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Abstract

Artist Marcel Duchamp once said, “The painter is a medium who doesn’t realize

what he is doing. No translation can express the mystery of sensibility, a word,

still unreliable, which is nonetheless the basis of painting or poetry, like a kind of

alchemy” (Moffitt, 2012, p. 7). Just as there is a puzzling aspect of creating art

or writing poetry, the aesthetic quality of mathematical proofs is a mysterious and

ill-defined concept. Like many other subjective terms, it can be difficult to reach

a consensus on what elegance means in a mathematical context. In this thesis, I

try to better understand faculty and graduate students’ perceptions of elegance in

mathematical proofs. To do this, I conducted an international cross-case analysis that

involved participants from three groups: graduate students studying mathematics

in the United States, graduate students studying mathematics in Ghana, Africa,

and research faculty of mathematics in the United States. My goals in this thesis

were to learn how participants perceive elegance in proofs, better understand how

participants’ perceptions of elegance compare to their perception of other constructs,

such as surprise, creativity, and rigor, and determine which proof constructs our

participants seem to value most. I gathered data from each group and compared

these three goals amongst all three groups.
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Chapter 1

Introduction

1.1 The Landscape

Everyone has experienced amazement or wonder. An elementary school student may

see a science experiment that completely baffles them. How did that volcano just

explode? Where did the lava come from? What is it made out of? This curiosity

and awe may appear naive to the science teacher, whose experiences, in science and

in life, have demystified this volcanic chemical reaction. This scenario is a type of

alchemy, with the teacher playing the starring role of the alchemist. Perhaps alchemy

can be deceitful in a purposeful and positive way, creating an urge within the student

to ask why, leading them to want to learn more. Within mathematics, when students

see a particular argument or proof method for the first time, they may feel similar

wonder and curiosity. A particularly elegant proof may seem magical. However, as

these students grow in mathematics and see more and more proofs, will they become

immune to alchemy? Will they still see and appreciate proof elegance in the same

way? To reveal more about what phenomena surround perceptions of proof elegance,

this study investigates how graduate students and faculty describe proof elegance and

to what extent they value it.

1



As students become more familiar with the field of mathematics, professors often

strive to pass the role of the alchemist on to their students. As they pass this torch,

they may use terms such as elegance, rigor, and creativity. As a result, outside-

the-box thinking may gain favor over brute-force proof techniques, encouraging

students to consider innovative and nontraditional solution paths (Inglis and Alcock,

2012). However, graduate mathematics students may not understand or agree with

what their professors mean by elegance in proofs (Tjoe, 2015). This unintentional

contrast could confuse or misguide students, ultimately hinder their learning and

development of proof-writing expertise (Clark, 2022). In addition, there may be

barriers of privilege. For instance, international learners may face more challenges

with subjective descriptive language when it is used without an explicated concensus

on meaning. As global citizens, greater knowledge could better support mathematics-

specific cross-cultural values and descriptors.

As a step toward better understanding human perceptions of proof aesthetics,

this study will investigate what graduate math students and faculty value in proofs.

Some mathematicians consider certain values to be well-known and canonical for proof

writing, but these may not be clear for all mathematics learners, making proof writing

more enigmatic than it needs to be (Dawkins and Weber, 2017). Little research has

been conducted on the nature of how students and faculty members value various

qualities of proofs, such as elegance and rigor. Knowledge of what they value in

proofs could be key for motivating students to persist in mathematical fields.

1.2 Aims of This Study

For this study, I conducted an embedded type-4 case study (Yin, 2009), which has

both multiple cases and multiple units within each case, which are shown in Figure 1.1.

The participants included eight mathematics graduate students, three from a large

public research institution in Ghana, Africa, and five from a large research

2



Context: Ghana 
Graduate Students in 

Mathematics

Context: United States 
Graduate Students in 

Mathematics

Context: United States 
Research Faculty in 

Mathematics

Case: Perceiving and 
Judging Proof Elegance

Case: Perceiving and 
Judging Proof Elegance

Case: Perceiving and 
Judging Proof Elegance

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

C
ross-C

ase A
nalysis

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

Figure 1.1: This study is an embedded type-4 design case study (Yin, 2009), which
has both multiple cases and multiple units within each case.
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institution in the United States and three mathematics research professors from a

large public research institution in the United States. Each participant engaged in

four interviews, and completed three take-home tasks, which asked them to perceive

and judge elegance in mathematical proofs. After each participant discussed their

mathematical background and described what elegance and rigor meant to them,

they were presented with the R.E.P.S. Problem, shown in Section 1.3, which involves

proving the sum of the areas of two quadrilaterals is equal to the area of another

quadrilateral. Each participant attempted to construct their own proof before seeing

five sample proofs, presented as work of five fictional students. Participants gave

feedback on these proofs and rated them based on elegance and various other

descriptive constructs such as rigor and creativity. In another task, they responded,

as students, to comments from a fictional professor. In all, each participant played

roles of professor, judge, and student.

In this study, I aim to inform the following questions:

• Research Questions within each Case:

– RQ1: How do participants perceive elegance in mathematical proofs?

– RQ2: How do participants’ perceptions of elegance compare to their

perceptions of other constructs, such as surprise, creativity, and rigor?

– RQ3: Which proof constructs do participants seem to value most?

• Cross-Case Analysis: How do the results from RQ1, RQ2, and RQ3 compare

and contrast across three contexts:

– Graduate students studying mathematics in Ghana, Africa

– Graduate students studying mathematics in the United States

– Research faculty of mathematics in the United States

4



1.3 The R.E.P.S. Problem

The R.E.P.S. (Rigor and Elegance in Proof Strategies) Problem is a mathematics

problem written by Jeneva Clark. The R.E.P.S. problem, shown in Figure 1.2,

provides three equalities of side lengths, AB = AF , FJ = AI, and AL = IE, and

also provides information about right angles shown. The problem asks the reader to

prove that Area(ABCD) = Area(ALMG) + Area(FGKJ).

5
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D

G

Given:

AB = AF

FJ = AI

AL = IE

Prove that Area(ABCD) = 
Area(ALMG) + Area(FGKJ)

Figure 1.2: The R.E.P.S. problem gives that AB = AF , FJ = AI, and
AL = IE and the right angles shown in this diagram, and asks readers to prove
that Area(ABCD) = Area(ALMG) + Area(FGKJ).
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Chapter 2

Background

This chapter will first present a review of current related literature and then the

theoretical perspectives for this study. In addition, for a summary of the mathematical

foundation for the R.E.P.S. problem, see Appendix B.

2.1 Review of Literature

This section first discusses the cultural contexts relevant to this study, such as how

Ghana and United States graduate students study geometry and proofs. This section

also describes the current literature on proofs, including their significance, research

about how they are learned, and research about how they are taught. Finally, this

section discusses the aesthetics of mathematical proofs.

2.1.1 Literature: Culture and Mathematics Education

What we consider to be mathematics did not develop overnight; many humans worked

and shared ideas to grow the field. Understanding origins of theorems and proofs

makes learning mathematics richer. Cultural contexts elucidate the motivation of

ideas, and we are able to dive deeper into the effects culture has had in mathematics

over time (Grabiner, 2012).

7



Awareness of diverse mathematical practices and values has progressed mathemat-

ics as a discipline. For instance, the ancient Greeks started with a set of visual proofs,

but they also wanted to prove ideas that were not apparent only in pictures (Grabiner,

2012). These mathematicians’ ideas were influenced by others’, such as the Babylo-

nians’ and the Egyptians’ (Aczel, 2011) and were also influenced by contemporary

philosophers’ argumentation strategies. Connecting ideas from different people and

different areas allowed the Greeks, such as Euclid, Pythagoras, and Thales, to form

logical proofs in geometry, founding two-dimensional geometry (Grabiner, 2012; Aczel,

2011). By studying their own culture’s mathematics, as well as that of the cultures

around them, they developed fundamental ideas of geometry still quoted in secondary

classrooms around the globe.

In essence, mathematics was not formed in a “cultural or intellectual vac-

uum” (Grabiner, 2012). In his article “Aesthetics for the working mathematician,”

Borwein (2006) emphasizes that mathematics “is part of and fits into human culture”

(p. 39). Just as culture has influenced mathematical discovery, it also influences

mathematics education curricula. In particular, mathematics students may learn

math differently depending on where they are from as well as the culture around

them. To better understand how learning mathematics may have looked different

for United States participants and Ghanaian participants in this study, the following

sections will present some known differences and similarities in relevant mathematics

education.

United States Education

The U.S. has a longer history of compulsory education than Ghana. Common schools

were introduced in the United States in the 1830’s as schools that would be freely

available to all children and operated with government funds. Advocates for common

schools connected this to broader literacy, morality, and productivity among citizens

and national economic strength (Kaestle, 1983). Since then, the U.S. states have

gradually taken on the responsibility for providing free and accessible education for

8



all, and degree completion rates have steadily increased. In 1940, 24.1% of adults

age 25 and over had completed a high school degree, whereas, by 2017, this had risen

to 89.6% (Jordan, 2017). The secondary curriculum has progressed toward more

standards and uniformity throughout the decades with national education reform

movements. The most recent curricular unification effort in the U.S., the 2010

Common Core standards (NGACBP-CCSSO), which was adopted by many states,

is a backdrop for what geometry concepts and proof strategies may be considered

common knowledge among U.S. faculty and graduate students, such as those who

participated in this study.

Beyond secondary curriculum and undergraduate curriculum, graduate work in

mathematics also has standards upheld within the academic community. No uniform

expectations have been set for what mathematics graduate programs require as

background knowledge for their incoming students; however, The Math Alliance, a

consortium of over 60 institutional members, has agreed upon some recommendations

for what mathematical content undergraduate students should learn before beginning

graduate school in mathematics (NADSMS, 2022). Those recommendations do list

undergraduate proofs courses, but to not list geometry. Thus, the knowledge elicited

by the R.E.P.S. problem is most related to the geometry learned in U.S. secondary

curriculum and the proof strategies learned in U.S. undergraduate curriculum. For

this reason, I will more closely examine the secondary U.S. geometry curriculum,

rather than the tertiary, in Subsection 2.1.1. Although I am studying U.S. graduate

students’ perceptions of elegance in proofs, here I am reviewing elements of secondary

curriculum because this U.S. geometry curriculum was most likely to have been the

standards used in the classrooms where this study’s graduate student participants

learned geometry.

The current context for United States research institutions’ mathematics depart-

ments is one of great support. Most U.S. graduate students seeking mathematics

graduate degrees are awarded funding and tuition waivers and fulfill research

and/or teaching responsibilities. Teaching assistant positions benefit institutions

9



by providing inexpensive teaching power to meet general undergraduate education

demands. Also, the National Science Foundation provides funding for many U.S.

math graduate students through the Division of Graduate Education (Alongi, 2022).

Other nations, especially those still under development, may not see comparative

levels of support for developing mathematics researchers.

The Carnegie Foundation for the Advancement of Teaching and the American

Council on Education maintains three classifications for U.S. institutions that

grant doctoral degrees: those with ‘highest,’ ‘higher,’ and ‘moderate’ research

activities (IUCPR, 2021). Those institutions with ‘highest’ research activities are

commonly referred to as “research institutions” and its tenure-track faculty are

“research faculty,” such as those who participated in this study.

Ghana, Africa, Education

In 1957, Ghana gained independence from British Colonial rule, and in 1996, Ghana

implemented the Free Compulsory Universal Basic Education (Akyeampong, 2009).

Since compulsory education is young for Ghana, educational resources and the

workforce of teachers are limited. Some classes even convene outdoors due to a

shortage of classrooms (Korvey, 2021). Ghana’s most recent curricular document

from the Ministry of Education for secondary mathematics is a very detailed document

and is being implemented in current Ghanaian classes (CRRD-MOE, 2010). Their

curriculum includes similar geometry theorems as are seen in the U.S. Common Core

curriculum, but instead of proving the theorems, Ghana’s students are led to discover

the theorems through constructions with straight edges and compasses. Such a

radically hands-on pedagogical approach, focusing on concrete rather than abstract,

seems amenable to many hands-on components of Ghanaian culture and has been

documented to support teacher practices in Ghana (Sitabkhan and Ampadu, 2021)

and in the U.S. (Clark and Clark, 2020). Africa-based mathematics education research

is growing, but the growth is primarily in lower grades. Bonyah and Clark assert

that, “Mathematics educators should take ownership as stakeholders and identify the
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missing links needed to connect the ideal reformed mathematical classroom to the

immediate needs in Ghana” (2022, p. 8). In the mission to broaden mathematics

research to developing nations like Ghana, more studies should examine mathematics

education in Ghana at higher levels, such as in graduate schools.

In Ghana, finding funding for graduate studies in mathematics is more difficult

than in the U.S. After a Ghanaian student earns an undergraduate degree from a

public university, they must devote one year to national service, and this service can

be fulfilled by serving as a teaching assistant in mathematics. A very small monthly

stipend barely pays for food, and universities do not offer housing or funding to

national service workers. Because of this, graduate teaching assistants in Ghana

have been known to live on the streets or on cots inside their university’s office

space (Brown, 2011).

U.S. to Ghana Curricular Comparisons

This section will present a comparison of curricular documents and standardized

exam from Ghana and from the United States to summarize some salient differences

and similarities between the teaching of geometry proofs in these two nations. For

example, in U.S. secondary schools, some theorems about lines, angles, triangles, and

parallelograms are proven using deductive reasoning (NGACBP-CCSSO, 2010). In

Ghana, however, geometry is primarily taught using constructions with a straight edge

and a compass (CRRD-MOE, 2010). Nevertheless, formal proofs in Ghana appear on

the university entrance exam, the West African University Entrance Exam (WAEC,

2022), indicating that the students who go on to become graduate students in

mathematics have likely encountered formal geometry proofs in their background.

In Appendix A, Table A.1 shows two side-by-side lists of the U.S. and Ghana proofs

that the participants in this study likely encountered in their secondary education.

Figure 2.1 shows a comparison-contrast Venn diagram for the theorems this

study’s participants likely encountered, which are listed in more detail in Appendix A

Table A.1. Figure 2.1 shows that three of the theorems’ proofs were likely seen
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Figure 2.1: Each of the proofs mentioned in Table A.1 is represented by a symbol
according to its geometric topic. See the legend in Figure 2.2.
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by all participants, regardless of national origin. The shapes of the icons in

Figure 2.1 indicate whether the theorems are primarily statements about circles

(circular icons), angles (wedge icons), triangles (triangular icons), quadrilaterals

(parallelogram icons), or lines (intersecting lines icons). Thus, one can see from

this comparison that Ghanaian mathematics graduate students may have had

more experience proving theorems about circles and angles, while United States

mathematics graduate students may have had more experience proving theorems that

are primarily statements about quadrilaterals, triangles, and lines. Of course, these

proofs are not all equivalent in factors such as complexity; for more detail, Figure 2.2

shows a legend to this Venn Diagram, illustrating which theorems are shown in

overlapping and non-overlapping regions. In summary, the types of geometry proofs

likely to have been seen by U.S. versus Ghanaian mathematics graduate students

seem to be diverse; however, whether such divergences would influence students’

perceptions of mathematical proofs’ elegance or rigor is unknown. More studies, like

this cross-case analysis, need to be conducted to inform the degree to which culture

influences mathematical perceptions and judgments.

2.1.2 Literature: Mathematical Proofs

Significance of Proofs

Although exposure to mathematics is practically universal, not everyone may read

or write a mathematical proof in their lifetime. This has led some to question and

investigate the purpose of mathematical proofs in education (Weber, 2012; Hemmi,

2010). Philosophers and mathematicians agree that proofs are a crucial part of

mathematics (Hanna and Barbeau, 2008), but the rationale for that importance is

disputable. Some believe that the only purpose of a proof is to provide evidence that a

claim is true. However, many argue that proofs provide more than just an indication

of truth for their readers (Hanna and Barbeau, 2008). For instance, proofs can

provide their readers with thorough explanations of theorems and claims
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(Weber, 2012). Also, by considering different perspectives and approaches,

readers can make connections with other mathematical concepts and form a deeper

understanding of the ideas (de Villiers, 2020; Zaslavsky et al., 2012). Making

connections amongst mathematical concepts can be enlightening when learning how

to write proofs, and instructors often emphasize connections when teaching students

how to write proofs (Cabassut et al., 2012). Indeed, the value of a proof is multifacted,

but more research is needed to inform the field of mathematics education about what

value in proofs is perceived by students and by faculty.

Learning Proofs

Learning to write proofs is a landmark for mathematics students, which can resemble

a rite of passage, especially for those interested in mathematics as a career (Clark

and Lovric, 2008; Yopp, 2011). When students begin seeing proofs and learning how

to write them, mathematics can become a more powerful and insightful subject to

them (Weber, 2001). During this transition, the main focus of mathematics changes

from a more computationally heavy arena, where the goal is to simply solve a problem,

to a more formal place that requires deep understanding of definitions and theorems

as well as logical reasoning skills (Seldon, 2012). This is often a significant leap

for students, and learning to understand and write proofs can present challenges for

students at all levels.

In the United States, most students first see proofs in high-school geome-

try (NGACBP-CCSSO, 2010). Although some secondary education tasks are not

formal proofs, the inclusion of proofs in the curriculum gives students a taste of

what future mathematics courses may involve, while providing guidance appropriate

for their grade level. Exposure to the concept of a mathematical proof can ignite

students’ curiosity about why other principles in mathematics may be true and how

students might justify them.

For students who go on to study mathematics at the undergraduate level, they

often learn proof-writing skills in an introduction to proofs course, learning to write
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more formal arguments based on definitions and theorems (Melhuish et al., 2022;

Weber, 2010; Miller et al., 2018; Seldon, 2012). Prior research has examined how

students learn to recognize validity of proofs (Powers et al., 2010; Selden and Selden,

2003; Shongwe, 2021) to use strategies in proof construction (Weber, 2001; Zazkis and

Zazkis, 2016), to be aware of proof writing norms (Dawkins and Weber, 2017), to read

and comprehend proofs (Demeke, 2010; Roy et al., 2017; Mejia-Ramos et al., 2012;

Davies et al., 2020; Inglis and Alcock, 2012; Sowder and Harel, 2003), to use diagrams

in proofs (Samkoff et al., 2012), and to discuss and critique proofs (Bleiler-Baxter and

Pair, 2017; Kim and Ju, 2012). Viholainen et al. explains that in undergraduate-level

proof classes, “creative reasoning and the invention of new ideas are often required

instead of building on imitative reasoning or ready-made examples or step-by-step

algorithms” (2019, p. 148). Mathematics education researchers have made some

progress in establishing rubrics for such creativity (Savic et al., 2017); however,

more research needs to be done to inform how such innovation in proving can be

developed within students, and whether creativity in proving is a reasonable aim for

undergraduate or graduate learners of mathematics (Regier and Savic, 2020).

Teaching Proofs

Many students find learning to write proofs challenging because they are funda-

mentally different from the computationally-focused courses students have taken

before (Weber, 2001). During this time, students are not only learning the basics

of proof writing, but they are also often learning new mathematical concepts and

forming connections with concepts learned in the past (Yan, 2019). Professors must

take great care when considering how to present this material to their students.

Students’ knowledge of proof is greatly influenced by the math classes they attend

and the lectures they hear (Lai and Weber, 2013). With this in mind, professors

plan how they will teach their courses to make theoretical ideas approachable for

beginning students, which is a nontrivial task (Quinn, 2012). Some instructors suggest

focusing on proof comprehension instead of proof construction (Hodds et al., 2014) or
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presenting multiple methods or arguments to a particular problem in class (Dreyfus

et al., 2012). Finding ways to help students develop proof writing skills is a critical

aim for mathematics education.

In the process of teaching proofs, instructors impact their students’ understanding

of proofs through their feedback. Following instructor feedback and learning from

mistakes is an instrumental part of learning proof writing (Kontorovich, 2022). Some

professors believe students should learn that making mistakes is an acceptable part

of the process of writing proofs. Leron and Ejersbo (2021) believe that there are

“good errors in mathematics” (p. 753). They explain that some of the best teaching

methods for these courses are those that take these mistakes and transform them

into new questions to consider or new topics to study. Since mistakes in proofs

are unavoidable, educational researchers and instructors must also consider how

professors score students’ work. Whether the instructor decides to focus only on

developing arguments or more on correct notation and wording, these choices will

impact their students. The scores they assign and comments they give shape how

students see what is right or wrong in a proof, and it also conveys to them what

their instructors, as well as other mathematicians, value in proofs (Miller et al.,

2018). The education of graduate students, which is initial molding of proof-writing

mathematicians, can impact how they think about and write proofs throughout their

careers.

2.1.3 Literature: Elegant Proofs

In Terrance Tao’s piece “What is Good Mathematics?”, he describes the concept of

mathematical quality as a construct with many dimensions. He states, “the problem

of evaluating mathematical quality, while important, is a hopelessly complicated one”

(2007, p. 626). This lead us to a few questions. First, what does Tao mean by

mathematical quality? What are its many dimensions? Why is it so difficult to
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evaluate? These are some questions I hope to inform in this section and through this

study.

Aesthetics

With aesthetics, viewpoints vary widely. For instance, two colleagues may disagree

about the appeal of a painting. Multifarious factors, such as upbringing, education,

and past experience, influence each individual’s art appreciation. These coworkers

might also find common ground as they admire the painting, without pressure to be

right or wrong. The subjective nature of decor preferences may be harmless, but

in academic fields where ideas are assessed based on subjective terms, ambiguity of

meaning could bring dilemmas. However, if aesthetic aspects of proofs were the topic

of squabbles, perhaps it would heighten engagement and provoke discussion. Using

a subjective descriptor, such as elegant, to describe a mathematical proof, may bring

both constraints and affordances to graduate education in mathematics.

One possible way of describing mathematical quality is by considering the

aesthetic properties of mathematics. Similar to what Tao asserts above, others have

noted that relating mathematics to aesthetic features can be a tough task (Goffin,

2019). The term aesthetic stems from the Greek terms aisthanomai, which means

“to perceive,” and aisthesis, which means “sensorial perception” (Pimm, 2006).

Mathematicians often find themselves reviewing their work based on such perceptive

qualities (Montano, 2012), whether they realize it or not. This has led to some

controversy, especially for those who believe that aesthetics are subjective (Goffin,

2019).

Part of this controversy arose from the ways of thinking that pervade Western

culture (Montano, 2014). More specifically, in The Two Cultures, Snow (2012)

denounces the dichotomous separation of the sciences versus the arts and argues that

the stereotypical divide hinders problem solving, but nonetheless many acknowledge

that this arts/sciences split still greatly influences western thought and implications

for aesthetics in mathematics (Massey, 2019; Montano, 2014). Using either-or logic

18



with regards to arts and sciences is a symptom of a one-dimensional perspective of

mathematical quality. Thinking back to its origins, ancient Greek philosophers often

classified inquiries concerning aesthetics as those concerning axiology, or the theory of

values or appreciation (Sinclair, 2009), and artists and scientists may value different

qualities in their own work. False dichotomies often arise from over-simplifications

of multi-dimensional constructs. Many believe that the ideas of artists and scientists

rarely mingle (Montano, 2014), and this common way of thought influences the

cultures of mathematics communities. Whether common Western perspectives are

naive or well-founded, their inescapable influence leaves us to wonder: Do aesthetics

actually belong in mathematics?

The work of a mathematician can be far-reaching and impel advancement of the

field while also being described as messy or ugly (Waxman, 2021). Others agree

that a proof can completely lack aesthetic value, but still hold supreme mathematical

value (Harré, 1958). These positions stress that proofs do not have to be aesthetically

pleasing to be valuable in mathematics. However, some mathematicians do appreciate

aesthetics in their work, but prefer to focus on the aesthetics of their journey rather

than the aesthetics of their results. What is meant by an aesthetic journey is not clear,

just as the specific meaning of aesthetics within mathematics. To clarify, Sinclair

(2002) provides the example of the proof of Fermat’s Last Theorem by Andrew Wiles.

Many would agree that his proof lacks elegance and simplicity, yet anyone who has

spoken to him about the process he experienced to show this result would recognize

its fulfilling, aesthetic value (Sinclair, 2002). Beyond this famous existence proof of

an aesthetic mathematical journey, there is minimal research about this phenomenon,

and more studies should be conducted to harness any motivational power aesthetics

may lend to the field of mathematics.

Aesthetic experiences may play a starring role in the work of mathematics, with

proofs specifically, in a manner that guides mathematicians in their work. Johnson

and Steinerberger (2019) claim that these experiences lead mathematicians to truth.

Such viewpoints are reminiscent of three stated roles of aesthetics: evaluative,
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generative, and motivational (Chen, 2017). This framework of three roles provokes the

idea that evaluation, looking back on a work, is not the only function of aesthetics in

mathematics. Generation and motivation are more about looking toward the future

than toward the past. As Sinclair (2002) says, aesthetics may be used to prompt

students to choose certain problems, lead them to results, and help them discover the

results’ importance within mathematics. More research needs to be conducted about

these forward-gazing functions of aesthetics in mathematics.

Pleasure

The often heard phrase aesthetically pleasing describes experiences that yield

satisfaction to human senses, such as art satisfying the eyes or music satisfying the

ears. As human beings, we long for pleasure (Pimm and Sinclair, 2006). Some see this

inborn drive for pleasure as an evolutionary advantage that has persisted within our

species. Our human survival and reproductive instincts often influences our aesthetic

partiality (Johnson and Steinerberger, 2019). Something, even a mathematical proof,

that possesses aesthetic properties may be more satisfying to our senses because of its

historical adaptability for survival, or possibly its similarity to some other adaptable

trait.

Everyone can think back to a time when they solved a problem or met a goal.

They put in time and effort, and they finally completed the task at hand. This is often

a satisfying and pleasurable moment for the person finally experiencing completion.

Pimm and Sinclair (2006) compare this to what painters often feel, described as a

“pleasure alarm” (p. 81), a sensation arguably similar to what mathematicians sense

when they find a solution. When this alarm sounds, it signals that “what’s been

found works, is coherent and, one might even say, aesthetically pleasing” (p. 81).

For the average person, mathematics might not be seen as satisfying or pleasurable,

but for many mathematicians, it can be. These aesthetic experiences are often

described as moments where mathematicians uncover results, feel pleasure and

satisfaction, and gain new appreciations for the tools they used (Sinclair, 2002). There
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seem to be self-intersecting relationships between pleasure, aesthetics, and human

sensory perceptions, and the roles they play in motivating, generating, and evaluating

mathematical work. Adding to this web of ideas, mathematicians in particular often

use the adjectives beautiful and elegant to describe mathematics. More studies need

to be conducted to develop theories that make connections among these ideas more

explicit.

Beauty

Beauty is an attribute that some believe sets mathematics apart from other sciences

(Sigler et al., 2016). Hardy (1941) famously said,

The mathematician’s patterns, like a painter’s or the poet, must be

beautiful; the ideas, like the colors or the words, must fit together in

a harmonious way. Beauty is the first test: there is no permanent place

in this world for ugly mathematics.

This topic of mathematical beauty has been discussed by many, but it still remains

fuzzy (Montano, 2014).

