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Abstract

Magnetic kagome lattice compound has drawn much attention with their high possibilities

of holding the unique magnetic structures, which bring enormous extraordinary physics

phenomena, such as frustrated magnetism, electronic correlation, and topological electronic

structure. In this study, rare earth compounds RMn6Sn6 (R = Y, Sc, Lu) are investigated.

The Topological Hall effect was proved to be a common figure in those three materials. Also,

they all have a complicated magnetic phase competing before spin saturation. Magnetization,

electrical transport, and transverse properties of those materials are explored. Type-II Weyl

semimetal Co3Sn2S2 is also studied using Resonant Ultrasound spectroscopy(RUS). From

previous studies, a transition in Co3Sn2S2 around 125 K was under debate. Our RUS result

shows a high sensitivity to ultrasound frequency changes at the transition temperature. Also,

the elastic modulus as a function of temperature is studied. By performing those studies

on our kagome metals, a better understanding of the relationship between the magnetic

structure and intrinsic physical properties will be established.
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Chapter 1

Introduction

This chapter will give a brief overview of topological kagome metals. Firstly, a background

review of topological materials with the motivation of studying topological materials is

stated. Then, the background of kagome metals is presented. After that, study cases like

166 rare earth compounds and Weyl semimetals are introduced.

1.1 Topological materials

Research on topological materials has been the most extraordinary study in condensed matter

physics in the past few decades [1–3]. One early discovery of topological materials is the

Topological insulator(TI). TIs were theoretically predicted and experimentally proved in

both two-dimensional and three-dimensional materials. [4–6] HgTe and Bi2Se3 are famous

examples [7–10]. From former prediction work, TI’s abnormal band structure shows a full

energy gap in bulk and no gap on the surface. This band structure leads to insulation

in bulk and conducting on the surface of TIs. Moreover, this bizarre band structure is

topologically protected by time-reversal symmetry [11, 12]. TI’s topological properties will

be rigid despite the material’s shape and dimensions. The discovery of TI has opened

a gate for research focused on topological materials. Investigations on other topological
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materials were constantly brought out. Tremendous topological quantum phenomena are

experimentally discovered and theoretically explained.

Another famous example is Weyl and Dirac semimetals. They attracted attention by

presenting their linearly dispersed electric band structure. It is referred to as the Dirac

cone [13, 14]. The cross point of Dirac cones is named Weyl point. With the influence of

Spin-orbital coupling(SOC), a Weyl semimetal will form when the time-reversal symmetry

or inversion-symmetry is broken. Weyl points inside Weyl semimetals come in pairs and have

opposite chirality. Thus, Weyl semimetal provided an excellent platform for Berry curvature,

which function as topological magnons [15, 16]. A variety of exotic electromagnetic properties

are discovered in Weyl semimetals due to Berry curvatures, such as the anomalous Hall

effect(AHE) and anomalous Nernst effect(ANE) [17, 18]. For instance, Co3Sn2S2 is a well-

known Weyl semimetal. Both its Anomalous Hall effect and Anomalous Nernst effect are

predicted to be non-trivial theoretically and discovered experimentally [19]. Berry curvature

causes a fictitious magnetic field in momentum space and roots the ANE and AHE.

The motivation pushing scientists to research topological materials is the potential to

revolutionize the technical field. Topological materials would be a candidate for building

next-generation information storage instruments [20, 21]. Topological materials can host

multiple electronic states simultaneously. As a result, they are also expected to create

quantum bits and help build quantum computers [22, 23].

1.2 Kagome magnets

The kagome structure is a hexagonal mesh lattice that is named from the traditional Japanese

woven bamboo pattern, with the same structure containing hexagons and corner shared

triangles [24]. Fig.1.1 is a plot of kagome net. Kagome systems have been attracting interest

for many reasons. In insulators, the kagome net is highly magnetically frustrated and is

believed to be an excellent platform to search for quantum spin liquids. Herbertsmithite,
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for example, is a kagome system [2, 25]. The kagome magnets are materials with kagome

lattices consisting of magnetic ions.

In recent years, studies found that kagome metals have provided a great platform

to study electrically correlated topological materials. It was both theoretically and

experimentally proven that both Dirac and flat-band exist simultaneously in lots of kagome

metals, such as Fe3Sn2, FeSn and YMn6Sn6 [26–29] (See Fig.1.2). Investigating them is

believed to be a promising approach to introducing strong correlations into topological band

structures. kagome metals have also drawn a lot of attention with their high possibilities of

holding magnetic structures bringing enormous number of special physics properties, such

as frustrated magnetism, electronic correlation, and topological electronic structure [30].

Moreover, in recent years, successful investigations have shown that kagome metals are able

to host the magnetic frustration which will promote a topologically nontrivial spin state,

i.e., magnetic skyrmions [31]. There are two types of skymions, Néel type, and Bloch type.

They both have the center spin pointing down and edge spin pointing up.

1.3 Study cases

We are interested in finding topological magnon states in kagome magnets. Two groups of

materials had attracted our attention and we found they are promising. One is 166 rare-earth

compounds another is Weyl semimetal Co3Sn2S2.

1.3.1 166 rare-earth compound

166 rare earth compounds were slightly studied in the 1990s. In previous research,

experiments are mainly focused on magnetization and detection of their magnetic spin

structures. 166 rare earth compounds have the chemical formula of one rare earth metal, six

3d transition metals, and six nonmagnetic metals such as Sn, In, Ge, and Ga.

Very recently, one subgroup in 166 compounds has become a new hot spot in topological

materials. It is the RMn6Sn6 group. R is a representation of nonmagnetic rare earth Y, Lu,

3



and Sc. RMn6Sn6 are layered materials; they belong to P6/mmm group [32]. Mn is the only

magnetic ion. Mn forms magnetic layers along the crystal’s ab plane. YMn6Sn6 was the first

one to be looked into. It was reported to host a large near room temperature topological

Hall effect [33, 34]. YMn6Sn6 is an AFM with a Neél temperature TN = 345 K. Below that

temperature, it will form a colinear AFM structure above 333 K. In the AFM temperature

window, Mn forms an inner layer ferromagnetic structure. However, at the inter-layer level,

Mn layers have an anti-parallel spin with their neighbor layers.

1.3.2 YMn6Sn6 spin structure and Topological Hall effect

Because of the complexity of magnetic kagome lattice, YMn6Sn6 have a variety of magnetic

spin structures. A systematic study about YMn6Sn6 spin structure and the Topological Hall

effect is provided in [33]. Their research tested electromagnetic transport to confirm that

their sample has the large Topological Hall effect. Then neutron diffraction was performed

with and without a magnetic field.

From their experiment result, they claimed that at the ground state, Mn layers in

YMn6Sn6 show a “double flat spiral” structure as proposed decades ago [32, 35]. It means

along the sample’s c axis, Mn has an inner layer FM state. However, the spin angles difference

between Mn layers is in the order of α - β - α - β. The angle between two Mn layers have

the Y in between is β. The angle between two Mn layers absent of Y is α. They follow this

relationship α + β = 90◦.(See Fig.1.3)

When a magnetic field gets involved, the Mn spin structure will travel through multiple

phases before saturating. A clear phase diagram was provided to show the spin states at

different temperatures and magnetic fields. (See Fig 1.4) There are, in total, four spin states

found inside YMn6Sn6, which are “distorted spiral”(DS), “transverse conical spiral”(TCS),

“fan-like”(FL), and “forced FM”(FF). A cartoon also explains the spin direction and nature

during every state. (Fig 1.5) Among those magnetic states, large THE are only found in

the TCS state. Theoretical work was performed based on the TCS state. With continuous

approximation, the TCS state can hold an extra component in the direction perpendicular

4



to the external field. As a result, a topological chiral field will be provided. Thus THE

arises(Fig. 1.6).

This discovery opened an avenue for detecting the topology in RMn6Sn6. We have the

curiosity to figure out if LuMn6Sn6 and ScMn6Sn6 have similar topological properties. To

answer the question, we performed magnetization, electromagnetic transport, and neutron

diffraction measurements on RMn6Sn6. The result and details will be explained in Chapter

3.

1.3.3 Weyl semimetal

As mentioned previously, Weyl semimetals have unique band structures in which the

conducting band and the valence band overlap each other on the Weyl points in momentum

space. There are two types of Weyl semimetals. The first type has pointed like Weyl points

and straight Dirac cones, while the second kind has tilted Dirac cones, and the crossover is

no longer point-like [36]. Obtaining a Weyl semimetal requires inversion symmetry or the

time-reversal symmetry to be broken [37]. Due to the chiral anomaly of Weyl points, exotic

properties such as nonlinear optical responses could be introduced. Especially for type-II

Weyl semimetal, attractive properties like superconductivity and quantum oscillations can

be produced by the unconventional Fermi surface structure [liu2020quantum].

Co3Sn2S2

Topological properties such as anomalous Hall effect and anomalous Nernst effect are found

in various Weyl semimetals such as Co3Sn2S2, TaAs, etc [38, 39]. Among them, we take

Co3Sn2S2 as our study case. It is a time-reversal symmetry breaking, type-II Weyl semimetal.

Co3Sn2S2 belongs to the R3m space group, and it has a rhombohedral-hexagonal

structure. Co3Sn2S2 has a layered structure on ab plane stacking along the c-axis. As

the only magnetic element, Co lies along the ab plane and forms the kagome lattice. (Fig.

