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ABSTRACT 

The lighting industry was revolutionized with the emergence of LED lighting.  Over the 

last 15 years, LED lighting device sales and utilization have grown immensely. The growth and 

popularity of LEDs is due to improved operation of the device when compared to previous lighting 

technologies.  Efficient performance of the device is critical due to the growth of global energy 

consumption. 

As nonrenewable generation fuel is finite, utilities have begun the transition to renewable 

energy generation. Generation and distribution systems become inherently complex to 

comprehend and maintain with incorporation of emerging supply and load technologies. With the 

unprecedented growth of LED bulbs, there are concerns regarding the impact of their integration 

on power systems. 

In determination of the effects, which LED bulb adoption posed within the power grid, 

investigation of this device as a grid-load was pursued. This thesis reviews existing studies 

pertaining to LEDs and power grid load modeling methodologies.  Load modeling aids in 

establishing a balance between energy generation and consumption, comprehensively 

characterizing relationships between electrical generation, transmission, distribution, and loads. 

Due to the complexities of large networked systems, device load models are constructed 

and aggregated in emulation of the interactive relationships throughout the power grid. This thesis 

includes a study of preestablished LED bulb ZIP load models and formulation of a component-

based load model for improved characterization of a conventional LED lighting device. Load 

modeling was conducted with reference to the UTK HTB, for future integration and improved grid 

emulation. 
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Factors, such as shape, size, illumination, and the power rating of popular LED bulbs is 

examined.  Through investigation of typical LED bulb topologies, a model is formulated, in 

representation of device behavior as a load. The established load model’s characteristics are tested 

with comparison to physical device operation in a laboratory environment. 

The LED bulb component-based model is simulated under dynamic conditions in portrayal 

of device behavior under fault scenarios. An interactive interface is formulated for simulation of 

load behavior throughout grid level events. Detailed analysis of data and methods of 

implementation is provided, in characterization of the LED bulb’s load profile.  
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CHAPTER 1  
INTRODUCTION 

1.1Background 

1.1.1 The Role of Lighting 

As a modern society, both citizens and industries of the United States of America (U.S.) 

operate with the integration of a complex system commonly referred to as the U.S. Power Grid. 

An understated luxury of living in this region is the ability to access energy supplied by this grid. 

Currently, electricity can act not only as an amenity to provide ease throughout living, but also 

provides vital support to those in need.  

We as a nation are seeing entire industries migrate toward relying entirely on electricity. 

Whether it may be utilized in hospitals, schools, automotive, or an individual home, the population 

demands for a reliable supply of electricity throughout the country. As citizens of the U.S. become 

more reliant upon the integration of technology, the necessity for energy distribution steadily rises 

[59-61]. 

A vast majority of the population has grown accustomed to a lifestyle that calls for the 

continuous supply of electricity. Electricity, generated at power plants throughout the nation, is 

distributed to commercial and residential areas through a transmission system, known as the power 

grid. A simplified visualization of this energy generation and distribution system is shown in 

Figure 1.  

Transmission of electricity take place through the transmission line system within the 

power grid. This complex networked system allows the public to utilize electricity through various 

platforms, devices, and technologies. One of the most common platforms integrated within the 

power grid is that of lighting.  
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The consumption of electricity for the purpose of lighting is of utmost importance to the 

public. Historically, access to lighting devices has allowed for increased productivity levels within 

society. Humans, by nature, are non-nocturnal creatures. As a result, they were previously limited 

in productivity by the ability to access lighting sources. 

Humans, as a species lacks the anatomical connections within their optical cones to enable 

vision in the dark. This concept is seen in Figure 2, illustrating a comparison of a nocturnal and 

diurnal eye. Humans have evolved with the anatomical optical structure referred to as the diurnal 

eye.  

In opposition to the diurnal eye, species that have improved vision in low light 

environments, have evolved to possess optical structures referred to as nocturnal eyes. Nocturnal 

eyes are characterized with unobstructed vision in low light environments. The structure of optical 

cones within nocturnal eyes are better suited under conditions where external lighting is not 

present. 

In opposition, diurnal eyes are those which humans possess. Mankind lacks the genetic 

trait which enables vision in the dark. However, the population has not let evolution stand in the 

way. Resourcefulness and innovation have paved the way for people to utilize more than just the 

daylight hours for productivity [62-64]. 

1.1.2 Historic Emergence of Lighting Devices 

In ancient civilizations, fire was harnessed as a source of light in the form of, what is now 

recognized as, a candle. The candle acted as a source of lighting for centuries throughout the world. 

Earliest depictions of the candle date to Ancient Egyptian civilizations as seen in Figure 3, 

depicting photographic evidence of a candle artifact found in the tomb of King Tutankhamun.   
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Figure 1. The Power Grid 

Simplified representation of the power grid network for generation and distribution of power to consumers in use of 
integrated devices [65]. 

 

  
Figure 2. Anatomy of the Eye 

Simplified visualization of a nocturnal eye (left) which enables night vision is provided for comparison with the human 
diurnal eye (right), which lacks the ability to adequately see in the dark [64].  
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Despite its controlled burn, the candle still posed fire risk to those who used it as a primary source 

of light.  

In addition to the flammability hazards associated with the candle, the apparatus’s lifespan 

in the production of light was limited in duration. In operation, the intensity of illumination was 

dim. Often, multiple candles were required for adequate area lighting. In recognition of the many 

downfalls associated this ancient lighting system, a Scottish inventor, by the name of William 

Murdoch, created the next technological advancement in lighting [67]. 

In the early 1800’s, William Murdoch was credited for the next lighting innovation, using 

coal gas to formulate a lamp apparatus. This invention, known as the gas lamp, pictured in Figure 

4, received high praise when compared to its predecessors. The lifespan of the lighting apparatus 

was much longer than that of the candle.  

Gas emitted from burning coal was transported through a system of pipes to provide for 

longevity of the flame. More successful at illuminating larger areas at a time, the gas lamp grew 

in popularity. Despite an overwhelming integration into society as a primary form of illumination 

device, the gas lamp still posed safety risks with usage, due to its flammable nature [68]. 

Noting the hazards associated with harnessing flame as a lighting apparatus, one of 

America’s greatest inventors harnessed electricity for the purpose of lighting. The incandescent 

light bulb was developed by Thomas Edison in the late 1800’s and is pictured in Figure 5. It was 

designed to supply more consistent, longer lasting, and higher quality light. An innovation for its 

time, the incandescent bulb was acknowledged as the first historical iteration of the light bulb. 

Harnessing electricity, this revolutionary device supplied light to the public. 

Electrical current passed through carbon metal filament wire within the incandescent light 

bulb. Impacted by the presence of electrical current, the temperature of the wire would begin to 
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increase drastically. At such a high temperature, the wire glowed, emitting light. To protect the 

heated wire from air, it was placed inside of a glass blown bulb filled with inert gas. The 

incandescent lamp was then marketed to the public and found widespread use in the 1900s. 

The incandescent bulb stood as the first commercially practical form of electric lighting to 

be used across the globe. This variety of lamp still operates as a form of lighting in modern society. 

With this technological innovation in lighting apparatus available, scientists have since been able 

to refine the utilization of electricity for the purpose of lighting. In efforts to achieve superior 

longevity and overall efficiency of the light bulb, scientists have worked to improve upon the 

incandescent lamp [70]. 

To achieve more power and less heat in comparison to the incandescent lamp, the next 

major historical trend of lighting invented was that of the fluorescent light bulb. Depiction of an 

early implementation of the fluorescent lamp is provided in Figure 6. An American electrical 

engineer, by the name of Peter Cooper Hewitt, pioneered the invention of the lamp in the early 

1900s. 

 In the beginning stages of this invention, electrical current was passed through mercury 

gas sealed in a glass tube to produce light. Acting as a less expensive and more efficient alternative 

to the incandescent lamp, fluorescent lamps took over the market.  Despite their accolades, the 

fluorescent lamp possessed a displeasurable blue-green tinted glow, criticized by the public [71]. 

Throughout a span of 30 years, scientists worked to enhance the fluorescent bulb. 

Fluorescent bulbs were marketed to the public through the invention of an inexpensive, compact 

spiral package. The fluorescent lamp had evolved to become Compact Fluorescent Lights (CFL) 

with package implementation pictured in Figure 7. Incorporation of a coating of fluorescence 

within the bulb provided for a more appealing illuminance. Offering a superior quality of light 
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emission, longer lifespan of the bulb, and a cheaper alternative to that of the fluorescent lamp, CFL 

was integrated into commercial spaces.  

Growing in popularity, the public began to gravitate toward CFL over fluorescent lamps 

due to these assets. While these bulbs proved more efficient and effective, there was still room for 

improvement in the evolving, electrically dependent world. A comparison of the predominant 

historical bulb implementations outlines the quantitative comparison of attributes in Table 1. With 

associated attributes and emphasis upon the pitfalls of each implementation, scientists progressed 

toward the development of the Light Emitting Diode (LED) light bulb [73-74]. 

1.1.3 Evolution of LED Lighting 

LEDs are semiconductor devices that emit light when current is applied across them. When 

positive and negative charges, which reside within the device, are put in the presence of current, 

they begin to move throughout the device. Physical science surrounding the movement of charged 

particles in the operation of LEDs is exemplified through Figure 8. Movement of these charged 

particles releases energy in the form of photons, more commonly recognized as visible light. As 

an electrical component, LEDs are praised for their minimal consumption of energy, small 

dimensions, prolonged lifetime, and fast switching abilities. However, in the earliest stages of 

development, LEDs were microscopic, making them an ill-fit for practical, everyday usage for 

lighting [76], [78]. 

Initial discovery of the light emitting properties of LEDs began in the early 1900s. Henry 

Joseph Round, an experimenter from Britain’s Marconi Laboratory, applied voltage across a 

Silicon-Carbide crystal. Upon doing so, he observed that as current was run through the crystal, 

yellow light was emitted. Investigation into the theory behind this reaction soon followed and was 

published by Russian scientist Oleg Vladimirovich Losev, approximately 20 years later. 
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Figure 3. Ancient Egyptian Candle 

Photos from the excavation site of King Tutankhamun’s tomb which indicate the presence of candlesticks in Ancient 
Egyptian civilizations [66]. 

 

 
Figure 4. William Murdoch’s Gas Lamp 

Photo of one implementation of the gas lamp, invented by William Murdoch, for the use of public street lighting.  [69]. 
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Figure 5. Thomas Edison’s Incandescent Bulb 

Photo of the incandescent bulb, brought to market by Thomas Edison, for the use of residential area lighting.  [70]. 

 

 
Figure 6. Peter Cooper Hewitt’s Fluorescent Lamp 

Fluorescent lamp, which was invented and patented by Peter Cooper Hewitt as the next form of area lighting [71]. 
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Figure 7. Standard CFL Bulb 

Modern implementation of a typical CFL bulb available on the consumer market for purchase, to be used in residential 
area lighting [72]. 

 
 

Table 1. Power, Cost, and Lifespan Comparison of Bulbs 

Type Incandescent CFL LED 
Watts used  60 W 14 W 7 W 
Average cost per bulb $1 $2 $4 or less 
Average lifespan 1200 hours 8000 hours 25000 hours 
Bulbs needed for 25000 hours 21 3 1 
Total purchase price of bulbs over 
20 years $21 $6 $4 

Cost of electricity (25000 hours at 
$0.15 per kWh) $169 $52 $30 

Total estimated cost over 20 years $211 $54 $34 
 

Quantitative comparison of the lifespan, power consumption, and cost of primary historical light bulbs to provide 
insight into the effective efficiency of each lighting iteration. [74]. 
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Over the span of several decades, research on LEDs continued at a conservative pace. 

Occasional emission of infrared light was proved possible by simple diodes when connected to 

current. Soon after, Gallium-Arsenide was found to consistently emit infrared light in the presence 

of current and was patented as an infrared LED. It was not until Nick Holonyak Jr.’s research in 

the 1960s, that LEDs’ light production entered the visible part of the frequency spectrum. 

Holonyak, coined as the Father of LEDs, had made a breakthrough that led to the discovery 

of various LEDs that ranged in different colored light emission as shown in Table 2. Many 

researchers, throughout the globe, worked to establish LEDs that operated at different frequencies 

within the visual light spectrum. In the late 1900s, the brightness of the LED was refined and 

increased by researchers. Invention of high brightness LEDs allowed for the device’s application 

in fiber optics for telecommunications. 

Continued research on LEDs improved upon their performance as a source of lighting. 

Advantages of these devices became apparent with further research into the material configuration 

of the devices. Ability to control the color and brightness of the device was a key innovation, which 

highlighted LEDs as a cutting-edge light source. Being the first form of lighting with a wide range 

of controllability aspects, the U.S. Department of Energy (DOE) began to encourage further 

research into LEDs. The DOE pushed for research toward the development of LEDs for 

commercial and residential applications. 

  Innovative packaging methods, implemented by Fairchild Semiconductors, effectively 

reduced the market cost of LEDs. By formulating the device using a planar process of chip 

production, seen in Figure 9, LEDs became a commercial product with the possibility for a variety 

of applications. LED lights stand as, arguably, one of the most advantageous sources of light [74-

78], [2]. 
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Figure 8. Inner Workings of Light Emitting Diodes 

Representation of how a light emitting diode functions with attention to the microscopic physical structure and 
movement of particles in emission of light [78]. 

 
Table 2. Comparison of Bulb Light Emission Spectrums 

Light Source                                            Spectrum 
 
LED 

    

       
 
CFL 

       
 
Incandescent 

       
 
Candle 

       
 
 
  

                  
Comparison of the spectrum of light emissions for LED, CFL and Incandescent bulbs, along with Candles based upon 
wavelength with indication of infrared, UV and blue light ranges which are categorized as detrimental to health and 
unfavorable in visual perception of users [79]. 
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Figure 9.  Planar Model of Light Emitting Diode 

Planar design of a LED as a chip with microscopic physical attributes which show the process which takes place in 
the emission of light [78]. 
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1.1.4 Why LED Lighting? 

Credited as the most energy efficient bulb available, LEDs offer a plethora of virtues. When 

compared to the incandescent, fluorescent, and CFL lamp, LEDs produce more light per consumed 

unit of power. Superior optical power may be attributed to the LED lamp’s ability to convert 

electricity almost entirely to light. Whereas most competing lighting technology releases energy 

in the form of heat. The duration of time for an LED to turn on and off has been determined to be 

the quickest of all electric light sources. Quantitative comparison of the characteristics associated 

with competing lighting devices is provided in Table 3 [2], [80]. 

In addition to this, the dimensions of an LED are considerably smaller than competing 

lamps.  Durability of materials lends to the device’s resistance to damage. Other bulbs are 

composed of materials more fragile in nature, such as glass. Being substantially less likely to break 

increases the longevity of a LED lamp. Also contributing to the superior lifespan of these devices 

is how they produce light.  

Other bulbs rely on the heating of metal filament for their operation, which does not occur 

in LEDs. Over time, the continued production of heat within fluorescent, incandescent, and CFL 

bulbs deteriorates components, which shortens their respective lifespans, all of which is quantified 

in Table 3. In addition to this, the illuminance of the LED bulb surpasses its predecessors at lower 

rated power. Thus, the superior efficiency of the LED lighting apparatus is emphasized through 

comparison in Table 4 [2], [80], [81].  

The implementation of LEDs in electrical appliances is vast. From mobile phones to traffic 

lights, LEDs have become an economically friendly source of lighting. Their small size and 

spectrum of colored light emission gives new opportunities for freedom in design when compared 
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to traditional light sources. Adding to this, LEDs provide better quality of light due to their uniform 

distribution of luminance, glare, and color properties.  

Since there are many physical and physiological factors that influence one’s perception of 

lighting quality, it cannot be defined in terms of a photometric measure. Rather, it is important to 

note the quality and quantity of light affecting its visual appreciation. Appreciation principles rely 

on qualitative response to what is seen and how it is seen.  Lighting provides an environment in 

which physical and visual functions may effectively be completed.  

Most consider lighting a form of comfort enabling people to perform tasks in the evening 

or at night, but the appreciation of this commodity is reliant upon several factors. Users credit the 

LED light for its high illuminance and adjustable colored emission. LEDs’ uniformity and colored 

light properties have been noted to enhance the human experience. They are praised for providing 

a quality environment at an overall lesser cost.  

Considering the high cost of electricity, LEDs are more economically efficient than their 

predecessors. While fluorescent lamps require multiple bulb or tube replacements due to burnout, 

durability of LED lamps provide for longevity in usage. With this, LED lights require less 

maintenance than competing devices. Furthermore, LED lamps are credited in making the overall 

cost less expensive for lighting.  

Adding to this, LED lamps have reduced carbon dioxide emissions in comparison to 

fluorescent lamps. LED lamps do not contain harmful substances. Unlike fluorescent lamps, LEDs 

do not emit toxic gasses when discarded. In addition, they do not contain mercury, which is a 

health hazard associated with CFL usage.  Both of which have been found to be harmful to not 

only humans, but also to the environment. 
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Overall, LEDs are beneficial due to their lower maintenance cost associated with their 

prolonged-life, human performance factors of visual comfort, color range, task performance, and 

visibility. Although the initial cost associated with LEDs may be higher than other artificial 

lighting sources, their endurance is longer, power consumption lower, and maintenance cost 

negligible [3]. 

