of consecutive observations has a bivariate logistic distribution. Neither of these

models is in the family of transformed-linear time series. We show for both these models that by

running the innovations algorithm on the estimated TPDF we can get estimates for coefficients of

a transformed-linear regularly-varying MA time series whose TPDF closely matches the estimated

TPDF of the simulated data.

Because the regular variation geometry differs from the elliptical geometry underlying standard

linear prediction settings, uncertainty quantification is significantly different from the non-extreme

setting. We extend the method proposed by Lee & Cooley (2021+) to develop prediction intervals

to the time series setting. We perform modeling and prediction for the windspeed anomalies data

discussed in Section 3.9 by applying the innovations algorithm to the estimated TPDF.

4.1 Inner Product Space V

4.1.1 Vector Space V

Consider the space V = {Xt : Xt =
⊕∞

j=0 ψt,j ◦ Zj,
∑∞

j=0 |ψt,j| < ∞} where Zj’s are

independent and tail stationary RV+(2) random variables with limx→∞ Pr(Zj > x)/{x−2L(x)} =

1 for some slowly-varying function L(x), ψt,j ∈ R, and t ∈ Z. We first show that V is a vector

space. Consider Xt, Xu, Xv ∈ V, a, b ∈ R and 0V :=
⊕∞

j=0 0 ◦ Zj , where the subscript V in 0V
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is used to distinguish this element of our vector space from the number 0. Let f : R → (0,∞)

defined as f(y) = log{1 + exp(y)} be the transform defined in Cooley & Thibaud (2019).

Vector addition is closed: Xt ⊕Xu ∈ V.

Proof:

Xt ⊕Xu =
∞
⊕

j=0

ψt,j ◦ Zj ⊕
∞
⊕

j=0

ψu,j ◦ Zj = f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}

⊕ f

{

∞
∑

j=0

ψu,jf
−1(Zj)

}

= f

(

f−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}]

+ f−1

[

f

{

∞
∑

j=0

ψu,jf
−1(Zj)

}])

= f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}

, (4.1)

= f

{

∞
∑

j=0

(ψt,j + ψu,j)f
−1(Zj)

}

=
∞
⊕

j=0

(ψt,j + ψu,j) ◦ (Zj) (4.2)

which is in V, since
∑∞

j=0 |ψt,j + ψu,j| ≤
∑∞

j=0 |ψt,j|+
∑∞

j=0 |ψu,j| <∞.

Vector addition is commutative: Xt ⊕Xu = Xu ⊕Xt.

Proof: By (4.1),

Xt ⊕Xu = f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}

= f

{

∞
∑

j=0

ψu,jf
−1(Zj) +

∞
∑

j=0

ψt,jf
−1(Zj)

}

= Xu ⊕Xt.

Vector addition is associative: Xt ⊕ (Xu ⊕Xv) = (Xt ⊕Xu)⊕Xv.

41



Proof: By (4.2),

Xt ⊕ (Xu ⊕Xv) = f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}

⊕ f

{

∞
∑

j=0

ψu,jf
−1(Zj) +

∞
∑

j=0

ψv,jf
−1(Zj)

}

= f

(

f−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}]

+ f−1

[

f

{

∞
∑

j=0

ψu,jf
−1(Zj) +

∞
∑

j=0

ψv,jf
−1(Zj)

}])

= f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj) +

∞
∑

j=0

ψv,jf
−1(Zj)

}

= f

(

f−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}]

+ f−1

[

f

{

∞
∑

j=0

ψv,jf
−1(Zj)

}])

= f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}

⊕ f

{

∞
∑

j=0

ψv,jf
−1(Zj)

}

= (Xt ⊕Xu)⊕Xv.

Additive identity: Xt ⊕ 0V = Xt.

Proof: By (4.2),

Xt ⊕ 0V =
∞
⊕

j=0

ψt,j ◦ Zj ⊕
∞
⊕

j=0

0 ◦ Zj =
∞
⊕

j=0

(ψt,j + 0) ◦ Zj =
∞
⊕

j=0

ψt,j ◦ Zj = Xt.

Additive inverse: Xt ⊕−Xt = 0V.

Proof:

Xt ⊕−Xt =
∞
⊕

j=0

ψt,j ◦ Zj ⊕
∞
⊕

j=0

−ψt,j ◦ Zj =
∞
⊕

j=0

(ψt,j + (−ψt,j)) ◦ Zj =
∞
⊕

j=0

0 ◦ Zj = 0V.

Scalar multiplication is closed: a ◦Xt ∈ V.
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Proof:

a ◦Xt = a ◦
∞
⊕

j=0

ψt,j ◦ Zj = f

(

a · f−1

∞
⊕

j=0

ψt,j ◦ Zj

)

= f

(

a · f−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}])

= f

{

a
∞
∑

j=0

ψt,jf
−1(Zj)

}

= f

{

∞
∑

j=0

aψt,jf
−1(Zj)

}

=
∞
⊕

j=0

(aψt,j) ◦ Zj ∈ V. (4.3)

Scalar multiplication is distributive: a ◦ (Xt ⊕Xu) = a ◦Xt ⊕ a ◦Xu.

Proof: By (4.1),

a ◦ (Xt ⊕Xu) = a ◦ f
{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}

= f

(

af−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj) +

∞
∑

j=0

ψu,jf
−1(Zj)

}])

= f

{

a

∞
∑

j=0

ψt,jf
−1(Zj) + a

∞
∑

j=0

ψu,jf
−1(Zj)

}

= f

(

af−1

[

f

{

∞
∑

j=0

ψt,jf
−1(Zj)

}]

+ af−1

[

f

{

∞
∑

j=0

ψu,jf
−1(Zj)

}])

= f

{

af−1

(

∞
⊕

j=0

ψt,j ◦ Zj

)

+ af−1

(

∞
⊕

j=0

ψu,j ◦ Zj

)}

= a ◦Xt ⊕ a ◦Xu.

Scalar multiplication is associative: a ◦ (b ◦Xt) = (ab) ◦Xt.

Proof: By (4.3)

a ◦ (b ◦Xt) = a ◦
{

∞
⊕

j=0

(bψt,j) ◦ Zj

}

=

{

∞
⊕

j=0

(abψt,j) ◦ Zj

}

= (ab) ◦
(

∞
⊕

j=0

ψt,j ◦ Zj

)

= (ab) ◦Xt. (4.4)
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Multiplicative identity: 1 ◦Xt = Xt.

Proof: By (4.3),

1 ◦Xt =
∞
⊕

j=0

(1 · ψt,j) ◦ Zj =
∞
⊕

j=0

ψt,j ◦ Zj = Xt.

4.1.2 Inner Product in V

Let Xt and Xs be two elements of vector space V such that Xt =
⊕∞

j=0 ψt,j ◦ Zj and Xs =
⊕∞

j=0 ψs,j◦Zj where
∑∞

j=0 |ψt,j| <∞ and
∑∞

j=0 |ψs,j| <∞. We define the inner product between

Xt and Xs as,

⟨Xt, Xs⟩ :=
∞
∑

j=0

ψt,jψs,j. (4.5)

We can show that (4.5) is indeed an inner product by showing that it satisfies the properties of an

inner product. Consider Xt, Xu, Xv ∈ V and a ∈ R.

Linearity: ⟨Xt ⊕Xu, Xv⟩ = ⟨Xt, Xv⟩+ ⟨Xu, Xv⟩ and ⟨a ◦Xt, Xv⟩ = a⟨Xt, Xv⟩.

Proof: By (4.2),

⟨Xt ⊕Xu, Xv⟩ =
〈

∞
⊕

j=0

(ψt,j + ψu,j) ◦ Zj,
∞
⊕

j=0

ψv,j ◦ Zj

〉

=
∞
∑

j=0

(ψt,j + ψu,j)ψv,j

=
∞
∑

j=0

ψt,jψv,j +
∞
∑

j=0

ψu,jψv,j = ⟨Xt, Xv⟩+ ⟨Xu, Xv⟩.

Also,

⟨a ◦Xt, Xv⟩ =
〈

a ◦
∞
⊕

j=0

ψt,j ◦ Zj,

∞
⊕

j=0

ψv,j ◦ Zj

〉

=

〈

∞
⊕

j=0

(aψt,j) ◦ Zj,

∞
⊕

j=0

ψv,j ◦ Zj

〉

=
∞
∑

j=0

aψt,jψv,j = a

∞
∑

j=0

ψt,jψv,j = a⟨Xt, Xv⟩

Symmetric property: ⟨Xt, Xu⟩ = ⟨Xu, Xt⟩.
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Proof:

⟨Xt, Xu⟩ =
∞
∑

j=0

ψt,jψu,j =
∞
∑

j=0

ψu,jψt,j = ⟨Xu, Xt⟩.

Positive definite property: ⟨Xt, Xt⟩ ≥ 0 and ⟨Xt, Xt⟩ = 0 if and only if Xt = 0V :=
⊕∞

j=0 0 ◦ Zj .

