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ABSTRACT 
 

Switchgear rooms are crucial in containing essential equipment such as cabinets 

and cable trays in case of a possible fire. There are three fire model classes which are 

algebraic models, zone model, and computation fluid dynamics model (CFD). PyroSim 

software, a visual user interface for the Fire Dynamics Simulator (FDS) developed at the 

National Institute of Standards and Technology (NIST), was used for simulation by using 

the CFD. Two different 464 kW and 1002 kW heat release rate (HRR) values were used 

under the same conditions for the fire scenario. By considering a fire scenario, the fire 

ignited due to an electrical fault in bundles of PE/PVC cables in the cabinet. In addition, 

this fire modeling scenario determined whether the cabinet fire caused any secondary 

fires in the other side cabinets or the horizontal cable trays above the cabinets and at what 

time these secondary fires occurred.  
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Chapter 1 Introduction  Nuclear Power Plants and Nuclear Fire Safety 

 

 Nuclear power plants are complicated. They have many different systems 

designed to work well in both usual and unusual situations. A nuclear power plant must 

handle a considerable amount of energy while keeping everyone very safe. All of the 

system's functions must be controlled in a way that guarantees their operation and 

reliability. The equipment used must hold up over time despite being exposed to extremes 

of temperature, pressure, humidity, radiation, vibration, and shaking, such as from 

earthquakes [1].  

 

Uncontrollable fires in nuclear power plants pose a significant threat to facility 

safety. Since a fire that damages some of these systems could make it unsafe for a nuclear 

power plant to run. In recent years, the Nuclear Regulatory Commission (NRC) has given 

much thought to figuring out how well power plant fire protection works. As a result, the 

Nuclear Regulatory Commission (NRC) has initiated a wide-ranging research program in 

fire protection, a significant amount of which focuses on the conduct of fire-hazards 

evaluations. Some of this attention has been given in the form of rules and regulations 

right after the Browns Ferry Fire in 1975. Other work has been done with the long-term 

aim of understanding how fires happen in nuclear power plants [1], [2]. 

 

Combustion is a chemical reaction that occurs due to the combination of 

flammable materials with heat and oxygen under appropriate conditions. On the other 

hand, fires the combustion event in which these mergers occur involuntarily [3].  

 

Many of the combustible materials in nature are fossils with organic compounds. 

If there is a high temperature in any environment and sufficient oxygen for combustion in 

the same environment, the combustion of all materials can be achieved. There are 

Carbon, Sulfur, Phosphorus, and Hydrogen in the structural combinations of combustible 

materials. Combustible materials exist in nature in three forms: solid, liquid, and gas. 

Oxygen is a colorless and odorless gas that does not show combustion but causes 
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combustion. The air in a clean environment contains 20% oxygen under ideal conditions. 

In cases where the oxygen rate does not fall below 16%, combustion occurs. If it falls 

below this rate, the burning starts to go out. If it falls below 14%, explosion does not 

occur [4].  

 

Not taking fire protection measures or not taking care of the equipment on time, 

not using appropriate materials, negligence, natural events, accidents, and carelessness 

are the most common causes of fire [5].  

 

The primary purpose of the fire is to prevent the formation of smoke. Because 

smoke is the most important cause of loss of life due to fire. For this, the materials used 

in the design phase should be selected from materials resistant to combustion or do not 

emit harmful gases. For example, using halogen-free, non-flammable cable instead of 

halogen cable will prevent toxic materials that may occur in fires that may arise from 

electrical panels. Halogen materials fluorine, chlorine, bromine, etc., contain harmful 

chemicals. Apart from this, structural measures such as building architecture, 

determination of escape routes, and creation of fire compartments should be taken. 

Despite all these precautions, it is necessary to direct the smoke and make evacuation 

programs without harming people against a fire that may occur. So that, the most 

prominent cause of death from fire is loss of life due to gases and fumes, accounting for 

45% of all fire-related deaths [6]. 

 

1.1 The Fundamentals of Fire 

 

1.1.1 Fire and Flame 

 

The fire of a substance releases heat, light, and various reaction products. Other 

oxidation processes, such as rusting and digesting, are not discussed. The flame is the 

visible part of the fire and is made up of burning hot gases. The gases may get ionized 
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and form plasma if heated sufficiently. The color and intensity of the flame vary 

depending on the materials that are burning, and any particles present outside. 

Conflagration is the most common type of fire, and it has the capacity to cause bodily 

harm by burning[7]. 

Fires begin when a flammable or combustible substance is exposed to a source of 

heat or an ambient temperature that is greater than the material's flash point, in 

combination with an oxidation environment that is conducive to sustaining a chain 

reaction for fast oxidation[8]. 

1.1.2 Fire Triangle 

 

For ignition and combustion to occur, three components, heat, oxygen, and fuel, 

must be present in a particular combination. This is known as the fire triangle, as seen in 

figure 1. If any of the three are missing or out of equilibrium, ignition or combustion 

cannot occur. Variations in heat, oxygen, and fuel balance influence the intensity of a fire 

and decide whether it will smoke and develop slowly or flame brightly and spread 

quickly. All these components must be present and in the proper amounts for fire to exist. 

The fuel component of this fire triangle might be solid, liquid, or gas. However, 

solid, or liquid fuels must be heated sufficiently to evaporate before they can be burned. 

Therefore, this triangle's oxygen and heat components must be sufficient to allow for fast 

oxidation. Different fuel sources will typically require oxygen and heat variables[8]. 