LED lamps are praised for their high efficiency and prolonged lifespan in comparison to 

other bulbs. Due to these characteristics, they have been and continue to be integrated throughout 

a plethora of technologies. These technologies may be observed across both the commercial and 

residential market. Notable LED implementations include those within general, communication, 

and critical lighting systems.  

This wide span of applications for LED lights may be attributed to their operational abilities 

at low energy consumption and pollution rates. When compared to other light bulbs, LEDs possess 

lower intrinsic impedance and ultraviolet radiation emission rates. Having small ratings such as 

these lends to the LED bulb being an ideal choice of device for lighting necessities [4]. 

Despite their many accolades, it may be noted that LED light bulbs are not the cheapest 

source of light, but rather the second cheapest. Presently, CFL bulbs are acknowledged as being 

the most inexpensive option for lighting. However, due to the prolonged lifespan of LED bulbs, 

users will ultimately spend more when choosing CFL as seen in Table 3.  

According to device ratings, approximately three CFL bulbs will be purchased throughout 

the operation of one LED lamp. With this and unit pricing observed, LED bulbs are determined to 

be the most cost-effective source of light as seen in Table 3 [2], [74].  
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Table 3. Comparison of Tested Bulb Operating Characteristics 

Type LED CFL Incandescent 
Average Life 50000 hrs 10000 hrs 1200 hrs 
Power 6-8 W 13-15 W 60 W 
Light Output 100 Lumens/W 50 Lumens/W 10 Lumens/W 
Heat Emission 3.4 Btu/hr 30 Btu/hr 85 Btu/hr 
Electricity Use1 350 kWh 700 kWh 3000 kWh 
Bulbs Needed for Use1 1 5 42 
Mercury Content None 1-5 mg None 
Sensitivity to Temperatures None Above 120 ℉ and 

Below -10 ℉ 
Some 

Sensitive to Humidity None Yes Some 
On/Off Cycling No Effect Lifespan Reduction Some 
Turns on Instantly Yes Some Delay Yes 
Durability Very Durable Fragile Fragile 

1 Use for 50,000 hours   
 
Characteristic response of lighting devices for comparison of efficiency and attributes in operation [80]. 

 
 

Table 4. Comparison of Bulb Rated Power at Desired Illuminance 
Bulb Lumens 

 200+ 400+ 700+ 900+ 1300+ 
Incandescent 25 W 40 W 60 W 75 W 100 W 
CFL 6 W 9 W 12 W 15 W 20 W 
LED 4 W 6 W 10 W 13 W 18 W 

 
Comparison of the power consumption requirements of each bulb to reach a specified illuminance, which illustrates 
the superior efficiency of LED bulbs in opposition to Incandescent and CFL bulbs [81]. 
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1.1.5 LED Lighting and the Power Grid 

Estimated to make up 84% of lighting product sales within the next ten years, LEDs are 

considered a predominant form of light bulb throughout the world, shown in Figure 11. In the 

present day, LED lamps have taken over as the most utilized form of light bulb in residential areas, 

followed by CFL as seen in Figure 10. Due to the growing demand for LED light bulbs as a primary 

commercial and residential lighting product, it should be noted their impending effect on the power 

grid [82], [83]. 

According to the U.S. Energy Information Administration (EIA), over 7% of the total end 

use energy consumption in residential, industrial, and commercial sectors in 2020 was from 

lighting, shown in Figure 12. With respect to year 2021, LED lighting consumed approximately 

287 billion kilowatt-hours of energy, showing expectation of a large impact of integration within 

the grid. of Further the influence of lighting devices within these sectors is addressed in Table 5, 

which exhibits the data collected by the EIA’s Annual Energy Review. Compilation of these 

datasets is implemented in determination of the percent distribution of lighting on these sectors 

and organized visualization [84]. 

Acknowledgement of this statistic allows for scientific minds to proactively work toward 

providing the power consumed by lights within the grid. Through load modeling and emulation 

techniques, potential grid failures due to LED usage may be mitigated. In doing so, increased 

stability and reliability of the power grid may be achieved, so that citizens continuously have 

access to lighting for comfort, vitality, safety, progress, and prosper [83-84]. 
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Figure 10. Past Decade of Lighting Market Trends  

Percent breakdown of all lighting sales within the market, each year, by separating100% of the sales into the various 
categories of bulb type. It is noted that in LED sales have steadily risen over the course of the decade and surpassed 
all other bulbs in recent years and has shown a steady positive trend in market sales [82].  

 

 
Figure 11. Market Projections for LED vs Non-LED Devices 

Market projections for LED-based lighting devices in comparison to opposing lighting devices. LEDs are predicted 
to take leadership in the market, while non-LED-based lighting apparatus sales are predicted to fall drastically [83].  
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Figure 12. End-Use Energy Consumption Percent Distribution 

Annual Energy Review Data on Commercial, Industrial, and Residential Sector’s End Use Energy Consumption’s 
Percent Distribution. Depicting the influence of Lighting on these sectors to be approximately 7.35% [84]. 
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  Table 5. End Use Energy Consumption Distribution 
Sector End Use ~ % Electricity 

Sales and 
Direct Use 

(trillion kWh) 

Commercial 

Computers and Office Equipment 17.3 0.2249 
Refrigeration 14.8 0.1924 
Space Cooling 12.0 0.1560 
Ventilation 11.4 0.1482 
Lighting 12.1 0.1573 
Space and Water Heating 3.10 0.0403 
All Other Uses 29.3 0.3809 
Total 100 1.3 

Industrial 

Machine Drive 51.6 0.4644 
Process and Boiler Heater 11.1 0.0999 
Facility Heating, Ventilation, A/C, and Cooling 8.40 0.0756 
Electromechanical Processes 8.20 0.0738 
Process Cooling and Refrigeration 8.40 0.7560 
Other Processes and Facility Uses 6.40 0.0576 
Lighting 5.90 0.0531 
Total 100 0.9 

Residential 

Space Heating 14.2 0.2130 
Space Cooling 15.7 0.2355 
Water Heating 11.8 0.1770 
Refrigeration and Freezers 7.10 0.1065 
Lighting 4.10 0.0615 
Televisions and Related Equipment 4.10 0.0615 
Computers and Related Equipment 1.70 0.0255 
All Other Uses 41.3 0.6195 
Total 100 1.5 

Combined 
Sectors 
(Commercial, 
Residential, 
and Industrial) 

Refrigeration, Freezers, and Process Cooling 10.12 0.3745 
Space/Facility Heating and Cooling, 
Boiler/Water Heating and Process, A/C, and 
Ventilation 

30.96 1.1455 

Computers, Televisions, and Related/Office 
Equipment 8.43 0.3119 

Machine Drive 12.55 0.4644 
Electromechanical Processes 1.99 0.0738 
All Other Uses/Processes 28.59 1.0580 
Lighting 7.35 0.2719 
Combined Sectors Total 100 3.7 

 
Annual Energy Review Data on Commercial, Industrial, and Residential Sector’s End Use Energy Consumption’s 
Distribution. Depicting the influence of each end use on these sectors and showing the influence of Lighting [84]. 
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1.1.6 Aim of Thesis and Subsequent Chapters 

With this rapid adoption of LEDs in the U.S. and their presence being a large percentage 

of the load on the grid, a better understanding of how LEDs impact the grid, and vice versa, is 

needed to ensure continued reliable operation of the electric grid.  This thesis establishes an 

aggregate, component-based load model, for the purposes of characterization of the operation and 

affiliated effects which typical marketed LED lighting devices have when integrated within the 

U.S. power grid. 

1.2 Thesis Outline 

1.2.1 Chapter Two Overview 

Chapter two provides a review of established literature pertaining to LEDs and load 

modeling. It begins with the portrayal of the previous research on the benefits and pitfalls of LEDs 

in operation and description of the underlying processes which take place in LED bulbs for the 

establishment of functionality. Historical evolution, adoption, and integration of LEDs is 

discussed, and the benefits of these devices are highlighted with direct comparison to competing 

illumination systems. 

 The various applications of LED-based lighting devices are further addressed along with 

the necessity of load modeling for these devices. Concepts associated with load modeling are 

described and previous research related to ZIP load modeling of LEDs observed with conclusions 

made for the necessity of component-based modeling of LED lighting devices. 

Established systems at The University of Tennessee, are described in detail in an effort to 

describe the work being done to characterize complex systems, such as the power grid network. 

Grid emulation inspiration and associated implementation are depicted through the hardware 
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testbed interface. Associated drive for the inclusion of emerging technologies is given emphasis. 

Desire for load modeling of integrated devices within the power system is addressed and 

importance of LED bulb inclusion highlighted 

1.2.2 Chapter Three Overview 

Chapter three includes a description of the process employed in development of the 

component-based load model that best represents standard LED Bulbs. Study of the various 

iterations of available device implementation is addressed. Operational principles, associated with 

both the device and country-wide standards, are applied in comprehension of the LED bulb’s inner-

workings. Factors such as size, shape, illuminance, and power rating are included in description of 

the most prevalent LED bulb.  

Study of lighting market trends further corroborates consumer preferences of manufactured 

LED lights. Comparison is made between popularly marketed devices and device-specific designs. 

Industry-standard design guides are correlated to device-specific modules in formulation of a load 

model that best represents a standard LED bulb. The component-based load model is chosen with 

power electronic topology design and component parameters explicitly defined.  

1.2.3 Chapter Four Overview 

Chapter four illustrates the testing procedure utilized in the laboratory for analysis of an 

LED bulb’s behavioral response to ambient conditions. Equipment utilized and processes 

employed in establishing the laboratory test configuration are discussed. Data extraction 

techniques and compilation of measured data is expressed. Laboratory findings are provided with 

analysis of the characteristic exhibited.  

Formulation of a simulated topology for testing of the component-based load model is 

highlighted with effort to emulate measured laboratory conditions. Behavior is recorded in 
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simulation software at synonymous test conditions to those visualized in laboratory testing. Results 

are provided for comparison to the laboratory DUT, in verification of the established model. 

1.2.4 Chapter Five Overview 

Chapter 5 provides an overview of dynamic characterization and the motivation behind 

investigation of load model dynamic response. Correlation is made to preexisting systems 

established in UTK’s HTB grid emulator. In analysis of the LED bulb’s component-based load 

model under dynamic conditions, a procedure was established in portrayal of the model’s behavior 

under disturbances ranging in magnitude and duration.   

Implementation techniques utilized in observation of this behavior are addressed with 

formulated simulation and results analyzed. The relationship between fault magnitude and duration 

to device operating behavior is explored. Potential effects of the device’s dynamic response on 

grid operation are addressed through worst case load model profile. Dynamic characterization 

through load modeling is posed to provide an opportunity in preemptively addressing and 

mitigating failures of both system and device.  

Adjustments of the dynamic test simulation of the load model are addressed, in the 

formulation of an interactive interface. Adaption of the simulated model is addressed in creation 

of a dashboard for interaction with the load model. Further, methodology in implementation of 

user controlled and induced disturbances for real-time visualization of dynamic load model 

response and device functionality is expressed.  

Established systems at The University of Tennessee, are described in detail in an effort to 

describe the work being done to characterize complex systems, such as the power grid network. 

Grid emulation inspiration and associated implementation are depicted through the hardware 

testbed interface. Associated drive for the inclusion of emerging technologies is given emphasis. 
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Desire for load modeling of integrated devices within the power system is addressed and 

importance of LED bulb inclusion highlighted. 

1.2.5 Chapter Six Overview 

Chapter 6 provides a summary of this thesis and the main contributions provided by this 

research.  In addition, some suggestions for future work, are addressed. Topics of study are 

suggested for future work with utilization of the work done within this thesis. Improved precision 

in grid emulation is posed through utilization and tuning of the established load model to the 

variety of marketed LED devices. Characterization of a wider dynamic disturbance range provides 

for the design of compensation technologies in attaining improved grid reliability.  Further, work 

toward maintaining supply conditions for consistent operation of the device and affiliated grid 

technologies and the integration of the model within grid emulator systems is suggested. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Light Emitting Diodes in Lighting Devices 

2.1.1 Introduction of LEDs to the Lighting Industry 

Optimization of energy usage in the production of light has been a mission for many since 

Thomas Edison’s first incandescent lamp. In the present day, innovation arose with the use of 

semiconductors within LED lamps. Able to convert electrons to photons, LED lamps operate with 

proficiency across the visual spectrum. The LED illuminance range can produce any color 

including white light. The performance and efficiency of the LED lamp is outstanding in 

comparison to its lighting predecessors as seen in Table 6 in comparison to fluorescents [1], [3].  

The use of LEDs for lighting has been a positive technological advancement. It is 

interesting to note that the emergence of the solid-state lighting (SSL) industry began with the 

invention of LEDs. Initially, fabrication costs related to the production of internal electrical 

components caused a delay in the adoption of SSL LEDs in the market. However, LED-based 

technologies spurred a developmental revolution with substantial profits. These diodes became 

critical within the global economy [1], [2].  

2.1.2 Commercialization of Light Emitting Diodes 

LEDs were first commercialized in the 1960s. Adopted as a high-tech alternative to 

incandescent, fluorescent, and CFL bulbs, LEDs saved both energy and costs. Presently, SSL LED 

bulbs are common in the consumer market and have reached attractive prices to users as illustrated 

in Table 7. LED manufacturers are producing state of the art diodes that innovate the lighting 

industry, through research and design to produce a vast array of commercial devices.  
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Table 6. Power Consumption in Area Study 

Power Fluorescent LED 
Total 2000 W 

(20 W * 100) 
1200 W 

(12 W * 100) 
Per Unit Area 6.0 W/m2 

(2000 W / 335.2 m2) 
3.6 W/m2 

(1200 W / 335.2 m2) 
 
Study of the Power Consumption and per unit area power consumption of fluorescent and LED lamps used in area 
lighting, illustrating the high efficiency of LED Lamps as opposed to competing lamps [3]. 

 

Table 7. 60-Month Period Lamp Cost Analysis 
Type Incandescent Fluorescent LED 

No. of Lamps 1 1 1 
Lamp Wattage (W) 60 18 12 
Average Life (hrs) 1000 8000 35000 
Burning Time (hrs/yr) 2688 2688 2688 
Re-Lamping Cost (Rs) 80 1100 4500 
Replacement Cost (Rs) 200 200 200 
Electricity Cost (Rs/kWh) 9.5 9.5 9.5 
CO2 Emission Factor (CO2/kWh) 0.5 0.5 0.5 
Connected Load with Ballast (kW) 0.06 0.02 0.012 
Operation over 60 Months (hrs) 13440 13440 13440 
No. of Lamps Required over 60 Months 14 1.68 1 
Lamp Replacement and Re-Lamping Cost (Rs)  3920 2600 0 
Power Consumption over 60 Months (kWh) 806.4 268.8 161.28 
Electricity Cost after 60 Months (LKR) 7660.8 2253.6 1532.16 
Total Cost over 60 Months (LKR) 11580.8 4853.6 1532.16 
CO2 Emissions over 60 Months (kgCO2) 403.2 134.4 80.64 

 
Cost analysis of Incandescent, Fluorescent, and LED lamps over a period of 60 months which illustrates the cost 
effectiveness of LED lamps in comparison to other lamps, where costs, Rs, are measured in Indian Rupee and LKR 
signifies the cost in Sri Lankan Rupee [3]. 
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Collaboration, in this regard, between scientific research and manufacture of a marketable device 

has led to several advancements in SSL LEDs [2], [3]. 

2.1.3 Applications and Benefits 

LEDs have obtained favor due to their lower energy consumption over other 

innovations.  It is important to note that energy consumption of LEDs is only one aspect of their 

usefulness.  The quality of illumination is an important factor, but the benefits associated with 

energy savings, cost effectiveness, user’s psychological health, and waste disposal are also integral 

in comprehensively determining their accolades, quantified through experimentation complete 

among 80 participants. Quantification of the study, illustrating preference of LED devices to 

fluorescent bulbs, is provided in Table 8 [3]. 

 Due to technological advancements and continuous industrial growth, it is estimated that 

global energy consumption will increase by substantial margins. Consequently, it is essential to 

recognize the need for energy efficiency within devices. Such a device must be established for 

long term use and supply on a global level. Considering these factors, LEDs are an efficient and 

economical lighting source both on a commercial and residential plane. 

With sizable applications which continue to flourish, LEDs have made and will continue 

to make an impact on the power industry. As such, the need for research surrounding their 

impending effect on the power grid is imminent. Load modeling of grid integrated technologies, 

such as LED lights, aids in the design, analysis, and control of complex power systems. Due to the 

LED light’s widening range of applications, formulation of a load model, which accurately depicts 

device behavior within complex networks, is crucial [4].  
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Table 8. Survey of Human Response to Lamps 
Score Visibility Mood 

Effect 
Visual 

Comfort 
Color 

Appearance 
Work 

Performance 
Preference to 

Stay 
 FL LED FL LED FL LED FL LED FL LED FL LED 
Very 
Poor 2 0 2 0 6 0 3 0 3 0 0 0 

Not 
Bad 25 0 20 0 23 0 25 0 25 0 16 0 

Good 47 5 53 8 50 7 51 3 47 3 58 8 
Very 
Good 5 15 4 21 1 20 1 24 2 25 6 28 

Great 1 60 1 51 0 53 0 53 3 52 0 44 
Total 80 80 80 80 80 80 80 80 80 80 80 80 

 
Survey of 80 participants illustrating the benefits and preference of LED lamps in comparison to fluorescent [3]. 
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2.2 Power System Emulation 

2.2.1 Load Modeling and Power Systems 

Load modeling is a technique utilized by engineers to formulate a more comprehensive 

understanding of device behavior and operation within electric networks. The modeling of loads 

aids in the analysis of power systems providing controllability, stability, and management of 

increasingly complex designs. As power systems require a balance between energy generation and 

consumption, load modeling aids in the establishment of system equilibrium [5], [4].  