Many mathematicians have called Euler’s identity, eiπ +1 = 0, the most beautiful

equation in mathematics (Montano Juarez, 2020). Mullins (2006) explains that

this equation intertwines the contrasting subjects of geometry and algebra using

foundational ideas in mathematics. Ideas that make connections between different

branches of mathematics are described by Montano as enlightening (2012, p. 22),

and are possibly perceived as beautiful through in a cognitive sense, rather than

a physical sense such as sight, sound, smell, taste or touch. Ernest (2015) argues

that mathematical beauty “must be experienced cognitively, through reason, the

intellect, intuition, and affect (feelings), rather than as something by the senses”

(p. 23). Thus, there could be a false dichotomy between cognition and affect. Su

adds that experiencing beauty in mathematics is “a unique and sublime experience

that everyone should demand” (2020, Ch. 1). Educational research should become
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open to perception studies that blur the lines between thinking and feeling, given

indicators that they might not be mutually exclusive.

Questions about beauty are rarely met with agreement. Some believe that

mathematical beauty is objective (Inglis and Aberdein, 2014), while others call it

subjective Johnson and Steinerberger (2019). Some equate beauty to enlighten-

ment (Rota, 1997), while others equate it to truth (Johnson and Steinerberger, 2019).

According to David Hume (1910), everyone has their own unique view of beauty and

disagree with the views of others. However, Johnson and Steinerberger (2019) call

this a paradox since mathematicians can subjectively perceive different concepts as

beautiful, yet they use these ideas to look for an objective truth. Perhaps these ideas

only seem paradoxical because beauty is a multi-dimensional construct that we are

attempting to view on a one-dimensional scale.

Elegance

A translation of Gauss’ writings says, “We know, from the writings of a few great

mathematicians, that proofs should be elegant” (1863), and this adjective elegant is

often used by other members of the mathematical community as well. For example,

mathematicians Alsina and Nelsen (2010) compiled proofs they deem elegant into a

book called Charming Proofs: A Journey into Elegant Mathematics. However, just as

mathematical beauty is a nebulous phrase in mathematics, the meaning of elegance

in mathematics is also cloudy. Some consider beauty and elegance to be similar

ideas (Mullins, 2006). Others consider elegance to be a dimension of beauty (Ernest,

2015). However, elegance does not seem to be discussed as often as beauty in

prior research. According to Mowshowitz and Dehmer (2018), mathematicians who

frequently write proofs often have an good understanding of the term elegance, but it

is rare to see a formal definition for the term in mathematics. Perhaps this is because

some assume it to be akin to beauty, and others forgo the awkwardness of asking for

clarification of terminology.
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Prior essays and research contain hints about what elegance in mathematics may

mean, but the collection of descriptors is quite heterogeneous. Ernest (2015) aligns

elegance with terms such as economy, simplicity, brevity, and succinctness (p. 23).

Others describe an elegant proof as using unexpected tools, as using only essential

assumptions and as giving new understanding that brings about new ideas (Sigler

et al., 2016; Mullins, 2006). Rota (1997) suggests that the elegance of a proof relates

more to the way proofs are presented to their readers rather than the actual content.

In summary, elegant may mean simple, brief, succinct, pleasing, effective, surprising,

insightful, provocative, clever, and well-communicated. More research is needed to

clarify the most common shared meanings held in mathematical communities.

2.2 Theoretical Perspectives

As a researcher, my own worldviews, perspectives, and beliefs about theories may

influence this study. For trustworthiness, I disclose these below in two categories. My

methodological theoretical framework will describe the paradigms and perspectives

that underlie the research methods in this study. My substantive theoretical

framework will describe how my views and beliefs about specific topics, such as

teaching and learning of geometry, may interact with how this study is carried out

and how results are interpreted.

2.2.1 Methodological Theoretical Framework

The paradigm of pragmatism (Hall, 2013) influences this study because I let the

research questions guide my methodological choices, especially those in research

design. Pragmatism supposes that there may be multiple types of reality to

investigate when doing educational research, such as subjective experiences that

are lived out by participants (Husserl, 1931) or quasi-objective truths about the

nature of learning mathematics (Lincoln and Guba, 1985). Pragmatism focuses
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on Dewey’s (1938) ideas of inquiry in a general sense, which enables a researcher to

pursue whichever investigation methods make the most sense to use in order to learn

what is aimed to learn. This study is primarily qualitative in methodology, which

allows me to see myself as a component of the research instrument, having a hand in

generating data instead of simply collecting it with objectivity (Mertens, 2019), but

I also make use of some questionnaires, such as Likert-type (1932) rating scales, and

pragmatism enables a researcher to toggle between such somewhat subjective and

somewhat objective methods, guided by inquiry.

When researchers change paradigms, some may characterize this as a change in

the researcher’s lens; however, Thomas Kuhn said, “Scientists do not see something as

something else; instead, they simply see it” (1970, pg. 85). Similarly, as I claim to take

a pragmatist approach that embraces both qualitative and quantitative perspectives,

I do not claim to be looking through lenses that are drastically different in paradigm.

While I cannot be a truly objective observer, as a qualitative researcher, I do see this

study as a postpositivistic attempt to learn something about perceptions of elegance

in proofs, but with natural limitations that come with qualitative research. Trying

to view learning strictly as an objective science would be like trying to measure the

length of a wiggly worm with a straight ruler. Instead, it can be approximated in

other ways using other tools.

Among those who volunteered to participate in this study, I selected participants

who had been at their institution for the highest number of years. This choice was

made in keeping with situated learning theory (Lave and Wenger, 1991). Learning

happens in a time and place, not in a vacuum. The social, psychological, and material

environments serve as a platform on which learning sits. Participation in a community

helps learners make meaning, as ideas are exchanged. Students and faculty who have

been in their particular community of practice longer would be more likely to be

representative of their community and are more likely to have taken up the linguistic

norms of their shared environments. Another supposition of situated learning theory

sees the influence of language and metaphor on culture. When I look at word choices
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in this study, such as elegance and rigor, I will view language as an element of both

the domain and the range (input and output) of mathematical learning.

As I incorporated design-based interviews (diSessa and Cobb, 2004; Bakker

and van Eerde, 2015), interlaced with questionnaires and mathematical tasks, I

chose a lens of phenomenology and took inspiration from Greasley and Ashworth’s

(2007) descriptions of how they created profiles for each participant and how they

analyzed noetic and noematic distinctions (Husserl, 1931) within their interview

data, trying to uncover the essence of each individual’s experience. I also borrowed

a research perpective from Simon (1995) as he defined a hypothetical learning

trajectory, which includes “the learning goal, the learning activities, and the

thinking and learning in which the students might engage” (p. 133). Hypothetical

learning trajectories, developed by examining pilot study data and by reflecting on

activity-effect relationships (Simon and Tzur, 2004), aided in the creation of the

instrument and in the analysis of data, specifically anticipating typical responses to

all mathematical tasks in this study.

After the first interview with each participant, they were given a take-home task

to try to prove the R.E.P.S. problem on their own, before being shown any sample

proofs. Thus, participants were able to independently try the problem from scratch

without any hints. This choice was made to encourage participants to not only

become familiar with the problem, but also feel a sense ownership of the problem,

in turn, eliciting more significant input on later survey and interview tasks. This

research design choice is influenced by the theory of self-directed learning (Knowles,

1975; Clark and Clark, 2022) and by the IKEA effect, which customers experience

when they take part in the creation of the products they buy. After building their

own furniture, folding origami, or building their own teddy bear at Build-a-Bear,

consumers see the final product as having greater value (Norton et al., 2011). Since

this study’s participants had a chance to attempt the R.E.P.S. problem before seeing

solutions, they were better able to appreciate the problem and appreciate the sample

proofs as products created by others, in order to more authentically evaluate them.
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Flyvbjerg (2006) argues that disciplines in the social sciences, including those

that study the experience of human learning, may be strengthened by more case

studies being executed. Yin, a father of case study research, describes that a

case is some phenomenon, which lives in the here and now, that may have fuzzy

boundaries over which the researcher has little control (2009). This study indeed fits

this description, as an individual’s perception of the elegance of a proof could bleed

beyond the boundaries of mathematics and could borrow from cultural backgrounds

and aesthetics. The researchers do have some control over the situation, providing the

same math problem and proofs to all participants. However, there is also an open-

ended nature to this study, with phenomenological semi-structured interviews that

invite participants to reveal notions about elegance in mathematics, fuzzy boundaries

and all.

This study investigates how graduate students and faculty value various descrip-

tive constructs, such as elegance and rigor, in proof strategies. How I perceive value is

similar to the model presented by Egan et al. (2013), which is based on Karl Popper’s

(1972) three worlds. World 1 is the physical world with an objective nature. World 2

is the subjective realm of thoughts and ideas, inside a human mind. World 3 contains

intangible constructs that may have originated in a human mind but now exist beyond

those bounds, such as abstract concepts and theories. Egan et al. (2013) present a

theory of how value is created through iterations of interactions in these three worlds.

I also see that participants’ experiences, participants’ perceptions, physical differences

in those experiences, and abstract concepts within mathematics all may contribute

to the creation of value in this study.

2.2.2 Substantive Theoretical Framework

In this study, I view a mathematical proof as an argumentation, with chains of

logical claims, warrants, backings, and refutations, as considered by Toulmin (1958).

However, because this study requires participants to follow the logic of multiple proofs
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presented to them, my focus on proofs as argumentation is similar to that of Knipping

and Reid (2015) who reconstructed sequences and meaning of proofs and compared

argumentation structures of multiple proofs.

This study is informed by Tall et al.’s (2012) learning theory called the broad

maturation of proof structures. The theory establishes multiple layers and levels of

learning proofs and proving, including embodied, symbolic, and formal development

of thinking, levels which mature within learners from childhood to adulthood and from

concrete to abstract proof comprehension. In this study, mathematical backgrounds

of participants, along with considerations of where the participants are in their own

mathematical thinking development will be interpreted while keeping in mind Tall

et al.’s (2012) statement that

Proof involves a lifetime of cognitive development of the individual that

is shared within societies and is further developed in sophistication by

successive generations of mathematicians (p. 46).

This perspective also has implications for how proofs are situated in cultural contexts

and have norms and values that have been established by the discipline’s academic

community.

Another learning theory, one specific to learning Euclidean geometry, that

influences this study is Van Hiele’s (1986) levels of geometric thinking. It presents

a hierarchy beginning with figure recognition, progressing through describing and

categorizing figures, to constructions of shapes, and finally to the highest level, called

‘rigor’, which involves proofs. The way in which the Ghanaian curriculum leads

students through these levels informs the ways in which some of the data may be

interpreted.

Some researchers have studied multiple proof tasks (Leikin, 2009; Dreyfus et al.,

2015) and the affordances to learning that are provided when there is one theorem

encountered, along with multiple different proofs, which can be generated by or

evaluated by the learners. Because the instrument in this study includes a multiple
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proof task, this research informs this study’s views of the data and participants’

thinking. Dreyfus et al. (2015) also highlight visual, verbal, and dynamic

representations that may be used in proofs and articulate different degrees of detail

that may be provided in proofs, which are factors that align with this study’s

examination of descriptive constructs of proofs, such as rigor or completeness.

In Lewis Carroll’s (1871) Through the Looking-Glass, Humpty Dumpty says,

“When I use a word, it means just what I choose it to mean − nothing more nor

less.” Humpty Dumpty then provides convoluted definitions of several of his words,

and Alice says, “That’s a great deal to make one word mean,” to which Humpty

Dumpty replies, “When I make a word do a lot of work like that, I always pay it

extra.” In my view, some mathematicians have poised themselves as Humpty Dumpty,

confident in their own understandings of ambiguous words and willing to use words,

such as elegant, that mean so many different things that they deserve extra pay.

As Clark (2022) points out, this can propagate a perception that mathematics is an

elitist discipline. Clark encourages descriptive, rather than prescriptive, conversations

about the ambiguous meanings of words used in mathematics.

Miller (2018) questions whether minimal and concise definitions are more or less

useful than more detailed definitions that explain more about meaning and may be

more accessible to learners. This study seeks to provide such a description of perceived

elegance in proofs, in a non-minimal, descriptive, and accessible way. This case study

seeks to inform a concept image (Tall and Vinner, 1981) for proof elegance, rather

than a formal definition.

In the words of Rota (1997), “If mathematics were formally true but in no way

enlightening, this mathematics would be a curious game played by weird people”

(p. 132). This implies a value in enlightenment, more specifically, value in that it

motivates humans to do mathematics. I view enlightenment as a motivating and

guiding factor that could be experienced as an aesthetic but non-perceptible object,

which Goffin (2019) contends to be non-paradoxical. I view elegance as a similar

trait, which is detected by humans through a mechanism more closely approximated
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by an emotional experience than by a sensory perception. Older traditions in

aesthetics (Baumgarten, 1750) had limited aesthetics only to be perceived by the

five senses. In fact, Kant (1987) argued against the consideration of intellectual

satisfaction, such as the feeling a mathematical proof might yield, as any sort of

beauty. Later traditions (Siegel, 2012) considered the possibilities that emotions

could influence the measurements collected via the senses, such as a wolf’s teeth

looking bigger if one is scared. Consistent with an even more contemporary view,

Goffin (2019) argues that affects, such as emotions, should be considered more like

senses themselves, contributing to traits of aesthetics. In this study, I am rejecting the

Kantian separation of intellect from aesthetics and are open to considering intellectual

experiences, which may be entangled with emotions, as possible contributors to

aesthetics. This study of human perceptions of elegance considers perceptions to

not be limited to only five senses, nor to five senses plus emotions, but rather, to all

senses plus emotions plus factors that may live in the intersection of cognition and

affect.
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Chapter 3

Methods

3.1 Participants

Participants included three research mathematics faculty in the United States (one

woman and two men), five mathematics graduate students in the United States (one

woman and four men), and three mathematics graduate students in Ghana (three

men). All 11 participants had jobs with teaching responsibilities, such as professors

or teaching assistants.

The number of years the U.S. faculty had been at their current institution ranged

from 8 years to 30 years, and their areas of research included, geometry, algebra, and

number theory. The three Ghanaian graduate students had been at their institution

for 2, 3, and 8 years, and all three specialized in mathematics education research.

The five U.S. graduate students had all been at their institution 2 or 3 years, and

their research interests included computational statistics, machine learning, algebra,

number theory, analysis, probability, and mathematical ecology.

All participants volunteered to participate in the study after two email invitations.

Among those who volunteered, I selected participants who had been at their

institution for the most years. This study, which used human subjects, was approved
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by the University’s Institutional Review Board, and all participants provided informed

consent.

3.2 Procedure

This study is an embedded Type 4 Design Case Study (Yin, 2009), which has both

multiple cases and multiple units within each case. The three cases are as follows:

(a) A case of three Ghanaian mathematics graduate students, (b) A case of five U.S.

mathematics graduate students, and (c) A case of three U.S. mathematics research

faculty. Within each case, there was an embedded mixed method design of semi-

structured interviews, open-ended questionnaires, and surveys.

Each of the 11 participants was interviewed four times, either in person or online,

and was given three take-home tasks, one after each of the first three interviews. In

addition, one interview had two written surveys embedded within it. If a participant

approved, then the interviews were audio or video recorded, after which they were

transcribed. Section 3.3 will present the instruments in chronological order, in the

sequence that the data was collected. However, in this section, I present how the data

sources map to the purposes of the study.

As Yin (2009) suggests, I continually considered construct validity, internal

validity, external validity, and reliability as aims throughout the study. Some data was

collected to establish trustworthiness within the study. For example, a pilot study and

follow-up interviews were conducted to establish the reliability of the instrument and

to inform my data analysis. Also, to reveal participant positionality, they were asked

about their mathematical background during Interview 1. This helped reveal any

extreme beliefs that particular participants may have had in mathematical philosophy

or experience, in addition to helping me position their experiences within their

mathematical identities. Also, to ensure participants’ familiarity with the R.E.P.S.

problem and with the sample proofs to the R.E.P.S. problem, participants were asked

about the problem in interviews and were given written tasks to complete related to
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the problem. Table 3.1 shows how these study purposes of trustworthiness map onto

the specific data sources in this study.

In this embedded design, strands of data that inform different research questions

were woven in and out of interviews and interventions. Table 3.2 shows the

components of data collection that informed the research questions about perceptions

of elegance. Some data sources informed how participants (graduate students or

faculty) perceived elegance in mathematical proofs, in a general sense. Other data

sources more specifically elicited information about how those perceptions of elegance

compare to their perceptions of other constructs, such as surprise, creativity, and

rigor.

In order to inform the research question asking what constructs (elegance, rigor,

creativity, validity, etc.) participants seem to value the most in mathematical proofs,

I collected both questionnaire and interview data. First, in some cases, participants

shared their values in the first interview when they were invited to talk about their

mathematical background. Then, when they completed the take-home questionnaire

on which they responded in writing to the five fictional students who authored the

proofs, what they valued in proofs could be seen. After completing that take-home

assignment, they were asked in an interview what they had hoped the fictional

students might gain from their feedback. Because all participants hold teaching roles

in their departments, this activity is likely to connect to what they value in their

instructor capacity. After they rated the proofs based on various constructs, their

awareness of the nuances between them was heightened, and then, in Interview 4,

they were asked to consider all the different roles they had played, teacher, student,

and judge, and all the different constructs. They were asked which constructs they

valued the most and which ones they think were valued most by other stakeholders

in their department. Table 3.3 shows these data sources which informed the research

question about what participants value.
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Table 3.1: Data was collected from these sources to establish trustworthiness within
the study, to elucidate instrument reliability and participant positionality and to
ensure familiarity with the R.E.P.S. problem and proofs.

Purpose Data Sources

Instrument
Reliability

• Focus group with nine graduate students, as pre-study
pilot.

• Expert Validity Interview, which were follow-up
interviews with two members of the pilot study focus
group. They were asked

– how perceptions of elegance or rigor might be
different within different mathematical disciplines

– if their perceptions of elegance or rigor have
changed.

Participant
Positionality

• Interview 1, about mathematical background.

• Interview 1, about where they had heard the words
elegance and rigor about math in their past, and what
it meant.

Familiarity
with R.E.P.S.
Problem

• Interview 1, brainstormed possible strategies upon their
first impression of the R.E.P.S. problem.

• Take-home 1, where they tried to prove the R.E.P.S.
problem and submitted their written work.

• Take-home 1, where they kept written logs of minutes
spent on each strategy.

Familiarity
with Proofs of
the Problem

• Take-home 2, where they responded in writing to the
proofs.

• Take-home 3, where they responded in writing to hints
about proof incompletions.
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Table 3.2: Data was collected from these sources to inform research questions about
elegance.

Purpose Data Sources

How Elegance
of Math Proofs
is Perceived

• Interview 1, about where they had heard elegance about
math in their past.

• Interview 3, which asked participants to explain their
choices about elegance on their Rating Questionnaire.

• Interview 4, which asked about participants’ experiences
throughout the entire study.

• Expert Validity Interview, which asked what properties
of a proof make it elegant

How Elegance
Perceptions
Compare or
Contrast other
Constructs

• Interview 1, about where they had heard the words
elegance and rigor about math in their past.

• Rating Questionnaire, on which they rated their
agreement with statements that a given proof was
valid/complete/rigorous/surprising/creative/elegant.

• Interview 3, which asked participants to explain their
choices on the Questionnaire.

• Expert Validity Interview, which asked

– what properties of a proof make it elegant or
rigorous.

– students how a professor’s perceptions of elegance
or rigor may compare to their own.
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Table 3.3: Data was collected from these sources to inform research question about
what participants value most about math proofs.

Purpose Data Sources

What
Participants
Value the Most
about Proofs

• Interview 1, about mathematical background.

• Take-home 2, where they responded in writing to the
proofs.

• Interview 3, where they commented on what they hoped
the students would gain from their comments.

• Interview 4, where they were asked which constructs
they values the most and which ones they think other
stakeholders in their department would value the most.

• Expert Validity Interview, which asked

– students how a professor’s perceptions of elegance
or rigor may compare to their own.

– whether students benefit from evaluating work, not
just proving it, and what aspects should be judged.
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3.3 Instruments

All instruments used in this study were developed by the R.E.P.S. (Rigor and Elegance

in Proof Strategies) research group. Table 3.4 shows the project timeline and how

the R.E.P.S. research group created and vetted the instruments. First was Jeneva

Clark’s development of the R.E.P.S. problem, which she recognized as a problem that

would naturally elicit various strategies or solution methods. This claim has not yet

been rejected, as no two people have yet arrived at the same method of proving it.

Impelled by assessment-driven discussions about elegance of mathematical arguments

within the Department of Mathematics at the University of Tennessee, the research

group developed proofs and questionnaires and piloted them both with mathematics

graduate students and with researchers in mathematics education who were present

at the 5th Northeastern Conference on Research in Undergraduate Mathematics

Education. The interview protocols were reviewed for cultural appropriateness by

a mathematics and mathematics education researcher in Ghana. Also, two graduate

students who had participated in the pilot study were interviewed several months

later to test the reliability of the instruments, both whether the instruments’ results

seemed to reasonably stand the test of time and whether the instruments might elicit

differing responses based on participants’ prior experiences in mathematics.

The instruments used in this study included the following, listed in the same

chronological sequence of implemented data collection for each participant:

• Informed Consent Form (Appendix C.1)

– explained risks and benefits of participation, collected informed consent,

approved by Institutional Review Board.

– included an attached addendum which asked respondents for their research

areas and the number of years they have been at their current institution.

• Interview Protocol for Meeting 1 (Appendix C.2)

– established rapport with participants.
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Table 3.4: Project Timeline.

When Who What
6/2021 Jeneva Clark Wrote the R.E.P.S. problem.

6/2021-
7/2021

Jeneva Clark, Jonathan
Clark, and Vedant Bonde

Collected multiple proofs for the
R.E.P.S. problem. Created animations
for those proofs. Reviewed them.

8/2021-
9/2021

Jeneva Clark and Jonathan
Clark

Designed some rating and ranking ques-
tionnaires to accompany the proofs,
to measure perceptions of rigor and
elegance.

9/2021-
10/21

Nine U.S. mathematics
graduate students

Completed the take-home tasks found
in Appendix 4.4.1 and gave feedback to
Jeneva Clark in a focus group setting.

10/2021
Jeneva Clark, Jonathan
Clark, Brooke Denney, and
Ebenezer Bonyah

Established the R.E.P.S. research group
(Rigor & Elegance in Proof Strategies)

11/2021

Jeneva Clark and Jonathan
Clark as presenters; Brooke
Denney and Ebenezer
Bonyah as attending
research group members

Tested the rating questionnaire along
with a subset of the proofs with the
audience at the 5th Northeastern Con-
ference on Research in Undergraduate
Mathematics Education.

11/2021
Jeneva Clark and Brooke
Denney

Revised questionnaires. Wrote interview
protocols.

12/2021 Ebenezer Bonyah
Reviewed all instruments and protocols
for cultural appropriateness, as a math
education professor in Ghana.

1/2022
Jeneva Clark and Brooke
Denney

Revised interview protocols. Submitted
Institutional Review Board protocol.

3/2022
Jonathan Clark and Brooke
Denney

Presented the conceptual framework for
this study at the Southeastern Sectional
meeting of Mathematical Association of
America. Asked for feedback from
attendees.

2/2022-
5/2022

Jeneva Clark and Brooke
Denney

Recruited and selected participants.
Conducted and transcribed interviews

4/2022 Jonathan Clark
Interviewed, for validity purposes, two
of the graduate students who had
participated in the pilot study.

5/2022-
6/2022

Brooke Denney and Jeneva
Clark

Emailed participants their interview
transcripts for member checking.

5/2022-
6/2022

Brooke Denney and Jeneva
Clark

Analyzed data.
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– inquired about participants’ mathematical background.

– obtained participants’ prior conceptions about mathematical meanings of

“rigor” and “elegance.”

– introduced the geometry problem to participants.

– gauged participants’ first impressions of the R.E.P.S. problem.

• Take-Home Task 1 (Appendix C.3)

– asked participants to try the R.E.P.S. problem, to encourage familiarity

with it.

– asked students to record their times and strategies.

• Interview Protocol for Meeting 2 (Appendix C.4)

– elicited explanation for participants’ proof strategies.

– asked about participants’ experience with Take-Home Task 1.

• Take-Home Task 2 (Appendix C.5)

– presented animations of five proofs of the R.E.P.S. problem to the

participants.

– asked participants to respond, as if they were an instructor, to the five

fictional undergraduate students who authored those five proofs.

• Interview Protocol for Meeting 3 (Appendix C.6)

– asked about participants’ experience with Take-Home Task 2.

– asked participants to complete the Rating Questionnaire (Appendix C.6.1)

while talking about their ratings of the five proofs. This questionnaire is

a Likert-type (Likert, 1932) survey for agreement with statements that a

given proof is valid/complete/rigorous/surprising/creative/elegant.

– asked about participants experience completing this questionnaire.
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• Take-Home Task 3 (Appendix C.7)

– asked participants to revisit two of the animated proofs and pretend to be

the fictional student who authored them.

– presented two fictional instructor comments about those two proofs and

asked participants to respond to the instructor’s comments.

• Interview Protocol for Meeting 4 (Appendix C.8)

– asked about participants’ experience completing Take-Home Task 3.

– asked about participants’ experiences throughout the entire study and

which components or constructs they valued most.

– wrapped up any unresolved questions or discussions.

• Expert Validity Interview (Appendix C.9)

– asked about year and concentration in graduate program.

– asked about the experience of trying the proof.

– asked how they might have done the proof in any ways that were unique

to them.

– asked how perceptions of elegance or rigor might be different within

different mathematical disciplines.

– asked how a professor’s perceptions of elegance or rigor may compare to

their own.

– asked if their perceptions of rigor or elegance have changed.

– asked what properties of a proof make it elegant or rigorous.

– asked about how trying the problem differed from judging the problem.

– asked whether students would benefit from evaluating work, not just

proving it, and asked what aspects should be judged.
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Chapter 4

Results

4.1 Results: Trustworthiness

Before reporting the results from our primary research questions, I will briefly explain

the additional steps I included to ensure that the results are as trustworthy as possible.

Before this research began, Jeneva Clark conducted a pilot study with nine U.S.

mathematics graduate student volunteers. Later, Jonathan Clark also interviewed

two of these mathematics graduate students to ensure that the instruments of our

study were reliable. Once finishing the interviews, I conducted member checking to

confirm that our interview data was correctly transcribed.

4.1.1 Pilot

Nine U.S. graduate students volunteered to participate in a pilot study. Each of

these students held a teaching assistant position and had been a graduate student

in mathematics for at least one year. For the pilot study, they were each given the

R.E.P.S. problem and were asked to try to prove it, with the understanding that any

approach was allowable. After a time span of three weeks, none of the participants

had solved the problem.
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After attempting to prove the claim, each participant in the pilot study was given

the five sample proofs, which were the same five proofs given to our 11 participants

in the overall study. The nine pilot study participants were asked questions about

the validity, rigor, creativity, and elegance of the five proofs, and they responded with

yes, no, or uncertain to questions about the validity, rigor, creativity, and elegance

of the five proofs. In the pilot study, validity and creativity warranted more yes’s,

while elegance earned the most no’s, and rigor elicited the most uncertainty. Next, in

the pilot study, the nine graduate students ranked the five proofs by elegance, rigor,

validity, and creativity. Elegance was by far the most agreed upon qualifier in this

ranking task. By contrast, rigor had the most disagreement between respondents.