 

1.1.3 Fire Phases 

 

The burning process is divided into distinct stages. When a firefighter identifies 

the various stages, he or she can better comprehend the process of burning and 

controlling the fire at multiple stages, using different tactics and instruments. Differences 

in room temperature and air composition describe each stage. The steps are graphically 

indicated in Figure 2 below. 
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Figure 1: Fire Triangle[8] 

 

 

 

Figure 2: Fire development parameters for solid, liquid, and self-oxidizing fuels in 

general [9] 
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The incipient stage of fire growth is often confined to a specific fuel source 

because the heat created cannot transmit enough heat to neighboring fuel sources for 

combustion. The following phase happens when the incipient fire has become large 

enough that the heat transfer to close adjacent fuel sources is large sufficient to pyrolyze 

them, causing fire expansion. The highest fire temperature would be restricted by the size 

of the enclosure and the impacts of ventilation. A flashover phase may occur in certain 

circumstances, but not all. A flashover happens when all the surfaces within the container 

are exposed to enough thermal radiation from the fire for simultaneous ignition and full 

room involvement. Whether or not there is a flashover, the fully developed phase occurs 

when the peak heat release rate of the combustibles in the compartment is reached. The 

last step is the decline phase, which occurs when the fuel load in the room begins to 

diminish, or the amount of available oxygen to sustain combustion is achieved[10]. 

 

1.1.4 Product of a fire 

 

It is a chemical process that is unique to each type of material that is burned 

quickly. As soon as a combustible material starts to get hot, the material given to it must 

be changed into something that can be pyrolyzed or evaporated. When a fuel is burned, 

there are four products that happen: fire gases, heat, flame, and smoke. Most fire gases 

are made up of oxygen, nitrogen, carbon dioxide, carbon monoxide, and small pieces of 

carbon. These gases could spread the fire and have toxic effects on people who are near 

the fire. Flames and the heat and smoke that come from a fire are the main things that can 

damage equipment and people. 

 

In this thesis, the expected fire scenario in the switchgear room is the first cabin 

fire and secondary fires of the cable trays on the cabinets due to this fire. For the purposes 

of this fire modeling, determine if any cabinet fires are causing secondary fires in other 

cabinets or horizontal cable trays above cabinets. This study aims to look into this 

situation and determine if these targets fail and, if so, when the failure occurs. PyroSim 
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program is a graphical user interface for version 6.7.4 of the Fire Dynamics Simulator 

(FDS) is used for this fire modeling. 

 

1.2 Significant Fires in The Past 

 

1.2.1 1975 Brown's Ferry, The U.S.A. 

 

On March 22, 1975, a fire broke out at the Browns Ferry Nuclear Power Plant 

near Decatur, Alabama. The Special Investigation Team was deployed immediately after 

the fire by the Nuclear Regulatory Commission's Directorate-General for Operations 

(NRC) to determine the causes of this event and make recommendations for the future 

based on this data. 

 

In this reactor, there is a cable distribution room just below the control room. The 

Browns Ferry facility consists of three boiling water reactors, each designed to generate 

1067 MeV electricity. Units 1 and 2 are active at the time of the fire, while unit 3 is still 

under construction. The most significant cause of the fire was the ignition of the 

polyurethane foam used for insulation. 

 

The fire occurred in the wall section between the cable distribution room and the 

Unit 1 reactor building. The fire was extinguished with the installed carbon dioxide 

extinguishing system and manual fire extinguishing efforts [11]. 

 

1.2.2 1975 Greifswald, Germany 

 

In December 1975, a fire broke out in the 6 KeV switch room in Unit 1, which 

was put into operation in December 1973. According to one of the reports on the fire, due 

to the fault of an electrician, a high current flowing through the wires for several minutes 
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led to a short circuit, followed by failure of the automatic circuit breakers. The fire lasted 

close to 1.5 hours and destroyed most of the cables [12].  

 

1.2.3 1979 Barseback, Sweden 

 

Ignition occurred due to oil leakage because of breakage in turbine blades. The 

ejected particles hit the nozzles in the sprinkler system, and the fire spread around, 

affecting other systems [11]. 

 

1.2.4 1993 Narora, India 

 

The fire in the turbine building of Narora Atomic Power Station (NAPS) Unit 1 

caused 17 hours of power loss. In the accident, a severe imbalance occurred in the turbo 

generator because of the failure of two turbine blades in the last stage of the low-pressure 

turbine and the hydrogen gaskets and engine oil lines that broke off as a result of this 

imbalance caused a fire. The fire spread to components such as many cable ducts and 

relay panels quickly. Using the first stop system with manual triggering, the operating 

team abruptly stopped the reactor and started the rapid cooling process. The fire spread to 

the equipment control room through the generator distribution channel and cables inside 

the turbine building. Smoke filled the control room through the ventilation system, 

forcing the operators to evacuate the room. The spare indicators in the supporting control 

room have also become unusable due to the burning of the control cables. Extensive 

damage occurred to the power cables as well as the control cables [11]. 

 

1.2.5 1995 Waterford, The U.S.A. 

 

In Waterford, this reactor has a PWR-type design. The minor accident in the main 

switch room had little effect on safety functions. Primary switch fires are among the most 
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common fires in an NPP. One of the points of interest due to the accident is what 

happened to the main switch cabinet and the wiring on the cabinet. Three cabins were 

severely damaged, and the fourth suffered minor damage. Moreover, the fire was not 

blocked by any fire barrier until it spread through the steel panel to the vertical cable tray, 

from there to another vertical tray 3 meters above and a horizontal channel 2.5 meters 

away. The potential to spread to the outside in closed electrical panels has not been so 

significant until now. However, this accident clearly demonstrated the existence of such a 

possibility. 

Another remarkable detail is that the fire damage reaches the neighboring cabins. 

Only two adjacent cabinets were severely damaged in the accident, while the other four 

suffered superficial damage. This situation increases the possibility that the person 

inspecting the related field has ignored the heat transfer with radiation [11]. 
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Chapter 2 Fire Modeling Theory                                                                                    

 

In compartments, fire growth is frequently split into phases based on the primary 

processes at each stage of development. The parameters of the fuel being ignited (i.e., 

ignition temperature, structure, orientation, and thermo-physical properties) and the 

intensity of the ignition source govern ignition[13]. As a result of the smoke's buoyancy, 

mass and heat are transported upward after the flames are maintained on a burning fuel 

item, and a smoke plume form, as seen in Figure 1.  