The primary use of load modeling throughout various applications is the assessment of 

voltage and frequency stability. Additionally, power quality analysis throughout load classes may 

be established through the modeling of loads. A standard diagram depicting an aggregate model is 

visualized in Figure 13. Whether residential, industrial, or commercial, load analysis is integral in 

the modeling of power systems [4]. 

Briefly, a power system is a network of electrical components that include generation, 

transmission, distribution, and loads. A key element in power system design is emulation. The 

modeling of loads in connection with the system is key in system emulation. However, the 

calculations associated with load modeling are complex and complicated in derivation. 

Complications arise as load model derivation should account for all devices in the power system 

that are consuming electrical energy [7], [8].   

2.2.2 Importance and Evolution of Testbed Emulation 

For decades, older technologies have managed the electric grid.  With the emphasis on 

energy conservation and emergence of newer digital electronics, upgrades are being made with the 

intention of making the electric grid a smarter system.  Today, grid research has progressed, with  
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Figure 13. System Aggregate Model Diagram 

Exemplary diagram of an aggregate system model which incorporates LED lighting [6]. 
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with the ability to capture data and exchange actionable information in the evolution of grid 

architecture. 

 Rapidly emerging integrations within the grid are driving a need for improved 

characterization of affiliated devices. The integration of new technologies in the grid can result in 

unexpected outcomes when aggregated across the overarching power system. Testbeds provide a 

laboratory environment to model these changes within the power grid, without the risks associated 

in a live production setting. Testbeds have the ability to sample and measure different components 

and systems, through the incorporation of software, physical hardware, and network components 

[14]. 

2.2.3 The University of Tennessee Hardware Testbed 

The University of Tennessee’s College of Engineering has committed 16,000 ft2 of space 

to a center that houses the Center for Ultra-Wide-Area Resilient Electric Energy Transmission 

Networks (CURENT). This center is home to an array of research areas, including the HTB, Large-

scale System Testbed, FNET monitoring/ visualization lab, and affiliated power systems and 

power electronics lab facilities.  The UTK testbed system provides for the monitoring and control 

of power electronic devices in the pursuit of knowledge surrounding these devices. The 

organization is dedicated to comprehensively characterizing the impact of power electronic 

devices on the power grid and the development of enabling technologies [15]. 

UTK’s HTB is a platform which has been formulated through converter-based emulation 

for testing of the power grid.  The platform models a real microgrid system with a topology that is 

simplified for testing of grid level scenarios. Conventional techniques of microgrid testing have 

relied upon the deployment of a physical system or the utilization of a hardware in the loop (HIL) 
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platform. Contrary to conventional testbed implementation, the HTB platform is a more cost 

effective, flexible, and efficient method of verification through control algorithms [14 - 15].  

 Praised for its superior operation, this platform has been formulated through methods 

proven to be more closely related to a real system when compared to HIL techniques. Alternate 

techniques neglect to incorporate factors, such as actual measurement error and communication 

time delay, which are included in the HTB platform. In this regard, implementation of the HTB is 

carried out through the programming of converters in emulation of power system component 

behavior [14], [16].  

The UTK HTB includes both a hardware and large-scale testbed configuration. In the large-

scale testbed, a real-time grid platform simulates the power grid. By doing so, it provides for the 

ability to effectively model disturbances throughout the grid. In addition to investigation of 

physical device behavior, the testbed also incorporates a communications layer. Within the 

communication layer, network-based communication devices and control methods are 

implemented.  

Researchers within the organization have modeled the system in representation of the 

North American grid. Resizing of the model has been carried out, through the reduction of the 

system’s dynamic model, for software simulation. In better representation of the future power grid, 

approximately 20% of power generation, within the HTB, was modeled as renewable resource-

based generation. 

 Improvements to the system include the incorporation of an open-source simulator of the 

power system, additional renewable energy capacity, energy storage, and communications network 

emulation. Modules, within the established system, are connected through a communication 

network. A closed loop emulator, operating with an open-source power system simulator 
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(ANDES), permits the streaming of data in operation. By doing so, grid measurements within the 

testbed are obtained, with respect to raw simulation data. Further, UTK’s in-house visualization 

platform, exhibited in Figure 14, provides an avenue for researchers to interact with parameters 

and switching algorithms, for control and analysis of the system, throughout various 

scenarios/conditions [14], [22 - 23]. 

Additionally, power electronic converters are utilized in the emulation of the electric grid. 

Researchers have formulated a system that fosters the ability to emulate bulk power grids, overseen 

by the Northeast Regional Power Coordinating Council (NERC) and Western Electricity 

Coordinating Council (WECC), depicted in Figure 15. In doing so, the high penetration of 

renewables and use of multi-terminal, high-voltage, direct current (HVDC) to move power over 

long distances has been investigated. The established system allows that converters can be 

programmed to emulate various, grid-based technologies, such as generators or loads, with a wide 

range of characteristics [14], [23].  

Currently, UTK developed a variety of emulators, including wind generation, solar 

generation, three-phase loads, energy storage elements, transmission line emulators, faults 

emulation, synchronous generation, and a real-time interface that enables digital power system 

simulation. Established efforts for microgrid emulation, have been enacted in partnership with 

EPB Chattanooga, a regional electric utility. UTK has successfully utilized the established testbed 

in analysis of controllers prior to their implementation within the EPB system [14 - 15].  

With the rapid emergence of new technologies, changes are happening that not only 

dramatically affect the power grid, but also the in-depth comprehension of grid in operation.  

Through tremendous upgrades in the ability of software to measure and report power grid changes, 

researchers are better equipped to understand how new technology, when aggregated, will affect 
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the power system. New hardware testbed platforms are being developed that link both the 

computational-based and physical world, with the ability to run technical and practical tests 

through algorithms, as illustrated within the HTB [6], [15]. 

2.2.4 Power Electronic and Load Modeling in Testbed Emulation 

As America’s electric demand continues to evolve, testbed systems, like UTK’s HTB, will 

require continued adjustment in the accurate reflection the power grid’s demand side input. As 

market trends indicate the surge in adoption of LED lightbulbs, these devices have redefined the 

global lighting industry demands.  The operational efficiency associate with LED bulbs and their 

rapid integration throughout utility sectors has permanently changed the trajectory of power 

consumption through lighting.  Thus, LED lamps have resulted in an aggregated change in load 

demand with significant impact to the power grid [6]. 

Due to the present and impending effects of LED lamps within the power grid, testbed 

systems require modification that includes monitoring and analysis of LED lighting throughout 

the system. Current testbed systems include the framework and architecture to support power 

system functions, but also offer the ability for additional layers for forecasting, visualization, 

analysis, and communications. Through the inclusion of an LED load model, data aggregation will 

more effectively portray power system operation [6], [14].  

In this regard, the incorporation of the lighting device will further establish comprehension 

of not only power grid changes, but also the effects on the affiliated device’s operation.  Inclusion 

of the LED lamp load within the testbed platform will provide for device characterization that 

enables the simulation of grid scenarios with improved accuracy. Formulation of an LED Load 

model, in this regard, allows the plethora of LED lamps, presently utilized within the grid, to be 

incorporated within the system. By doing so, energy generation and demand may obtain improved  
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Figure 14. UTK HTB Visualization 

Depiction of the HTB visualization located at UTK, allowing interactive control and analysis of the WECC Power 
Grid, including frequency test scenario, for analysis of responsive load support effects on the power system [22]. 

 

 
Figure 15. UTK HTB Regional Focus with Affiliated Methodology Overview 

Visualization of the HTB system’s established application regions, including the WECC and NERC, with synopsis of 
implementation avenues in representation [23]. 
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balance, in real-time, without jeopardizing the reliability of the grid or the quality of device 

operation [1], [4], [6], [17]. 

2.3 Load Modeling 

2.3.1 Comprehension Through Load Modeling 

Across a large power system, it is difficult to accurately represent every individual power 

consuming device.  Because of this, aggregate load models are used for the analysis of power 

systems. Load modeling helps in analyzing the performance of a power system. This process 

provides a mathematical representation of the relationship between power and voltage [8]. 

For the betterment of system performance, load models must be maintained to incorporate 

the emergence of new technologies. As electronic innovations arise, engineers employ modeling 

techniques to characterize their behavior as a load. By doing so, a simplistic mathematical 

representation is obtained for ease in application and analysis of the overall power systems [5]. 

By means of mathematical relation, an algebraic function is formulated through load 

modeling. This function works to define the instantaneous operating conditions of the device under 

analysis in conjunction with the system of integration. As such, respect is paid toward the input 

voltage magnitude and/or the frequency, which is affiliated with the system and load. It describes 

a prediction of the load behavior and operation under various supply conditions, including those 

where sudden changes in voltage and frequency occur.   

This analytical representation is derived to express the power-voltage relationship 

associated with the load. Derivation of the mathematical model includes equations which 

incorporate the rated voltages (V), rated frequency (f), active power (P), and reactive power (Q) 

values as shown in (1) and (2). Formulation of this relationship provides a simplified approach to 
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achieve a comprehensive understanding of networked electronic devices, as seen in power 

systems.  

𝑷 = 𝐟(𝑽, 𝒇)           ( 1 ) 

𝑸 = 𝐟(𝑽, 𝒇)           ( 2 ) 

Building a reliable system requires the knowledge of these load characteristics, which may 

be achieved through the load modeling process. However, this process is complicated due to the 

large number of devices that are integrated within power systems. Variation of load types adds to 

the difficulty of device and system analysis. The struggle to derive an accurate load composition 

estimation is an added complexity when modeling loads. Each affiliated device must be observed 

in characterization of its response to changes in voltage, frequency, capacity, and duty cycle [4]. 

A typical aggregated load demand model will have load classes that include residential, 

commercial, and industrial demand, as shown in Figure 16.  Industrial demand is more challenging 

due to the diversity of equipment required and comprehension of load demands.  For this reason, 

large industrial loads may need to be individually modelled. Residential and commercial load 

demands can be better represented by standard aggregate load models [6]. 

Conventional techniques of load modeling aim to describe this relationship between power 

and voltage within the tested device through mathematical analysis. Load modeling provides 

knowledge on the operation of a device under a range of conditions. As a result, device 

performance, when used in connection with preexisting electronic systems, is better understood.  

Insight on the power-voltage relationship allows for the mitigation of potential failures 

within the overall power grid. Load modeling allows for increased stability within the entire system 

to be achieved. Fundamentally, the process of load modeling begins with determination of the 

variety of load. Identification of the load variety relies upon the device’s operational behavior, 

which is categorized as either static or dynamic in nature [5].  
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Figure 16. System Aggregate Model Diagram 

Exemplary diagram of an aggregate system model which incorporates LED lighting [6]. 
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2.3.2 Characterization of Load Type 

Static loads are fixed, continuous loads that have minimal variation over short time 

intervals. They are time-independent models that show load behavior in a constant state and can 

be represented by a mathematical relationship that is based on voltage dependency. Static load 

modeling references the instantaneous operating conditions of the device in characterization as a 

load. This steady state analysis is subject to vary with input voltage. While static loads are easily 

characterized during and after a load disturbance, representation becomes difficult under voltage 

collapse.  

On the other hand, dynamic loads describe those with rapidly changing behavior. Dynamic 

loads give detailed representation of the voltage stability characteristics of a device. They are 

separated into classifications according to the effect that voltage has on the load. Dynamic loads 

are inherently more complex due to their fast response to voltage and frequency variations. 

 Dynamic loads demonstrate an active-reactive power relationship as a function of voltage 

and time, while static loads’ behavior is inherently steady state and time-independent. Loads 

categorized as dynamic show variations in response based upon external operating conditions. As 

a result, dynamic load models provide insightful voltage stability analysis [4]. 

 Following the determination of load type, various techniques may be employed to identify 

the parameters of the load model. Identification of the load model parameters allows for a simple 

mathematical representation of the device to be established. This analytical simplification aids in 

a device’s successful integration within more complex systems. Derivation of load model 

parameters may be completed through either real-time measurement or electrical component 

analysis [5]. 
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2.3.3 Methodology of Load Modeling 

Measurement-based load modeling is implemented through the real-time data analysis of 

device behavior during laboratory testing. Advantageous for its emphasis on the physical device’s 

response during testing, this technique is easily applied to a wide variety of loads. Despite praise 

for the method’s versatility, measurement-based modeling is an estimation of the load parameters 

at conditions specified during testing. As a result, measurement-based load models are not 

beneficial in application within systems operating outside of those tested during data acquisition. 

Additional work toward the measurement-based technique incorporates the use of 

Artificial Neural Networks (ANNs) to more accurately model devices as loads. ANNs work toward 

analyzing the relationship between a device’s measured input and output conditions. Input-Output 

dataset analysis allows ANNs to optimize measurement-based load model parameters. A 

simplified visualization of the ANN structure which takes measurements as input data and outputs 

an estimated load model is provided in Figure 17. 

 ANNs formulate load models with better representation of device behavior. The positive 

impact of ANNs on load modeling is reliant upon the collection of measured data in large 

quantities. In accordance with sizable statistics, the ANN’s computational ability must meet the 

respective processing requirements to estimate an accurate load model. While praised for the 

optimization of load parameters, ANNs do not establish a universal load model for integration. 

Rather, ANN load models are specified for the singular system in which data is collected. 

Measurement-based load modeling works to formulate a simplistic mathematical 

representation of data acquired on device operation. From the gathered measurements, an equation 

is derived which best represents the estimated behavior of the device during testing. Research of 

this method has determined several common equations which sufficiently model a variety of 
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devices in the market. Of these mathematical models, selection of representation is determined 

based upon optimal fit for depicting device behavior. 

Static models are one example of a prevalent mathematical representation. Devices best fit 

to a static model exhibit an active-reactive power relationship over time that depends on input 

voltage and frequency. Models with this static behavior often portray resistive type loads. 

However, static models may also be used to approximate dynamic loads, such as induction motors. 

When applied for the approximation of dynamic loads, the static model is not considered to be 

precise [5]. 

2.3.4 Behavioral Characteristics of Load Models 

Static models can be classified as one of three general behavior-based models: constant 

impedance (Zp,q), constant current (Ip,q), or constant power load models (Pp,q). These behavioral 

types are separated as a standard representation describing how the device responds. Behavior in 

this nature is easily observable during testing. As such, behavioral categorization provides a 

simplified model for load expression.  

Constant impedance models are observed to have a relationship between active (P) and 

reactive power (Q) as a function of the squared voltage magnitude with model-based constant 

impedance coefficient, referenced in (3) and (4). They may also be referred to as the admittance 

models. This behavioral type is easily observable as a parabolic trend between active and reactive 

power with dependency on the voltage condition, depicted in Figure 18. 

𝑷 = 𝐟(𝒁𝒑, 𝑽𝟐)           ( 3 ) 

𝑸 = 𝐟(𝒁𝒒, 𝑽𝟐)           ( 4 ) 

 Similarly, constant current models are representative of an active-reactive power 

relationship. However, this relationship is observed to vary with voltage magnitude and 

incorporate a model-based constant current coefficient, shown in (5) and (6). Constant current type 



42 
 

 
Figure 17. Measurement-Based Artificial Neural Network Structure 

Simplified diagram of an Artificial Neural Network (ANN) used for improved estimation of load models. Input layer 
signifies the input measured data acquired during testing and the output layer signifies the ANN approximated load 
model [11]. 
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loads are distinguished by a linear relationship that is dependent upon the input voltage condition 

as shown in Figure 18.  

𝑷 = 𝐟(𝑰𝒑, 𝑽)           ( 5 ) 

𝑸 = 𝐟(𝑰𝒒, 𝑽)           ( 6 ) 

Lastly, static models may behave as a constant power load. Often referred to as a constant 

PQ or MVA load model, this model describes a load that draws constant active and reactive power 

without correlation to voltage magnitude, exhibited in (7) and (8). Graphical visualization of this 

relationship is depicted through a horizontal, constant value regardless of input voltage condition, 

visualized in Figure 18 [4].  

𝑷 = 𝐟(𝑷𝒑)           ( 7 ) 

𝑸 = 𝐟(𝑷𝒒)           ( 8 ) 

Commonly utilized for characterization of both static and dynamic loads is the ZIP model. 

ZIP models use a polynomial fit to exhibit the relationship between device power and voltage. The 

polynomial function incorporates estimated coefficients which correspond to the device’s intrinsic 

electrical properties during tested operation. These ZIP model parameters include the approximate 

device impedance (Zp,q), current (Ip,q), and power (Pp,q) constants. The ZIP model operates as a 

function of voltage and is a summation of the constant models, with incorporation of the device’s 

nominal power (Po, Qo) and nominal voltage (Vo) ratings, modeled in (9) and (10) [5]. 

𝑷 = 𝑷𝒐(𝒁𝒑 ,
𝑽
𝑽𝒐
-
𝟐
+ 𝑰𝒑(

𝑽
𝑽𝒐
)+𝑷𝒑)         ( 9 ) 

𝑸 = 𝑸𝒐(𝒁𝒒 ,
𝑽
𝑽𝒐
-
𝟐
+ 𝑰𝒒(

𝑽
𝑽𝒐
)+𝑷𝒒)         ( 10 ) 

It is common to represent large, aggregated loads as a combination of these three and is 

referred to as a ZIP load where the percentage of Z, I, and P add up to 100%, indicated in (11).  

