
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2022

The Islands Project for Managing Populations in Genetic Training The Islands Project for Managing Populations in Genetic Training

of Spiking Neural Networks of Spiking Neural Networks

Chaohui Zheng
czheng4@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Zheng, Chaohui, "The Islands Project for Managing Populations in Genetic Training of Spiking Neural
Networks. " Master's Thesis, University of Tennessee, 2022.
https://trace.tennessee.edu/utk_gradthes/6463

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F6463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Chaohui Zheng entitled "The Islands Project for

Managing Populations in Genetic Training of Spiking Neural Networks." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Computer

Science.

James S. Plank, Major Professor

We have read this thesis and recommend its acceptance:

Garrett S. Rose, Catherine D. Schuman

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

The Islands Project for Managing

Populations in Genetic Training of

Spiking Neural Networks

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Chaohui Zheng

August 2022

© by Chaohui Zheng, 2022

All Rights Reserved.

ii

Abstract

The TENNLab software framework enables researchers to explore spiking neuropro-

cessors, neuromorphic applications and how they are trained. The centerpiece of

training in TENNLab has been a genetic algorithm called Evolutionary Optimization

For Neuromorphic System (EONS). EONS optimizes a single population of spiking

neural networks, and heretofore, many methods to train with multiple populations

have been ad hoc, typically consisting of shell scripts that execute multiple indepen-

dent EONS jobs, whose results are combined and analyzed in another ad hoc fashion.

The Islands project seeks to manage and manipulate multiple EONS populations

in a controlled way. With Islands, one may spawn off independent EONS populations,

each of which is an “Island.” One may define characteristics of a “stagnated” island,

where further optimization is unlikely to improve the fitness of the population on

the island. The Island software then allows one to create new islands by combining

stagnated islands, or to migrate populations from one island to others, all in an

attempt to increase diversity among the populations to improve their fitness.

This thesis describes the software structure of Islands, its interface, and the

functionalities that it implements. We then perform a case study with three

neuromorphic control applications that demonstrate the wide variety of features of

Islands.

iii

Table of Contents

1 Introduction 1

2 Related Work 3

3 Background 5

3.1 Encoding and Decoding . 8

3.2 Reduced Instruction Spiking Processor 10

3.3 Applications . 12

3.3.1 Polebalance . 12

3.3.2 Bowman . 12

3.3.3 Spaceinvaders . 14

3.4 Evolutionary Optimization For Neuromorphic System 14

4 Software Structure 19

4.1 Island Manager . 21

4.1.1 Island Manager Parameters 23

4.2 Island Monitor . 24

4.3 Island Worker . 27

4.4 Usage . 30

5 Case Study 31

5.1 Encoding/Decoding Choice . 32

5.2 Determining stagnation parameters 32

iv

5.3 Control Experiment . 35

5.4 Migration Policy Evaluation . 37

5.5 Island Combining Topology . 42

5.5.1 Discussion . 44

6 Future Work 49

7 Conclusion 51

Bibliography 52

Vita 59

v

List of Tables

5.1 The running time, Island monitor command, and number of the Island

workers for each control run. 36

vi

List of Figures

3.1 A subset of TENNLab framework used in Island 6

3.2 An example of spikes-flip-flop encoding with two bins for a value of 2

over an input interval [0,10] for 50 simulation time. First a value of 2

belongs to the first bin. Then we map 2 from [0, 5] to [0, 1], which

converts the value to 0.6. In turns, it produces ceil(0.6 * 8) = 5 spikes

with each spike 50/8 = 6.25 time units apart. Similarly, a value of 8

will produce the same spikes on the second neuron. 9

3.3 An example of temporal encoding for a value of 2 over an input interval

[0,10] for 50 simulation time. First we directly map 2 from [0, 10] to

[0, 1], which converts the value to 0.2. This produces a spike at time

50 - (0.2 * 50) = 40. 11

3.4 An example of a RISP network whose behavior changes significantly

with the leak mode. 11

3.5 A screenshot of polebalance application. The cart is being pushed to

right. 13

3.6 A screenshot of bowman application. In this example, the player is

shooting three birds with one arrow. 15

3.7 A screenshot of spaceinvaders application. In this example, the player

shot its laser, and then moved to the left. 16

3.8 Crossover operations of EONS. The same color of neurons and synapses

have the same properties . 18

vii

4.1 Island Structure . 20

4.2 Island manager workflow . 22

4.3 An output example of running command “ISLANDS ALL -1 0 2” . . 26

4.4 An output example of running the command “IINFO 0”. “Epoch

times” shows the accumulated running time at each epoch. “Epoch

fitness” shows the best fitness at each epoch. “Stag nets” shows the

number of stagnated networks from the best n networks at each epoch

where n is defined by JSON “{“stagnant”: {“networks”: n}}” in Island

parameters file. 28

4.5 Circular migration policy with a stride of 2 and window size of 4. The

window is colored in pink. The edge represents the flow of migration. 28

4.6 Island worker workflow . 29

5.1 The Tukey plot and heatmap for 100 EONS runs of bowman, spacein-

vaders, and polebalance. We show the number of epochs until

stagnation (first row), the running time until stagnation (second row),

and the fitness values at stagnation (third row). We also show the

heatmap of fitness change along the x-axis (number of stagnant epochs)

over the running time (the last row). The darker the color, the bigger

the increase in fitness as the number of stagnant epochs increases. . . 34

5.2 Fitness of the control runs. 36

5.3 Performance differences between independent EONS/island runs (shown

in the left two boxes) and islands with migration policy (shown in the

right six boxes). 41

5.4 TREECOMB with 3 children and 3 levels 43

5.5 DENSETREECOMB with 3 children, 3 levels, and replication

creation type. The identical sets are marked by the red bounding

box. 43

viii

5.6 DENSETREECOMB with 3 children, 3 levels, and set creation

type. Each set is marked by the red bounding box. 45

5.7 Results of combining islands with TREECOMB and DENSETREECOMB. 46

5.8 Best network in each of the Islands runs. 48

ix

Chapter 1

Introduction

The TENNLab group at the University of Tennessee focuses on spiking neural

networks (SNN’s) as novel, brain-based computational platforms. SNN’s are

powerful computationally, allowing one to implement complex functionalities with low

requirements on size, weight and power. Their difficulty lies in training, as standard

backpropagation approaches are difficult to employ, and yield large SNN’s whose

size, weight and power go against the reasons why we want to explore them [29, 21].

Accordingly, the major training algorithm employed by TENNLab is a genetic

algorithm called EONS (Evolutionary Optimization of Neuromorphic Systems) [22].

Each EONS job manages a single population of SNN’s. These are typically

initialized randomly, and then go through generations of selection and “reproduction.”

The algorithm optimizes both the structure and parameters of the networks.

Typically, an EONS population stagnates after a period of time. This means that

although EONS may continue to generate new populations, it is highly unlikely that

the new populations perform any better than the current ones because EONS has

discovered the local optima and gets stuck there. Therefore, one is motivated to

employ multiple EONS populations.

The Islands project’s goal is to manage multiple EONS populations. Each

population is an “island,” created by an EONS process. There is a manager process,

1

a monitor process, and a collection of worker processes. The manager instructs

the workers to perform EONS jobs, either from initial random populations, or by

combining populations from other islands. Additionally, the manager maintains a

pool of the best SNN’s from the collection of islands, and allows “migrant” SNN’s

from this pool to join other EONS populations.