(3.15))
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From early studies, Co3Sn2S2 was believed to be a ferromagnet(FM) with a curie

temperature TC= 175 K. The spins are collinear and aligned with the c axis [39, 40]. However,

more profound studies were pushed out in recent years, and shreds of evidence show the

magnetic structure below TC is more complicated than that. Both neutron diffraction and

muon-spin rotation researches (µMR) suggest there is more than one magnetic phase under

Curie temperature [41, 42]. In ref. [42], it was pointed out that there is an in-plain 120

degree antiferromagnetic(AFM) order competing with the out-of-plane FM state between

90 K and 177 K. The AFM state is predicted to generate Weyl nodes in the Brillouin zone.

Also, with the introduce of an external field, the Co aligns parallel with the c axis. The

conduction and valence bands overlap on a circle in reciprocal space, which is called a nodal

line [39, 43]. The topology of the electronic band enhanced the importance of figuring out

the magnetic states inside Co3Sn2S2 at different temperatures.

Another main interest is an unexplained transition at a lower temperature. More than one

study has reported the discovery of TA=125 K transition showing the magnetic susceptibility,

transport measurements, and optical measurements [44, 45]. A debate has been going on

in the past few years about the Co3Sn2S2 magnetic spin structure below TC . Research has

found anomalies in performing electromagnetic transport experiments on Co3Sn2S2. After

Co3Sn2S2 sample experiences a field cooling process, the zero-field warming measurements

show a sharp jump around 125 K [44]. The latest studies focused on this transition. They

performed magneto-optical Kerr-effect on Co3Sn2S2. From their results, they claimed for a

field-cooled sample, a single magnetic domain will split into multiple smaller domains at the

temperature of 125 K. A variety of macroscopic physical properties show the exotic transition

as a result of changes in the domain wall [46, 47].

In our work, we employed Resonant Ultrasound Spectroscopy (RUS) to detect the 125 K

transition using sound velocity. Also, the elastic constants are inspected. (see Chapter 4)
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Chapter 2

Experimental Techniques

In this chapter, experimental methods are explained both theoretically and experimentally

in detail. A workflow of synthesizing and characterizing our samples will be shown.

2.0.1 Sample Growth

Flux method

Flux growth is a commonly used method to gain high-quality single crystals. The basic idea

of flux growth is to put all the ingredients into a crucible and seal it into a quartz tube

under a vacuum condition [48]. Then melt the ingredients in a molten solvent with a high

temperature. After dwelling in a high temperature for a long time (around one day), the

solution will be cooled down with a prolonged cooling rate, usually 3 degrees per hour. Single

crystals will grow in this process. The centrifuge will be performed to filter away the rest of

the solution while it’s still above the melting temperature. There are many materials that

can be used as the flux to accomplish the reaction. Which works the best depends on the

single crystals. (See Fig. 2.1 for a flux growth photo)

In my samples there are three systems of single crystals: RMn6Sn6 (R=Y,Lu), RMn6Ge6

(R=Y,Lu) and Co3Sn2S2. They are all grown from the flux method, but the processes have

some differences.
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For RMn6Sn6 (R=Y,Lu) single crystals, we used the method reported in Ref[zhang2005unusual].

Sn was used as the flux material, and the atomic ratio is R:Mn:Sn=1:10:30. The ingredient

mixture was heated up to 1000 ◦C and kept for 12 hours. The temperature was cooled by

50 ◦C and heated up again to 990 ◦C. This step is to reduce the seed number so that more

large single crystals can be grown. The centrifuge temperature was 600 ◦C. Large and thick

hexagonal-shaped single crystals are found in the crucibles.

For RMn6Ge6 (R=Y,Lu) single crystals, they also grown by flux method. With the ratio

R:Mn:Ge:In=1:6:20:20 and the similar heating process with RMn6Sn6, hexagonal pieces are

obtained.

For Co3Sn2S2, we used the method in Ref[49]. Sn is used as the flux. The ratio is

Co : Sn : S = 8 : 6 : 86. The dwell temperature is 1100 ◦C, and the centrifuge temperature

is 700 ◦C. We can get larger and thicker single crystals compared to the In flux with the Sn

flux.

Modified Bridgeman method

Another growth method we use to gain single crystals is the modified Bridgeman method.

We used it on synthesizing Co3Sn2S2 as described in [50]. First, we measure all ingredients’

powder in stoichiometric ratio. After that, a mortar and pestle mix the ingredients well. A

3g pellet sample will be formed after applying the pellet press. The pellet will be sealed

under a vacuum inside a quartz tube to protect it from oxidizing. The tube will be placed

inside a furnace vertically. We do that because we need to create a temperature gradient in

the vertical direction to mimic the Bridgeman method. The quartz was heated to 1050 ◦C

and cooled down to 700 ◦C with a rate of 4 ◦C per hour [45]. After cooling, the sample

pellet will become a rod with metallic color. That is, cluster a multiple grains single-crystal

Co3Sn2S2. After cleaving, the chunk will split into multiple pieces with a clean cleaving

surface. Powder X-ray diffraction was tested to check the right phase. To ensure those are

single-phase crystals, we performed Laue single crystal diffraction to confirm.
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2.0.2 Sample orientation and polishing

For the hexagonal layered single crystals, there is a low symmetry along the c-axis. As a

result, it is worth studying the physics properties along different crystal orientations. A Laue

system is used to detect the crystal structure. After that, the single crystals can be cut and

polished in a rectangular shape using diamond saws and polishing stages. Our samples are

metallic, and the electric signals are small. As a result, polishing the samples to a reasonably

thin thickness is essential.

2.0.3 Magnetization measurements

Samples magnetization was measured by the commercial model SQUID Magnetometer from

Quantum Design. The temperature range is 2 to 400K, and the largest magnetic field it

reaches is 7 Tesla.

2.0.4 Resistivity measurements

Two experimental instruments are used for resistivity measurement. One of them is the

Physical properties measurement system (PPMS) from Quantum Design, and the other is a

self-built closed-cycle cryostat (CCR). The commercial model PPMS provides a temperature

range of 2 K to 400 K. The resistivity puck gives the connections from the sample leads to

the bottom pins in the PPMS chamber. Four electric probes were contacted on the sample

to avoid contact resistivity.

Closed Cycle Cryostat (CCR) building for resistivity

Our CCR was built based on a purchased 4K Sumitomo cold head. It consists of two parts,

a cold head and a He gas compressor. After filling the compressor with high purity He gas,

the compressor will press the He gas to the bottom of the cold head. The He gas will be

condensed into a liquid. Because of the cooling power of liquid He, the cold finger on the

cold head will be cooled downed to 4 K in the best performance.
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However, a single commercial model cold head could not finish the resistivity measure-

ment. More parts are required before the CCR is put into use. We designed a copper-made

thermal radiation shield from the which was fabricated in the UTK machine shop to surround

the sample. As a result, the sample’s thermal radiation from the outside environment will

be prevented. Besides the shield, a vacuum chamber is also necessary for the CCR. Our

vacuum chamber was made of stainless steel. It is clamped outside of the radiation shield

to create a vacuum condition. On the chamber, several connections are provided for electric

connectors and vacuum hose connections. We need a vacuum for our experiments as follows

1. A vacuum is the best thermal insulator. It will reduce the heat flow to the fewest between

the sample and the outside environment. 2. We are mainly detecting physics properties in

low temperatures. The vacuum will prevent the water, nitrogen, and other gas from being

liquefied and condensed from the air. Then condensed gas will be a big disturbance for the

experiment accuracy.

A vacuum station pumps out the air inside the whole system and creates a vacuum

condition for the experiment. We purchased the Hicube station from Pfeiffer company. It

contains a turbopump which provides a high vacuum option for us. After finishing assembling

the parts, we tested the vacuum. We turn the station on and let it work for half-hour to

stabilize the pressure inside. After we confirm the vacuum is good, we can move on to the

following electronic step.

A copper-made sample holder is attached to the cold finger. On the sample holder, there

are 12 pins. We will use 4 of the pins to perform the four-probe resistivity measurement

on samples. The other four pins will be used to make the electrical connection for the

temperature sensor. We also need another two pins to provide a current for the heater to

control the temperature. Three sets of 4-twisted copper wires are soldered to those pins. On

the other end, if the wires are connected to glass-sealed connectors in the vacuum chamber.

A 12-wire cable was made to connect the inner electron circuit to a breakout box. The

circus is led to a current source meter, a nano-voltmeter, and a temperature controller

from the breakout box. The source meter will provide a stable direct current to samples,
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and the nano-voltmeter will pick up the voltage difference. By applying a Lakeshore 335

temperature controller, we are able to read the temperature near the sample with a silicon

diode thermometer and control the sample temperature with a 50 Ohm resistance heater.

In order to make data collecting automatic, we use LabView programs to control the

experiment process. The LabView program will be introduced in detail in the following

LabView code session.

After assembling everything, our CCR can achieve a temperature range from 4 K to at

least 400 K. Up to amperes level, current can be applied to the sample, and nanovolt level

signal can be collected.

2.1 Electric, magnetic and thermal transport proper-

ties

2.1.1 Hall effect, anomalous Hall effect, and topological Hall effect

Hall effect is a fundamental also essential electrical-magnetic property that plays a vital role

in material characterizations. The Hall effect was firstly discovered by Edwin Hall [51]. It

was described as a charge carrier movement under a magnetic field due to the existence of

the Lorentz force. In the past few decades, scientists have discovered that some materials can

hold a very complex Hall effect caused by some intrinsic properties [33]. We study the Hall

effect on our kagome metals and hope to relate their magnetic structure with their exotic

transport properties.