These ZIP coefficients work toward characterization of a load that behaves with constant 

impedance, constant current, and constant power static response. They are used to represent device 
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power consumption as a function of voltage. This model provides better matching to non-linear 

load characteristics. In conjunction with the three parameters of the ZIP model, there is the phase 

angle-based ZIP model [4], [6].  

𝟏 = 0𝒁𝒑,𝒒 + 𝑰𝒑,𝒒+𝑷𝒑,𝒒0          ( 11 ) 

Ohm’s Law, provided in (12), acts to describe the relationship between voltage and current 

throughout a resistive load (R). Continuation of this fundamental principle allows for the 

calculation of power throughout the resistive load, as seen in (13). Thus, purely resistive, constant 

loads are theorized to operate entirely through the consumption of active power (P).  

𝑽 = 𝑰𝑹	            ( 12 ) 

𝑷 = 𝑽𝑰 = 𝑽𝟐𝑹 = 𝑰𝟐𝑹          ( 13 ) 

In application to real-time circuits, the instantaneous voltage (v) and current (i) conditions 

operate as a function of time (t). These components can be portrayed through wave equation, 

represented in (14) through (16). These analytical representations incorporate angular frequency 

(𝜔), with respect to operational frequency (f), peak voltage/current (Vm / Im), and phase delay from 

a standard sinusoid (𝜃!,#), which can be applied within Ohm’s Law for the derivation of 

instantaneous power (p), shown in (17). 

𝒗(𝒕) = 	𝑽𝒎 𝐬𝐢𝐧(𝝎𝒕 + 𝜽𝒗)          ( 14 ) 

𝒊(𝒕) = 	 𝑰𝒎 𝐬𝐢𝐧(𝝎𝒕 + 𝜽𝒊)          ( 15 ) 

𝝎 = 𝟐𝝅𝒇           ( 16 ) 

𝒑(𝒕) = 	𝒗(𝒕) ∗ 𝒊(𝒕)          ( 17 ) 

In connection with Ohm’s Law, purely resistive loads exhibit current and voltage 

waveforms that operate in-phase, with respective component’s phase delays equivalent. However, 

this equivalence is not universal to all load types. As a result, when the difference in phase delays 

of each component (𝜙), depicted in (18), is not equivalent to zero, the expression for real power 
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becomes (19), through application of trigonometric identity simplification, with an additional 

reactive power component (Q) present within the circuit, depicted in (20).    

𝝓 = 𝜽𝒗 − 𝜽𝒊           ( 18 ) 

𝑷 = 𝑽𝒎𝑰𝒎
𝟐

𝐜𝐨𝐬(𝝓)          ( 19 ) 

𝑸 = 𝑽𝒎𝑰𝒎
𝟐

𝐬𝐢𝐧(𝝓)           ( 20 ) 

The term ‘reactive’ is used to describe power that flows bidirectionally from load to source. 

This category of power does not actively contribute to work done within the system. Reactive 

power becomes applicable when voltage and current waveforms, within a circuit, are out of phase 

with each other. In opposition to the purely resistive load, purely inductive loads are characterized 

as those which solely consume reactive power. Purely inductive loads depict a phase delay 

difference equivalent to (21). Whereas purely capacitive loads depict a phase delay difference 

equivalent to (22) and generate reactive power [12], [18], [20]. 

𝝓 = 𝜽𝒗 − 𝜽𝒊 = 𝟗𝟎°          ( 21 ) 

𝝓 = 𝜽𝒗 − 𝜽𝒊 = −𝟗𝟎°          ( 22 ) 

 Comprehension, of these principles, aids in the categorization of load characteristics when 

applied to the ZIP model. When the sum is of the ZIP model coefficients is negative this indicates 

a load which primarily depicts capacitive behavior. Likewise, a positive sum is reflective of a load 

which primarily functions in an inductive nature [12].   

As LEDs operate similarly to an ideal diode, where current flow is permitted through the 

component, in source to load orientation, when instantaneous voltage is greater than the LED’s 

intrinsic threshold voltage. In optimization of an LEDs light production, front end rectifiers are 

often used in conjunction with the device. The front-end rectifier acts to adjust the passage of the 

voltage source so a positive orientation is maintained at the LED, illustrated in Figure 19. Thus, 

the LED is host to active and reactive power characteristics which is neither purely resistive, 
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inductive, or capacitive in nature. Thus, load modeling such as that which is obtained through the 

ZIP model aids in characterization [19]. 

Another analytical variation of the ZIP model is the phase angle-based ZIP model. The 

phase angle-based ZIP model is representative of the active-reactive power relationship as a 

function of the load component phase angle at each voltage level. This relationship is exhibited in 

(23) and (24), including terminal voltage (Va), apparent power (So), calculated in (25), and fraction 

of load characterized by constant ZIP parameter (Z%, I%, P%). Incorporation of the correlation 

between component phase angles allows for the calculation of active and reactive power through 

ZIP modeling. However, the derivation of an accurate ZIP model affects its applicability in 

analysis [4]. 

𝑷 = 𝑽𝒂𝟐

𝑽𝒐𝟐
𝑺𝒐𝒁% 𝐜𝐨𝐬(𝒁𝜽) +

𝑽𝒂
𝑽𝒐
𝑺𝒐𝑰% 𝐜𝐨𝐬(𝑰𝜽) + 𝑺𝒐𝑷% 𝐜𝐨𝐬(𝑷𝜽)      ( 23 ) 

𝑷 = 𝑽𝒂𝟐

𝑽𝒐𝟐
𝑺𝒐𝒁% 𝐬𝐢𝐧(𝒁𝜽) +

𝑽𝒂
𝑽𝒐
𝑺𝒐𝑰% 𝐬𝐢𝐧(𝑰𝜽) + 𝑺𝒐𝑷% 𝐬𝐢𝐧(𝑷𝜽)      ( 24 ) 

𝑺 = 	 𝑽𝒎𝑰𝒎
𝟐

= G𝑷𝟐 +𝑸𝟐          ( 25 ) 

Similarly, the exponential load model is another mathematical representation, which 

describes the relationship between device voltage and power, shown in (26) and (27). In the format 

of an exponential equation, the exponential model is often utilized in characterization of mixed 

variety loads. This model incorporates an exponential coefficient (np,q), which is equivalent to 2, 

1, or 0, in depiction of a constant impedance, current, and power loads respectively. Mixed variety 

load modeling refers to devices which may include static and dynamic components, such as 

induction motors. 

𝑷 =	𝑷𝒐(
𝑽
𝑽𝒐
)𝒏𝒑           ( 26 ) 

𝑸 =	𝑸𝒐(
𝑽
𝑽𝒐
)𝒏𝒒           ( 27 ) 
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 The exponential model provides ease in derivation, as it incorporates fewer load 

parameters in comparison to the ZIP model. This model also holds potential for simple transition 

to the ZIP model with the inclusion of additional load parameters. Like the ZIP model, frequency 

changes within the system are eliminated by the exponential model to represent loads with 

negligible response to frequency variation [5], [4]. 

Derivation of a third analytical load type, known as the frequency dependent model (FD), 

may be achieved from both the ZIP and exponential model. The FD model takes the product of the 

ZIP and exponential models by a factor which corresponds to system frequency (fF), shown in 

(28). Incorporation of the frequency factor, within the FD model, highlights an additional 

relationship between the intrinsic frequency dependence of the device (kf), nominal frequency (fo), 

and load frequency (f) in device characterization. 

𝒇𝑭 = 	𝟏 + 𝒌𝒇(𝒇 − 𝒇𝒐)          ( 28 ) 

These common mathematical representations of load models are advantageous due to their 

basis upon data acquired through real-time testing, depicting the electrical relationships of a device 

during operation, with ease in comprehension. Reflecting the location of device integration within 

a system, these measurement-based models offer a generic method that is easily applied to a range 

of loads. These established methodologies forgo the need for research on device composition, as 

knowledge surrounding the device’s physical electrical configuration is not guaranteed in 

availability. In such cases, where device design is unknown, these measurement-based models are 

employed [5]. 

2.3.5 Basis of Modeling  

 Insight on the LED bulb’s operational behavior is obtained through the modeling of the 

device as a load. In doing so, the intrinsic characteristics associated with the device are defined for  
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Figure 18. Constant Load Behavior Graphical Representation 

Visualization of constant load behavior on P-V plot (top) and I-V plot (bottom). 

 

 
Figure 19. Rectifier Voltage Diagram 

Visualization of rectifier circuit and the resultant voltage waveform established with ac voltage input signal and loop 
orientation highlighted. 
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portrayal. Modeling, in this regard, permits application within the affiliated system for analysis of 

not only the apparatus, but also the ambient network. Methodologies include measurement-based 

and component-based techniques, in the formulation of an accurate load model for device 

characterization. 

Accuracy, in the portrayal of device behavior through load modeling, directly corresponds 

to the modeling approach employed. Formulation of a load model is an inherently complex task. 

Methodologies, in formulation and representation of the device as a load, are employed with 

respect to end-use application, means of establishment, and device specific characteristics. 

Additionally, determination of a measurement or component-based approach of load modeling 

relies upon the technique’s inherent benefits and pitfalls, some of which are outlined in Table 9 [4 

- 6].  

2.3.6 Measurement Based Modeling 

Measurement-based models are formulated with a data driven approach. They are derived 

through a modeling technique which aims to identify load parameters mathematically. Datasets 

are obtained through observance of the changes in device active and reactive power changes 

resulting from applied voltage and frequency. These changes are recorded for analysis through 

either intentional lab testing or natural power system monitoring. As such, the means of data is 

collected, for the purpose of load modeling, must be considered. Once the data is obtained, the 

load model is derived and validated [4].  

While simplistic in procurement, measurement-based models pose potential risks in 

application. Failure to model device behavior may occur at operating conditions outside of those 

included in input data. Measurement-based methods act as a mere snapshot of device behavior 

through a tested duration of time in a defined location. As a result, their potential for successful  
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Table 9. Measurement vs Component-Based Load Modeling Approach 

Technique Advantages Disadvantages 

Measurement-Based 

- Based on data from actual 
systems. 

- Provide accurate models for 
measured locations and time. 

- A generic method that can be 
applied to various models. 

- No need to have deep 
understanding of loads. 

- Unable to account for different 
operation conditions. 

- Models are developed using 
data measured in certain 
periods at specific locations, 
which lacks generalizability. 

- Measurements with large 
disturbances are hard to obtain. 

Component-Based 

- Field measurement is not 
required. 

- Physical representation of 
end-use devices. 

- Can be applied to different 
operation conditions. 

- Demand side management is 
considered. 

- Requires characteristics of 
individual load components. 

- Accurate and comprehensive 
load composition information 
is difficult to obtain. 

- Device specific. Model is not 
an adaptive procedure for 
modeling of other devices. 

 
A comparison of the attributes and shortcomings associated with the measurement and component-based load 
modeling techniques in application and accurate characterization of a device [5]. 
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application within a system is narrow because of uncertainty in how well a measurement-based 

model can be extended to other systems or even for different operating conditions within the same 

system.  

In addition to the narrow range of applications for measurement-based models, accuracy 

in modeling is difficult to achieve. Accurate characterization of device behavior during large 

system disturbances proves problematic. Acquisition of data, which describes device response to 

the variety of potential grid disturbances, is an insurmountable process. Consequently, failure to 

incorporate device response to these disturbances can negatively affect overall power system 

performance [5].  

With respect to disadvantages, the measurement-based approach is criticized for having 

less accuracy in modeling large disturbance operations and cannot be generalized, due to being 

performed for a specified operating condition. As such, these models provide little flexibility in 

application. They offer no clear understanding of the actual load composition, which is subject to 

modeling. The developed model is inherently specific to the measurement location, conditions, 

and time, making measurement-based models inapplicable within extraneous systems [4], [6].  

The measurement-based approach is generally not the approach of choice in application 

due to the costs associated with data procurement along with the difficulty of characterizing load 

response. Characterization difficulty arises due to the vast potential of variations that might occur 

within the system, such as the effects of seasonal change on load response. Issues are observed 

with measurement devices and grid level events where changes in voltage and frequency do not 

act continuously.  As modeling requires a prominent definition of voltage and frequency behavior, 

the measurement-based approach consequently becomes less advantageous. Component-based 

load modeling techniques mitigate some of these concerns [4], [1]. 
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2.3.7 Component-Based Load Modeling 

Component-based load models focus on the electronic configuration of the device under 

analysis. Implementation of the component-based model requires extensive research surrounding 

the load characteristics of the device.  Analytical analysis on power electronics associated with the 

device must be carried out. Eliminating the need for field measurement, component-based models 

precisely illustrate the physical composition of the device. As a result, the derived load model is 

considered universally applicable across systems and operating conditions. They additionally 

account for the demands associated with and management of the device’s operation [1]. 

The component-based approach begins with analysis of the load components which are 

connected to the system. Aggregate component-based load models are developed incrementally in 

emulation of networked power systems. Loads are categorized within either industrial, 

commercial, and residential classes. Data acquisition on the individual components, which the load 

is composed of, and the identification of load class are used to develop component-based load 

models.  

Component-based load models are considerably more adaptable than measurement-based 

methodologies. They can represent both static and dynamic characteristics associated with 

complex loads. To do so in an accurate manner, this approach requires extensive knowledge of the 

load composition. Additionally, the percent power consumption of each load component must be 

addressed in the formulation of the load model. 

The benefit of the component-based approach is that field measurement is not required for 

application in the approach. As a result, this method is more cost-effective with easier application. 

It can be used to model both steady-state and dynamic conditions of operation in representation of 

device characteristics that are connected to the power system. The main disadvantage of the 
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component-based approach is the requirement of individual characteristics of load components for 

modeling. It is often difficult to get a complete composition of the load, along with its inability to 

adjust to the integration of modern loads whose behavior is different from previous historical loads 

[4]. 

Despite the many accolades associated with component-based models, disadvantages arise 

due to the requirement of individual load component behaviors within the device. This 

methodology of load modeling is dependent upon the in-depth comprehension of the device 

configuration. Thus, the model becomes inherently device specific, lacking simplicity in 

adaptation to newly emerging technologies, such as LED lights [1]. 

2.4 Load Modeling of LED Lamps 

2.4.1 Determination of LED Load Type 

When examining LED bulbs, the extremely high efficiency of this new technology 

compared to other earlier forms of lighting is apparent. Due to this, the establishment of a load 

model to depict this innovation is vital. To start the discussion, we must understand some simple 

mechanics. First, we acknowledge that a load is any device powered by an electrical circuit. The 

term has been derived from the load put on the circuit from the current demanded for operation of 

the device. 

Loads can be broken down into different groups based upon their output behavior.  Load 

groups may be categorized inherently as inductive, resistive, or capacitive in nature. Likewise, 

electrical components can be separated within these groups based upon their typical output 

response.  
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Previous research has drawn the conclusion that because incandescent light bulbs are 

resistive loads then LED bulbs must also be primarily resistive. LED lights are driven by 

conversion of input AC to DC in illumination of the incorporated diodes. They have been 

considered resistive in previous load models as they rely on active power to function. However, 

this is not an accurate assumption. 

 Because LEDs do not generate heat for the purpose of light production, this assumption is 

inherently flawed. When compared to incandescent lights, LED’s lamps are not completely 

resistive loads. LED lights incorporate power electronic converters which are composed of 

capacitive, inductive, and switching elements. As such, characterization of this device becomes 

more complex than estimation of a nearly resistive power factor based upon previous bulbs [10].  

2.4.2 Existing LED Load Modeling 

Previously, researchers have pursued a measurement-based approach when modeling LED 

lights. LED lights have had various forms of ZIP coefficient representation. Previous 

determination of the ZIP parameters for an LED lighting load provided the ability to approximate 

the behavioral response of the device at measured conditions. Additionally, the ZIP model has 

provided generalized insight into the effects of LED usage within affiliated electrical distribution 

systems. 

Determination of established LED ZIP load models have been accomplished through data 

acquisition. Measurements utilized in previous LED modeling only included the operational range 

specified by device manufacturers. Past findings have claimed that the characterization of LED 

load type is dependent upon input voltage conditions, but primarily fell within the constant power 

model. Inconclusive determination of load type and confined operational range during testing has 
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led to concerns about the accuracy of these LED ZIP load models, especially as new technologies 

emerge.   

LED lights have had technological innovation throughout their development lifespan. As 

such, these measurement techniques must be maintained and kept up to date. Accurate ZIP model 

parameters must reflect LED devices throughout the market. As time progresses, previously 

obtained LED ZIP models become increasingly inapplicable, as newly efficient methods of 

implementation emerge within the power electronic industry. Thus, researchers across the globe 

work to maintain LED ZIP models to reflect emerging technologies within the grid. 

The most recent work found on LED ZIP load models was formulated from laboratory 

tested datasets. Corresponding measurements neglected the characterization of device behavior 

during grid level transient events. Data acquired during this testing has been completed within a 

conservative range which only reflected the device’s rated operating conditions. From the acquired 

data, an estimation of ZIP load parameters had been established.  