The pilot study informed this study in the following ways:

• Because the pilot study participants said that being forced to rank the five

proofs was such a hard task that they could not make decisions on some of

them, I decided to not include similar task data in this study.

• Because the pilot study yielded the most agreement in the construct of elegance,

this study is focusing on elegance of proofs. Rigor of proofs saw very little

agreement in rankings and had the most uncertain responses, and would thus

be more difficult to research among mathematics graduate students.

• In the pilot study, the responses of yes, no, and uncertain were collected, but

in this study, I decided to collect Likert-type data to gather more granular

information about participants’ perceptions of elegance.

• The pilot study participants’ stamina seemed to wane as they responded; later

responses were less involved and had slightly lower total response rates. Because

of this, the instruments in this study were more carefully partitioned and paced,

and the rating survey was completed during one of the interviews.
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4.1.2 Reliability Interviews

Jonathan Clark conducted two reliability interviews for this study. The Interview

Protocol used for these reliability interviews can be found in Appendix C.9. Both

were U.S. graduate students studying mathematics. Both participants also carried

teaching responsibilities at their universities. Neither participant was one of the 11

participants in our main study.

There were multiple purposes of these interviews. For instance, one purpose was to

build rapport between the graduate students and the interviewer and learn about the

background that these students have in their programs. Both graduate students had

completed at least one year in their program, and they were studying fields including

geometry, topology, partial differential equations, and numerical analysis. I will refer

to these participants as Connor Fidential and Hannah Nimity.

Another purpose was to see how different elements, such as resilience, impatience,

and self-efficacy, might influence the different responses from our participants. To

establish some more background information, both participants were given the

R.E.P.S. problem and were asked to prove it. At first glance, Connor Fidential said

the problem appeared to be simple and ordinary. They later described it as much

more complicated than expected, especially due to the amount of information given

in the picture. They compared this to the field of mathematics called combinatorics,

which, according to him, is “the art and science of figuring out how to count things.”

They compare the R.E.P.S. problem statement to those in combinatorics that could

be understood by high school students superficially, but could be nearly impossible

for even experienced mathematicians. Hannah Nimity approached the problem just

as they would any other mathematics problem: trying different approaches until

something sticks.

The interviewer also asked participants if they went about solving the R.E.P.S.

problem or analyzing the five sample proofs in any unique ways. Connor Fidential

tried to use the basic or elementary techniques they could think of to solve the
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problem instead of something more complicated or specialized like they would in

their own research. Since there were many right triangles in the figure, they first

tried using Pythagorean Theorem. Hannah Nimity approached the problem using

coordinate geometry. They explained that their attempt was most similar to Proof B

(Appendix C.5.2) using the dot product. They also shared their views on elegance.

They considered one of their professor’s teaching style when describing elegance. In

graduate school, Connor Fidential had a professor who focused more on teaching

students to understand the big ideas of the course and how to use them rather than

spending time going through every small detail in the proofs they saw. Connor

Fidential stated that they felt that their professor focused more on elegance in the

course rather than rigor. They also focused on applications of certain theorems and

proof strategies in the course that would be useful in other areas. Connor Fidential

later stated that elegance “is more about finding the right big idea to overcome the

main difficulties of the problem.”

Connor Fidential also commented on Proof C (Appendix C.5.3) in particular.

The writer of this proof used Euler’s formula and complex numbers as their main

strategies. Connor Fidential pointed out that complex numbers did not explicitly

appear in the problem statement because the shapes appeared to exist in a two-

dimensional plane. They described incorporating complex numbers in the solution as

mathematical alchemy. They later described the meaning of mathematical alchemy in

terms of solving a problem. They explained that using a tool like complex numbers

may make the problem seem more complicated at the start, but there is something

about the particular object that was “carefully crafted” to actually make the problem

easier to solve. After getting over the initial hump of figuring out how to use this

tool, it can be very useful and create an interesting solution.

Hannah Nimity also discussed their experience analyzing the five sample proofs.

They described themselves as “highly skeptical.” To further understand what they

meant by this, Hannah Nimity stated that if there were a mistake or a concept that

needed to be better explained in one of the proofs, it is highly likely that they would
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have spotted it. They later explained that this attention for detail and this skepticism

stemmed from an undergraduate professor they had who was also very skeptical when

grading student work. Hannah Nimity described this professor as “well-put-together”

in both their lectures and their proof-writing skills. The professor would often ask

students why certain statements were true in their proofs. Hannah Nimity concluded

by stating that this professor instilled in them an appreciation for well-written proofs.

When asked about rigor and elegance, Hannah Nimity described both elegance

and rigor as “ill-defined,” and that they are more like a “you’ll know it when you see

it kind of thing.” They shared that they are less interested in rigor when writing or

evaluating proofs. They appreciate more visual proofs as long as they contain all of

the essential ideas needed to prove the statement. They also believe that the idea of

rigor in proofs seems fairly consistent across mathematical disciplines. When asked

about elegance, they stated that they equate the term elegant with pretty. They

gave the example of taking a complex analysis course. The first time they saw their

professor prove that complex differentiability implies infinite differentiability, they felt

that they had seen a very elegant proof.

The interviewer also asked Connor Fidential and Hannah Nimity if their per-

ceptions of elegance and rigor had changed since they had first encountered the

R.E.P.S. problem. Connor Fidential describes this as a qualitative change. Going

further, they related this idea to the visual learners in the course they were currently

teaching. During an exam review session, they incorporated a more visual approach

to comparing simple and compound interest, and they shared that their students

responded well to this additional explanation. They claimed that they gained an

appreciation for proofs they found more visual, such as Proof B (Appendix C.5.2),

since they had considered how visual learners think through problems and share their

ideas. They also stated that most people would perceive Proof B (Appendix C.5.2)

as “less rigorous and more elegant” than Proof A (Appendix C.5.1) or Proof C

(Appendix C.5.3) because the intuition of the writer is more clear, and there are
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not as many additional and perhaps unnecessary tools being brought in to solve the

problem.

Hannah Nimity also shared that they felt that their perceptions of the aesthetics

of the proofs had changed over time. In particular, they pointed out that they were

not fond of Proof C (Appendix C.5.3). They tend to favor shorter proofs and methods

that they personally consider useful. To them, there was no need to involve complex

numbers when solving this problem because it overcomplicated this problem, and

there were simpler ways of going about it.

In the final portion of the interview, the interviewer asked participants to compare

their experiences working on the R.E.P.S. problem themselves with their experiences

judging the five sample proofs. To Connor Fidential, the two tasks were very different.

They described solving the problem as looking for “the path of least resistance” given

their particular knowledge and skill set. They also shared that if they had not had

a chance to try the problem before evaluating the five sample proofs, then their

evaluation of the proofs would have probably changed. They described this in more

detail by adding that by trying the problem themselves first, they better understood

their natural tendencies would be when solving the problem, and it helped them

better evaluate which proofs would be considered surprising or unique.

To Hannah Nimity, solving the R.E.P.S. problem was a much more exploratory

task. When they were looking for a solution, they were considering many different

ideas and looked for one that seemed promising. They described evaluating the five

sample proofs as a simpler task. They referred back to their tendency to ask why,

and they stated that they felt like a computer “checking to see that every step makes

sense and leads to where you want it to go.” They concluded by describing the process

of evaluating proofs as much more mechanical than writing proofs.

The interviewer also asked them how applicable they think this process could

be in an actual classroom. In particular, would it be beneficial for post-secondary

students to judge proofs in addition to producing them? Connor Fidential said that

by practicing the skill of reviewing proofs, students will become better at catching
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mistakes in their own work. They also claimed that, even if students are only

evaluating proofs that are considered correct, the process is still valuable as students

could gain an increased awareness of multiple different ways to think about one

problem.

Hannah Nimity stated that allowing students to evaluate different proofs would

“obviously” be beneficial. To them, deciding on an engaging problem that would

be appropriate for that level of students and also have multiple solutions would be

difficult. They concluded by claiming, “This is kind of the heart of mathematical

reasoning, and there are those two sides of it.” Here, they are referring to solving a

proof yourself and then considering and evaluating other solutions.

4.1.3 Member Checking

I transcribed all interviews. Transcripts were sent to all participants for content

checking, and one participant reported discrepancies in the transcripts and interpre-

tations. Adjustments were made according to the participant’s feedback. I also asked

Connor Fidential to further explain what they mean by mathematical alchemy. They

clarified the meaning in an email.

4.2 Results: Interviews

Out of our 11 participants, I chose four focus participants to feature in this section.

I choose one graduate student from Ghana, Africa, one graduate student from the

United States, and two faculty from the United States to feature in this section. Each

featured participant was given a pseudonym to further protect their identity.

4.2.1 Ghana, Africa Graduate Student: Nyarko Mystery

Out of the three graduate student participants from Ghana, Africa, Participant 1,

whom I will refer to as Nyarko Mystery, was chosen as a focus participant. Nyarko
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Mystery is a graduate student in Ghana, Africa studying mathematics education and

has teaching responsibilities at their institution.

Interview 1

Nyarko Mystery began their first interview sharing some information on their

background in mathematics. From a young age, Nyarko Mystery saw mathematics as

“quite problematic” in their society. They described this statement further by saying,

“From childhood, even at the basic level, that is between the ages of 6 and 12, most of

my colleagues found it quite challenging.” They also stated that mathematics in their

society “sometimes causes fear” due to the “negative perceptions” associated around

the subject and its difficulty. Despite these negative connotations, Nyarko Mystery

has “loved math from infancy throughout university” and is now taking graduate-

level courses in mathematics education. They also shared that they have had “very

good” experiences with mathematics throughout their life.

Nyarko Mystery described their experience with mathematical proofs. They

started by explaining, “In our part of the world, most families, the people within

the family, our parents especially, are not too educated.” They shared that their

parents “are not too educated,” but they added that “they understand that math is

difficult.” Again, although many people around them were pointing out the difficulties

of mathematics, Nyarko Mystery decided to “spend a lot of time solving mathematical

problems,” especially in school. Nyarko “always wanted to deal with numbers.”

However, there was a shift for them when they began seeing proofs. They shared

that “when you are not solving to get answers but rather to prove and explain

mathematical concepts, sometimes that can be quite challenging.” They describe this

transition into learning to prove mathematical statements as “a very new experience”

that they are “getting used to.”

Nyarko Mystery also shared their first experiences with mathematical proofs.

They explained that attended a junior high school for three years and a senior

high school for three years before graduating. In junior high school, they did not
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“remember seeing a lot of proofs,” but “there were a few.” These were usually

presented as true or false questions, and some even asked students if a statement

is true and to justify why or why not. Nyarko Mystery compared junior-high

math with senior-high math, saying that in senior high school, “I did quite detailed

math.” In particular, they shared that they took a course in senior high school called

“Fundamental Mathematics.” In this course, which is typically taken between the ages

of 15 and 18 years old, students are “exposed to some proofs.” They gave examples of

some of the proofs they saw in this course, which included showing that “an expression

can be written in the form where the second derivative is equal to a certain number”

and “some geometric problems to show that the area of a triangle is equal to a certain

given figure.” They also explained their experience as a graduate student. In graduate

school, Nyarko Mystery wrote and evaluated proofs “quite a lot.”

Once the interviewer had learned some background information about Nyarko

Mystery, they wanted to better understand Nyarko’s views on aesthetics. In

particular, the interviewer wanted to see what perceptions they were bringing with

them from other experiences concerning the terms elegant and rigorous. The

interviewer first asked them if they had ever heard the term elegant used to describe

mathematics. They responded by saying that they did “not remember anyone” or

“any place here say elegant in relation to mathematics.” They did point out that they

had heard the term before, but “not in relation to math.” To get an idea of what

elegance meant to Nyarko Mystery, the interviewer simply asked them what the word

elegant meant in general. To them, elegance “is used in the context of something that

is sophisticated or has a quite organized feature.” After they had shared this idea,

they related it back to math by saying, “Math is quite complex but sophisticated and

has a lot of things within it. That is how I understand it.”

Similar to the term elegant, the interviewer also asked Nyarko Mystery if they

had heard the term rigorous used to describe mathematics. They claimed that ”I

attack math with much attention, much carefulness, being very careful, trying to be

accurate.” They also related the idea of rigor to Van Hiele’s Theory of Geometric
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Thinking. They explained that “there are five levels, and rigor is the last level.”

Rigor is also “the fifth state, and on that state they are able to make deductions”

and “draw some relations.” They also shared that rigor is not something is professors

“always say,” but he does hear it from them “once in a while.” To their professors,

rigor means “some sort of attention and some sort of aggressiveness.”

After getting an idea of what elegance and rigor meant to Nyarko Mystery, the

interviewer presented them with the R.E.P.S. problem. The interviewer asked them

to take a few minutes to look at the question and, without trying to prove it right

away, think about strategies that could be used to prove it. First, Nyarko Mystery

tried “to look at the types of shapes that are related to the bigger picture.” They

then tried to identify “the quadrilaterals, the triangles, and also check some angles.”

They did point out an aspect that they found challenging, which was “that the actual

angles are not given, and the actual lengths are not given.” To get past this challenge

and perhaps prove the statement, Nyarko Mystery suggested “to carefully analyze

and state whether some lengths are equal,” and “if they are equal,” then they would

“see that some quadrilaterals are equal, and finally prove that the given lengths that

are shown are equal.”

Before concluding this meeting, the interviewer gave Nyarko Mystery the task of

trying to prove the R.E.P.S. problem on their own. The interviewer explained that

any strategies are allowed and also asked them to log the strategies they tried along

with the time spent on each strategy on a provided log sheet. Once those materials

were shared through email, the first meeting ended.

Interview 2

I started Interview 2 by asking Nyarko Mystery if they had found any proofs for the

R.E.P.S. problem. They did not come up with a correct proof, but they did share the

approach they tried. They stated, “I remember trying to see if I could identify angles

that are equal, but they weren’t working. Then I tried checking the sides that are

equal from the different shapes, and on that one I got stuck.” According to their log
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sheet, Nyarko Mystery spent approximately 20 minutes trying to prove the R.E.P.S.

problem. Their log sheet is shown in Table 4.1.

Before concluding this meeting, the interviewer shared five sample proofs for the

R.E.P.S. problem with Nyarko Mystery. I asked them to suppose that five fictional

students wrote these proofs and animated them using a slideshow. Before the third

meeting, the interviewer asked Nyarko Mystery to give feedback on each of the five

sample proofs as if they were the instructor of the five students. Once the electronic

form was shared through email, the second meeting ended.

Interview 3

The interviewer started Interview 3 by asking Nyarko Mystery about their experience

as an instructor responding to the five sample proofs for the R.E.P.S. problem. Their

responses to the five proofs are shown in Table 4.2. They began by sharing that they

expected the solutions to be more “straightforward.” They thought “there would be

some practical ways of cutting section or shape and placing it onto another.” They

claimed that all of the approaches were “more algebraic” than they expected. They

also pointed out that the Pythagorean Theorem was used, which they thought was

“cool.” The interviewer also asked Nyarko Mystery what effect they would hope to

have on these fictitious students through their responses. They answered by saying

they hoped that the students would “look at other options.” Nyarko added that the

responses were “ok,” but they hoped the students would make their steps “clearer.”

The interviewer then transitioned to the next portion of the interview and asked

Nyarko Mystery to fill out two electronic forms. The first form asked participants

to rate the five sample proofs based on terms such as valid, complete, rigorous,

surprising, creative, and elegant. A summary of their responses is shown in Table 4.3.

Once Nyarko had submitted the form, the interviewer asked them to speak about

their experience rating the five sample proofs. Nyarko pointed out that Proof D

(Appendix C.5.4) using Euler’s formula and complex numbers was “very surprising,”

and was something they “had not seen before” and had “never expected.”
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Table 4.1: Nyarko Mystery completed this log sheet while trying to prove the
R.E.P.S. problem.

Type of Strategy Time Spent Comments

1
Comparing of

Angles
7 minutes 50 seconds

I realized that it won’t work because
I foresaw summing up total angle
of triangle and the quadrilateral
making up 360+180. The triangle
and the quadrilateral are within a
quadrilateral already so I do not

want to conclude that the total angle
of the bigger quadrilateral will be

more than 360

2
Fitting of some
sides onto the

other
3 minutes

I was limited by the given
sides that are equal.

3
Using Areas of

shapes
9 minutes

I am still limited by the
number of congruent sides.
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Table 4.2: Nyarko Mystery responded to five sample proofs for the R.E.P.S. problem.

Proof Response
Proof A Proof not clearly demonstrated.

Proof B

I could see that you are trying to find the length
of the sides. It’s a good approach. Finally how

does it correspond to the sides of the
quadrilaterals to be proved?

Proof C What informed you to use complex numbers?
Proof D No Response
Proof E No Response
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Table 4.3: Nyarko Mystery rated the five sample proofs based on several aesthetic
terms.

Strongly
Disagree

Somewhat
Disagree

Somewhat
Agree

Strongly
Agree

Proof A Completeness

Validity
Rigorous
Surprise
Elegance

Creativity

Proof B
Validity

Completeness
Rigorous

Surprise
Creativity
Elegance

Proof C
Completeness

Surprise

Rigorous
Creativity
Elegance

Proof D Completeness Surprise
Rigorous
Elegant

Validity
Creativity

Proof E
Completeness

Surprise
Creativity

Validity
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Once Nyarko Mystery was finished speaking about their experience rating the five

sample proofs, the interviewer shared a second form with them to complete. In this

form, the interviewer asked participants to rank the five sample proofs based on the

terms rigor, surprise, creativity, and elegance. Before concluding this meeting, the

interviewer shared two instructor comments with Nyarko Mystery. The interviewer

asked Nyarko to take on the roles of the students who wrote Proof C (Appendix C.5.3)

and Proof E (Appendix C.5.5) and respond to two instructor comments. Once the

electronic form was shared through email, the third meeting ended.

Interview 4

The interviewer started Interview 4 by asking Nyarko Mystery about their experience

responding to instructor feedback. Nyarko shared that it was “very interesting.”

They claimed that some of the comments were “quite complex,” and they had “a lot

of difficulties” trying to respond. Nyarko also shared that this experience reminded

them of Van Hiele’s fifth level of Geometric Thinking. They shared that “the last

stage of the Van Hiele state, the rigor” required them to “apply everything when it

comes to visualization, when it comes to making deductions” and “when it comes to

lowering terms.” They also explained that this experience helped them understand

that while working with geometry, “I shouldn’t just be limited to the angles and the

lines I know.” They emphasized the different approaches “using concepts like calculus,

algebra, and complex numbers.”

To conclude the final meeting with Nyarko Mystery, the interviewer asked them a

few overarching questions about the study as a whole. The interviewer asked Nyarko

Mystery if this experience helped them see math differently, and the interviewer also

asked them if any of the tasks or interviews done during this study would be useful in

the future. Nyarko responded by saying that they have more of an appreciation for

“various methods.” They emphasized this by stating, “There can be various methods,

and I should not be limited by just one method or strategy. I need to be conscious

of all other strategies.” Nyarko also shared that this experience has been helpful to
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them as a teacher. To them, the tasks of writing and evaluating proofs is not just to

help the student “get correct answers,” but also to “help them improve their thinking

abilities.”

4.2.2 U.S. Graduate Student: Taylor Illusion

Out of the five U.S. graduate student participants, Participant 7, whom I will refer

to as Taylor Illusion, was chosen as a focus participant. Taylor Illusion U.S. graduate

student studying mathematics and had teaching responsibilities at their university.

Interview 1

Taylor Illusion began their first interview sharing some information on their back-

ground in mathematics. When it came to grade-school mathematics, Taylor Illusion

felt that they were “always good at it in school.” Taylor started school in a public

school system, then they later moved to a charter high school. While there, they

took many “dual enrollment classes through the local college.” They also worked

as a “personal tutor” in mathematics, working with students “as young as 10 up

through seniors in high school.” This was their “first experience in teaching,” and

they found it “fun.” Later on, Taylor went to a liberal arts college. They considered

doing engineering but were not sure exactly what they wanted to do. They also had

an interest in physics, which led them to “get a dual degree in math and physics.”

After working for around a year, Taylor Illusion decided to go to graduate school,

mainly because they felt that a Bachelor’s degree would not help them qualify for the

jobs they wanted to do.

Taylor Illusion also shared their first experience seeing mathematical proofs. They

shared that they saw proofs in geometry class in high school, but they “do not really

count those as proofs.” They explain that, at the time, they were “aware that proving

things was a thing” because they had “read books” and “wiki pages” and “watched
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videos on YouTube.” However, during their freshman year of college, Taylor was

introduced to formal proofs in their “Transitions to Higher Mathematics” course.

After learning some background information about Taylor Illusion, the interviewer

wanted to better understand Taylor’s views on aesthetics. In particular, the inter-

viewer wanted to see what perceptions Taylor was bringing from other experiences

concerning the terms elegant and rigorous. Taylor Illusion began by sharing what

the word elegant means to them in a colloquial sense. They described elegance as

“smoothness,” and they pictured “those old Corvettes that were really wavy and

smooth.” They also picture “ballroom dancing.” They have heard the term elegant

used to describe mathematical proofs. To them, an elegant proof is one that “contains

some not immediately apparent connection or idea.” They were hesitant to use the

term “clever” because they felt that it implies some sort of “trick.” They also pointed

out that “length does not have much to do with it.” In terms of length, Taylor Illusion

did not think “a two page proof” was “more elegant than a ten page proof.”

Similar to the term elegant, the interviewer also asked Taylor Illusion about their

perceptions of the term rigor. Taylor began by sharing what the word rigorous means

to them in a colloquial sense. They claimed that “most things outside of mathematics

are not all that rigorous.” Within mathematics, Taylor Illusion sees a rigorous proof

as one that is “complete and far-reaching.” It is also one that “goes through all of the

necessary implications and checks.” They also suggest that “focusing on rigor could

take elegance away from a proof.”

After getting an idea of what elegance and rigor meant to Taylor Illusion, the

interviewer presented them with the R.E.P.S. problem. The interviewer asked them to

look at the question and, without trying to prove it right away, think about strategies

that could be used to prove it. Taylor Illusion stated that the first thing they would

do is “go through all the angles and determine which ones are equal to each other.”

Then, they would try “trigonometric identities.”

Before concluding this meeting, the interviewer gave Taylor Illusion the task of

trying to prove the R.E.P.S. problem on their own. The interviewer explained that
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any strategies are allowed. The interviewer also asked Taylor to log the strategies

they tried along with the time spent on each strategy on the provided log sheet.

Once those materials were shared through email, the first meeting ended.

Interview 2

The interviewer started Interview 2 by asking Taylor Illusion if they had found any

proofs for the R.E.P.S. problem. They did not come up with a correct proof, but they

did share the approach they tried. They tried “extending all the lines and marking

angles and trying to match things up.” They also “tried to use the angles given to

get some congruences between the lines.” According to their log sheet, Taylor Illusion

spent approximately one hour trying to prove the R.E.P.S. problem. Taylor Illusion’s

log sheet is shown in Table 4.4.

Before concluding this meeting, the interviewer shared five sample proofs for the

R.E.P.S. problem with Taylor Illusion. They interviewer asked them to suppose that

five fictional students wrote these proofs and animated them using a slideshow. Before

the third meeting, the interviewer asked Taylor Illusion to give feedback on each of

the five sample proofs as if they were the instructor of the five students. Once the

electronic form was shared through email, the second meeting ended.

Interview 3

The interviewer started Interview 3 by asking Taylor Illusion about their experience

as an instructor responding to the five sample proofs for the R.E.P.S. problem. Their

responses to the five proofs are shown in Table 4.5. Taylor explained that they

do not have much experience “grading proofs,” so it was “hard to determine what to

critique.” They also shared that “it was interesting to see all the different approaches”

that students took. They also “found the proof with the complex exponentials,” which

was Proof D (Appendix C.5.4), “to be the most surprising proof.” They also found

Proof C (Appendix C.5.3) and Proof E (Appendix C.5.5) to be “really satisfying to
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Table 4.4: Taylor Illusion completed this log sheet while trying to prove the R.E.P.S.
problem.

Type of Strategy Time Spent Comments

1 Geometric Angles and Lengths 1 hour
Geometric Intuition is rusty,
didn’t make much progress
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Table 4.5: Taylor Illusion responded to five sample proofs for the R.E.P.S. problem.

Proof Response

Proof A

I think identifying information that wasn’t necessary was really
perceptive. Defining equations for the two lines, L1 and L2

very smart, but where those equations come from seems a little
opaque. Noticing that P and Q are points of interest was also very
important and well done. This proof seems very clever, but kind of

contrived. I guess this mostly comes from the definition of L2,
which doesn’t seem at all intuitive.

Proof B

This is very clever, and honestly pretty elegant in my opinion.
Making such an extreme rotation at first probably wouldn’t have

occurred to me, but that opens up several really simple but
powerful relationships. I think the trigonometric relationships are

really smart and useful. I like this proof a lot.

Proof C

This one, to me, seems the most straightforward in a sense. I like
just how much this feels like a classical geometric proof, what with

the creation of the first red triangle, and then exploiting relationships
that grow out of that. I don’t think it’s entirely the most intuitive, but
it feels the most like a proof I could maybe come up with on my own.
I think the most clever part of this proof, besides the initial triangle,

was the use of triangle EF-AF-AE. I like this one.

Proof D

This feels like the highest-level proof we’ve seen. I really like the use
of complex exponentials; that feels so completely out of left-field that

I don’t think I could have ever thought to do that in a productive way. I
don’t know if I would say that this proof is the MOST elegant, but I do
find it somewhat elegant at least. It’s incredibly clever and shows a

strong understanding of the problem.

Proof E

This one also feels really classically geometric, and honestly probably
the most straightforward. I like its simplicity, which I think lends

elegance to it. It doesn’t seem overly contrived, nor super heady either.
I think this is a good proof, which demonstrates the relationship in a

very understandable way.

59



read and see” because they “felt more decidedly geometric than the others.” The

interviewer also asked Taylor Illusion what effect they would hope to have on these

fictitious students through their responses. Taylor answered by saying that they

would want the the students to have “encouragement.”

The interviewer then transitioned to the next portion of the interview and asked

Taylor Illusion to fill out two electronic forms. The first form asked participants to

rate the five sample proofs based on terms such as valid, complete, rigorous, surprising,

creative, and elegant. A summary of their responses is shown in Table 4.6. Taylor

Illusion shared their views on each proof as they completed the form.

For Proof A (Appendix C.5.1), Taylor Illusion was not completely “confident” on

the validity of the proof because they felt “a little shaky” on the “line equations.”

They also described this proof as being “a little contrived.” They agreed that Proof

A (Appendix C.5.1) was complete and rigorous. They also agreed that Proof A

(Appendix C.5.1) was surprising because they “would never have thought to define

those lines as equations.” They also agreed that Proof A (Appendix C.5.1) was

creative because it was an “interesting insight” that they “never would have thought

of.” For elegance, Taylor Illusion remained neutral. They again referred to Proof A

(Appendix C.5.1) as being “contrived” and wondered if the writer “imposed these

structures on the problem rather than using what’s provided.” To them, that is “less

elegant.”

Taylor Illusion described Proof B (Appendix C.5.2) as “cool” and claimed that

they “liked it a lot.” They also described it as ”strongly valid” and “really complete.”

