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The primitive Orr–Sommerfeld equation and
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Abstract

The linear stability of parallel shear flows of incompressible viscous
fluids is classically described by the Orr–Sommerfeld equation in the
disturbance streamfunction. This fourth-order equation is obtained by
eliminating the pressure from the linearized Navier–Stokes equation.
Here we consider retaining the primitive velocity-pressure formulation,
as is required for general multidimensional geometries for which the
streamfunction is unavailable; this affords a uniform description of
one-, two-, and three-dimensional flows and their perturbations. The
Orr–Sommerfeld equation is here discretized using Python and scikit-
fem, in classical and primitive forms with Hermite and Mini elements,
respectively. The solutions for the standard test problem of plane
Poiseuille flow show the primitive formulation to be simple, clear, very
accurate, and better-conditioned than the classical.
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1 Introduction
The Orr–Sommerfeld equation [8, eq. 25.12] has for over a century been the
starting point for much of the analysis of the stability of viscous flow. It is
derived from the Navier–Stokes equation and describes the linearized growth
of small perturbations to a basic solution which is parallel, constant in time,
and varying only in one transverse direction. Although three dependent
variables are involved (pressure and the longitudinal and transverse compo-
nents of velocity), the Orr–Sommerfeld equation is a scalar equation in the
streamfunction, the pressure having been eliminated.

Although the Orr–Sommerfeld equation retains a central place in textbooks
on hydrodynamic stability [4, 3], the subject is changing; increasingly the
stability of two- and three-dimensional steady flows is considered [18]. For
these problems, except in the simplest geometries (typically only spheres and
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infinite cylinders and channels), a streamfunction is unavailable or unappealing
and the equations governing the perturbation are left in primitive form; that
is, in terms of the velocity and pressure. This raises the question of whether
this leaving in primitive form is feasible for one-dimensional problems [17].
One-dimensional flows remain important for pedagogical purposes but also
because many applications are well approximated as unidimensional; for
example, boundary layers and jets [20]. We suggest here that the pedagogy is
hindered by the unnecessary introduction in the one-dimensional case of the
streamfunction; closer analogy with higher dimensions could be achieved by
remaining in primitive form. In this article we investigate the use of primitive
variables and discover other advantages over the classical Orr–Sommerfeld
equation: the primitive equations are more simply discretized, the resulting
algebraic systems are better conditioned, and the results more accurate.

2 The Orr–Sommerfeld equation
The evolution in time t of the velocity u and pressure p of a fluid of constant
density and kinematic viscosity ν are taken to be governed by the Navier–
Stokes equations, in dimensionless form,

∂u

∂t
+ u · ∇u = −∇p+ R−1∆u , (1a)

∇ · u = 0 , (1b)

where R = VL/ν is the Reynolds number for a characteristic velocity V and
length L. (The notation is that of Drazin & Reid’s standard treatise [8].)

In the slot −1 < z < 1 , equation (1) admits the steady parallel ‘plane
Poiseuille’ solution [8, eq. 25.3] with flow in the x-direction and neither
variation nor flow in the y-direction: u = U(z)i with U = 1− z2 . This base
solution described by U, which only varies with z, is susceptible to wavelike
perturbations in the longitudinal x-direction, varying sinusoidally with x and
in a manner to be determined with z. Such ‘normal mode’ perturbations
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of velocity and pressure, of real longitudinal wavenumber α and complex
wavespeed c = cr + ici for i =

√
−1 [8, eq. 21.1] have the form

[u(z)i+w(z)k] eiα(x−ct) , p(z)eiα(x−ct) , (2)

and are governed to first order by a linearization of equation (1), giving[
D2 − α2 − iαR(U− c)

]
u = RU ′w+ iαRp , (3a)[

D2 − α2 − iαR(U− c)
]
w = RDp , (3b)

iαu+Dw = 0 , (3c)

where the prime and D both represent d/dz.

The usual next step is to eliminate the pressure p and continuity equation (3c)
by introducing the streamfunction ψ (or φ [8]) so that u = ψ ′ and w = −iαψ
to give the classical Orr–Sommerfeld equation [8, eq. 25.12]:

(iαR)−1
(
D2 − α2

)2
ψ = (U− c)

(
D2 − α2

)
ψ−U ′′ψ . (4)

2.1 Boundary conditions and symmetry

The boundary conditions are that u and w, or ψ and ψ ′, vanish on the walls
z = ±1 . Since the base velocity profile U(z) = 1− z2 is even, U(z) = U(−z) ,
the eigenmodes ψ(z) solving equation (4) are either even (ψ(z) = ψ(−z)) or
odd; in the standard test-case, only the even modes are considered and so the
domain is reduced to 0 < z < 1 with the additional conditions that u and w ′,
or ψ ′, vanish on z = 0 . There are no conditions on the pressure.