In this thesis, we detail the software structure of the Islands project and its

interface. We then demonstrate its features with an optimization study involving

three control applications. The Islands project is poised both to aid TENNLab

researchers as they optimize SNN’s for various applications and to be the focus of

a research study on the benefits of the Islands approach.

2

Chapter 2

Related Work

There are many ways to parallelize genetic algorithms. One simple approach is to

divide the task of the evaluation process across many CPU cores. This approach

is also known as global/master-slave parallelization [2, 7, 5]. The evaluation of

one individual is independent of another. Therefore, this approach is usually

implemented with “master” and “slave” programs where the “master” program

stores the population and distributes the individuals to the ”slave” program, and

“slave” program evaluates the fitness of individuals and reports the fitness back

to “master” program. Additionally, this master-slave can be either synchronous or

asynchronous, where the synchronous model waits for all individuals in the population

to be evaluated before the reproduction of the next generation, and the asynchronous

model only waits for a fraction of the population to be evaluated. Although the

asynchronous model makes more efficient use of computational resources due to less

CPU idle time, it can lead to a limited search space that is less computationally

expensive [28].

Another popular approach is to maintain many subpopulations by running mul-

tiple genetic algorithms across numerous processors to solve the same problem. Each

processor evolves the subpopulation independently with occasional communication

between subpopulations through migration. The migration operation exchanges the

3

individuals among processors. There are usually two parameters involved with the

migration process - (a) migration rate, which specifies how many individuals migrate

(b) migration interval, which specifies how often migration happens [11, 5]. This

approach is also known as the Coarse-Grained/Island Model [35]. These migration

parameters can affect the performance/efficiency of the genetic algorithms and can be

application-specific [3, 4]. On the other side, there have shown the benefits/promising

results of the Island model to optimize problems [19, 34]. In this thesis, we

design/implement an Island model within the TENNLab framework described in [18].

We are specifically interested in using genetic algorithms to train spiking neural

networks. This is sometimes called neuroevolution [8]. Neuroevolution approaches

have been applied to train a variety of neural networks, including recurrent

neural networks [32, 9], deep neural networks [12, 33, 37, 36], and spiking neural

networks [27, 10]. When a problem is complex, the neuroevolution approach takes a

significant amount of time to find an acceptable spiking neural network due to the

large population size and high generations/iterations. For that reason, parallelizing

the neuroevolution approach is necessary. Various research projects have used the

master-slave model to parallelize neuroevolution methods [37, 36, 20, 26].

The NEAT and HyperNEAT projects explore the concept of maintaining diversity

in neuroevolution [30, 31]. Rather than evolve a single optimized population, multiple

lineages of populations are optimized so that the populations do not become too

homogenized. The Islands project allows the manager to manage lineages on its

various islands.

4

Chapter 3

Background

The focus of this research is on genetic algorithm training of spiking neural networks

(SNN’s). For background material on SNN’s, applications, neuroprocessors and

training, please see survey papers by Roy et al [21] and Schuman et al [25], plus

overview papers by various TENNLab researchers [18, 22, 15, 24].

TENNLab is a neuromorphic computing research lab at the University of

Tennessee, Knoxville. TENNLab has developed a software infrastructure that

allows us to train spiking neural networks on different neuromorphic applications,

neuroprocessors, encoding and decoding techniques, and training methods [18]. In this

work, we rely on the executable produced by the TENNLab framework to implement

Island. Each executable is compiled with a given neuroprocessor, application, and

EONS. The executable itself is able to parallelize the fitness evaluation of spiking

neural networks through multi-threading. This parallelism is limited to the number

of cores within one single processor. Figure 3.1 shows the subset of the TENNLab

framework used in this thesis. We briefly describe each component below.

1. Application: TENNLab supports multiple applications. Each application

implements an interface defined by the TENNLab framework, which works

in a manner similar to OpenAI Gym [1]. The application presents an

agent with observations, and then the agent responds by defining actions

5

Figure 3.1: A subset of TENNLab framework used in Island

6

for the application. This cycle repeats until the application is over. The

application defines fitness in a manner specific to the application. For

example, a classification application may define fitness as the number of correct

classifications. A control application may reward a long lifetime, or shooting

targets.

2. Neuroprocessor: This is what computes on a spiking neural network. The

neuroprocessor defines parameters of the network (e.g. discrete or continuous

values, features like leak or plasticity), and then allows one to load a network

onto the processor, apply input spikes, process, and record the resulting spiking

behavior.

3. EONS: EONS takes a population of spiking neural networks and their

associated fitnesses. Then it runs a genetic algorithm that performs selection,

mutation, crossover, and merge operations to generate a new population of

networks to be evaluated. EONS considers one population at a time —

currently, to manage multiple EONS populations, one typically runs multiple

independent EONS jobs.

4. Driver: The driver glues all other software components together. It evaluates

the current population by obtaining the fitness of each network. It then sends

fitness back to EONS to generate the next population. It takes the following

steps to evaluate one network:

(a) Read in observation values from the application and convert these values

into input spikes with a selected encoding technique.

(b) Send input spikes to the neuroprocessor and then wait to receive informa-

tion about output spikes, such as the spiking time, and spike counts. Then

it converts this statistic into actions with a selected decoding technique.

(c) Send actions to the application.

(d) Repeat the above steps until the application stops.

7

To demonstrate our work with Islands, we have chosen specific parts of the

TENNLab framework for experimentation. These are:

• The RISP neuroprocessor [16].

• Temporal and “spikes” encoding.

• Winner-take-all decoding

• Three control applications: polebalance, Bowman and SpaceInvaders.

We elaborate further in the following subsections.

3.1 Encoding and Decoding

The encoding and decoding techniques are described in [18, 23]. In this work, we

explore the following encoding/decoding JSON specifications used in the TENNLab

framework for our experiments.

1. { “spikes”: { “flip flop”: 2, “max spikes”: 8, “min”: 1, “max”: 1 }

} (encoding): Each input value corresponds to two input neurons. Assume

the input value has an interval of [min, max]. Any value within the interval

[min,(min + max)/2] goes into one neuron, and the remaining value goes into

another. Then the value is scaled between 0 and 1 corresponding to its bin.

Finally, the scaled value is converted to a number of spikes from one to eight

and all input spikes have values of 1. Figure 3.2 shows an example of encoding

the value 2, in a range of [0,10]. The “flip-flop” attribute means that smaller

values in the first bin spike more, while larger values in the second bin spike

more. The caption of the example explains further.

2. {“temporal”:{“higher earlier”:true}} (encoding): Each input value

corresponds to one input neuron, and produces one input spike to that neuron,

whose time is scaled by the value. A higher input value results in an earlier

8

Figure 3.2: An example of spikes-flip-flop encoding with two bins for a value of 2
over an input interval [0,10] for 50 simulation time. First a value of 2 belongs to the
first bin. Then we map 2 from [0, 5] to [0, 1], which converts the value to 0.6. In
turns, it produces ceil(0.6 * 8) = 5 spikes with each spike 50/8 = 6.25 time units
apart. Similarly, a value of 8 will produce the same spikes on the second neuron.