 

As the plume rises, it will take in air, causing the smoke to cool and get diluted; 

hence, the amount of smoke delivered will increase with height. A ceiling jet is a 

relatively thin layer of smoke that runs horizontally under the ceiling when a smoke 

plume impacts the ceiling. As the ceiling jet spreads, soot cools with increasing distance 

from the plumes point of impact, due partly to air entrainment into the ceiling jet and heat 

loss from the ceiling jet to the solid ceilings border[13]. 

 

A Hot Gas Layer (HGL) in an ideal setting occurs after the ceiling jet reaches the 

surrounding walls. As a result of the plume's continued supply of smoke mass and heat, 

the HGL grows in depth and temperature. Additionally, other qualities of the smoke in 

the HGL increase (includes gas species concentration and solid particle concentration). 

 

Radiant heat from the HGL enhances the temperature of combustibles that are not 

involved in the fire. Similarly, non-combustible combustibles will cause a rise in 

temperature due to receiving thermal radiation from burning objects. The other 

combustibles will ignite when they reach their target ignition temperatures. In certain 

instances, the warmth from the HGL causes the rapid ignite of a large number of 

additional combustibles in the area. This condition is generally known as flashover[6]. 
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Figure 3: Components of compartment fires[13]. 
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2.1 Fire Modeling Tools 

 

There are three fire model class which are algebraic models, zone model, and 

computation fluid dynamics model. In this study, CFD is used, which provides detailed 

fire modeling in complex geometries. The advantage of using this model is the ability to 

simulate fire conditions in complex geometries and with complex vent conditions. 

However, it takes long simulation times. The mass, momentum, and energy conservation 

equations are basically solved using CFD models on a computational mesh.[14] 

 

2.1.1 Algebraic Models 

 

Algebraic models are equations that can be found in books or in spreadsheets (like 

the NRC's FDTs). They can help us get a general idea of how one of the fire environment 

phenomena works. Closed-form algebraic expressions make up the majority of these 

equations., and a lot of them were made by finding correlations between actual data. In 

some cases, they may look like equation of the first order of ordinary differential. 

However, when used correctly, they can give an estimate of fire variables like HGL 

temperature, heat flux from flames or the HGL, rate of smoke emission, the HGL's depth, 

and the time it takes for detectors to go off. 

 

Hand calculation models are advantageous since they need minimum processing 

time and few input variables. However, when using the findings of algebraic models, 

users must be aware that approximations were used to generate the majority of equations 

to simplify the analysis[10]. 

 

2.1.2 Zone Models 

 

Consolidated Fire Growth and Smoke Transport Model (CFAST) or MAGIC 

software are two examples of zone models. These variables of the environment are 
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calculated based on control volumes, or zones, of a given area. Each zone is well-mixed 

in a zone model, and all factors in the fire environment are taken into account 

(temperature, soot  concentration, etc.) are consequently uniform across the zone. By 

utilizing conservation equations and the ideal gas law, the conditions of each zone are 

computed. The variables in each area vary as a time function and depend on the user-

specified beginning circumstances. There is a well-defined border between the two zones, 

although this barrier may rise or fall as the simulation progresses. 

 

Zone models make it easy to look at the effects of fires in single compartments or 

in compartments that are next to each other. They are frequently used to determine the 

HGL's temperature, composition, and required heat fluxes. In both horizontal and vertical 

lines, they can also simulate some of the impacts of natural and mechanical 

ventilation[10], [13]. 

 

2.1.2 Computational Fluid Dynamics (CFD) Models 

 

When attempting to determine fire variables at a given site or when geometric 

components are predicted to play a larger influence in the outcomes than can be 

approximated by a zone model, a computational fluid dynamics (CFD) technique is 

typically useful. Both simple and complicated geometries can be analyzed in detail with 

CFD models[15]. 

 

Many conservation and state equations are applied across many cell borders in a 

space in CFD models. The mesh size, which divides the geometry into three-dimensional 

sub volumes called cells, determines the number of cell borders. Inside each numerical 

grid cell, solutions to the mass, momentum, and energy conservation equations are 

adjusted as a function of time, with the solutions in all cells cumulatively characterizing 

the fire environment inside the geometry at the scale of individual cells[10]. 
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The kind of mesh is determined by the number of grid cells. A fine mesh is 

composed of several grid cells. Due to applying the equations at each cell's boundary, a 

more exact distribution of fire parameters is defined. A coarse mesh consists of fewer 

grid cells and may produce a less accurate result. The geometry and intended outcomes 

must determine the kind of mesh and number of grid cells 16]. 

 

Depending on how complicated the situation is and how fast the computer is, the 

model's solver could take anywhere from a few hours to a few weeks to finish all the 

calculations. The amount of time this will take depends on the parameters that were 

measured, the geometry size, and the calculations' mesh size. A post-processing 

application is used to display the results of CFD models. Fire Dynamics Simulator (FDS), 

a CFD model created by NIST, uses the application "Smoke view" to simulate 

distributions of temperature, mass, heat flux, burning rate, etc., across the geometry[10]. 

 

CFD models are useful for calculating the time to fire detection in complicated 

geometries, especially those with obstacles, since they can precisely characterize the 

complex geometries and mechanical ventilation conditions of the compartment[17]. 

 

2.2 The Fire Dynamics Simulator 

 

The National Institute of Standards and Technology (NIST) creates and maintains 

the FDS. Simulation software is the basis for the FDS model of fire-driven fluid flow 

(CFD). The approach computationally resolves a variant of the Navier-Stokes equations 

based on low, thermally driven flow, with a focus on heat and smoke transfer from fires. 

The technique is time-based and three-dimensional, rectangular shapes grid, and the 

partial derivatives of the mass, momentum, and energy conservation equations are 

roughly represented as discrete disparities. On the same grids as the flow solver, thermal 

radiation is calculated by using appropriate boundary conditions. The simulation of soot 

and sprinkler sprays which are using Lagrangian particles. Smokeview is an additional 

application that generates visuals and animations of FDS computations[18]. 
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Figure 4: A Smokeview display of a compartment fire experiment CFD model[10] 
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2.3 An Overview of PyroSim 

 

PyroSim software is a graphical user interface for version 6.7.4 of the Fire 

Dynamics Simulator (FDS). Both these software’s are deeply linked. During a fire, FDS 

models can predict how much soot, carbon monoxide, and other chemicals will be in the 

air. The findings of these simulations are used to check building safety before 

construction, evaluate current building safety alternatives, rebuild fires to investigate 

accidents, and help in firefighter training[19]. 

