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ABSTRACT 

In recent years, considerable progress has been made towards the 

development of intelligent autonomous mobile robots which can perform a wide 

variety of tasks. Although the capabilities of these robots vary significantly, 

each must have the ability to navigate within its environment from a starting 

location to a goal without experiencing collisions with obstacles in the process 

- a capability commonly referred to as "robot navigation". 

Numerous algorithms for robot navigation have been developed which 

allow the robot to operate in static environments. However, little work has 

been accomplished in the development of algorithms which allow the robot to 

navigate in a dynamic environment. This thesis presents a mathematically-based 

navigation algorithm for a robot operating in a continuous-time environment 

inhabited by moving obstacles whose trajectories and velocities can be detected. 

In this methodology, the obstacles are represented as sheared cylinders 

to depict the areas swept out by the obstacle disks of influence over time. The 

robot is represented by the cone of positions it can reach by traveling at a 

constant speed in any direction. The methodology utilizes a three-dimensional 

navigation planning approach in which the search points, or tangent points, are 

the points in time at which the robot tangentially meets the obstacles. These 

tangent points are determined by calculating the intersection curves between the 

robot and the obstacles, and then using the first derivative of the intersection 

curves to make the tangent selections. Paths are created as sequences of these 

tangent points leading from the robot starting location to the goal, and are 

searched using the A* strategy, with a heuristic of the Euclidean distance from 

the tangent point to the goal .. • 
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The main contribution of this thesis is the development of a methodology 

which produces optimal tangent paths to the goal for a dynamic robot 

environment. This feature is significant, since no other algorithm located in the 

literature survey as background to this thesis has shown the ability to produce 

paths with optimal properties. 
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CHAPTER 1 

INTRODUCTION 

1.1 APPLICABILITY /NEED FOR ROBOT NAVIGATION 

ALGORITHMS 

Significant strides have been made in recent years towards the 

development of intelligent autonomous robots which can perform a wide variety 

of tasks, from mail delivery to explosive ordnance disposal. The potential benefits 

of such robots have contributed to the burgeoning interest in their development, 

since robots can increase productivity and relieve humans of dull, repetitive, or 

dangerous tasks. The capabilities of these state-of-the-art robotic systems vary 

from robot to robot, but often include subsystems for image processing or vision, 

learning, intelligent reasoning, sensing, and manipulation. 

In order for these intelligent robots to operate, however, they must have 

the capability to navigate within their environment, a capability commonly 

referred to as "robot navigation". The mobile robot must be able to travel from 

a starting location to a goal location in the environment without experiencing 

collisions with obstacles or barriers in the process. The development of a robot 

navigation algorithm is not a trivial matter, since it requires decisions on a number 

of critical issues, such as the type and representation of the robot and obstacles, 

the type of world model to be utilized, the extent of the knowledge available about 

the robot environment, and the characteristics of the resulting robot path. 
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1.2 PURPOSE 

The goal of this thesis is to develop a mathematically-based robot 

navigation algorithm which operates in a continuous-time environment inhabited 

by moving obstacles whose trajectories and speeds can be detected. The need for 

such an algorithm should be apparent from the review of existing methodologies 

in the following chapter, as not much work has been accomplished in this area. 

Consider an autonomous mobile robot which is trying to cross a street or make 

its way through a room occupied with people or other mobile robots. Ideally, the 

robot should behave as a human would behave in this situation - it would note 

the current locations, speeds, and trajectories of the moving objects and plan 

its route to the goal based upon the projected locations of the obstacles through 

time. 

Many aspects are involved in providing a robot with the capabilities 

required to accomplish such a task. The robot must have some means to sense 

the important features of its environment, meaningfully interpret the sensed 

data, plan a feasible navigation route based on the interpretations, execute its 

navigation plan, and successfully monitor the execution of the plan. Each of 

these areas is a research topic in itself with many difficult issues to be addressed. 

The present thesis, however, will consider only the navigation planning subject 

based upon the interpreted sensor data, as much can be contributed to this facet 

of the problem. 

The methodology developed in this thesis applies to a robot which can 

move at a constant speed in an environment occupied by obstacles moving at 

constant velocities. In a real-world environment, the execution of the navigation 

plan would be closely coupled with continual environmental sensing to detect 

changes in the speed or trajectory of the obstacles for plan modification or total 
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replanning if required. Additionally, extensions to the methodology can provide 

a means to relax the constant robot speed assumption. Refer to chapter 6, for 

more details on this extension. 

1.3 APPROACH 

The methodology developed in this thesis uses a configuration space 

approach (5, 22, 30, 32, 42, 43, 54, 60, 61, 62, 84, 90) in which the obstacles, 

approximated by their bounding circles, or disks of influence, are assumed to 

be "grown" such that the resulting representation corresponds to all possible 
I 

undesirable interactions between the obstacles and the robot in two-dimensional 

Cartesian space. A third dimension is added to the representation to incorporate 

time into the planning process. The obstacle then becomes a sheared cylinder 

representing the area swept out by the obstacle disk of influence over time. The 

robot is represented by the cone of positions it can reach by traveling at a constant 

speed in any direction. These representations are particularly suited for dealing 

with moving obstacles. 

The methodology utilizes a three-dimensional navigation planning 

approach analogous to the two-dimensional visibility graph used for stationary 

obstacles (42, 60, 61, 62] which is described in the next chapter. Rather than 

the obstacle vertices being the search points of the visibility graph, the points in 

time at which the robot tangentially meets the obstacles are the search points, 

or tangent points. These tangent points are determined by calculating the 

intersection curves between the robot and the obstacles, and then using the first 

derivative of the intersection curve to make the tangent selection. Using the A* 

search with a heuristic of the Euclidean distance from the tangent point to the 

goal, a visible tangent point with the least cost is selected and a determination 
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is made concerning the visibility of the goal. If the goal is visible, a new path 

is created from the current tangent point to the goal, its cost is calculated, and 

the path is inserted into the set of possible paths in ascending order according to 

cost. If the goal is not visible, the selected tangent point is expanded to find the 

next set of visible tangent points, and new paths are created corresponding to the 

newly detected tangents. This cycle of selecting a visible tangent with the least 

cost and expanding that tangent is repeated until the goal can be reached. Since 

the A• heuristic uses an estimate of the remaining distance to the goal which is 

a lower bound on the actual distance, this navigation algorithm will produce an 

optimal tangent path to the goal for the constant robot speed [89, pg. 115]. The 

ability to produce optimal tangent paths for a constant robot speed is significant, 

since no other algorithm located in the literature survey as background to this 

thesis has the ability to produce paths with optimal properties. 

The following chapter provides an overview of existing robot navigation 

algorithms for both static and moving obstacles. Chapter 3 describes the details 

of the planning methodology while chapter 4 presents the overall path planning 

algorithm. Chapter 5 gives details on the results of the implementation of the 

algorithm, and chapter 6 contains concluding remarks. 
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CHAPTER 2 

EXISTING ROBOT NAVIGATION ALGORITHMS 

The environments in which robots perform their assigned tasks vary 

widely from the organized and predictable to the extremely unstructured and 

uncertain. The more unpredictable the environment is, the more dependence 

the robot's navigation control must place on sensor data, and the less certain 

the environmental model will be. Due to this difference in the characteristics 

of the environment, the navigation approaches employed in the various robot 

surroundings range from provable algorithmic methodologies to unprovable, 

although quite competent, heuristic approaches. In either case, however, the robot 

must have some idea of the world, and then plan based upon its environmental 

model. 

The following sections will summarize the diverse methods which have 

been developed for solving the navigation problem. The large majority of the 

path planning algorithms were developed to pertain exclusively to surroundings 

in which the obstacles are stationary. These algorithms are reviewed in section 

2.1. The relatively few algorithms for dynamic environments are considered in 

section 2.2, along with suggestions for the extension of the static environment 

algorithms to deal with moving obstacles. Refer to the paper by S. H. Whitesides 

[84] for a more detailed survey of much of the work which has been accomplished in 

this area, and to the paper by J. H. Reif [64] for an analysis of the computational 

complexity of the robot navigation problem. 
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2.1 STATIC ENVIRONMENT 

2.1.1 Algorithmic Approaches. One large class of robot navigation 

algorithms requires detailed descriptions of the obstacles in the environment, and 

are usually variants of a specific navigation problem called the "FINDPATH" or 

the "Piano Mover's" problem. The general definition of the FINDPATH problem 

can be stated as follows [84]: Given the descriptions of the obstacles in a space, 

and the initial and final configurations of an object ( e.g. a robot) in that space, 

determine whether there is a continuous transformation from the initial to the final 

configuration, and what that transformation should be. Individual algorithms 

often place additional restrictions on the problem scenario, such as the shape of 

the obstacles or of the moving object, whether the moving object is permitted 

to consist of moving parts, or whether the modeled environment is two or three 

dimensional. 