 Parametric results obtained within the study portrayed device behavior as a simplified 

polynomial expression with inclusion of a caveat regarding accuracy. Emphasis had been drawn 

toward the inaccuracy of the ZIP load model for LED reactive power analysis. In addition, there 

has been discussion regarding the contingency of the ZIP load model’s effectiveness in relation to 

the device’s power rating.  

Despite these concerns, previous findings have been beneficial in characterizing the effect 

of input voltage on device illumination and power consumption. However, it was explained that 

this operational behavior was not universal in representation across various LED devices. As such, 

this earlier LED ZIP Load Model still contained a substantial margin of error in application. 
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2.4.3 LED Lamp ZIP Load Model 

Prior research, put forth in an effort toward characterization of LED lamp behavior, has 

employed measurement-based techniques to formulate the device’s load model. The developed 

load model was estimated through the application of laboratory-acquired data to the measurement-

based ZIP analytical model. In implementation, prior research employed a laboratory test 

procedure that involved the ramping of applied power supply voltage to the bulb.  

Data logging occurred at each operating condition and included the input voltage, current, 

and power of the device under test (DUT) at each input scenario.  Following the acquisition of 

data, as described, measurements were analyzed and applied to the ZIP analytical model, in 

characterization of the device as a load. The established ZIP parameters in this research are 

tabulated in Table 10. 

The methodology utilized in derivation of LED ZIP model parameters was proven 

advantageous for the corresponding study’s application. However, the formulated analytical model 

was device specific and did not provide a general model to depict behavior of LED bulbs as a 

whole. Additionally, procurement of data was completed at steady-state operating conditions.  

In doing so, the dynamic response of the bulb was not illustrated in measurements. 

Accuracy of measurement-based load models is limited to the conditions which testing exhibits. 

As a result, the established ZIP model would not encompass the device’s transient response 

throughout the array of potential grid scenarios [4]. 

 

2.4.4 Future LED Load Modeling 

In the future, consideration can be given to merging both the component-based and 

measurement-based approaches of load modeling. Utilizing load signatures, attention can be paid  
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Table 10. Established LED Bulb ZIP Model Parameters  

Brand 
Power 
Rating 

(W) 
Zp Ip Pp Zq Iq Pq 

EcoSmart 5.5 -1.43 3.90 -1.11 0.74 -1.96 0.25 
GE 9 -22.51 45.82 -22.26 23.25 -47.48 22.95 
EcoSmart 9 -6.81 16.27 -8.26 5.24 -12.84 6.54 
EcoSmart 9 -9.11 20.71 -10.55 10.30 -23.21 11.86 
Great Value 9 -5.65 14.46 -7.96 0.38 -4.43 3.10 
EcoSmart 9.5 -8.36 18.43 -9.03 8.95 -18.42 8.35 
Cree 10 2.33 -4.07 2.68 -9.46 16.61 -8.28 
Great value 12.5 -5.85 15.47 -8.38 2.66 -8.83 5.15 
GE 13 -1.47 3.27 -0.81 0.27 -2.21 0.87 
EcoSmart 13 -13.92 29.35 -14.44 12.28 -26.38 13.03 
Sylvania 14 0.00 0.00 1.00 0.00 -0.39 -0.56 
Great Value 14 0.00 0.00 0.94 -1.25 2.05 -1.79 
Feit Electric 15 -10.92 24.84 -12.93 8.74 -20.09 10.42 
EcoSmart 15.5 -10.21 22.05 -10.81 10.45 -21.11 9.57 
Feit Electric 17.5 0.00 0.00 1.00 1.60 -4.36 1.84 
Sylvania 22 -1.11 1.95 0.11 0.52 -1.38 -0.05 
Feit Electric 28 0.00 0.00 1.00 12.72 -26.94 13.20 

 
ZIP model parameters of the associated LED bulbs that has been deduced in prior research and testing of the affiliated 
device behavior at steady-state operation [4]. 
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toward incremental load characteristic analysis. As such, an understanding of load composition 

may be established from data recorded and a model formed [4]. 

2.5 Project Description 

Work exhibited in this thesis outlines a proposed LED load model for analysis. It aims to 

formulate a component-based model to be applied in representation of common LED lighting 

devices on the market. This power electronic schematic is formulated with intent to be generalized. 

Thus, this component-based model is designed with the objective of flexible applicability.  

Intention is to provide a more accurate load model for analysis of conventional commercial 

and residential LED bulbs. This model, in turn, provides for vast potential in application. 

Component-based modeling, in this nature, formulates an inclusive representation of current LED 

devices in use. Generalized, the model provides comprehensive understanding of LED bulbs as a 

load. As such, the integration of LED lighting loads within power systems may be addressed in 

present and future work. 

2.6 Contributions and Organization 

This thesis works towards developing CURENT technologies through modeling, analysis, 

and HTB system integration of LED light bulbs as a component-based load model. The inclusion 

of LED lighting as a load within the wide area grid benefits operation and distribution of renewable 

power within power systems. Incorporation of the affiliated power electronic interfaced load model 

results in increased reliability of grid performance. Throughout the past decade, concepts such as 

this have been implemented to demonstrate CURENT’s technological innovation. 
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With the relevant literature in mind, this thesis establishes a comprehensive component-

based load model of LED light bulbs for the purpose of analysis and integration within CURENT 

system HTB, which has been refined over the span of 10 years. The grid models developed and 

implemented in the HTB have been designed with the intent to assess the effectiveness of the 

technologies for future grid application.  

Similarly, characterization of LED light bulbs as a grid level load model provides insight 

on the reliability of the device, throughout the continent, for commercial and residential use. 

Through testing of various scenarios, a more profound understanding surrounding the operational 

conditions of a standard LED light bulb may be characterized in greater detail, with this 

accomplished by means of a universally applicable component-based load model of a broadly used 

LED light bulb in the consumer market. 

To demonstrate the load modeling accomplishments of CURENT technologies affiliated 

with the HTB, much work has been completed by researchers within the organization. Including 

load emulation of devices which behave with both static and dynamic characteristics. Static and 

dynamic load emulation has been utilized to mimic real power flow within the HTB system.  

Previous work made use of the constant impedance, current, and power (ZIP) model to 

emulate a static load, while a three-phase induction motor is utilized to emulate dynamic loads. In 

addition, investigations of the load characteristics affiliated with data centers have been completed 

with discussion of the effects posed on the power grid through power electronic analysis. 

Following this work, power emulation of these findings within the HTB regional network was 

completed, which provides insight on voltage sag events due to their incorporation within the grid 

as a load.  
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In entirety, the HTB has been formulated to illustrate the system which is the power grid. 

Work put forth toward the HTB has provided for the interfacing and further analysis of the 

complexities which contribute to the overall function of the grid in real time. These complexities 

include, and are not limited to, that of load modeling [14], [16 - 17].  

2.7 Future Applications 

In the future, the HTB will continue to focus on the modeling of various loads with respect 

to the power grid such as that which is proposed within this thesis, through the integration of a 

LED light bulb load model. HTB will also focus on the effect of including more specific varieties 

of load models for devices consuming power on the grid as investigated through component-based 

load modeling within this work. Investigation throughout this research explains component-based 

analysis for future modeling of emerging technologies. In addition, this work pertains to not only 

the grid, but also the performance of the device itself during operation within a wide range of 

scenarios to be tested within the HTB.  

The implementation and demonstration of load modeling within CURENT technologies on 

the HTB additionally enables utility members and vendors to utilize the state-of-the-art 

technologies developed by CURENT with a more comprehensive understanding of how the grid 

operates for informed administration. 

2.8 Chapter Two Summary 

Throughout this chapter, a review of preexisting research was conducted, for the purpose 

of providing a comprehensive description of the concepts surrounding this thesis. Historical 

adaption of LEDs within lighting products was noted, along with device operational properties and 
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attributes associated with their integration discussed. Operational relationships are noted in 

correspondence to the device’s intrinsic principles. Lighting market trends are addressed and 

shown to favor LED lamp integration. In this regard, the lamp’s impending effect on grid level 

integration is emphasized, with importance placed on the formulation of an LED load model.  

Load modeling principles are defined with applications for the analysis of complex power 

systems, such as the power grid through testbed emulation systems, such as the UTK HTB. 

Various, load models and modeling techniques are investigated with their respective 

characteristics and attributes discussed.  
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CHAPTER 3  
LOAD MODELING OF LED BULBS 

3.1 Determination of Load Modeling Methodology 

3.1.1 Inspiration for Load Modeling Overview  

Motivation toward acquiring a comprehensive understanding of power system operation 

places importance on the characterization LED bulbs, integrated within the grid. The associated 

effects, posed by the device’s integration, must be investigated, in effort to maintain accurate 

representation of the current power system in operation. Pursuit of this understanding requires 

knowledge surrounding the operational behavior of the LED device, which is possible through 

load modeling [4 – 6].  

3.1.2 Selected Approach for LED Load Modeling 

With the purpose of characterizing LED lamp behavior throughout a wide range of 

applications and grid scenarios, an alternate methodology to previous research is utilized, in 

development of a load model. Measurement-based methodology has proven to produce models 

that are limited in accuracy to data range observed in the test environment, device specific, and 

negate the device’s transient response to dynamic events. Aiming to formulate a model that depicts 

behavioral response of a typical LED lamp within the market, the component-based approach is 

explored [4-5].  

Component-based load modeling is credited for having a wider range of application within 

a system. This technique formulates a topology that functions in correspondence with the device. 

The derived model exhibits the operational characteristics of the apparatus throughout a wider 

range of scenarios and incorporates the device’s potential transient response during dynamic 

events. The component-based approach provides adaptability to the variety of LED bulbs within 
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the market. Since the load model investigates the power electronic structure within the device, it 

can be formed to represent the majority of marketed devices with minimal adjustment of 

parameters within the model for improved representation [5].  

Additionally, this model will provide the opportunity for characterization of the device 

operation under applied scenarios. In doing so, the established model will illustrate LED bulb 

performance throughout different grid events. Ability to further characterize the device, in this 

regard, provides information that can be utilized in supply of reliable and persistent area lighting. 

 Component-based methodology that meets the desired benefits, involves careful, 

intentional design of the load model’s topology. The established load model must not only operate 

with accurate depiction of device behavior, but also provide representation for majority of 

manufactured LED bulbs utilized throughout the grid.  

3.2 LED Lamp Component-based Load Model 

3.2.1 Investigation of LED Lamp Power Electronics 

Design of a topology which best represents a standard LED bulb utilized throughout the 

grid requires comprehension of the fundamental power electronic components that operate within 

the device. First, analysis on the steady-state operating conditions associated with LED lights 

provides information on the potential power electronic module utilized within the device. The 

standard for power systems in U.S. commercial and residential sectors provides for 120 Volt, 60 

Hertz AC power supplies. As there exists a country-wide standard for power systems within 

establishments, the operational rating of the device must coincide with this input condition [24].  

Since the DUT produces light through the utilization of LEDs, additional information can 

be gathered surrounding the power electronic converter. LEDs are electrical components which 
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illuminate when positive threshold conditions are supplied. Under the presence of AC conditions, 

illumination of the diode would only take place throughout less than half of the supply condition 

cycle.  

In this regard, flickering and/or blinking of the light would be visible during operation if 

output conditions were AC throughout the LED load.  LED bulbs are not perceived to have this 

type of illumination. Thus, the affiliated power electronic module within the device is deduced to 

incorporate a power electronic converter topology enabling rectified operational conditions (DC) 

for the LED load for more consistent illumination [25].  

 In determination of the specific converter utilized in conventional LED lamps, the variety 

of marketed device implementations were explored.  Since there exists a wide range of LED bulbs 

available to consumers, characteristics of common device utilization are addressed. Typical 

lighting supply mounts, found in the commercial and residential sectors, require an A19 bulb, 

pictured in comparison to other bulbs within Figure 20.  

This bulb size is fit to be integrated within E26 mounting systems. The E26 mount is the 

standard size of bulb socket sold in the US, applicable to home/commercial building wiring 

systems in addition to supplementary lighting systems, such as decorative lamps.  This 

sizing/shape constraint has been found to not only occupy majority of area lighting applications, 

but also is indicated as the most commonly purchased bulb within the market [26], [28], [49].  

Further, bulbs which are described as ’60 W equivalent’ have been proven to be the 

preferred choice of lighting device within the market. This description has been industry-standard 

terminology in indication of the device’s brightness during operation. With origin tied to the 

brightness associated with standard area lighting obtained through incandescent bulbs, this rating 

is most sought after by consumers in choosing lighting devices. Acquired information, surrounding 
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typical light bulb shape, size, and description, in narrowing the device market in formulation of a 

more accurate representation of the LED light through load modeling [27]. 

3.2.2 Application of Device Power Electronic Analysis 

Descriptive findings surrounding the standard bulb is applied to market sales trends in 

determination of the top LED light manufacturers. In doing so, the wide variety of LED bulbs can 

be further narrowed to those most prevalent in utilization. In addition, the commonly utilized LED 

power electronic modules of popular manufacturers are explored, along with general LED bulb 

AC-DC topologies. In doing so, it is determined that the most prevalent method of device 

construction includes a full bridge diode rectifier input in conjunction with a wide-bandgap (WBG) 

Silicon-Carbide (SiC) MOSFET in implementation of the device. 

Next, formulation of a simplified power electronic topology that encompassed key 

components illustrated in typical LED bulb models is needed. Various device models were noted 

to vary slightly in design. The main differences included the incorporation of transformer elements, 

inclusion of additional active switches, and device power rating. However, fundamental circuit 

operation principles and generalized implementation remained consistent.  

Historically, market trends show that consumer preferences in lighting device are linked to 

conservation of energy and minimal cost of initial purchase.  LED lights have been designed with 

and praised for their limited power consumption in comparison to other bulbs. When choosing a 

topology of LED that best represented a conventional model, initial cost of purchase and power 

rating was considered. A standard device was chosen that possessed low power rating and cost of 

purchase.  

As such, the Feit A19, 60W equivalent, 8.8W LED bulb topology is chosen as a baseline 

for the component-based load model. Depiction of the specified LED bulb is provided in Figure  
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Figure 20. Comparison of Bulb Shape/Sizes 

Depiction of the bulbs available within the market with focus on the shape and size variation, highlighting the A19 
bulb as standard [28]. 
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21 and the device’s circuit topology is illustrated in Figure 22. Nominal ratings associated with the 

distributed device are outline in Table 11. Adjustments were made to the chosen topology for 

increased representation of a standard LED bulb. These refinements are made with respect to 

extraneous manufactured device schematics and LED driver design guides. Associated component 

parameters are further perturbed in formulation of a model which best depicts LED light 

operational behavior of the DUT. This simulated topology was chosen in modeling as opposed to 

an averaged switching model for improved representation of the device throughout operation and 

aim for adjustability in future modeling of LED devices within the market. 

In an effort to represent a standard LED device, dimming and colored light illumination 

was not modeled in the chosen implementation.  However, these characteristics are host for 

application in future research through continued modeling of the LED driver. In application, a 

standardized pulse generator was utilized in control and representation of the bulb. Further 

implementation of dimming and colored light illumination is possible through inclusion and 

manipulation of the LED driving system within the established model. 

Further, for application to manufacturer specific LED devices, the established model 

parameters may be minimally perturbed with ease in replication and representation of the specified 

device’s operational behavior ratings. This model stands as a generalized topology of a standard 

LED bulb. In doing so, the inductive and capacitive components within the model provide majority 

of influence on device operation. Thus, the parameters of this passive components may be adjusted 

for the purpose of application to extraneous LED manufacturers [29 – 33].  

3.2.3 Formulated Component-Based Load Model  

The established load model, in representation of LED lightbulb operational behavior is 

designed with respect to Feit Electric 8.8 W, A19 LED bulb. Since explicit information on the 
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Figure 21. Feit Electric A19, 8.8 W, 60 W Equivalent LED Bulb 

Physical LED bulb chosen as a baseline in the establishment of a component-based Load Model [50]. 
 

 

 
Figure 22. Feit Electric LED Bulb Circuit Topology 

Formulated diagram of the Feit A19, 8.8 W, 60 W equivalent LED Bulb’s internal circuit topology [32]. 
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Table 11. Feit A19 LED Bulb Parameters   

Ref. Component Type Description 
Vac AC Power Supply 120 V, 60 Hz 
F1 Fuse 2 A, 250 V 
TVR1 Varistor 270 V, Part # = 7N271 
RX1 

Resistor 

30 Ω,		0.5 W 
R1 1 kΩ,		0.25 W 
R3 4.7 kΩ 
R4 220 kΩ 
R6 1 kΩ 
R7 470 Ω 
R8 27 Ω 
R9 2.2 Ω 
R10 8.2 Ω 
R11 270 kΩ 
R12 240 kΩ 
R13 5.1 kΩ 
CX1, CX2 

Capacitor 

0.047 𝜇𝐹 
C1 0.22 𝜇𝐹 
C2 22 𝜇𝐹,		250 V 
C3, C4, C5 Unknown 
D1 Diode Part # = RB751V 
L1 Inductor Unknown 
L3 820 𝜇𝐻 
Q1 N-Channel MOSFET Part # = 4N60 
UI LED Controller Part # = AP1910 
BD1 Full-Wave Rectifier Part # = ABS10 

 
Tabulated list of components within the Feit A19 8.8 W, 60 W equivalent LED bulb including affiliated ratings and 
indication if rating is unknown [32]. 
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affiliated power electronic module is not provided by the manufacturer, the model is compared to 

typical elements integrated throughout LED devices. Additionally, design guides for LED driver 

affiliated circuits are referenced in adjustment of the Feit Topology, to best represent the DUT.  