 

2.3.1 Property Libraries 

 

PyroSim offers parameter property libraries for model parameters, such as 

construction materials, pyrolysis activities, combustion particles, sensor systems, etc. In 

general, the pre-defined material libraries are enough for learning the program or training 

others. Still, they are insufficient when doing academic research or evaluating the fire 

resistance design of a structure. Nevertheless, the property libraries describe the model 

parameters for usage with FDS, improving its usability and accelerating model 

construction. Users are able to directly load the predefined libraries and create/delete 

libraries as required. Figure 5 demonstrates how to access the materials library[20]. 

 

2.3.2 Post-processing 

  

The SMV software in the FDS model is developed for viewing the fire as a 

dynamic 3D animation, and dynamic 2D fire data may be added to the Static program as 

XY time history plots. PyroSim includes post-processing simulation outputs that let these 

visualizations to be initiated at any moment during analysis as seen Figure 6. 

Consequently, users may regularly access the findings to examine, evaluate, or even 

cancel the created situation if they are dissatisfied with the outcomes, which increases 

simulation efficiency and time savings[20]. 
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Figure 5: Loading the Steel material property from the libraries 

 

 

 

 

 

Figure 6: While a model is being worked on, the results can be shown[20] 

 

 



 

17 

 

2.3.3 Model Results 

 

For each discrete time period, FDS determines the temperature, pressure, velocity, 

density, and chemical make-up of each grid cell. It is typical to use a few hundred 

thousand to several million grid cells as well as a few thousand to tens of thousands of 

time steps. In addition, FDS calculates the heat flow, temperature, and mass-loss rate at 

solid surfaces, among other characteristics. The user must carefully choose which data to 

keep, similar to how one would construct an experiment. Even though only a tiny fraction 

of the calculated information may be stored, the output is often comprised of quite big 

data files[20]. Typical gas phase output amounts include the following: 

 

• Gas velocity 

• Gas temperature 

• Pressure 

• Heat release rate each unit of volume 

• Temperatures at the surface and depth 

• Burning rate 

• The mass of water droplets per unit area 

• The rate of total heat loss 

 

Smokeview, a tool mainly intended to evaluate data produced by FDS, is used to 

display most field or surface data. To simulate and display fire phenomena, FDS and 

Smokeview are utilized together. Smokeview shows this visualization's animated tracer 

particle flow, updated contour slices of calculated gas variables, and updated surface 

data. Smokeview also displays outlines and vector plots of static data at a specific 

moment anyplace inside a field[19]. 
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2.3.4 Grid Size 

 

In FDS, the size of the grid cells is the most crucial number. On a grid of 

numbers, CFD models solve an approximation of the equations that describe how mass, 

momentum, and energy stay the same. The size of the grid cells and the kind of 

differencing utilized affect the inaccuracy introduced by discretizing partial derivatives. 

FDS gets close to the second-order derivatives of the Navier-Stokes equations for both 

time and space. This means that the error in discretization is equal to the square of the 

size of the cell. In principle, it is lowering the grid cell size by a factor of two results in a 

reduction in discretization error that is equal to a factor of four. On the other hand, this 

results in a 16-fold increase in the amount of time required for computation (a 

multiplicative factor of 2 for both temporal and spatial dimensions). A grid sensitivity 

study is a kind of research that is used to determine what size grid cell should be used in a 

certain computation[18]. 

 

The grid sizes are computed using the characteristic diameter of the fire and grid 

size ratio, which, based on the overall heat release rate, should appropriately resolve our 

fire simulation. The typical fire diameter (D*) may be connected to the cell size (dx) for a 

specific simulation. This means that the smaller the characteristic diameter of the fire, the 

smaller the grid size need to be in order to appropriately resolve the fluid flow and fire 

dynamics. 

The following relationship gives the characteristic fire diameter (D*): 

 

D∗ = (
Q

ρ∞cpT∞√g
)

2
5

 

 

Where Q  represents the heat release rate, ρ∞ represents the ambient density, cp 

defines the specific heat,  T∞ represents the ambient temperature, and g is the 

acceleration of gravity. FDS models the unresolvable or "sub-grid" motion of the hot 
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gases using a numerical approach which is called "Large Eddy Simulation" (LES).The 

technique's efficiency is primarily determined by the proportion of the fire's characteristic 

diameter, D*, to the size of a grid cell, dx. The bigger the ratio D*/dx, the better the 

direct resolution of fire dynamics and the more realistic the simulation. The past 

experiences have shown that a ratio of 5 to 10 yields excellent outcomes at a low 

computational expense[18]. The FDS User Guide NUREG 1824 referenced a D*/dx ratio 

between 4 and 16 to properly resolve fires in a variety of conditions. 

 

Figure 7, for instance, shows the plume temperature forecasts for Test 5 of the 

FM/SNL series, calculated on a 10 cm, 7.5 cm, and 5 cm grid. A simulation of 10 cm 

requires many hours to execute on a 2.4 GHz Pentium CPU, but the simulation of 5 cm 

takes many days. The prediction is much more accurate for the 5 cm grid because the 

absorption of air into the hot plume is described with higher precision. 

 

2.3.5 The Heat Release Rate (HRR) 

 

The heat release rate (HRR) is expressed as the ratio during which the combustion 

process releases heat. Among the parameters used in determining fire consequences, the 

heat release rate (HRR) is perhaps the most critical and challenging to predict. This is due 

to the fact that the HRR serves as the driving parameter for evaluating conditions in fire-

induced flows such as plumes, ceiling jets, soot layers, and radiation from flames. 