The following sections describe existing algorithms to solve the 

FINDPATH problem. Section 2.1.1.1 describes algorithms adhering to the 

configuration space approach, whereas section 2.1.1.2 describes the Cartesian 

space approaches. 

2.1.1.1 Configuration Space Approaches. One approach most 

prevalent in the existing FINDPATH algorithms is that of transforming the 

representation of the world to allow the robot to be treated as a point. Rather 

than planning with the Cartesian space symbolizing the actual physical problem, 

a configuration space is used. The configuration space is constructed by using a 

"growing" operation on the obstacles to yield a representation in configuration 

space which corresponds to all possible collisions between the obstacle and the 

robot in Cartesian space. This transformation reduces the task of calculating a 
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collision-free path for a complex geometrical object to that of finding a safe path 

for a point object. An unfortunate disadvantage to this approach is that the 

simplification may be obtained at the cost of not allowing the robot to translate 

or rotate in the environment, or of over-restricting the robot motion. 

Once the configuration space is obtained, several strategies for computing 

the robot path through the environment are possible. The major strategies 

utilized by existing algorithms are the visibility graph, the Voronoi diagram, and 

the cell segmentation approaches. 

One of the earliest published works on the navigation of a robot through a 

known environment is the paper by T. Lozano-Perez and M.A. Wesley [42], which 

uses the visibility graph approach. This approach capitalizes on the fact that the 

shortest path from a starting location to a goal amidst polygonal obstacles in 

two dimensions will be composed of a sequence of straight lines connecting a 

possibly empty series of obstacles vertices. The resulting path plan causes the 

robot to travel from one obstacle vertex to another until the goal is reached. 

Specifically, the undirected visibility graph VG(N ,L) is defined such that the node 

set N consists of the set of all vertices of the polygonal obstacles and the link set 

Lis the set of all links (ni, n;) such that a straight line connecting the ith element 

of N to the jth element does not overlap any obstacles. The shortest collision

free path in two dimensions will be composed of a sequence of straight lines from 

VG(N,L) which join the starting location to the destination. The visibility graph 

for the sample environment shown in figure 1 is given in figure 2. 

Once the visibility graph is constructed, various search methodologies are 

used to find the robot path. Lozano-Perez and Wesley [42] use an A* algorithm 

with a heuristic which estimates the cost to travel from a node to the goal, whereas 
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Figure 1. Sample robot environment. 
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Figure 2. Visibility graph for sample robot environment. 
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N. Rao, et al. [60, 61, 62] use a depth first search of the graph to find the path 

to the goal. 

An advantage of the visibility graph approach is that it will produce 

optimal paths in two dimensions. However, it suffers from the disadvantage 

that the resulting path hugs the obstacles, making the methodology prone to 

uncertainties in the environmental model and causing the monitoring of the 

robot path execution to be difficult. Unfortunately, the visibility graph approach 

will not produce optimal paths with a three-dimensional world representation, 

since the optimal path will not necessarily follow the vertices of the polyhedra. 

Lozano-Perez (42] suggests adding additional vertices along the edges of the grown 

obstacles such that no edge is longer than a pre specified length. This approach 

allows the algorithm to produce a good approximation to the optimum path. 

A second major strategy for searching through configuration space uses 

the idea of a Voronoi diagram [30,54]. The paths derived from the Voronoi 

diagram will be inherently different from those obtained from the visibility graph. 

The paths derived using the Voronoi diagram will cause the robot to remain as 

far from the obstacles as possible, while the paths obtained from the visibility 

graph will take the robot very close to the obstacles. Due to this characteristic, 

the Voronoi diagram approach will rarely produce optimal paths. On the other 

hand, this trait will cause the approach to be less sensitive to errors in the world 

model and will usually simplify the monitoring of the path execution. 

The standard Voronoi diagram (54, 84] is a planar network in which S is 

defined to be the closed set of polygonal obstacles in a plane whose complement 

is bounded. The Voronoi diagram for S, VOR(S), is the set of all points in the 

complement of S which have more than one obstacle as their closest neighbor. 

The search for a safe robot path is thus converted to finding a safe path in the 
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Voronoi diagram. Figure 3 depicts the Voronoi diagram for the environment 

shown in figure 1. 

The third major strategy for searching the configuration space for a safe 

path uses a different philosophy than the visibility graph or the Voronoi diagram 

approaches, since the representation of the obstacles' complement, the "free 

space", is the primary search focus. This method, the cellular decomposition 

approach, involves dividing the configuration space into cells which represent the 

collision-free locations of the moving robot. A graph is then constructed with 

vertices representing the cells and the edges representing their adjacencies. As in 

the visibility graph and Voronoi diagram approaches, the path planning is thus 

transformed into a graph search. 

Several variations to this basic theme have been developed [5, 22, 32, 43, 

90]. S. Kambhampti and L. S. Davis [32] define a quadtree structure consisting 

of free nodes, obstacle nodes, and gray nodes. The free nodes represent regions 

of free space, the obstacle nodes represent regions containing obstacles, and gray 

nodes represent a mixture of free space and obstacles. The quadtree itself is a 

recursive decomposition of a two-dimensional picture into uniformly "colored" 2i 

x 2i blocks, where i is a positive integer. A node of the quadtree represents a 2i x 

2i, j < i, square region of the picture. The _leaf nodes of the quadtree are always 

either obstacle nodes or free nodes. Figure 4 gives an example of a portion of the 

quadtree for the environment shown in figure 1. 

Planning a path from a starting point to a goal location first involves 

locating the leaves of the quadtree, S and G, which contain the starting and 

goal locations. A minimum cost path between S and G is then formed with 

the non-obstacle leaf nodes of the quadtree using the A* search with a heuristic 

representing the estimated cost of the remaining path to the goal. 
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Figure 3. Voronoi diagram for sample robot environment. 
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Figure 4. Quadtree representation for sample robot environment. 
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E. K. Wong and K. S. Fu [90) present a slight modification to the quadtree 

which allows free nodes and obstacle nodes to also have children. Lozano-Perez 

and Wesley [42) utilize a hybrid cell representation involving rectangular solids in 

areas distant from obstacles for reduction of detail, and convex polyhedra near 

obstacles where high accuracy is required. Each cell is labeled EMPTY, FULL, 

or MIXED, in a manner analogous to the full, obstacle, and gray nodes used by 

Kambhampti and Davis. Brooks and Lozano-Perez [5] present another variation 

using only rectangular solid cells. 

The advantage of the cellular decomposition approach is that the search 

space is reduced by examining the free space nodes first. Only when this approach 

fails are the children of the gray ( or MIXED) nodes searched. Additionally, 

this method allows paths to remain away from obstacles except when absolutely 

necessary. The disadvantage of this approach is that the representation does not 

localize the effect of obstacles and the resulting path will not typically be the 

shortest path. 

2.1.1.2 Cartesian Space Approaches. Numerous additional 

algorithms operate directly in Cartesian space, rather than in configuration space. 

These methodologies often deal with more complex robot shapes which are not 

amenable to an approximation as a point. Perhaps the most important approaches 

developed in this category are the artificial potential field and the generalized 

cones methodologies. 

The artificial potential field method, developed by Khatib [33), offers a 

significantly different approach to the path planning problem. The philosophy 

behind the artificial potential field approach is to visualize the robot as moving in 

a field of forces. The goal to be reached is an attractive pole while the obstacles 

are repulsive surfaces for the robot. The artificial potential field of an obstacle will 
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be a non-negative continuous and differentiable function whose value approaches 

infinity as the robot approaches the surface of the obstacle. The collision-free 

path of the robot is determined by linking the absolute minima of the potential 

fields. 

The potential field concept is an interesting approach to the path planning 

problem. However, the complexity of the tasks which can be solved by this 

approach is limited due to the possibility of occurrence of local minima in the 

potential field. The presence of local minima can lead to a stable positioning of 

the robot before it reaches its goal. 

A second major non-configuration space approach was developed by 

Brooks [4, 6] and involves the use of generalized cones. These cones, used to 

represent the free space, are essentially straight lines, or "spines", with left and 

right free-space width functions. The allowable motions and robot orientations 

along the lines are found at each point along the spine. At the intersection points 

of the cones, the interval of safe orientation of the robot is calculated. A complete 

path is then found by transferring from one spine to another at their intersection, 

remaining within the safe robot orientation range at the intersections. Due to 

the fact that the cones may not cover all of the free space, this approach may 

fail to find a path when one actually exists. However, this method does have the 

appealing characteristic that the robot's path will stay away from obstacles. 