9

input spike. Figure 3.3 shows an example of temporal encoding for a value of

2.

3. Winner-take-all: Each potential value of an action corresponds to one

output neuron. The output neuron with the most spike counts wins, and

its corresponding action is taken by the application. For example, in the

polebalance application, whose actions are “push-left” and “push-right,” there

are two output neurons, and the neuron that spikes most determines the action.

Ties go to the neuron added to the spiking neural network first.

3.2 Reduced Instruction Spiking Processor

The RISP neuroprocessor is a lightweight neuroprocessor that operates on spiking

neural networks [16]. RISP stands for “Reduced Instruction Spiking Processor,” and

its main feature is simplicity. Other TENNLab neuroprocessors, such as Caspian [14],

DANNA [6] and DANNA2 [13], support many robust/complex features, such as Spike-

timing-dependent plasticity (STDP), refractory period, plasticity and configurable

leak. RISP has none of these. RISP only supports configurable neuron threshold,

synapse delay, synapse weight, and an optional “full leak” mode. When this “full leak”

mode is enabled, all accumulation is lost at the end of the integration cycle. When

this “full leak” is disabled, all neurons retain the accumulated potentials. There have

been several projects that exploit the simplicity of RISP. For example, the Whetstone

project uses backpropagation training methodologies that leverage “full leak” enabled

networks as RISP allows [29]. We can also hand build RISP networks that perform

binary operations on different sets of input encoders [17].

Figure 3.4 shows an example of RISP networks where neurons A, B, and O each

have a threshold of 1. The synapses AO and BO have weights of 0.5, and delays of 1

and 2 respectively. Suppose all three neurons start with a potential of 0, and A and

B each spike at time 0. When “full leak” mode is enabled, spikes with weights of 0.5

10

Figure 3.3: An example of temporal encoding for a value of 2 over an input interval
[0,10] for 50 simulation time. First we directly map 2 from [0, 10] to [0, 1], which
converts the value to 0.2. This produces a spike at time 50 - (0.2 * 50) = 40.

Figure 3.4: An example of a RISP network whose behavior changes significantly
with the leak mode.

11

arrive to neuron O at times 1 and 2, and the neuron leaks away its potential at both

timesteps. When “full leak” mode is disabled, neuron O retains its 0.5 potential from

timestep 1, and spikes at timestep 2.

In this paper, “full leak” model is disabled. Therefore RISP can maintain some

information about the previous states. In theory, this is helpful for training a control

application where the future states heavily depend on the previous states, and having

neurons retain their potentials is a good thing.

3.3 Applications

In this section, we give a detailed description of three applications that we use to

demonstrate Islands: Polebalance, Bowman and Spaceinvaders. These are control

applications that have been used in other TENNLab projects [15, 23].

3.3.1 Polebalance

Polebalance is a classic cart-pole control problem. In this problem, there’s a pole

attached to a cart, which moves on a fixed-size road. The goal of this problem is to

prevent the pole from falling over and to prevent the cart from hitting the bounds of

the track. The observations of this application are the cart’s position on the track,

the pole’s angle on the cart, the cart’s horizontal velocity, and the pole’s angular

velocity. The actions are to push the cart left or right. The fitness function is shown

below. Figure 3.5 shows a screenshot of polebalance application.

number of timesteaps to keep pole balance within bounds

maximum timesteps

3.3.2 Bowman

Bowman is a LIDAR-based control application [15]. In this problem, birds fly

horizontally at different heights and directions across the screen. The player is placed

12

Figure 3.5: A screenshot of polebalance application. The cart is being pushed to
right.

13

at the bottom center and is equipped with seven LIDAR sensors, a bow and unlimited

arrows. The player uses LIDAR readings to make decisions - rotate the bow either to

the left or right, shoot an arrow along its current angle of sight, or do nothing. The

goal of this problem is to maximize the birds shot while minimizing the number of

arrows used. The fitness function is shown below. Figure 3.6 shows a screenshot of

bowman application.

(birds shot)2

birds spawned ∗ arrows shot

3.3.3 Spaceinvaders

Spaceinvaders is a LIDAR-based control application [15]. In this problem, invaders

begin at the top of the screen and move down toward the bottom. The player

moves along the bottom and shoots a laser up to kill invaders. The game ends

when one of the invaders reaches the bottom of the screen or the play time exceeds

the maximum timesteps. The goal of this problem is to maximize the number of

invaders eliminated, while minimizing the number of laser shots before invaders reach

the bottom of the screen. The fitness function is shown below. Figure 3.7 shows a

screenshot of spaceinvaders application.

invaders kill

number of shots
∗ play time

maximum timesteps

3.4 Evolutionary Optimization For Neuromorphic

System

Evolutionary Optimization For Neuromorphic System (EONS) is a primary training

method in the TENNLab framework to design spiking neural networks using genetic

algorithms. The detailed implementation of EONS is described in [22]. We also briefly

describe EONS processes below.

14

Figure 3.6: A screenshot of bowman application. In this example, the player is
shooting three birds with one arrow.

15

Figure 3.7: A screenshot of spaceinvaders application. In this example, the player
shot its laser, and then moved to the left.

16

1. EONS starts with generating a random population of networks to be evaluated

by an application on a specific neuroprocessor.

2. EONS receives the fitness value of each network from the driver program. EONS

selects networks to perform one or more of the following operations, to produce

a new population to be evaluated. EONS provides a set of common selection

algorithms including but not limited to tournament and Roulette Wheel.

(a) Mutation: EONS selects one network and does one of these - add a neuron,

add a synapse, delete a neuron, delete a synapse, change the property value

of the neuron such as threshold, and change the property value of synapse,

such as delay or weight.

(b) Duplication: EONS selects one network and makes a copy of it.

(c) Crossover: EONS selects two parent networks and generates two child

networks. The two parent networks distribute neurons and synapses

to the two child networks. Each child network inherits exactly one

neuron/synapse from either parent network. Figure 3.8 shows the crossover

operation of EONS.

(d) Merge: EONS selects two parent networks and generates one network that

is the union of these two parent networks. In other words, the child network

inherits all neurons and synapses from both parent networks.

17

Figure 3.8: Crossover operations of EONS. The same color of neurons and synapses
have the same properties

18

Chapter 4

Software Structure

Evolutionary Optimization for Neuromorphic Systems (EONS) is a genetic algorithm

that has trained spiking neural networks (SNN) on a variety of applications including

classification and real-time control [15, 22]. Although EONS can achieve thread-

based parallelism in respect to network evaluation, it takes a significant amount of

time for networks to converge for more difficult problems. However, when coupled

with the Island(s) workflow, we can achieve both thread-based parallelism where

each EONS run can evaluate the fitness of multiple SNNs concurrently and processor-

based parallelism where Island can manage multiple EONS training runs concurrently.

At a high level, the Islands framework can manage multiple concurrent EONS jobs

split across many processors. It offers different migration policies and population

combination strategies to aid in convergence. The structure of Islands framework

can be broken into three parts - manager, worker, and monitor. We show them in

Figure 4.1 and describe each part of the island framework in detail in the following

subsections. The Islands framework is implemented in C++, and we use sockets for

communication between the Island manager and Island workers/Island monitor. We

use pipes between Island workers and EONS runs.