Proof:

⟨Xt, Xt⟩ =
∞
∑

j=0

ψt,jψt,j =
∞
∑

j=0

ψ2
t,j ≥ 0.

Let ⟨Xt, Xt⟩ = 0, which means that
∑∞

j=0 ψ
2
t,j = 0. For ψt,j ∈ R, this is possible only if ψt,j = 0

for all j, equivalently, when Xt = 0V. Conversely, if Xt = 0V, ⟨Xt, Xt⟩ =
∑∞

j=0 0
2 = 0.

Thus, by satisfying all the above properties, the vector space V is an inner product space. For

Xt ∈ V, the norm of Xt is defined as ∥Xt∥ =
√

⟨Xt, Xt⟩ =
√

∑∞
j=0 ψ

2
t,j, which is finite as

∑∞
j=0 |ψt,j| <∞. Also, Xt, Xs ∈ V are said to be orthogonal if ⟨Xt, Xs⟩ =

∑∞
j=0 ψt,jψs,j = 0.

As vector space V is an inner product space, it follows that V is a metric space. We can define

a metric given by the squared norm of Xt ⊖Xs as,

⟨Xt ⊖Xs, Xt ⊖Xs⟩ =
∞
∑

j=0

(ψt,j − ψs,j)
2.

4.1.3 Isomorphism of V to ℓ1

Consider the infinite dimensional space of absolutely summable sequences,

ℓ1 =

{

{aj}∞j=0, aj ∈ R :
∞
∑

j=0

|aj| <∞
}

.

Vector addition and scalar multiplication in ℓ1 are defined component-wise: (a0, a1, a2, ...) +

(b0, b1, b2, ...) = (a0 + b0, a1 + b1, a2 + b2, ...) for {aj}, {bj} ∈ ℓ1 and the product of (a0, a1, a2, ...)

with a scalar α ∈ R is the sequence (αa0, αa1, αa2, ...).
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For any Xt ∈ V we can define a mapping T : V → ℓ1 such that T (Xt) = {ψt,j}∞j=0 ∈ ℓ1.

We will first show that the mapping T is a linear map. Let Xt and Xs be two elements of vector

space V such that Xt =
⊕∞

j=0 ψt,j ◦ Zj and Xs =
⊕∞

j=0 ψs,j ◦ Zj where
∑∞

j=0 |ψt,j| < ∞ and
∑∞

j=0 |ψs,j| <∞. By (4.2) and (4.3), for any scalars a, b ∈ R,

T (a ◦Xt ⊕ b ◦Xs) = T

{

∞
⊕

j=0

(aψt,j) ◦ Zj ⊕
∞
⊕

j=0

(bψs,j) ◦ Zj

}

= T

{

∞
⊕

j=0

(aψt,j + bψs,j) ◦ Zj

}

= {aψt,j + bψs,j}∞j=0 = {aψt,j}∞j=0 + {bψs,j}∞j=0

= a{ψt,j}∞j=0 + b{ψs,j}∞j=0 = aT (Xt) + bT (Xs). (4.6)

Recall that a linear map T is called an isomorphism if T is one-to-one and onto. We will show

that the linear map T defined above is an isomorphism. Let Xt and Xs be as defined above. Then,

T (Xt) = T (Xs) =⇒ {ψt,j}∞j=0 = {ψs,j}∞j=0 =⇒ t = s =⇒ Xt = Xs. (4.7)

Thus T is a one-to-one map. T is also onto since, for any sequence {aj}∞j=0 in ℓ1 we can define

X =
⊕∞

j=0 aj ◦ Zj which is in V as
∑∞

j=0 |aj| <∞. Thus, V is isomorphic to ℓ1.

We know that vector space ℓ1 ⊂ ℓ2, where ℓ2 = {{dj} :
∑∞

j=0 d
2
j < ∞}, the space of square-

summable sequences. The inner product defined in (4.5) is isomorphic to the usual inner product

on ℓ2.

4.2 Transformed-Linear Innovations

4.2.1 Best Transformed-Linear Time Series Prediction

We want to use the projection theorem to perform prediction in our time series setting. To use

the projection theorem we need to work with Hilbert spaces. However, V is isomorphic to ℓ1, and

hence is not a Hilbert space since ℓ1 is not complete in the metric induced by the ℓ2 inner product.
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Consider performing prediction in terms of previous n steps. Our predictor will be a transformed-

linear combination of previous n observations, that is,

X̂n+1 =
n
⊕

j=1

bnj ◦Xn+1−j. (4.8)

Let Vn be the set of all such predictors X̂n+1. Let us consider the analogous problem in ℓ1. Con-

sider sequences {a1}, {a2}, · · · , {an} in ℓ1. The sequence corresponding to our predictors will be

linear combinations of these sequences. Let Cn be the set of sequences c, corresponding to the

predictors, where

c = bn1a1 + · · ·+ bnnan.

Cn is the space spanned by a1, · · · , an, and dim(Cn) ≤ n. Since any n-dimensional subspace of

a complex topological vector space is closed (Rudin (1991, Theorem 1.21)), Cn is closed. Thus,

Cn is a closed subspace of ℓ1 ⊂ ℓ2. By the projection theorem, there is a unique ĉ ∈ Cn such that

∥x− ĉ∥ = δ := infc∈Cn
∥x− c∥, for every x in ℓ2. Thus, the set of predictors Vn based on previous

n observations is isomorphic to a closed linear subspace of ℓ2 and we can employ the projection

theorem since ℓ2 is known to be a Hilbert space.

Following Brockwell & Davis (1991, Chapter 5), we investigate the problem of predicting the

value Xn+1 in terms of {X1, ..., Xn}. Again, let Vn be the closed transformed-linear subspace

s̄p{X1, · · · , Xn}, n ≥ 1. By the projection theorem,

X̂n+1 =















0, if n = 0,

PVn
Xn+1 if n ≥ 1,

(4.9)

where X̂n+1 denotes the one-step predictor and PVn
denotes the projection mapping onto Vn.

Thus, X̂n+1 is a transformed-linear combination of {X1, ..., Xn} as given in (4.8). The prediction
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equations given by the projection theorem are

〈

Xn+1 ⊖
n
⊕

j=1

bnj ◦Xn+1−j, Xn+1−k

〉

= 0, k = 1, · · · , n.

Equivalently,

〈

n
⊕

j=1

bnj ◦Xn+1−j, Xn+1−k

〉

= ⟨Xn+1, Xn+1−k⟩, k = 1, · · · , n. (4.10)

By linearity of the inner product, the prediction equations can be rewritten in matrix form as

Γnbn = γn (4.11)

where Γn = [⟨Xn+1−j, Xn+1−k⟩]nj,k=1, bn = (bn1, · · · , bnn)T , and γn = [⟨Xn+1, Xn+1−k⟩]nk=1. If

Γn is non-singular, then the solution is given as

b̂n = Γ−1
n γn. (4.12)

It can be shown that the above is equivalent to minimizing the squared norm ∥Xn+1 ⊖ X̂n+1∥2

by setting the appropriate derivative to zero. We see that (4.12) is of the familiar form for linear

prediction in the non-extreme setting where the inner product terms are autocovariances.

4.2.2 Transformed-Linear Innovations

Following Brockwell & Davis (1991), we develop a transformed-linear analogue of the recur-

sive innovations algorithm to obtain the one-step predictors X̂n+1, n ≥ 1, defined in (4.9), without

having to perform matrix inversion of Γn, defined in (4.11). Also, the innovations algorithm is a

classical approach which allows one to iteratively perform better prediction in time series analysis.

Consider the transformed-linear innovation, (Xn+1⊖X̂n+1), n ≥ 1. Since Vn = s̄p{X1, · · · , Xn},

letting X̂1 := 0, Vn = s̄p{X1 ⊖ X̂1, · · · , Xn ⊖ X̂n}. We can rewrite the predictor in (4.8) in terms
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of the innovations as,

X̂n+1 =
n
⊕

j=1

θnj ◦
(

Xn+1−j ⊖ X̂n+1−j

)

.

By properties of projection mappings, X̂n+1 ∈ Vn and by (4.10),

⟨Xn+1 ⊖ X̂n+1, X̂n+1⟩ = 0.

That is, the transformed-linear innovation (Xn+1 ⊖ X̂n+1) is orthogonal to a transformed-linear

combination of X1, ..., Xn. Thus, the innovation is orthogonal to each of X1, ..., Xn.

Consider the set of transformed-linear innovations, {Xn+1−j⊖X̂n+1−j}j=1,...,n. The innovation

(Xi ⊖ X̂i) ∈ Vj−1 for i < j, as (Xi ⊖ X̂i) is a transformed-linear combination of X1, ..., Xi. Also,

by (4.10), (Xj ⊖ X̂j) ⊥ Vj−1. Thus, the set {X1 ⊖ X̂1, X2 ⊖ X̂2, ..., Xn ⊖ X̂n} is orthogonal. In

fact, {Xn+1−j ⊖ X̂n+1−j}j=1,...,n is an orthogonal basis of Vn.