D. T. Kuan, J. C. Zamiska, and R. A. Brooks [37, 38] build upon the 

generalized cone concept by using a mixed representation of free space. The 

generalized cones are used to represent narrow regions, or channels, while convex 

polygons represent large open spaces, due to the awkwardness of approximating 

large open spaces as cones. A connectivity graph is constructed in which the 

nodes represent the polygonal regions bounded by several obstacles, and the links 
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represent the channels passing between two neighboring obstacles. An A* search is 

then used to find the optimal path, with a heuristic which estimates the remaining 

distance to the goal. 

Many other non-configuration space approaches to path planning have 

been developed. J. T. Schwartz and M. Sharir developed a series of path planning 

methodologies dealing with several variants of the Piano Mover's problem (69, 70, 

71, 72, 73]. These papers deal with the problems of finding paths for a rigid 

line segment, a rod, and a spider, and for coordinating the motion of a series of 

moving robots. W. E. Howden [27] examines the problem of determining whether 

an irregular two-dimensional object, or sofa, can be moved to a goal inside a 

complicated two-dimensional structure. C. Thorpe (81] uses a path relaxation 

method of finding safe robot movements, while E. G. Gilbert and D. W. Johnson 

[20] study the mathematical properties of distance functions which lead to the 

formulation of path planning problems as problems in optimal control. 

It should be obvious that much work has been accomplished m the 

area of robot navigation for static environments. Although many of the 

algorithms perform quite well, no single approach to this problem is without its 

disadvantages. When selecting an algorithm for any specific static environment 

application, the advantages and disadvantages of these algorithms and the 

requirements of the application must be considered. 

Coupled closely with these navigation algorithms are terrain acquisition 

algorithms which allow the robot to survey its environment to obtain an accurate 

world model. Once the world model is obtained, it is assumed to be static for 

planning purposes, and is subsequently used as input to one of the previously 

described navigation algorithms, such as the visibility graph method, to derive 
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future path plans. R. S. Ahluwalia and E. Y. Hsu (2] and N. Rao, S. S. Iyengar, 

B. J. Oomen, and R. L. Kashyap (61] present algorithms using this method. 

2.1.2 Heuristic Approaches. Heuristic approaches to robot navigation 

are often used when it is doubtful that a reliable world model can ever be 

obtained for path planning. These approaches rely primarily on sensor data to 

make intelligent decisions in the development of path plans. The majority of the 

sensor-based approaches utilize range data to detect and avoid obstacles in the 

environment. D. F. Cahn and S. R. Phillips (7], R. Chattergy (10], J. L. Crowley 

(13], Y. Ichikawa and N. Ozaki (29], D. M. Keirsey et al (34], E. Koch et al (35], 

V. Lumelsky and A. A. Stepanov (45], J. S. B. Mitchell (50], and C. R. Weisbin 

et al (83] have developed various range-based algorithms. Additional algorithms 

plan paths based upon vision feedback, such as the work described by A. Meystel 

and E. Koch (48] and H. P. Moravec (51]. 

The heuristic approaches typically operate effectively in practice, but 

cannot be proven to be correct in the sense of the algorithmic methods. 

Additionally, the resulting paths are not guaranteed to be optimal. However, 

the heuristic approaches may often find a good approximation to the optimal 

path in a much shorter period of time than an algorithmic method, and may thus 

be more appropriate for use in certain applications. 

2.2 DYNAMIC ENVIRONMENT 

One limitation shared by most of the algorithms described in the previous 

section is their difficulty with handling moving obstacles. The algorithms 

were designed for static robot environments and are not easily extended to 

dynamic environments. Admittedly, this limitation may not be serious for some 

applications, if the true world can accurately be modeled as static. Quite often, 
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however, the real world will contain moving objects such as would be found on a 

highway or in a room inhabited by people. If the robot is to successfully navigate 

in these environments, it must be able to deal with moving obstacles. 

Dynamic environments pose a more difficult path planning problem which 

has not yet been fully addressed. The most notable approach is the A void 

system developed by J. Lamadrid [39] which allows the robot to move through 

Cartesian space in the presence of objects moving in predictable trajectories. 

The algorithm operates in two dimensions and expands the objects, represented 

by their bounding circles, to allow the robot to be treated as a point. Both the 

robot and the obstacles have a time coordinate attached to them, and the obstacle 

trajectories are constrained to be represented as quadratic parametric equations 

in time. 

To plan a path, Lamadrid's collision detection module finds the first 

collision point of the robot with any object along a straight-line trajectory from 

the starting point to the goal. When a collision is predicted, the replanner 

uses one of two methods for replanning the path at the collision point. The 

first method, the tangent method, involves the computation of a vector which 

is tangent to the colliding obstacle. According to a specified formula, the path 

is then directed along the tangent line to a subgoal located at a distance no 

greater than the radius of the colliding obstacle. The second replanning method, 

the field method, uses Khatib's artificial potential fields. The subgoal point is 

first computed using the tangent method, and then the artificial fields are used 

to move the computed subgoal to a more effective point. After computing this 

subgoal point, the algorithm then attempts to plan a straight-line path from the 

start to the subgoal, and then from the subgoal to the original goal. Although 

the A void system offers an interesting approach to the navigation problem, it will 
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not typically produce optimal results, since the optimal path to the goal may not 

entail aiming directly at the goal at each planning step. 

Of the algorithms described in the previous section, only Khatib's artificial 

potential field algorithm [33] seems to be readily adaptable to a dynamic 

environment. By allowing the artificial potential fields to continuously vary 

in time with the obstacle movement, the robot's planning algorithm is able to 

compensate for the object movement. The remainder of Khatib's approach would 

remain unchanged, and should, in theory, work equally well for moving obstacles 

as for static obstacles. 

Unfortunately, extensions to the remainder of the previously described 

algorithms to allow the robot to deal with moving obstacles are difficult to achieve, 

although not impossible. To accomplish this, the algorithms must be expanded 

to include the expression of time, most likely as an added dimension to the world 

representation. Thus, rather than searching a two- ( or three-) dimensional graph 

or tree structure, a three- ( or four-) dimensional representation must be searched 

to find a valid path through time. 

Recall that the visibility graph approach employed a network of straight 

line segments connecting each obstacle vertex with the remaining visible vertices. 

Extending this representation to moving obstacles results in curved surfaces 

replacing the straight-line segments between vertices, due to the movement of 

the obstacles relative to each other. To locate a path to the goal, a search of this 

collection of curved surfaces must then be performed·- a difficult and complicated 

process. However, the algorithm developed in this thesis is similar to the visibility 

graph approach, in that the points in space at which the robot and the obstacles 

meet tangentially are searched in a manner analogous to the two-dimensional 
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visibility graph method for static obstacles. This approach obviates the need to 

search the complex aggregation of curved surfaces for a path. 

The extension to both the Voronoi diagram and the generalized cones 

approaches yields a representation resembling the extension to the visibility graph: 

a collection of curved surfaces. In this case, however, rather than representing the 

connections between the obstacle vertices, the curved surfaces represent paths at 

which the robot would remain as far as possible from the obstacles. Although 

this characteristic is appealing in a navigation algorithm for moving obstacles, it 

likewise requires the difficult search of the complex curved surfaces to find suitable 

robot paths. 

Expanding the quadtree methodology to handle movmg obstacles is 

particularly cumbersome, since the quadtree representation of free space does 

not localize the effect of obstacles. Thus, the entire tree representation of the 

world could potentially change due to a moving obstacle, rather than merely one 

or two branches of the tree. The tree representation would then be changing so 

often that the development of feasible paths would be difficult. 

Other studies related to the dynamic environment path planning problem 

include work by R. M. Salter [67], J. W. Boyse [36], and S. Cameron [8]. These 

investigations, however, center around the detection of collisions between moving 

objects, without extending the research to the planning of paths based on the 

collision detections. 
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CHAPTER 3 

DETAILS OF PATH PLANNING 

3.1 REPRESENTATIONS AND EQUATIONS OF MOTION 

3.1.1 Robot. The use of configuration space for navigation planning 

allows the robot to be viewed as a point such that any safe path derived for the 

point robot in configuration space will be safe for the actual robot in Cartesian 

space. Since the robot is operating in a dynamic world, this point representation 

must be extended to represent the passage of time. A desirable characteristic of 

the selected robot representation should be its ability to specify all valid locations 

of the robot in the two-dimensional x, y plane during the passage of time t. This 

characteristic is needed to ascertain all of the potential collision areas of the robot 

with the obstacles. For a constant robot speed, a cone representation of the robot 

possesses exactly this characteristic: it provides the two-dimensional coordinates 

of the possible robot locations at any value of time from a given starting location. 

Figure 5 illustrates the conical robot representation. 