They agreed that it was rigorous, but also pointed out that it is a brief argument,

which was surprising to them. They shared that Proof B (Appendix C.5.2) was “very

surprising” and “so creative.” For elegance, they were slightly more hesitant, claiming

that “it did not use the geometry principles given.”

Proof C (Appendix C.5.3) was the first proof that Taylor Illusion “really liked.”

They described it as “pretty cool” and “pretty geometric.” They agreed that it was
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Table 4.6: Taylor Illusion rated the five sample proofs based on several aesthetic
terms.

Somewhat
Agree

Strongly
Agree

Proof A
Validity
Creativity

Completeness
Rigor

Surprise

Proof B
Rigorous
Elegant

Validity
Completeness

Surprise
Creativity

Proof C
Rigorous
Creativity
Elegant

Validity
Completeness

Proof D Elegant

Complete
Rigorous
Surprising
Creative

Proof E Elegant

Validity
Completeness

Rigorous
Creativity
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valid and complete, but they were not sure if it was rigorous. They paused and

stated that they kept “getting stuck on” evaluating rigor. They remained neutral on

surprise, but they agreed that the proof is creative. They shared that “the only really

creative step was identifying the first triangle, the red one. And from that it’s kind

of just exploring the relationships, which I would say makes it a little more elegant

because you are just using what is there.”

Taylor Illusion found Proof D (Appendix C.5.4) to be a little “confusing.” Because

of this, they remained neutral on validity. They did agree that the proof was complete

and rigorous because “it felt very step after step after step after step.” They also found

this proof surprising and creative and shared that “determining that this is the right

angle is important, given just how many right angles there are in this, and then to

express it using complex exponentials. That is pretty surprising.” They agreed that

the proof was elegant, but they did point out that it “felt a little tedious.”

Taylor Illusion thought Proof E (Appendix C.5.5) was “good” and “cool.” They

favored it over Proof C (Appendix C.5.3) because the triangle constructed here “feels

a little more intuitive.” They “really liked” how the writer “exploited its similarity

with two different triangles.” They agreed that Proof E (Appendix C.5.5) was valid,

complete, and rigorous. They did state that they did “not know if it was the most

surprising” because “it just feels like the most classically geometric proof.” They

compared this proof to those they had seen in a college geometry course, and they

shared that “this feels very much like what I did in that class.” They also found this

proof creative and elegant.

Once Taylor Illusion was finished speaking about their experience rating the five

sample proofs, the interviewer asked Taylor to describe their experience. While rating

the proofs, Taylor Illusion pointed out that “some proofs stood out more than others

in some categories.” They shared that the easiest judgements to make was surprise

because it is “a stronger emotion.” The most difficult judgment for them to make

was rigor because they did not know if they had “a good idea of how that is different

from completion and validity.”
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The interviewer was interested in finding out which aesthetic aspects the graduate

students in our study valued most. Taylor Illusion shared that they value “surprise

and creativity most” because they “feel most foreign to him.” In this context, they

shared that ideas that required the writer to “think differently” than they did makes

a proof seem more valuable to them. When asked what they value the least, Taylor

Illusion said “completion and rigor.” They clarified this by stating that rigor is

often necessary with proof writing, but “it is not the most effective communication

method.” The interviewer also asked Taylor Illusion which aspects their professors

would value the most. Taylor responded with “completeness and rigor.” They said

the reason why their professors would value these aspects over creativity or elegance

is because “their purpose is for students to have an understanding.” They also shared

that they think their professors would value “surprise” the least.

Before concluding this meeting, the interviewer shared two instructor comments

with Taylor Illusion. The interviewer asked them to take on the roles of the students

who wrote Proof C (Appendix C.5.3) and Proof E (Appendix C.5.5) and respond to

two instructor comments. Once the electronic form was shared through email, the

third meeting ended.

Interview 4

The interviewer started Interview 4 with Taylor Illusion by asking them a few

overarching questions about the study as a whole. Then interviewer began by asking

Taylor Illusion if this experience has helped them see math differently. Taylor shared

that they have not had many opportunities to “grade proofs.” Before this experience,

they have never had to grade “a step by step by step proof.” They stated that this

experience has expanded their “horizon on what makes a good proof.” They said it

was “interesting” figuring out what” they like and do not like “in a proof.”

The interviewer also asked Taylor Illusion if any of the tasks they completed would

be useful in other experiences. They claimed that “writing and critiquing proofs is

very useful all over the place.” They go on to share that “most people do not know
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how to think logically. They can put two and two together, but when you have to

construct a formal argument that follows logical rules, most people do not know what

that even means.” They also explain that writing proofs to them is much different

than “writing essays.”

Taylor Illusion concluded the final interview by sharing what they learned by

participating in this study. They shared that as mathematicians, “there is still a

lot of squishiness in what I do, even if you do have to follow some rules.” They also

added that “you can approach things in a lot of different ways and achieve meaningful

results.” They also “learned new ways to think about geometric proofs” that are not

all “strictly geometric.”

4.2.3 U.S. Faculty: Dr. Pseudonym

Out of the three U.S. faculty participants, Participant 11, who I will refer to as Dr.

Pseudonym, was chosen as a focus participant. Dr. Pseudonym completed three

in-person interviews, and they completed Interview 4 through email.

Interview 1

Dr. Pseudonym began their first interview sharing some information on their

background in mathematics. They began their college career as an engineering student

at a “graduate and research institution.” They “took graduate classes” as “a freshman

in undergraduate.” At some point, Dr. Pseudonym decided that engineering was not

for them, and “decided to pursue a career in mathematics.” As an undergraduate,

they “took advanced courses in mathematics research.” They also “passed courses

by taking tests and passing quickly.” Along with those accomplishments, they also

“published papers early.” Later on, they decided to apply to graduate school, and at

the time, they were “interested in dynamical systems.” While in graduate school, they

changed their interest “from dynamical systems to differential geometry.” They also

explained that their particular graduate program “did not have entry-level graduate
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courses,” so they “only took seminar courses” where their “professors shared their

research.” They later moved to another university with their advisor and “had a

mixed TA and RA position.” Their advisor left that university during their final year

in the program, but this did not affect their research. After graduating with their

PhD in mathematics, Dr. Pseudonym “had a postdoc position.” Then, they got a

position at their current university and has been there since then.

After learning some background information about Dr. Pseudonym, the in-

terviewer wanted to better understand Dr. Pseudonym’s views on aesthetics. In

particular, the interviewer wanted to see what perceptions they were bringing with

them from other experiences concerning the terms elegant and rigorous. The

interviewer first asked them if they had ever heard the term elegant used to describe

mathematics. They began by sharing their perception of elegance “in a non-

mathematical context.” In this setting, they often think of “architecture.” To them,

“elegance requires not a lot of extra elements. Brevity, precision, exact words, no

more.” In a mathematical context, they describe elegance as being “different” than

in a non-mathematical context. They claimed, “In math, it is different. You read

a proof, and there are elements that generalize. You can see the broader context

where it fits. It is completely clear.” They mentioned John Milnor, who worked

in topology. Dr. Pseudonym described Milnor’s proofs as “deep yet well-stated.”

They also described proofs that lack elegance, which are those that are “complex and

include lots of calculations” and require the reader to “go line by line to understand

the proof.” They conclude this idea by stating that these proofs are “hard to generalize

and hard to understand.”

Similar to the term elegant, the interviewer also asked Dr. Pseudonym if they had

heard the term rigorous used to describe mathematics. They describe a “rigorous

proof” as one that “can be long, messy, and inefficient, but all necessary elements are

there.” This is a proof that mathematician can go through and “check to see that

all the details are there and that there are no jumps.” In addition to these qualities,

in a rigorous proof, “nothing is left to the reader to prove.” Here, they mentioned
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the mathematician Grigori Perelman who is featured in Masha Gessen’s book Perfect

Rigor.

After getting an idea of what elegance and rigor meant to Dr. Pseudonym, the

interviewer presented them with the R.E.P.S. problem. The interviewer asked them to

take a few moments to look at the question and, without trying to prove it right away,

think about strategies that could be used to prove it. First, they pointed out that

there are “three rectangles” that “each have sides of different lengths.” They simplify

this by stating that “there are basically three lengths involved,” so they “would call

them x, y, and z.” Using these variables, they would then “express the sum of the

rectangles in terms of the lengths x, y, and z” and would “use the triangles” to prove

the statement “in terms of x, y, and z.”

Before concluding this meeting, the interviewer gave Dr. Pseudonym the task of

trying to prove the R.E.P.S. problem on their own. The interviewer explained that

any strategies are allowed. The interviewer also asked them to log the strategies they

tried along with the time they spent on each strategy on a provided log sheet. Once

those materials were shared through email, the first meeting ended.

Interview 2

The interviewer started Interview 2 by asking Dr. Pseudonym if they had found any

proofs for the R.E.P.S. problem. They did come up with a correct proof, which is

shown below in Section 4.4.1. According to their log sheet, it took Dr. Pseudonym

approximately 95 minutes to prove the R.E.P.S. problem. Dr. Pseudonym’s log sheet

is shown in Table 4.7.

Before concluding this meeting, the interviewer shared five sample proofs for the

R.E.P.S. problem with Dr. Pseudonym. The interviewer asked them to suppose that

five fictional students wrote these proofs and animated them using a slideshow. Before

the third meeting, the interviewer asked Dr. Pseudonym to give feedback on each of

the five sample proofs as if they were the instructor of the five students. Once the

electronic form was shared through email, the second meeting ended.
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Table 4.7: Dr. Pseudonym completed this log sheet while trying to prove the
R.E.P.S. problem.

Type of Strategy Time Spent Comments

1
Finding algebraic relations
between various lengths

∼20 minutes

2
Involving the angles via
trig functions, relations

between angles
∼30 minutes

3
Trying various sets of

fund. quantities
∼30 minutes

4
Find what the right fund.

set was, proving the
claim algebraically

∼15 minutes
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Interview 3

The interviewer started Interview 3 by asking Dr. Pseudonym about their experience

responding to the five sample proofs for the R.E.P.S. problem. Their responses to the

five proofs are shown in Table 4.8. They shared that some of the sample proofs were

“easier to follow than others,” and “some took longer than others.” They also said that

it was enjoyable to “see how many different ways there were to approach” the problem.

They were surprised by Proof B (Appendix C.5.2) and Proof E (Appendix C.5.5).

The interviewer also asked Dr. Pseudonym what effect they would hope to have on

these fictitious students through their responses. They shared that they would “start

by saying that it is correct,” which “should make them feel happy” since the problem

was “nontrivial.”

The interviewer then transitioned to the next portion of the interview and asked

Dr. Pseudonym to fill out two electronic forms. The first form asked participants to

rate the five sample proofs based on terms such as valid, complete, rigorous, surprising,

creative, and elegant. A summary of their responses is shown in Table 4.9. Once they

had submitted the form, the interviewer asked them to speak about their experience

rating the five sample proofs.

Dr. Pseudonym found Proof A (Appendix C.5.1) to be valid, complete, and

rigorous. They shared that those three terms “have the same meaning” to them.

They found the proof to be “sort of surprising and creative” because it was not like

their proof. They did not see this proof as elegant.

Proof B (Appendix C.5.2) was Dr. Pseudonym’s favorite proof. They described

it as “short and good.” They agreed that it was complete, valid, rigorous, surprising,

and creative. They also shared that it was “sort of” elegant.

Dr. Pseudonym “did not like” Proof C (Appendix C.5.3). They agreed that it was

complete, valid, and rigorous, but they did not find it surprising or creative. When

asked if the proof was elegant, they said “definitely not.”
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Table 4.8: Dr. Pseudonym responded to five sample proofs for the R.E.P.S. problem.

Proof Response

Proof A

Good work! You clearly took a lot
of time to display your solution in
easy to follow graphical fashion.

Very minor point: it would be easier
for the reader if the lengths X, Y
were labeled so as to match the x,y

axes.

Proof B

Yes, that works. Expository suggestion:
keep the given equalities FJ = AI,

AB = AF, AL = EI up on the screen
throughout; by the time they’re used,
the reader will have forgotten where

they came from.

Proof C

It works, but the flow of the argument
is not clear. The expression for EF
follows from the Law of Cosines

(preceding argument not needed). The
line following that from a scalar

product argument. That line implies the
implies the claimed equality directly

(as seen in the proof).

Proof D

OK, but at the start, include the notation:
i = square root of negative one (to let
people know you’re using the complex

plane). Typo on the last line: to the left
of = should be AF. AD; then note

AF = AB (given).

Proof E

Looks right. It’s not easy to verify if the
relations on the last slide were copied
correctly from the previous ones, but
I’ll assume they were (expository

comment).
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Table 4.9: Dr. Pseudonym rated the five sample proofs based on several aesthetic
terms.

Strongly
Disagree

Somewhat
Disagree

Somewhat
Agree

Strongly
Agree

Proof A Elegance
Surprise
Creativity

Validity
Completeness

Rigor

Proof B Elegance

Validity
Completeness

Rigor
Surprise
Creativity

Proof C Elegant Surprise
Validity

Completeness
Rigorous

Proof D Elegant

Validity
Completeness

Rigor
Surprise
Creativity

Proof E

Validity
Completeness

Rigor
Surprise
Creativity
Elegant
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Dr. Pseudonym found Proof D (Appendix C.5.4) and Proof E (Appendix C.5.5)

to be complete, valid, rigorous, surprising, creative, and elegant.

Once Dr. Pseudonym was finished speaking about their experience rating the five

sample proofs, the interviewer shared a second form with them to complete. In this

form, the interviewer asked participants to rank the five sample proofs based on the

terms rigor, surprise, creativity, and elegance. Dr. Pseudonym finished this portion

of the interview remotely.

Before concluding this meeting, the interviewer shared two instructor comments

with Dr. Pseudonym. The interviewer asked them to take on the roles of the students

who wrote Proof C (Appendix C.5.3) and Proof E (Appendix C.5.5) and respond to

two instructor comments. Their responses to those comments are shown in Table 4.10.

Once the electronic form was shared through email, the third meeting ended.

Interview 4

Dr. Pseudonym completed Interview 4 remotely through email. The interviewer

asked Dr. Pseudonym if this experience has helped them see math differently. They

responded by saying, “No. The questions pertained to a single problem in elementary

math.” They did point out that “many different approaches were possible, but to

them, that was “not surprising.”

The interviewer also asked Dr. Pseudonym if any of the tasks they completed

would be useful in other experiences. There were “none” that they “could think of.”

Dr. Pseudonym concluded the final interview by sharing what they learned by

participating in this study. They began by returning to the term elegance. To them,

“‘elegance’ is very rarely a feature of breakthrough solutions to major problems in

mathematics research.” They also pointed out that elegance means “a streamlined

proof that connects to more general theories” and “is only seen in second or third

proofs of a result.”
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Table 4.10: Dr. Pseudonym responded to two instructor comments.

Comment Response

Are you sure that AI is
less than FG? How would
your proof change if you

weren’t sure?

If D is close to F and the angle
IAE is small, IA could be greater
than FG. Then one side of the red
right triangle would equal AI-FG,

with the two other sides unchanged.
This wouldn’t change the first

computation of EF, since the term
AI-FG is squared.

What about when
(CB)(ML) >((AB)(JK)?
Is there a way to account

for that possibility?

This assumption is not made
anywhere in the proof, is it?
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Dr. Pseudonym also questioned why elegance is “considered a desirable feature of

a proof in a math PhD thesis.” They claimed that a “messy” proof is “totally fine” as

long as “the proof is correct.” They also pointed out that if they “saw an unusually

‘elegant’ proof in a thesis,” they would “immediately suspect that the problem wasn’t

very hard (or the area is essentially completely understood).” Dr. Pseudonym also

described the R.E.P.S. problem as “a difficult puzzle” or a ”brain teaser,” and they

stated that “it is not a good illustration of what Mathematics is.” They suggested that

“the best proof is the one a random high school student (or professor) can think of–

set up the axes, turn it into an analytical statement and prove it.” They finished their

final interview by suggesting that “time spent devising a tricky, synthetic, ’elegant’

geometric proof would not be time well spent, in my opinion.”

4.2.4 U.S. Faculty: Dr. Alias

Out of the three U.S. faculty participants, Participant 12, who I will refer to as Dr.

Alias, was chosen as a focus participant. Dr. Alias completed four online interviews.

Interview 1

Dr. Alias began their first interview sharing some information on their background on

mathematics. They described themselves as “a nerd from the start.” When they were

younger, they would “think very logically about things.” They also had a “firm sense”

or “dichotomy in terms of right and wrong.” In elementary school, they participated

in “science-related summer camps at the local library” and enjoyed them. They

usually finished assignments “really quickly” and often sat in the back of the classroom

completing extra math activities. In middle school, they remembered being “bored

in math class because everything was easy.” They “skipped a grade” in math, which

“wasn’t very common.” Although there were concerns from their administrators that

they would “burn out,” they “ended up really liking it.”
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They later attended a private high school because they were “so scholastically

inclined.” When they took calculus, their teacher took them “under his wing” and

suggested that they major in math in college. They were not sure what this choice

would entail. As a math major, they imagined that their future job would be “sitting

in a cubicle computing integrals all day.” To them, that “doesn’t sound very fun.”

They attended a college with “just under 1000 students” that had “a focus on the

STEM disciplines.” Starting college, they thought they wanted to be an engineer.

However, in the “first semester” of their “freshman year,” they discovered that they

“hated it” and “dropped it after a week.” From there, they considered their interests

as well as the majors that the college offered, and “by process of elimination,” they

“became a math major.”

Dr. Alias “ended up really, really, really loving it” and shared that “college was the

first time” they realized that “math is fun.” They pointed out that they “really liked”

their “intro to proofs class.” In that course, they studied “a little bit of elementary

number theory, a little bit of combinatorics, a little bit of graph theory, and things

like that.” They “just loved it.”

When it was time to graduate, Dr. Alias thought back to a “negative experience

about possible employers.” They attended a job fair at their college thinking they

would “have opportunities for summer jobs that would be really exciting.” However,

after visiting many booths, they discovered that “none of them were interested” in

math majors. Thinking that they would not be able to get a job, Dr. Alias decided

they were “going to keep doing” what they “loved and figure out the employment thing

later.” Since they “really enjoyed” their classes, “really loved math,” and “really loved

learning,” Dr. Alias thought “going to grad school is also a good idea.” Although

they think differently now, at the time, they did not want to “just get a job and be

a cog in the machine.” They wanted “to keep learning and growing.”

Dr. Alias began studying mathematics in graduate school. They “intentionally”

chose a certain graduate program with a “large department” so they “would have

options” on what they could study. They were not really sure what they wanted to
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study, but they did end up approaching a professor and “asked him if he would be

willing to do a summer research project” with them. This individual later became

their advisor. Dr. Alias “ended up transferring part way through grad school” because

their advisor moved to another university, and Dr. Alias graduated with their PhD

from that university. They got a job at their current university, and they have been

there “ever since.”

After sharing their experiences in chronological order, Dr. Alias shared their best

experience in mathematics. In college, they realized what math is “as a subject.”

To explain, they realized that math is about “problem solving and noticing patterns

and figuring out how to explain things really carefully and communicating precisely.”

They thought back to their first abstract algebra class, which they described as “the

absolute best experience” they had “had mathematically” because they carefully

studied all of the background material in class, and when they reached the proof

for Lagrange’s Theorem, “all the pieces just fit together so perfectly that it was just

really beautiful.”

They shared that their “sense of what math is” has changed since taking this class.

In particular, they “realized that when you are taking your first course in abstract

algebra, all the pieces fit together, and it’s really beautiful because that’s what it’s

like when you are taking a course.” When they began doing research in graduate

school, “it was very much not like that,” and it “was much uglier.” They refer to that

as “real-life math.”

After learning some background information about Dr. Alias, the interviewer

wanted to better understand Dr. Alias’ views on aesthetics. In particular, the

interviewer wanted to see what perceptions they were bringing with them from other

experiences concerning the terms elegant and rigorous. The interviewer first asked

Dr. Alias if they had ever heard the term elegant used to describe mathematics. They

had “definitely heard that word used to describe math. Particularly math proofs.”

They started hearing this word used to describe proofs as “a math major in college”

from their professors. To Dr. Alias, elegance and beauty are synonyms. This made
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them recall a study “where they put mathematicians in an MRI machine” and asked

“them to think about beautiful math equations.” The researchers “looked at which

parts of the brain lit up during these types of activities.” They found that “it was the

same parts of the brain that light up when you think about a beautiful math equation

as those that light up when you listen to a beautiful piece of music.” Dr. Alias sees

elegance in a similar way. Dr. Alias shared that “I think about elegance as being

more related to the feeling that it invokes and whether it lights up that part of the

brain that’s just very satisfying and feels really good. That’s really hard to measure.”

They also shared that “most people, including me, equate that with proofs where you

have a relatively simple argument where a relatively simple argument can be given

for your result.” They describe an elegant proof also as one that is “really clean” and

“clever,” where “the pieces fit together just perfectly.” They emphasized that this

is “partly” related to “how you communicate the proof.” They claimed, “The same

proof can be expressed in an elegant way, but also in a non-elegant way if it is not

clear and concise when it is written.”

Similar to the term elegant, the interviewer also asked Dr. Alias if they had heard

the term rigorous used to describe mathematics. They had heard the term rigorous

used to describe math, mainly “from professors.” Dr. Alias stressed that the level

of rigor in a mathematical argument “depends on the context.” They shared that,

“roughly speaking,” a mathematical argument “is rigorous if it clearly communicates

the argument to the reader without leaving any doubt that the argument is true.”

If an argument is not rigorous, “there are cases that aren’t considered or it’s not

explained clearly in a way that still leaves doubts in the readers’ minds.” Dr. Alias

describes this as “super subjective” because it “depends on who the reader is” and

what level of mathematics they study, if any. Dr. Alias also mentioned that “trying

to define what those terms mean is not” a “very elegant” process. They then shared

that “that is why it is worth studying because it is such a vague notion that we see

it, we understand it, be then we cannot actually define it.”
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After getting an idea of what elegance and rigor meant to Dr. Alias, the

interviewer presented them with the R.E.P.S. problem. The interviewer asked them

to take a few moments to look at the question and, without trying to prove it right

away, think about strategies that could be used to prove it. They first shared that

the problem “feels like a tenth grade geometry question,” so they were “reminded of

some of the tools one would use there.” They guessed that “some of the triangles are

similar triangles,” so they suggested trying “to figure out what angles are the same

and what angles might be different.” They also mentioned trying “to figure out if the

Pythagorean Theorem is relevant.”

Before concluding this meeting, the interviewer gave Dr. Alias the task of trying

to prove the R.E.P.S. problem on their own. The interviewer explained that any

strategies are allowed and asked Dr. Alias to log the strategies they tried along with

the time spent on each strategy on a provided log sheet. Once those materials were

shared through email, the first meeting ended.

Interview 2

The interviewer started Interview 2 by asking Dr. Alias if they had found any proofs

for the R.E.P.S. problem. Dr. Alias did find a correct proof, which is shown below

in Section 4.4.1. According to their log sheet, it took Dr. Alias approximately 40

minutes to prove the R.E.P.S. problem. Dr. Alias’ log sheet is shown in Table 4.11.

Before concluding this meeting, the interviewer shared five sample proofs for the

R.E.P.S. problem with Dr. Alias. The interviewer asked them to suppose that five

fictional students wrote these proofs and animated them using a slideshow. Before

the third meeting, the interviewer asked Dr. Alias to give feedback on each of the five

sample proofs as if they were the instructor of the five students. Once the electronic

form was shared through email, the second meeting ended.
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Table 4.11: Dr. Alias completed this log sheet while trying to prove the R.E.P.S.
problem.

Type of Strategy Time Spent Comments

1 Label all the angles 8 minutes
Labelled edges alpha, beta, gamma; then
I was able to label everything else in

terms of those

2 Label all the edges 17 minutes

Labelled edge lengths a, b, c, d, g; then
I was able to label everything else in
terms of those, and also rewrite the

equation we’re trying to solve in terms
of those. I also stared at the picture for
a while to imagine what would change
if AI or AL increased or decreased

in length.

3
Draw a new line and

label more stuff
10 minutes

I need a relationship between a, b, c, d,
g, so I drew a newline on the diagram
and labelled the new angles and edge
lengths. After similar triangles, I had a
new identity that solved the problem.

4 Review my answer 5 minutes
Looked over my work to see if I had

made any mistakes.
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Interview 3

The interviewer started Interview 3 by asking Dr. Alias about their experience

responding to the five sample proofs for the R.E.P.S. problem. Their responses to

the five proofs are shown in Table 4.12. As an instructor, Dr. Alias claimed, “When

I think about responding to a student, I think about what class the student is taking

and what my goals are for their learning and what I want them to get out of the

assignment, or what I want them to show me about what they know. So it’s hard

to give comments without having that fixed in my mind.” Dr. Alias also mentioned

Proof C (Appendix C.5.3) where the students used the law of cosines. To Dr. Alias,

“the law of cosines is one of those things that people have seen and heard of and it’s

kind of familiar, but it’s definitely easy to forget.” If they were teaching the course, Dr.

Alias would suggest the student “say something here to explain where this formula

comes from,” unless they had “talked about the law of cosines recently.”

The interviewer also asked Dr. Alias if they found anything enjoyable or surprising

when giving comments on the proofs. Dr. Alias was “surprised at how many different

ways there were of doing the problem,” which was “fun” for them to read. They also

pointed out that “none of them matched” how they had proved it. They also found

Proof D (Appendix C.5.4) to be surprising and enjoyable. The interviewer concluded

this portion of the interview by asking Dr. Alias what effect they would hope to have

on the fictional students through their feedback. Dr. Alias hoped to “help them feel

proud about what they did” since it took “a good amount of creativity” to prove this

problem. They also left some “critical comments about things that “they might want

to explain better.”

The interviewer then transitioned to the next portion of the interview and asked

Dr. Alias to fill out two electronic forms. The first form asked participants to rate

the five sample proofs based on terms such as valid, complete, rigorous, surprising,

creative, and elegant. A summary of their results is shown in Table 4.13. As they

filled out the form, the interviewer asked them to speak about their experience rating
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Table 4.12: Dr. Alias responded to five sample proofs for the R.E.P.S. problem.

Proof Response

Proof A

(Disclaimer: this would depend on the goals
of the course, and–assuming this is an

assignment in the course–the learning goals
for the assignment.) Nice job–I like this clever
idea! One minor comment is that you might not

want to use the variables A, B, C to denote
those lengths, since those variables are already

taken in the problem statement!

Proof B

(Disclaimer: again, if student B were a
student in my class, then it would depend

on what the student knows and what’s going
on in the class and what the goals are for the

assignment/course.) Great job! You might want
to write a sentence at each step to explain your
thinking, and also to make it clear when you
use each of the assumptions in the problem

statement.

Proof C

(Same disclaimer as before–this depends on
context.) Great job! I like your use of the Law
of Cosines, but you might want to mention it
by name so the reader can follow along with

that step.

Proof D

(Disclaimer–this depends on the goals of the
course and this assignment.) Great job–I like
how you used the theory of complex numbers

to solve this problem!