Let the squared distance of prediction be denoted by νn, that is, νn = ∥Xn+1 ⊖ X̂n+1∥2. Fol-

lowing Brockwell & Davis (1991, Proposition 5.2.2), the innovations algorithm for a transformed-

linear time series in V is given as follows:

Proposition 3 (The Transformed-Linear Innovations Algorithm). If {Xt} is a transformed-linear

time series in V, where the matrix Γn = [⟨Xi, Xj⟩]ni,j=1 is non-singular for each n ≥ 1, then the

one-step predictors X̂n+1, n ≥ 0, and their squared distances of prediction νn, n ≥ 1, are given

by

X̂n+1 =















0 if n = 0

⊕n
j=1 θnj ◦ (Xn+1−j ⊖ X̂n+1−j) if n ≥ 1,

(4.13)
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and































ν0 = ⟨X1, X1⟩

θn,n−k = ν−1
k

(

⟨Xn+1, Xk+1⟩ −
∑k−1

j=0 θk,k−jθn,n−jνj

)

, k = 0, 1, ..., n− 1,

νn = ⟨Xn+1, Xn+1⟩ −
∑n−1

j=0 θ
2
n,n−jνj,

. (4.14)

Proof: As stated above, the set {X1 ⊖ X̂1, X2 ⊖ X̂2, ..., Xn ⊖ X̂n} is orthogonal. Taking the inner

product on both sides of (4.13) with (Xk+1 ⊖ X̂k+1), 0 ≤ k < n, we get

〈

X̂n+1, (Xk+1 ⊖ X̂k+1)
〉

=

〈{

n
⊕

j=1

θnj ◦ (Xn+1−j ⊖ X̂n+1−j)

}

, (Xk+1 ⊖ X̂k+1)

〉

=
n
∑

j=1

θnj

〈

(Xn+1−j ⊖ X̂n+1−j), (Xk+1 ⊖ X̂k+1)
〉

= θn,n−kνk,

since (Xn+1−j ⊖ X̂n+1−j) ⊥ (Xk+1 ⊖ X̂k+1) for all j ̸= n− k.

Also, since (Xn+1 ⊖ X̂n+1) ⊥ (Xk+1 ⊖ X̂k+1) for k = 0, · · · , n− 1, we get,

⟨X̂n+1, (Xk+1 ⊖ X̂k+1)⟩ = ⟨Xn+1, (Xk+1 ⊖ X̂k+1)⟩.

Hence, the coefficients θn,n−k, k = 0, ..., n− 1 are given by

θn,n−k = ν−1
k ⟨Xn+1, (Xk+1 ⊖ X̂k+1)⟩. (4.15)

Using the representation in (4.13) with n replaced by k, we get

θn,n−k = ν−1
k

(

⟨Xn+1, Xk+1⟩ −
k−1
∑

j=0

θk,k−j⟨Xn+1, (Xj+1 ⊖ X̂j+1)⟩
)

. (4.16)
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Since by (4.15), ⟨Xn+1, (Xj+1 ⊖ X̂j+1)⟩ = νjθn,n−j , 0 ≤ j < n, we can rewrite (4.16) as

θn,n−k = ν−1
k

(

⟨Xn+1, Xk+1⟩ −
k−1
∑

j=0

θk,k−jθn,n−jνj

)

.

By properties of projection mapping, we have

νn = ∥Xn+1 ⊖ X̂n+1∥2 = ∥Xn+1∥2 − ∥X̂n+1∥2 = ⟨Xn+1, Xn+1⟩ −
n−1
∑

k=0

θ2n,n−kνk.

□

4.3 Implications for Modeling of Stationary Time Series

We discussed prediction via the innovations algorithm in Section 4.2. However, the innovations

algorithm also provides us with a method for understanding modeling and the richness of our class

of models.

Naturally, we want to restrict attention to prediction of stationary time series. If {Xt} is an

MA(∞) time series, Xt ∈ V for all t. As {Xt} is stationary, it is natural to think of the inner

product as a function of lag:

γ(h) = ⟨Xt, Xt+h⟩ =
∞
∑

j=0

ψjψj+h.

Being an inner product, γ(.) is nonnegative definite and by the Cauchy-Schwarz inequality, |γ(h)| ≤

γ(0).

Because we assume α = 2 and use the L2 norm, the TPDF σ(h) is closely related to γ(h).

Clearly, γ(h) is equivalent to σ(h) if ψj ≥ 0 for all j.

The following corollary shows that given an invertible transformed-linear regularly-varying

MA time series, running the transformed-linear innovations algorithm long enough gives us coef-

ficient estimates that converge to the true coefficients of the MA.
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Corollary 1. If {Xt} is an invertible MA process in V, that is,

Zt = Xt ⊕
∞
⊕

j=1

πj ◦Xt−j,

with limx→∞ Pr(Zj > x)/{x−2L(x)} = 1, then as n→ ∞,

(i) νn → 1,

(ii) ∥Xn ⊖ X̂n ⊖ Zn∥2 → 0, and

(iii) θnj → ψj, j = 1, 2, · · · .

Proof:

Let Mn = s̄p{Xs,−∞ < s ≤ n} and Vn = s̄p{X1, · · · , Xn}. Because {Xt} is invertible,

Zn+1 ⊖Xn+1 =
∞
⊕

j=1

πj ◦Xn+1−j = PMn
(Zn+1 ⊖Xn+1) = ⊖PMn

Xn+1,

since Zn+1 ⊥ Mn. Also, we can think of Zk as Zk =
⊕∞

j=0 ψj ◦ Zj , where ψj = 1 for j = k and

ψj = 0 for all j ̸= k. Thus, Zk ∈ V and subsequently, ∥Zk∥2 = 1 for all k. Then,

1 = ∥Zn+1∥2 = ∥Xn+1 ⊕
∞
⊕

j=1

πj ◦Xn+1−j∥2 = ∥Xn+1 ⊖ PMn
Xn+1∥2

≤ ∥Xn+1 ⊖ PVn
Xn+1∥2 = νn

≤ ∥Xn+1 ⊕
n
⊕

j=1

πj ◦Xn+1−j∥2 = ∥Zn+1 ⊖
∞
⊕

j=n+1

πj ◦Xn+1−j∥2

= ∥Zn+1∥2 + ∥
∞
⊕

j=n+1

πj ◦Xn+1−j∥2 = 1 +
∞
∑

i,j=n

πiπj⟨Xn+1−i, Xn+1−j⟩

≤ 1 +

(

∞
∑

j=n+1

πj

)2

γ(0).

Thus (i) is established since,

1 ≤ νn ≤ 1 +

(

∞
∑

j=n+1

πj

)2

γ(0) =⇒ νn → 1 as n→ ∞.
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Consider,

∥Xn ⊖ X̂n ⊖ Zn∥2 = ∥Xn ⊖ X̂n∥2 − 2⟨Zn, Xn ⊖ X̂n⟩+ ∥Zn∥2

= vn−1 − 2
[

⟨Zn, Xn⟩ − ⟨Zn, X̂n⟩
]

+ 1

= vn−1 − 2

[

⟨Zn,

∞
⊕

j=0

ψj ◦ Zn−j⟩ − ⟨Zn,

n−1
⊕

j=1

bnj ◦Xn−j⟩
]

+ 1

= vn−1 + 2[∥Zn∥2 − 0] + 1

= vn−1 − 1, (4.17)

where (4.17) converges to 0 as n→ ∞ by (i), thus proving (ii).

Since Xn+1 =
⊕∞

j=0 ψj ◦ Zn+1−j , we have that

ψj = ⟨Xn+1, Zn+1−j⟩.

Also, by (4.15),

θnj = ν−1
n−j⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j)⟩.

Then,

|θnj − ψj| =
∣

∣

∣
θnj − ⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j)⟩+ ⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j)⟩ − ψj

∣

∣

∣

≤
∣

∣

∣
θnj − ⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j)⟩

∣

∣

∣
+
∣

∣

∣
⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j)⟩ − ⟨Xn+1, Zn+1−j⟩

∣

∣

∣

(4.18)

= |θnj − θnjvn−j|+
∣

∣

∣
⟨Xn+1, (Xn+1−j ⊖ X̂n+1−j ⊖ Zn+1−j)⟩

∣

∣

∣

≤ |θnj − θnjvn−j|+
√

γ(0)
∥

∥

∥
(Xn+1−j ⊖ X̂n+1−j ⊖ Zn+1−j)

∥

∥

∥
, (4.19)

where the inequalities in (4.18) and (4.19) hold by the triangle inequality and the Cauchy-Schwarz

inequality, respectively. Since θnj and γ(0) are bounded, as n→ ∞, the first term on the right-hand
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side of (4.19) converges to 0 by (i) and the second term on the right-hand side of (4.19) converges

to 0 by (ii). Thus, θnj → ψj as n→ ∞, proving (iii). □

We show later in Section 4.5 that the class of MA time series is a rich class. For now, one

way to see that the MA class is rich is through Proposition 4. Before that, we need to prove the

following Lemma.