Alterations made to the Feit Topology include the incorporation of an inductive element, 

in series with the LED load. Majority of LED driver design guides and device topologies reference 

the integration of this component within the load. To best portray the LED device in load modeling, 

this component is included in the design. Typical topologies also utilized ICs for control of the 

active switch. For simplified comprehension of the standard LED as a load model, the IC is 

modeled with inherent purpose, as a signal utilized to drive the WBG SiC device.  

Parameters of each electrical component are defined to reflect the element’s specified 

datasheet ratings. If a component was not specified within the topology, comparison was drawn to 

standard LED Driver and LED bulb implementations. Components that closely represented typical 

application were chosen for portrayal. Then, corresponding characteristics, of the chosen device, 

were obtained from their respective datasheet ratings and applied to the load model.  

Following the preliminary establishment of the load model, a comparison is drawn to 

laboratory tested device operational behavior. Minor adjustments are made to the LED bulb’s load 

model component parameters. In doing so, the load model is formed and verified to accurately 

represent device behavior at various operating conditions. The finalized LED bulb component-

based load model is modeled in Matlab Simulink Software and portrayed in Figure 23. Electrical 

component ratings utilized within the modeled converter are outlined in Table 12 [29 – 34].  
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Figure 23. Established LED Bulb Component-Based Load Model 

Depiction of formulated component-based load model, in representation of a standard LED bulb. 
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Table 12. LED Bulb Load Model Component Parameters   
Ref. Component Description Part # Datasheet  

Vac AC Power Supply 
(@ Steady-State, DUT Op. Rating) 

120 V, 60 Hz CaI-1001P [35] 
R1 

Resistor 

30 Ω	 ± 5% CF12JT30R0TR-ND [36] 
R2 4.7 kΩ	 ± 5% RC0100JR-074K7L [38] 
R3 1 kΩ	 ± 1% RC0100FR-071KL [38] 
R4 27 Ω ±5% ERJ-P6WJ270V [44] 
R5 2.2 Ω	 ± 5% RC0100JR-072R2L [38] 
R6 470 Ω	 ± 5% RC0100JR-07470RL [38] 
R7 8.2 Ω	 ± 5% RC0100JR-078R2L [38] 
R8 270 kΩ	 ± 5% ERJ-XGNJ274Y [46] 
R9 240 kΩ	 ± 5% RC0100JR-07240KL [38] 
R10 5.1 kΩ	 ± 5% RC0100JR-075K1L [38] 
C1, C3 

Capacitor 

.047 𝜇𝐹 ± 10% 473MKP275K.X2  [37] 
C2 .22 𝜇𝐹 ± 10% FK20X7R2E224K [39] 
C4, C5 0.1 pF ±10% 0603J300P100BQT [42] 
C6 83.5 𝜇𝐹 ± 10% CL05A104KA5NNNC [47] 
L1, L2 Inductor 820 𝜇𝐻 ± 10% RLB0608-221KL [40] 
L3 Inductor 82 mH ±5% 2534R-70J [49] 

D1, D2, 
D3, D4 

Full-Wave Bridge 
Rectifier 

(Independent Diode Ratings) 
1 VF = 0.95 V 

2 RON = 2.375 Ω 
3 GOFF = 2.143e-7 Ω01 

ABS10 [41] 

D5 Schottky Barrier 
Diode 

1 VF = 0.37 V 
2 RON = 370 Ω 

3 GOFF = 1.667e-8 Ω01 
RB751V40 [45] 

SiC FET N-Channel 
MOSFET 

4 RDS(ON) = 2.5 Ω 
5 IDS(ON) = 2.2 A 
6 VGS(ON) = 20 V 

7 VGS,TH = 4 V 
8 𝐿2 = 0.674321 𝑉01 

9 T = 25 ℃ 
10 RS = 1e-4 Ω 
11 RD = 0.01 Ω 

12 Ciss = 670 pF 
13 Crss = 50 pF 

14 Coss = 100 pF 

4N60G-K08-5060R [43] 

IC LED Driver 
Control IC 

15 Vpulse = 2.45 V 
16 trise = 1 ns 
17 tfall = 1 ns 

fsw = 488.28 Hz 

AP1910 [30] 

LED Light Emitting 
Diode 

18 RS = 0.006452 Ω 
19 [I1, I2] = [3.64, 49.75] mA 
19 [V1, V2] = [3.08, 3.91] V 

20 Cjunction = 20 pF 
OF-SMD3528WW [48] 

1 Forward Voltage;          2 On-State Resistance;          3 Off-State Conductance;          4 Drain-Source On-State Resistance;          5 On-State Drain Current 
6 On-State Gate-Source Voltage;           7 Gate-Source Threshold Voltage;           8 Channel Modulation;           9 Temperature;            10 Source Resistance 
 11 Drain Resistance;       12 Input Capacitance;         13 Reverse Transfer Capacitance;         14 Output Capacitance;          15 Gate Drive Signal Magnitude      
16 Gate Drive Signal Rise Time;    17 Gate Drive Signal Fall Time;   18 Series Diode Connection Resistance;      19 I-V Curve Data;      20 Junction Capacitance 

 
Outline of the component parameters that are utilized in emulation of the LED bulb in correspondence with the 
physical component ratings. The properties outline in description are implemented within the component-based load 
model for simulation of device behavioral response, for comparison to physical device operation. 
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3.3 Chapter Summary 

In this chapter, the framework and process of designing a component-based load model in 

representation of an LED lamp was described. With aim to develop a load model that represented 

the majority of LED devices in utilization, an investigation of commonly utilized device 

implementations was conducted.  

Further, the associated operational principles of the device were addressed, in better 

comprehension of the device’s power electronic topology. Comparison was drawn between the 

most prevalent manufactured bulbs within the market. Insight was gathered with respect to the 

electrical configurations associated with these devices. Commonalities in topologies were 

highlighted with further comparison to industry standard LED driver design guides. Acquired 

knowledge was applied in the formulation of a LED Bulb component-based load model, and 

specifications in implementation were explicitly defined. 
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CHAPTER 4  
ANALYSIS OF THE LED BULB/LOAD MODEL AT STEADY-

STATE CONDITIONS 

4.1 Laboratory Analysis of the LED Bulb 

4.1.1 LED Bulb Under Test 

Design of the established component-based load model was completed with the intention 

of portraying a standard LED bulb, similar to what would be utilized throughout the grid. In this 

regard, the formulated topology acts as a template, to be adjusted for representation of typical LED 

lighting devices. Through slight modification of component ratings, the model is applicable in 

representation of bulbs possessing power ratings that differ from that which is described. This is 

exhibited through comparison of popular device topology features, within the market, and 

inclusion of reference to LED driver design guides.  

Component parameters of the established load model, referenced in Table 12, were chosen 

with respect to the Feit LED bulb, pictured in Figure 21. Laboratory testing was implemented on 

the same device, being the Feit A19 8.8 W (referred to as the 60 W equivalent) LED bulb. Choice 

of analyzing this bulb, through laboratory testing, provides for comparison to the established load 

model. Thus, accuracy of the component-based load model, in representation of device behavior, 

may be assessed for verification. 

   4.1.2 Laboratory Testing Procedure 

Acquisition of real-time laboratory data provides for the characterization of a conventional 

LED based lighting apparatus under various operating conditions. Testing was implemented for 

the purpose of comparison and verification of the established component-based load model, 

through observation of the voltage and current conditions. Effort was made to accurately 
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characterize the model, in representation of LED lighting devices as a load, for various 

applications. 

The procedure incorporated testing of both input and output conditional response of the 

DUT under varied operating conditions. In doing so, depiction of the behavioral relationship of 

the device to ambient conditions was obtained. The equipment utilized in analysis of this 

relationship is tabulated in Table 13 with inclusion of the affiliated purpose of each item. 

As Table 13 indicates, equipment needed for the testing procedure included an AC power 

supply capable of producing 120 V, 60 Hz sinusoidal voltage to power the Feit A19 LED light 

bulb, screwed into a bulb mount. Two wires of different colors, red and black, were cut from the 

wire spindle in appropriate length for connections.  

The Feit LED bulb, being the selected device for experimentation and analysis, was 

screwed into the bulb mount. The oscilloscope was acquired with voltage and current probes for 

measurement and observation of device operation. The voltage probe was attached with + and – 

clips connected to the respective bulb mount path. Additionally, the current probe was clipped to 

the + mount path.  

The oscilloscope, with affiliated probes, provided visualization of I-V waveforms, 

depicting device behavior at various operating conditions. Again, use of the Digital Multimeter 

verified connections of the established configuration and ensured accuracy in probe measurements. 

Once connections were verified, the set-up, represented in Figure 24 for testing of the DUT’s input 

condition, was complete. With the established configuration in place, associated testing and data 

collection began.  

Tests began by applying a 0 V, 60 Hz AC voltage to the input of test configuration, with 

the associated power supply. Then, power supply voltage was increased by increments of 10 V, in 
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adjustment of the operating conditions seen by the DUT, for the purpose of input behavior 

characterization. With the oscilloscope, data points of the input voltage and current waveforms, of 

the DUT, were extracted via USB flash drive. This method of measurement was repeated in 

increments of 10 V, until a maximum of 120 V was recorded in observation. At all operating 

conditions, results were compared to the simulated component-based load model, which was run 

synonymously with ambient ratings of laboratory testing. 

Following the testing of the DUT’s input characteristics, the device’s output characteristics 

are addressed. The test set-up utilized for model output characterization, is illustrated in Figure 25. 

This generalized visualization includes the incorporated equipment configured such that the 

DUT’s output data could be recorded for analysis. Measurements, in this regard, were pursued in 

portrayal of the relationship between device and environment of integration. 

For the measurement of the DUT’s output behavior, deconstruction of the Feit A19 LED 

Light Bulb was conducted. Deconstruction began with removal of the DUT from the bulb mount. 

Once separated, a rotary tool was used to saw through the bulb’s semi-transparent plastic dome, 

so that it could be removed. Upon removal, the internal electronics of the bulb became accessible.  

Wires were cut, stripped, and soldered to their respective terminal, on the bulb’s internal 

printed circuit board (PCB). Thus, creating a path for measurement probes to be attached. The bulb 

was returned and screwed back into the bulb mount assembly. Oscilloscope probes were attached 

to the location depicted in Figure 24, and the digital multimeter was used to test the configuration’s 

connections in verification of implementation maintaining the necessary conduction paths. 

Testing and data collection began by using the power supply and oscilloscope in 

accordance with the previously implemented input testing.  Initial testing began by applying 0 V, 

60 Hz condition, using the power supply. Voltage was then increased from the power supply in 
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Table 13. List of Equipment for Laboratory Testing 
Device Purpose Part # Description Ref. 

Power 
Supply 

To supply sinusoidal, AC voltage to the 
DUT’s input terminals in the range of 0 V 
to 120 V at a frequency of 60 Hz. 

CaI-1001P 

1𝜙 AC 
1 Channel 
1000 W 

1ϕ, 100 V / 240 V  
	270 V 
3.7 A 

	16 Hz / 500 Hz 

[52] 

LED Bulb DUT OM60DM/950CA/8 
A19 

8.8 W 
60 W Equivalent 

[50] 

Bulb Mount 
Frame used to apply the supplied power to 
the with ease and position bulb in stationary 
orientation. 

R50-49875-000 600 W 
250 V [51] 

Oscilloscope 

Device used in observation of the DUT’s 
operational characteristics at input and 
output terminals, including current and 
voltage waveforms. 

MDO41404C-SA0 1000 MHz 
2.5 GS/s / 5 GS/s [52] 

Voltage 
Probe 

Utilized in measurement of input and output 
voltage condition of the DUT for 
oscilloscope portrayal. 

THDP0200 1500 V / 150 V 
 200 MHz / 5 MHz [52] 

Current 
Probe 

Utilized in measurement of input and output 
current condition of the DUT for 
oscilloscope portrayal. 

TCP0030A 5 A / 30 A [52] 

Digital 
Multimeter 

Used to verify proper connections prior to 
testing. 2701 N/A [52] 

Soldering 
Iron 

Implements the necessary connections of 
separate entities. 3020-XTS 75 W 

90	℃ / 480 ℃ [53] 

Solder 
Spindle 

Bonds separate entities in the formulation of 
connections. 3020-XTS 60-40 Tin Lead 

Rosin Core [53] 

Red Wire 
Spindle  

Establishes connection path between 
separate devices. Color denotes positive (+) 
terminal. 

EC-0744 
Single Strand 

22 AWG 
Red 

[54] 

Black Wire 
Spindle 

Establishes connection path between 
separate devices. Color denotes negative (-) 
terminal. 

EC-2734 
Single Strand 

22 AWG 
Black 

[55] 

Wire 
Stripper Removal of wire casing for soldering. STR-22-10 22 – 10 AWG [56] 

Rotary Tool Removal of LED bulb case for output 
condition testing. 63389 5000 – 2500 RPM 

9.6 V [57] 

Screwdriver Fastening of bulb mount terminals. 85076 603 Phillips [58] 
USB Flash 
Drive 

Extraction of observed data from 
oscilloscope. N/A N/A N/A 

Electrical 
Tape Covers connections for safety and security.  N/A N/A N/A 

 
Outline of the equipment utilized in realization of the laboratory testing procedure.  
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Figure 24. Input Condition Laboratory Testing Configuration 

Graphic depicting the test configuration utilized in monitoring and analysis of the input behavioral response of the 
LED bulb at various operating conditions. 
 
 
 
 

 
Figure 25. Output Condition Laboratory Testing Configuration 

Graphic depicting the test configuration utilized in monitoring and analysis of the output behavioral response of the 
LED bulb at various operating conditions. 
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increments of 10 V, in adjustment of the ambient conditions seen by the DUT, for the purpose of 

characterization. Again, measurements were taken and recorded at each operational rating. Data 

points were extracted from the oscilloscope using a USB flash drive. Upon reaching the maximum 

condition of 120 V RMS, data collection was complete. Comparison was drawn between measured 

results and those visualized in the load model simulation. In doing so, verification of the 

established component-based model, at each operating condition, was achieved. 

After extracting the laboratory acquired data, results were compiled for additional 

interpretation using MATLAB.  Comparison was drawn between compiled laboratory waveforms 

and simulated results. Detailed analysis determined that the component-based simulation circuit 

required minor tuning to passive component ratings for a better representation of the DUT. After 

doing so, the developed load-model fully and successfully represented the laboratory tested 

device’s behavior. 

4.1.3 Laboratory Testing Data Extraction 

Through completion of the aforementioned laboratory procedure, data characterizing the 

input and output behavior of the bulb was recorded in a USB drive. Laboratory analysis observed 

the device’s current and voltage operation. Extraction of data at input and output terminals, of the 

DUT, was completed at ambient conditions ranging from 0 V to 120 V. 

In addition to the extraction of measured waveforms, record is made that the DUT exhibited 

perceivable illumination under the presence of approximately 34 V. At 34 V supply conditions, 

the illuminance of the DUT was observed to be faint. Through the testing process, qualitative 

observation of the device’s light emission was made. After first signs of light were observed, at 34 

V, the bulb’s quality of illuminance visibly brightened at each tested condition, up to 100 V.  
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At testing conditions greater than 100 V, the brightness of the DUT appeared to remain 

constant. Under supply conditions greater that 100 V, there was no change in light emission visible 

to the naked eye. In the range of 34 V to 120 V, the lighting of the bulb did not exhibit flickering 

or blinking qualities. Qualitative observation of the bulb’s illumination throughout testing not only 

coincided with expectations discussed in load model development, but also provided justification 

in the analysis of the device’s measured behavioral data.   

In establishing a comprehensive understanding of the device’s measured data, visualization 

of the obtained measurements was carried out. The data extracted from the oscilloscope, during 

testing, was in .CSV file format. Through utilization of MATLAB Software, data points for each 

test were plotted for analysis. Code, written in MATLAB script, read the data from each .CSV file 

and plotted waveforms with respect to time. The composed MATLAB script, for visualization of 

compiled waveforms, is pictured in Figure 26. 

All measurements, taken during input testing, were compiled within the same command 

script. Input voltage waveforms were plotted in the same figure, for comparison of input voltage 

behavior at each tested operating condition. Likewise, the input current behaviors at tested 

operating conditions were plotted in the same figure. In doing so, the visualization showed the 

effect of operating condition on input behavior of the device.  

Additionally, the graphical representations obtained were intentionally designed so that 

current and voltage plots were portrayed in the same window. Thus, the DUT’s I-V relationship 

was easily compared for analysis. Depiction of the established input testing results is provided in 

Figure 26. Following the portrayal of tested device input behavior, measurements obtained for 

characterization of the DUT’s output condition were plotted in the same manner, as shown in 

Figure 27 and 28.   
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Figure 26. MATLAB Code Plotting Laboratory Data 

Outline of the MATLAB software script that was written to compile the recorded laboratory data. 
 