To derive the equation of the robot motion using this representation, first 

let ( x 0 , y0 ) be the starting location of the robot at time t = 0, and let v be 

the constant velocity of the robot. For any given value oft, the possible robot 

locations form a circle with a general equation of: 

(x - xo)2 + (y - Yo)2 = (radius)2 

The radius of the circle equals the distance traveled by the robot in time 

t at constant velocity v from its starting location. Thus, 

(radius)2 = (vt) 2 
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Figure 5. Robot representation as a cone. 
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and the equation of the robot motion, represented as a cone, is given by: 

(1) (x - xo)2 + (y - Yo)2 = ( vt)2 

Of course, at any given instant in time during the execution of a path, the 

robot in actuality is no more than a simple point somewhere on the cone - only 

during the overall planning phase is the conical robot representation utilized. 

3.1.2 Obstacles. Using the configuration space approach requires 

the obstacles to be expanded to correspond to all possible collisions between 

the obstacles and the point robot in two-dimensional Cartesian space. This 

thesis assumes that upon initiation of the path planning process, the obstacle 

growing operation has already been applied to the obstacles, approximated by 

their bounding circles, to convert the Cartesian space representation to the 

configuration space. An obstacle growing operation such as that described by 

Lozano-Perez and Wesley in [42] is useful for this purpose. 

Once the obstacles have been grown, it is necessary to define those areas 

of configuration space which are swept out by each moving obstacle over time. 

Since the obstacle representation in the two-dimensional x, y plane is circular, the 

area swept out by an obstacle over time is in the shape of a sheared cylinder (see 

figure 6). To derive the equation of obstacle motion, let 0 equal the direction 

of obstacle motion, k equal the constant velocity of the obstacle, (Xstart, Ystart) 

equal the starting location of the obstacle, and r equal the radius of the obstacle 

bounding circle in the configuration space. Next, note that the base of the sheared 

cylinder is a circle with the initial equation: 

(2) (x - Xstart)
2 + (y - Ystart)

2 = r 2 

As time passes, the radius of the sheared cylinder remains constant ( since 

the obstacle is assumed to be rigid), but the location of the center of the circle 
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Figure 6. Obstacle representation as a sheared cylinder. 
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changes based upon the velocity of the obstacle, k, and its direction of movement, 

0. To determine the center of the circle, (xnext, Ynext), at time t, examine figure 

7. In this figure, 

0 
Xnext - Xstart 

cos = ------
kt 

• O Ynext - Ystart 
Sln = -----

kt 

Therefore, 

Xnext = kt COS 0 + Xstart 

Ynext = kt sin 0 + Ystart 

Substituting these values into (2) yields: 

(3) (x - Xstart - ktcos0)2 + (Y-Ystart - ktsin0)2 = r 2 

which is the general equation of motion of each of the obstacles. The specific 

motion equation for each obstacle is created by substituting the starting location, 

direction of movement, radius, and velocity associated with the individual 

obstacles into the above equation. Thus, at any time t > 0, the corresponding x, y 

values provide the boundary equation of the obstacle. In this thesis, the resulting 

obstacle representation implies collisions only when the robot is in the interior of 

the obstacle boundary; locations along the border of the obstacle representation 

are not collisions. 

3.2 DERIVING INTERSECTION EQUATION 

In order to determine the points at which the robot and the obstacles 

meet tangentially, it is first necessary to calculate all the points at which the 

robot could collide with each of the obstacles. The general intersection equation 

is derived by first solving for x in equations (1) and (3), the general equations of 
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Figure 7. Geometry of motion of obstacle center. 
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robot and obstacle motion. Equation (1) then becomes: 

(4) x = xo ± J(vt)2 - (y - Yo) 2 

and equation (3) becomes: 

(5) X = Xstart + ktcos0 ± Jr2 -(Y-Ystart - ktsin0) 2 

The intersection curve can then be determined by setting equations ( 4) 

and (5) equal to each other, and solving for yin terms oft. Setting the equations 

equal yields: 

Xo ± J( vt)2 - (y - Yo) 2 = X8 tart + kt cos 0 ± Jr2 - (y - Ystart - kt sin 0)2 

Significant algebraic manipulation is required to solve this equation for y 

in terms oft, eventually leading to the following intersection curve: 

(6) 

where: 

ay2 +by+ c = 0 

a = 2(YstartYo + ktyo sin 0 - ktystart sin 0) - y;tart 

- k2 t2 sin2 0 - (xo - Xstart - kt cos 0)2 
- Y5 

b = 2r2yo - 2(-Ystart - ktsin0)(v2t2 -y5) 

- 2yo(-Ystart - kt sin 0)2 + ( (xo - X8 tart - kt cos 0)2 
- r 2 

- v2 t2 + 2kty start sin 0 + k2t 2 sin 2 0 + Y5 + y;tart) 

X (Ystart + ktsin0 + Yo) 

2 2t2 2 2 ( kt · 0)2( 2t2 2) c = r v - y0 r - -Ystart - sm v - Yo 

-i ( (xo - Xstart + kt cos 0) 2 
- r 2 

- v2t2 

+ 2kty., • .., sin 8 + k2t 2 sin2 8 + y~ + v!,.n) 
2 
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Thus, the solution for y is given by: 

(7) 
-b± Jb2 -4ac 

y= 
2a 

This equation provides all possible x, y coordinates of intersection between 

the robot and the obstacles for selected values oft. The most effective choices 

for values oft are in an arithmetic progression t0 , t1, ... , tn where ti = ti-l + 

6t, to = 0, and tn = tmax• (This approach has also been used by Cameron (8] to 

detect collisions.) The selection of 6t is quite important, since solutions may be 

missed if 6t is too large, or time could be wasted if 6t is too small. Cameron (8] 

has experimented with the selection of 6t, and has developed procedures useful 

for varying the value of 6t based upon the distance between objects and their 

speeds. The approach taken by this thesis is to select a constant value of 6t, which 

has proven effective in the implementation. The selection of tmax is somewhat 

application-dependent and determines how far into the future the intersection 

curves are detected. The value of tmax should be assigned to be at least equal to 

the time required for the robot to travel a straight-line path to the goal. Figure 

8 gives two examples of the shape of the intersection equation projected onto the 

x, y plane. 

Note that sections of the intersection curve correspond to intersections 

which can never occur in actuality. These portions of the curve reflect the 

impossible real-world situation in which the robot collides with an obstacle on 

one side, then travels through the interior of the obstacle to intersect the opposite 

boundary of the obstacle. However, these sections of the curve do not cause a 

problem to the planning methodology, which is able to plan successfully in spite 

of this situation. 
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Figure a. Intersection curve with two continuous regions. 

intersection r:urve 
9-1so0 

k • 1 

B 
(xstart, 

ystart) 

• (xO,yO) 
V • 2 

--------------------------x 

Figure b. Intersection curve with one continuous region. 

Figure 8. Sample intersection curves. 
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3.3 COMPUTING THE DERIVATIVE OF THE INTERSECTION 

EQUATION 

Once the intersection equation for each obstacle has been determined, 

the location of the tangent points must be computed. The tangent points are 

those locations in time at which the robot and the moving obstacles will meet 

tangentially. The first derivative of y with respect to x of the intersection equation 

is useful in calculating these tangent points. To compute the derivative, the 

intersection equation must be solved in terms of x and y, factoring out the t 

variables. First, the equation of motion of the robot, equation (1), must be 

solved fort, yielding: 

J(x - xo)2 + (y - Yo)2 
t = -'---------------------

v 

This equation can then be substituted into the intersection equation (6), 

resulting in: 

(8) 

0 
2 (

2 
2kyo sinOJ(x - x0 )

2 + (y - y0 )2 = Y Ystart Yo + -------'---...;.__...;.__----
v 

2kYstart sinBJ(x - xo)2 + (y - Yo)2 
V 

2 k2 sin2 B((x - xo)2 +·(y - Yo)2) 
- Ystart - v2 

( 
kcosBJ(x - xo)2 + (y -yo)2

)
2 

2) 
- Xo - Xstart - - Yo 

V 

( 2 2 2 
( ksinOJ(x - x0 )2 + (y-y0 )2)2 

+ Y r Yo - Yo -Ystart - ----'-------------------...;._ 
V 

( 
ksin0J(x-xo)2 +(y-yo)2 ) + Ystart + ----a.._;_ __ .;...__.;..._ ______ + Yo 

V 

(( 
kcosBJ(x - x0 ) 2 + (y -y0 ) 2 )

2 
2 

X Xo - Xstart - ------------- - r 
V 

(( )2 ( )2) 2kYstartsin0J(x-xo)2 +(y-yo)2 

- x - Xo + Y - Yo + ----------------
v 
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k2 sin2 B((x - xo)2 + (y - Yo)2) 2 2 ) 

+ 2 + Yo + Y start 
V 

( 
ksinB✓(x - x0 ) 2 + (y -y0 )2) 

- 2 -Ystart - ---------------...:..--..;..... 
V 

x ((x - xo)2 + (y - Yo)2) 