19

Figure 4.1: Island Structure

20

4.1 Island Manager

When the Island manager starts, it reads in a JSON parameter file to set up the initial

state (The parameters are described in 4.1.1). Then, it spawns one “server” thread

and one “monitor” thread. The “server” thread accepts connections from different

Island workers and spawns one “worker” thread per connection. We display each

thread, including the main thread, below and in Figure 4.2 as well.

Server thread: This creates a socket and waits to accept connections from Island

workers. When a connection is established, it spawns one “worker” thread. If there

are n Island workers, it will spawn n “worker” threads.

Exit thread (main thread): The “exit” thread is responsible for terminating all

worker threads, the monitor thread, and then exiting the Island manager gracefully.

Monitor thread: This creates a socket whose port is different than what the

“server” thread uses and accepts a connection from the Island monitor. It processes

the monitor’s commands accordingly. We describe the Island monitor’s commands in

detail in the “Island Monitor” section 4.2.

Worker thread: This sends one EONS job at a time from a queue to the

corresponding Island worker. At every epoch of an EONS run, it will receive a status

update from the Island worker, and then decide whether it will send migrants or not

(the migration operation is defined by commands provided to the Island monitor or

by an internal migration policy. They are described in section 5.4). Upon the EONS

job’s completion, it will attempt to send another EONS job to the Island worker.

21

Figure 4.2: Island manager workflow

22

4.1.1 Island Manager Parameters

The Island manager reads in a set of parameters to figure out where to store checkpoint

files, how to run the application agent, what the parameters of the application agent

are, what migration policy is being used, etc. We provide an example JSON file for

the Spaceinvaders application and give a detailed explanation of each parameter

below.

{

"agent_directory": "./cpp-apps",

"agent_executable": "bin/spaceinvaders_risp -a train",

"checkpoint_directory": "/yourpath/spaceinvaders_risp",

"seed_island": 0,

"monitor_port": 22222,

"communication_period": 10,

"max_migrant_pool_size": 256,

"migration_policy": "none",

"stagnant": { "epochs": 4, "networks": 4 },

"agent_params": {

"encoder": { "spikes":

{ "flip_flop": 2, "max_spikes": 8, "min": 1, "max": 1 } },

"extra_eons_params": {

"population_size": 50,

"num_best": 4,

"starting_nodes": 2,

"starting_edges": 46,

"random_factor": 0

},

"epochs": 5000000,

"threads": 48,

"episodes": 10,

"no_show_epochs": false,

"prune_before_loading": true,

"show_populations": true,

"include_networks": true,

"migrant_population": "-"

}

}

• agent directory: The directory in which we run agent executable.

23

• agent executable: The basic command to execute the application agent.

• checkpoint directory: The directory in which we store checkpoint files.

• seed island: A random number generator seed. It decides the random number

generator seed for each island’s (EONS’s) run.

• monitor port: A socket port number to which the Island monitor can connect.

• communication period: How often (in terms of epochs) the Island manager

and the Island worker send/receive migrants.

• max migrant pool size: The size of the migrant pool in Island manager.

• migration policy: A value of ”none” disables it. See section migration policy

evaluation for other migrant policies.

• stagnant: We define this as a JSON “{“epochs”: e, “networks”: n }”,

which says the island job stops if the best n networks do not improve over e

epochs. If n or e is less than or equal to 0, the island jobs run to completion.

• agent params: The parameters for application agent.

4.2 Island Monitor

The Island monitor is essentially a scheduler that allows a user to control how

Island jobs are organized and run. The Island monitor features RANDOM, COMB,

TRANDOM operations that can be used to add Island jobs to the Island job queue.

We describe these three operations below. We also describe more operations in section

5.5, Island Combining Topology.

• RANDOM n [initial population size] [initial min fitness] [stag epochs

stag networks]: This creates n islands whose initial population is random and

of size population size, with minimum fitness threshold initial min fitness. A

24

population size of -1 uses the population size defined in the EONS parameter

file. By default, population size = -1, initial min fitness = -1, and stagnation

parameter uses default values in the island parameter file.

• TRANDOM n time limit [initial population size] [initial min fitness]:

The usage of this is similar to RANDOM command, but the island job stops

when it finishes all EONS’s epochs or the running time exceeds time limit.

• COMB [island id number of best networks epoch] * [stag epochs

stag networks]: This creates one island job whose initial population is created

by combining some of the best networks from other islands. For example,

“COMB 0 25 10 1 25 10” says to combine islands 0 and 1 and use the best 25

networks at epoch 10 from each island to create a new island. The stagnation

parameter follows the same rule as RANDOM command.

The Island monitor also provides commands to retrieve the most up-to-date

information from the Island manager. We describe these commands below:

• ISLANDS [state(ALL | RUNNING | STAG | DONE | DISCARD |

PAUSE) = ALL] [threshold = -1] [from = 0] [to = MAX INT]: By

default, the state is ALL. It tells you the one-line status of islands that have

state “stat” from “from” to “to” (not inclusive) whose best fitness is greater

than or equal to threshold. Figure 4.3 shows an output example.

• ISLANDTOP num: This tells you a one-line status of best num islands. The

output format is the same as ISLANDS command.

• STATUS: This shows the status, which includes but is not limited to, the total

number of islands, the number of stagnant islands, the number of non-initialized

islands, the number of initialized but non-stagnant islands, the current best

fitness, the number of active workers, etc.

25

Figure 4.3: An output example of running command “ISLANDS ALL -1 0 2”

26

• IINFO n: This gives more detailed information about island n, which can be

used to reproduce island n’s run. Figure 4.4 shows an output example.

• WINFO: This shows information about workers.

• QINFO: This shows information about island jobs to be done.

• BF network file: This stores the best network to network file

The Island monitor also provides CIRMIG to perform circular migration among

islands.

• CIRMIG from island to island window size stride num best networks

epoch: This does a circular migration between island from island and island

(to island− 1) at epoch epoch. It works by sliding a fixed size window with a

stride of stride from island from island to island to island. Each island within

the window sends num best networks networks to the island one past the last

island on the window. Figure 4.5 shows the command “CIRMIG 0 10 4 2 xxx

xxx” where “xxx” is any positive integer values.

4.3 Island Worker

We show the workflow of an Island worker in Figure 4.6. An Island worker receives

a command from the Island manager and forks off a new process. This new process

allows for multiple threads to evaluate the fitness of networks. The Island worker

and the new process communicate via a pipe. At every epoch of an EONS training

run, the Island worker will only send epoch and fitness status updates to reduce

communication traffic. Additional status update information such as population and

best network. can be requested if necessary.

27

Figure 4.4: An output example of running the command “IINFO 0”. “Epoch
times” shows the accumulated running time at each epoch. “Epoch fitness” shows
the best fitness at each epoch. “Stag nets” shows the number of stagnated networks
from the best n networks at each epoch where n is defined by JSON “{“stagnant”:
{“networks”: n}}” in Island parameters file.

Figure 4.5: Circular migration policy with a stride of 2 and window size of 4. The
window is colored in pink. The edge represents the flow of migration.