Ordinary Hall effect and anomalous Hall effect

For the normal Hall effect, it was expected to be linearly increasing according to the magnetic

field growth. A few decades later, a much larger Hall effect signal than the linear Hall effect

was raised up to form ferromagnets and became an enigmatic problem for almost a century

[52]. The understanding of AHE (anomalous Hall effect) became more clearly understood
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after the concepts of the Berry phase were proposed [53]. Pugh and Lippert found that

in most cases, the Hall effect can be considered as a simple summary of the ordinary Hall

effect (OHE) from the Drude model and anomalous Hall effect (AHE), which is proven to

be linearly related to the material’s magnetization. AHE is considered as the Berry phase

impacting the momentum space. It is an intrinsic property and is dominated by different

coefficients depending on which regime the material belongs to [54]. Therefore, we can

interpret the Hall resistivity as follows:

ρxy = R0Hz +RsMz (2.1)

In here, Hz is the exterior magnetic field and the Mz is the magnetization. The Hall

coefficient R0 in the OHE term is related to the carrier density, while the Rz in the AHE

term is material dependent.

Topological Hall effect

The understanding of the AHE has been taken one step further in recent years. With

more profound research on the frustrated ferromagnetic systems with non-coplanar magnetic

moments, the Berry phase also influenced real space. In the topologically non-trivial (chiral)

spin texture, such as skyrmions, a new mechanism give to a non-vanishing Hall effect, the

so-called topological Hall effect [55, 56]. Therefore the third term was added to the equation

above.

ρxy = R0Hz +RsMz + ρT (2.2)

Both Hall effect and magneto-resistance measurements are performed in PPMS. Because

of the possibility of existing anisotropy in my samples, we prepare the sample as Hall bars

with different orientations to control the current and magnetic field directions. There is a

maximum of 8 Tesla applying to the samples.
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For the magneto-resistance, other than adding a magnetic field, the sample setups are

the same with resistivity measurement in the PPMS.

2.1.2 Thermal transport effects

One of the reasons that thermoelectricity is very promising in the application tier is that

it allows people to use waste heat [57]. In our study, the Seebeck effect and Nernst effect

are measured on our kagome metals. We hope to discover how the complex magnetic spin

structure in kagome metals affects their thermal transport properties.

Seebeck effect

The Seebeck effect is a famous thermoelectric effect discovered by German scientist Thomas

Johann Seebeck over one century ago [58]. It was described as an electrical potential

difference building up while a conductive material experiences a heat flow(Fig 2.2(b)). We

use the ratio between temperature and electric voltage difference as the Seebeck coefficient.

S = ∆V/−∆T (2.3)

The Seebeck effect was well applied in plenty of applications evolved with the temperature

measurements. Thermocouples are good examples.

Nernst effect

Nernst effect is a thermoelectric effect that appears under thermal gradient and magnetic

field interaction. It was first found by Walther Nernst and Albert von Ettingshausen [59].

They found if the heat flow is in a perpendicular direction to the magnetic field, in the third

orthogonal direction, an electric field will build-up, and a voltage potential is accumulated.

Experimentally the equation to calculate the Nernst coefficient is as follows:

SN = 4V/−4T (2.4)
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In a recent study on magnetic kagome metals, evidence showing anomalous Nernst effect

(ANE) is obtaining attention. The Nernst effect is the counterpart of the Seebeck effect

under the influence of the magnetic field [39]. Theoretically, when the Berry phase arises,

an ideally maximized anomalous Hall effect appears. Hence as the thermal counterpart, the

anomalous Nernst effect is expected to be detected around the Fermi energy [60]. As a result,

ANE is direct evidence of Berry curvature.

Experimental setup for Nernst and Seebeck effect

Using the PPMS to provide a temperature and controllable magnetic environment, we

implemented thermal transport properties on an empty PPMS puck. The puck was

purchased from Quantum Design. Unlike a resistivity puck, the empty puck does not have

insulator layers or exposed leads. We need to hand-make 12 exposed leads for samples and

temperatures. Copper wires are used for leads. They are soldered to the puck bottom

channels. The wires are then brought up to the puck top surface and fixed using captain

tapes.

According to the common figure of the Nernst and Seebeck effect, we need two

thermometers to measure the temperature difference on both the cold end and hot end.

A heater is required to heat the hot end and create the temperature difference between the

two ends. Two leads will be left for the Nernst voltage measurement on samples. Fig.2.2

is a photo of the setup on an empty puck. We cut a fiber class board to the same size

as the puck top to use as the insulator layer on that puck. Then GE varnish was applied

to stabilize the board. We dug a slot on the insulation layer and inserted copper pieces

as a sample extension to place the heater and thermometers on the hot and cold sides.

Because we want to test thermoelectric transport and transverse properties on both 0 field

condition and magnetic field applied condition, Cernox thermometers are required. The

Cernox thermometer’s calibration curve is still good even with the field applied. Since our

samples are small and it is impossible to place thermometers directly on the sample, we take

benefit from copper’s high thermal conductivity and place the thermometers on the copper
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pieces. For the same reason, we fixed the chip heater with GE vanish. So the 12 pins for

PPMS inner electricity circuit are divided into four groups. There are four pins for each

thermometer, two pins for the chip heater, and two for sample measurement. Then we build

a 12-channel cable to connect the PPMS inner electricity pattern to the meters (temperature

controller, source meter, nanovolt meters).

With the same puck, we can perform both Seebeck and Nernst tests by changing the

geometry of the electrodes. For the Nernst effect, the two electrodes for voltage should have

as less longitudinal offset as possible. On the perpendicular to the heat gradient direction, the

voltage is measured. We can calculate the Nernst coefficient by the voltage and temperature

difference provided by those two thermometers. For Seebeck measurements, the experiment

process is similar, except the voltage difference is measured along the direction of the thermal

gradient.

There is no suitable program on PPMS that follows our customized designs. So LabView

programs are used to automate the experiment controlling and data collecting. Details are

given in the following LaView session.

2.1.3 Resonant Ultrasound Spectroscopy

Resonance Ultrasound spectroscopy (RUS) is a method to detect the material’s phase

transition using mechanical resonance. It has been used for a long time to find the structural

and magnetic transitions and has proved to be extremely sensitive to thermodynamic

anomalies [61–64]. Usually, a rich range of ultrasound spectroscopy is applied to the sample

material. Meanwhile, the sound velocity is measured. The elastic constants of the sample can

be derived from the velocity. Theoretically, elastic constants give a direction to the atomic

bonding of the material. They are also the second derivatives of free energy with respect to

strain [65]. As a result, detecting elastic constants provides scientists with an accurate way

to determine the phase transitions happen inside the sample. There are multiple examples

indicate that RUS is very reliable. The changing of magnetic spin structure states was found

between paramagnetic to ferromagnetic or antiferromagnetic states using RUS [66]. RUS is
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also able to detect short-range magnetic order, such as spin glass [66–68]. Because of the

diversified magnetic spins, a very noticeable phenomenon is expected in the RUS results. In

our study, we apply RUS to our kagome materials.

Our lab uses digital RUS equipment to send high-frequency mechanical vibrations up

to 30 MHz. The vibration was send to the samples by the direct touch with transducers.

The top transducer converts the electric signal into mechanical vibrations and interacts

with the lattice vibration. Another transducer picks up the resonance signal on the sample

bottom and transforms it into an electric signal. From the scanned spectroscopy, we can

easily position the resonance. Resonance peaks shift with the changes in the sample’s phase

transitions. By tracking them, we have a clear idea of the existence of the transition and how

it influences the sample’s intrinsic frequencies. A continuous scan is performed on a small

range of frequencies during the data collection. The temperature difference within each scan

can be trivial with a prolonged temperature changing rate.

2.1.4 LabView programming

LabView is a graphical programming language we use to control the instruments for

experiments. For resistivity on CCR and customized thermal transport and transverse

measurement, we made three programs to implement them. In the following paragraphs,

the logic of those three experiments will be presented.

Resistivity

Resistivity measure is straightforward, following Ohm’s law. Theoretically, all we need to

collect is the current(I) we applied to the sample and the voltage difference(V) caused by

the current. By applying the following equation, resistance can find out by division.

R = V/I (2.5)

16



However, in reality, it is more complicated. We can not ensure the temperatures on two

voltage measurement leads. Due to the thermopower effect, an extra longitudinal thermal

voltage will be collected as well. That extra component needs to be eliminated. We can use

the symmetry of the signal to achieve that.

If we use VR to represent the voltage difference caused by sample resistance, Vth to

represent the thermal voltage, and Vtotal to represent the total voltage measured from the

voltmeter, we will have:

Vtotal = VR + Vt (2.6)

Among that component, the VR’s direction is dependent on the current direction. This

means we will get a positive VR when the current is in a positive direction and a negative

VR when reversing the current. The measured Vtotal will also be positive. However, the

temperature gradient between the two voltage leads does change. So for a negative current,

we have:

− Vtotal = −VR + Vt (2.7)

We can get the pure VR if we minus equation 2.6 by equation 2.7 and divide the result

by two; we can get the pure VR. From that, we can calculate the accurate resistivity.

The LabView code logic follows this order:

First, set starting and ending temperatures. Turn on the cooling process, and make the

thermometer read the environment temperature continuously. The temperature controller

will execute the heating process when the temperature reaches the starting point.