2 2 ( ksin8✓(x-xo)2 +(y-yo)2)) + Yo -Ystart - -------------'------...;._ 
V 

+ r2((x - xo)2 + (y - Yo)2) - y~r2 

( 
ksinB✓(x - x0 )

2 + (y- y0 ) 2 )
2 

- -Ystart -
V 

X ((x - xo)2 + (y - Yo)2) + Y~ (-Ystart 

_ ksin8J(x - x:)2 + (y - y0)2) 2 

- ¼ ( ( Xo - x,,.,, - kcos 8J(x - x:)
2 + (y - Yo)

2)r -,2 

(( )2 ( )2) 2kYstartsin8J(x-xo)2 +(y-yo)2 
- x - Xo + Y - Yo + ------'----------

v 

k2 sin2 8((x-xo)2 +(y-yo)2) 2 2 )
2 

+ 2 + Yo + Ystart 
V 

The derivative * is typically determined by solving the equation for y 

in terms of x and computing the derivative of the right-hand side with respect 

to x. However, solving equation (8) for either x or y involves an overwhelming 

amount of tedious algebraic manipulation. Therefore, implicit differentiation is 

used to calculate the derivative of each term with respect to both x and y. After 

considerable simplification, the following equations result: 

. k(x - xo) ( 
dxvariable = J y · eqn( -2yo cos 8 + 2y cos 8 

v (x - xo)2 + (y - Yo)2 

- 2Ystart cos 8 + eqn · sin8) + sin 8 ( ((x - xo)2 + (y - Yo)2
) 
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( 
yk2 sin2 (}) 

X -2Ystart + Y + V 2 + YY;tart + 2YYstartYO + 2Y5Ystart 

+ 2y2yo - 2y2Ystart - 2yy5 - 4YYoYstart + 2yy;tart - r2y + YY5)) 

+ 2J(x - xo)2 + (y - Yo)2 (x - xo~ky sin8 ( 1 + k2 ~~2 (}) 

(
2k2 sin2 (} 

+ (x - xo) v2 (3YYstart + YoY - 2y2 - (x - xo)2) 

( ( 
ksin8J(x - xo)2 + (y - Yo)2)

2 

+ 2 - -Ystart - -----'-"'------'-----'------'- + YYstart 
V 

k2yeqn cos(} sin(} 2)) 
- v2 -YYo + r 

1( 2 2 2 2 - 2 eqn - r +Yo+ Ystart 

+((x-xo)2+(y-yo)2)(k
2

~~
28 -1) 

+ 2ky,,.n sinOJ(x: x0)2 + (y -y0)2) 

X (2cx - xo) ( -keqn cos(} 
vJ(x - xo)2 + (y - Yo)2 

kYstart sin(} k2 sin2 (})) 
-1+--=============+---

vJ(x - xo)2 + (y - y0)2 v2 

dyvariable = k(y-yo) (ysin8(((x - xo)2 + (y-y0 )2) 
vJ(x - xo)2 + (y - Yo)2 

( k2 sin 
2 8) 2 2 

1 + V 2 + 2yyo - 2YYstart - Yo - 2yoYstart + 3Ystart 

+ eqn2 - r2) + 2eqn cos 8(y2 - YYstart - YYo) 

+ 2sin8ystart(-((x - xo)2 + (y - Yo)2) + y5)) 
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ksin0✓(x - xo)2 + (y - Yo)2 + __ .....:;._ ____________ _;_ 
V 

X ( 2y(-2Ystart + 2y + (y - Yo) (-1 + k
2 

~:

2 0
)) 

( 
k2 sin

2 0) + ((x - xo)2 + (y - Yo)2) 1 + v2 

- Y5 + 3y;tart + eqn
2 

- r
2 + 2YoYstart) 

(
k2 sin2 0 

+ ((x - xo)2 + (y - Yo)2) v2 (3Ystart - 2y + Yo) 

) 

2 2k2 sin2 0(y-y0 ) 

- Ystart - Yo + eqn (-2y + Ystart +Yo)+ v2 

X (-YYo + 3YYstart - Y2 + Y5 - ((x - xo)2 + (y - Yo)2)) 

+ Ystart (-2YYstart + 2y2 + 2((x - xo)2 + (y - Yo)2) - Y5 

-r2 + 2yoy + y;tart + YoYstart) + Yo (r2 

( 
ksin0✓(x - x0 ) 2 + (y -y0 )2) 2 

- 2 Ystart + --....:....-'-----'----'---___,;__ 
V 

2 2 , 2) ( )(-2k
2 yeqnsin0cos0 2 2 

- Y -r Yo + Y - Yo 2 + r 
V 

( 
ksin0✓(x - xo)2 + (y - Yo)2

)
2

) 
- 2 Y start + --....:....-'-----'----'---___,;__ 

V 

1( 2 2 2 ( 2)( k
2

sin
2
0) - 2 eqn - r + ( ( x - Xo) + y - Yo) -1 + v2 

2kYstart sin0✓(x - xo)2 + (y - Yo)2 
2 2 ) + ____::~---~...;___.....;..:._....:.;;__.;;..,...:;_ + Yo + Y start 

V 

( 
-2keqncos0(y -yo) 

x v✓(x - xo)2 + (y - Yo)2 

2( ) 
2kYstartSin0(y-yo) 

- Y - Yo + --:============= 
v✓(x - xo)2 + (y - Yo)2 

2k2 sin2 
0(y - Yo)) 

+ 2 
V 
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where 
k cos 8J(x - xo)2 + (y - Yo) 2 

eqn = Xo - Xstart -
V 

The derivative * is then computed as follows: 

dy dxvariable 
-=-----
dx dyvariabl e 

(9) 

This equation provides the derivative at any point (x, y) which is a valid 

solution to the intersection equation (7). The following section discusses the 

usefulness of this derivative information. 

3.4 FINDING TANGENT POINTS 

Using the derivative of the intersection equation to calculate the tangent 

points is very straightforward after one observation: at a valid tangent point, the 

value of the derivative, *, will be the same as the slope of the line connecting the 

robot's current location and the intersection point. An analysis of the intersection 

curve will show why this observation must be true. 

Consider the rays which emanate from the current location of the robot. 

These rays will intersect the intersection curve at either zero, one, or two points. 

Two crossings indicate that the robot would (if physically possible) collide with 

one side of the obstacle, travel through the obstacle, and leave through the back 

side of the obstacle. On the other hand, if the robot were to travel along a ray 

which did not intersect the intersection curve, it would not meet the obstacle at all. 

Finally, if the robot were to travel along a ray which intersected the intersection 

curve exactly once, it must skim the obstacle tangentially. At such a tangent 

point, the relative velocities of the robot and the obstacle will be such that the 

robot and the obstacle will travel apart. If this were not true, the robot would 

be trying to enter the obstacle and there would then be two distinct intersection 

points. 
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The tangential rays will intersect the intersection curve at the points at 

which the value of the derivative is the same as that of the intersecting ray. 

Thus, as each intersection point is computed, the derivative at that point can 

be calculated. The point can be classified as a tangent if it is within a small 

threshold of the slope of the intersecting ray. Notice that an exact match of 

slopes is unlikely due to the selection of the evaluation values of t. However, 

the match is close enough to give excellent experimental results, as described in 

Chapter 5. Figure 9 depicts an example of the intersection curve, the computed 

slopes, and the selected tangent points. 

3.5 MODIFYING TANGENTS TO AVOID COLLISIONS 

An analysis of the geometry of the robot and obstacle relationships shows 

that when a selected tangent point lies on the leading edge of an obstacle which 

is moving faster than the robot, the only subsequent option for the robot after 

reaching the tangent is to continue along its path until it has cleared the obstacle. 

If the robot tried to turn in towards the obstacle, it would immediately collide 

with the obstacle, while a turn away from the obstacle would result in a non

optimal path. Therefore, to save processing time, the tangent is extended to the 

point at which the obstacle is cleared. The following sections discuss how this 

extension is calculated. 

3.5.1 Detecting Whether a Tangent is on a Leading or a 

Trailing Edge. Determining whether a tangent is on a leading or a trailing edge 

involves a geometrical analysis of the tangential meeting between the robot and 

the obstacle. Figure 10 shows the obstacle location at time t - the time at which 

the robot reaches the tangent point, V, or (xv,Yv). As before, (xstart,Ystart) is 

the starting position of the obstacle, k is the velocity of the obstacle, and Bis the 
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Figure 9. Intersection curve with slopes and selected tangent points. 
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Figure 10. Geometry of tangential meeting of robot and obstacle. 
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direction of obstacle travel. The center of the obstacle at time t is given by: 

by: 

or, 

(xp,Yp) = (x.,tart + ktcos0,y.,tart + ktsin0) 

The angle /3 from the current obstacle center to the tangent point is given 

/3 t -1 Yv - Yp = an 
Xv -Xp 

/3 
_1 Yv - Ystart - kt sin 0 = tan 

Xv - X.,tart - kt COS 0 

The tangent point (xv, Yv), then, is on the leading edge if the angle /3 lies 

in the range: 

[0 - 90°, 0 + 90°] 

Thus, detecting whether a tangent is on a leading or a trailing edge 

requires computation of the angle /3, followed by a simple comparison to the 

angle range above to determine the tangent's location on the obstacle boundary. 