Lemma 1. If Xt is a tail stationary process in V, then

Ps̄p{Xj ,t−n≤j≤t−1}Xt
tail ratio→ Ps̄p{Xj ,−∞<j≤t−1}Xt, as n→ ∞.

Proof: Consider the transformed-linear combination

∞
⊕

j=n+1

aj ◦Xt−j.

As Xt is a tail stationary process,

P (Xt > x) ∼ x−2L(x)σ(0),

where σ(0) = σ(Xt, Xt). As shown in Section 3.4,

P

(

∞
⊕

j=n+1

aj ◦Xt−j > x

)

∼ x−2L(x)σ(0)
∞
∑

j=n+1

|aj|2, as x→ ∞. (4.20)

Taking limit on both sides of (4.20) we get, as x→ ∞,

lim
n→∞

P

(

∞
⊕

j=n+1

aj ◦Xt−j > x

)

∼ lim
n→∞

x−2L(x)σ(0)
∞
∑

j=n+1

|aj|2 = 0,

=⇒ lim
x→∞

P
(

⊕∞
j=n+1 aj ◦Xt−j > x

)

x−2L(x)
→ 0, as n→ ∞.
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That is, tail ratio of
⊕∞

j=n+1 aj ◦Xt−j converges to 0 as n → ∞. Thus, by tail ratio convergence

described in Section 3.4,

n
⊕

j=1

aj ◦Xt−j
tail ratio→

∞
⊕

j=1

aj ◦Xt−j,

Ps̄p{Xj ,t−n≤j≤t−1}Xt
tail ratio→ Ps̄p{Xj ,−∞<j≤t−1}Xt, as n→ ∞.

□

Analogous to Proposition 3.2.1 in Brockwell & Davis (1991), the following proposition shows

that a q-tail-dependent tail stationary regularly-varying time series can be represented as a transformed-

linear regularly-varying MA(q) process.

Proposition 4. If {Xt} is a regularly-varying tail stationary process in V with inner product func-

tion γ(.) such that γ(h) = 0 for |h| > q and γ(q) ̸= 0, then {Xt} is a transformed-linear regularly-

varying MA(q) process, i.e. there exists a regularly-varying noise sequence {Zt} of independent

and tail stationary Zt’s such that

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ · · · ⊕ θq ◦ Zt−q.

Proof: For each t, let Mt be the closed transformed-linear subspace s̄p{Xs, s ≤ t} of V and set

Zt = Xt ⊖ PMt−1Xt. (4.21)

That is,

Zt = Xt ⊖
∞
⊕

j=1

aj ◦Xt−j, aj ∈ R.
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Thus, Zt ∈ Mt. By definition of PMt−1 , PMt−1Xt ∈ Mt−1 and Zt = Xt ⊖ PMt−1Xt ∈ M
⊥
t−1. Thus

Zs ∈ Ms ⊂ Mt−1 and hence ⟨Zs, Zt⟩ = 0 for s < t. Also, by Lemma 1

Ps̄p{Xs,t−n≤s≤t−1}Xt
tail ratio→ PMt−1Xt, as n→ ∞.

By stationarity and continuity of norm,

∥Zt+1∥ = ∥Xt+1 ⊖ PMt
Xt+1∥

= lim
n→∞

∥Xt+1 ⊖ Ps̄p{Xs,s=t+1−n,··· ,t}Xt+1∥

= lim
n→∞

∥Xt ⊖ Ps̄p{Xs,s=t−n,··· ,t−1}Xt∥

= ∥Xt ⊖ PMt−1Xt∥ = ∥Zt∥.

Letting c2 = ∥Zt∥2, {Zt} is a sequence of independent and tail stationary regularly-varying random

variables with scale c, that is, Pr(Zt > x)/{x−2L(x)} = c2.

By (4.21),

Xt−1 = Zt−1 ⊕ PMt−2Xt−1.

Consequently,

Mt−1 = s̄p{Xs, s ≤ t− 1}

= s̄p{Xs, s < t− 1, Zt−1}

= s̄p{Xs, s < t− q, Zt−q, · · · , Zt−1}.

Therefore, Mt−1 can be decomposed into two orthogonal subspaces, Mt−q−1 and s̄p{Zt−q, · · · , Zt−1}.

Since γ(h) = 0 for |h| > q, it follows that Xt ⊥ Mt−q−1 and since s̄p{c−2 ◦Zt−q, · · · , c−2 ◦Zt−1}
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is an orthonormal set, by properties of projection mappings,

PMt−1Xt = PMt−q−1Xt ⊕ Ps̄p{Zt−q ,···Zt−1}Xt

= 0 ⊕
(

c−2⟨Xt, Zt−1⟩
)

◦ Zt−1 ⊕ · · · ⊕
(

c−2⟨Xt, Zt−q⟩
)

◦ Zt−q

= θ1 ◦ Zt−1 ⊕ · · · ⊕ θq ◦ Zt−q, (4.22)

where θj := c−2⟨Xt, Zt−j⟩, which by stationarity is independent of t for j = 1, · · · , q. By (4.21)

and (4.22),

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ · · · ⊕ θq ◦ Zt−q.

□

4.4 Modeling in Subset V+

So far we defined V allowing for negative ψj’s since the negative coefficients give us the needed

flexibility to define an inner product and employ the projection theorem. However, in our setting,

a time series which has negative coefficients is indistinguishable, in terms of tail behavior, from

a time series which has zeroes in place of those coefficients. Hence we restrict our attention to a

subset V+ defined in the following section.

Consider a subset of V defined as

V+ = {Xt : Xt =
∞
⊕

j=0

ψj ◦ Zt−j, ψj ≥ 0,
∞
∑

j=0

ψj <∞}.

Proposition 5 below follows from the definition of TPDF.

Proposition 5. If a transformed-linear MA(∞) time series in V has TPDF σ(h), then there exists

a transformed-linear MA(∞) time series in subset V+ which has the same TPDF σ(h), for all lag

h.
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Proof: Let Xt =
⊕∞

j=0 ψj ◦Zt−j ∈ V. The TPDF of Xt is given by σ(h) =
∑∞

j=0 ψ
(0)
j ψ

(0)
j+h, which

is equal to the TPDF of X∗
t =

⊕∞
j=0 ψ

(0)
j ◦ Zt−j ∈ V+. □

In other words, Xt and X∗
t are indistinguishable in terms of tail dependence. Xt and X∗

t are also

indistinguishable in terms of tail ratio since recall that tail ratio is equal to σ(0). Furthermore,

the TPDF gives full information for a time series in V+ and unlike the inner product function, the

TPDF is estimable. Also, it can be clearly seen that γ(h) = σ(h), for X∗
t , X

∗
t+h ∈ V+, for all lag

h. Hence it is reasonable to restrict our attention to V+.

As the inner product is equivalent to the TPDF in V+, equation 4.12 can be rewritten as

b̂n = Σ−1
n σn. (4.23)

where Σn = [σ(i− j)]ni,j=1 and σn = [σ(i)]ni=1.

Also, if our time series is in V+, we can rewrite the equations (4.14) of the innovations algo-

rithm in terms of the TPDF σ(·) instead of the inner product as































ν0 = σ(0)

θn,n−k = ν−1
k

(

σ(n− k)−∑k−1
j=0 θk,k−jθn,n−jνj

)

, k = 0, 1, ..., n− 1,

νn = σ(0)−
∑n−1

j=0 θ
2
n,n−jνj,

. (4.24)

Rewriting Corollary 1 for V+, we get the following corollary.

Corollary 2. If {Xt} is an invertible MA process in V+ with limx→∞ Pr(Zj > x)/{x−2L(x)} = 1,

then as n→ ∞,

(i) νn → 1,

(ii) ∥Xn ⊖ X̂n ⊖ Zn∥2 → 0, and

(iii) θnj → ψj, j = 1, 2, · · · ; ψj ≥ 0.

Also, rewriting Proposition 4 for V+,
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Corollary 3. If {Xt} is a regularly-varying tail stationary process in V+ with tail pairwise depen-

dence function σ(.) such that σ(h) = 0 for |h| > q and σ(q) ̸= 0, then {Xt} is an transformed-

linear regularly-varying MA(q) process, i.e. there exists a regularly-varying noise sequence {Zt}

of independent and tail stationary Zt’s such that

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ · · · ⊕ θq ◦ Zt−q.

The relation between the TPDF and the inner product gives an important result described in the

following remark:

Remark 1. If Xt is an MA(∞) time series in V and Xt /∈ V+, then by Proposition 5 there exists

X∗
t ∈ V+, obtained by applying the zero-operator on the coefficients of Xt, which has the same

TPDF as Xt. Thus, the innovations algorithm applied to the TPDF of Xt ∈ V will give us the

one-step predictors for the corresponding X∗
t ∈ V+.

4.5 Flexibility of the MA(∞) Class for Modeling

In this section we show that the class of MA(∞) models is a rich class for modeling.