 

Typically, the HRR is determined using the combustibility characteristics of the 

fuel. This approach is easily applicable to flammable liquids and certain plastics. These 

flammability measurements are the heat of combustion (∆Hc, kJ/kg) and the specific 

burning rate (ṁ", kg/secm2). Using these two factors and the burning area, the HRR is 

estimated as follows: 

 

Q̇f = ∆Hc. ṁ". A 
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Figure 7: Grid sensitivity study[18] 
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In practical applications, the HRR is separated into stages of the fire. These stages 

are incipient, growth, fully developed, and decay, as seen in Figure 8. In the stage of 

incipient, the fire burns with modest intensity. This phase's length might range from 

seconds to hours. Under optimal conditions, an incipient fire might reach its maximum 

HRR. Depending on the combustible and its structure, the time required for a fire to reach 

a fully grown stage might range from seconds to minutes. Based on the quantity of fuel 

and the amount of oxygen around the combustion process, a fully grown fire will burn. 

As fuel is spent, the HRR profile will enter the decay phase. If there is insufficient 

oxygen to support the reaction, the fire will also diminish in intensity[13]. 

 

These four phases are not present in all fires and do not need to be accounted for 

in every analysis, so long as the modeled fire conditions transmit the fire hazards posed 

by the ignition source to the target. Combustible room design can have an effect on HRR 

profiles. Therefore, it is not always simple to design or locate a profile for a particular 

circumstance. If a uniform HRR profile is used, the constant value will be the highest fire 

level. In general, the temperature and heat flow values connected with the decay stage of 

the fire will indicate less dangerous conditions than those associated with the fully grown 

stage. Once the fire begins to go down, the room temperature will return to normal. 

Consequently, and depending on the aims of the simulation, simulating the decaying 

phase of the fire typically does not give crucial information to support risk 

assessments[13]. Table -1 shows the recommended HRR values for cables. 

 

The following HRR profile is suggested for electrical cabinets: 

• The fire reaches its maximum HRR in around 12 minutes. 

• The fire maintains its maximum heat output for another eight minutes. 

 

A t2  the function can be used to represent the fire's growth phase. The t2  the 

function has the following formula: 
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Figure 8: Profile of Heat Release[13] 

 

Table 1: Recommended HRR Values for Electrical Fires[13]. 

Ignition Source HRR (kW) 

The fire is confined to one cable package in 

vertically cabinets with certified cable. 
211 

Fire in several cable bundles in vertical cabinets 

equipped with certified cable. 
702 

There are vertical cabinets with unqualified 

cable, and the fire is localized with one cable 

package per cabinet. 

211 

Unqualified cable, fires in more than one cable 

package, and closed doors in vertical cabinets 
464 

Fire in more than one cable package opens the 

doors of vertical cabinets with unqualified 

cable. 

1002 

Pumps 211 

Motors 69 

Transient Combustibles 317 

 

 

 



 

23 

 

𝑄̇(𝑡) = 𝑀𝑖𝑛 {𝑄̇𝑝𝑒𝑎𝑘, 𝑄̇𝑝𝑒𝑎𝑘 . (
𝑡

𝜏
)

2

} (𝑘𝑊) 

 Q̇peak is peak HRR,  t is time,  and T represents the time to reach the peak HRR. 

2.3.6 Particle Clouds 

 

Particle clouds allow particles to be inserted into the simulation in a box-shaped 

region or at an exact position. Either particles exist at the beginning of the FDS 

simulation, or they are regularly added[19]. 
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Chapter 3 Fundamentals of Electrical Cables 

 

The role of an electrical cable is to provide a medium for conveying electrical energy 

between two places in a single electrical circuit while simultaneously isolating the 

transmission channel from other parts of the same switch and other co-located 

connections. Therefore, cable failure means a lack of continuity in the energy 

transmission line or the diversion of a substantial portion of the available electrical 

energy to an unanticipated circuit destination such that the circuit's regular operation is no 

longer possible. Hundreds of kilometers of electrical cable are commonly found in 

nuclear power plants[8]. A typical boiling-water reactor (BWR) needs 97 kilometers (60 

miles) of power cables, 80 kilometers (50 miles) of control cable, and 400 kilometers 

(250 miles) of instrument cable. More cables may be required for a pressurized-water 

reactor (PWR)[21]. In addition, most fire dynamics and fire risk studies focus on 

electrical wires due to their thermal fragility. Therefore, a basic knowledge of electrical 

cables is required for doing fire simulation and analysis. 

 

Several types of cable failures can be caused by a fire. Different forms of fire-induced 

failures in electrical cables can cause a variety of circuit faults, resulting in diverse circuit 

faulting behaviors, as demonstrated by actual fire incidents[8]. 

 

3.1 Construction of Electrical Cables 

 

 

 Cables are available in a vast array of combinations. The critical configuration 

features that characterize a specific cable are the conductor size, the number of 

conductors, shielding features, and insulation/jacket materials. 

 

 Thermoplastic and thermoset materials are the most complete types of materials 

that may be used as cable insulation and jacketing. Thermoplastic materials melt at high 

temperatures and solidify at low temperatures. If heated sufficiently, thermoset materials 
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start to smolder and catch fire instead of melting. Thermoset materials generally are more 

durable, with failure temperatures greater than or equal to 350 °C (662 °F). The failure 

temperatures of thermoplastic materials are often significantly lower than 206 °C (420 

°F), when failure is typically linked with the melting of the material[22]. Typical 

thermoset cables burn at a rate of approximately 150 kW/m2, and standard thermoplastics 

burn at a rate of around 250 kW/m2, as shown in Figure 9.  

 

 Typical cable components include one or more metallic conductors, insulation, 

shielding, sheathing, and jacket. Insulation covers each metallic conductor, which is often 

copper or aluminum, to provide electrical isolation. Insulation, which is sometimes 

regarded as the essential component of a cable, is generally composed of a dielectric 

substance such as plastic and rubber. Typically, cable jackets are composed of rubber or 

plastic. The goal of the jacket is to give physical or environmental protection and 

enhanced flame retardancy to the insulated conductors. Cable jackets with improved 

flame retardancy limit the propagation of flame over the jacket and minimize the cable's 

fuel contribution once ignited. However, greater flame retardancy does not guarantee 

functioning[8]. 