During the heating process, every measurement and data recording needs to be done

briefly to decrease the temperature change as much as possible. The current source will

output a current, and the voltmeter will pick up the data. Then, the current source meter

will output another current with the same value and opposite direction. The voltmeter will
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also pick up the second signal. After that, the program will do a quick calculation and record

the resistance result and the real-time temperate.

Seebeck coefficient

For the Seebeck coefficient, we can directly calculate equation 2.3.

We are performing the measurement using LabView along with the PPMS Multiview

system. So a connection is needed to ensure the communication between two systems. We

downloaded the Multiview command package from the Quantum Design website. Using

the elements inside the package, we can read the temperature and magnetic field inside the

PPMS sample chamber.

The basic logic is collecting the Seebeck coefficient as a function of temperature. First,

we must create a temperature gradient between the sample’s hot and cold end. We use a

temperature controller to output a constant current to the heater chip on the hot end copper

plate to achieve that. After that, Multiview will set a starting temperature and ending

temperature. We keep an eye on the chamber temperature. When it reaches the starting

temperature, the measurement process will be activated. Two Cernox thermometers will

collect the cold and hot end temperature simultaneously. The temperature difference will be

calculated and divided by the voltage difference picked up by the voltmeter.

Nernst effect

When we measure the Nernst effect, we usually need to find out the Nernst coefficient as a

function of the magnetic field. So similar to the Hall effect measurement, we need to sweep

a continuously changing magnetic field on the sample.

Using the same LabView-Multiview package, we can design the measurement step by step

at different temperatures. A couple of target temperatures are given, and the experiment

temperature will be adjusted to the target temperature in the given order. A waiting time will

be taken to stabilize the temperature at each temperature. After that, the temperature will

heat the hot end, and a constant temperature difference will appear between the two ends.
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After that, the LabView program will send the command to control the PPMS sweeping

magnetic field with a customized field range and changing rate. In the meantime, the voltage

difference perpendicular to the heating gradient is continuously collected. The field at each

data taken point is also recorded simultaneously.
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Chapter 3

RMn6Sn6 rare earth intermetallic

compound

The Rare earth intermetallic compound RMn6Sn6 (R for rare earth elements) has a

MgFe6Ge6-type structure and belongs to the space group P6/mmm. The Mn atoms

distribute along the ab plane and form into a kagome lattice. [32, 35, 69].

3.1 YMn6Sn6

3.1.1 Motivation

The complicated magnetic structure attracts our attention to detect more potential than 166

materials may contain. As reported in previous literature, every 166 compounds experience

multiple nontrivial magnetic states before the moments are saturated. From Nirmal’s study,

we know the YMn6Sn6’s near-room-temperature THE is due to the Transverse conical spiral

(TCS) spin motivated by a high magnetic field. The multiple transitions inside YMn6Sn6

suggest that a few phases are competing when different fields are induced. Besides the

magnetic field, we want to see if there are other methods to tune the magnetic structure
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inside YMn6Sn6. In order to answer this question, we designed an electric current applied

neutron diffraction experiment.

3.1.2 Experiments and results

The work done by Wang et al. reported the existence of the topological Hall effect when

the field is set along [100], and the current is along [001]. However, they didn’t find the

topological Hall effect in the H along [001] and current along [100].

Later, Ghimire et al. studied the magnetic spin structure in more detail. They claimed

four nontrivial spin structures with the increasing magnetic field from analyzing the neutron

data with a high magnetic field applied in the ab plane. They are Distorted spiral (DS),

Transverse conical spiral (TCS), Fan-like (FL), and Forced-ferromagnetic (FF). THE is only

found in the TCS state and reaches the highest amplitude in 245K. The TCS provides pairs

of magnons with the same energy and opposite chirality from their theory. In this case, a

chiral field rises, and the topological Hall resistivity is proportional.

Our experiment is interested in how magnetic structure would change with a current

applied. We first grew the single crystals with the flux method described in chapter 2. We

take measurements on temperature-dependent magnetization along both a and c directions.

We found that the transition from antiferromagnetic to paramagnetic happens around 350

K in both crystal directions. (Fig. 3.1) It was the same as the previous reports.

After using the Laue to achieve the crystal alignment, we cut the crystal into a small

parallelepiped shape with a cross-section of 0.5mm ∗ 0.8mm (Fig.3.2). The a-axis is along

the longest edge and the c-axis points outside the picture.

Low resistance wires are needed because a large current density is required in our

experiments. We used thick copper to conduct the current to the sample. The unique

craft was performed on both ends of the copper wires. They are first pressed into thin flat

surfaces, and then the two edges are bent up and form a boat shape. The two ends of the

sample can sit inside the boat and have a sizeable conducting surface with the copper wires.

After that, the parallelepiped shape sample has the two ends tied by thin copper wires with
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the copper boat ends. Indium solder is applied on both sides to make good electrically

conductive joints. A neutron beam was applied along the c axis, and scans along (00L) were

collected. (Fig.3.3)

Results without current applied are shown in Figure 3.4. diffraction peaks are collected

at 300K. Two incommensurate peaks appear at 300K, which fit the reported double spiral

structure. Temperature-dependent zero current diffraction was also collected, shown in

Figure 3.5. When the temperature is lower than 350 K, those two incommensurate

peaks dominate, which means the double spiral structure is the only structure. As the

temperature goes up, a commensurate magnetic peak arises. It was because of the colinear

antiferromagnetic order [33].

We estimated the heat produced by the sample when the different values of currents were

applied. The heating power is very small and should not affect the measurement. We still

decided to add pulse current to lower the risk of the sample getting burned.

Two groups of data were collected and shown in Fig. 3.5. At temperature 340 K,

diffraction peaks are collected for 0 A and 20 A conditions. The 20 A current drives the

change of spin configuration. One most prominent feature enhances the weaker satellite

peak by adding current. There is an enhancement of the weak satellite peak at every

incommensurate position.

3.1.3 Discussion and future plans

From the current added neutron diffraction experiment, we can conclude that (1) So far, the

current does not cause experimental environment temperature changes. (2) Electric current

is modifying the spin structure. With the promising conclusion we make, more YMn6Sn6

neutron diffraction measurement is well worth looking into. In the future study, we hope

to answer the relationship between the adding current value and the Mn spin structure

at different temperatures. Meanwhile, it is also worth testing diffraction peaks switch the

sample orientation, which means applying current along the c-axis.
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3.2 ScMn6Sn6

3.2.1 Motivation

In order to exame if the TCS that caused THE is a unique structure of YMn6Sn6, research

on similar materials is essential. Previous studies have shown that LuMn6Sn6 and ScMn6Sn6

have plenty of similarities in their crystal and magnetic structures with YMn6Sn6 [35].

However, there were no transport studies on ScMn6Sn6 or LuMn6Sn6, which leaves us a

question about whether these 166 compounds contain THE. To answer that question, we

need to detect the physics properties of both ScMn6Sn6 or LuMn6Sn6 single crystals.

ScMn6Sn6 is an excellent material to start with. In [35], when the magnetic field is

set along an a-axis, its field-dependent magnetization is reported to have a metamagnetic

transition before saturation. With the same sample orientation, YMn6Sn6 also has that

figure, and THE happens between the metamagnetic transition and saturation point. With

the flux growth method, we grow single crystals large enough to detect transport properties

in all orientations. The experimental method and result are introduced in the following

context.

3.2.2 Sample preparation

Single crystals of ScMn6Sn6 were synthesized from excess Sn following a procedure similar to

that described in [35]. Sc(Alfa Aser 9999%) and Mn(Alfa Aser 9999%) pieces were combined

with Sn shot in the atomic ratio Sc : Mn : Sn = 1 : 6 : 30. The starting materials were

placed in a Canfield crucible set and sealed in a silica tube under vacuum. The tube was

heated at 50 °C per hour until it reached 973 °C and allowed to dwell for 48 hours. The tube

was then cooled at a rate of 3 °C /hr to 923 °C and then reheated to 963 °C at 50 °C /hr. This

step was to reduce nucleation sites and yield larger crystals. Lastly, the tube was cooled at

a rate of 3 °C/hr to 600 °C, and the crystals were separated from the flux by centrifugation.

The crystals grew as hexagonal cylinders, with the c-axis along the cylinder axis (see Fig.

3.7(d)). The crystals ranged from 3-7 mm in the largest dimension and grew as long cylinders
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and plate-like cylinders. Powder X-ray diffraction (PXRD) was performed on single crushed

crystals using a PANalytical Empyrean diffractometer in Bragg-Brentano geometry utilizing

a PIXcel3D area detector with a Cu-K source. Crystallographic parameters were refined

using GSAS II. Energy-dispersive X-ray spectroscopy was performed on several crystals to

confirm that the crystals are chemically homogeneous. Elemental mappings for one of the

samples can be found in the Supplemental Material. Laue diffraction was used to orient the

single crystals. The edges of the 120° angles were along [100] as expected (see Fig. 3.7(d)).

The crisp Laue patterns confirmed the crystals were high-quality single crystals with no sign

of twins, apparent defects, or residual strain.

After orientation, the single crystals were cut and polished into thin rectangular plates.

We prepared two types of crystal orientation. In Type I, the [100] axis was parallel to

the long side of the rectangular plate (see Fig.3.7(e)). This allows the magnetic field to be

applied perpendicular to the kagome planes. In Type 2, the [100] axis was parallel to the thin

dimension of the plate (see Fig.3.7(e)), allowing the magnetic field to be applied parallel to

the kagome planes. Magnetization measurements were performed using a Quantum Design

Magnetic Property Measurement System. We changed the temperature from 2 K to 390 K

with an applied magnetic field of 1000 Oe, along [100] and [001] directions. We obtained the

magnetic susceptibility as a function of temperature. Magnetic isotherms were obtained by

sweeping the magnetic field from -7 T to 7 T at several fixed temperatures.