4.5.1 Richness of the MA(∞) Class in terms of the TPDF

Given a valid TPDF (that is, a completely positive function) that converges to 0 as lag in-

creases, we can run the innovations algorithm to get the θnj’s and νn as defined in (4.14). If we

apply the TPDF formula to these θnj’s we will get a TPDF that gets arbitrarily close to the given

TPDF. In other words, if we consider random noise terms {Zj} that are Frèchet with α = 2 and

scale
√
νn, and generate a process applying the coefficients θnj to the Z’s, the TPDF of this gener-

ated process will be arbitrarily close to the given TPDF. Thus, given any valid TPDF, we can run

the transformed-linear innovations algorithm long enough to find a transformed-linear regularly-

varying MA(∞) time series whose TPDF will get arbitrarily close to the given TPDF. As such, the

class of MA(∞) time series is rich in the class of possible TPDFs that converge to 0.
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To show this, first we prove the result for a q-tail-dependent TPDF in the following corollary.

Corollary 4. If {Xt} is any regularly-varying tail stationary process with TPDF σ(.) such that

σ(h) = 0 for |h| > q and σ(q) ̸= 0, then as n → ∞, the θnjs generated from the transformed-

linear innovations algorithm approach θ1, · · · , θq of an MA(q) whose TPDF matches the given

TPDF.

Proof: Let us consider the form for the θnjs given by the transformed-linear innovations algorithm

in 4.24:

θn,n−k = ν−1
k

(

σ(n− k)−
k−1
∑

l=0

θk,k−lθn,n−lνl

)

, k = 0, 1, ..., n− 1. (4.25)

Rewriting (4.25) by letting h = n− k,

θn,h = ν−1
n−h

(

σ(h)−
n−h−1
∑

l=0

θn−h,n−h−lθn,n−lνl

)

,

= ν−1
n−h

(

σ(h)−
n−h−1
∑

l=n−h−q

θn−h,n−h−lθn,n−lνl

)

, h = 0, 1, ..., q, (4.26)

since θn,n−l = 0 for all l = 0, 1, · · · , n− h− q − 1.

Rewriting (4.26) by letting j = n− h− l,

θn,h = ν−1
n−h

(

σ(h)−
q
∑

j=1

θn−h,jθn,j+hνn−h−j

)

. (4.27)

As n→ ∞, let θn,h → θh and νn → c2. Then (4.27) becomes,

θh = c−2

(

σ(h)−
q
∑

j=1

θjθj+hc
2

)

. (4.28)

60



Rearranging 4.28,

σ(h) = θhc
2 +

q
∑

j=1

θjθj+hc
2

= c2
q
∑

j=0

θjθj+h, h = 0, 1, ..., q, (4.29)

which is the form for the TPDF at lag h for a regularly-varying tail stationary MA(q) with θj ≥ 0

for j = 0, 1, · · · , q and limx→∞ Pr(Zj > x)/{x−2L(x)} = c2. Thus, the TPDF of this MA(q)

matches the given TPDF σ(h). □

We are extending the above result to the MA(∞) case.

4.5.2 Transformed-Linear Wold Decomposition

If the TPDF of a time series does not converge to 0, analogous to the Wold decomposition

discussed in Brockwell & Davis (1991) we can decompose the time series into an MA(∞) process

and a deterministic process. Following Brockwell & Davis (1991) and Sargent (1979) we prove

our Transformed-Linear Wold Decomposition as follows:

Theorem 1 (The Transformed-Linear Wold Decomposition). If c2 = ∥Xn+1 ⊖ X̂n+1∥2 > 0, then

Xt can be expressed as

Xt =
∞
⊕

j=0

ψj ◦ Zt−j ⊕ Ut, (4.30)
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where

(i) ψ0 = 1 and

∞
∑

j=0

ψ2
j <∞,

(ii) {Zt} is a sequence of independent and tail stationary regularly-varying random variables with scale c,

(iii) Zt ∈ Vt for each t ∈ Z,

(iv) ⟨Zt, Us⟩ = 0 for all s, t ∈ Z,

(v) {Ut} is deterministic.

The sequences {ψj}, {Zj}, and {Uj} are uniquely determined by (4.30) and the conditions (i) -

(v).

Proof: Consider the sequences

Zt = Xt ⊖ PVt−1Xt,

ψj = c−2⟨Xt, Zt−j⟩, (4.31)

Ut = Xt ⊖
∞
⊕

j=0

ψj ◦ Zt−j. (4.32)

That is,

Zt = Xt ⊖
∞
⊕

j=1

aj ◦Xt−j, aj ∈ R, j = 1, · · · , t− 1.

Thus, Zt ∈ Vt, establishing (iii). By definition of PVt−1 , PVt−1Xt ∈ Vt−1 and Zt = Xt⊖PVt−1Xt ∈

V
⊥
t−1. Thus,

Zt ∈ V
⊥
t−1 ⊂ V

⊥
t−2 ⊂ · · ·
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Hence for s < t, ⟨Zs, Zt⟩ = 0. By Lemma 1

Ps̄p{Xs,t−n≤s≤t−1}Xt
tail ratio→ PVt−1Xt, as n→ ∞.

By stationarity and continuity of norm,

∥Zt+1∥ = ∥Xt+1 ⊖ PVt
Xt+1∥

= lim
n→∞

∥Xt+1 ⊖ Ps̄p{Xs,s=t+1−n,··· ,t}Xt+1∥

= lim
n→∞

∥Xt ⊖ Ps̄p{Xs,s=t−n,··· ,t−1}Xt∥

= ∥Xt ⊖ PVt−1Xt∥ = ∥Zt∥.

Letting c2 = ∥Zt∥2, {Zt} is a sequence of independent and tail stationary regularly-varying random

variables with scale c, thus establishing (ii).

By equation (4.22) in the proof of Proposition 4,

Ps̄p{Zj ,j≤t}Xt =
∞
∑

j=0

ψj ◦ Zt−j,

where ψj = c−2⟨Xt, Zt−j⟩ and
∑∞

j=0 ψ
2
j <∞. By stationarity, the coefficients ψj are independent

of t. Also,

ψ0 = c−2⟨Xt, Xt ⊖ PVt−1Xt⟩ = c−2∥Xt ⊖ PVt−1Xt∥2 = c−2∥Zt∥2 = 1,
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thus proving (i). From equation (4.31) and (4.32), for s ≤ t,

⟨Ut, Zs⟩ =
〈

Xt ⊖
∞
⊕

j=0

ψj ◦ Zt−j, Zs

〉

= ⟨Xt, Zs⟩ −
〈

∞
⊕

j=0

ψj ◦ Zt−j, Zs

〉

= ⟨Xt, Zs⟩ − ψt−s ⟨Zs, Zs⟩

= ⟨Xt, Zs⟩ − ∥Zs∥−2 ⟨Xt, Zs⟩ ∥Zs∥2

= 0.

In addition, if s > t, Zs ∈ V
⊥
s−1 ⊂ V

⊥
t . But Ut ∈ Vt. Hence ⟨Ut, Zs⟩ = 0 for s > t. Thus (iv) is

proved.

Since Ut is orthogonal to Zt, Ut ∈ Vt−1, that is Ut can be predicted perfectly from previous

X’s. To see this clearly, consider the projection of Ut on Vt−1 to get

PVt−1Ut = PVt−1Xt ⊖ PVt−1

∞
⊕

j=0

ψj ◦ Zt−j

= PVt−1Xt ⊖
∞
⊕

j=1

ψj ◦ Zt−j,

since PVt−1Zt = 0 and PVt−1Zt−k = Zt−k for k ≥ 1. Transformed-linearly subtracting above

equation from (4.32) gives

Ut ⊖ PVt−1Ut =
(

Xt ⊖ PVt−1Xt

)

⊖ ψ0 ◦ Zt = 0V,

since the one-step ahead prediction error for Xt is ψ0 ◦ Zt. Hence, Ut = PVt−1Ut. In general,

PVt−k
Ut = PVt−k

Xt ⊖
∞
⊕

j=k

ψj ◦ Zt−j.
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Transformed-linearly subtracting above equation from (4.32) gives

Ut ⊖ PVt−k
Ut =

(

Xt ⊖ PVt−k
Xt

)

⊖
k−1
⊕

j=0

ψj ◦ Zt−j = 0V,

since the k-step ahead prediction error for Xt is
⊕k−1

j=0 ψj ◦ Zt−j . Thus {Ut} is deterministic as it

can be predicted from past X’s. □

4.5.3 Simulation Study

We conduct a simulation study that corroborates the richness of the class of transformed-linear

regularly-varying MA(∞) models. We simulate data from two models. The first model is a

GARCH(1,1) process (Bollerslev (1986)) with Gaussian noise terms and parameters α0 = 0.2,

α1 = 0.5, and β1 = 0.3. We consider the time series of absolute values of this GARCH process.