28

Figure 4.6: Island worker workflow

29

4.4 Usage

Since the Island manager acts as a server for the Island workers and Island monitor,

we have to run the Island manager first. Then we run the Island workers and Island

monitor in any order. We show an example of how to run 100 random island jobs

using SLURM below. We use the argument “activity” to control which component

of Island gets run.

UNIX> srun --nodelist=chi0 --exclusive -n1 -c45 \

./bin/island --activity manager \

--island_input island_params.json \

--island_output island_out.json

UNIX> srun -n32 -c48 ./bin/island --activity worker --host chi0 &

UNIX> echo "RANDOM 100" | bin/island --activity monitor \

--checkpoint_file checkpoint_file_in_island_params \

--host chi0 --port monitor_port_number_in_island_params

30

Chapter 5

Case Study

In this section, we explore the features of Islands with a case study of optimizing the

polebalance, spaceinvaders and bowman applications, described in section 3.3, on the

RISP neuroprocessor (section 3.2. The goal of this case study is to demonstrate the

variety of functionalities of Islands and the fact that they can improve the performance

of optimization. Because the variety of parameters is so high, and fact that general

conclusions on optimizations are so hard to draw, this case study does not intend

to derive optimal Islands configurations or strategies. Its goal is to demonstrate the

possibilities.

We run all of our experiments on the TENNLab Neurocluster computer, composed

of Dell PowerEdge C6145s, with following specifications. For all of our experiments,

we use 32 nodes and 48 cores per node, which has a total of 1536 cores. We either use

32 or 256 island workers, which consumes 48 and 6 cores per island worker respectively.

Additionally, we train all applications with 10 episodes (random starting seeds).

• 36 nodes

• 48 cores per node

• Quad 12 core 64 bit AMD Opteron(tm) Processor 6180 SE

• 96 GB RAM per node

31

• 1 TB local storage per node

5.1 Encoding/Decoding Choice

We selected the “spikes-flip-flop encoding” for bowman and spaceinvaders, and

temporal for polebalance. We selected “winner-take-all” decoding for all applications.

These encoding/decoding techniques are described in 3.1. It is worth mentioning

because polebalance is such a simple application, it always trains to a perfect fitness

with spikes-flip-flop encoding. For that reason, we chose a more challenging encoding

technique.

5.2 Determining stagnation parameters

The goal of this first experiment is to define what “stagnation” means. Intuitively, it

means that an EONS population is unlikely to improve, and therefore we are better

served to migrate networks, combine this population with another population, or

simply stop trying to optimize this population, than we are to keep trying to improve

the population. Our goal is to determine two parameters that define stagnation:

1. Stagnant networks: If a population has stagnated, then the fitness of the best

stagnant networks has not changed.

2. Stagnant epochs: If the best stagnation networks have not changed for stagna-

tion epochs, then the system is stagnated.

There are pragmatic tradeoffs with setting these parameters low vs. high. When

they are high, then the likelihood of a population improving is low. High values give

one more reliable “stagnation.” However, high values mean that EONS spends a lot

of computational time confirming that the population has stagnated. On the flip side,

when the parameters have low values, they consume far less CPU time, but there is a

higher probability that the population may improve were EONS to continue running.

32

To evaluate this tradeoff, we set stagnant networks to 5 and stagnation epochs

to 10, figuring these values are higher than what we will eventually decide as

stagnation. We then ran 100 EONS runs, dedicating 48 cores to each run, and having

each run terminate when its best 5 networks had not changed for 10 consecutive

epochs. Because of the driver’s bookkeeping, we may use these runs to determine

what happens when stagnant networks is any value less than or equal to 5, and

stagnant epochs is any value less than or equal to 10.

We use the following parameters for EONS, of which “starting edges” is dependent

on the number of inputs and outputs. We selected these parameters from our

experience with previous research on EONS.

{

"starting_nodes": 2,

"starting_edges": 2 * (#input + #output),

"merge_rate": 0,

"population_size": 50,

"multi_edges": 0,

"crossover_rate": 0.9,

"mutation_rate": 0.9,

"selection_type": "tournament",

"tournament_size_factor": 0.1,

"tournament_best_net_factor": 0.9,

"random_factor": 0,

"num_mutations": 3,

"node_mutations": { "Threshold": 1.0 },

"net_mutations": { },

"edge_mutations": { "Weight": 0.65, "Delay": 0.35 },

"num_best": 5

}

The results are in Figure 5.1. For each application, we show the number of epochs

until stagnation, the running time until stagnation, the fitness values at stagnation

and the heatmap of fitness change along number of stagnant epochs over running

time using the median.

As with many optimization experiments (e.g., [23]), it is hard to draw conclusions

that span all three applications. It is clear that as we increase stagnant networks

33

Figure 5.1: The Tukey plot and heatmap for 100 EONS runs of bowman,
spaceinvaders, and polebalance. We show the number of epochs until stagnation
(first row), the running time until stagnation (second row), and the fitness values at
stagnation (third row). We also show the heatmap of fitness change along the x-axis
(number of stagnant epochs) over the running time (the last row). The darker the
color, the bigger the increase in fitness as the number of stagnant epochs increases.

34

and stagnant epochs, all three values (epochs, running time, fitness) go up. It is also

clear that there are diminishing returns as these values increase. For the remainder

of the case study, we chose values of 4 epochs and 4 networks to define stagnation.

Our decision traded off the data in Figure 5.1 with pragmatics of keeping running

times from being too long. It is a matter of further research to determine the proper

stagnation parameters of a given application and optimization.

5.3 Control Experiment

To evaluate the performance of migration policy and the population combining

strategies, we need a baseline fitness to compare. Therefore, we define two

experiments below without any migration policies or population combining strategies

as our baseline.

• Stagnate-and-quit: We ran 10,000 independent EONS jobs where each one

runs to stagnation and then stops.

• Do-not-stagnate: We ran 256 EONS runs and stopped them after a time t.

To allow for comparison, we made sure that the total CPU time of both tasks

was equivalent. For example, if each of the 10,000 jobs in Stagnate-and-quit took

an average of 25.6 seconds, then we stop each of the 256 jobs after 1,000 seconds.

Therefore, both experiments consume 256,000 total seconds of CPU time.

We show the parameters of the six runs (three applications, two experiments) in

Table 5.1. For the polebalance application, we increased the number of stagnate-

and-quit jobs to 50,000, because they were so quick (poorly performing polebalance

optimizations complete much more quickly than optimizations that perform well).

We also show the Island monitor command for each data point.

Figure 5.2 shows tukey plots of the fitnesses of each of these runs. One may

interpret these results as follows. If Stagnate-and-quit performs better, then we

35

Table 5.1: The running time, Island monitor command, and number of the Island
workers for each control run.

Application Monitor command #Island
workers

Running
time(hr)

Polebalance-Stagnate-And-
Quit

RANDOM 50000 32 0.3

Polebalance-Do-Not-Quit TRANDOM 256 0.3 256 0.3
Bowman-Stagnate-And-
Quit

RANDOM 10000 32 8.5

Bowman-Do-Not-Quit TRANDOM 256 8.5 256 8.5
Spaceinvaders-Stagnate-
And-Quit

RANDOM 10000 32 1.93

Spaceinvaders-Do-Not-Quit TRANDOM 256 1.93 256 1.93

Figure 5.2: Fitness of the control runs.