Magneto-transport measurements were carried out using a Physical Property Measure-

ment System(PPMS) from Quantum Design. The figure shows the configuration of electrical

resistivity, magnetoresistance, and Hall effect measurements with the orientation of the

kagome planes in the sample indicated by fine lines. Magnetoresistance was calculated

as 100 ∗ (RH − Ro)/Ro. For the Hall effect measurements, we acquired the data for each

sample from -8 T to 8 T. The misalignment voltage was removed by subtracting the measured

voltage at positive and negative fields and dividing by two. Single-crystal neutron diffraction

experiments were performed on the HB-3A DEMAND diffractometer at the High Flux

Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A crystal of 3∗3∗2cm3

24



was mounted on an aluminum pin. Measurements were performed between 15 and 410 K in

a closed-cycle refrigerator with an incident neutron wavelength of 1.542 A. Refinements of

the nuclear and magnetic structures were performed using the FullProf program[70].

3.2.3 Result

Crystal structure, magnetism, and resistivity

The single-crystal of the ScMn6Sn6 single-crystal belongs to the hexagonal MgFe6Ge6-type

structure P6/mmm space group [30]. Our refined lattice parameters are a=5.464(0.00002)Å;

c=8:959(0:0002) Å. The refinement is done using software GSASII. They are comparable

with lattice parameters a= 5:48 Å, c= 8:98 Å, reported in [32]

Fig.3.8 shows the magnetic susceptibility and two crystal orientations changes with

temperature. When H is along [100], chi shows a tremendous change in temperature. This

anisotropy indicates that the easy axis is lying along the ab plane. It agrees with the

previous literature.[34, 69] The previous neutron study describes the magnetic structure as

helimagnetic when the temperature is below 200K.[69] In our data, a sharp peak appears

around 380 K when the magnetic field is applied along both orientations. It is the Néel

temperature. From our result, there is only one magnetic phase below Néel temperature.

We performed neutron diffraction experiments to confirm that. The detailed results are

shown later.

We define the dimensions [100], [110], and [001] as x, y, z-axes. Fig. 3.9 gives the

two longitudinal resistivities along [100] and [001] (labeled as xx and zz). They both have

metallic behavior. An anisotropy appears between the two resistivities. Field-dependent

magnetization, Hall effect, and magnetoresistance are also measured and presented below.

Fig. 3.10(a) gives the results when the magnetic field is set along the x-axis. The

magnetization vs. field data was recorded at constant temperatures. From the graph,

we can see a sudden transition arises at around 1.5 T at all temperatures. With the

temperature going lower, the critical field goes to higher regions. In the former report,

it was considered the metamagnetic transition when the magnetic moments transform from
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spirals to antiparallel [34]. The saturation field starts from 2 T at room temperature. When

the temperature goes down, the saturation field enhances to a more significant value. At 70

K, it becomes larger than 5 T. For Hall resistivity, and we define xz as the current along

the z-axis and field along the x-axis. The voltage difference was measured along the y-axis.

Similarly to M vs. H, we found the same transition at all temperatures. However, The

critical fields are slightly larger than M vs. T. By plotting the M vs.H, and the Hall effect

together(Fig 3.12), we see the hysteresis in the Hall effect is very clear. Moreover, as the

field increases, a significant bump appears in the Hall effect. The bump starts from 260 K.

When the temperature cools down; the bump becomes more stands out. After that, the

bump decreases. At 70 K, the bump vanishes. There is no sign showing the same bump on

the M vs. H data. In other field regions, the Hall effect curve has a high similarity with

magnetization at the same temperature condition. For the magneto-resistance(MR), the

metamagnetic transitions appear on the same critical field as the Hall effect. MR also shows

a slope change around the critical fields. In those fields, the bumps on the Hall effect reach

their maximum values. When magnetic fields grow to a little bit higher than the saturation

points, another slope change happens on the MR curves. After that, the MR curves are

linear to the field.

Fig. 3.10(a) gives the results when the magnetic field is set along the x-axis. The

magnetization vs. field data was recorded at constant temperatures. From the graph,

we can see a sudden transition arises at around 1.5 T at all temperatures. With the

temperature going lower, the critical field goes to higher regions. In the former report,

it was considered the metamagnetic transition when the magnetic moments transform from

spirals to antiparallel [34]. The saturation field starts from 2 T at room temperature. When

the temperature goes down, the saturation field enhances to a more significant value. At 70

K, it becomes larger than 5 T. For Hall resistivity, and we define xz as the current along

the z-axis and field along the x-axis. The voltage difference was measured along the y-axis.

Similarly to M vs. H, we found the same transition at all temperatures. However, The

critical fields are slightly larger than M vs. T. By plotting the M vs.H, and the Hall effect
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together(Fig 3.12), we see the hysteresis in the Hall effect is very clear. Moreover, as the

field increases, a significant bump appears in the Hall effect. The bump starts from 260 K.

When the temperature cools down; the bump becomes more stands out. After that, the

bump decreases. At 70 K, the bump vanishes. There is no sign showing the same bump on

the M vs. H data. In other field regions, the Hall effect curve has a high similarity with

magnetization at the same temperature condition. For the magneto-resistance(MR), the

metamagnetic transitions appear on the same critical field as the Hall effect. MR also shows

a slope change around the critical fields. In those fields, the bumps on the Hall effect reach

their maximum values. When magnetic fields grow to a little bit higher than the saturation

points, another slope change happens on the MR curves. After that, the MR curves are

linear to the field.

The same measurements were performed on samples with different orientations (Fig.

3.11). This time sample’s z-axis was aligned along the field. At all temperatures,

magnetization and yx show linear growth as the field increases. In the Hall effect data,

there is no clear evidence showing extra components(bumps). The MR curve first shows

a curve with slop decreasing. After the saturation fields, MR becomes linear to the field

growth.

3.2.4 Neutron Diffraction

Fig.3.13 summarizes our neutron diffraction results in zero fields. Below TN 390 K, magnetic

reflections belonging to the propagation vector (0,0,L) are observed. At the base temperature

of 15 K, the magnetic structure is refined to be a double-helical order with an ordered moment

of 2.55(5) µB/Mn, which is consistent with the previous study on a powder sample [32]. The

length of the propagation vector increases with temperature, reaching a value of = 0.31

at 380 K just below TN. In contrast to YMn6Sn6 where a collinear magnetic phase with

= 0.5 is observed in a narrow temperature regime below TN [33, 34], the incommensurate

in ScMn6Sn6 indicates a noncollinear double-helical structure throughout the long-range

ordered phase.
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3.2.5 Discussion and conclusion

Following the previous literature, the Hall effect consists of 3 components. As shown in the

following equation: RHall = Ro ∗H + a ∗M + THE. The first component is linear to the

external field and is considered the normal Hall effect. The second component is proportional

to the sample’s magnetization and is the anomalous Hall effect(AHE). The third component

is the topological Hall effect(THE). From observing our data, we can see that yz contains all

three elements. The bump is a clear sign leading to THE. We compare the magnetization

with the Hall effect in the same graph(Fig.3.12). We can see the difference between the

two results starting from the spin-flop field. It grows larger with the field increasing. By

comparing the THEhanging the non-magnetic rare earth elements might not change the

topology of this

We can see many similarities by comparing our results with the previous study on

YMn6Sn6. Their Neél points are above room temperature, and they are both good metals.

Their magnetization, Hall measurement, and MR show spin reorientation at relatively small

fields. YMn6Sn6 was proved to host a THE. The THE has a maximum value of 245 K [33].

We observed a THE in ScMn6Sn6 with the same sample symmetry, and the maximum value

is at 220 K. In [33], researchers claimed THE inside YMn6Sn6 is a consequence of a special

spin structure. The magnetic spins are described as tilted conical spirals(TCS). A chiral field

forms as a result and leads to THE. By Studying the ScMn6Sn6 samples, we obtained THE

with the same magnitude as what is reported for the YMn6Sn6 compound. This makes the

ScMn6Sn6 sample a good candidate for novel spintronic just as YMn6Sn6. One advantage of

ScMn6Sn6 over YMn6Sn6 is that the THE happens at much lower magnetic field which makes

this compound more suitable for application. However, the magnetic structure causes the

THE inside ScMn6Sn6 is still unrevealed. We arranged a field applied neutron diffraction

measurement. We will have a microscopic view when we have the result. There is one

thing worth noting. For YMn6Sn6, there is only a TCS phase between the helical and AFM

phase at 245 K. The TCS phase is the only phase causing THE. However, ScMn6Sn6 might

not be the same case. At 220 K, the M vs.H result contains a slope change around 3 T.
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That suggests there might be more than one magnetic phase between helical and forced

ferromagnetic structure. THE appears in Both phases. This phenomenon will distinguish

ScMn6Sn6 from YMn6Sn6.

Another significant difference between YMn6Sn6 and ScMn6Sn6 is they have different zero

field magnetic structure. Unlike YMn6Sn6, ScMn6Sn6 only has the double spiral structure

when the temperature is below the Néel temperature. The colinear AFT state in the

YMn6Sn6 is not presenting in ScMn6Sn6. However, the lack of colinear AFM does not

eliminate the THE.