3.5.2 Extending a Tangent. The extended tangent point must reach 

a distance r, the obstacle's radius, from the path of obstacle motion in order to 

clear the object. Figure 11 shows the initially selected tangent V and the desired 

extended tangent S. The first step towards calculating point Sis to compute the 

intersection point, I, between the line of obstacle movement, l, and the line of 

robot movement, p. The equation of line p can be derived as: 

Yv -yo 
Y = ---( x - xo) + Yo 

Xv - Xo 

The equation of the line l is given by: 

y = tan0(x - X.,tart) + y.,tart 
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Figure 11. Geometry for extension of tangent. 
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while the intersection of the two lines at (xr,Yr) can then be computed to be: 

Xstart tan 0 - Xo( ;":;~)+Yo - Ystart 
XI - " 

- tan0-Jhc.J/.Q. 
x.,-xo 

YI = tan 0(xI - Xstart) + Ystart 

Once the intersection point has been derived, the current distance, d, of 

the tangent point from the line of obstacle travel can be calculated as: 

where a is the acute angle at which lines p and l meet. As can be seen in figure 

11, the extended tangent, S, will be the point at which the distance from N to S 

equals the radius of the· obstacle, and the distance from M to S equals the radius 

minus the value of d. Thus, the extended tangent (x 8 , Ys) will cause both of the 

following equations to hold true: 

where 

sina✓(xs - xv)2 + (Ys - Yv? = r - d 

sina✓(xs - XJ ) 2 + (Ys -yr )2 = r 

The solution to this system of equations is given by: 

-b± ✓b2 -4ac 
Xs = 2a 

a= l + (Yv - YI )2 
(xv-xr)2 

(Yv - YI )2 ( Yv - YI 
b = -2xv - 2xr ( )2 + 2 YI - Yv) 

Xv - XJ Xv - XI 

2 2 (Yv - YI )
2 

( ) Yv - YI 
c=xv+xr( )2 -2xr yr-Yv 

Xv-XJ Xv-XJ 

2 (r - d)2 
+(YI-Yv) - . 2 

Sln a 
The originally computed tangent point Vis thus replaced by the extended 

tangent point S, or (x 8 , Ys) to allow the robot to clear an obstacle moving faster 

than the robot. 
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3.6 ANALYZING THE VISIBILITY OF THE TANGENT POINTS 

Once the tangent points for each obstacle have been calculated, it is 

necessary to determine the visibility of each of the tangent points; i.e., whether 

each tangent point can be reached by the robot without colliding with another 

obstacle on route to the tangent point, and thus visible, or whether the tangent 

is unreachable by the robot, and thus hidden. An examination of the intersection 

curves will provide insight on how the visibility analysis can be successfully 

accomplished. As can be seen in figure 9, the function depicting the intersection 

points of the robot and an obstacle is characterized by continuous regions of 

collision and regions which have no solution, corresponding to those positions 

at which the robot and the obstacle will not collide. In each of the continuous 

regions, due to the circular obstacle representation in the x, y plane, at most two 

tangents will exist - one on either side of the obstacle. The region swept out 

behind the two tangents is unreachable by the robot. For each obstacle, there 

may be up to two continuous regions of the intersection curve, for a total of four 

possible tangent points per obstacle. The four tangent points correspond to the 

physical situation in which, due to a difference in robot and obstacle speeds, the 

robot can tangentially meet both the leading and the trailing edges of an obstacle 

twice. In figure 12, points P, Q, R, and S are the tangents of the intersection 

curve resulting from one obstacle, and points T, U, V, and W are the tangents 

of the intersection curve resulting from a second obstacle. Note that tangents T 

and W are hidden from the robot, because they are in the regions swept out by 

lines AP and AQ, and lines AR and AS, respectively. Thus, any tangent which 

would require the robot to travel a path crossing the intersection curve, or through 

another obstacle, must be marked as hidden. Of course, this situation must only 

be considered when more than one obstacle is present in the environment. 
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Figure 12. Sample intersection curve with hidden and visible tangents. 
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The exact location of the robot at any instant of time while it moves 

toward a tangent (xv, Yv) from its starting location (xo, Yo) is given by: 

(10) x = x0 + vtcosa 

(11) y = y0 + vt sin a 

where a is the direction of robot travel to the tangent and is given by: 

(3) 

t -1 Yv -Yo 
a= an 

Xv -Xo 

Recall the equation of obstacle motion, repeated here for convenience: 

(x - Xstart - ktcos0)2 + (Y-Ystart - ktsin0)2 = r 2 

To find the possible collisions of the robot and an obstacle along the 

path to a tangent point which is associated with a different obstacle, substitute 

equations (10) and (11) into (3) to result in: 

(xo + vtcosa - Xstart - ktcos0)2 +(Yo+ vtsina -Ystart - ktsin0)2 = r 2 

Solving for t in this equation gives: 

(12) 
-b± Jb2 -4ac 

t=------
2a 

where: 

a= v2 cos2 a - 2kv cosacos0 + k2 cos2 0 

+ v2 sin2 a - 2kv sinasinB + k2 sin2 0 

b = 2vxo cos a - 2xok cos 0 - 2XstartV cos a+ 2Xstartk cos 0 

+ 2vyo sin a - 2yok sin 0 - 2YstartV sin a + 2Ystartk sin 0 

_2 2 2 2 2 2 2 
C - Xo - XoXstart + Xstart + Yo - YoYstart + Ystart - r 
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The real-valued solutions for t, if they exist, provide the times at which 

the robot would collide with this obstacle along its path to the tangent point. 

The time required for the robot to reach the tangent is equal to: 

✓(xv - xo)2 + (Yv - Yo)2 

V 

Thus, if the solutions fort in equation (12) lie in the time interval: 

then the path to the tangent point will result in a collision of the robot with 

this obstacle, and the tangent point should therefore be marked as hidden. This 

process should be repeated for each obstacle in the environment to finalize the 

decision on the visibility of the tangent. Only after failing to find collisions with 

any obstacle should the tangent be declared visible. 

3.7 ANALYZING THE VISIBILITY OF THE GOAL 

Detecting whether the goal is visible or hidden is analogous to determining 

the visibility of a tangent point, as described in the previous section. The only 

variation is in the range of time for which solutions oft imply a collision. The 

range of time in this case is given by: 

where the goal is given by (xgoal, Ygoal). Thus, each obstacle must be examined 

to determine if it causes a collision with the robot along the path to the goal. If 

no obstacle produces such a collision, the goal can be marked as visible and is 

reachable from the current tangent point. 
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CHAPTER 4 

PATH PLANNING ALGORITHM 

The path planning algorithm developed in this thesis is analogous to the 

visibility graph method for two-dimensional static environments, using an A* 

search to find the path to the goal. After computing the intersection equations and 

using the derivative information to find tangent points from the robot's current 

location, new paths are formed to each of the visible tangents and are assigned a 

cost. This cost is the sum of the elapsed time along the path to the tangent, plus 

a heuristic estimate of the amount of time remaining until the robot reaches the 

goal. The estimate of remaining time is equal to the time that would be required 

for the robot to travel a straight-line path to the goal from the current tangent 

point. The list of possible paths is stored in ascending order by cost, and the 

next tangent to be expanded is the last node on the path with the least cost. The 

process of expanding least-cost tangents is repeated until the robot reaches the 

goal, or until a maximum planning time is exceeded. 

Given the starting location of the robot, ( x0 , Yo), the goal to be reached, 

(xgoal, Ygoal), the speed of the robot, v, the set O = { 01, ... , Onobst } giving data 

on the starting location, speed, radius, and direction of motion of each of the 

obstacles, and the maximum planning time (max-plan-time), the details of the 

path planning algorithm are as follows: 

I. Create an initial path from the robot's starting location (xo, y0 ) to nowhere, 

having an initial cost of zero. This path becomes the only path in S, the set 

of potential paths to the goal. 

45 



II. While the last tangent, TZ, of the first path in S, Sl, is not equal to the 

goal, and the elapsed time of the path Sl is less than max-plan-time, do the 

following: 

A. Determine if the goal is reachable from the last tangent of the first path 

in S. If so: 

1. Modify Sl by concatentating the goal point to the end of the path. 

2. Compute the cost as the elapsed time to reach the goal. 

3. Insert the modified path into S in ascending order according to this 

cost. 