36

see true stagnation – we are better off trusting the randomness of many runs instead

of running EONS longer. If Do-Not-Quit performs better, then our definition of

stagnation is likely too aggressive, quitting the simulation too soon, when EONS

could provide substantial optimization if allowed to run longer. Figure 5.2 shows the

latter – our definition of stagnation epochs and stagnation networks was too low in

all three applications.

Although the results that follow use this overly aggressive definition of stagnation,

they are useful for the following reason – if, by using an aggressive definition of

stagnation, we can migrate and combine populations more effectively than simply

running EONS longer, then we have identified situations where these actions are

useful. We will see this below.

5.4 Migration Policy Evaluation

In this section, we introduce six different migration policies below, which can be

defined by a JSON key ‘‘migration policy” in the island parameter file or via the

Island monitor. We evaluate each migration policy by running 256 island jobs for

approximately the same amount of time as the control experiment described in

section 5.3 via the Island monitor command “TRANDOM 256 time”.

• Greedy: We define migration policy as a string “greedy”. The greedy

migration policy keeps a pool of best networks from all island runs. Upon each

migration request, the Islands worker will send all networks that are better than

the best of the migrant pool to the Island manager or receive all networks from

the migrant pool that are better than the best network of the current population.

The period of request and the pool size are defined as “communication period”

and “max migrant pool size” respectively in the island parameter file.

Generally, we want to keep communication period high and migrant pool

size low. This gives each Islands worker enough time to evolve the best

37

networks in the migrant pool while also maintaining genetic diversity among

the Islands workers. In particular, we set “communication period” to 100 and

“max migrant pool size” to 10 for our experiments.

• Only-Stagnate: We define “migration policy” as a JSON object {“only

stagnate”: num migrants}. When an island stagnates, instead of killing

it, we send random num migants networks from the Island manager’s migrant

pool to it. How the Island manager stores the networks to the migrant pool

from the Island workers works the same way as the ”greedy” migration policy.

Generally, we want to keep communication period low and migrant pool size

high. Each island job tends to stagnate quicker when fitness gets higher.

With a higher migrant pool size, it makes sure each request gets relatively

different networks from the migrant pool. With a lower communication

period, the migrant pool receives the best networks from the Island workers

more often, which keeps the migrant pool up-to-date. In particular, we

set “communication period” to 10 , “max migrant pool size” to 256, and

“migration policy” to “{“only stagnate”: 1 }” for our experiments.

• Only-All-Stagnate: We define migration policy as a JSON object {“only

all stagnate”: num migrants}. This is like the “Only-Stagnate” policy,

but the Island manager starts to send random num migrants networks from

the migrant pool to the Islands worker when all island jobs stagnate.

Generally, this policy doesn’t utilize full computational resources all the

time because many islands workers will pause to wait for the other islands

jobs to stagnate. In particular, we set “communication period” to 10 ,

“max migrant pool size” to 256, and “migration policy” to “{“only all stagnate”:

1 }” for our experiments.

• Circular: Unlike other migration policies, we will use the command “CIRMIG”

(see section “Island Monitor” 4.2) to perform circular migration. With this

38

migration policy we disable the stagnation parameter. We feed the Islands

manager with commands “CIRMIG 0 256 1 1 1 epoch” where epoch = 100,

200, 300, ..., 100n (n is large enough) for our experiment.

• Adjacent-Only-Stagnate: We define migration policy as a JSON ob-

ject {“adjacent only stagnate”: num migrants}. The island n re-

ceives num migrants best networks from neighbors, which are islands (n −

1)%total islands and (n+ 1)%total islands where total islands is the number

of islands are currently running. In particular, we set “migration policy” to

“{“adjacent only stagnate”: 1}” for our experiment.

• Circular-Only-Stagnate: We define migration policy as a JSON object

{“circular only stagnate”: num migrants}. Unlike Circular that is

required to define epoch, stride, window, etc. Circular-Only-Stagnate does

circular migration with a stride of 1 and window size of 1 where each island n

receive num migrations migrants from (n−1)%total islands only when all the

islands stagnate.

Like theOnly-All-Stagnate policy, it also doesn’t utilize full computational re-

sources. In particular, we set “migration policy” as “{“circular only stagnate”:

1 }” for our experiment.

These six policies may be viewed as two sets of three policies: the first set uses the

global migrant pool, and the second set uses neighbor-based migration. Within each

set of three, the first policies (Greedy and Circular) is aggressive and unilateral:

islands are injected with migrants at uniform intervals, regardless of whether their

populations have stagnated. The second set (Only-Stagnate and Adjacent-Only-

Stagnate) are demand driven: an island only receives migrants if it has stagnated,

and if different islands stagnate at different rates, it is handled by having fewer

migrants sent to the less-frequently stagnating islands. The last of these policies

(Only-All-Stagnate and Circular-Only-Stagnate) go back to forcing the islands

39

to work on a coordinated schedule, this time stalling islands that stagnate to wait

until all of the others have stagnated.

As mentioned above, the Only-All-Stagnate and Circular-Only-Stagnate

policies stall the migration until all islands stagnate, and therefore may not use all

of the computational resources allocated for an Islands job. These policies are more

appropriate in a resource-sharing environment, where computational resources may

be employed by other jobs while the islands are “stalling,” than one where resources

must be exclusively allocated by a job. In our cluster environment, resources must

be allocated exclusively, and we anticipate that these policies will not perform as well

as others.

During migration operations, networks from the manager’s pool may be sent to

a lot of islands. As a result, in most cases, all islands eventually optimize to similar

fitnesses. For that reason, we plot a bar graph instead of a Tukey plot in Figure 5.3.

These graphs in Figure 5.3 show some interesting results that warrant further

study beyond this thesis. In polebalance and bowman, the two strategies that clearly

outperform the others are Only-Stagnate and Adjacent-Only-Stagnate. These

are the two strategies that perform migration on-demand: migrants are only sent to

an island when it stagnates, and when an island stagnates, it doesn’t have to wait for

other islands to stagnate to receive migrants. We suspect that these strategies achieve

a good blend of maintaining diversity while performing useful work and keeping

their CPU’s busy. We also suspect that if given the same overall CPU time, rather

than limiting their wall-clock times, the Only-All-Stagnate and Circular-Only-

Stagnate policies will achieve similar if not superior performance to Only-Stagnate

and Adjacent-Only-Stagnate. As stated above, it warrants further study.

With spaceinvaders, all of the policies except Only-All-Stagnate and Circular-

Only-Stagnate perform nearly identically. We conclude that with this application,

the overall CPU time of the optimization is more important than how the individual

optimizations are managed.

40

Figure 5.3: Performance differences between independent EONS/island runs (shown
in the left two boxes) and islands with migration policy (shown in the right six boxes).

41

5.5 Island Combining Topology

Island combination is an operation where we create a new island whose initial popula-

tion comes from some number of best networks from other islands. In this section, we

will discuss two combining topologies TREECOMB and DENSETREECOMB,

which can be run via the Island monitor.

• TREECOMB islands per comb level num best networks: This creates

a “level” level inverted full tree where level l has islands per comblevel−l islands.