A chi-plot (not shown) for the upper tail shows asymptotic dependence with χ̂(1) ≈ 0.34. We

apply our transform f to bound the data away from 0. Let this transformed data be denoted by

xtrans. The Hill estimator (Hill (1975)) at the empirical 0.99 quantile of this transformed data

gives an estimate α̂trans = 3.27 of the tail index. The scale is estimated to be ĉtrans = 0.47. We

further transform the data into xt = ĉ
−1/2
trans(xtrans)

α̂trans/2 so that our marginal now has α = 2 and

σ(0) = 1. As discussed in Section 3.9.3, preprocessing the data to have σ(0) = 1 allows us to

reduce bias in TPDF estimation. Note that by doing this the noise terms Zj are no longer such that

σZj
(0) = 1. As in Section 3.9.3, to reduce bias in TPDF estimation, we subtract off the mean of

the transformed data and replace the negative observations with 0. We estimate the TPDF up to

500 lags using data whose radial components exceeds the 0.99 quantile. The squared distance of

prediction νn converges to 0.65. Running the innovations algorithm on the estimated TPDF gives

us converged θ estimates of an MA model. We consider the first 25 θ̂’s since the θ estimates are

negligible beyond that. We then generate Fréchet noise terms with α = 2 and scale
√
νn =

√
0.65,

and simulate a transformed-linear regularly-varying MA(25) time series using the estimated θ’s

from the innovations algorithm. We then back transform the simulated time series to the original
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marginals. The average difference between the estimated TPDF from the original GARCH data

and the estimated TPDF from our fitted model is −0.02 (se = 0.01).

The second model is a first order Markov chain such that each pair of consecutive observations

has a bivariate logistic distribution with dependence parameter of 0.4 and common unit-Fréchet

marginals (refer Smith et al. (1997)). A chi-plot (not shown) for the upper tail shows asymptotic

dependence with χ̂(1) ≈ 0.7. We perform the square-root transformation on the data so that

α = 2. Following the same process as for the first model, we simulate a transformed-linear

regularly-varying MA(30) time series using the estimated θ’s from the innovations algorithm and

back transform the simulated time series to the original marginals. The average difference between

the estimated TPDF from the original logistic data and the estimated TPDF from our fitted model

is −0.0007 (se = 0.01).

Table 4.1 gives average length of run above higher quantiles for the original time series data

and the fitted time series data (using coefficient estimates from the innovations algorithm) for the

GARCH model and the logistic model. Table 4.2 gives the higher quantiles for sum of three

consecutive time series terms. The fitted models seem to produce reasonable estimates of these tail

quantities. Interestingly, for the fitted MA model in the logistic case (last column in Table 4.1),

there is an increasing trend in the estimates and we do not see the “threshold stability” as exhibited

by the fitted GARCH model and the earlier fitted models in Table 3.2.

Figure 4.1 gives the lag 1 plots for the true and fitted models for both the logistic and GARCH

case. Clearly there is a difference in the dependence structure of the true model and our fitted

model. This is not surprising since in the general time series case, we do not know the true model

and we try to fit an infinite dimensional distribution to the time series.

Table 4.1: Average length (standard error) of run above a threshold for the simulation study

Threshold GARCH Logistic
quantile Original Fitted Original Fitted
0.95 1.57 (0.02) 1.71 (0.03) 3.02 (0.09) 3.88 (0.11)
0.98 1.57 (0.03) 1.60 (0.04) 3.21 (0.15) 3.87 (0.16)
0.99 1.56 (0.05) 1.62 (0.06) 3.44 (0.22) 4.46 (0.26)
0.995 1.56 (0.06) 1.66 (0.09) 3.45 (0.29) 4.63 (0.35)
0.999 1.47 (0.11) 1.52 (0.15) 2.86 (0.48) 4.76 (0.76)
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Table 4.2: Quantiles for sum (standard error) of twelve consecutive terms for the simulation study

Quantile GARCH Logistic
Original Fitted Original Fitted

0.95 16.23 (0.20) 17.49 (0.16) 223.19 (8.29) 233.21 (8.26)
0.98 21.36 (0.31) 22.05 (0.34) 565.32 (37.79) 589.23 (37.77)
0.99 25.72 (0.68) 26.72 (0.58) 1252.96 (184.83) 1250.13 (118.99)
0.995 32.08 (1.24) 32.09 (1.03) 2789.53 (420.92) 2672.24 (338.49)
0.999 50.67 (3.67) 48.90 (2.98) 12833.18 (3736.45) 12732.06 (3705.63)

4.6 Prediction Error

We now return our attention to prediction and investigate the problem of assessing prediction

uncertainty. Because the geometry of regular variation is very different from the elliptical geometry

assumed in many non-extreme settings, we need to deal with uncertainty in prediction differently.

4.6.1 Completely Positive Decomposition of the Prediction TPDM

The squared distance of prediction, νn, is the analogue to mean square prediction error. In

the finite-dimensional multivariate case Lee & Cooley (2021+) have shown that νn (K in Lee &

Cooley (2021+)) is not useful to construct a prediction interval in the polar geometry of regular

variation because the magnitude of error is dependent on the magnitude of the predicted value. We

follow Lee & Cooley (2021+) and apply their method to construct prediction intervals when X̂n+1

is large.

The tail dependence between X̂n+1 and Xn+1 can be characterized by the bivariate angular

measure HX̂n+1,Xn+1
. As shown in Lee & Cooley (2021+), the dependence of HX̂n+1,Xn+1

is sum-

marized by the prediction TPDM

ΣX̂n+1,Xn+1
=







σT
nΣ

−1
n σn σT

nΣ
−1
n σn

σT
nΣ

−1
n σn σ(0)






, (4.33)

where Σn = [σ(i− j)]ni,j=1 and σn = [σ(i)]ni=1. Since ΣX̂n+1,Xn+1
is a 2×2 completely positive ma-

trix, given any q∗ ≥ 2, there exist nonnegative matrices B ∈ R
2×q∗ such that BBT = ΣX̂n+1,Xn+1

.
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Figure 4.1: Lag-1 plots. Original data from the true GARCH model (top left panel), Simulated data from
the fitted MA (back-transformed to the original marginals) on the GARCH data (top right panel), Original
data from the true logistic model after square-root transformation (bottom left panel), Simulated data after
square-root transformation from the fitted MA (back-transformed to the original marginals) on the logistic
data (bottom right panel).
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For feasible computation, Lee & Cooley (2021+) choose a moderate q∗ and apply the algorithm in

Groetzner & Dür (2020) repeatedly to get ndecomp nonnegative B(k) matrices, k = 1, · · · , ndecomp,

such that B(k)B(k)T = ΣX̂n+1,Xn+1
for all k. Then,

ĤX̂n+1,Xn+1
= n−1

decomp

ndecomp
∑

k=1

q∗
∑

j=1

∥b(0)kj ∥22 δb(0)
kj

/∥b
(0)
kj

∥2
(·),

where bkj is the j th column of the kth matrix B(k) and δ is the Dirac mass function, and

ΣĤ = n−1
decomp

ndecomp
∑

k=1

B(k)B(k)T = ΣX̂n+1,Xn+1
.

Defined this way, ĤX̂n+1,Xn+1
consists of ndecomp × q∗ point masses.

As in Section 4.5.3, we simulate 100,000 random observations of a first order Markov chain

model such that each pair of consecutive observations has a bivariate logistic distribution with

dependence parameter of 0.4 and common unit-Fréchet marginals. We perform the square-root

transformation on the data so that α = 2. We consider the first 70,000 observations as training data

and the remaining as test data. In Section 4.5.3 we fitted a transformed-linear regularly-varying

MA(30) time series to data simulated from the logistic model because the converged innovations

algorithm gave negligible θ estimates beyond θ30. Hence we consider the problem of predicting

any observation Xn+1, n ≥ 30, based on the previous 30 observations. Let us denote this pre-

dicted observation as X̂n+1|n:n−29. Using equation (4.23) we obtain b̂ and the prediction TPDM

ΣX̂n+1|n:n−29,Xn+1
is obtained from equation (4.33). We apply the algorithm given in Groetzner

& Dür (2020) repeatedly to compute 2 × 5 matrices B(k), k = 1, · · · , 100, each of which is

a completely positive decomposition of ΣX̂n+1|n:n−29,Xn+1
. Thus our estimated angular measure

ĤX̂n+1|n:n−29,Xn+1
has 500 point masses. The 0.025 and 0.975 quantiles of ĤX̂n+1|n:n−29,Xn+1

give

us a 95% joint region. The left panel of Figure 4.2 gives 95% joint region on the 30,000 test data.