 

Overall, insulation is crucial to the overall functioning of a cable at normal and 

increased temperatures. Insulation serves to electrically isolate each conductor from the 

other conductors and the ground plane. 

 

3.2 Thermoplastic Materials 

 

 Thermoplastic materials are described as polymers with a high molecular weight 

that are not cross-linked and are often distinguished by the insulating material's specific 

melting point. The physical attribute of thermoplastic materials is that they may be 

repeatedly softened by heating and toughened by cooling within a temperature band. This 

feature is a result of the material's loose molecular bonds. Several thermoplastic materials 

have a low melting temperature, which can be a negative since insulation melting at  



 

26 

 

 

 

Figure 9: Thermoplastics and thermosets the radiant panel heat release rates[23] 

 

Table 2: Damage Threshold for Electrical Cables 

Cable Type Heat Flux Criteria Temperature Criteria 

Thermoplastic 7 (kW/m2) 206 (°C) 

Thermoset 11 (kW/m2) 350 (°C) 
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relatively low temperatures can cause conductor problems. Thermoplastic insulation is 

typically simple to make and cost-effective to utilize[21]. Examples of thermoplastic 

types are low and high polyethylene (PE), polyvinyl chloride (PVC), polyurethane, 

polypropylene (PPE), nylon, chlorinated polyethylene (CPE), and Teflon. The suggested 

failure threshold for the general class of thermoplastic cables is 420 °F (206 °C). 

3.3 Thermoset Materials 

 

The molecular network is made up of chains that are connected by covalent bonds 

(crosslinked). When exposed to higher-than-normal temperatures, thermoset insulation 

weakens but does not melt. While they weaken, they tend to keep the insulator's 

mechanical qualities. As a result, thermoset insulations outperform thermoplastic 

insulations in terms of low- and high-temperature characteristics, thermal aging 

resistance, and overload resistance. Examples of thermoplastic types are ethylene-

propylene rubber (EPR) and crosslinked polyethylene (XLPE). The suggested failure 

threshold for the general class of thermoset cables is 662 °F (350 °C), as seen in Table-2 

[21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                      



 

28 

 

Chapter 4 Verification and Validation Parameters 

 

4.1 Froude Number 

 

The Froude Number quantifies the height of a fire plume. A high Froude Number 

indicates a powerful source, and if the Froude Number is sufficiently high, the fire plume 

may take on the characteristics of a jet fire. The Froude Number is calculated using the 

following formula: 

 

Qd
∗ =

Q̇

ρ∞cpT∞D2√gD
 

 

Where Qd
∗   represents the Fire Froude number, which is non-dimensional, Q̇ is the 

heat release rate, ρ∞ represents the ambient density of air, cp defines the specific heat,  

T∞ represents the ambient temperature, D is the fire diameter, and g is the acceleration 

of gravity. The validation range is based on the peak heat release rate, so the peak heat 

release rate might also be used to compare the model application range to these 

values[24]. 

 

4.2 Flame Length Ratio 

 

The flame length ratio quantifies the flame height in relation to the upper 

horizontal border (ceiling). The validation tests for NUREG-1824 all featured flames 

with a flame height at or below the ceiling. In cases when the flame height exceeds the 

roof, the flames will radiate outward from the point of impact[24]. 

 

Flame Length Ratio  =  
Hf + Lf

Hc
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Where Hf represents the base height of the fire, Lf represents the flame height, Hc 

is the enclosure height. Note that the flame length ratio does not apply to flames 

represented outside of an enclosure. The flame height is calculated using the following 

formula: 

 

Lf

D
= 3.7 Qd

∗ 2/5
− 1.02  Lf 

 

Where D represents the fire diameter, Qd
∗   is the Fire Froude number. 

 

4.3 Equivalence Ratio 

 

This value represents the ratio of the fuel production rate to the oxygen supply 

rate. When the equivalency ratio is one, the appropriate quantity of oxygen necessary for 

total combustion is present. When the ratio is larger than one, the atmosphere is fuel-rich, 

and the fire is under-ventilated. When the ratio falls below one, the opposite is true. 

Estimating the equivalency ratio for natural and mechanical ventilation is possible using 

the equation: 

 

φ =
Q̇

∆Ho2
ṁo2

 

 

Where φ is the equivalence ratio, Q̇ represents the heat release rate, ∆Ho2
 is the 

heat of combustion for oxygen, and ṁo2
 is the mass flow rate of oxygen in the 

enclosure[24]. The following equation calculates the mass flow rate of oxygen into the 

enclosure: 

 

ṁo2
= {

0.23 ∗
1

2
A0√H0 (Natural Ventilation)

0.23 ρ∞ V̇ (Mechanical Ventilation)
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Where A0 is the effective area of the openings, H0 represents the effective height 

of the openings, ρ∞ represents the ambient density of air, and V is volumetric flow rate of 

air in the enclosure. 

4.4 Compartment Aspect Ratio 

 

The compartment aspect ratio is a way to measure how far from a cube the size of 

the enclosure is. When at least one of the compartment aspect ratios is high, the enclosure 

takes on corridor-like qualities. In such situations, the travel duration of the combustion 

products and a non-uniform layer might become essential characteristics that must be 

considered. When at least one of the compartment aspect ratios must be low for the 

enclosure to resemble a shaft. In such instances, stratification of the combustion products, 

the interaction between the fire plume and the enclosure borders, and blocked flow may 

become influential features[25]. The aspect ratio of a compartment is calculated using the 

following equation: 

 

Compartment Aspect Ratio = {

L

H
W

H

  

 

Where L represents the compartment's length, W represents its width, and H 

represents its height. The compartment aspect ratio is applicable when evaluating flames 

inside a room [25]. 