Proof E

(Disclaimer–this depends on the goals of the
course and this assignment.) Great job! You
might want to explain more about why the
triangles PEI and AFG are similar (how do

you know the angles are the same?). I like how
you summarized the ”assumptions” and the

”new identities” on the last slide!
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Table 4.13: Dr. Alias rated the five sample proofs based on several aesthetic terms.

Somewhat
Agree

Strongly
Agree

Proof A

Rigor
Surprise
Creativity
Elegance

Validity
Completeness

Proof B

Validity
Completeness

Rigor
Surprise
Creativity
Elegance

Proof C

Completeness
Rigor

Surprise
Elegance

Validity
Creativity

Proof D Elegance

Validity
Completeness

Rigor
Surprise
Creativity

Proof E
Rigor

Surprise

Validity
Creativity
Elegance
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the five sample proofs.

Dr. Alias found Proof A (Appendix C.5.1) to be valid and complete. They shared

that their “only complaint about this was how the student used the variables.” In

particular, Dr. Alias “did get annoyed about the capital X versus the lowercase x”

and “having to keep track of which was the variable in the equation.” To them, this

is “not wrong,” but “it’s just annoying for the reader when they are trying to check

each step.” They also found a possible mistake and claimed that the student defined

the variables a, b, c “to be linked in the diagram, but they already had been defined

as places in the diagram.” This would be a place where Dr. Alias would “knock

some points for the rigor” of the proof. Dr. Alias thought Proof A (Appendix C.5.1)

“less elegant because it’s easy to get bogged down in the equations.” It was also “less

surprising than some of the others too because it’s just the equations.” They also

shared that it was “not the most creative or surprising one, but also not the least.”

Dr. Alias briefly discussed Proof B (Appendix C.5.2). They found it to

be valid, complete, rigorous, surprising, creative, and elegant. Dr. Alias found

Proof C (Appendix C.5.3) to be valid, but they questioned whether or not it was

complete. To Dr. Alias, completeness and rigor have the same meaning. In Proof

C (Appendix C.5.3), they shared that “it would have been clear if the student had

color coded the terms.” In particular, they point out that the writer should have

“colored the terms for the blue triangle blue and then colored the green terms green

then done the substitution.” Although it would have been easier to follow with those

corrections, they stated that it was not “incomplete or not rigorous because of that.”

They agreed that Proof C (Appendix C.5.3) was creative, but they were not so sure

on elegance “because of all of the moving parts that are required.”

To Dr. Alias, Proof D (Appendix C.5.4) “has more equations” than Proof C

(Appendix C.5.3), but “it is easier” for them “to get the approach of what the student

is going for,” and “the game plan here is really clear.” They described the idea of using

Euler’s formula and complex numbers as “really clean.” Dr. Alias agreed that Proof
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D (Appendix C.5.4) was valid, complete, rigorous, surprising, and creative. They also

agreed that Proof D (Appendix C.5.4) is elegant, but “not the most elegant.”

When looking at Proof E (Appendix C.5.5), Dr. Alias found the proof to be

incomplete because “there were two triangles that claimed to be similar,” but they

“didn’t see it” and felt that “it needed more justification there.” They agreed that

Proof E (Appendix C.5.5) was rigorous, creative, and surprising. They also shared

that the writer mainly used “high-school level geometry,” which was “pretty cool.”

Once Dr. Alias was finished speaking about their experience rating the five sample

proofs, the interviewer shared a second form with them to complete. In this form,

the interviewer asked participants to rank the five sample proofs based on the terms

rigor, surprise, creativity, and elegance. Due to some issues with the form during the

meeting, Dr. Alias completed the form remotely.

The interviewer was also interested in finding out which aesthetic aspects the

faculty in our study value most. Dr. Alias shared that out of all of the aesthetic

qualities mentioned, “validity is the most important.” They stated, “You don’t have

a proof if it’s not true.” They also shared that “completion and rigor are also essential,

but they are slightly less valuable because they depend so much on the context.” The

interviewer also asked Dr. Alias which aspect they valued the least. Dr. Alias claimed

that “the least important is surprise.” They also shared that they “had never really

thought about surprise in the context of evaluating a proof.” The interviewer also

asked Dr. Alias which aspects they felt their former professors would value most.

They responded with “validity and then completion and rigor.” They then claimed,

“Words like elegance, surprise and creativity? Maybe not.” Dr. Alias also shared

that “definitely elegance is discussed the most.”

Before concluding this meeting, the interviewer shared two instructor comments

with Dr. Alias and asked them to take on the roles of the students who wrote Proof

C (Appendix C.5.3) and Proof E (Appendix C.5.5) by responding to two instructor

comments. Once the electronic form was shared through email, the third meeting

ended.

83



Interview 4

The interviewer started Interview 4 with Dr. Alias by asking them a few questions

their experience responding to instructor comments. Their responses to those

comments are shown in Table 4.14. When they read the first instructor comment, Dr.

Alias wondered if their responses in the last meeting had changed. More specifically,

they wondered if all five proofs were actually correct. They claimed that “the proof

would still work just with a minor modification.” They also shared that “whenever

you draw a picture, there are implicit assumptions, like the length of edges, that

you’re making.” In particular, “if you take two edges of a triangle and you add up

their lengths, then that sum has to be larger than the third edge. There are implicitly

all kinds of inequalities everywhere in the picture. I guess it’s hard to tease out which

ones you should assume you know.” They concluded by claiming that this instructor

comment “took all the ground” they were “standing on and made it uneven.”

The second instructor comment was difficult for Dr. Alias to respond to. They

“did not understand what they were getting at.” They “looked at the proof and could

not figure out where that was important.” They also “could not figure out what they

were saying or what the concern was, so that was difficult.”

To conclude the final meeting with Dr. Alias, the interviewer asked them a few

overarching questions about the study as a whole. The interviewer began by asking

Dr. Alias if the experience helped them see math differently. They shared that they

where not sure if they say math as a subject differently, but they “definitely have a

much deeper understanding of” the R.E.P.S. problem.

The interviewer also asked Dr. Alias if any of these tasks might be useful in

other experiences. Dr. Alias shared that it is good for them “as an instructor to be

reminded of the fact that there are multiple ways to solve a problem.” They shared

that “when you’re teaching a class, it’s really easy to just think about things the way

you think about them and encourage your students to think about it that way.” Dr.

Alias described this experience as a “rich” one and concluded by stating, “ it’s
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Table 4.14: Dr. Alias responded to two instructor comments.

Comment Response

Are you sure that AI is
less than FG? How would
your proof change if you

weren’t sure?

Oh, I hadn’t thought about this–I think
that the red right triangle should still
be drawn–although the right angle
would be in the lower right corner
instead of the lower left corner. The
length of the bottom edge would then
be IA-FG, and the rest of the proof
would be the same. But I suppose I
would be out of luck if it happened to

be the case that AI and FG were
exactly the same length.

What about when
(CB)(ML) >((AB)(JK)?
Is there a way to account

for that possibility?

I’m not sure what you mean...as far as
I can tell, I haven’t made an assumption

about the relationship between
(BC)(ML) and (AB)(JK). If that
inequality is allowed in the given

constraints of the drawing, then my
argument should still apply to that case.
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good to just be reminded of the fact that we all know that there are multiple ways

to approach things and that you get a lot out of it when you sort of open yourself up

to that possibility.”

4.3 Results: Survey

During Interview 3 (C.6), the participants completed a Likert-type survey (C.6.1)

and were asked to discuss their reasoning behind their choices. For each proof, the

participant selected whether they strongly disagreed, somewhat disagreed, neither

agreed nor disagreed, somewhat agreed, or strongly agreed with statements about

each proof. The statements inquired about the proofs’ validity, completeness, rigor,

surprise, creativity, and elegance.

4.3.1 Ghana Graduate Students: Survey Results

Ghanaian Graduate Students’ Elegance: Survey Results

Two graduate students from Ghana indicated on the Rating Questionnaire (Ap-

pendix C.6.1) some agreement with the elegance of Proof A (Appendix C.5.1), which

uses slopes and equations of lines (Appendix B.1.3) and Proof B (Appendix C.5.2),

which uses vector dot products (Appendix B.4.1). Proof C (Appendix C.5.3), which

uses Pythagorean Theorem and Law of Cosines, was strongly perceived as elegant to

one Ghanaian graduate student, and Proof D (Appendix C.5.4, which uses Euler’s

Formula, was somewhat perceived as elegant to one Ghanaian participant. Both

selected neither agree nor disagree for Proof E (Appendix C.5.5), which uses triangle

similarity. This is shown in Table 4.15.

Ghanaian Graduate Students’ Other Descriptors Survey Results

To show how the Ghanaian graduate student participants rated the elegance of proofs

in relationship to how they rated other constructs of proofs, this section shows tables
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Table 4.15: Two Ghanaian graduate students indicated the most agreement with
the claims that Proof A (C.5.1) and Proof B (C.5.2) are elegant, and for Proof E
(C.5.5), both students neither agreed nor disagreed, but remained neutral.

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof A Elegant - - 1 1
Proof B Elegant - - 1 1
Proof C Elegant - - - 1
Proof D Elegant - 1 - -
Proof E Elegant - - - -
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for the Ghanaian graduate student perceptions of the five proofs. This will provide

a fingerprint for each proof, as perceived by Ghanaian students. Table 4.16 shows

that the two participants from Ghana both agreed, to some degree, with most of

the descriptors for Proof A (Appendix C.5.1), which uses slopes and equations of

lines, except for completeness, for which one somewhat disagreed and the other

strongly agreed. In Figure 4.17, we see how the Ghanaian students perceived Proof B

(Appendix C.5.2), which uses vector dot products. Both Ghanaian graduate students

perceived some elegance, creativity, and rigor, and there were mixed perceptions

about the other constructs.

Figure 4.18 shows how the Ghanaian graduate students perceived Proof C

(Appendix C.5.3), which uses Pythagorean Theorem and Law of Cosines. Both

Ghanaian graduate students perceived some creativity and rigor and had mixed

perceptions about surprise and completeness. Figure 4.19 shows how they perceived

Proof D (Appendix C.5.4), which uses Euler’s Formula. They were very divided in

their perceptions of completeness, as one strongly agreed and one strongly disagreed,

while both strongly agreed with its validity. Figure 4.20 shows how they perceived

Proof E (Appendix C.5.5), which uses triangle similarity. They remained neutral on

its elegance and rigor, choosing to neither agree nor disagree, and showed a wide

variation of opinion on its surprise.

4.3.2 U.S. Graduate Students: Survey Results

U.S. Graduate Students’ Perceptions of Elegance: Survey Results

Figure 4.1 shows that Proof B (Appendix C.5.2), which leverages two different

definitions of vector dot products, was perceived as elegant with the strongest

agreement among U.S. mathematics graduate students. All five of these participants

either somewhat agreed or strongly agreed that Proof B was elegant. Proof D

(Appendix C.5.4), which uses Euler’s Formula, was the proof with the second

strongest perception of elegance by U.S. graduate students; however, one of these
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Table 4.16: The two participants from Ghana showed agreement with most
descriptors for Proof A (Appendix C.5.1), which uses slopes and equations of lines,
except for completeness, for which one somewhat disagreed and the other strongly
agreed

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof A Elegance - - 1 1
Proof A Creativity - - - 2
Proof A Surprise - - 2 -
Proof A Rigor - - 1 1
Proof A Completeness - 1 - 1
Proof A Validity - - 2 -

Table 4.17: For Proof B (Appendix C.5.2), which uses vector dot products, both
Ghanaian graduate students perceived some elegance, creativity, and rigor, and there
were mixed perceptions about the other constructs.

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof B Elegance - - 1 1
Proof B Creativity - - 1 1
Proof B Surprise - 1 - 1
Proof B Rigor - - 2 -
Proof B Completeness - 1 - 1
Proof B Validity - 1 - 1
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Table 4.18: For Proof C (Appendix C.5.3), which uses Pythagorean Theorem and
Law of Cosines, both Ghanaian graduate students perceived some creativity and rigor
and had mixed perceptions about surprise and completeness.

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof C Elegance - - - 1
Proof C Creativity - - 1 1
Proof C Surprise - 1 1 -
Proof C Rigor - - - 2
Proof C Completeness - 1 - 1
Proof C Validity - - - 1

Table 4.19: For Proof D (Appendix C.5.4), which uses Euler’s Formula, the two
Ghanaian graduate students were very divided in their perceptions of completeness,
as one strongly agreed and one strongly disagreed, while both strongly agreed with
its validity.

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof D Elegance - - 1 -
Proof D Creativity - - - 1
Proof D Surprise - 1 - 1
Proof D Rigor - - 1 1
Proof D Completeness 1 - - 1
Proof D Validity - - - 2

Table 4.20: For Proof E (Appendix C.5.5), which uses triangle similarity, the two
Ghanaian graduate students remained neutral on its elegance and rigor, choosing to
neither agree nor disagree, and showed a wide variation of opinion on its surprise.

Strongly
Disagreed

Somewhat
Disagreed

Somewhat
Agreed

Strongly
Agreed

Proof E Elegance - - - -
Proof E Creativity - - 1 1
Proof E Surprise 1 - - 1
Proof E Rigor - - - -
Proof E Completeness 1 - - -
Proof E Validity - 1 1 -
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4 2 0

Strongly
Disagree

4 2 0

Proof E Elegant

Proof D Elegant

Proof C Elegant

Proof B Elegant

Proof A Elegant

Somewhat
Disagree

0 2 4

Strongly
Agree

0 2 4

Somewhat
Agree

Figure 4.1: Among the five U.S. mathematics graduate students, some agreed and
some disagreed with the statements that the sample proofs were elegant.
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participants somewhat disagreed with the elegance of the proof. Proof E (Appendix

C.5.5), which used similar triangles, was close behind Proof D, with only one

fewer participant who somewhat agreed. Proofs C (Appendix C.5.3), which uses

Pythagorean Theorem and Law of Cosines, and A (Appendix C.5.1), which uses

slopes and equations of lines, both earned at least as many votes for disagreement as

votes for agreement. Proof C even received one vote for strongly disagree.

U.S. Graduate Students’ Other Descriptors Survey Results

To show how the U.S. graduate student participants rated the elegance of proofs in

relationship to how they rated other constructs of proofs, this section shows diverging

stacked bar charts that show the U.S. graduate student perceptions of each of the

five proofs. This will provide a fingerprint for each proof, as perceived by U.S.

students. Figure 4.2 shows that the five U.S. mathematics graduate students agreed

and disagreed with the statements that Proof A (Appendix C.5.1), which uses slopes

and equations of lines, were elegant and surprising, and their perceptions about its

rigor, completeness, and validity were strong. A few graduate students reported as

neither agreeing nor disagreeing with the elegance, creativity, and/or surprise of Proof

A.

Figure 4.3 shows that the five U.S. mathematics graduate students showed some

disagreement about the creativity, rigor, and completeness displayed in Proof B

(Appendix C.5.2), which uses vector dot products, while generally agreeing that it

was elegant, surprising, and valid. No U.S. student participants strongly disagreed

with any of the constructs for Proof B, and all constructs had at least one participant

who strongly agreed.

Figure 4.4 shows that the five U.S. mathematics graduate students showed the

most disagreement with the elegance of Proof C (Appendix C.5.3), which uses

Pythagorean Theorem and Law of Cosines. One U.S. student strongly disagreed

with its elegance, and two somewhat disagreed with its elegance. Four deemed it

somewhat creative, and one remained neutral. Five of the six constructs, elegance,
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Strongly
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Somewhat
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Figure 4.2: The five U.S. mathematics graduate students agreed and disagreed with
the statements that Proof A (Appendix C.5.1), which uses slopes and equations of
lines, were elegant and surprising, and their perceptions about its rigor, completeness,
and validity were strong.
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Proof B Surprise
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0 2 4

Strongly
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0 2 4

Somewhat
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Figure 4.3: The five U.S. mathematics graduate students showed some disagreement
about the creativity, rigor, and completeness displayed in Proof B (Appendix C.5.2),
which uses vector dot products, while generally agreeing that it was elegant,
surprising, and valid.
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Figure 4.4: The five U.S. mathematics graduate students showed the most
disagreement with the elegance of Proof C (Appendix C.5.3), which uses Pythagorean
Theorem and Law of Cosines, while showing the most agreement with its validity.
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surprise, rigor, completeness, and validity, received both agreement and disagreement

for Proof C. The U.S. students showed the most agreement with of Proof C.

Figure 4.5 shows that the five U.S. mathematics graduate students showed much

agreement with all of the descriptors of Proof D (Appendix C.5.4), which uses Euler’s

Formula. At least four of the five U.S. students agreed to some degree with Proof

D’s elegance, creativity, surprise, rigor, completeness, and validity. However, one

participant somewhat disagreed with its elegance.

Figure 4.6 shows that the five U.S. mathematics graduate students agreed most

with the completeness and validity of Proof E (Appendix C.5.5), which uses triangle

similarity. In particular, all five strongly agreed with the statement that Proof E was

valid, and four out of five strongly agreed with its completeness, although the proof

contained a small incompletion. For each of the descriptors of Proof E as elegant,

creative, surprising, and rigorous, one U.S. student expressed somewhat disagreement.

4.3.3 U.S. Faculty: Survey Results

U.S. Research Faculty’s Elegance Survey Results

Figure 4.7 shows that the U.S. mathematics research faculty perceived the most

elegance in Proof B (Appendix C.5.2), which used vector dot products, and Proof

E (Appendix C.5.5), which used triangle similarity. For each of those, two faculty

strongly agreed with their elegance, and one somewhat agreed. All three faculty

participants somewhat agreed that Proof D (Appendix C.5.4), which uses Euler’s

Formula, was elegant. Proof A (Appendix C.5.1), which uses slopes and equations

of lines, and Proof C (Appendix C.5.3), which uses Pythagorean Theorem and Law

of Cosines, were the proofs that were perceived to be the least elegant by faculty.

Each of these earned one strongly disagree, one somewhat disagree, and one somewhat

agree.
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Figure 4.5: The five U.S. mathematics graduate students showed much agreement
with all of the descriptors of Proof D (Appendix C.5.4), which uses Euler’s Formula,
but one participant somewhat disagreed with its elegance.
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Figure 4.6: The five U.S. mathematics graduate students agreed most with the
completeness and validity of Proof E (Appendix C.5.5), which uses triangle similarity,
but for each of the descriptors elegant, creative, surprising, and rigorous, one U.S.
student expressed somewhat disagreement.
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Figure 4.7: Among the three U.S. mathematics research faculty, some agreed and
some disagreed with the statements that the sample proofs were elegant.
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U.S. Research Faculty’s Other Descriptors Survey Results

To show how the U.S. faculty participants rated the elegance of proofs in relationship

to how they rated other constructs of proofs, this section shows diverging stacked bar

charts that show the faculty perceptions of each of the five proofs. This will provide a

fingerprint for each proof, as perceived by faculty. Figure 4.8 shows that the three U.S.

mathematics research faculty rated the validity, completeness, and rigor higher than

elegance, creativity, and surprise for Proof A (Appendix C.5.1), which used slopes

and equations of lines. Rigor, completeness, and validity had equal mean ratings.

Creativity and surprise had equal mean ratings, but included some disagreement, as

one faculty strongly disagreed while the other two somewhat agreed. Elegance was

also disputed, with one faculty strongly disagreeing, one somewhat disagreeing, and

one somewhat agreeing.

Figure 4.9 shows that the three U.S. mathematics research faculty agreed with

the validity, completeness, rigor, elegance, creativity, and surprise for Proof B

(Appendix C.5.2), which used vector dot products. Only two constructs earned

slightly less than a consensus of strong agreement – elegance and validity. One faculty

participant only somewhat agreed that Proof B was elegant and that Proof B was

valid.

Figure 4.10 shows that the three U.S. mathematics research faculty showed some

disagreement with the elegance and surprise of Proof C, while agreeing with the

creativity, rigor, completeness, and validity of Proof C (Appendix C.5.3), which used

Pythagorean Theorem and Law of Cosines. Elegance was the construct that was

most often disagreed with for Proof C, with one participant strongly disagreeing, one

participant somewhat disagreeing, and one somewhat agreeing.

Figure 4.11 shows that the three U.S. mathematics research faculty showed

agreement with the elegance, creativity, surprise, rigor, completeness, and validity of

Proof D (Appendix C.5.4), which uses Euler’s Formula, while showing the strongest

agreement with its creativity, surprise, and rigor. However, elegance was the construct
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Figure 4.8: Among the three U.S. mathematics research faculty, they rated the
validity, completeness, and rigor higher than elegance, creativity, and surprise for
Proof A (Appendix C.5.1), which used slopes and equations of lines.
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Figure 4.9: The three U.S. mathematics research faculty agreed with the validity,
completeness, rigor, elegance, creativity, and surprise for Proof B (Appendix C.5.2),
which used vector dot products.
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Figure 4.10: The three U.S. mathematics research faculty showed some
disagreement with the elegance and surprise of Proof C, while agreeing with the
creativity, rigor, completeness, and validity of Proof C (Appendix C.5.3), which used
Pythagorean Theorem and Law of Cosines. Note: Proof C was not a complete proof.
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Figure 4.11: The three U.S. mathematics research faculty showed agreement
with the elegance, creativity, surprise, rigor, completeness, and validity of Proof D
(Appendix C.5.4), which uses Euler’s Formula, while showing the strongest agreement
with its creativity, surprise, and rigor.
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with which all three faculty only somewhat agreed and did not strongly agree. With

all other constructs, where were at least two who strongly agreed.

Figure 4.12 shows that the three U.S. mathematics research faculty showed agree-

ment with the elegance, creativity, rigor, and validity of Proof E (Appendix C.5.5),

which uses triangle similarity, while one participant remained neutral on both surprise

and completeness. All the constructs for Proof E were perceived in similar degrees

by the faculty participants.

4.4 Results: Take-Home Tasks

4.4.1 Proving the R.E.P.S. Problem

Ghana Graduate Students: Proving

The mean number of minutes spent by the three Ghana graduate students working

on the R.E.P.S. Problem was 53. No proofs were obtained.

U.S. Graduate Students: Proving

The mean number of minutes spent by the five United States graduate students

working on the R.E.P.S. Problem was 78. No proofs were obtained.

U.S. Faculty: Proving

The mean number of minutes spent by the three U.S. faculty working on the R.E.P.S.

Problem was 50. Two distinct proofs were obtained. Neither proof was identical to

any presented in the instrument I used. These two faculty proofs are shown below as

Dr. Pseudonym’s and Dr. Alias’ proofs.

- Dr. Pseudonym’s Proof

First, Dr. Pseudonym relabelled some angles and lengths. They created the new

identities a := AG, b = AD, c = FG, x = AF , y = AI, z = AL, α = m∠IAB, and
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Figure 4.12: The three U.S. mathematics research faculty showed agreement with
the elegance, creativity, rigor, and validity of Proof E (Appendix C.5.5), which
uses triangle similarity, while one participant remained neutral on both surprise and
completeness.
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β = m∠EAD. Then, Dr. Pseudonym determined that FD = x − b, m∠GAF = α,

and m∠IEA = α + β, as shown in Figure 4.13.

cos β =
b

w
, and equivalently, w =

b

cos β
.

sin (α + β) =
y

w
and equivalently, y = w sin (α + β).

cos (α + β) =
z

w
and equivalently, z = w cos (α + β).

Then, Dr. Pseudonym substituted the expression for w into the equations for y and

z, yielding the following:

y = b

(
sin (α + β)

cos β

)
and z = b

(
cos (α + β)

cos β

)

Dr. Pseudonym used the sum-of-angles trigonometric identities to rewrite these

equations as the following:

y = b (sinα + tan β cosα) and z = b (cosα− tan β sinα)

Dr. Pseudonym then considered az + cy, which is the sum of the areas of the two

rectangles if interest in this theorem, and rewrites it using these new expressions for

y and z.

az + cy = a (b (cosα− tan β sinα)) + c (b (sinα + tan β cosα))

Then, Dr. Pseudonym wanted this to be equal to bx, which happens to be equivalent

to b
√
a2 + c2 by Pythagorean Theorem, in order to make this theorem true. Because

both expressions have a factor of b, it would then suffice to show that
√
a2 + c2 is

equivalent to a (cosα− tan β sinα) + c (sinα + tan β cosα). They then determined

the following identities, based on trigonometric ratios and the Pythagorean Theorem,

which will allow them to show that these quantities are equal,
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Figure 4.13: Dr. Pseudonym relabelled the diagram in terms of lengths and angle
measures.
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cosα = a
x
= a√

a2+c2
, and sinα = c

x
= c√

a2+c2
. Then, Dr. Pseudonym determined

the following:

a (cosα− tan β sinα) + c (sinα + tan β cosα)

= a

(
a√

a2 + c2
− c√

a2 + c2
tan β

)
+ c

(
c√

a2 + c2
+

a√
a2 + c2

tan β

)
Upon simplification, the terms with tan β in them subtracted away, leaving a2+c2√

a2+c2
,

which is
√
a2 + c2. This proved that az + cy = bx.

- Dr. Alias’ Proof Dr. Alias first labelled all angle measures, α = m∠GAF ,

β = m∠GFA, and γ = m∠EAI and side lengths, a = FG, b = AI, c = AG,

d = BC, and g = EI. Figure 4.14 shows these new labels and part of the diagram,

along with the hypotenuse of the largest triangle labelled with length
√
a2 + c2 from

the use of Pythagorean Theorem. Dr. Alias also restated the original problem in

terms of these new variables. It would now suffice to show that d
√
a2 + c2 = cg+ ab.

Dr. Alias utilized γ and the fact that measures of interior angles of a triangle

sum to 180◦ to determine that m∠IAB = α and m∠CEI = β. Next, Dr. Alias

constructed a new line containing Point I, as it had been labelled in the original

diagram, and that was also perpendicular to both CD and AB. This new line,

parallel to the side of the rectangle of length d also has length d, but its length is

partitioned by Point I, so let us label the two resulting sublengths d1 and d2, as in

Figure 4.15. By the Angle-Angle Theorem, Dr. Alias then knew that all three yellow

triangles in Figure 4.15 were similar.

These triangle similarities led Dr. Alias to the following conclusions using

proportions:

d1
g

=
c√

a2 + c2
, or equivalently, d1 =

cg√
a2 + c2

, and

d2
b

=
a√

a2 + c2
, or equivalently, d2 =

ab√
a2 + c2

.
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Figure 4.14: Dr. Alias labelled angle measures, α, β, and γ and side lengths, a, b,
c, d, and g.
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Figure 4.15: Dr. Alias determined that the three yellow triangles are similar and
drew a new line of length d.
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These two new expressions for d1 and d2 allowed Dr. Alias to rewrite d as the

following:

d = d1 + d2 =
cg√

a2 + c2
+

ab√
a2 + c2

=
cg + ab√
a2 + c2

.

This equation is equivalent to d
√
a2 + c2 = cg+ab, which proves the R.E.P.S. problem.

Figure 4.16 shows Dr. Alias’ log. Eight minutes were spent labelling angles,

and 17 were spent labelling lengths. Ten minutes were spent drawing the new line

and using similar triangles to find the expression for d, and five minutes were spent

checking over their work.

4.4.2 Responding to Proofs

In Take-Home Task 2, found in Appendix C.5, participants were asked to respond in

writing to the fictional students who had authored the five sample proofs. This

subsection describes the results of this task, organized by the three groups of

participants.