B. Else (i.e. goal not visible) 

1. Expand the last tangent, T Z, of the first path in S to find the new set 

of tangents T = { T1 , T2 , ... , Tn } which are reachable from TZ. This 

is achieved as follows: 

a. Initialize the set T to the empty set {}. 

b. For each obstacle Oi in 0, i = 1, ... , nobst: 

(1) Compute the intersection curve of the obstacle's sheared 

cylinder and the robot's conical representation. 

(2) Compute the derivative * of the intersection curve. 

(3) Find the set of tangent points Ui = { Ui1 , Ui2, ... } along the 

intersection curve. 

( 4) Extend the tangent points of Ui by doing the following for each 

Ui; in U which corresponds to an obstacle moving faster than 

the robot: 

(a) Determine if Ui; is on the leading or trailing edge of the 

obstacle. 
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(b) If Ui; is on the leading edge, do the following: extend the 

tangent Ui; to the point at which it clears the obstacle; 

replace Ui; with the newly extended tangent. 

c. Determine the visibility of the tangent points in the Ui; sets, i = 
1, ... , nob.st found in step II.B.1.b. Add all visible tangents Ui; to 

T, forgetting all hidden tangents. 

2. Remove S1 from S, saving a copy. Then, for each tangent Tk in T: 

a. Create a new path by concatenating Tk to the end of the copy of 

S1. 
I 

b. Compute the cost of the new path by adding the elapsed time to 

reach tangent Tk and the estimated time to reach the goal, from 

Tk. 

c. Insert the new path into Sin ascending order by cost. 

III. If the last tangent of Sl equals the goal, announce success; 

Else, announce failure 

The complexity of the node expansion used by this algorithm is related 

to the number of tangent points found from the current robot location. For 

each obstacle, the maximum number of tangent points reachable from the current 

location is four, as illustrated in figure Sa on page 29. Thus, the maximum 

total number of tangents which can be found from the current robot location is 

4 x nob.st, where nob.st equals the number of obstacles in the environment. Thus, 

the complexity of the node expansion is O(nob.st). It is interesting to note that 

the maximum number of tangent points per stationary obstacle is two rather 

than four. Thus, the moving obstacle problem can be twice as complex as the 

stationary obstacle problem, although both are O(nob.st) for a node expansion. 
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CHAPTER 5 

RESULTS 

The robot navigation algorithm described in this thesis has been 

implemented in the C programming language and has demonstrated the ability to 

successfully plan paths for a robot amidst moving obstacles. Figures 13 through 

17 give computer output of several example paths planned by the algorithm. 

These figures are actually a series of snapshots of the robot executing its path 

while the obstacles move. Note that in these pictures, the endpoint of the line 

depicting the robot path is the actual location of the robot. Intersections of other 

portions of the line with an obstacle are not a problem, since they merely indicate 

that an obstacle is traveling in an area where the robot has already passed. (In 

these diagrams, the jagged edges of the obstacles and the robot path are due to 

the resolution of the computer graphics equipment rather than the navigation 

algorithm.) 

Figures 13 and 14 illustrate the robot curving around obstacles, while 

figure 15 demonstrates the algorithm's ability to detect when no collisions will 

occur on the path to the goal. Figure 16 illustrates a robot path with sharp 

corners - a situation which will occur when the robot has cleared an obstacle 

moving faster than the robot. An actual real-world mobile robot may or may not 

be able to execute a path with such sharp turns, depending upon the capabilities 

of the specific robot. If not, some type of path-smoothing algorithm must be 

included to result in a path which can be successfully executed by the robot. 

Figure 17 illustrates a situation in which the ability to vary the robot 

speed would be useful. In this example, the robot is moving faster than the 

obstacle, which travels directly over the goal point. To reach the goal, the robot 
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Figure 13. Example one: Robot pa.th with one obstacle. 
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Figure 13, continued. 
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Figure 14. Example two: Robot path with two obstacles. 
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Figure 14, continued. 
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Figure 15. Example three: Robot path directly to goal. 

53 



---,· ., 

' ) \ . / ·---· 

Figure 15, continued. 
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Figure 16. Example four: Robot path with sharp turn. 
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Figure 16, continued. 
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Figure 16, continued. 
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Figure 17. Example five: Robot path curving entirely around obstacle. 
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Figure 17, continued. 
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must actually circle the obstacle until the goal is visible. Although the derived 

path is optimal for the constant robot speed, a shorter path could be obtained if 

the robot slowed down to allow the obstacle to clear the goal without collision. 

Chapter 6 discusses the possibility of extending the algorithm to allow the robot 

speed to vary. 

To illustrate the implementation of the methodology, a complete example 

of the robot path planning follows. In this example, the robot begins at location 

(x0 , yo) = (3,1) with a constant velocity of 2 units per second, and is given the 

goal (3,15). Four obstacles share the environment with ~he robot: obstacle I has 

a configuration space radius of 1 unit, begins at location ( 4.5,3), and travels at a 

directional angle of 180 degrees (west) at a speed of 1 unit per second; obstacle II 

has a configuration space radius of 2 units, begins at location (0,6), and travels at 

1 unit per second at an angle of 0 degrees (east); obstacle III has a configuration 

space radius of 1 unit, begins at location (8,9), and travels at a directional angle 

of 180 degrees at a speed of 1 unit per second; obstacle IV has a radius of 0.5 

units, begins at location (-4,12), and travels at an angle of 0 degrees at 1 unit per 

second. This starting configuration is illustrated in figure 18. 

The first step of the algorithm requires analyzing the visibility of the 

goal from the robot's current position (3,1). Each of the four obstacles must be 

examined to determine if they would collide with the robot traveling directly to 

the goal. Solving equation (12) in section 3.6 fort for obstacle I yields intersection 

times of 1.5 units and 0.7 units. Since the time required for the robot to reach 

the goal is 7.0 units, both intersection times lie in the range given in section 3. 7: 

0<0.7<1.5<7.0 

and thus the goal is hidden. 
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Figure 18. Example six: Robot path with four obstacles. 
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Figure 18, continued. 
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Figure 18, continued. 
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Figure 18, continued. 

64 



The second step in the algorithm requires finding the intersection curves 

between the robot and each obstacle. The current implementation uses a time 

step St equal to 0.01, and detects collisions up to a maximum time equal to 1.5 

times the time for the robot to reach the goal along a straight-line path from 

the robot's starting location. The resulting initial intersection curves for this 

example are shown in figure 19. Calculating the derivative of the intersection 

curves and comparing the values to the slope of the lines connecting the robot's 

current position and the intersection points produces the tangent points shown in 

figure 20. Note that the agreement between the derivative at the selected tangent 

points and the slope to the robot is quite good. Reducing the size of the time 

step St would improve the agreement, but would slow down the search for a path. 

The next step is to extend the tangent points which lie on the leading edge 

of obstacles moving faster than the robot. The tangent which is on the leading 

edge is tangent (2.367297,3.232057), but since the robot's speed is faster than the 

speed of this obstacle, an extension of the tangent is not required. 

An analysis of the visibility of the tangents reveals that tangent 

( 4.802314,6.386466) cannot be reached without colliding with obstacle I at time 

0.602558, which is in the range [0, 2.839998] - the time during which the robot 

would travel to this tangent. Likewise, tangent ( 4.966542, 8.382562) cannot be 

reached without a collision with obstacle I at time 0.611214. The remaining 

tangents, however, are found to be visible, so new paths are created from those 

tangents, their costs are computed, and they are added to the set of possible 

paths in ascending order by cost. Since the time required for the robot to travel 

to the tangent (4.183071,2.135755) is 0.82 units and the lower bound on the time 

required for the robot to reach the goal from the tangent is 6.459265, the cost 
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Figure 19. Initial intersection curves for path example six. 
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Obstacle Tangent Slope ~isible? 
X y difference 

4.183071 2.135755 0.031992 Yes 
2.367297 3.232057 - 0.033828 Yes 

II 0.785481 4.450490 - 0.020413 Yes 

11 4.802314 6.386466 0.045894 No 
111 4.966542 8.382562 - 0.014439 No 

Figure 20. Calculated tangent points for path example six. 
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assigned to this path is 7.279265. The cost of the remaining paths is computed 

similarly, resulting in the ordering of paths shown in figure 21. 

This process is then repeated, first determining the visibility of the goal 

from the last vertex of the first path in S, (2.367297, 3.232057), and then finding 

the visible tangents from this vertex. At the conclusion of the path planning 

process, the path vertices listed in figure 22 comprise the resulting optimal path. 