 

4.5 Radial Distance Ratio 

 

The radial distance ratio is a measurement of the distance from the source fire's 

center at which a forecast heat flow amount may be determined. It only applies when the 

heat flux parameter is calculated. A low radial distance ratio implies that the target's 
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position is close to the fire and that the impacts of near-field thermal radiation might be 

severe. Large radial distance ratios indicate that the target is positioned at a considerable 

distance from the source of the fire[25]. The following equation gives the radial distance 

ratio: 

 

Radial Distance Ratio =
r

D
 

 

Where r represents the actual distance between the center of the firebase and the 

target, and D indicates the diameter of the fire[25]. In table-3 below, these values are 

calculated, and range intervals are specified according to NUREG-1824. 
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Table 3: Validation Parameters, Ranges, and Calculations 

 

Quantity 

 

Formula 

 

Validation 

Range 

Calculations 

For 464 and 

1002 Kw 

HRR 

 

 

Fire Froude 

Number 

 

Qd
∗ =

Q̇

ρ∞cpT∞D2√gD
 

 

 

0.4 – 2.4 

 

 

1.009 – 

1.171 

 

 

 

Flame 

Length 

Ratio 

 

 
Lf

D
= 3.7 Qd

∗
2
5 − 1.02 

Hf + Lf

Hc
 

 

 

 

0.2 – 1.0 

 

 

 

0.704 – 

0.824 

 

 

 

 

 

 

Equivalence 

Ratio 

 

 

φ =
Q̇

∆Ho2
ṁo2

 

 

ṁo2
= {

0.23 ∗
1

2
A0√H0 (Natural Ventilation)

0.23 ρ∞ V̇ (Mechanical Ventilation)
 

 

 

 

 

 

 

0.04 – 0.6 

 

 

 

 

 

 

0.088 – 

0.198 

 

Compartme

nt Aspect 

Ratio 

 
L

H
  or  

W

H
 

 

 

 

0.6 – 5.7 

 

 

4.35 and 

3.03 

 

Radial 

Distance 

Ratio 

 
r

D
 

 

2.2 – 5.7 

 

2.2 
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Chapter 5 Model and Simulation Results 

 

Construction 

 

 The switchgear room to be analyzed has three electrical cabinets, and there are 

nine cable trays above each electrical cabinet. The plan and design of the Switchgear 

room are shown in figure 10.  

 

The size of the switchgear room is 27.5m X 19.5m X 7.1 m. The room ceiling, 

floor, and walls are concrete, and the thickness of these walls is 0.5 m. Cable trays and 

cabinets are made of steel. The cabinets are 1 m wide, 18.5 m long, and 2.4 m high, as 

seen in Figure 10. The thickness of the cabinet housings is 1.5 mm. The trays are 0.8 m 

wide, 24.5 m long, and 0.1m high. The thickness of the steel cable trays is 3 mm, as seen 

in Figure 11. 

 

Meshes 

 

 Only one mesh is used in the model. The mesh alignment test is passed. The 

characteristic fire diameter "D*" is calculated as 0.705 m by using the fire diameter 

formula. According to the FDS User Guide NUREG 1824, a "D*/dx" ratio is 

recommended between 4 and 16 to resolve fires in various scenarios accurately. 

According to this ratio, the grid size (dx) is calculated at around 0.16m. The total number 

of cells for this mesh is 923,296, as seen in Figure 12. 

 

Ventilation 

 

As illustrated in Figure 13, three return and three supply vents are placed along 

the side walls. Each vent measures 0.5 m by 0.6 m and has a 0.47 m3/s airflow rate. It is 

assumed that the mechanical ventilation is turned on during the fire, and regular activities  
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Figure 10: The switchgear room's geometry. 
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Figure 11: Cabinets and cable trays. 
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Figure 12: Meshes description. 

 

 

 
 

Figure 13: Supply and return vents 
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continued. The supply vents get the same amount of air from the room, and the return 

vents get the same amount of air from the room. The temperature in the switchgear room 

is 20 °C (68 °F). 

 

Also, the top of the middle cabinet has a vent for air. This vent is 0.6 m in width 

and 0.3 m in length. The height of the cabinet is 2.4 m. According to the NUREG/CR-

6850, the fire burns within the cabinet's interior. By placing such a vent on the cabinet, 

the heat, smoke, and perhaps flames exhaust through the vent at the cabinet's top, which 

means that the initial fire source. That is, this vent is intended to symbolize a fire that 

burns towards the cabinet's top and exits through the use of the vent. 

 

A model based on actual data assumes that the angle of horizontal spread from 

tray level to tray level is 35° on each side. The 35° angle of fire spread is based on the 

results of a fire test that used 14 filled horizontal cable trays in an array that was two trays 

wide and seven trays high[13]. The formula below describes the lateral extent of the 

burning cable in higher trays before the start of lateral spread. 

 

 

𝐿𝑖 = 𝐿𝑖−1 + 2ℎ𝑖 tan 35° 

 

Where "𝐿𝑖" represents the length of tray "i," and "ℎ𝑖" is the distance from bottom 

to bottom. Figure 14 shows the model. The vent is 0.8 meters wide and 0.6 meters long in 

the first cable tray. Using the formula, the calculated vent is 0.8 meters wide and 1.4 

meters long in the second cable tray. The vent in the third cable tray is 0.8 meters wide 

and 2 meters long, as shown in Figure 14. 
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Figure 14: Model of Fire Spread in the Cable Tray 
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Fire 

 

The fire is ignited in the middle cabinet. Two different 464 kW and 1002 kW heat 

release rates (HRR) were used in the switchgear room. This fire vent is 0.6 m in width 

and 0.3 m in length for these two scenarios. The heat release rate per area (HRRPUA) for 

both scenarios are calculated as around 2578kW/m2  and 5566 kW/m2. 

 

For these different two scenarios, t-squared (𝑡2) fire ramp times are calculated by 

using the 𝑄 = 𝛼𝑡2, where "Q" represents the HRR (kW), "𝛼" is the fire growth rate 

coefficient (kW/𝑠2), and "t" is time (s). 

 

The time is calculated as 398 and 585 seconds for 464 and 1002 kW HRR, 

respectively, by selecting the slow alpha coefficient of 0.00293 (kW/𝑠2) in table-4. These 

calculated ramp-up times and heat release rate per area (HRRPUA) values were created 

by creating a fire surface in the PyroSim software for both scenarios, as seen in Figure 

16. 