Our magneto-resistance data exhibits different behavior from YMn6Sn6 as well. In

YMn6Sn6, zz holds a negative value in low temperatures. It turns positive when the

temperature reduces to a lower region. In ScMn6Sn6, at all temperatures, MR obtains a

minimal positive value when the magnetic field is within the helical magnetic phase. As

the field grows, MR shows a drop around the spin-flop transition, then changes its value

to negative. Around THE range, MR shows anomalies. At 220 K, it behaves as a slope

change. At lower temperatures, the anomaly changes to a remarkable transition. From

the consistency between MR and field-dependent magnetization, we can conclude that the

magnetic configuration influences MR heavily.

3.3 LuMn6Sn6

3.3.1 Sample preparation

LuMn6Sn6 single crystals were grounded into fine powders to check the powder X-ray

diffraction (PXRD).

We confirmed the good quality of the single crystal by obtaining a clear Laue pattern

(see supplementary). Using the software Orientexpress, we find out the orientation of single

crystals. Cutting and polishing let us get thin bar-shaped single crystals with surfaces

perpendicular to [100] and [001] directions.
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The magnetization measurements were performed using a Quantum Design Magnetic

Property Measurement System. Single crystal’s magnetic moments were measured from 2 K

to 300 K in a 1000 Oe field, along with [100] and [001] directions. We also set several constant

temperatures and swept the magnetic field from negative 7 Tesla to 7 Tesla to obtain the

field-dependent magnetization data.

Electric and electromagnetic transport properties were performed using a Quantum

Design Physics Properties Measurement system. We set the surface of the bar-shaped sample

perpendicular to the magnetic field to ensure the field direction is along [001] or [100]. In this

case, the four electric leads are put along [100] or [001] for resistivity measurements under

field zero fields. Similarly, in the Hall effect measurement, the current was sent along [100]

or [001], while the leads measuring the voltage difference were set along the [110] direction.

3.3.2 Crystal structure and magnetism

The LuMn6Sn6 single crystal belongs to hexagonal MgFe6Ge6-type structure P6/mmm space

group [30, 35]. Fig. 3.13 is our refined result of powder X-ray diffraction result. Our refined

parameters are a = 5.50814 Å, c = 8.98729 Å. As shown in Fig. 3.14(a), in the c direction,

LuMn6Sn6 single crystals are formed by Mn-Sn-Sn-Sn-Mn slabs and Mn-(Lu-Sn)-Mn slabs

overlapping each other as layers. Mn atoms distribute along the ab plane and form into

kagome lattice (Fig. 3.14(b)) [30, 35].

With the coexisting of the two slabs, LuMn6Sn6 is an antiferromagnet with a Néel

point around 400 K[35]. Fig. 3.15 shows how the magnetic susceptibility changes with

temperature. It was measured along with both [001] and [100] directions under a 1000 Oe

field. The temperature-dependent heat capacity and RUS were also measured, as shown in

Fig. 3.17 Fig. 3.18.
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3.3.3 Resistivity, magnetism, and Hall effect

Two kinds of the thin bar (thickness 0.1mm) shaped samples with different dimensions were

prepared. One kind has surfaced as [001] plane, and the other has [100] plane. Here, we

define the dimensions [100], [110], and [001] as x, y, and z.

Fig. 3.19 gives the two longitudinal resistivities along [001] and [100]. An anisotropy

appears between two ρ, showing metallic behavior. The ρ along the z-axis has a larger

magnitude than along the a-axis, and the ratio decreased by approximately 1 with the 370 K

increase in temperature (Fig. 3.20).

Field-dependent magnetization, Hall effect, and magneto resistivity are also measured

and presented below. Fig. 3.21 gave the results when the magnetic field was set along

[001]. The magnetization vs. field was taken under constant temperatures. A transition

appears when it is cooler than 250K. As the temperature decreases, a critical transition

field stays around 3.5 Tesla. For Hall resistivity, we define ρzx as the current along z and

field along x. We measured the voltage difference along y. Similar to M vs. H, the same

transition arises below 250 K and enhances to above 3 Tesla at a lower temperature. For

the magneto-resistance, sharp peaks appear as an agreement to the transitions that happen

to magnetization and the Hall effect. There is no hysteresis loop observed in non of the

measurements.

Same measurements were performed on samples with different orientations (Fig. 3.22).

This time sample’s z-axis was aligned along the field. At all temperatures, magnetization

shows linear growth as the field increases. Like before, we define ρxz as the Hall resistivity

when current is applied along the x-axis and field is along the z-axis, and the voltage along

y is measured. No transition shows up either, suggesting only anomalous and normal Hall

effects exist. The MR data is relatively small. Also, no hysteresis loop appears.

31



3.3.4 High field study

No evidence shows that the topological Hall effect exists in the low field region(8 T). We are

curious if there are more magnetic phases when a higher magnetic field is applied. We tested

the magnetization and transport properties on our LuMn6Sn6 with a 35 Tesla magnet.

Fig. 3.23 to 3.24 shows the magnetization measured in the High magnetic lab. Fig.

3.25 shows the Hall effect we measured. The magnetic field is set along the a-axis, and an

electric current is applied on the c-axis. Similar to our previous small field measurement, the

metamagnetic transition happens around 5 T. However, when the field is in a higher region,

the Hall effect at all temperatures shows a bump before saturation point. These bumps

are distinguished from the M vs. H curve. Following the calculation instruction in [33], we

subtracted the normal Hall effect and anomalous Hall effect (Fig. 3.26). Magnetization data

is from previous literature [35]. The rest part is pure topological Hall effect we detected in

LuMn6Sn6. Similar to YMn6Sn6, the topological Hall effect behaves like a hump. While

the temperature is cooling down, THE area grows larger. It indicates that the magnetic

structure is causing THE increases in its region on the magnetic field. One thing worth

noticing is that in 272 K, the metamagnetic transition vanished. However, THE is still rigid.

The magnetic structure causing THE is robust through all temperatures.

Magnetoresistance is also measured with high magnetic applied (Fig. 3.27). The

experiment applies the magnetic field along the crystal’s a-axis, and an electric current

is applied along the c-axis. The data agree with the Hall effect result. At 272 K, no sign

of metamagnetic transition shows. At lower temperatures, the metamagnetic transition

appears. The MR shows a dramatic decrease between the metamagnetic transition and the

saturation field in all temperatures. They happen at the same magnetic fields as the THE.

It suggests that these decreases should be caused by the same structure leading to the THE.

3.3.5 Discussion and conclusion

LuMn6Sn6 share the same crystal structure with YMn6Sn6, ScMn6Sn6. Their lattice

parameters have small differences. LuMn6Sn6 has the magnetic structure more similar to
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YMn6Sn6. With the absence of magnetic field and a lower temperature, the angle between

Mn layers in Mn-Sn-Sn-Sn-Mn slabs is different from the angle between Mn layers in Mn-(R-

Sn)-Mn (R = Y and Lu) slabs. When the temperature warms up, the double spiral structure

turns to a colinear AFM order. Their transition temperatures have different value, but they

are both below their individual Néel temperature. However, ScMn6Sn6 does not have the

colinear AFM order.

For LuMn6Sn6, Large anisotropy also arises on the magnetization and transport result

with the introduction of the magnetic field. When field is along an a-axis, both magnetization

and Hall effect data show sizable transitions at relatively small field when temperature is

below 250 K. Those transition are the matamagnetic transitions, same as YMn6Sn6 and

ScMn6Sn6. The high similarity between magnetization and the Hall effect below those critical

fields suggests the anomalous Hall effect is dominating. When magnetic field increases,

LuMn6Sn6 Hall effect shows a large bump which is not present in magnetization. That

bump is the THE inside LuMn6Sn6. LuMn6Sn6 has larger value THE than other two 166

materials. Also the THE in LuMn6Sn6 is very rigid at high temperatures.

In the future study,we need to detect magnetic applied neutron diffraction to know

the spin structure for sure. By comparing the refined magnetic structures in YMn6Sn6,

LuMn6Sn6 and ScMn6Sn6, a better understanding about the magnetic chiral structures and

the THE they caused.
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Chapter 4

Weyl Semimetal Co3Sn2S2

4.1 Motivation

Since Co3Sn2S2 was proved to be a type-II Weyl semimetal, scientists have performed a large

number of experiments to determine the different magnetic phases in Co3Sn2S2. Now the

clear pattern is, Co3Sn2S2 has a paramagnetic to ferromagnetic transition at 175 K. As the

temperature decreases, the magnetic structure becomes completed. More than one phase

arises, and an anomalous transition appears. A mysterious transition at 125 K has attracted

attention. The transition shows in small field magnetization and the Hall effect. However,

the thermal conductivity and resistivity show no anomaly around 125 K. Several explanations

about this transition are carried out. Competing AFT state, domain size change, and spin

glass structure are the leading opinions on causing the transition.[46] We wonder if this 125 K

transition can be detected by the Ultrasound resonance and how magnetic domains would

affect the sample’s elastic modulus. We grew single crystals with both flux and Bridgman

method and performed Ultrasound Resonance Spectroscopy (RUS) on them. Experimental

details and results are provided in the following context.
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4.2 Sample preparation and basic characterizations

Co3Sn2S2 is also a magnetic kagome metal. It belongs to R3m space group and it has the

rhombohedral-hexagonal structure []. Co3Sn2S2 is a layered structure material and Co is the

only magnetic ion. Co distributed along the ab plane and form kagome nets. (Fig. 4.1)

We want to confirm our sample’s good quality, so we did magnetic measurements on

our Co3Sn2S2 single crystals. Fig(4.2) gives us the magnetic susceptibility as a function

of temperature. Anisotropy appears when field along the a and c-axis. Both axes show

the transition at Neél temperature 175 K. It matches with former studies.[] Beside TN , we

also found another transition Tc around 125 K. It shows a wavy curvature on both of the

susceptibility.

