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ABSTRACT 

Over the past decade, single-cell technologies evolved from profiling hundreds of cells to 

millions of cells, and emerged from a single modality of data to cover multiple views at 

single-cell resolution, including genome, epigenome, transcriptome, and so on. With 

advance of these single-cell technologies, the booming of multimodal single-cell data 

creates a valuable resource for us to understand cellular heterogeneity and molecular 

mechanism at a comprehensive level. However, the large-scale multimodal single-cell data 

also presents a huge computational challenge for insightful integrative analysis. Here, I 

will lay out problems in data integration that single-cell research community is interested 

in and introduce computational principles for solving these integration problems. In the 

following chapters, I will present four computational methods for data integration under 

different scenarios. Finally, I will discuss some future directions and potential applications 

of single-cell data integration. 
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PREFACE 

I came up with this dissertation title when I reflected what I have explored so far and what 

I learned along the way. It reminds me of the book What I Talk About When I Talk About 

Running by Haruki Murakami, in which he shared an intimate journey he had with writing 

and running. 

Just like writing and running for Haruki Murakami, my scientific journey in graduate 

school is also intimate and personal. I have explored a lot, and many projects I have tried 

failed. Fortunately, I narrowed down a path that I believe is right, and I navigated through 

failure to have some achievements to enjoy. Looking back, I found it’s a process of building 

up momentum. The momentum pushes me to go higher and higher. 

 Just like writing and running for Haruki Murakami, I was also lucky to figure out how 

to balance life and research, and I am lucky to enjoy both life moments and research 

achievements, big and small. This could never happen, if I don’t have passion on either 

regular life moments or my scientific mission. My journey in graduate school is finding 

and keeping passion for both, over struggles and difficulties. 
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The emergence of single-cell technologies 

The very first single-cell transcriptomics study came out in 2009 with a surprise that single-

cell transcriptomics could reveal rare cell types that are obscured by the bulk transcriptome 

profiling (Tang et al., 2009). Soon, this pioneer study set off an initial wave of developing 

transcriptomics protocols at single-cell resolution (Hashimshony et al., 2012; Islam et al., 

2011; Jaitin Diego et al., 2014), including SMART-seq (Goetz and Trimarchi, 2012) and 

SMART-seq2 (Picelli et al., 2013) that are still widely used nowadays. However, these 

protocols were only able to profile from 100 to 1,000 cells at once and still required a 

certain amount of human labor. In the following years, we witnessed a new wave of single-

cell transcriptomics technologies, which really leveled up single-cell transcriptomics to a 

large scale. Two droplet-based high-throughput single-cell transcriptomics platforms, 

Drop-seq (Macosko et al., 2015) and inDrop (Klein et al., 2015), came out on Cell on the 

same day. A single cell is encapsulated into a droplet and the droplet flows in a 

microfluidics device. This elegant mechanic design scales profiling capacity to more than 

10,000 (about 10 times improvement) with less human labor. Other high-throughput 

single-cell transcriptomics technologies also emerged by using different strategies to scale 

up output, for example depositing cells into micro or picolitre wells (Gierahn et al., 2017; 

Han et al., 2018; Rosenberg et al., 2018b). Furthermore, commercial platforms, like 10X 

and Parse Biosciences, are widely used by different research laboratories now and are 

becoming the major platforms for generating large-scale single-cell transcriptomics data 

(Zheng et al., 2017). With these single-cell transcriptomics platforms in hand, a global 

effort of building up single-cell databases in the past decade brought the concept of “cell 
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atlas” to life (Rozenblatt-Rosen et al., 2017). These atlas studies covered different tissues 

(Litviňuková et al., 2020; Muraro et al., 2016; Stewart Benjamin et al., 2019; Travaglini et 

al., 2020), multiple species (Baron et al., 2016; Han et al., 2018; Jin et al., 2020; Li et al.; 

Schaum et al., 2018), and different developmental stages (Almanzar et al., 2020; Cao et 

al., 2020a; Farrell Jeffrey et al., 2018; Haniffa et al., 2021; Wagner Daniel et al., 2018), 

and too many to be listed here. Collectively, they provide a valuable resource for 

biomedical research and could unravel comprehensive understanding of transcriptional 

definitions of cell types in cellular and molecular biology. 