 

 
Figure 27. Input Condition Laboratory Testing Results 

Graphic depicting the formulated plot depicting input response of the LED bulb at supply range 0 V to 120 V. 
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Figure 28. Output Condition Laboratory Testing Results 

Graphic depicting the formulated plot depicting output response of the LED bulb at supply range 0 V to 120 V. 
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4.1.4 Laboratory Testing Data Analysis 

Once the measured data was formatted in this regard, the LED bulb’s behavioral response 

under tested operating conditions was observed and analyzed. The supply range that was applied, 

for both input and output testing, appeared to respond with two distinct behaviors. As depicted in 

Figures 27 and 28, measured data indicated that as supply conditions increased in magnitude, in 

the range of zero to approximately 100 V, the DUT’s current and voltage behavior also increased, 

in proportion. Observation of this indicated that the LED’s behavior when supply conditions were 

under ~100 V, exhibited a relationship that most closely related to the constant impedance load 

type.   

When the DUT was under supply conditions larger than 100 V, the observed current and 

voltage behavior appeared to remain relatively constant. Minimal fluctuations within this supply 

range were attributed to the oscilloscope and probe’s channel noise during measurement. This 

inference was later validated, through continued testing of the device, within and above this supply 

range as shown in Figure 29, illustrating the three zones of load behavior exhibited by the LED 

bulb.  

Further testing revealed that the device’s behavior within this margin remained constant in 

depiction, with noise fluctuations visible at varied supply states throughout testing cycles. 

Additionally, the marginal increase of supply conditions, greater than device operational ratings, 

furthered the conclusion of a constant behavioral response. Test results taken at the supply range 

of 110 V to 180 V are provided, with input conditions visualized in Figure 30, and output 

conditions visualized in Figure 31. Thus, at supply conditions larger than 100 V, the bulb’s 

response most closely resembled a constant power type load characteristic.  
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The determination of load type characteristics, of the DUT, was further supported by the 

qualitative illuminance observations made during testing. There also existed a distinct change in 

output waveform oscillation and magnitude between 30 V and 40 V test conditions, coinciding 

with LED illumination via output load conduction.  Comprehension of the behavioral response of 

the DUT allows for improved characterization of the DUT as a load. With improved understanding 

of the bulb’s performance throughout ambient conditions, load modeling principles become more 

accurate in representation of the device. Application and comparison of laboratory findings to the 

component-based load model provided for not only improved representation of the device, through 

load modeling, but also verification of the established component-based load model.  

4.2 Simulated Analysis of the Component-Based Load Model 

4.2.1 Simulated LED Bulb Load Model Test Procedure 

As the LED Bulb’s component-based load model had been formulated to best represent the 

DUT, simulation testing procedure was carried out under synonymous conditions with laboratory 

measurements. In order to obtain data on the load model’s operation, MATLAB’s Simulink 

software was utilized. The load model, exhibited in Figure 23, was built in Simulink during the 

process of establishing a component-based load model. The model’s affiliated component ratings 

were also established and are reference in Table 12.  

Since the initial load model configuration had already been formulated prior to laboratory 

testing, implementation of acquiring data on the simulated model’s behavior required minimal 

adjustment. Measurement probes were connected within the software to convey the model’s input 

and output behavior. Scope components were included for the visualization of these behaviors. 

Integration of probe and scope components is shown in Figure 31. Inclusion of these components   
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Figure 29. LED Load Behavior Regions 

Zones of Load Behavior of the tested LED device with respect to supply voltage. 
 

 

 
Figure 30. Continued Input, Constant Behavior Laboratory Testing 

Graphic depicting the constant behavior of input current response condition under supply rated above 110 V. 
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Figure 31. Continued Output, Constant Behavior Laboratory Testing 

Graphic depicting the constant behavior of output waveforms under supply rated above 110 V. 
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provided for means of plotting the voltage and current waveforms at the input and output terminals 

of the load model. In doing so, comparison of the load model behavior could be drawn to the 

DUT’s behavior, observed during laboratory testing. 

The chosen topology was developed with respect to the manufacturer’s design of the 

physical device. The developed model was segmented into AC (left) and DC (right) sides, 

separated by a diode bridge, for comprehension of the device’s inner workings. On the AC side, 

capacitive and inductive elements were incorporated for additional smoothing and blockage of 

supply oscillations for rectification. The full wave bridge rectifier, at the front end of the module, 

was modeled with diodes. It enabled the transformation of AC supply voltage to DC voltage for 

more consistent conduction throughout the LED load. 

On the DC side, a low voltage diode was used to permit DC voltage supply across the LED 

load. Capacitive and inductive components stored energy during off-cycles for operation of the 

LED load and provided additional smoothing of oscillations. Finally, the WBG SiC MOSFET 

acted as an active switch to achieve flow of current throughout the load, with more constant 

behavior.  

The established load model was run at laboratory test supply conditions, in the range of 0-

120 V. In simplification of the various simulated test conditions, the Simulink load model was 

inserted into a subsystem. The AC voltage power supply was removed, and terminals were placed 

inside of the substation at the nodes where the power supply had been connected. This allowed for 

application of supply conditions in the external model environment. Additionally, signal ports 

were used to replace the measurement probe’s scoped signals. In doing so, the behavior of the 

subsystem was able to be monitored in the external model environment, as well. Depiction of the 

adjusted subsystem model, for supply condition simulation, is provided in Figure 33. 
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Within the external model, power supply conditions from 10 V  to 120 V were applied to 

the load model, as shown in Figure 34. Monitored behavior of the load model was recorded for 

current and voltage waveforms at the input and output terminals. Similar to the extraction of 

laboratory data, input current waveforms at each supply state were plotted in the same figure, as 

was input voltage waveforms. These figures were combined in the same window, just as the 

laboratory data extraction was visualized.  

In the same manner, the load model’s output current and voltage waveforms were 

formulated for visual representation and analysis. Through this simulated behavior at load model 

input and output terminals, a comparison can be drawn between laboratory and simulation data for 

verification of the established load model. The simulated component-based load model data 

showing input and output behavior of the device is provided in Figures 35 and 36, respectively. 

4.2.2 Simulated LED Bulb Load Model Data Analysis 

 Data acquired during simulation of the load model was compared to the measured data 

from laboratory testing. The behavioral response of the derived component-based load model was 

observed to mimic characteristics exhibited in laboratory analysis. As supply conditions increased 

in magnitude, in the range of 0 V to 100 V, simulated data also increased in proportion. Exhibiting 

this relationship indicated that the simulated model was able to depict constant impedance 

characteristics, similar to laboratory measurements. 

When the applied supply conditions were above 100 V, the simulated load model was 

successful in exhibiting an approximate constant power type characteristic, similar to the DUT. 

While simulation results had exhibited a marginal increase within this range, it is evident that the 

load model converged within this range.  

When behavioral ratings are addressed, in comparison to the DUT’s measurements, the 
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Figure 32. Simulated Load Model Measurement Configuration 

Graphic depicting the load model, formulated in MATLAB Simulink Software, with inclusion of measurement probes 
and scope for plotting behavioral waveforms. 
 

 

 
Figure 33. Simulated Load Model Subsystem 

Graphic depicting the modified load model, in formulation of a subsystem, for convenience in testing supply states in 
the range of 0 V to 120 V. 
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Figure 34. Simulated Load Model Subsystem 

Graphic depicting the modified load model, in formulation of a subsystem, for convenience in testing supply states in 
the range of 0 V to 120 V. 

 

 

 
Figure 35. Simulated Load Model Input Condition Data 

Plot depicting the voltage (top) and current (bottom) waveforms at the input terminals of the simulated load model 
with applied operating conditions in the range of 10 V to 120 V. 
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Figure 36. Simulated Load Model Output Condition Data 

Plot depicting the voltage (top) and current (bottom) waveforms at the output terminals of the simulated load model 
with applied operating conditions in the range of 10 V to 120 V. 
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Simulink load model emulated the DUT within reasonable margin. The result obtained from the 

Simulink model had slightly higher response ratings than those measured in laboratory analysis. 

The difference in magnitude, at equivalent operating conditions, can be attributed to the omission 

of protection components utilized in the DUT. The physical Feit bulb incorporated a front end 

varistor and fuse in implementation. In an effort to characterize a conventional LED bulb, 

protection components such as these, were omitted, as they were not prevalent in other 

manufactured devices. 

Additionally, Simulink software operates under idealized operating conditions of all 

components within the model. While tolerance of component ratings and parasitic effects of active 

components were incorporated in topology design, the real-time device was subject to more drastic 

effects from these factors. Further, losses in laboratory testing are more common due to switching 

of active components, orientation of connections, and affiliated probe characteristics. Thus, 

marginal differences, such as those observed, were considered negligible. 

Further confirmation of the simulated model’s successful emulation of the device is 

depicted by the change in response between 30 V and 40 V supply states. As laboratory testing 

indicated the observation of illumination at ~34 V, laboratory testing had shown a change in the 

DUT’s output condition between testing conditions of 30 V and 40 V. The simulated model also 

portrayed a distinct change in waveforms between these states, showing more oscillation and a 

distinct increase in conduction throughout the load. 

As behavioral response of the designed, component-based load model performed 

congruently to the tested bulb, the established model was deemed successful in representation of 

the LED device as a load. Since the established model is to be utilized for testing in integration 
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with the power grid, further simulations must be run for portrayal of the device’s behavior under 

dynamic conditions. 

4.3 Chapter Four Summary 

In this chapter, a testing procedure and analysis of the physical device was addressed. The 

device chosen for laboratory testing was outlined, and reasoning behind choice of bulb was 

explained. The procedure formed and utilized in testing of this LED bulb was described in detail. 

An overview of laboratory measured test conditions was provided, which provide a qualitative 

observation of the bulb’s illumination state. Utilization of the affiliated equipment throughout 

testing was explained and the process of extracting measurements realized. Analysis of the 

observed measurements of the device under supply states in the range of 0-120V was portrayed. 

Associated laboratory data plots were formulated depicting synonymous waveforms at 

each supply condition with the same figure. Current and voltage waveform measurements taken at 

terminals alike were established in the same figure for analysis of the DUT’s behavior at input and 

output nodes. Operational ranges were separated into two behavioral trend categories. Trends are 

depicted at above and below 100 V, where the device was likened to load type characteristics of 

constant power and constant impedance behavior, respectively. Irregularities and discrepancies 

observed in testing were negated through additional testing of the device at increased supply 

conditions in the range of 110 V to 120 V, in support of the determined behavior trends.  

The process of orienting the component-based load model in simulation software was 

outlined and adjustments made to the model for measurement and testing of the model’s behavioral 

relation to operating conditions. Simulation of the load model and acquired data at input and output 

terminals was provided and comparison was drawn to the DUT’s laboratory response. 
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General response trends of the load model were likened to the DUT, and minor 

discrepancies were addressed. Observations made in output load conduction were utilized to 

further illustrate the load model’s emulation of the DUT. The formulated component-based load 

model was ultimately deemed successful in emulation of LED bulb behavior.  
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CHAPTER 5  
DYNAMIC RESPONSE OF THE LED BULB’S LOAD MODEL 

5.1 Overview of Dynamic Response Emulation 

5.1.1 Purpose of Dynamic Testing 

Formulation of a component-based load model was designed with the intention of 

providing representation of the device’s behavior in grid level applications. Previous testing of the 

load model portrayed behavioral response under a range of steady-state operating conditions. In 

doing so, the load model’s steady-state response was portrayed for verification of the topology, in 

comparison to the physical device’s response. Once the load model was established and verified 

in approximate representation of the physical device, testing of the model’s behavior in utility 

applications can be addressed.  

Since the power grid does not consistently operate in steady-state, dynamic testing 

illustrates the effects of integrating the device within the grid. Analysis of the load model’s 

response, under the presence of dynamic conditions such as voltage sag or swell due to system 

faults, provides information on potential disturbances, associated with the grid level and intrinsic 

device function, resulting from market utilization of the device. Characterization of these effects 

through load model analysis in real-time operation can preemptively implement compensation 

tactics in mitigation of detriment to device and grid.  In doing so, increased reliability in 

functionality of the device and power grid may be achieved. 

5.1.2 Application of Dynamic Response Emulation 

In lieu of the established systems at UTK, dynamic emulation of the LED bulb load model 

is addressed in correspondence to the HTB emulator. Design of the model was formulated in 

representation of a standard LED device utilized throughout the power grid. Through dynamic 
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analysis of the load model’s behavior, comprehension of the device’s effects on affiliated utility 

technologies may be achieved. 

5.2 Dynamic Response of the Load Model 

5.2.1 Dynamic Response Simulation Procedure 

In characterization of the load model’s behavior under dynamic conditions, manipulation 

of supply state conditions was implemented within the simulation load model. Characterization of 

the device’s response to dynamic conditions was designed to obtain data at supply conditions 

commonly associated with grid level disturbances. Since the DUT was rated for operation at 120 

V, the load model reflected this as the baseline source condition.  

The model was designed to initially portray steady-state operation, undergo a dynamic 

event in supply condition, for a duration of time, then return to steady state. Adoption of this 

technique provided for characterization of the device’s behavior prior to, during, and following a 

grid disturbance. Further, analysis of the effects on device behavior was exhibited throughout the 

transition from standard ratings to induced fault condition. 

In this regard, testing scenarios were designed to initiate dynamic faults of various 

magnitude and duration. The magnitude of fault was described as the voltage drop applied to the 

supply condition. Magnitudes of faults (voltage decrement) were tested within the range of 10 V 

to 120 V, in 10 V increments. Duration of fault was described as the time duration, in milliseconds, 

which the fault magnitude was applied to the supply source. Fault durations were tested in the 

range of 10 ms to 50 ms, in 5 ms increments. 

As described, the load model was simulated with initial device operating at rated conditions 

(120 V). Fault magnitude of each test was held constant, and the duration that the fault was induced 
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was incrementally increased on each measured signal. The following fault, within one test cycle, 

maintained the equivalent fault magnitude and was incremented in duration by 5 ms.  

Once the test was run, measured signals exhibited the designated fault magnitude at each 

duration of time. Measured response of voltage and current at the load model’s input and output 

terminals were exported to the model workspace and saved as a variable. Once the test was 

complete, the next test was configured with incremented fault magnitude induced in the same 

manner. Upon obtaining measurements at all fault magnitudes, the exported files were plotted for 

comparison and analysis.  

5.2.2 Dynamic Response of the LED Load Model 

Implementation of the dynamic response procedure began with modification of the 

established load model power supply component. The standard AC voltage source was replaced 

with a programmable voltage source component with input sinusoidal signal, shown in Figure 31. 

A sinusoidal signal was applied to the programmable source with a frequency of 60 Hz. The 

magnitude of the signal was set to an equation with incorporation of a global variable 

(Induce_Fault), shown in (29). 

𝑺𝒊𝒈𝒏𝒂𝒍	𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 = 𝟏𝟐𝟎√𝟐 − (𝑭𝒂𝒖𝒍𝒕	𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆√𝟐 ∗ 𝑰𝒏𝒅𝒖𝒄𝒆_𝑭𝒂𝒖𝒍𝒕)   ( 29 ) 

When a load model was operating in steady-state, the global variable was set to 0, making 

the signal equivalent to 120 V. However, when the load model was under the presence of a fault, 

Induce_Fault was set to 1, meaning the fault magnitude was subtracted from the steady-state 120 

V condition. The value of Induce_Fault was controlled through a subsequent system within the 

load model environment.  

Within the subsequent system, start and stop times for each duration of fault were 

calculated, as shown in Figure 37. A comparison was drawn between the simulation model time 
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 and the range of time between start and stop of the fault.  

When simulation time fell within the range of a fault, Boolean logic gates returned a true 

signal, equivalent to 1. When simulation time was not within a fault duration range, the Boolean 

logic gates returned a false signal, equivalent to 0. This signal was used to set the value of the 

global variable, Induce_Fault, depicted in Figure 38.  

Tests were run with fault magnitudes ranging from 10 V to 120 V (amount of voltage 

decrement from a nominal 120 V). Current and voltage waveforms depicting the behavior of the 

device under fault conditions were observed at the input and output terminals of the load model. 

In doing so, the load model’s behavior under dynamic conditions was visualized for analysis. The 

established plots depicting input and output behavior of the load model during dynamic events are 

provided in Figures 39 and 40, respectively. 

Observation of the established waveforms provided information on the device’s operation 

under dynamic supply conditions. Analysis of the waveforms proves that the output conditions 

operated as expected. Current and voltage at the output terminals decreased under the presence of 

a fault. However, under the presence of a fault, for 50 ms or less, voltage and current waveforms 

internal to the LED did not drop beneath the threshold of LED load operation. In lieu of this, it 

was determined that at fault durations under 50 ms, the bulb will maintain function as an 

illumination device, as measurements remained above the 34 V supply state response. Further, 

longer duration of faults posed more concern, for effects on device operation in exhibiting 

illumination. 

When the obtained input current conditions are addressed, the load model response 

exhibited more ambiguous behavior under the presence of dynamic conditions. A spike in current 

condition was exhibited when the fault was induced on the load model. The current impulse 
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increased in magnitude in proportion to fault magnitude, with little correlation observed with 

respect to fault duration. When the fault began or stopped at the zero-crossing of supply 

waveforms, a spike in current was not induced. However, when a fault began or ended in proximity 

to the peak of supply waves, the impulse was more prevalent, as depicted in Figure 40. This pulse 

was deemed a concern in operation with grid affiliated technologies, with the potential requirement 

of compensation to be addressed.  

As previously described, protection elements were not incorporated in the established load 

model. There is potential that the device, with incorporation of these elements, would mitigate 

concerns pertaining to input current dynamic response. However, comprehension of this worst-

case scenario, allows researchers to address it for mitigation and prevention. 