Thresholding at the 0.95 quantile of ∥X̂n+1|n:n−29, Xn+1∥, 99.6% of the large data points fall within

this joint region.
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4.6.2 Conditional Prediction Intervals

The conditional density of X2|X1 = x1 if x1 is large is given in Lee & Cooley (2021+) as

approximately

fX2|X1(x2|x1) = 2c−1∥(x1, x2)∥−5
2 x2h

(

(x1, x2)

∥(x1, x2)∥2

)

, (4.34)

where c =
∫∞

0
2∥(x1, x2)∥−5

2 x2h
(

(x1,x2)
∥(x1,x2)∥2

)

dx2. We obtain an estimate of the conditional density

of Xn+1 given a large value of X̂n+1 using equation (4.34). The angular density h is estimated

through a kernel density estimate of ĤX̂n+1,Xn+1
. The 0.025 and 0.975 quantiles of the estimated

conditional density in equation (4.34) give us a 95% conditional prediction interval. The right

panel of Figure 4.2 gives the scatterplot after thresholding the test data at the 0.95 quantile of

X̂n+1|n:n−29, along with the 95% conditional prediction intervals. These prediction intervals have

a coverage rate of 0.975.

Figure 4.2: Scatterplot of the Logistic model test data, on the transformed Fréchet scale with α = 2, with
the estimated 95% joint prediction region (left panel). 95% conditional prediction intervals given each large
value of X̂n+1|n:n−29 of the Logistic model test data, on the transformed Fréchet scale with α = 2 (right
panel).
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4.7 Application to Santa Ana Winds

We return to the March AFB hourly windspeed data that we fitted a transformed-linear regularly-

varying ARMA(1,1) time series to in Section 3.9. Recall that we marginally transformed the data

to have regularly-varying tails with α = 2 and σ(0) = 1. After subtracting off the mean of the

transformed data and replacing the negative observations with 0, we estimate the TPDF up to 500

lags using data whose radial components exceeds the 0.99 quantile. Running the innovations al-

gorithm on the estimated TPDF gives us converged θ estimates of an MA model. The squared

distance of prediction, νn, converges to We consider the first 40 θ̂’s since the θ estimates are negli-

gible beyond that. We then generate Fréchet noise terms, with α = 2 and scale
√
νn =

√
0.65, and

simulate a transformed-linear regularly-varying MA(40) time series using the estimated θ’s from

the innovations algorithm and back transform the simulated time series to the original marginals.

The average difference between the estimated TPDF from the original windspeed anomalies data

and the estimated TPDF from our fitted model is −0.02 (se = 0.01). Table 4.3 gives average length

of run above higher quantiles for the original windspeed anomalies time series data and the fitted

time series data (using coefficient estimates from the innovations algorithm). Table 4.4 gives the

higher quantiles for sum of three consecutive time series terms. The fitted models seem to produce

reasonable estimates of these tail quantities.

Table 4.3: Average length (standard error) of run above a threshold for the windspeed data

Threshold Original Fitted
quantile
0.95 2.43 (0.06) 2.32 (0.07)
0.98 2.35 (0.09) 2.27 (0.11)
0.99 2.10 (0.10) 2.46 (0.18)
0.995 1.77 (0.11) 2.35 (0.23)
0.999 1.40 (0.10) 2.04 (0.33)

We now perform prediction of the windspeed anomalies time series. Out of the 103,630 ob-

servations, we consider the first 70,000 observations as training data and the remaining as test

data. We consider the problem of predicting an observation Xn+1, n ≥ 40, based on the previous

40 observations. Let us denote this predicted observation as X̂n+1|n:n−39. Using equation (4.23)
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Table 4.4: Quantiles for sum (standard error) of twelve consecutive terms for the windspeed data

Quantile Original Fitted
0.95 27.70 (0.72) 28.44 (0.52)
0.98 43.74 (1.19) 42.93 (1.07)
0.99 56.65 (1.66) 54.82 (1.62)
0.995 69.67 (2.11) 68.91 (2.50)
0.999 91.89 (3.60) 97.93 (4.49)

we obtain b̂ and the prediction TPDM ΣX̂n+1|n:n−39,Xn+1
is obtained from equation (4.33). We ap-

ply the algorithm given in Groetzner & Dür (2020) repeatedly to compute 2 × 5 matrices B(k),

k = 1, · · · , 100, each of which is a completely positive decomposition of ΣX̂n+1|n:n−39,Xn+1
. Thus

our estimated angular measure ĤX̂n+1|n:n−39,Xn+1
has 500 point masses. The 0.025 and 0.975 quan-

tiles of ĤX̂n+1|n:n−39,Xn+1
give us a 95% joint region. The left panel of Figure 4.3 gives 95% joint

region on the test data. Thresholding at the 0.95 quantile of ∥X̂n+1|n:n−39, Xn+1∥, 98.99% of the

large data points fall within this joint region.

We obtain an estimate of the conditional density of Xn+1 given a large value of X̂n+1 using

equation (4.34). The 0.025 and 0.975 quantiles of the estimated conditional density in equation

(4.34) give us a 95% conditional prediction interval. The center panel of Figure 4.3 gives the scat-

terplot after thresholding at the 0.95 quantile of X̂n+1|n:n−39 of the test data along with the 95%

conditional prediction bounds. These prediction intervals have a coverage rate of 0.96. The right

panel of Figure 4.3 gives the prediction intervals on the original scale of the anomalies obtained

by taking the inverse of the marginal transformation. We compare our prediction intervals to the

standard Gaussian method. We transform the marginal of the original windspeed anomalies data

to be standard normal and estimate the ACVF. We use the estimated covariance matrix to find the

best linear unbiased predictor and to estimate the MSPE. We then create 95% Gaussian prediction

intervals from the estimated MSPE and get a coverage rate of 0.94. For the windspeed anomalies

data, our prediction intervals do not show significant advantage over the standard Gaussian based

prediction intervals because our data is not too heavy-tailed, resulting into a negligible difference

between the corresponding predicted weight vectors b̂. We are investigating a heavy-tailed pre-
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cipitation data set where we suspect the difference between the corresponding predicted weight

vectors will be more significant.

Figure 4.3: Scatterplot of the windspeed anomalies test data on the Fréchet scale with the estimated
95% joint prediction region (left panel). 95% conditional prediction intervals given each large value of
X̂n+1|n:n−39 of the windspeed anomalies test data on the Fréchet scale (center panel). 95% conditional pre-

diction intervals given each large value of X̂n+1|n:n−39 of the windspeed anomalies test data on the original
scale (right panel).

4.8 Summary

In this chapter we address the goal of performing prediction. Unlike the classical setting, we are

specifically interested in prediction for time series extremes, that is, when the previous time series

terms indicate that the following observation will be large. We work in the transformed-linear

regular variation framework presented in Chapter 2 and Chapter 3.

We show that the vector space V of a series of absolutely summable transformed-linear com-

binations of nonnegative regularly-varying random variables is an inner product space. We show

that the set of predictors based on previous n observations of our time series is isomorphic to a

closed linear subspace of a Hilbert space which enables us to use the projection theorem to con-

struct methods for prediction. Using the properties of the projection theorem, we develop the

transformed-linear analogue of the classical innovations algorithm that allows us to do prediction

iteratively. Furthermore, the transformed-linear innovations algorithm also provides us a tool for

modeling our time series iteratively. Restricting our attention to a subset V+ with nonnegative

73



coefficients links the inner product to the TPDF and allows us to use the innovations algorithm

on the estimable TPDF. We show that the class of transformed-linear regularly-varying MA(∞)

models is rich in the sense that, through the innovations algorithm, we can fit a transformed-linear

regularly-varying MA(∞) to any valid TPDF. Using the polar geometry of regular variation, we

develop prediction intervals when predicted values are large. We discuss some future work in the

next chapter.
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Chapter 5

Conclusions and Future Work

In this dissertation we extend familiar linear time series models to extremes. Our models are

motivated by time series data found in atmospheric sciences, which exhibit dependence in the

upper tail. To model extremal dependence we work in the regular variation framework which

is a probabilistic framework that is linked to classical extreme value methods and helps model

dependence in the tail. To model dependence in the upper tail we restrict our model to take only

nonnegative values by considering transformed-linear operations on regularly-varying noise terms.

In Chapter 2, we develop a notion of tail stationarity through defining the tail pairwise de-

pendence function (TPDF), a dependence measure that focuses on the dependence in the tail and

has properties analogous to the autocovariance function in classical non-extreme time series. Our

notion of tail stationarity is analogous to second order stationarity in classical non-extreme time

series models and helps us to focus our entire time series analysis on the TPDF.

In Chapter 3, we develop the transformed-linear regularly-varying models which are analo-

gous to the classical ARMA models. The transformed-linear operations give flexibility to our

models by allowing for negative coefficients while still restricting the time series to the posi-

tives. Investigating some summary tail statistics that could be of interest, we demonstrate that

our transformed-linear regularly-varying time series model outperforms linear regularly-varying

models and a non-extreme Gaussian model.

In Chapter 4 we perform prediction for our models. We link the transformed-linear regularly-

varying MA(∞) class of models to a Hilbert space which enables us to use the projection the-

orem to construct methods for prediction via the transformed-linear innovations algorithm. The

transformed-linear innovations algorithm also has implications for modeling of our time series.