Ghana Graduate Students: Responding to Proofs

Given time constraints, one of the three Ghanaian participants did not have time

to continue in the study beyond interview two. Thus, two of the three Ghanaian

participants completed this task. These two provided a total of eight written

responses. Six of these responses were solely positive comments, such as, “You have

done very well. Is good to have created the additional right triangle Which started

the proof. Using the cosine rule too is encouraging.” One comment was negative,

“Proof not clearly demonstrated,” and one comment was neutral, “What informed

you to use complex numbers?” The distribution of positive, negative, and neutral

responses is shown in Figure 4.17.

On two occasions, a Ghanaian participant responded by asking the fictional

student a question, such as, “I could see that you’re trying to find the length of
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Figure 4.16: Dr. Alias spent 8, 17, 10, and 5 minutes labelling angles, labelling
lengths, using triangle similarity, and checking over work, respectively.
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Figure 4.17: Ghanaian graduate students’ written responses to the sample proofs
were mostly positive comments.
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the sides. It’s a good approach. Finally how does it correspond to the sides of the

quadrilaterals to be proved?” Only one other participant, a faculty member who had

asked, “how do you know the angles are the same?” included any questions in these

written responses.

Clarity was mentioned by both Ghanaian students to describe Proof B, found

in Appendix C.5.2, but the two comments were contradictory assessments. One

said, “Proof not clearly demonstrated,” while the other said, “Very impressive. Your

approach reveals the relationship clearly.”

U.S. Graduate Students: Responding to Proofs

All five U.S. graduate students participated in all stages of the study, and they wrote

a total of 25 responses to the fictional student authors of the sample proofs. 18

of those 25 responses were solely positive. For example, about Proof E found in

Appendix C.5.5, a student said, “This approach is very neat and creative. It requires

a lot of trig knowledge and you had to keep up with a few moving pieces. I’m also

impressed you knew when to make connections and knew to consider triangles being

similar.” The other seven responses could be described as having both positive and

negative elements in them, such as compliments and criticisms. An example of one of

these responses is, “This is a very clever application of Euler’s formula. In the latter

half, it is unclear what the reason is for using Im(i) = 1, and the work following that

point is a bit jarring.” The distribution of these types of mixed responses (28%) and

the positive responses (72%) is shown as the pie chart in Figure 4.18.

The 25 written responses provided by U.S. mathematics graduate students

contained many noticeable repeated themes. If more than one written response

mentioned a specific construct, it was noted and frequencies were counted. The

descriptive themes that appeared more than once were simplicity, clarity, validity,

authenticity/naturalness, elegance, creativity, and intuitiveness. Of these, the

simplicity of a proof was the most commonly mentioned aspect, and it appeared in 10

responses. Of those 10, three described the simplicity of Proof B (Appendix C.5.2)
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Figure 4.18: U.S. graduate students’ written responses to the sample proofs were
mostly positive comments and no comments that were solely negative.
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in a positive light, while three used the lack of simplicity to critique Proof D

(Appendix C.5.4).

Clarity was mentioned in seven of these 25 responses, twice in a positive way for

Proof E (Appendix C.5.5), once positively for each of the other proofs, and once in a

critical way to describe Proof A (Appendix C.5.1) as “opaque.” Cleverness was also

mentioned in six, twice for Proof D (Appendix C.5.4) and once for each of the other

proofs.

Elegance appeared in three responses, all provided by the same participant as they

described Proofs B (Appendix C.5.2), D (Appendix C.5.4), and E (Appendix C.5.5).

These three written comments are as follows:

• About Proof B (Appendix C.5.2): “This is very clever, and honestly pretty

elegant in my opinion. Making such an extreme rotation at first probably

wouldn’t have occurred to me, but that opens up several really simple but

powerful relationships. I think the trigonometric relationships is really smart

and useful. I like this proof a lot.”

• About Proof D (Appendix C.5.4): “This feels like the highest-level proof we’ve

seen. I really like the use of complex exponentials; that feels so completely out of

left-field that I don’t think I could have ever thought to do that in a productive

way. I don’t know if I would say that this proof is the MOST elegant, but I

do find it somewhat elegant at least. It’s incredibly clever and shows a strong

understanding of the problem.”

• About Proof E (Appendix C.5.5): “This one also feels really classically

geometric, and honestly probably the most straightforward. I like its simplicity,

which I think lends elegance to it. It doesn’t seem overly contrived, nor super

heady either. I think this is a good proof, which demonstrates the defined

relationship in a very understandable way.”

In these quotes, one can see elegance descriptions intersecting with descriptions of

proofs being clever, simple, and natural (not contrived). This particular participant,
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who mentions elegance three times, also seems to describe proofs in terms of their own

expectation. In the three quotes listed above, two of them describe unexpectedness.

For example, they describe that a certain strategy would not have occurred to them

and another that “feels so completely out of left-field.” This participant also said that

Proof C (Appendix C.5.3), which is one that they do not describe as elegant, “feels

the most like a proof I could maybe come up with on my own.” Figure 4.19 shows

the frequencies with which the eight repeated descriptive themes appeared in the 25

written responses of U.S. mathematics graduate students to the five sample proofs.

U.S. Faculty: Responding to Proofs

Three U.S. mathematics research faculty provided a total of 15 written responses to

the five fictional students’ proofs to the R.E.P.S. problem. Seven of the responses

were combinations of compliments and criticism, such as, “Great job! I like your

use of the Law of Cosines, but you might want to mention it by name so the reader

can follow along with that step.” Only two of the faculty’s written responses were

solely complimentary, such as “Great job–I like how you used the theory of complex

numbers to solve this problem!” Five of the faculty responses were only critical, such

as, “The step that could have used more explanation is that (FG)(AI)+(AG)(IE) =

(AF )(AE) cos θ. I understand this to be two different ways of doing dot products of

vectors. However, I think that it is worth explaining this a little more slowly because

you haven’t explicitly indicated to the reader that you’re using dot products and

vectors. The rest of the proof is more classical geometry and algebra.” While these

comments were constructively critical and would be helpful for students to hear, if

they did not contain any affirmative evaluative feedback, then I categorized them

as negative comments, for the purposes of data aggregation. Figure 4.20 shows the

distribution of U.S. faculty’s written responses were solely positive, solely negative,

and mixed.

The U.S. faculty’s 15 written responses mentioned four of the eight descriptive

themes that were mentioned in Subsection 4.4.2. The ones included by faculty were

114



si
m
pl
e

cl
ea
r

cl
ev
er

va
lid

na
tu
ra
l

el
eg
an
t

cr
ea
ti
ve

in
tu
it
iv
e

2

4

6

8

10

Figure 4.19: U.S. graduate students’ responses to the sample proofs contained eight
themes, and simplicity was the most frequently seen.
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Figure 4.20: U.S. research faculty’s written responses to the sample proofs were
mostly comments that contained both compliments and criticism.
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clarity, mentioned in 13 responses, validity, mentioned in four responses, cleverness,

mentioned in one response, and simplicity, mentioned in one response, as shown

in Figure 4.21. Those that focused on clarity seemed to lend an emphasis toward

communication. For example, many encouraged the student proof writers to consider

the readers of the proofs.

4.4.3 Correcting Proofs

Question 1: Correcting Proofs

In Take-Home Task 3, found in Appendix C.7.1, participants were asked to imagine

they had submitted Proof C (C.5.3) and to imagine their instructor had made the

comment, “Are you sure that IA is less than FG? How would your proof change if you

weren’t sure?” I asked the participants how they would respond to their instructor.

Sample responses from participants are below:

• A Ghanaian mathematics graduate student said, “If I am not sure about that,

I will form a rectangle using the two sides AG and FG to show that the side

AI is less than FG.”

• A U.S. mathematics graduate student said, “Not necessarily, but this wouldn’t

change the proof. Instead, I would construct a right triangle in the same way,

but this time reflected across the hypotenuse.”

• A U.S. mathematics research faculty member said, “Oh, I hadn’t thought about

this–I think that the red right triangle could still be drawn–although the right

angle would be in the lower right corner instead of the lower left corner. The

length of the bottom edge would then be IA-FG, and the rest of the proof would

be the same. But I suppose I would be out of luck if it happened to be the case

that IA and FG were exactly the same length.”
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Figure 4.21: U.S. research faculty’s written responses to the sample proofs contained
four themes, the most frequent of which was clarity.
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Question 2: Correcting Proofs

The participants were asked to imagine they had submitted Proof E (C.5.5) and to

imagine their instructor had made the comment, “What about when (CB)(ML) >

(AB)(JK)? Is there a way to account for that possibility?” The participants were

asked how they would respond to their instructor. If this inequality were true, the

image would look similar to Figure 4.22. In this image, you can see that the line

containing Points I and A does not intersect the line segment with endpoints C and

D. This could have been fixed by changing the line segment to the line containing

Points C and D. Then, in Figure 4.22, both line segments IA and CD would be

extended until the intersect each other.

None of the participants were able to decipher how the given inequality would have

implied anything problematic with the proof. One faculty participant responded, “I’m

not sure what you mean... as far as I can tell, I haven’t made an assumption about the

relationship between (BC)(ML) and (AB)(JK). If that inequality is allowed given

the constraints of the drawing, then my argument should still apply to that case.”

One graduate student similarly responded with, “I have no idea what you mean, and

I don’t think that would affect the proof in any way.”

Although no participants provided any exemplary responses, I present a hypoth-

esized response, from a hypothetical learning trajectory (Bakker and van Eerde,

2015) developed by a co-researcher. In order to find out more about the given

inequality (CB)(ML) > (AB)(JK), one could investigate what happens when

(CB)(ML) = (AB)(JK). Rearranging the equation would yield CB
AB

= JK
ML

. From

given information, this equation is equivalent to AD
CD

= FG
AG

, and all four of these

lengths can be seen in Figure 4.23. Since tan θ1 =
FG
AG

= AD
CD

= tan θ2, I can tell that

θ1 = θ2. Because the interior angles of triangles sum to 180◦, I can then tell that

m∠CAG = 90◦ in this case. The very first step of Proof E (C.5.5) is to extend the

line segment AI, which was perpendicular to AG, until it intersects line segment
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Figure 4.22: The line containing Points I and A does not intersect the line segment
with endpoints C and D when (CB)(ML) > (AB)(JK).
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Figure 4.23: If θ1 = θ2, then m∠CAG = 90◦.
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CD. I can see in Figure 4.23 that this line extension will intersect with Point C, an

endpoint of this line segment.

Returning to the inequality (CB)(ML) > (AB)(JK), this would be when tan θ2 >

tan θ1, which would make m∠CAG < 90◦. In this case, the extension of line segment

AI would not intersect the line segment CD. This incompletion could have been fixed

by letting it intersect the line containing Points C and D instead of solely intersecting

the line segment with C and D as endpoints.

4.5 Results: Data Analysis

In this section, I will summarize how the results informs the research questions within

each case:

• RQ1: How do participants perceive elegance in mathematical proofs?

• RQ2: How do participants’ perceptions of elegance compare to their perceptions

of other constructs, such as surprise, creativity, and rigor?

• RQ3: Which proof constructs do participants seem to value most?

Also, in my cross-case analysis, I will investigate how the results from RQ1, RQ2,

and RQ3 compare and contrast across three contexts:

• Graduate students studying mathematics in Ghana, Africa

• Graduate students studying mathematics in the United States

• Research faculty of mathematics in the United States

4.5.1 RQ1: Perceptions of Elegance in Mathematical Proofs

RQ1 Perceptions of Elegance: Ghana Students

Both Ghanaian graduate students claimed in interviews (Section 4.2.1) that they had

never heard the term elegance used to describe mathematics. However, they had a
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colloquial knowledge of the word elegance used in society and seemed to associate

it with sophistication and high levels of quality. When the interviewer asked them

to make judgements about the elegance of proofs, I expected uncertainty, but was

surprised to see that Ghanaian graduate students tended to give consistent reports of

their elegance perceptions, in both the interview data (Section 4.2.1) and the survey

data (Section 4.3.1). When rating the five sample proofs, these two graduate student’s

elegance perceptions were not too different from one another, as seen in the survey

data (Section 4.3.1), and they seemed to describe “clarity” of proofs in a positive

light.

In the interview (Section 4.3.1), Nyarko Mystery seemed somewhat disappointed

by the proof strategies that were provided in the five sample proofs. Nyarko said

that they had been expecting strategies that were more hands-on and centered

on geometric reasoning as opposed to algebraic reasoning. This is consistent with

the curricular differences between the U.S. and Ghana that were noted in the

literature review in Section 2.1.1. Ghana students typically master theorems through

concrete means, such as geometric constructions, prior to proving them in abstract

ways. Nyarko seemed unimpressed with the proofs because they did not leverage

visualization as much as they could have, such as with a dissection argument.

The other Ghanaian participant, in their interviews, also echoed an affinity for

visualization in mathematical proofs.

RQ1 Perceptions of Elegance: U.S. Students

Although U.S. graduate students described mathematical elegance as ill-defined, as a

nebulous concept, or as a construct to be sensed despite a lack of clear parameters, the

U.S. graduate students’ perceptions of elegance seemed consistent from participant to

participant. Even in the Pilot Study (Section 4.1.1), the graduate students seemed to

agree on which proofs were more or less elegant than others. Then, in the Reliability

Interviews (Section 4.1.2), the graduate students seemed to have a strong personal

sense of elegance, specifically what makes a proof or a course elegant. They described
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with conviction their personal anecdotes of mathematical elegance. Although U.S.

graduate students did often mention that elegance was ill-defined, they also saw it as

a “you-know-it-when-you-see-it sort of thing,” and seemed confident in their abilities

to recognize an elegant proof or course.

U.S. graduate students who participated in this study emphasized that elegant

proofs often make connections within mathematics concepts or branches of math-

ematics. For instance, from Interview 1 (Section 4.2.2), Taylor Illusion mentioned

that an elegant proof “contains some not immediately apparent connection or idea.”

Connor Fidential (Section 4.1.2) described proof elegance as “about finding the right

big idea to overcome the main difficulties of the problem,” and both Connor and

Hannah Nimity described elegance in the context of a graduate level course where

the instructor focuses on strategies that would be useful in other areas of mathematics.

Some U.S. graduate students also seemed to find elegant proofs to be clever.

When responding to the students’ proofs, the U.S. graduate students mentioned the

word “clever” multiple times, as shown in Figure 4.19, and follow-up interviews

helped me determine that this particular theme was connected to elegance of

proofs. In particular, Taylor Illusion mentioned the term clever in their interviews

(Section 4.2.2), and added that they were hesitant to use the term “clever” to describe

an elegant proof because they wanted to avoid the connotation that elegance was

some sort of “trick.” However, Taylor and other U.S. graduate students frequently

mentioned the term clever when responding to student proofs (Section 4.5). Taylor

did not consistently treat “clever” and “elegant” as synonyms, but made it clear

that they perceived some connection between the two adjectives’ meanings. Connor

Fidential (Section 4.1.2) mentions the idea of using a “clever” tool as mathematical

alchemy and points out the use of complex numbers in Proof D (Appendix C.5.4)

as an instance of this. Although “alchemy” can have a connotation of deceit or

trickiness, Connor was describing alchemy as using a carefully chosen tool that seems

to almost magically transform one problem into a different problem, as would a

chemical reaction might transform a cheap metal to appear like gold.
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Among U.S. graduate students, the theme of brevity emerged from the data. U.S.

graduate students commented on how the length of a proof can influence how elegant

it is or is not, but does not necessarily do so. In particular, Taylor Illusion mentioned

in Interview 1 (Section 4.2.2) that the length of a proof would not necessarily affect

how they viewed its elegance, and this was consistent with the written responses

to proofs (Section 4.5). Hannah Nimity (Section 4.1.2) also mentioned that they

prefer “shorter proofs and methods that they find useful,” but did not explicate

a connection between brevity and elegance. The U.S. graduate students hinted at

brevity as being one ingredient that could influence their perceptions of elegance, but

not a necessary ingredient for elegance. Simplicity, or a lack of over-complication,

was also mentioned often by U.S. graduate students, and this helped me understand

that these participants seemed to pair brevity with simplicity of strategy choices.

U.S. graduate students also greatly the considered simplicity and intuition as

ingredients that contribute to elegance in proving the R.E.P.S. problem. Figure 4.19

shows that the theme of intuition is used in written responses to the five sample proofs.

Hannah Nimity (Section 4.1.2) emphasized that using tools that overcomplicate

problems is unnecessary and perhaps takes elegance away from the approach. Connor

Fidential also mentioned that Proof B (Appendix C.5.2) was more intuitive than

Proof A (Appendix C.5.1) and Proof C (Appendix C.5.3) because the intentions of

the writer were much clearer, and this makes that proof “less rigorous and more

elegant.” This particular proof, Proof B, was indeed the most elegant in the U.S.

graduate students’ perceptions, as evidenced by survey results (Section 4.3.2). U.S.

graduate student found Proof B (Appendix C.5.2) to be the most elegant of the five

proofs. The interview data (Section 4.2.2) and the responding to student proofs data

(Section 4.5) also suggests that U.S graduate students considered the intuition when

determining if a proof is elegant.
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RQ1 Perceptions of Elegance: U.S. Faculty

U.S. faculty stressed that the way a writer communicates through their proofs can

make a proof more elegant. In their interview data (Section 4.2.3), Dr. Pseudonym

claimed that an elegant proof is “well-stated.” Dr. Alias also made a similar comment

in their interview (Section 4.2.4) that emphasized the importance of communication

in an elegant proof. In their responses to the five sample proofs (Section 4.8), Dr.

Pseudonym suggests that the student who wrote Proof A (Appendix C.5.1) make

their proof “easier to read” and adds suggestions. Dr. Pseudonym also strongly

disagreed on elegance for Proof A (Appendix C.5.1). Although they did not strongly

disagree on elegance (Section 4.12), Dr. Alias gave a suggestion for the student who

wrote Proof C (Appendix C.5.3) suggesting they make an adjustment to “make it

easier for the reader to follow.”

U.S. faculty also seemed to display a correlation between clarity and elegance.

Clarity was the most mentioned theme by U.S. faculty when responding to student

proofs (Figure 4.21). Faculty also seem to stay consistent on their on elegance related

to clarity throughout the study. In their interview (Section 4.2.3), Dr. Pseudonym

mentioned that an elegant proof is “completely clear.” In their responses to student

proofs (Section 4.8), Dr. Pseudonym strongly disagreed with elegance for Proof C

(Appendix C.5.3) because “the flow of the argument is not clear.” Dr. Alias also

mentioned clarity when they described elegance in their first interview (Section 4.2.4).

They claim that elegant proofs are “clean,” “concise,” and the “pieces fit together

perfectly.”

U.S. faculty also seemed to stress that understanding the context and where the

information can be used is an important component of elegance. When responding in

interviews (Section 4.2.4) and giving feedback on student proofs (Section 4.12), Dr.

Alias emphasized that knowing the context of the course is important when evaluating

proofs based on elegance. Dr. Pseudonym also shared in an interview (Section 4.2.3)

that an elegant proof is one where “you can see the broader context where it fits.”
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RQ1 Perceptions of Elegance: Cross-Case

In the cross-case analysis for RQ1, about how participants perceive elegance of

proofs, I will discuss what similarities and differences I noticed across the three cases,

which studied Ghana mathematics graduate students, U.S. mathematics graduate

students, and U.S. mathematics research faculty. All three groups found Proof B

(Appendix C.5.2), which uses vector dot products, to be the most elegant of the five

sample proofs, as evidenced in survey data, questionnaires, and interviews. Within

each case study, I noticed themes or made observations that seemed prevalent in each

group’s data. In Figure 4.24, these themes are shown embedded within each of the

three contexts. In this section, I will discuss how these themes compare across groups.

The participants from Ghana, Africa, had never heard elegance refer to math-

ematics before this study, and they had less to say about elegance than the U.S.

participants. Their first impressions of mathematical elegance were assumptions that

it referred to sophistication or high quality. I am choosing to juxtapose this with

U.S. faculty’s emphasis on communication. Whereas faculty described that elegant

proofs will communicate well with the reader of the proof, this may not translate to

what a Ghanaian participant might perceive as elegance in the colloquial sense of the

word. Mathematics being “sophisticated” may carry a connotation of inaccessibility

or difficulty, which is quite the opposite of what the U.S. participants described as

more simplicity and intuition.

The U.S. faculty participants emphasized communication with the proof reader,

as an element that makes a proof elegant. This theme pairs interestingly with the

U.S. graduate students’ theme of cleverness or alchemy. Whereas the faculty see

elegance in demystifying mathematics for the reader, the U.S. graduate students see

elegance in proofs that seem to go poof and maintain a bit of mystique in how they

transform the chain of logic set before them.

Both Ghanaian graduate students and U.S. research faculty participants empha-

sized clarity in their descriptions of proof elegance. While some U.S. graduate
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Figure 4.24: This is a cross-case analysis for RQ1.
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students also mentioned clarity as a component of elegance, they leaned more toward

intuition as significant to elegance. This emphasis on reasoning and sense-making

resonates with the emphases of Common Core State Standards (NGACBP-CCSSO,

2010), which have likely influenced most of the U.S. graduate students in this study.

The last trio of contrasting themes shown in Figure 4.24 is that of visualization,

connections, and context. To faculty participants, elegance includes attention to

the context of the mathematics, reminiscent of the literature about mathematics

situated within cultures, in Section 2.1.1. However, the faculty sentiments of

mathematics being perceived as elegant within a context seemed to be more restrictive

in description than how U.S. graduate students perceived elegance. U.S. graduate

students described elegance as mathematical freedom to cross borders from one type

of mathematics to another. Similarly, the Ghanaian graduate students described

“outside-the-box thinking” and perceived elegance in proofs that were highly visual

or geometric, rather than algebraic, which is consistent with theories of mathematical

aesthetics (Sinclair, 2009).

4.5.2 RQ2: Elegance Compared to Other Constructs

RQ2 Elegance Compared to Other Constructs: Ghana Students

When rating the proofs (Section 4.3.1), Ghanaian graduate students seemed to agree

on creativity. Creativity and validity also were not mentioned much in interview

data (Section 4.2.1). However, rigor, surprise, and completeness were discussed and

sometimes had conflicting views from Ghana participants.

For instance, the interviewer asked Nyarko Mystery if they had heard the term

rigorous used in mathematics in their first interview (Section 4.2.1). Unlike elegance,

they had a better idea of what rigor meant in relation to mathematics. They also

mentioned that they had learned about rigor while studying Van Hiele’s Theory of

Geometric Thinking (Van Hiele, 1986), which could have been part of curricula in

their Ghanaian educational program. In the survey results (Section 4.3.1), it shows
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that the Ghana students tend to agree with one another on rigor slightly more than

they do on elegance.

Nyarko Mystery also mentioned the term surprising during an interview (Sec-

tion 4.2.1). They described Proof D (Appendix C.5.4) as a surprising proof and

stated that they had “never expected” to see a proof like that for the R.E.P.S.

problem. When looking at the survey data (Section 4.3.1), it seems that Ghana

students seemed to agree with one another on surprise less than they do with rigor

and around the same amount as they agree about elegance. They seem to agreed

with each other to some degree on each of the proofs in terms of surprise.

Although it was not mentioned much in the interview data (Section 4.2.1),

completeness is an interesting construct in the survey results (Section 4.3.1). In

particular, participants from Ghana disagreed with each other most on completeness,

especially on Proof D (Appendix C.5.4). It is unclear why this is, especially since

Nyarko Mystery left no comments when giving feedback (Section 4.2) to the writer

or Proof D (Appendix C.5.4).

RQ2 Elegance Compared to Other Constructs: U.S. Students

Unlike elegance, Taylor Illusion shared in their first interview (Section 4.2.2) that

“most things outside of mathematics are not all that rigorous.” To Taylor, a rigorous

proof is “complete and far-reaching” and “goes through all necessary checks.”

Although they seemed fairly confident on their description of a rigorous proof,

Taylor Illusion had trouble when rating the proofs based on rigor and had trouble

distinguishing it from other constructs. According to the survey data (Section 4.3.2),

Proof B (Appendix C.5.2) had the most disagreement on rigor out of all five proofs.

Proof C (Appendix C.5.3) and Proof E (Appendix C.5.5) also had more disagreements

on rigor than Proof A (Appendix C.5.1) and Proof D (Appendix C.5.4). Proof B

(Appendix C.5.2) was also rated as the most elegant by U.S. graduate students. In

their first interview (Section 4.2.2), Taylor Illusion suggested that “focusing on rigor
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could take elegance away from a proof,” which some other U.S. graduate students

hinted at as well.

Taylor Illusion also mentioned in his interview data (Section 4.2.2) that Proof D

(Appendix C.5.4) was the “most surprising.” This was similar to Nyarko Mystery’s

response to Proof D (Appendix C.5.4). Taylor Illusion described this proof as one “so

completely out of left-field.” It seemed that most U.S. graduate students found proofs

surprising when they contained tools that were not given in the problem directly.

This was shown in the interview data with Taylor Illusion (Section 4.2.2) and in the

Reliability Interview data (Section 4.1.2). Other than Proof B (Appendix C.5.2), U.S.

graduate students disagreed with each other most on Proof A (Appendix C.5.1), Proof

C (Appendix C.5.3), and Proof E (Appendix C.5.5). Taylor Illusion described Proof

C (Appendix C.5.3) and Proof E (Appendix C.5.5) as “more decidedly geometric” in

their interview data (Section 4.2.2).

In the survey data for U.S. graduate students (Section 4.3.2), there were also

some disagreements among U.S. graduate students on creativity, completeness, and

validity.

RQ2 Elegance Compared to Other Constructs: U.S. Faculty

Dr. Pseudonym shared their views of rigor in their first interview (Section 4.2.3).

They shared that a rigorous proof can be “long, messy, inefficient, but all necessary

elements are there.” They added that the “details are all there” and there are “no

jumps.” To Dr. Pseudonym, the terms valid, complete, and rigorous all have the

same meaning. This is similar to Dr. Alias’ view on rigor. In their first interview

(Section 4.2.4), Dr. Alias shared that they thought completeness and rigor have the

same meaning. They also shared that a rigorous proof “clearly communicates the

argument to the reader without leaving any doubt that the argument is true.” This

is also similar to elegance in the sense that clarity is a component of what makes a

proof rigorous. They also shared that it “depends on who the reader is,” which also

relates to elegance in the sense that context is a component of what makes a proof
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rigorous. In the survey data (Section 4.3.3), all of the U.S. faculty agreed to some

degree that all five proofs are rigorous.

In their interview data (Section 4.2.4), Dr. Alias mentioned that they had never

considered surprise as a construct for evaluating proofs. Dr. Pseudonym was surprised

by Proof B (Appendix C.5.2) and Proof E (Appendix C.5.5). In the survey data

(Section 4.3.3), the U.S. faculty disagreed with each other on surprise on Proof A

(Appendix C.5.1) and Proof C (Appendix C.5.3). They also disagreed with each

other on creativity on Proof A (Appendix C.5.1). For Proof B (Appendix C.5.2),

Proof D (Appendix C.5.4), and Proof E (Appendix C.5.5), all U.S. faculty agreed to

some degree on all constructs.