  5.2.3 Dynamic Input Current Response of the LED Load Model  

Further analysis of the current impulse associated with the LED load model was complete 

in portrayal of the relationship which fault location has on input current behavior. Fault scenarios, 

ranging in magnitude, were induced on the model at various locations. In doing so, a relationship 

was observable between the location of the fault scenario initiation and current impulse resulting 

from the grid level event at each fault magnitude.  

Each fault scenario was induced upon the input source voltage. As the input voltage is 

sinusoidal, the fault scenarios were introduced to the system at varied point on the sinusoidal input 

waveform. The initiation of each fault occurred through the periodic wave at unit circle degrees 

ranging from 30-degrees to 360-degrees, in 30-degree increments. Locations of faults tested are 

portrayed in Figure 41 with respect to standardized voltage waveform for reference. 

Faults were induced in 30-degree increments over the period of the input voltage condition. 

Additionally, the fault magnitude of each grid simulated scenario was tested in the root-mean- 
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Figure 37. Fault Duration Start and End times 

Start and stop times for each duration of fault, ranging from 10 ms to 50 ms, are calculated in a subsystem of the load 
model. 

 

 

 
Figure 38. Fault Duration Logical Implementation 

Logic design utilized in implementing a Boolean signal, initiating each fault at the established time range. 
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Figure 39. Load Model Input Behavior During Fault Scenarios 

Current and Voltage Waveforms characterizing input behavior of the load model under faults of 0 V to 120 V, for 10 
ms to 50 ms. 
 
 
 

 
Figure 40. Load Model Output Behavior During Fault Scenarios 

Current and Voltage Waveforms characterizing output behavior of the load model under faults of 0 V to 120 V, for 
duration of 10 ms to 50 ms. 
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square range of 10 V to 120 V difference from rated operation, of 120 VRMS. Data extrapolated 

from testing was plotted for visualization of the relationship which fault location has on current 

impulse during fault initiation. The observed relationship is portrayed in Figure 42. 

As Figure 41 illustrates, the magnitude of current impulse was observed to increase in 

proportion to the increase in fault magnitude within the system. Further, the impulse is observed 

to have a sinusoidal relationship with fault location. When a fault is induced at the zero crossing 

of voltage input, the input current does not exhibit a spike in current. However, the input current 

impulse increases in magnitude with a fault introduction in closer proximity to the peak condition 

of input voltage condition. 

5.3LED Bulb Load Model Fault Scenario Interactive Test Interface 

5.3.1 Interactive Interface for Dynamic Load Model Testing 

The LED bulb load model was designed with the intent to emulate device behavior during 

grid scenarios, similar to that established at UTK’s HTB. Further manipulation of the dynamic test 

model was implemented, in creation of an interactive user interface. The established component-

based load model simulation was used as a baseline in accomplishment of this interfaced design. 

Trivial adjustments were made to the model such that a user could apply a chosen 

disturbance to be visualized during simulation. The constant value for magnitude of fault, at the 

voltage power supply, was replaced with a global variable. This variable was linked to a dial on 

the dashboard window, that allowed the user to adjust the value of fault magnitude during testing. 

Additionally, the Induce_Fault variable, that had been previously used in implementation 

of fault duration, was adjusted to portray the state of a button, placed within the dashboard. When 

the button was held, a Boolean truth, equivalent to 1, was sent to Induce_Fault. In doing so, the  
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Figure 41. Fault Locations Unit Circle Representation 

Visualization of the locations utilized for testing various fault locations on input voltage condition for analysis of the 
effects on input current behavior [85].  

 

 

 
Figure 42. Fault Locations Unit Circle Representation 

Visualization of the locations utilized for testing various fault locations on input voltage condition for analysis of the 
effects on input current behavior. 
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fault condition was implemented across the load model’s supply terminals. The subsequent system 

pertaining to fault duration was removed from the model, as the duration of time the button was 

held by the user directly correlated to the duration of time the fault would remain. 

Dashboard scopes that exhibited input and output conditions are also included for 

observation of the load model behavior throughout testing. These scopes were oriented to include 

a small snapshot of the model’s working behavior at input and output terminals throughout the 

duration of the test. Once testing was complete, the modified load model simulation was accessible 

to users from the dashboard. Primary scopes with improved visualization of the load model’s 

behavior were accessible within this system. 

Further, depiction of the illumination state of the bulb was depicted on the user interface 

dashboard of the load model. Logic design principles were utilized in analysis of the output 

conditions of the load model. When the measured output conditions did not reflect those necessary 

for illumination of the device, the dashboard light would turn off, signifying the cease in function 

of the device for intended purpose. Depiction of the dashboard with on and off state light and 

randomized fault scenarios are provided in Figures 43 and 44. In establishment of a dashboard 

interface which allows users to interact with the model, the component-based load model provided 

improved comprehension of device operation in real time conditions.   

5.3.2 Duration of Fault Scenarios for Bulb Failure in Illumination Test Procedure 

The formulated interactive interface, for observation of the LED Bulb’s dynamic behavior, 

was utilized in observation of device illumination throughout fault events. Within the interactive 

module, the acquired simulation data is recorded throughout induced fault scenarios. Access to the 

numerical data is automatically exported to the MATLAB workspace environment for compilation 

and analytical analysis.   
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Figure 43. Interactive Dynamic Load Model with Illumination 

Visualization of the interactive, user dashboard formulated for comprehensive dynamic testing of the load model 
during real time. Randomized faults are implemented using the by setting fault magnitude with the dial and holding 
the button for desired fault time. Illumination state remains on under the presence of a 40 V fault. 
 

 

 
 Figure 44. Interactive Dynamic Load Model with Affected Illumination 

Visualization of the interactive, user dashboard formulated for comprehensive dynamic testing of the load model 
during real time. Randomized faults are implemented using the by setting fault magnitude with the dial and holding 
the button for desired fault time. Illumination state becomes affected under the presence of a 110 V fault for long 
duration of time. 
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Observation in simulated and laboratory testing showed that illumination of the LED bulb 

is not perceptible to the naked eye when output voltage conditions are below 40 V. Preliminary 

testing was completed, within the interactive dynamic test interface, in exploration of the minimum 

fault voltage magnitude which would affect device illumination. Fault voltage magnitude was 

defined as the difference in applied input voltage from standard operation, being 120 VRMS 

condition, expressed in (30). 

𝑽𝑫𝒖𝒓𝒊𝒏𝒈	𝑭𝒂𝒖𝒍𝒕 = 𝟏𝟐𝟎√𝟐 − (𝑭𝒂𝒖𝒍𝒕	𝑴𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆) ∗ √𝟐           ( 30 ) 

Initial exploration of the minimum fault magnitude, that would affect device illumination, 

was completed in 10 V decrements beginning at 120 V. Faults were induced for an extended 

duration of time until steady-state conditions were achieved, in the presence of the fault. It was 

observed, through the simulation interface, that device functionality in lighting no longer became 

affected at a fault magnitude of 80 V. Meaning, any fault possessing a magnitude less than 80 V 

would not affect the illumination of the device, regardless of the duration which the fault was 

present. Thus, the LED bulb was able to ride through faults of less that 80 V magnitude and 

maintain functionality. 

Once the approximate minimum was retained for fault magnitude, testing commenced in 

investigation of the fault duration at various magnitudes. Fault duration referred to the amount of 

time, in seconds, that the fault would be present within the system. Through comprehensive 

simulation scenarios, the time necessary for the bulb’s illumination to be affected was quantified 

at respective fault magnitudes. 

Beginning at a 120 V magnitude, the interface was utilized to implement a fault throughout 

the device until illumination state became affected, allowing output voltage to sag below the 40 V 

threshold for functionality. Once illumination state was affected, the fault was removed from the 
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system and operation was allowed to return to the rated operating conditions. Following this, the 

magnitude of the fault induced was decremented by 1 V and introduced to the system once more 

until illumination became affected.  

5.3.3 Fault Duration at Various Fault Magnitudes for Illumination Failure Results 

This testing process was repeated until device illumination no longer became affected by 

the fault magnitude, with final test condition occurring at exactly 87 V. At a fault magnitude of 87 

V (120 V nominal – 87 V sag such that system dropped to 33 V), the output voltage waveform 

oscillated above and below the functional threshold. As a result, the simulation appeared to initially 

flicker between on and off state prior to setting in the off state, with no illumination. At fault 

magnitude conditions below 87 V, the bulb remained with illumination and did not exhibit 

flickering, making this the minimum rated magnitude for fault duration testing in observation of 

bulb functionality throughout dynamic events.  

Data which had been exported to the MATLAB model workspace from testing was 

observed through code-based analysis. The associated waveforms were compiled and plotted for 

comparison. Input behavior waveforms are plotted in Figure 44 and output conditions are 

visualized in Figure 45. Additional incorporation of a test condition with fault magnitude of 86 V 

was incorporated for illustration, showing that while dimming at lower conditions occurs, the 

bulb’s illumination state remained on, as conditions do not cross the 40 V functional output 

condition threshold. 

Data was extrapolated from the behavioral waveforms pertaining to input and output 

voltage conditions. The time of fault introduction was recorded with respect to each fault 

magnitude scenario from the observed input voltage behavior. Further, the output voltage behavior 

was utilized in determination of the time which voltage sagged below the 40 V illumination 
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threshold. The difference in time between fault introduction and sag to 40 V condition was 

calculated. This difference represented the duration of time, at specified fault magnitude, for the 

bulb’s illumination to be affected, as shown in (31).  

𝒕𝒊𝒍𝒍𝒖𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏	𝒇𝒂𝒊𝒍𝒖𝒓𝒆 = (𝒕𝒇𝒂𝒖𝒍𝒕	𝒊𝒏𝒕𝒓𝒐𝒅𝒖𝒄𝒆𝒅) − (𝒕𝑽𝒐𝒖𝒕𝒑𝒖𝒕	>	𝟒𝟎	𝑽)           ( 31 ) 

The duration of time for the bulb’s illumination to be affected was compiled with respect 

to the tested fault scenario’s magnitude of fault. The acquired data was plotted for representation 

of the relationship between fault duration and fault magnitude, which exhibited exponential decay. 

It was determined that at fault magnitudes of 87 V to 90 V the duration of time for illumination 

failure exhibited an exponential decay relation, displayed in Figure 46.  

Upon reaching 90 V, all fault magnitudes above this condition remained relatively constant 

in duration of time for failure in illumination. At fault magnitudes of 90 V and above, a dynamic 

event for approximately 194.5 ms would result in effects on bulb illumination. Thus, faults of 87 

V magnitude, and above, require mitigation in 194.5 ms to maintain operation of the device for 

lighting. 

5.4 Chapter Summary 

In chapter five, the methodology and reasoning behind dynamic characterization of the 

established load model was discussed in detail. Simulation and affiliated measurements, in 

observation of load model behavior, under the presence of faults, ranging in magnitude and 

duration were exhibited. Analysis on the effect of fault duration and magnitude on the load model’s 

behavior and functionality as a lighting device was illustrated.  

Findings were correlated in relationship to power grid operation. Utilization of these 

methods, for improvement in both device and integrated system reliability, were discussed. The   
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Figure 45. Input Waveforms for Fault Induced Illumination Failure  

Visualization of the input voltage and current waveforms for determination of the effects on fault magnitude and fault 
duration on bulb illumination. 

 

 

 
Figure 46. Output Waveforms for Fault Induced Illumination Failure  

Visualization of the output voltage and current waveforms for determination of the effects on fault magnitude and 
fault duration on bulb illumination. 
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Figure 47. Interactive Dynamic Load Model with Affected Illumination 

Visualization of the interactive, user dashboard formulated for comprehensive dynamic testing of the load model 
during real time. Randomized faults are implemented by setting fault magnitude with the dial and holding the button 
for desired fault time. Illumination state becomes affected under the presence of a 110 V fault for long duration of 
time. 
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benefit of dynamic characterization of load models was emphasized to provide future researchers  

opportunity for mitigation of threats to the system’s reliability. In doing so, they might establish 

working systems in integration that compensate for the impending effects associated with LED 

bulb usage under worst case scenario fault. 

Work exhibited in the characterization of dynamic faults was applied in the formulation of 

an interactive, real-time load model test interface. With reference made to UTK HTB grid 

emulators, the interactive dashboard and affiliated load model were adjusted for user input, via 

dashboard, in dynamic analysis of the device model. The benefit of interactive elements allowing 

user defined disturbance was highlighted with additional features addressed, such as the depiction 

of the modeled device’s illumination.  

The established emulation module allows users to not only interact with the load model in 

observation of the impending effects of fault scenarios on the system of integration, but also 

observe the effect of an induced fault scenario of the function of the device for intended purpose. 

Inclusion of this component aimed to additionally provide researchers opportunity for providing 

supply conditions that enabled consistently accessible lighting to users. 
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CHAPTER 6  
CONCLUSIONS AND RECOMMENDATIONS 

In recent years, the lighting industry has been revolutionized through the invention and 

adoption of the LED bulb. As historical lighting trends indicate, the commercial and residential 

market has enthusiastically welcomed the adoption of LED bulbs as a primary source of lighting. 

Capable of improved efficiency, operational lifespan, minimal power consumption, and quality of 

illumination, LED bulb utilization has steadily been adopted throughout all utility sectors. The 

device currently occupies the majority of the market for area lighting and is predicted to continue 

to show increased integration in coming years.  

Due to the rapid adoption of LED bulbs for lighting, the effects of the device’s integration 

within the power grid must be addressed. Analysis of end-use power consumption, throughout 

utility sectors, indicates the influential nature of lighting devices within the power grid. For 

improved operation, reliability, and security of the power grid, behavior of the LED as a load 

requires comprehension. Load modeling methodologies in device characterization assist in 

describing the bulb’s behavior within ambient conditions, providing vital information on the 

effects of device utilization on affiliated grid technologies and function of the device for 

illumination.  

Through various techniques of load modeling, a simplified model that represents the 

device’s behavior as a load may be achieved, approximating the relationship between voltage and 

current within the device to a constant impedance, voltage, or current relationship. For complex 

power electronic devices, load modeling becomes more convoluted. Attributes and pitfalls of each 

load modeling technique influences choice of implementation for analysis of the device’s behavior 

in characterization. 
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Previously, researchers employed measurement-based ZIP modeling principles, in 

characterization of the LED bulb as a load. Measurement-based techniques are restricted in 

accurate representation to conditions tested in establishment of the model. In this regard, transient 

behavior of the modeled device throughout dynamic events is not efficiently addressed in 

measurement-based load models. Adoption of ZIP modeling, for analysis of a power system with 

LED bulb integration, can provide ambiguities in operation, hindering accuracy in emulation. 

Emulation of grid-level scenarios provides comprehensive understanding on the effects of 

disturbances and opportunity for mitigation of failures within the system. For accurate reflection 

of grid behavior, emulators require consistent adaptation in reflection of emerging technologies in 

utilization, achievable through development and aggregation of load model profiles. As LED bulbs 

are considered an emerging and influential device within utility applications, design of a load 

model that depicts accurate behavior of a standard bulb is crucial for maintaining precision in grid 

emulation. As effort in this thesis was focused on establishing a working load model of the LED 

bulb for analysis, future work toward the integration of the established model within grid emulator 

systems, such as the UTK HTB, will provide comprehensive illustration of the LED bulb’s effect 

on affiliated technologies throughout the grid. 

A component-based load model, in representation of the LED bulb, provides improved 

accuracy in characterization of the device, with inclusion of transients under a plethora of grid-

level scenarios. In depiction of a conventional bulb’s behavior, the model must pay respect to LED 

bulbs within the lighting market. Through analysis of LED device market trends, power electronic 

principles, and comparison of manufactured topologies, a generalized load profile can be 

formulated in depiction of a LED bulb as a load.  
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In formulation of a standard LED bulb’s component-based load model, parameters of 

electrical elements within the topology were tuned to represent typical bulbs and specified to a 

particular device utilized during laboratory testing. Comparison was drawn between exhibited 

behavior of the device during the described laboratory testing and simulation of the load model. 

Verification of the established load model’s emulated device behavior is achieved through this 

steady-state analysis and comparison. As the established model acts a baseline for representation 

of a typical LED bulb, future work toward application of the load model for various manufactured 

LED bulbs can further provide precision in grid emulation. 

Behavior of the device and load model was observed to portray both constant impedance 

and constant power type load characteristics, dependent on the applied steady-state operating 

condition. Simulation of the verified load model was adjusted for representation of device behavior 

under the presence of dynamic grid conditions, with a range of fault magnitudes and durations. 

Transient effects and mitigation of potential failures, caused by load model dynamic response, is 

addressed through simulation of conventional fault scenarios. Research may be furthered through 

testing of dynamic disturbances in a wider range of fault magnitudes and fault duration. In doing 

so, compensation techniques, for the load model’s dynamic response, have the potential to be 

designed for incorporation within the grid providing improved system reliability. 

A dashboard interface was established for user interaction in real-time manipulation and 

observation of load model behavior during an induced fault. From this, emulation of the LED bulb 

as a grid load is visualized for analysis of effects on affiliated grid technologies. Inclusion of device 

function, for the manufactured intention of light production, is incorporated for illustration of the 

additional effect dynamic conditions have on the device itself. In doing so, researchers are provided 

the opportunity to not only work toward incorporating compensation technologies in the mitigation 
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of failures and improved reliability of the grid, but also work toward maintaining supply conditions 

to the bulb that allow for continuous access to lighting. With this regard, a brighter future may be 

achieved. 
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