3 Discretization by finite elements
The Orr–Sommerfeld equation (4) has been discretized in many ways, and
indeed inspired many new ways, such as orthonormalized shooting [5], exterior
algebraic compound matrices [1], orthogonal collocation [22], and viscous
Green functions [15]; however, “following the influential work of Orszag [16],
spectral spatial discretization has historically been the method of choice” [17].
We depart from this and use finite elements from a general-purpose library [10].
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3.1 Hermite elements for the classical equation

The weak form [9, p. 2] of the Orr–Sommerfeld equation (4) is obtained by
multiplying by a test function η, and then integrating by parts across the slot
those terms involving second or higher order derivatives of the perturbation-
streamfunction ψ:

(iαR)−1
[
(ψ ′′, η ′′) + 2α2(ψ ′, η ′) + α4(ψ, η)

]
+ α2(Uψ, η) + (Uψ ′, η ′) + (U ′ψ ′, η) + (U ′′ψ, η)

= c
[
(ψ ′, η ′) + α2(ψ, η)

]
, for all η . (5)

Discretizing weak formulations is automated in modern finite element li-
braries [10] and so not detailed here; the input form required is essentially (5).

Because the classical Orr–Sommerfeld equation (4) is fourth order, second
derivatives of the unknown ψ and test η functions appear in the weak form (5),
and conventional C0 continuous piecewise-polynomial elements cannot be
used: the basis functions must be C1 continuously differentiable. This is just
as for the Euler–Bernoulli beam equation and so the one-dimensional Hermite
elements used there [9, p. 29] may also serve here. These Hermite elements
have degrees of freedom for the derivatives as well as the values at each end
of the domain.

Thus far, this discussion follows earlier work [12, 23, 13]; however Mamou and
Khalid’s [13] method of imposing essential boundary conditions [13, eq. 10]
results in spurious eigenvalues, so we instead express the vector of degrees
of freedom of the unknown as the sum of known and unknown parts and
condense the algebraic system by eliminating the known parts. The approach
is quite standard [9, eq. 12.53] and easily automated in a general purpose
library [10].

3.2 Finite elements for the primitive equation

Hermite elements could be avoided if the fourth-order equation (4) is re-
duced to a pair of second-order equations; for example, by introducing the
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vorticity as an auxiliary variable, which is also recommended for improving
the condition [7]. However, a second-order system is already available: the
‘primitive Orr–Sommerfeld equation’ (3), in terms of velocity and pressure.
While we could eliminate the pressure from (3) algebraically [19], we persist
in retaining the ‘algebraic’ (in the sense of differential–algebraic equations [2,
§8.3]) continuity constraint (3c) along with the ‘differential’ momentum equa-
tions (3a–3b) as advocated by the ‘descriptor approach’ for a Chebyshev-τ
discretization [14].

The weak form of (3) is obtained using three test functions, υx, υz and $:

iαR (Uu, υx) + α2 (u, υx) + (u ′, υ ′
x) + R (U

′w,υx) + iαR (p, υx)
+ iαR (Uw,υz) + α2 (w,υz) + (w ′, υ ′

z) − R (p, υ
′
z)

− iαR (u,$) − R (w ′,$) (6)
= iαRc [(u, υx) + (w,υz)] , for all υx, υz,$.

Unlike the weak classical Orr–Sommerfeld equation (5), only first derivatives
of u and w appear in (6) so it can be discretized with C0 elements.

3.2.1 One-dimensional Mini elements

There is much literature on compatible elements for the velocity and pressure
in the Navier–Stokes equations; Taylor–Hood and Mini elements are popular
choices [9, §§6.2.4, 5]. Both methods use piecewise-linear P1 elements for
the pressure; for the components of velocity, the Taylor–Hood elements
use piecewise-quadratic P2 elements while Mini elements enhance P1 just
enough to pass the Ladyzhenskaya–Babuška–Brezzi condition [9, §6.1.2], to
avoid spurious pressure modes. We are unaware of previous use, discussion,
or definition of the one-dimensional Mini element, but by analogy with
higher dimensions, to the linear nodal degrees of freedom 1− ζ and ζ where
ζ = (z − zi)/(zi+1 − zi) ∈ (0, 1) on the ith element zi < z < zi+1 , it adds
the quadratic ‘bubble’ ζ(1 − ζ)/4 . Unlike in higher dimensions, the one-
dimensional Mini element spans the same function space as Taylor–Hood so
there is little to choose between them in exact arithmetic; here Mini is used
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Figure 1: Even-mode spectrum of equation (3) or (4) at R = 104 and α = 1 , as
tabulated by Criminale et al. [4, Table 3.1] and as computed with 63 classical-
Hermite or primitive-Mini finite elements.

as it seemed to be slightly better conditioned in our preliminary numerical
experiments.