Figure 18 shows a time sequence of the path being executed by the robot. In these 

figures, the endpoint of the line depicting the robot path is the actual current 

location of the robot. Note that the robot travels to the front of obstacle I, then 

curves around the back of obstacle II. The robot next tangentially meets the front 

edge of obstacle III and turns toward the goal, tangentially passing obstacle IV 

along the way. 
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cost = 7.052469 elapsed time = 1.159999 

tangent_ 1 - (3.000000, 1.000000) 
tangent 2 - (2.367297, 3.232057) 

cost - 7 .279265 elapsed time = 0.820000 

tangent 1 • (3.000000, 1.000000) 
tangent 2 • (4.183071, 2.135755~ 

cost - 7.439717 elapsed time == 2.049999 
tangent 1 • (3.000000, 1.000000) 
tangent 2 - (0. 785481, 4.450490) 

Figure 21. Order of potential paths for path example six. 
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X y t 

3.000000 1.000000~ 0.000000 

0.785481 4.450490~ 2.049999 

0.745201 4.519610~ 2.089998 

0.726966 4.555212~ 2.109998 

0.673500 4.684600~ 2.179998 

0.631406 4.838964~ ,2.259998 

0.624206 4.878310~ 2.279998 

0.613112 4.957537~ 2.319998 

0.605208 5.097314~ 2.389998 

0.617665 5.296926~ 2.489998 

0.633515 5.395661~ 2.539998 

0.655308 5.493258~ 2.589998 

0.670912 5.551193~ 2.619998 

0.688707 5.608494~ 2.649998 

0.722244 5.702703~ 2.699998 

0.785694 5.849584~ 2.779998 

2.414878 9.699017~ 4.869997 

3.000000 7.536586 15.00000 

Figure 22. Vertices of optimal path for path example six. 
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CHAPTER 6 

CONCLUSIONS/EXTENSIONS 

6.1 CONCLUSIONS 

In recent years, significant progress has been made towards the 

development of mobile robots which can perform a variety of tasks autonomously. 

Many aspects of robot intelligence and control must be addressed to successfully 

construct a functioning mobile robot. An essential component of the robot 

intelligence and control must be the navigation algorithm which enables the robot 

to find its way through its environment without colliding with obstacles. Although 

numerous approaches to the robot navigation problem have been developed 

for static environments of non-moving obstacles, substantially less work has 

been accomplished in the development of algorithms for dynamic environments 

containing moving objects. 

This thesis presents a mathematically-based robot navigation algorithm 

which has been shown to produce optimal tangent paths for constant robot speeds 

in a dynamic environment. The extensive literature review performed as part 

of this thesis revealed no other algorithm which produces optimal paths for a 

similar scenario. Mathematical representations of the constant-speed obstacles 

as sheared cylinders and the robot as a cone have been developed and used to 

derive intersection curves which predict the potential collisions between the robot 

and the obstacles. The derivative of the intersection curves was formulated and 

used to locate the points at which the robot and the obstacles meet tangentially. 

A methodology for selecting visible tangent points was developed, along with 

an overall planning algorithm using the A* search to plan an optimal path to 

the goal for a constant robot speed. The implementation of the methodology 
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demonstrated the ability of the algorithm to successfully plan optimal paths in a 

dynamic environment. 

The algorithm developed in this thesis can serve as the central planning 

module of a robot's navigation system. Actually incorporating this algorithm into 

a mobile robot would first require the development of an additional module which 

senses the environment and estimates the current size, speed, and trajectories of 

the obstacles, providing this data as input to an obstacle growing operation to 

transform the Cartesian space into configuration space. A second interface would 

be required to transform the path plans derived by the navigation algorithm into 

the control signals necessary to actually drive the robot. Additionally, decisions on 

the monitoring of the path execution must be made to allow replanning following 

changes sensed in the environment. 

6.2 EXTENSIONS 

The algorithm described in this thesis produces piecewise-linear paths 

from tangent point to tangent point until the goal is reached. However, as can be 

seen in figures 13 through 18, the paths may actually appear to be curved when 

skirting around obstacles, due to the shortness of these path segments. These 

path segments are in fact following the intersection curve around the object until 

a newly selected tangent point pulls the robot path away from that obstacle. 

While following the intersection curve around an obstacle, a selected tangent point 

along the obstacle boundary is treated identically to all other tangent points: it 

is removed from the list of possible paths, expanded to find new tangent points, 

the costs of the new paths are calculated, and the new paths are added onto the 

list of potential paths, S. In other words, the A* search procedure is invoked at 

each step around the obstacle. 
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However, invoking the A* search at each tangent found while curving 

around an obstacle may be unnecessary, since the cost of the path will change 

very little from tangent to tangent. Thus, the likelihood that the path will no 

longer be the cheapest path while curving around and obstacle is low, resulting 

in additional overhead and inefficiency when branching back into the A* search. 

The implementation of this algorithm has verified the existence of this overhead, 

since curving around obstacles slowed the planning process. 

An extension to the existing algorithm would attempt to reduce this 

overhead by recognizing when a return to the A* search is unnece~sary. If the 

only tangent point produced during an expansion of a node is a tangent which 

would cause the robot to continue to curve around an obstacle, there is no need 

to fall back into the A* search. The path should continue to be expanded until 

the goal is visible or another tangent point off of the current obstacle is detected. 

At that point, the cost of the path should be calculated, the path should be 

reinserted into the set of potential paths, S, in ascending order by cost, and the 

A* search should be reentered. In this manner, excessive overhead can be avoided 

and the search could potentially be performed quicker. A disadvantage to this 

extension is that a path which initially appears to be good could be expanded 

around an obstacle for such a long distance that the path is no longer the path 

with the least cost. Although the algorithm would eventually fall back into the 

A* search and recognize that the path was not optimal, processing time would 

still be wasted. Nevertheless, in the majority of the situations, this extension 

should save processing time. 

Note that this extension cannot apply to situations in which more than 

one tangent is found during a node expansion. Since the algorithm cannot predict 

when the robot path should leave the current obstacle, any additional tangents 
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found while curving around the obstacle could belong to the optimal path, and 

must therefore be saved. Further research is needed to determine if these points 

of obstacle departure can be predicted, and thus allow some of the intermediate 

tangent points to be forgotten. 

An additional extension to this methodology would allow the constant 

robot speed restriction to be relaxed, resulting in an algorithm which develops 

path plans based upon the optimal robot velocities for the current environment. 

To do this, consider a robot whose speed can vary in a range from Vmin to Vmax• 

The robot representation would then be replaced with a "thick-walled" cone, as 

illustrated in figure 23. The outer surface of the cone corresponds to the minimum 

velocity of the robot, Vmin, while the inner surface of the cone represents Vmax, 

the maximum robot velocity. 

Allowing the robot speed to vary creates new questions concerning the 

definition of optimality. For a constant robot speed, a path which is optimal in 

terms of time will also be optimal in terms of distance. However, paths for a 

variable-speed robot could be optimal in either time, distance, or even expended 

energy. Some situations might actually require a combination of several of the 

constraints to define an optimal path. This increase in the number of degrees of 

freedom considerably complicates the search for robot paths by causing the size 

of the search space to multiply rapidly. 

For instance, consider the search for a path which navigates the robot 

to the goal as quickly as possible. This search requires selecting an arithmetic 

progression of velocities such that Vi = Vi-1 + 8v, i = 0, ... , n, where Vo = Vmin 

and Vn = Vmax• The paths would be searched using the A* method as described 

earlier to compute the quickest path to the goal. However, this approach would 
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Figure 23. Robot representation for varying speeds. 
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be severely time-consuming, since for each increment of time, the paths with all 

increments of velocity from Vmin to Vmax must be calculated. 

The prohibitive size of the search space may necessitate resorting to 

heuristic means to derive path plans when the speed of the robot is allowed 

to vary. Heuristic approaches would use intelligent reasoning about the velocity 

relationships between the robot and the obstacles to select preferable robot speeds. 

Such approaches can improve the selected path in either time, distance traveled, 

or energy expended, but will no longer guarantee an optimal solution. For 

instance, one such procedure to optimize the path in terms of distance traveled 

would involve computing the velocities at which the robot would collide with 

the obstacles if it traveled from its starting location to the goal. Since the 

linearly moving obstacles will cross the robot's path to the goal at most once, 

each obstacle will have an associated range of robot velocities at which the two 

would collide. Figure 24 illustrates a possible scenario for three obstacles in the 

robot's environment. By selecting a robot velocity in the range from Vmin to Vi, v; 

to Vk, or vi to Vmax, the robot can travel directly to the goal without a collision, 

resulting in the shortest possible path. 

Additional heuristics would be required for controlling the selection from a 

number of valid robot speeds or the selection of a speed when no collision-free path 

to the goal exists. Likewise, each optimization criteria must have similar heuristics 

to control the search for a good path based on that optimization constraint. 

Nevertheless, whatever strategy is selected, it must be evaluated in terms of the 

nearness of the derived paths to the optimal path. A selected strategy may find 

paths quickly only at the expense of deriving paths unacceptably far from the 

optimal path. 
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Figure 24. Example of ranges of optimal robot speeds. 
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