This class of MA(∞) models is rich since using the innovations algorithm, we can fit a transformed-

linear regularly-varying MA(∞) to any valid TPDF. We develop prediction intervals when pre-

dicted values are large using the polar geometry of regular variation.
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There are many avenues for future work. A prevalent method for identifying the orders of AR

and MA in classical time series is through looking at autocorrelation function (ACF) and partial

autocorrelation function (PACF) plots. This necessitates the development of a PACF analogue

for our models. Some initial results on partial tail correlation in the finite dimensions have been

worked on by Lee & Cooley in their upcoming paper.

There might also be motivation in extremes to think about a non-causal time series. In the

simulated time series in our causal setting, we saw that there is a spike in value and then the time

series values reduce in time, that is, we do not get anything ahead of the spike. The fact that our

time series models drop off after a high value is somewhat non-physical. There is a reason to think

of non-causality because the windspeed this hour has some information about the windspeed in the

next hour. Thus there is a need to explore non-causal time series in our setting.

There are some remaining challenges that might be of interest for future work. As discussed

at the end of Chapter 3, there is a need to develop improved methods for estimation of tail de-

pendence. Also, in classical time series, model selection is done via likelihood based methods.

However, a likelihood based method is challenging in our setting and needs to be investigated

further.
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Appendix A

Supplementary material for Chapter 3

A.1 Bias in TPDF Estimation of Transformed Regularly-Varying

Time Series

A.1.1 Background

Let {Xt} be a regularly-varying tail stationary time series with α = 2. Let (Xt, Xt+h)
T be a

two-dimensional random vector of elements at lag h of {Xt}. Thus, there exists a function b(s)

and Radon measure HXt,Xt+h
on Θ+

1 = {w = (wt, wt+h) ∈ X̄
2 : ∥w∥2 = 1} such that as s→ ∞,

sPr

(

(Xt, Xt+h)

b(s)
∈ ·
)

v−→ νXt,Xt+h
(·), where νXt,Xt+h

(dr × dw) = 2r−3drdHXt,Xt+h
(w). (A.1)

We also assume that the lower tail condition

sPr{Xi ≤ exp(−kb(s))} → 0, k > 0, i = 1, ..., p, s→ ∞, (A.2)

is met. We define the tail pairwise dependence function (TPDF) as

σ(Xt, Xt+h) =

∫

Θ+
1

wtwt+hdHXt,Xt+h
(w).

To estimate the tail pairwise dependence function (TPDF), we use the estimator defined in

Cooley & Thibaud (2019) in which the true angular measure is replaced by an empirical estimate.

Let {xt}, (t = 1, · · · , n), be the time series observations. Let (xt, xt+h)
T , (t = 1, · · · , n − h)

be lag-h pairs of observations from {xt}. Let rt = ∥(xt, xt+h)
T∥2, and wt = (wt, wt+h)

T =
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(xt, xt+h)
T/rt. The TPDF estimator is defined as

σ̂(h) = m̂

∫

Θ+
1

wtwt+hdN̂Xt,Xt+h
(w) =

m̂
∑n

t=1 I(rt > r0)

n
∑

t=1

wtwt+hI(rt > r0), (A.3)

where r0 is some high threshold for the radial components, NXt,Xt+h
(·) = m−1HXt,Xt+h

(·), and

m̂ is an estimate of HXt,Xt+h
(Θ+

1 ). Because we preprocessed the time series to have a unit scale,

m = 2 and does not need to be estimated. When the data are not preprocessed to have a unit scale,

an empirical estimator is m̂ =
r20
n

∑n
t=1 I(rt > r0).

It is known that tail dependence estimates tend to have positive bias in the case of weak depen-

dence (refer Huser et al. (2016)). In this supplementary material, we explore the bias associated

with estimation of the TPDF. Simulation study shows that subtracting off the mean of the series,

considerably reduces bias in TPDF estimation.

A.1.2 Simulated data

First we consider a transformed regularly-varying MA(2) time series

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ θ2 ◦ Zt−2,

where {Zt} is a sequence of independent positive Fréchet random numbers with unit scale and

shape α = 2, for four different pairs of values of θ1 and θ2. Similarly, we simulate a transformed

regularly-varying MA(5) time series

Xt = Zt ⊕ θ1 ◦ Zt−1 ⊕ · · · ⊕ θ5 ◦ Zt−5,

with two different sets of values for θ1, · · · , θ5, and a transformed regularly-varying AR(1) time

series

Xt = ϕ ◦Xt−1 ⊕ Zt,
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with four different values of ϕ. We simulate 50,000 observations xt, of each of the above time se-

ries. For each of the time series, we then obtain the transformed observations x(trans)
t = g(xt),

where g is the inverse cdf of the desired Fréchet. That is, g(x) = {−logF̂ (x)}−1/2, so that

Pr(X (trans)
t ≤ x) ≈ exp(−x−2), and X (trans)

t ∈ RV+(2) with scale 1.

A.1.3 TPDF estimation

We estimate the TPDF for the first 10 lags for the MA time series, for the first 50 lags for the

AR time series with positive ϕ, and for the first 20 lags for the AR time series with negative ϕ,

using the estimator in (A.3). TPDF estimation is done in four different ways. Method 1: m̂ in

(A.3) is estimated as r20
n

∑n
t=1 I(rt > r0). Method 2: m is considered to be 2, as it theoretically

should be after preprocessing the time series to have a unit scale. Method 3: Mean of the time

series X (trans)
t is subtracted off before estimation and m is estimated as in Method 1. Method 4:

Mean of the time series X (trans)
t is subtracted off before estimation and m is considered to be 2. In

method 3 and 4, after we subtract off the mean of the time series, we set the negative values to

zero.

The theoretical TPDF for the unit scale MA time series is given by
∑q

j=0 θ
(0)
j θ

(0)
j+h

∑q
j=0(θ

(0)
j )2

, where q =

2 or 5 for the MA(2) and MA(5) time series respectively, and that for the unit scale AR(1) time

series is
(

ϕh
)(0)

, where a(0) = max(a, 0).

A.1.4 Results

Figure A.1 shows the theoretical and estimated TPDF using the four methods described in

Section A.1.3 for different transformed MA time series. It can be seen that there is substantial

positive bias in TPDF estimation by method 1 and 2. When we subtract off the mean of the time

series in method 3 and 4, the bias reduces considerably. However, there is still some bias at higher

lags where the theoretical TPDF is zero. Also, estimating m in method 3 underestimates the TPDF

substantially. We see similar results in Figure A.2 for the transformed AR time series.

When we simulate data using any regularly-varying noise terms, there always exists a bias

problem. Our aim is to minimize the bias problem. A lag-1 bivariate scatter plot of the time series
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Figure A.1: Comparison of theoretical TPDF and estimated TPDF for transformed regularly-varying MA
time series. MA(2): θ1 = 0.1, θ2 = 0.2 (upper left panel), MA(2): θ1 = 0.7, θ2 = 0.1 (upper right panel),
MA(2): θ1 = 0.9, θ2 = 0.9 (middle left panel), MA(2): θ1 = −0.5, θ2 = 0.7 (middle right panel), MA(5):
θ1 = 0.1, θ2 = 0.7, θ3 = 0.2, θ4 = 0.4, θ5 = 0.8 (lower left panel), and MA(5): θ1 = 0.1, θ2 = 0.7, θ3 =

−0.2, θ4 = −0.4, θ5 = 0.8 (lower right panel).
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Figure A.2: Comparison of theoretical TPDF and estimated TPDF for transformed regularly-varying AR(1)
time series. φ = 0.1 (upper left panel), φ = 0.9 (upper right panel), φ = −0.5 (lower left panel), and
φ = −0.9 (lower right panel).
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Figure A.3: Lag-5 plots of the MA(2) time series with θ1 = 0.9 and θ2 = 0.9. No mean subtracted from
the time series (left panel), mean subtracted from the time series (right panel).

observations will have a bunch of large points away from the axes. As the lag increases, the points

on the scatter plot spread out and move towards the axes. If there is no long range dependence,

those points should eventually align along the axes, but that does not happen. However, the closer

we can make the irrelevant points to zero, the better is the behavior of our estimator. Subtracting

off the mean of the time series, reduces the bias in TPDF estimation. This can be seen in Figure

A.3 which gives lag-5 plots for the MA(2) time series without subtracting the mean off (left panel)

and after subtracting the mean off (right panel). We can clearly identify the few points towards the

middle of the graph in both the plots, that have a higher value for both of the axes. Subtracting off

the mean does not affect these points in the middle of the graph. However, it drives the points near

the axes, closer to the axes, thus reducing bias in estimation.

A.1.5 Conclusion

Simulation results indicate that subtracting off the mean of the marginally transformed Fréchet

time series considerably reduces bias in TPDF estimation. Also, preprocessing the data to have

σ(0) = 1, thus allowing to consider m = 2 instead of estimating m gives better TPDF estimates.

There is still bias in the tail which can be further reduced by subtracting the bias off of the TPDF
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at higher lags. But it is tricky to address the bias this way since selecting the lag, beyond which

to subtract off the bias, will be subjective. However, after subtracting off the mean of the time

series, the TPDF estimates at lower lags where dependence exists, are not too different from their

theoretical counterparts.
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