3.3 The generalized algebraic eigenvalue problem

Following discretization, (5) or (6) is a generalized algebraic eigenproblem of
the form Au = iαcBu with non-Hermitian A and symmetric semidefinite B.
The least stable modes are those with largest ci. These are conveniently
computed with arpack in inverse mode (σ = 0) as wrapped by SciPy [21].

4 Numerical results
The first thirty eigenvalues c for the test case R = 104 and α = 1 have
been tabulated [4, Table 3.1]. Both the classical-Hermite and primitive-Mini
schemes achieve graphical accuracy with 64 nodes, as shown in Figure 1.
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Figure 2: Convergence of the least stable eigenvalue, including the raw values
and their h4-extrapolations using equation (7).

The convergence of the least stable eigenvalue in the classical-Hermite and
primitive-Mini schemes is assessed against the best known estimate c(0) =
0.2375264888204682+ 0.0037396706229799i [11, 17]; see Figure 2.

For moderate element size h, the two schemes converge like h4. This may be
exploited via Richardson’s method to give the h4-extrapolation

ĉi = ci +
ci+1 − ci(
hi
hi+1

)4
− 1

, (7)

as shown in Figure 2. As h decreases, round-off accumulates, affecting partic-
ularly the classical-Hermite scheme so that the primitive-Mini is ultimately
more accurate.

To investigate the sensitivity of the numerical eigenvalues in the two schemes,
the condition number of the leading eigenvalue c is calculated according to [6]

‖χ‖‖ξ‖√
|χHAξ|2 + |χHBξ|2

, (8)
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Figure 3: Condition of the least stable eigenvalue.

where superscript H indicates the Hermitian transpose, χHA = iαcχHB and
Aξ = iαcBξ ; that is, ξ and χ are the right and left generalized eigenvectors
of A and B. As shown in Figure 3, the primitive-Mini scheme is a thousand
times better conditioned than the classical scheme.

5 Discussion
Besides the use of standard C0 finite elements and the improvement of condi-
tion, another important practical advantage of the primitive Orr–Sommerfeld
equation (3) is that it only requires the first derivative U ′ of the base velocity
profile U; the classical equation (4) requires the second, U ′′. Although this
difference is trivial in the test-cases of plane Couette or Poiseuille flow with
closed-form expressions for their profiles, the Orr–Sommerfeld equation is
often applied to much more complicated nearly parallel flows like boundary
layers and jets. The second derivative will be noisier if the velocity profile
is sampled from experiment or simulation, as Varieras et al. [20] did for
jets. This relaxed requirement is particularly convenient in the finite element
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context; if the base flow is obtained from a two- or three-dimensional Taylor–
Hood or Mini element solution, it will immediately have its first derivative
available, since the bases have known derivatives. For example, instead of
specifying U(z) = 1 − z2 , it could have been defined as the finite element
solution of the variational form of the one-dimensional Navier–Stokes equation:
(U ′, Υ ′) = (2, Υ) , for all Υ, with U ′(0) = U(1) = 0 , using the same elements
as for the perturbation.

6 Conclusions
The simplicity of the primitive Orr–Sommerfeld finite element approach and
the accuracy obtained raises a question: Is the classical Orr–Sommerfeld equa-
tion obsolete? Could the theory of linear hydrodynamic stability be rewritten
proceeding directly from (3), relegating (4) to a historical footnote? Here the
primitive equation was returned to because of a wish to use standard C0 finite
elements, but this has also recently happened twice independently. First,
under the name ‘descriptor’ it was suggested by Manning et al. [14] as a means
of avoiding the spurious eigenvalues that plague Chebyshev discretizations
(though these do not arise in our Hermite finite element discretization of
the classical equation) and of keeping the highest order of derivative down
to second instead of increasing it to fourth (and rather than subsequently
reducing it back down from fourth as recommended by Dongarra et al. [7]).
Second, under the name ‘one-dimensional linearized Navier–Stokes equations’
by Paredes et al. [17], with an eye to the linear stability of two- and three-
dimensional flows, since the approach then is more uniform for problems of
different dimension, enabling more relevant testing of general concepts in one
dimension much more cheaply and against more plentiful reliable reference
solutions.

Acknowledgements We thank Spencer Bryngelson, Steve Armfield, Jim
Denier, and Sam Mallinson for helpful discussions on the history and applica-
tions of the Orr–Sommerfeld equation, and Tom Gustafsson for scikit-fem [10],
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