We also tested the magnetization as a function of the magnetic field (Fig.4.3). Like

previous literature [71], the magnetization saturates at a microscopic field and holds a

hysteresis loop when the temperature is below TN . The area of hysteresis becomes larger

when the temperature decrease. From our Hall effect measurement, we found a high

similarity to magnetization (Fig. 4.4). It indicates the anomalous Hall effect (AHE) is

dominating [71].

Besides the AHE, ANE is also a nontrivial property found in Co23Sn2S2.[] We performed

thermo-electric experiments on our Co3Sn2S2 with our own designed equipment. The

experimental setup was described in the experimental method part in Chapter 3. Our result

shows in picture 4.5. The non-linear pattern shows our sample contains an anomalous Nernst

effect. Our Nernst effect data consists of two components. One component is linear to a

magnetic field, and the other is proportional to the Co3Sn2S2 magnetization. From previous

literature, we know the ANE is a direct way to test the Berry curvature. We claim that the

Berry curvature causes a strong effect in our sample.

Ultrasound Resonant Spectroscopy study

From our magnetization vs temperature data, we know there is a magnetization transition

Tc locates around 125 K. Electric transport properties are also measured to detect the Tc.
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(Fig.4.2) Our result shows the temperature-dependent resistivity we measured on our sample.

At TN = 175 K, the transition shows a behavior as a slope change. However, there is no

clear evidence showing the Tc transition around 125 K from the R vs. T curve (Fig. 4.6).

In order to answer the question if the 125 K transition exists, we decided to perform

Ultrasound spectroscopy on our sample and test its resonances reacting with temperature

changing.

We made a small frequency range resonance scan for the experimental setup, which

provided a short scan time. We continuously scan the same frequency range and cool

down the experimental temperature with a prolonged cooling rate. By doing those, the

temperature change within one scan is trivial.

We tested thousands of scans for one temperature cooling procedure. We tested the

procedure with different magnetic fields added to the sample. As shown in Fig 4.7 to Fig

4.11, we chose the frequency between 1.38 MHz to 1.44 MHz. In this frequency region,

there are three resonances. With the temperature decreasing, they all move to a higher

frequency. When there is no magnetic field, the ferromagnetic transition show as a turning

point around 175 K. We can not see clear evidence of the 125 K transition. However, when

we increase the field to 200 Oe, a step-like transition appears around Tc = 125 K. When the

field increases to 400 Oe, the 125 K transition becomes more standout. However, when the

magnetic field increases to higher than 600 Oe, the 125 K transition seems to be suppressed

with the increasing magnetic field(Fig.4.10, Fig.4.11).

Elastic modulus studies

The elastic constants of Co3Sn2S2 were determined by inverting the ultrasound spectrum

following the procedure established by Leisure and Willis [72]. In this fitting procedure, the

elastic constants were adjusted iteratively until the difference between the measured and

calculated spectra were minimized. To our best knowledge, the constants for Co3Sn2S2 have

not been measured experimentally but rather they have been estimated based on density

functional theory calculations [73] (see Table 4.1), which are estimated to be within 15% of
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experimental values. Thus, we used these theoretical constants as starting values. In our

initial fits, we observed that c33 and c23 were anticorrelated to within a factor of about two

(see Fig. 4.12), meaning these constants cannot be fit independently. Therefore, we fixed

the c33 to its theoretical value, allowed c23 to fit initially, and then fixed them both for all

proceeding fits. The dimensions were allowed to be fit at room temperature and did not

change significantly, which confirms a good fit to the shape. The dimensions were fixed to

the RT fitted values for all other temperatures.

A total of 41 out of the first 45 modes were used to fit the elastic constants wherein

we excluded modes that became buried in noise at some temperatures. The goodness of fit

is assessed by the root-mean-squared (rms) error between the frequencies of the measured

and calculated modes, which was nominally 0.6-0.7%. The relatively high error may be

attributed to slightly imperfect shape as confirmed by systematically varying the dimensions

and mass, calculating the ultrasound spectrum at constant density, and comparing to the

measured spectrum. Despite this relatively high experimental uncertainty, the frequencies

of the resonant modes, including the gaps between modes, aligned well with the model, as

shown in Figure 4.13. Furthermore, we find the room-temperature bulk modulus K, shear

modulus G, and Poisson’s ratio of 91.7 GPa, 55.8 GPa, and 0.247 respectively, agree with

the corresponding theoretical values of 97 GPa, 56.5(5) GPa, and 0.26 within the estimated

uncertainty of 15% [73]. At each temperature, the data were fit three times by assuming

different starting values (±2% of initial) for the elastic constants, and the error bars were

estimated from the variation in the results for the same rms error.

Because the elastic constants scale with the square of the resonant frequencies, the

position of a frequency serves as sensitive, model-free method of tracking the temperature

dependence of the elastic moduli. For example, the position and ultrasound attenuation

factor Q−1 of a few n modes are plotted in Figure 4.14. The attenuation factor is a measure

of internal friction in the sample [74]. The abrupt decrease in temperature dependence of

the frequencies around 170 K along with a local maximum in Q−1 are clearly observed and

attributed to the Curie transition at Tc = 175 K through magnetoelastic coupling. The data
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also suggest two additional transitions, a small one near 130 K and a broad one around 250

K, both of which are characterized by the change in temperature dependence of the peak

shift combined with a rise in Q−1.

Fitting the elastic constants below room temperature proceeded by fixing the dimensions

and propagating the room-temperature solution using the same modes with their new

frequencies. The rms error remained stable around 0.60-0.70% throughout the experiment.

The temperature dependence of the elastic constants is shown in Fig. 4.15(a). Clearly,

the Neél transition is coupled with compressional moduli, e.g., c11, identified by the drop

at 171 K. Similarly, the sound velocity in Figure 3b shows a change in slope at the same

temperature. The observed peak shift and attenuation increase around 250 K is connected

to fluctuations in the c14 constant.

4.3 Conclusion

We used RUS to detect its magnetic transitions in the Co3Sn2S2 study. After tracking the

ultrasound resonances with temperature decreasing, both Curie point and 125 K transition

were found. The Curie point is rigid with the change of magnetic field. The 125 K transition

shows up in a small field and fades out when the field increases. The fitting of elastic moduli

delivers the idea that those two transitions are related to different moduli.

More experiments on the magnetic field added elastic moduli fitting are expected in

future studies. A better explanation of how elastic moduli affect the 125 K transition will

be revealed.
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Chapter 5

Summary

A variety of kagome metals are successfully synthesized in single crystal form. Rare earth 166

compound RMn6Sn6 and Weyl semi-metal Co3Sn2S2. Transport properties were measured,

and anomalous behaviors were discovered due to the exotic magnetic structure. Our study

investigated materials with R = Y, Sc, and Lu. Single crystals are grown from the flux

method. After surface cleaning and polishing, magnetization, neutron diffraction, and

transport-transverse properties were tested on every material. All three materials show

excellent electric conductivity. AFM was found to be the ground state of those three

materials. A metamagnetic transition was found in a relatively small field in all three

materials. After YMn6Sn6 was discovered to hold a near room temperature THE, ScMn6Sn6

and LuMn6Sn6 were investigated with the same method. ScMn6Sn6 and LuMn6Sn6 also

present large THE with different critical magnetic fields. The general exiting THE might

indicates those three materials have the same particular spin structure. To prove that,

field-induced neutron diffraction should be performed. The differences in critical fields and

temperatures might result from different sizes of rare-earth Lu, Y, Sc, and different lattice

parameters.

Co3Sn2S2 is proved to be a type two Weyl semi-metal whose band structure contains Berry

curvature. The Berry curvature functions as magnetic monopoles and causes exotic transport

properties. AHE and ANE were both found in Co3Sn2S2. Using RUS, we studied a magnetic
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state still under debate. The transition show up when we track resonance frequencies with

changing temperatures. Elastic constants were also calculated in our study. By tracking

all the elastic constants changing with temperature, there is a clear dependence between

different transitions and elastic constants.