 

According to NUREG/1805, if the temperature of the cables reaches around 205 

°C, the cables begin to burn and become damaged. There is a Gas or Solid Phase Device 

section in the PyroSim program. These devices measure values in the gas and solid 

phases in this section. 205 °C enable setpoint is set as seen in Figure 17. 

 

To use the simulation output, there is a 2D slices section available in the PyroSim 

program. 2D Slices measure gas-phase data such as pressure, velocity, and temperature 

on an axis-aligned plane. The 3D Results can then be used to animate and show this data. 

A 2D slice is placed on the 8.3 m X-axis, which passes through the center of the fire to 

see temperature values, as seen in Figure 18. 
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Table 4: Fire growth rate coefficients 

Standard Alpha Values (kW/𝑠2) 

Slow 0.00293  

Medium 0.01172 

Fast 0.0469 

Ultrafast 0.1876 

 

 
 

Figure 15: Cabinet Fires Values 

 

 

Figure 16: Temperature Devices Setpoint 
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Figure 17: 2D Slice 
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The time is calculated as 398 and 585 seconds for 464 and 1002 kW HRR, 

respectively, by selecting the slow alpha coefficient of 0.00293 (kW/𝑠2) as shown Figure 

19. 

 

In the first cable tray, the peak temperature measured for 464 kW HRR is around 

445, while this value is around 695 for 1002 kW HRR. In this cable tray, the ignition time 

is determined as about 606 seconds for 464 kW HRR, while it is determined as about 504 

seconds for 1002 kW HRR as shown Figure 20. 

 

In the second cable tray, the ignition time is determined as around 684 seconds for 

464 kW HRR, while it is determined as about 600 seconds for 1002 kW HRR as shown 

Figure 21. 

 

In the third cable tray, the ignition time is determined as around 875 seconds for 

464 kW HRR, while it is determined as about 750 seconds for 1002 kW HRR as shown 

Figure 22. 

 

In the side cabinets, the peak temperature measured for 464 kW HRR is around 

130, while this value is around 170 for 1002 kW HRR. This means that since the 

temperature in these side cabinets did not reach the critical value of 205 thresholds, the 

fire did not occur as shown Figure 23. 

 

At the same time, the peak heat flux value for 464 kW HRR was measured as 4 in 

these side cabinets, while this value was 6.5 for 1002 kW HRR as shown Figure 24. 
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Figure 18: The heat release rates for different fire scenarios 464 kW and 1002 kW, 

respectively 
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Figure 19: The temperature for different fire scenarios 464 kW and 1002 kW, 

respectively, in the first cable tray 
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Figure 20: The temperature for different fire scenarios 464 kW and 1002 kW, 

respectively, in the middle cable tray 
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Figure 21: The temperature for different fire scenarios 464 kW and 1002 kW, 

respectively, in the third cable tray 
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Figure 22: The temperature for different fire scenarios 464 kW and 1002 kW, 

respectively, in the side cabinets 
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 Figure 23: The heat flux for different fire scenarios 464 kW and 1002 kW, respectively, 

in the side cabinets 
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Figure 24: The ignition time for different fire scenarios 464 Kw and 1002 kW, 

respectively, in the first cable tray by using the Smokeview (SMV) program 
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Figure 25: The ignition time for different fire scenarios 464 kW and 1002 kW, 

respectively, in the first cable tray by using the PyroSim program 
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Figure 26: The ignition time for different fire scenarios 464 kW and 1002 kW, 

respectively, in the second cable tray by using the Smokeview (SMV) program 
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Figure 27: Soot density for 464 and 1002 kW in 403s.  
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Table 5: Summary of the model switchgear room results of fire. 

HRR (kW) Target Ignition Time (s) 
Critical Temperature 

Value (°C) 

Temperature 

464 
First Cable Tray 

606 205 

1002 504 205 

464 
Second Cable Tray 

684 205 

1002 604 205 

464 
Third Cable Tray 

875 205 

1002 743 205 

464 
Side Cabinets 

No 205 

1002 No 205 

Heat Flux (kW/m2) 

464 
Side Cabinets 

4 7 

1002 6.5 7 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

 

Nuclear safety is essential for efficiently managing radioactive emissions into the 

atmosphere. Fires at nuclear power facilities represent a substantial risk to nuclear safety, 

based on past experience. Switchgear rooms at nuclear power reactors are one of the 

places where fires commonly occur, and it is difficult to put the fire out when one 

happens. The primary cause of these fires is the installation of many cables in these 

locations, such as cable trays and cabinets. The materials of electrical cables can lead to 

the spread of fire. This analysis determined whether a possible fire in a cabinet in the 

switchgear room caused a fire in the cable trays located horizontally above the cabinets 

and in other cabinets and its duration. 464 kW and 1002 kW heat release rates (HRR) 

values were used for the fire. It has been modeled and simulated in the Pyrosim program, 

which uses the computational fluid dynamic (CFD) fire model because this model gives 

more detailed and accurate simulation results. According to the simulation results, the fire 

ignites the cables in the first cable trays close to the cabinet after about 10 minutes for 

464 kW HRR, while this time for 1002 kW HRR was around 8 minutes. Then, ignition 

started at different times in the second and third cable trays, respectively. Based on the 

failure threshold of 205 °C (420F) for the general thermoplastic cable class, this model 

was made, and the simulation was run. Since the critical values of 205 °C (420F)  and 7  

kW/m2heat flux did not exceed both HRR values in the side cabinets, so ignition did not 

occur. As a result, because of the fire that occurred in the cabinet, it is anticipated that 

there will be a second fire in the cable trays. There are approximately 10 minutes to 

protect this second additional fire. 

Nuclear power reactors are built and licensed to provide energy reliably and 

safely for at least 40 years. In future studies, it can be determined how long the fire will 

cause the second fire in these cable trays by placing fire barriers between these cable 

trays. 
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