Our curiosity is not just limited to understanding transcriptomes, by asking which gene 

is turned on and off in a certain cell type at a certain time point, but also extends to why 

and how it happens, from genetics to epigenetics, and even to proteomics. One major 

ambition of this field is to predict cell fates by combining information we could gather 

from multiple views. Development of single-cell technologies for other modalities, like 

genomic variant and chromatin accessibility, benefited a lot from strategies we already 

learned in single-cell transcriptomics studies, and single-cell transcriptomics technologies 

were transferred well for high-throughput sequencing of other modalities (Buenrostro et 

al., 2015; Cusanovich et al., 2015; Lodato et al., 2015). The single-cell community started 

to give more and more attention to construct atlas data of these modalities beyond 

transcriptome. The first single-cell atlas of mouse chromatin accessibility became available 

and provided a more detailed regulatory landscape combined with mouse atlas of 

transcriptome (Cusanovich et al., 2018). A more recent collaboration effort across different 

institutes made a comprehensive cell atlas come true in mouse brain. This collaboration 
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ended up with an atlas data including transcriptome, chromatin accessibility, and DNA 

methylation (Liu et al., 2021; Yao et al., 2021). Till now,  the single-cell community across 

the globe has built a comprehensive toolbox that enables us to study genetic variant, 

epigenetic modification, chromatin structure, gene expression, surface markers, and so on 

(Stuart and Satija, 2019). 

The journey never stops with developing single-cell technologies for different 

modalities independently. Scientists are even more ambitious to profile multiple views of 

cell status at the same time, partially because computational integration of single-cell data 

from independent experiments could not serve as the ground truth for interactions between 

different levels in individual cells. This led to inventions of joint profiling single-cell 

technologies. For instance, sci-CAR, SNARE-seq, and SHARE-seq can simultaneously 

profile chromatin accessibility and gene expression for thousands of single cells (Cao et 

al., 2018; Chen et al., 2019; Ma et al., 2020b). scMethyl-HiC and sn-m3C-seq can profile 

DNA methylation and 3D chromatin structure at the same time at single-cell resolution 

(Lee et al., 2019; Li et al., 2019). Paired-Tag jointly pulls out information of different 

histone modifications and transcriptome from the same single cell (Zhu et al., 2021). These 

new joint-profiling single-cell technologies, nevertheless, lift up single-cell technology to 

a brand-new level and open a new door to diverse scientific questions as well as presenting 

challenges for data integration. 

In this thesis, I will focus on addressing data integration for single modality data, 

specifically single-cell transcriptome data. Then, I will move on to multimodal data 

integration. Four chapters will cover 4 different computational methods I developed as the 
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first author. These 4 methods also fall into different categories of computational principles 

for data integration, and I am about to introduce their backgrounds in more detail. 

Batch effects! Batch effects! Batch effects!    

Looking back the evolution history of single-cell technology, we could summarize that 

method development for single-cell transcriptome is predominant over all single-cell 

modalities. As briefly introduced above, multiple single-cell transcriptome platforms exist 

and are widely used by different research groups. Over the past decade, single-cell 

transcriptome datasets were also generated with all these platforms. Instead of analyzing 

these datasets separately, the single-cell community is gradually realizing the importance 

of bringing all possible single-cell transcriptome data that come from the same tissue but 

under different biological conditions for integrative analysis. Thus, integration of single-

cell transcriptome data becomes a trending topic in the single-cell community. When we 

deal with integration for single-cell transcriptome data, we often run into the problem that 

major differences among datasets come from platform differences. For instance, 

nanodroplet-based platforms are intrinsically different from their picolitre-well-based 

counterparts, in terms of how cells are captured. Not to mention, within nanodroplet-based 

platforms, methods like Drop-seq and inDrop, can produce biologically irrelevant 

variations due to other technical differences. More than platform differences, construction 

of cell atlas database is result of global collaboration across multiple institutes with many 

different personnel handling data generations. This kind of large-scale collaboration 

involving hundreds of and even thousands of people could inevitably return data with 

biologically irrelevant variations from many unknown sources. Indeed, this problem, 
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collectively called the batch effects, is quite common in integration of single-cell 

transcriptome data.  