We start by creating island per comblevel random islands at level 0. Then,

for each level we move down, each island at level l is made by combining

islands per comb islands from level l−1. This reduces the number of islands by

a factor of island per comb each time. Figure 5.4 shows a graph presentation

of command “TREECOMB 3 3 xxx” where “xxx” is any positive integer

values.

• DENSETREECOMB islands per comb level num best networks cre-

ate type(“set” or “replication”): This creates a “level” level tree where

each level has exactly islands per comblevel islands. The first level contains

random islands. Then for each level we move down, each island at level l is

made by combining islands per comb islands from level l−1. This is similar to

TREECOMB, but in order to keep the same amount of islands at each level,

we can do one of two things below:

– Replication: At each level except for the first level, there are islands per comb

identical sets of islands that are created by combining the same islands

from level l − 1. Figure 5.5 shows a graph representation of command

“DENSETREECOMB 3 3 xxx replication” where “xxx” is any

positive integer values.

– Set: We start with one set of islands at level 0. For each set of of islands at

level l−1, we create islands per comb sets of islands at level l by selecting

42

Figure 5.4: TREECOMB with 3 children and 3 levels

Figure 5.5: DENSETREECOMB with 3 children, 3 levels, and replication
creation type. The identical sets are marked by the red bounding box.

43

islands from level l−1 with strides of 1, 2, ..., islands per comb. Level l has

islands per combl sets of islands. Figure 5.6 shows a graph representation

of command “DENSETREECOMB 3 3 xxx set” where “xxx” is any

positive integer values.

The results with different values of “islands per comb” are shown in Figure 5.7.

For each set of “islands per comb“ and topology, we chose a value for “level” such

that the total number of EONS jobs is the greatest value, and meanwhile we can keep

the total CPU time under or close to other experiments. For example, when we set

“islands per comb” to 2, and performed TREECOMB for polebalance, we select a

value of 14 for “level,” because
∑14

n=0 2
n = 32, 767 and

∑15
n=0 2

n = 65, 535 (We did

50,000 Do-Not-Quit polebalance runs).

We may draw a few interesting conclusions from Figure 5.7. First, the

DENSETREECOMB techniques outperform the controls in all cases. In most cases,

using sets rather than replication was better. We surmise that this is because the

sets create more diversity. The advantage is more marked when islands per comb is

larger, underscoring the diversity argument.

The TREECOMB technique did not perform as well, which is likely because of

the reduced overall CPU time employed.

5.5.1 Discussion

Studies like this always have deficiencies. Chief among them is the inability to

explore a wide range of hyperparameters, and drawing significant conclusions from

searches that rely on randomness. To highlight this latter problem, consider the

two DENSETREECOMB plots on the lower-left graph in Figure 5.7 (Polebalance,

islands per comb equals 4). The best network, achieved with replication, has a fitness

of roughly 0.21. The best network achieved with sets is roughly 0.17. However, the

Tukey plots show that the networks in the first through third quartiles using sets are

44

Figure 5.6: DENSETREECOMB with 3 children, 3 levels, and set creation type.
Each set is marked by the red bounding box.

45

Figure 5.7: Results of combining islands with TREECOMB and DENSE-
TREECOMB.

46

better than those in the first through third quartiles of replication. Which, then, do

we conclude is a better technique?

Acknowledging the difficulty in drawing conclusions, we plot the best networks

from each of our tests in Figure 5.8. In these graphs, the migration results generate

the best networks by a significant margin in polebalance and bowman. With

spaceinvaders, the tree-based combination methods outperform the migrations by

a small amount. In each application, the Islands runs produced significantly better

networks than the control strategies of independent EONS runs.

47

Figure 5.8: Best network in each of the Islands runs.

48

Chapter 6

Future Work

The work related to this project with the most immediate need is a thorough

evaluation of the features of Islands. This is not an easy task. The case study in this

Thesis is a good start; however, to truly evaluate Islands, we need more applications,

more settings of hyperparameters, and a more rigorous analysis that blends fitnesses,

CPU time, and randomness.

It is worth mentioning the variety of hyperparameters that affect each Islands run.

First, there are settings from the TENNLab software framework:

• Choice of input encoder.

• Choice of output decoder.

• Constraints from the neuroprocessor (e.g. connectivity, discrete vs. continuous

values, leak, plasticity).

• Selection of the number of timesteps for each individual Run() call.

Next, there are settings from EONS:

• Selection method (e.g. tournament) and parameters.

• Number of nodes for the initial networks.

49

• Number of synapses for the initial networks.

• Mutation rate, crossover rate, merge rate.

• Population size.

There are settings from Islands:

• How stagnation is defined.

• Migration strategy.

• Frequency of migration decisions.

• Number of neighbors for circular migration.

• Number of networks to include in migration.

• Number of levels in tree combinations.

• Number of children in tree combinations.

• Set vs. replication in tree combinations.

• Other combination strategies or merged combination/migration.

Finally, there are other operational settings:

• How to define the total computational resources allowed for a job.

• How many independent instances of a job.

• How to analyze fitness.

It will be a research challenge to derive good experiments to fully analyze the

features of Islands.

50

Chapter 7

Conclusion

In this thesis, we have described the software structure of the Islands project and its

command-line interface. The goal of the Islands project is to manage multiple EONS

populations and provide an easy way to access the data such as fitness, running

time, etc. We also introduce six migration policies and two population combing

strategies with a case study of optimizing the polebalance, bowman, and spaceinvaders

applications on RISP neuroprocessor. This case study demonstrates that the Islands

can, in fact, improve the performance of optimization, which helps motivate continued

research on the Islands project.

51

Bibliography

52

Bibliography

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016. 5

[2] Erick Cantú-Paz. Designing efficient master-slave parallel genetic algorithms.

1997. 3

[3] Erick Cantú-Paz. Topologies, migration rates, and multi-population parallel

genetic algorithms. In Proceedings of the 1st Annual Conference on Genetic and

Evolutionary Computation-Volume 1, pages 91–98, 1999. 4

[4] Erick Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary

algorithms. Journal of heuristics, 7(4):311–334, 2001. 4

[5] Erick Cantú-Paz et al. A survey of parallel genetic algorithms. Calculateurs

paralleles, reseaux et systems repartis, 10(2):141–171, 1998. 3, 4

[6] M. E. Dean, C. D. Schuman, and J. D. Birdwell. Dynamic adaptive neural

network array. In 13th International Conference on Unconventional Computation

and Natural Computation (UCNC), pages 129–141, London, ON, July 2014.