RQ2 Elegance Compared to Other Constructs: Cross-Case

For RQ2, which asks how elegance is perceived in comparison to other constructs,

such as rigor, there is some enlightening evidence in interview data. For example,

Taylor (U.S. graduate student) and Nyarko (Ghana graduate student) both referred

to Proof D (Appendix C.5.4), which uses Euler’s Formula, as surprising. However,

because there are many different constructs, the survey data in Section 4.3 provides

the most valuable comparative data for RQ2.

Proof B (Appendix C.5.2), which uses vector dot products, was deemed the most

elegant proof by multiple data sources in all three cases. Thus, I examined the survey

data about Proof B in order to measure what other constructs received high ratings

by the different groups. Ghanaian graduate students also ranked Proof B highly

in creativity. U.S. graduate students also ranked Proof B highly in validity. U.S.

faculty ranked Proof B highly in all constructs – elegance, creativity, surprise, rigor,

completeness, and validity. In order to discover more granular information about

what U.S. faculty might associate with elegance, I also examined the faculty’s least

elegant proofs. U.S. faculty rated Proof A (Appendix C.5.1), which uses slopes and

equations of lines, and Proof C (Appendix C.5.3), which used Pythagorean Theorem

and Law of Cosines, as least elegant. For Proof A, they also rated it somewhat low
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in creativity and surprise, and for Proof C, they rated it somewhat low in surprise.

However, in both of these proofs, the faculty disagreed with elegance more than with

any other constructs. Faculty could possibly have a higher bar for deeming proofs as

elegant than students do.

4.5.3 RQ3: Constructs Valued

RQ3 Constructs Valued: Ghana Students

Ghana graduate students indicated value in hands-on strategies and geometric

thinking over algebraic approaches. They also seem to favor “out-of-the-box

thinking,” which implies an element of surprise or unexpectedness. They seem to

admire creative and original ideas in proofs. Also, at the conclusion of the study,

when the interviewer asked the Ghanaian graduate students what they learned and

valued most, they both shared the most appreciation for how the task encouraged

them to engage with multiple non-traditional strategies for proofs, to challenge them

to think differently about a problem.

RQ3 Constructs Valued: U.S. Students

Among U.S. graduate students, I heard indications of a shared admiration for

minimalism. Using simple ideas without over-complicating a proof was valued greatly.

They strive to make proof look easy. Perhaps because proof writing is not easy for

graduate students, but sometimes faculty make proof writing look easy, graduate

students hold great value in simplicity of proofs. This reflects ideals of cognitive

load theory (Sweller, 1988). Since reading a messy proof that includes unnecessary

information requires additional cognitive load on the reader, writing proofs that only

show the smallest number of steps and the smallest amount of information possible

seemed to be held as a virtue among graduate students.

U.S. graduate students also seemed to value creative and surprising ideas in

proofs. Some even mentioned that they would value these constructs over validity
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and completeness. If a mathematician has a promising and creative idea but also

does not have all the details worked out in the proof, then some graduate students

would still consider this proof highly valuable.

However, other graduate students expressed value in validity and completeness

over creativity and surprise. They emphasized the fact that mathematicians often

use the work of others in research. When they run into a proof that seems useful, but

then ends up being incomplete or incorrect, then that can be very frustrating. If they

do not catch that these proofs are incomplete or incorrect, this could cause graduate

students to also have incomplete or incorrect results themselves.

RQ3 Constructs Valued: U.S. Faculty

U.S. faculty seem to value proofs that are clear, complete, and valid. To them, a

proof is useless if it is not valid. They also emphasized that the way a proof is

communicated is key. This is similar to Rota’s 1997 idea that the elegance of a proof

is highly dependent on the way it is presented. They often considered how the reader

would perceive the proofs when giving feedback (Section 4.3.3) and speaking about

the proofs (Section 4.2.3).

One U.S. faculty member shared that elegance is not a priority when writing a

proof. They claim that a proof can be “messy” and acceptable as long as “the proof

is correct.” They explained that elegance is not a quality that most “breakthrough

solutions to major problems in mathematics research” have.

Another faculty member discussed how enlightening and valuable their experience

was a participant in this study. As an instructor, they felt that before participating

in this study, they were often closed-minded when evaluating student proofs. They

did not always give enough attention to diversity in solution methods in the past.

However, by taking part in this study, they now have a greater appreciation for

students who present alternate approaches.
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RQ3 Constructs Valued: Cross-Case

Throughout this study, there were many descriptive themes mentioned, including

clarity, validity, simplicity, cleverness, elegance, and intuition. Each group of

participants, Ghana mathematics graduate students, U.S. mathematics graduate

students, and U.S. research faculty, seemed to have a slightly different set of priorities

for mathematical proofs, in general. U.S. faculty seemed to value clarity the most, and

also highly value validity. U.S. mathematics graduate students placed the greatest

emphasis on simplicity, and also held high value for cleverness. Ghanaian mathematics

graduate students valued clarity and visualization. These findings were substantiated

from multiple data sources, including interviews, written responses, and survey data,

but the written responses to proofs, found in Section 4.4.2, were enlightening when

they were analyzed by theme. Figure 4.25 shows frequency counts of those themes

by participants.

While Figure 4.25 shows aspects that the participants showed value for when

they were writing responses to the sample proofs, after Interview 2, this chart does

not tell the whole story of value. The written responses to students tend to answer

the phenomenological question of what their experiences are like as they perceive

proofs. However, RQ3 asks about what participants value most, and this inherently

carries a phenomenographic inquiry, in which retrospective analysis is appropriate.

For example, when a typical participant reflected on the study itself and what was

learned, there was an expressed value for diversity of thought and awareness of

multiple proof strategies. This retrospective commentary was thematic across all

participant groups, expressing appreciation for the experience of participating in the

study and being forced to think differently as a result.
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Figure 4.25: The written responses to the sample proofs were organized according
to themes and frequencies of themes were tallied for each participant group.
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Chapter 5

Discussion

In this section, I will consider how the findings of my study can be applied to

our world. In particular, I will discuss how this study might help students and

instructors around the globe gain better understandings of one another in terms of

their perceptions of aesthetics and elegance in mathematics. I will also discuss further

implications for future research.

5.1 Discussion of Elegance and Aesthetics

Through this study, I learned some valuable insight into the nature of mathematical

elegance and aesthetics. In general, it seems much clearer that aesthetic terms such

as elegance are ill-defined and subjective when applied to mathematics. An example

of an elegant proof may look one way to someone but different to another. This

seems to depend on the level of the judge. Is this evaluator an undergraduate math

student just learning proofs? Is it a graduate student with some background in

classical mathematics who is first learning how to conduct research? Is it a seasoned

mathematician or faculty member who has conducted research and is considered an

expert in the field? This factor of experience seems to affect how students judge

aesthetics and elegance in mathematics, and none of these views are necessarily

incorrect.
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Eight mathematics graduate students from Africa and from the United States

participated in this study by sharing their views on aesthetics and elegance in

mathematical proofs. They also shared what they value in mathematical proofs.

Some U.S. graduate students seemed to value creativity over validity. Graduate

students from Ghana also shared that they valued out-of-the-box ideas and methods

in proofs. Having an appreciation for unique ways of proving ideas is a refreshing

quality that I would hope most mathematics graduate students would possess, but it

could be unrealistic to some extent. For students who have not yet conducted their

own extensive research, it may not be clear that mathematics research can be messy,

isolating, and difficult to navigate. Not every problem has a clear solution like the

ones their textbooks have shown. Are they wrong to value aesthetics? Exhibiting

creativity in one’s work can make the field more appealing and perhaps lead others

to study mathematics. However, math will not always be elegant and is rarely simple

with first results in research. In some sense, it is almost as if students are misled

at times to believe that math is always going to be this beautiful, mystical subject,

much like the classical results they have seen early in their studies. In this chapter, I

will discuss a few possible remedies for this dilemma.

A reasonable claim is that seasoned mathematicians have the clearest view of

mathematical aesthetics and elegance. These individuals have extensively studied

mathematics and have also conducted research in the field. In my study, I saw that

there was more agreement among faculty in terms of elegance and aesthetics than

graduate students, but the results were not unanimous. Albeit a small number of

faculty participants, it still seems clear that aesthetics are somewhat subjective even

to seasoned mathematicians.

Some faculty also shared that they have negative connotations related to elegance

in particular. One of our faculty participants questioned why elegance is “a desirable

feature of a proof,” especially for a “PhD thesis.” They went on to say that if they

“saw an unusually ‘elegant’ proof in a thesis, then they would “immediately suspect

that the problem wasn’t very hard, or the area is essentially completely understood.”
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Another faculty participant shared that they had mainly heard the term elegant used

to describe mathematics from their professors. Perhaps elegant proofs are only present

in mathematics at the undergraduate and early graduate levels. There may be no

need for elegance or other aesthetics in research, especially if the goal of research is

to seek new evidence and truth. This is controversial.

A U.S. faculty participant in this study also suggested that “elegance, meaning

a streamlined proof that connects to more general theories, is only seen in second

or third proofs of a result.” This connects to Connor Fidential’s (Siktar, 2022)

view of mathematical alchemy. Is elegance actually a form of alchemy? Although

alchemy has at times had a negative reputation as being “fake science,” Connor did

not see it in a bad light. Connor defined mathematical alchemy as “a rephrasing

or other transformation of a problem that, while mathematically equivalent to the

original formation, encourages the use of a different set of mathematical tools.” This

does not change the essence of math necessarily, but it does make the result look

different. For instance, in my study, the writers of Proof A (Appendix C.5.1) and

Proof B (Appendix C.5.2) took the original geometric figure and put it in Cartesian

coordinates and turned it sideways to display it as vectors, respectively. Connor

also claims that this can appear in both “elementary and research contexts” and

“can help break open problems that were previously thought to be impossible to

solve.” This leads me to claim that perhaps those who are conducting research in

mathematics at all levels should consider using creative and out-of-the-box ideas

rather than discarding them. Many participants also associated elegance with a far-

reaching idea. This is described as an idea that can be used for in a problem even

if it does not seem related to the problem at first glance. This is similar to Proof D

(Appendix C.5.4) which used Euler’s formula.

After considering all different levels of mathematicians and what their views

of aesthetics, I began to consider this question: What led these participants and

other mathematicians to study mathematics in the first place? Some may have seen

mathematics through school and wanted to know why certain ideas and claims were
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true. Seeking truth is a major part of mathematics. Others may have also been drawn

in by nicely organized or satisfying arguments. I wonder if this could be misleading

to undergraduate and early graduate students. This could cause them to believe that

their careers studying mathematics will always entail nicely-packaged, easy-to-read

proofs. Math professors should make this reality clearer to students. Mathematics

can often be messy, unclear, frustrating, and isolating in the research context, and

not making this clear to students early on could cause a shock later on when they

begin conducting research.

To me, it is also important to introduce these students to results that can be

elegant, beautiful, or pleasing. One U.S. graduate student stated, “You wouldn’t

show someone an ugly proof to make them want to be a mathematician.” This may

be the reason why professors and mathematicians do focus on aesthetics and elegance.

Elegant proofs could perhaps happen naturally at times, but they often take time,

creativity, and effort. Many mathematicians, including some who participated in this

study, often referred to the beautiful proofs they saw early on as the items that made

them want to study mathematics and stick with it.

5.2 Implications for Communicating Mathematics

Across Cultures

In this study, I considered the perceptions of aesthetics in proofs across different

cultures. Students from the U.S. and Ghana, Africa shared their views on aesthetics in

proofs. By studying the Ghanaian mathematics curriculum and by asking Ghanaian

students about their backgrounds in mathematics, I gained a better understanding

of how mathematics is taught in the area. I learned that Ghanaian students study

mathematics in a more hands-on manner than U.S. students, especially in geometry.

These students seem to have more opportunity for inquiry and personal discovery

of mathematics than U.S. students. However, this could become more difficult later
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on for students, especially when they must learn to write proofs in areas that do

not lend themselves to hands-on tools. It may be beneficial for Ghanaian teachers

and educational leaders to consider this issue, especially if students decide to pursue

mathematics as a career. It is also important that U.S. professors consider this as

well. U.S. mathematics teachers and professors should consider this when planning

their curriculum. They should learn more about embodied cognition in teaching

mathematics to better serve students hailing from other cultures who use more

concrete teaching methods.

The Ghanaian participants in this study also shared that they had never heard

the term elegant used to describe mathematics. Although the idea of elegance in

mathematics seemed fairly controversial and fuzzy to U.S. graduate students and

faculty, it was completely foreign to Ghanaian participants. This is probably also true

for students studying mathematics in other areas of the world. If these students decide

to study mathematics in the U.S., there will be a boundary in terms of aesthetics for

them that is even larger than that of U.S. graduate students. For this reason, U.S.

teachers and professors need to be more sensitive when using ill-defined, aesthetic

terms in lectures or when grading assignments. This will help international and

also native students feel less confusion. It can also help alleviate imposter syndrome

for some students studying mathematics, especially if the student understands the

material and just has an unclear sense of an aesthetic term being used.

5.3 Implications for the Teaching and Learning of

Proofs

Through this study, I was also able to consider how better understanding student and

faculty perceptions of proofs can improve how they learn and teach them, respectively.

One major finding that multiple participants pointed out is how beneficial it is to

consider multiple solutions to a problem. From a student perspective, being able to
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see multiple approaches to a problem can be very eye-opening. Perhaps some proofs

make more sense to a particular student than others, and that student now has a

much better understanding of a particular theorem. This also teaches students that

there is not just one way to go about solving a problem. There is not always just one

correct answer, and being creative and using original ideas could be rewarding and

help them solve more problems.

For teachers and professors, it is important to remember that there are multiple

ways to solve a problem. Some U.S. faculty participants pointed this out in their

during their interviews. Although it may be more time-consuming to grade a unique

proof, instructors should not discourage students to think outside-the-box. They

should also not encourage students to think just as they do. Students are not their

professors. They do not necessarily have the same background knowledge as their

professors, and they also may not learn or communicate the same way. Professors

can also show students that there are multiple ways to solve a problem by showing

different approaches to a single problem during lectures, if possible.

I also saw that faculty and graduate students have different perceptions of the

term elegance. Ghanaian graduate students associated the term elegance colloquially

with terms such as sophistication, clarity, and visualization. U.S. graduate students

associated the term elegance in mathematics with the terms cleverness, alchemy,

intuition, and connections. U.S. faculty associated the term elegance in mathematics

with the terms communication, clarity, and context. Notice that no one of these

sets of terms are exactly the same. Because of these differences in perception, it is

important for instructors to consider these differences in the classroom. If professors

want their students to learn to construct proofs in an elegant manner, then they need

to convey to students what they mean by elegance. They can also listen to their

students share what they see as elegant. One way to do this could be through in-class

discussions, if time permits. Professors could show students a few proofs and ask

them what they find elegant about them, if anything. The instructor could share
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their views as well. They could also do this in a more anonymous manner by using

online discussion boards to facilitate more subjective discussions.

5.4 Implications for Broadening Participation in

Mathematics

This study also helped describe what students and faculty value within mathematics.

By learning what students value in mathematics, undergraduate and graduate

programs may be able to develop better plans for recruiting and keeping students.

Although it is important to make learning mathematics interesting and valuable

for students, it is also important to be honest with students about its challenges,

especially at the upper level and in research. Similar to many aspects of life, the

key to getting students interested in mathematics and keeping those who are truly

interested is by carefully balancing these two areas.

Graduate students with less experience seemed to value creativity over validity. To

them, having a creative and promising idea while also having a mistake somewhere

in the proof is more valuable then a completely valid yet boring proof. Graduate

students with more experience expressed that they value validity. One even shared

that “you do not have a proof if there is a mistake.” This finding reminds me of how

the sense of wonder is greater in children than in adults (Carson, 1956), indicating

a gradual change in perception alongside development. Perhaps the best approach

here is to consider what students value at each level. For graduate students with

less experience, professors should consider ways to allow their students to express

creativity in their assignments. It is also important to stress to these students that in

research, having mistakes in even creative proofs can be problematic. For graduate

students with more experience, professors should focus on supporting students by

discussing their work often, checking for validity, and guiding students on what to do

if there is a mistake somewhere in their work.
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5.5 Implications for Further Educational Research

Similar to many other studies, my study had some potential limitations. For instance,

in this study, we interacted with 11 participants. I was able to get enough participants

to represent three different groups. Perhaps having more participants might have

allowed me to gain more insight on the perceptions of aesthetics and elegance. As a

case study, the goal is not to generalize to all people in a population, but to generalize

the anatomy of a type of human experience (Yin, 2009). This implies that the sample

size of 11 people was not inappropriate for this type of study. Further research,

however, may consider garnering a larger sample size for quantitative research.

A possible topic for future research is studying to what extent aesthetic qualities

matter to students and faculty instead of what they mean to them. Asking someone

the meaning of a term is different than asking someone if it matters or is important to

them. Some faculty members expressed that some aesthetic qualities such as elegance

are not necessary in mathematics, and the Ghanaian student had never even heard

the term elegant used to describe mathematics. Asking students and faculty if they

even value aesthetic qualities and which ones they value in a mathematical proof

could further inform whether or not they need to be assessed or emphasized in the

classroom.

It would also be interesting to further study elegance. In my study, it seemed that

the perceptions of elegance in proofs seemed to depend on experience. Faculty seemed

to associate elegance with clarity and context. Graduate students seemed to associate

it with cleverness and intuition. Perhaps in a future study, it would be interesting

to further investigate this using more students of different levels. Some claimed that

they did not experience elegance at all in mathematics. Another potential study could

potentially search for individuals who do experience elegance in proofs and ask them

why it matters and how it impacts mathematics for them.
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Table A.1: These theorem lists are given in the national secondary curricular
documents for the United States (NGACBP-CCSSO, 2010) and also in the syllabus
for the general math university-entrance exam in West Africa. (WAEC, 2022).

Geometry Proofs in United States
Curriculum

Geometry Proofs in West African
University Entrance Exam

Vertical angles are congruent. Vertically opposite angles are equal.
When a transversal crosses parallel
lines, alternate interior angles are
congruent and corresponding angles are
congruent.

Angles and intercepts on parallel lines:
Interior opposite angles are supplemen-
tary. Corresponding angles are equal.

Points on a perpendicular bisector of a
line segment are exactly those equidis-
tant from the segment’s endpoints.

Adjacent angles on a straight line are
supplementary.

Measures of interior angles of a triangle
sum to 180◦.

The sum of the angles of a triangle is 2
right angles.

Base angles of isosceles triangles are
congruent.

The exterior angle of a triangle equals
the sum of the two interior opposite
angles.

The segment joining midpoints of two
sides of a triangle is parallel to the third
side and half the length.

Intercept theorem: If two intersecting
lines are cut by parallel lines, the line
segments cut by the parallel lines from
one of the lines are proportional to
the corresponding line segments cut by
them from the other line.

The medians of a triangle meet at a
point.

Angles in the same segment of a circle
are equal.

The diagonals of a parallelogram bisect
each other, and rectangles are parallel-
ograms with congruent diagonals.

Angles in opposite segments of a circle
are supplementary.

Prove or disprove that a figure defined
by four given points in the coordinate
plane is a rectangle.

The angle which an arc of a circle
subtends at the centre of the circle is
twice that which it subtends at any
point on the remaining part of the
circumference.

Prove or disprove that the point (1,
√
3)

lies on the circle centered at the origin
and containing the point (0, 2).

If a tangent is drawn to a circle and
from the point of contact a chord is
drawn, each angle which this chord
makes with the tangent is equal to the
angle in the alternate segment.

Prove the slope criteria for parallel and
perpendicular lines.

Any angle subtended at the circumfer-
ence by a diameter is a right angle.
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Appendix B

Mathematical Background

In this study, we encounter some proofs to the R.E.P.S. Problem. The proofs in

this study, found in Appendix C and in the Section 4.4.1, assume knowledge of some

specific mathematical tools, terms, and theorems, as described in this section.

B.1 Cartesian Coordinate System

In Proof A, found in Appendix C.5.1, and in Proof B, found in Appendix C.5.2, the

given image was embedded in a Cartesian coordinate system. In a two-dimensional

Cartesian coordinate system, all objects, such as points and lines, live in a two-

dimensional plane, with a fixed origin (0, 0), with a horizontal continuous x-axis

of real values, and with a vertical continuous y-axis of real values. Each point in

the system can be described by an ordered pair of real numbers. If x and y are

both positive, then one can find the point with coordinate pair (x, y) by finding the

intersection of two perpendicular lines, a vertical line x units to the right of the origin

and a horizontal line y units above the origin. If x is negative, the vertical line will be

to the left of the origin. If y is negative, the horizontal line will be below the origin.

161



B.1.1 Slopes of Lines

In Proof A, found in Appendix C.5.1, slopes of lines were used. The slope of a line,

commonly denoted by m, is a measure of its steepness calculated by the ratio of the

vertical change to the horizontal change, given any two distinct points contained in

the line. If points (x1, y1) and (x2, y2) are contained in a line, then the slope of that

line is the following:

m =
y2 − y1
x2 − x1

. Another common way of expressing the slope is “rise over run,” and the value of a

line’s slope can be extracted from a diagram using this interpretation. For example,

in Figure B.1, the slope is recognizable because of the labeled vertical and horizontal

distances of three and four units, respectively.

B.1.2 Perpendicular Lines

If two lines are perpendicular, they intersect at an angle of measure 90◦ of π
2

radians. Horizontal lines, with slope zero, and vertical lines, with an undefined slope,

are perpendicular. With other pairs of perpendicular lines in the two-dimensional

Cartesian plane, which are not vertical-and-horizontal pairs, the product of their two

slopes will be −1, and their slopes will be opposite reciprocals, such as 6
7
and −7

6
.

B.1.3 Equations of Lines

In Proof A, found in Appendix C.5.1, equations of lines were used. Equations of lines

can be written in slope-intercept form, y = mx + y0, where m represents the line’s

slope and y0 represents the y-coordinate of its intersection with the y-axis. Equations

of lines can also be written using point-slope form, y = m(x − x0) + y0, where m

represents the line’s slope and (x0, y0) is some point contained in the line.
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Figure B.1: One can recognize that the increasing line has a slope of 3
4
by use of

the “rise over run” definition of slope.
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B.2 Triangles

B.2.1 Similar Triangles

Proof E (Appendix C.5.5) uses Angle-Angle Similarity Theorem, which says two

triangles are similar if two pairs of their corresponding interior angles are congruent.

Because similar triangles have the same ratios of corresponding side lengths, triangle

similarity allows us to identify proportions that must hold true.

B.2.2 Pythagorean Theorem

The Pythagorean Theoreom, which is used in Proof A (Appendix C.5.1), in Proof

C (Appendix C.5.3), and in Proof D (Appendix C.5.4), states that the square of

the length of any right triangle’s hypotenuse is equal to the sum of the squares of

the two legs’ lengths. A more algebraic presentation of this theorem states that

if a right triangle had legs of lengths a and b and a hypotenuse of length c, then

a2 + b2 = c2. Proof E, found in Appendix C.5.5, also uses the Pythagorean identity,

sin2 θ + cos2 θ = 1, which follows from the Pythagorean Theorem applied to the

trigonometric ratios and the unit circle shown in Figure B.2.

B.2.3 Trigonometric Ratios

Trigonometric ratios, sine and/or cosine, appear in Proofs B (Appendix C.5.2), C

(Appendix C.5.3), and D (Appendix C.5.4). If θ is an acute interior angle of a right

triangle, then cos θ is the ratio of the adjacent leg’s length to the hypotenuse’s length,

and sin θ is the ratio of the opposite leg’s length to the hypotenuse’s length.

cos θ =
adjacent

hypotenuse
sin θ =

opposite

hypotenuse

Another way to visualize cos θ and sin θ is to imagine that the vector
−−−→
(1, 0) is

rotated around the origin at an angle θ measured counterclockwise from the x-axis,
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Figure B.2: On the unit circle, the horizontal coordinate of the rotated vector’s
terminal point is cos θ, and its vertical coordinate is sin θ.
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and cos θ would be the horizontal coordinate of this vector’s terminal point while sin θ

would be the vertical coordinate. This visualization is consistent with using the unit

circle, as shown in Figure B.2 to evaluate cosine.

B.2.4 Law of Cosines

Proof C, found in Appendix C.5.3 makes use of the Law of Cosines, which is a

generalization of the Pythagorean Theorem for all triangles, not just right triangles.

It relates the lengths of the sides of any triangle to the cosine of one of its angles. For

any triangle with sides of lengths a, b, and c, c2 = a2 + b2 − 2ab cos θ, where θ is the

interior angle opposite the side of length c.

B.2.5 Sum-of-Angles Identities

One of the respondents in this study used the sum-of-angles trigonometric identities,

which are as follows, for any angles θ1 and θ2:

sin (θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2

cos (θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2

B.3 Constructions

Some proofs utilize strategies that manipulated the given image in some way, such as

connecting dots, extending lines, rotating images, and reflecting images.

B.3.1 Lines

Proof C (Appendix C.5.3) and Proof E (Appendix C.5.5) began with the fictional

students drawing on the image. Euclid’s first postulate says that given any two points,

there is a line which has them as endpoints, and Euclid’s second postulate says that
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any straight line segment can be extended indefinitely in a straight line (Heath, 1956).

These construction may be done with a straightedge. Euclid’s Postulates 11 and 12

can be applied to construct perpendicular lines, which enables the construction of a

right triangle in Proof C (Appendix C.5.3).

B.3.2 Symmetries

Rotations, reflections, and translations are isometries in two-dimensional Euclidean

geometry, and they leave the distance between any two points unchanged after

transformation.

B.4 Vectors

Proof B, found in Appendix C.5.2, uses vectors, vector projections, and dot products

of vectors. A vector is a geometric object that has magnitude and direction. Euclidean

vectors exist in two-dimensional planes and are represented by directed line segments.

A vector with an initial point at Point P and a terminal point at Point Q could be

represented by
−→
PQ. The magnitude of this vector would be the distance from Point

P to Point Q and can be denoted by |
−→
PQ|.

B.4.1 Vector Projections

If a horizontal vector, say −→vx , and a vertical vector, say −→vy , sum to vector −→v , then

−→vx and −→v are the x and y component vectors, respectively, of vector −→v . These

component vectors −→vx and −→vy , as seen in Figure B.3 are the vector projections of

vector −→v onto the x and y axes. One vector can be projected onto another non-

zero vector also. Suppose one wished to find the projection of vector −→v onto vector

−→w in Figure B.3. One would consider two perpendicular vectors intersecting at the

terminal point of −→v and summing to vector −→v , one of which is parallel to vector −→w .

167



Figure B.3: The x and y component vectors of v⃗ are parallel to the x and y axes
and also sum to v⃗.
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The vector that is parallel to −→w , as seen in Figure B.4, is the projection of −→v onto

−→w , which can be denoted as proj−→w
−→v .

B.4.2 Dot Products

The dot product is an operation on vectors that results in a real number. There are

two definitions of the dot product, one algebraic and one geometric. Suppose one

were to find the dot product of two two-dimensional vectors, say −→a and
−→
b , who have

terminal points (a1, a2) and (b1, b2). The algebraic definition of the dot product yields

−→a ·
−→
b = (a1)(b1)+(a2)(b2), and the geometric definition yields −→a ·

−→
b = |−→a ||

−→
b | cos θ,

where θ is the angle between −→a and
−→
b .

B.5 Complex Numbers

Proof D, found in Appendix C.5.4, uses complex numbers and Euler’s formula.