Kagome metals are a hot topic and are researched heavily by scientists worldwide. There

is still much potential for these materials. Over 100 types of materials are in the same

group of 166 materials, and they are not well detected yet. Except for the experiments in

this paper, there are plenty of measurements worth looking into, such as ARPES(Angular

resolved) and current-induced magnetic structure detection. In conclusion, kagome metals

will provide a scientific playground waiting for scientists to explore.
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Table 4.1

c11 168 162.25 ±0.29
c33 193 193.00
c23 55 46.56
c12 64 61.58 ±0.35
c44 61 56.52 ±0.08
c14 -9 -9.01 ±0.04
Kavg 97 91.7
Gavg 57 55.8
v 0.26 0.247

Source [2] This work
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(a) (b)

Figure 1.1: (a) Kagome lattice (b) Simplified band structure of kagome metal Fe3Sn2. Flat
band and Dirac cones coexist.
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(a) (b)

Figure 1.2: (a) Magnetic frustration (b) Two types of Skyrmions. Figures are adopted
from [75].
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Figure 1.3: Crystal structure of YMn6Sn6.The figure is adopted from [33]
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Figure 1.4: 4 magnetic phases in YMn6Sn6. The figure ia adopted from [33]
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Figure 1.5: YMn6Sn6 topological hall effect. The figure is adopted from [33]
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Figure 2.1: A sealed quartz tube use for flux growth. A set of crucible is put inside.
Chemicals were placed inside the crucible set. Quartz wool was placed on both end inside
the tube to prevent form breaking.
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(a)

(c)

(b)

Figure 2.2: (a) Experimental condition for Hall effect. (b) Experimental condition for
Seebeck effect. (c) Experimental condition for Nernst effect.
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Figure 2.3: Thermoelectric measurement experimental setup
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Figure 3.1: Temperature dependent magnetic susceptibility measured respectively when
field is along a and c-axis
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Figure 3.2: Single crystal YMn6Sn6 was aligned and cut
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Figure 3.3: Experimental setup for current introduced neutron scattering.
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Figure 3.4: (00L) scan with temperature change under 0 A current.
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Figure 3.5: The neutron peak comparison between 0 A and 20 A. The temperature is
340 K.
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(a) (b)

(c) (d)

Sc
Sn

Mn

Mn

Figure 3.6: (a) Crystal structure. (b) Top-view of crystal structure. (c) Crystal picture.
(d) Sample symmetries for Hall effect and MR measurement

65



0 1 0 0 2 0 0 3 0 0 4 0 00 . 0

1 . 5

3 . 0

4 . 5

3 0 0 3 5 0 4 0 0- 0 . 1

0 . 0

0 . 1

0 . 2

d�
/dT

(a.
u.)

T  ( K )

� (
em

u m
ole

-1 )

T  ( K )

 µ o H  // [100]
 µ o H  // [001]

Figure 3.7: Temperature dependence of magnetization and the first derivative for single
crystal ScMn6Sn6. The blue and green colors represent different magnetic field directions.
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Figure 3.8: Temperature dependence of resistivity and the first derivative for single crystal
ScMn6Sn6. The blue and green colors represent different current field directions.
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Figure 3.9: (a) Field-dependent magnetization is collected when the magnetic field is set
along [100]. (b) Field dependent Hall effect data were collected at different temperatures.
The current is along [001], and the magnetic field is along [100]. (c) field-dependent
magnetoresistance data was collected at different temperatures. The current is along [001],
and the magnetic field is along [100].
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set along [001]. (b) field dependent Hall effect data is collected at different temperatures.
The current is along [100], and the magnetic field is along [001]. (c) field dependent
magnetoresistance data collected at different temperatures. The current is along [100], and
the magnetic field is along [001].

70



0 100 200 300

(a) (b)

(c) (d)

Figure 3.12: (a) Temperature dependence of the magnetic reflections (0,0,2±t) around the
(0,0,2) nuclear reflection. (b) Comparison between the experimental and calculated neutron
diffraction intensities assuming a double helical magnetic structure. The experimental
dataset is collected at T = 15 K. The goodness-of-fit factors are RF2 = 12.1 % and RF
= 8.0 %. (c,d) Temperature dependence of the fitted intensity and position of the magnetic
reflection (0,0,2+t).
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Figure 3.13: Powder X-ray diffraction for LuMn6Sn6
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(a)
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(b)

Figure 3.14: Three dimensional and top view Crystal structure of LuMn6Sn6
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Figure 3.15: Temperature dependence of magnetization and the first derivative for single
crystal LuMn6Sn6. Black and red color represent the different magnetic field directions.

74



2 2 0 2 4 0 2 6 0 2 8 0 3 0 0

0 . 0 0 0

0 . 0 0 3

0 . 0 0 6

 H  / /  [ 0 0 1 ]
 H  / /  [ 1 0 0 ]

d�
�dT

 (A
rbi

tra
ry 

un
it)

T  ( K )
Figure 3.16: Temperature dependence of magnetization and the first derivative for single
crystal LuMn6Sn6. Black and red color represent the different magnetic field directions.
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Figure 3.17: Heat capacity vs temperature. Data points were taken by PPMS.
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Figure 3.18: One ultrasound resonance position changes with temperature change
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Figure 3.19: Heat capacity vs temperature. Data points were taken by PPMS.
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Figure 3.21: Field dependence on Magnetization, Hall effect, and magnetoresistance,
respectively, when the field is along [100]. Colors showed the data taken under different
temperatures.
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Figure 3.22: Field dependence on Magnetization, Hall effect and magneto resistance
respectively when field is along (100). Colors showed the data taken under different
temperatures.
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Figure 3.23: Field dependent magnetization when large field is along [001]. Colors showed
the data taken under different temperatures.
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Figure 3.24: Field dependent magnetization when large field is along [100]. Colors showed
the data taken under different temperatures.
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Figure 3.25: Field dependence on Hall effect when large field is along [001] and current is
along [100]. Colors showed the data taken under different temperatures.
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Figure 3.26: Field dependence on magneto resistance when large field is along (100). Colors
showed the data taken under different temperatures.
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Figure 3.27: Field dependent magneto resistance of LuMn6Sn6.The magnetic field is along
[001] and the current is along [100].
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Figure 4.1: (a)Crystal structures of the single crystal Co3Sn2S2, Grey element is Sn, Blue
element is Co and yellow element is S.(b) The top view of the crystal structure.
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Figure 4.2: Co3Sn2S2 magnetic susceptibility measured when field is along different crystal
orientations. The blue curve was taken when magnetic field is along c-axis. The red curve
was taken when magnetic field is along a-axis. The value of red curve is timed 250 times.
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Figure 4.3: M vs H, magnetic field is along c-axis.
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Figure 4.4: Hall resistivity measured when field is along c-axis.
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Figure 4.5: Nernst coefficient measured on flux grown single crystal. The temperature is
set as 30 K.
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Figure 4.6: Resistivity measurement on Co3Sn2S2
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Figure 4.7: RUS scan from 1.38 MHz to 1.44 MHz. The temperature is from 90 K to 190
K. Magnetic field is 0 Oe.
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Figure 4.8: RUS scan from 1.38 MHz to 1.44 MHz. The temperature is from 90 K to 190
K. Magnetic field is 200 Oe.
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Figure 4.9: RUS scan from 1.38 MHz to 1.44 MHz. The temperature is from 90 K to 190
K. Magnetic field is 400 Oe.
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Figure 4.10: RUS scan from 1.38 MHz to 1.44 MHz. The temperature is from 90 K to 190
K. Magnetic field is 600 Oe.
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Figure 4.11: RUS scan from 1.38 MHz to 1.44 MHz. The temperature is from 90 K to 190
K. Magnetic field is 1000 Oe.
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Figure 4.12: Dependence of each resonant mode with frequency f on each elastic constant,
c33 and c23. A scale factor of -0.47 was applied to data for c23 (red triangles). Lines serve as
guides to the eye.
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Figure 4.13: Shift in resonant frequency relative to the measured value at 88 K and
attenuation factor Q−1 as a function of temperature.
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Figure 4.14: Comparison between the measured and calculated frequencies of 45 modes.
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Figure 4.15: Temperature dependence of (a) the elastic constants and (b) sound velocity
and Poisson’s ratio. Note the breaks in the vertical axis in (a). Lines serve as guides to the
eye. The dashed line in (b) corresponds to the line of best fit to data above 170 K.

101



Vita

Rui Xue was born in Luoyang, Henan, China. She went to Shandong Normal University to

study physics in 2011. In the year 2013, Rui traveled to the U.S. as an exchange student at

East Tennessee State University. After getting her bachelor of science in physics, she went to

the University of Tennessee, Knoxville, to accomplish her Ph.D. degree in condensed matter

Physics. She is expected to receive his Ph.D. in August of 2022.

102


	Studies on Magnetic Kagome Metals
	Recommended Citation

	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	1 Introduction
	1.1 Topological materials
	1.2 Kagome magnets
	1.3 Study cases
	1.3.1 166 rare-earth compound
	1.3.2 YMn6Sn6 spin structure and Topological Hall effect
	1.3.3 Weyl semimetal


	2 Experimental Techniques
	2.0.1 Sample Growth
	2.0.2 Sample orientation and polishing
	2.0.3 Magnetization measurements
	2.0.4 Resistivity measurements

	2.1 Electric, magnetic and thermal transport properties
	2.1.1 Hall effect, anomalous Hall effect, and topological Hall effect
	2.1.2 Thermal transport effects 
	2.1.3 Resonant Ultrasound Spectroscopy
	2.1.4 LabView programming


	3 RMn6Sn6 rare earth intermetallic compound
	3.1 YMn6Sn6
	3.1.1 Motivation
	3.1.2 Experiments and results
	3.1.3 Discussion and future plans

	3.2 ScMn6Sn6
	3.2.1 Motivation
	3.2.2 Sample preparation
	3.2.3 Result
	3.2.4 Neutron Diffraction
	3.2.5 Discussion and conclusion

	3.3 LuMn6Sn6
	3.3.1 Sample preparation
	3.3.2 Crystal structure and magnetism
	3.3.3 Resistivity, magnetism, and Hall effect
	3.3.4 High field study
	3.3.5 Discussion and conclusion


	4 Weyl Semimetal Co3Sn2S2
	4.1 Motivation
	4.2 Sample preparation and basic characterizations
	4.3 Conclusion

	5 Summary
	Bibliography
	List of Publications
	Appendix
	Vita