Springer. 10

[7] Juan J Durillo, Antonio J Nebro, Francisco Luna, and Enrique Alba. A study

of master-slave approaches to parallelize nsga-ii. In 2008 IEEE international

symposium on parallel and distributed processing, pages 1–8. IEEE, 2008. 3

53

[8] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from

architectures to learning. Evolutionary intelligence, 1(1):47–62, 2008. 4

[9] Faustino Gomez and Risto Miikkulainen. 2-d pole balancing with recurrent

evolutionary networks. In International Conference on Artificial Neural

Networks, pages 425–430. Springer, 1998. 4

[10] Nikola Kasabov, Valery Feigin, Zeng-Guang Hou, Yixiong Chen, Linda Liang,

Rita Krishnamurthi, Muhaini Othman, and Priya Parmar. Evolving spiking

neural networks for personalised modelling, classification and prediction of

spatio-temporal patterns with a case study on stroke. Neurocomputing, 134:269–

279, 2014. 4

[11] Shyh-Chang Lin, William F Punch, and Erik D Goodman. Coarse-grain parallel

genetic algorithms: Categorization and new approach. In Proceedings of 1994

6th IEEE Symposium on Parallel and Distributed Processing, pages 28–37. IEEE,

1994. 4

[12] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,

Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,

et al. Evolving deep neural networks. In Artificial intelligence in the age of

neural networks and brain computing, pages 293–312. Elsevier, 2019. 4

[13] J. P. Mitchell, M. E. Dean, G. Bruer, J. S. Plank, and G. S. Rose. DANNA

2: Dynamic adaptive neural network arrays. In International Conference on

Neuromorphic Computing Systems, Knoxville, TN, July 2018. ACM. 10

[14] P. Mitchell. CASPIAN: An integrated software and FPGA neuromorphic

development platform. In International Conference on Neuromorphic Computing

Systems, Knoxville, TN, July 2019. ACM. 10

[15] J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao,

J. Anantharaj, C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady, and

54

J. Van Nostrand. The TENNLab suite of LIDAR-based control applications

for recurrent, spiking, neuromorphic systems. In 44th Annual GOMACTech

Conference, Albuquerque, March 2019. 5, 12, 14, 19

[16] J. S. Plank, C. Zheng, B. Gullett, N. Skuda, C. Rizzo, C. D. Schuman, and

G. S. Rose. The case for RISP: A reduced instruction spiking processor.

arXiv:2206.14016, 2022. 8, 10

[17] James Plank, Chaohui Zheng, Catherine Schuman, and Christopher Dean.

Spiking neuromorphic networks for binary tasks. In International Conference

on Neuromorphic Systems 2021, pages 1–9, 2021. 10

[18] James S Plank, Catherine D Schuman, Grant Bruer, Mark E Dean, and Garrett S

Rose. The tennlab exploratory neuromorphic computing framework. IEEE

Letters of the Computer Society, 1(2):17–20, 2018. 4, 5, 8

[19] Hossein Rajabalipour Cheshmehgaz, Mohammad Ishak Desa, and Antoni

Wibowo. Effective local evolutionary searches distributed on an island model

solving bi-objective optimization problems. Applied Intelligence, 38(3):331–356,

2013. 4

[20] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon

Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution

of image classifiers. In International Conference on Machine Learning, pages

2902–2911. PMLR, 2017. 4

[21] K. Roy, A. Jaiswal, and P. Panda. Towards spike-based machine intelligence

with neuromorphic computing. Nature, 575:607 – 617, 2019. 1, 5

[22] C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank.

Evolutionary optimization for neuromorphic systems. In NICE: Neuro-Inspired

Computational Elements Workshop, 2020. 1, 5, 14, 19

55

[23] C. D. Schuman, J. S. Plank, G. Bruer, and J. Anantharaj. Non-traditional

input encoding schemes for spiking neuromorphic systems. In IJCNN: The

International Joint Conference on Neural Networks, pages 1–10, Budapest, 2019.

8, 12, 33

[24] C. D. Schuman, J. S. Plank, M. Parsa, S. R. Kulkarni, N. Skuda, and J. P.

Mitchell. A software framework for comparing training approaches for spiking

neuromorphic systems. In IJCNN: The International Joint Conference on Neural

Networks, pages 1–10, July 2021. 5

[25] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S.

Rose, and J. S. Plank. A survey of neuromorphic computing and neural networks

in hardware. arXiv:1705.06963, May 2017. 5

[26] Catherine D Schuman, Adam Disney, Susheela P Singh, Grant Bruer, J Parker

Mitchell, Aleksander Klibisz, and James S Plank. Parallel evolutionary

optimization for neuromorphic network training. In 2016 2nd Workshop on

Machine Learning in HPC Environments (MLHPC), pages 36–46. IEEE, 2016.

4

[27] Catherine D Schuman, James S Plank, Adam Disney, and John Reynolds. An

evolutionary optimization framework for neural networks and neuromorphic

architectures. In 2016 International Joint Conference on Neural Networks

(IJCNN), pages 145–154. IEEE, 2016. 4

[28] Eric O Scott and Kenneth A De Jong. Evaluation-time bias in asynchronous

evolutionary algorithms. In Proceedings of the Companion Publication of the 2015

Annual Conference on Genetic and Evolutionary Computation, pages 1209–1212,

2015. 3

56

[29] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B

Aimone. Training deep neural networks for binary communication with the

whetstone method. Nature Machine Intelligence, 1(2):86–94, 2019. 1, 10

[30] K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting

topologies. Evolutionary computation, 10(2):99–127, 2002. 4

[31] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artificial life, 15(2):185–212,

2009. 4

[32] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary computation, 10(2):99–127, 2002. 4

[33] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic

programming approach to designing convolutional neural network architectures.

In Proceedings of the genetic and evolutionary computation conference, pages

497–504, 2017. 4

[34] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. Island model genetic

algorithms and linearly separable problems. In AISB International Workshop on

Evolutionary Computing, pages 109–125. Springer, 1997. 4

[35] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model

genetic algorithm: On separability, population size and convergence. Journal of

computing and information technology, 7(1):33–47, 1999. 4

[36] Steven R Young, Derek C Rose, Travis Johnston, William T Heller, Thomas P

Karnowski, Thomas E Potok, Robert M Patton, Gabriel Perdue, and Jonathan

Miller. Evolving deep networks using hpc. In Proceedings of the Machine

Learning on HPC Environments, pages 1–7. 2017. 4

[37] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and

Robert M Patton. Optimizing deep learning hyper-parameters through an

57

evolutionary algorithm. In Proceedings of the workshop on machine learning

in high-performance computing environments, pages 1–5, 2015. 4

58

Vita

Chaohui Zheng is originally from Changle, Fujian, China. He graduated from Fujian

Changle No.1 Middle School in 2016. Then he attended Volunteer State Community

College in 2017. He transferred to the University of Tennessee, Knoxville, to study

Computer Science in 2018. After graduation in 2021, he decided to pursue a Master of

Science degree in Computer Science at the University of Tennessee, Knoxville. While

at the University of Tennessee, he worked as a teaching assistant for a data structure

and algorithm class since the fall of 2019. He also worked as a research assistant for

TENNLab from the summer of 2020 until August 2022.

59

	The Islands Project for Managing Populations in Genetic Training of Spiking Neural Networks
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	2 Related Work
	3 Background
	3.1 Encoding and Decoding
	3.2 Reduced Instruction Spiking Processor
	3.3 Applications
	3.3.1 Polebalance
	3.3.2 Bowman
	3.3.3 Spaceinvaders

	3.4 Evolutionary Optimization For Neuromorphic System

	4 Software Structure
	4.1 Island Manager
	4.1.1 Island Manager Parameters

	4.2 Island Monitor
	4.3 Island Worker
	4.4 Usage

	5 Case Study
	5.1 Encoding/Decoding Choice
	5.2 Determining stagnation parameters
	5.3 Control Experiment
	5.4 Migration Policy Evaluation
	5.5 Island Combining Topology
	5.5.1 Discussion

	6 Future Work
	7 Conclusion
	Bibliography
	Vita