B.5.1 Euler’s Formula

Euler’s formula connects complex exponential functions to trigonometric ratios in a

specific way. For any real number, call it θ, the following equation is true:

eiθ = cos θ + i sin θ.

B.5.2 Solving Complex Equations

Every complex number has the form a + bi, where a and b are real numbers and i

represents the solution to the equation i2 = −1. Every complex number has a real

part and an imaginary part. In the example a+bi, the real part is a and the imaginary

part is b. If two different complex numbers are equal, their real parts must be equal

and their imaginary parts must be equal. Suppose c1 = a1 + b1 and c2 = a2 + b2. If

c1 = c2, then it must also be true that both a1 = a2 and b1 = b2.
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Figure B.4: To determine the projection of v⃗ onto w⃗, consider two orthogonal vectors
that sum to v⃗, one of which would be parallel to w⃗ and would be the projection.
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Appendix C

Instruments

C.1 Content of Informed Consent

Welcome to the Rigor & Elegance in Proof Strategies (R.E.P.S.) study!

C.1.1 Introduction

You are being invited to take part in a research study. Before you decide to participate

in this study, it is important that you understand why the research is being done and

what it will involve. Please read the following information carefully. Please ask the

investigators if there is anything that is not clear or if you want more information.

C.1.2 Purpose of Study

We are interested in understanding perceptions of rigor and elegance in proof

strategies. In particular, we want to see how faculty perceptions may differ from

student perceptions. We also want to see how perceptions may differ for students

from various backgrounds.
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C.1.3 Procedures

Using the information you provide on this consent form, we will choose participants.

If chosen, we will contact you by email. For this study, if you are selected, then you

will be presented with one Euclidean geometry problem. To complete the study, you

will be interviewed on four separate occasions about this problem and will also be

given three take-home tasks about the problem, one to complete between each of the

four meetings. Your responses will be kept confidential.

If you are selected to participate, each of the four interviews will take approx-

imately 30 minutes. Each of the three take-home tasks may take you 1-2 hours.

The interview meetings will be scheduled at your convenience, ideally allowing about

one week between each of the four interviews. Meetings will be audio recorded in

an effort to capture sentiments as accurately as possible. The recordings will be

promptly transcribed, and your name will be removed from the transcriptions. Then,

the recordings will be deleted, and the meeting transcriptions will be used in the

study. Your written submissions for the three take-home tasks will also be used in

the study.

You will receive no incentive for your participation. Your participation in this

research is voluntary. You have the right to withdraw at any point during the study.

C.1.4 Risks

Risks in this study are minimal. To preserve confidentiality, we will take measures to

prevent your identity from being discernible in research reports. For example, we will

use pseudonyms or describe responses in aggregate for groups of people. Moreover,

the content will be mathematical and would pose no serious threat in the unlikely

instance of a confidentiality breach.

One reasonably foreseeable risk is that one could opt to participate, but then

discover that they do not have enough time in their schedule to participate

comfortably. To mitigate this risk, we will welcome you to schedule interviews and
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tasks according to your convenience. Also, you may decline to answer any questions,

and you may terminate your involvement at any time.

About 13 people will take part in this study. Because of the small number of

participants in this study, it is possible that someone could identify you based on

the information we collect. If you have any concerns about this during the data

collection process, please contact the researchers and special care can be taken to

omit identifiable information when possible.

C.1.5 Benefits

There will be no direct benefit to you for your participation in this study. However,

we hope the information obtained from this study helps the growth of students

specializing in mathematics.

C.1.6 Confidentiality

We will make every effort to prevent anyone who is not on the research team from

knowing that you gave us information or what information came from you, including:

• Assigning you a code name to use in notes.

• Keeping identifying information in password-protected digital files only acces-

sible by us.

• Using pseudonyms in interview reports.

If information from this study is published or presented at scientific meetings,

your name and other personal information will not be used.

Although it is unlikely, there are times when others may need to see the

information we collect about you. These include:

• People at the University of Tennessee, Knoxville who oversee research to make

sure it is conducted properly.
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• Government agencies (such as the Office for Human Research Protections in

the U.S. Department of Health and Human Services), and others responsible

for watching over the safety, effectiveness, and conduct of the research.

• If a law or court requires us to share the information, we would have to follow

that law or final court ruling.

We will keep your information to use for future research. However, your name and

other information that can directly identify you will be deleted from your research

data collected as part of the study. We may share your research data with other

researchers without asking for your consent again, but it will not contain information

that could directly identify you.

C.1.7 Contact Information

If you have questions at any time about this study, or you experience adverse effects

as the result of participating in this study, you may contact the researchers whose

contact information is provided on the first page. If you have questions regarding

your rights as a research participant, or if problems arise which you do not feel you

can discuss with the Primary Investigators, please contact the University of Tennessee

Institutional Review Board at (865) 974-7494.

C.1.8 Voluntary Participation

Your participation in this study is voluntary. It is up to you to decide whether or

not to take part in this study. If you decide to participate, you should complete this

consent form. After you complete this form, you are still free to withdraw at any

time and without giving any reason. Withdrawing from this study will not affect the

relationship you have, if any, with the researcher. If you withdraw from the study

before data collection is completed, your data will be destroyed.
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C.1.9 Consent

I have read and I understand the provided information and have had the opportunity

to ask questions. I understand that my participation is voluntary and that I am free

to withdraw at any time, without giving a reason and without cost. I understand

that I will be given a copy of this consent form. I am at least 18 years of age, and I

voluntarily agree to take part in this study.

• Participant’s signature, and date

• Investigator’s signature, and date

• Investigator’s signature, and date

C.1.10 Questions

If you signed the consent above, please answer two questions so that we may select

participants. If you are not chosen to participate in this study, this data will be

deleted/destroyed.

1. How many years have you been at your current institution?

2. What type(s) of mathematics do you specialize in?

C.2 Meeting 1 Interview Protocol

Thank you for participating in this study.

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]
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Tell me about your experiences with math.

• Type of schools? Majors? Minors? Classes? Type of math studied?

• Family support? Community support?

• Best or worst experiences?

For each adjective, answer the questions. Don’t google these words though. We

want to know what conceptions you are bringing with you from your experiences.

• “Elegant.” Have you ever heard it used to describe math? How? Where? By

whom? What do you think was meant?

• “Rigorous.” Have you ever heard it used to describe math? How? Where? By

whom? What do you think was meant?

Here’s a geometry problem. Without trying to prove it right now, what strategies

come to mind that one might use to prove this? [Researcher delivers math problem,

shown in Figure C.1 to the participant via an animated slideshow, via a pdf, and/or

via paper copy.]

C.3 Take-Home Task 1

Before our next meeting, give this proof a try. Any techniques are allowed. Using

this log sheet, keep track of how long you try each of your strategies before making

any moves to other strategies. It’s OK if you don’t prove it. But do try. [Researcher

delivers the log sheet as a pdf, as a paper, copy, and/or as an electronic form. The

log sheet has three columns, type of strategy, time spent, and comments, as shown in

Table C.1]
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C

B

I

E

A L

M

KJ

F

D

G

Given:

AB = AF

FJ = AI

AL = IE

Prove that Area(ABCD) = 
Area(ALMG) + Area(FGKJ)

Figure C.1: For this problem given to the participants, the written information
says, “Given: AB = AF , FJ = AI, and AL = IE. Prove that Area(ABCD) =
Area(ALMG) + Area(FGKJ).”
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Table C.1: A log sheet was given to participants, with the instructions, “Keep a
record of what strategies you tried and for how long. We are interested in how long
you work on various strategies and when you decide to change strategies as you are
working.”

Type of Strategy Time Spent Comments
1
2
3
4
5
6
7
8
9
10
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C.4 Meeting 2 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.] Do you have any proofs to share/submit? [Researcher delivers an

electronic form to the participant that allows the participant to upload an electronic

version of their work. If in-person, the researcher may collect written work from the

participant.]

Can you walk me through what you recorded on the log sheet? [Researcher

retrieves log sheet, hard copy of digital copy.]

• Say more about your decision to move from this strategy to that one?

• What encouraged you to persist so long with this particular strategy?

• Was there a moment where you were surprised by something?

• Did you talk to anyone else about this problem? If so, whom? How?

C.5 Take-Home Task 2

Imagine you are teaching undergraduate math majors. You have asked them to

animate their proofs using a slideshow. Before the next meeting, draft responses to

the fictional students who have submitted the five proofs you will see. [The researcher

delivers the link to the participant. After presenting Proof A, the questionnaire asks,

“How would you respond to Student A?” After Proof B, it asks, “How would you

respond to Student B?” and so on.]
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C.5.1 Proof A

First, Student A embedded the image onto a Cartesian coordinate plane such that

the point originally labelled as Point A was the origin and that the points originally

labelled G and K were on the y-axis. Then, Student A flipped the picture about the

y-axis. Next, Student A asserted that two of the rectangles won’t be needed, those

two rectangles identified in Figure C.2. So Student A removed those two rectangles.

Next, the Student A assigned letters A, B, C, X, Y , and Z to lengths on the diagram

and letters P and Q to points on the diagram, as shown in Figure C.3.

Student A labelled the line containing the origin and Point P with the equation

l1(x) =
X
Y
x after they used the definition of slope and equations of lines. The slope

could be seen as X
Y
by looking at the right triangle with leg lengths X and Y . Because

its y-intercept was (0, 0), the equation for this line was l1(x) =
X
Y
x. Student A labelled

Point P as equal to C
Z
(Y,X). A reader could verify this claim by considering that the

distance from the origin to Point P was C
Z

the length of Z, which had coordinates

(Y,X). Next, Student A claimed that the line containing Points P and Q had the

equation l2(x) = − Y
X

(
x− C

Z
Y
)
+ C

Z
X. Although the student did not explain this,

it could be verified by the reader because it follows the point-slope form of linear

equations. The line went through Point P , which had coordinates
(
C
Z
Y, C

Z
X
)
, and

since the product of the slopes of two perpendicular lines is −1, the line’s slope must

have been − Y
X

because it was perpendicular to a line of slope X
Y
. Figure C.4 shows

the image with these added labels.

Student A then wrote, “What are the coordinates of Point Q?” and also observed

that Q lies on l2. Because the x-coordinate of Q is B, Student A stated that Q =

(B, l2(B)) and followed with the observation, “But Q = (B,A),” which implied A =

l2(B). This led to the following:

A = l2(B) = −Y

X

(
B − C

Z
Y

)
+

C

Z
X
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Figure C.2: For Proof A, the image has been embedded in Cartesian coordinate
system and reflected about the y-axis. The two rectangles indicated were deemed to
be unnecessary.
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Figure C.3: For Proof A, certain distances have been labelled A, B, C, X, Y , and
Z, and two points have been labelled P and Q.
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Figure C.4: For Proof A, certain distances had been labeled A, B, C, X, Y , and
Z, and two points had been labelled P and Q.
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A = −Y

X
B +

C

Z

Y 2

X
+

C

Z
X

A = −Y

X
B +

C

Z

(
Y 2

X
+X

)

A = −Y

X
B +

C

Z

(
Y 2 +X2

X

)
Then, near the right triangle with sides of lengths X, Y , and Z, appeared the

statement X2 + Y 2 = Z2, an apparent implication of the Pythagorean Theorem.

Student A used this equality as a substitution and also divided the quantity Z by Z,

arriving at the following:

A = −Y

X
B + C

Z

X

Student A then multiplied this equation by X and rearrange the terms to get the

following:

AX +BY = CZ

Each of the three terms in this equation also represents an area in the original diagram.

Student A pointed to each term and reminded the reader of this. AX was the area

of rectangle ALMG, BY was the area of rectangle FGKJ , and CZ was the area of

rectangle ABCD.

C.5.2 Proof B

Student B first turned the image clockwise 90◦ and embedded the image on a

Cartesian coordinate plane with the origin at Point A. Student B then animated

a vector from the origin to Point E and labelled it −→a . They then showed a vector

from the origin to Point F and labelled it
−→
b . They labelled the angle between these

two vectors θ, as shown in Figure C.5.

Student B labelled the distance from Point A to Point D as |−→a | cos θ. This could

be viewed as the vector projection of −→a onto
−→
b , The definition of cosine, applied to
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Figure C.5: The image was rotated, embedded in a Cartesian plane, and labelled
with vectors a⃗ and b⃗ and angle θ.
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△EDA, is sufficient to verify that AD = |−→a | cos θ. The distance from Point A to

Point B was then labelled as |
−→
b |, and this was due to the assumption that AB = AF .

Next, Student B showed the rectangle ABCD shaded yellow, as shown in Figure C.6.

The area of this shaded region, calculated as length times width, would then be

|−→a ||
−→
b | cos θ, which is also −→a ·

−→
b by the geometric definition of the dot product.

Next, Student B put labels on the sides of the rectangles that were the same lengths

as the x and y component vectors of −→a and
−→
b . By assumptions, the distances from

Points A to L and from Points G toK were the magnitudes of the x and y components

of vector a⃗, respectively. Also, the distances from Points L to M and F to G were the

magnitudes of the x and y components of vector
−→
b , respectively. Thus, the areas of

the two smaller shaded rectangles, ALMG and FGKJ could be written as products

of these component vectors’ magnitudes, as shown in Figure C.7. Then, Student B

noted that these two area sum to axbx + ayby =
−→a ·

−→
b by the algebraic definition of

the dot product.

C.5.3 Proof C

Student C connected Points E and F with a straight line and stated, “Construct right

triangle, with hypotenuse EF with legs parallel to AG and AI.” This triangle is shown

in Figure C.8. (Note: This student assumes that such a triangle can always be drawn

and will always be positioned in the same way, and this leads to an incompletion in

this proof.) The student then labelled the lengths of the sides of the newly created

triangle. The hypotenuse was labelled EF , the horizontal leg was labelled FG−AI,

and the vertical leg was labelled AG− IE. Using these distances in the Pythagorean

Theorem, Student C then stated the following:

EF =
√
(FG− AI)2 + (AG− IE)2
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Figure C.6: Rectangle ABCD was shaded and its side lengths were labelled |⃗a| cos θ
and |⃗b|.
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Figure C.7: The area of the large rectangle was equal to the geometric definition
of the dot product, while the sum of the two smaller rectangles was equal to the
algebraic definition of the dot product, which proved the area of the larger rectangle
equals the sum of the areas of the smaller two.
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Figure C.8: Student C connected Points E and F and constructed a right triangle
with hypotenuse EF and with legs parallel to AG and AI.
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=
√

(FG)2 − 2(FG)(AI) + (AI)2 + (AG)2 − 2(AG)(IE) + (IE)2

In order to simplify this expression, Student C highlighted two different right triangles

in the diagram for which Pythagorean Theorem could be used. Because of right

triangle △IEA, it followed that (AE)2 = (IE)2+(AI)2, and because of right triangle

△FGA, it followed that (AF )2 = (FG)2 + (AG)2. The EF equation was then

simplified to the following:

EF =
√

(AF )2 + (AE)2 − 2 ((FG)(AI) + (AG)(IE)).

Student C then highlighted the triangle △EAF and used Law of Cosines with the

angle at vertex A, call it θ. This yielded the following:

EF =
√
(AF )2 + (AE)2 − 2(AF )(AE) cos θ.

These two equations for EF were similar looking, but they were not quite identical;

the part following the coefficient of 2 is the only part that seemed to differ. Then,

Student C circled the parts of these equations that were different and then set those

two parts equal to each other. This gave the following:

(FG)(AI) + (AG)(IE) = (AF )(AE) cos θ.

Using the given equalities FJ = AI and AL = IE, Student C then made some

substitutions and rewrote this as the following:

(FG)(FJ) + (AG)(AL) = (AB)(AE) cos θ.

Student C then highlighted right triangle△FEA and labelled the distance from Point

A to Point D as (AE) cos θ. Substituting AD into the previous equation yielded the
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following:

(FG)(FJ) + (AG)(AL) = (AB)(AD).

This proved that sum of the areas of rectangles FGKJ and ALMG equaled the area

of rectangle ABCD.

C.5.4 Proof D

The first step of Proof D is to point out to the reader that the measures of angles

∠IAE, ∠EAD, and ∠DAG summed to 90◦. Student D labelled these r, θ, and α,

respectively. Then, the following statements were made:

i = cos (90◦) + i sin (90◦),

which was apparently true because cos(90◦) = 0 and sin(90◦) = 1. Then, Student D

substituted (90◦) with (θ + r + α) in both terms, leading to the following:

= cos (θ + r + α) + i sin (θ + r + α).

Because this expression fit the form of Euler’s formula, Student D then rewrote it as

the following:

= ei(θ+r+α)

= eiθ · eir · eiα

Employing Euler’s formula again, Student D wrote the following:

= (cos θ + i sin θ)(cos r + i sin r)(cosα + i sinα)

By replacing some of these trigonometric ratios with their ratios based on the right

triangles the angles were a part of within the diagram, Student D then wrote the
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following:

= (cos θ + i sin θ)

(
AI

AE
+

IE

AE
(i)

)(
AG

AF
+

FG

AF
(i)

)
=

cos θ + i sin θ

(AE)(AF )
((AI · AG− IE · FG) + i(AI · FG+ IE · AG))

As the student rearranged this long expression, attempting to separate its real part

from its imaginary parts, the following two-line expression for i emerged:

=
cos θ

(AE)(AF )
(AI · AG− IE · FG)− sin θ

(AE)(AF )
(AI · FG+ IE · AG)

+(i)

[
sin θ

(AE)(AF )
(AI · AG− IE · FG) +

cos θ

(AE)(AF )
(AI · FG+ IE · AG)

]
.

Recall that because this entire expression was equal to i, the real part would be 0 and

the imaginary part would be 1. First, Student D formed an equation corresponding

to the real part.

Re(i) = 0 ⇒ cos θ(AI · AG− IE · FG) = sin θ(AI · FG+ IE · AG).

The student then rewrote this equation by dividing by cos θ, yielding the following:

(AI · AG− IE · FG) =
sin θ

cos θ
(AI · FG+ IE · AG).

Next, Student D created an equation corresponding to the imaginary part, and wrote

the following:

Im(i) = 1 ⇒ AE · AF = sin θ(AI · AG− IE · FG) + cos θ(AI · FG+ IE · AG).

Student D then circled part of the earlier equation and drew an arrow, signifying a

substitution. Because (AI · AG − IE · FG) was equal to sin θ
cos θ

(AI · FG + IE · AG),

192



the student made this substitution, yielding the following equation:

AE · AF = sin θ

(
sin θ

cos θ
(AI · FG+ IE · AG)

)
+ cos θ(AI · FG+ IE · AG)

The student then multiplied the entire equation by cos θ and arrived at the following:

AE · AF cos θ = sin2 θ(AI · FG+ IE · AG) + cos2 θ(AI · FG+ IE · AG).

By using the identity sin2 θ + cos2 θ = 1, Student D then simplified this equation to

the following:

AE · AF cos θ = AI · FG+ IE · AG.

The student then substituted (AE cos θ) with AD and AF with AB to arrive at

AB · AD = AI · FG+ IE · AG, each term of which expressed the area of one of the

rectangles in the diagram.

C.5.5 Proof E

The first step of Proof E was to extend the line segment AI until it intersects the

line segment whose endpoints are C and D. (Note: The notation used here was for a

line segment, not a line. This leads to an incompletion in this proof.) Student E then

labelled the intersection Point P . Then, Student E highlighted two triangles, △PEI

and △PAD, as shown in Figure C.9.

Student E then stated that these two triangles were similar by the Angle-Angle

Similarity Theorem. Then they set up the following proportion:

EI

PE
=

AD

PA,

which can be rearranged to the following:

AD =
EI · PA

PE
.
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E
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Figure C.9: After extending AI to intersect CD at Point P , the student examined
△PEI and △PAD.
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Because PA = PI + AI, this is equivalent to the following:

AD =
EI(PI + AI)

PE
.

Next, another pair of triangles were highlighted, △PEI and △AFG, as shown

in Figure C.10. Again by Angle-Angle Similarity Theorem, these two triangles were

deemed similar, and Student E stated the following proportion:

FG

EI
=

FA

EP
,

which was rewritten as the following:

FG =
EI · FA

EP
.

Another proportion that followed from the same pair of similar triangles was the

following:
AG

PI
=

FA

EP
,

which was then written as the following:

AG =
PI · FA

EP
.

Student E then reminded the reader of the three given identities: AB = AF ,

FJ = AI, and AL = IE. The student then listed out the three newly obtained

equations that followed from triangle similarities:

AD =
EI(PI + AI)

PE
, FG =

EI · FA

EP
, and AG =

PI · FA

EP
.

Next, Student E wrote down

Area(ALMG) + Area(FGKJ)
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Figure C.10: The pair of triangles △PEI and △AFG are highlighted.
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= (AL) · (AJ) + (FJ) · (FG).

Then, using the given identities and the identities that had been discovered by

similarity, the student replaced all four of these lengths, rewriting the expression

as the following:

= (IE) ·
(
PI · FA

EP

)
+ (AI) ·

(
EI · FA

EP

)

=
EI(PI + AI)

EP
· FA

= (AD) · (AB),

which was the area of rectangle ABCD.

C.6 Meeting 3 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]

Think about your experience reading and responding to the students’ animations.

• What was difficult about it? Enjoyable? Surprising?

• What effect do you hope your written responses would have on the student?

I’d like to take a few moments during this interview to give you an electronic

questionnaire that asks you to evaluate these proofs according to elegance, surprise,

rigor, validity, completeness, and creativity. After each rating that you select, I’d like

to ask you audibly why you made that selection or if you have any comments about it.
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If you’d like to talk out loud about your reasoning as you think through the ratings,

that is fine too. [Researcher delivers the electronic version of the questionnaire.]

C.6.1 Rating Questionnaire

Rating Proof A

Rate your agreement or disagreement with the following statements about Proof A

(C.5.1). For each rating, please audibly explain your reasoning.

• Proof A is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof B

Rate your agreement or disagreement with the following statements about Proof B

(C.5.2). For each rating, please audibly explain your reasoning.

• Proof B is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof C

Rate your agreement or disagreement with the following statements about Proof C

(C.5.3). For each rating, please audibly explain your reasoning.

• Proof C is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

200



Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof D

Rate your agreement or disagreement with the following statements about Proof D

(C.5.4). For each rating, please audibly explain your reasoning.

• Proof D is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof E

Rate your agreement or disagreement with the following statements about Proof E

(C.5.5). For each rating, please audibly explain your reasoning.

• Proof E is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Think about your experience evaluating the students’ animations, based on

elegance, rigor, surprise, and creativity.

• What was the easiest judgment to make? The most difficult? Why?

• Which aspects do you value the most? The least? Why?

• Which aspects do you think your professors value the most? Least?

C.7 Take-Home Task 3

For the next take-home task, you will imagine you’re a student reading instructor

feedback about your proof submissions. Before our next meeting, respond to two

instructor comments that will be given in the questionnaire. [Researcher delivers the

questionnaire to participant.]

C.7.1 Responding to Instructor Questionnaire

Imagine you are Student C. You submitted the animation for Proof C (C.5.3). It

used Pythagorean Theorem and Law of Cosines. Your instructor made a comment

about your work. They wrote, “Are you sure that IA is less than FG? How would

your proof change if you weren’t sure?” How would you respond to your instructor?

Imagine you are Student E. You submitted the animation for Proof E (C.5.5). It

used similar triangles and proportions. Your instructor made a comment about your

work. They wrote, “What about when (CB)(ML) > (AB)(JK)? Is there a way to

account for that possibility?” How would you respond to your instructor?
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C.8 Meeting 4 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]

Think about your experience responding to the instructor’s feedback.

• What was surprising? What was difficult? What was helpful?

• How might you have responded differently from this instructor in order to reach

a similar goal?

In this study, you have played the roles of student, of instructor, and of judge. Think

about the different questions and tasks.

• Did any tasks help you see math differently? If so, what? Why?

• Might any of these tasks be useful in other experiences? Like that?

• What unanswered questions and curiosities might you carry from this study?

What did you learn?

Thank you for participating in this study!

When we have analyzed the transcripts of these interviews, we will send you a

draft of the reported results, and at that time, you will be invited to provide feedback

about how we have interpreted the interview results. If you see something that has

been interpreted incorrectly or incompletely, you can let us know so that we can

re-analyze the data accordingly.

204



C.9 Reliability Interview Protocol

Purpose: To build rapport with the validator and establish background information.

Interview Questions:

• What year are you in, in your graduate program?

• What is your concentration area within mathematics?

• How have your classes been this semester?

Purpose: To investigate how factors that vary from participant to participant, such

as self-efficacy, attitude, impatience, or resilience, might influence the responses that

this instrument elicits.

Interview Questions:

• Last semester, you were offered a chance to find a proof for this geometry

problem. How did that go? What was that process like for you?

• Do you think you went about working on the geometry problem, and analyzing

the proofs for it, in any unique ways that your peers likely would not have done?

If so, what did you do that you perceive could have been unique to you?

Purpose: To investigate how the problem and proofs in the REPS instrument might

elicit differing responses from participants based on the participants’ concentration

area or experience in mathematics.

Interview Questions:

• Do you think your perceptions of elegance and rigor are different within other

mathematical disciplines? If so, compare those perceptions of elegance and rigor

to what you experienced for the geometry problem.

• Think about a professor who’s influenced you greatly, either at the university,

or elsewhere. How do you think their perceptions of the elegance or rigor for

this geometry problem’s proofs would compare to your own?
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• What specialty field of mathematics is that professor in?

Purpose: To investigate whether the problem and proofs in the REPS instrument

elicit consistent responses from participants over time. If not, investigate why they

change.

Interview Questions:

• So, when you look back at these proofs, do you think your perceptions on their

elegance or rigor today have changed since you first encountered them? If so,

what specifically do you think has changed?

• What properties of a proof make it elegant, in your view? What properties of

a proof make it rigorous, in your view?

Purpose: To investigate whether participants tend to value the importance of the

aims of this instrument, and whether they put forth reasonable levels of effort when

interacting with it?

Interview Questions:

• Think about any differences between when you worked on the problem yourself

and when you judged the proofs for it. What differences do you notice in how

you interacted with and handled these two tasks?

• Think about math education in general at the post-secondary level. Do you

think students would benefit from evaluating work, not just producing it? If so,

should aspects like elegance or rigor be included in those evaluations, or just

validity?

Purpose: To wrap up the interview.

Interview Questions:

• Is there anything else you’d like to tell me?

• Thank you for your time!
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Vita

To me, education is one of the most important gifts life has to offer. It is something

so rich yet attainable. It teaches us to strive and succeed and also to fail and learn.

It is something that challenges and molds students into the people they will become

in the future. As a math teacher, I believe that it is crucial to provide this gift to

every child.

For some students, math is a skill that comes naturally, but this is not the case for

everyone. For some students, stepping into a math class is a nightmare. As a teacher,

one of my ultimate goals is to create an environment where students feel comfortable

with math. I want to encourage them to think about what they already know and

relate it to what we are learning. I want to guide them but also allow them to make

errors and learn from them. I want to create a place where they are comfortable

asking questions and trying different methods. I ultimately want them to learn that

math is nothing to be afraid of.

As a teacher, my goal is to teach my students more than just numbers and

equations. Although I do want them to understand the material, I also want them to

understand that math is a challenge that they are capable of tackling.
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