Batch effects are usually the prominent variation when data from multiple sources are 

compared. Removing batch effects is a critical and necessary step before performing any 

biological interpretation. Along the development timelines of single-cell transcriptome 

platforms, many computational approaches were proposed to address batch effects. In the 

first wave, we observed many batch-correction methods were based on conventional 

machine learning approaches. These methods work well in a range of cases of single-cell 

transcriptome data integration. Methods including Seurat, Harmony, and LIGER received 

tremendous success and are embraced greatly by single-cell community(Korsunsky et al., 

2019; Liu et al., 2020; Stuart et al., 2019). For example, Harmony learns the joint 

representation through an iterative k-means clustering, and the outcome is a linear 

correction function that transforms the original principal components (PCs) to the batch-

corrected PCs (Korsunsky et al., 2019). Seurat, on the other hand, uses canonical 

correlation analysis (CCA) to learn the shared latent space among batches. Seurat first 

identifies cell anchors between two batches to learn a mutual neighborhood graph. Then, 

it computes a projection that brings all other cells to this shared latent space. Because of its 

“anchor” design, Seurat needs pairwise computation of anchor points when datasets come 

from more than two sources (Butler et al., 2018). Both the iterative k-means clustering in 

Harmony and pairwise CCA need intensive calculation that consumes large computation 

resources. As the quantity of data grows exponentially, from handling data with thousands 

of cells to millions of cells, we start to demand methods that can handle large-scale data 
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quickly and efficiently. In recent years, we witnessed another wave of method development 

for batch correction, which is using neural networks. Benefiting from the power of GPU 

and training data in a mini-batch manner, deep learning models gained growing attention 

while showing the single-cell community its capability for large-scale data. Nowadays, you 

can search deep-learning-based batch-correction methods and end up getting a long list 

(Bahrami et al., 2020; Dincer et al., 2020; Kimmel and Kelley, 2021; Lakkis et al., 2021; 

Lopez et al., 2018; Lotfollahi et al., 2021; Shaham et al., 2017; Wang et al., 2019; Wang 

et al., 2021a; Xu et al., 2021a). Among all these deep-learning-based methods, variational 

autoencoder is a common neural network architecture, and they are trained in adversarial 

manner with batch information as labels. 

Regardless of conventional machine learning or deep learning approaches, with either 

simple or sophisticated modeling, these batch-correction methods approach to the solution 

and address batch effects to varying degrees. One benchmark study shows that these 

methods are not applicable for all scenarios (Tran et al., 2020). For the purpose of 

generalization, we may need to figure out in what form the batch effects exist within single-

cell transcriptome data. Resolving the mysterious form of batch effects, we can generalize 

a simple approach for batch correction. In Chapter I and II, I will describe two simple 

methods I developed to resolve batch effects. In Chapter III, I will introduce another simple 

framework for learning representation, and this framework also addresses batch effects for 

multi-source single-cell transcriptome data. Combining Chapter I to III, I want to bring out 

a potential explanation of why these methods work to discussion. 
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From single modality to multi-modalities 

With revolution of multi-omics single-cell technologies, single-cell computational analysis 

also jumps into the multi-omics era. Single-cell community has been giving more and more 

attention to integrating multi-omics single-cell data, as this new research domain promises 

us to understand a complex cellular system from different viewpoints, such as gene 

expression, epigenetic modification, and chromosome structure. However, different types 

of ‘omics data present the same cellular system in different data formats. They do not 

necessarily share the same features, though we should keep in mind that features across 

different modalities are often highly correlated. For instance, transcriptomics describes 

expression of genes, while epigenomics measures histone modifications or accessibility 

across all regions of the genome. This feature discrepancy presents the first barrier to 

bringing multimodal single-cell data together. Besides feature discrepancy, each modality 

preserves shared information as well as something distinct. How to wisely integrate 

multimodal data without loss of distinctness of each modality is another challenge we are 

facing. In recent years, many integration methods have been published to address different 

scenarios of multimodal single-cell data integration. A recent review summarized three 

categories of multimodal single-cell data integration (Argelaguet et al., 2021). Of these 

categories, “horizontal integration” methods require anchored features to align up different 

modalities, while “vertical integration” methods anchor different modalities with shared 

cells. The “diagonal integration” approach is claimed to require neither anchoring cells nor 

features for integration, presenting a distinct advantage over horizontal and vertical 

methods (Box 1). 



 

9 

 

  

Box 1 

Key Terms: 

Modality: A type of biological measurement, such as gene expression, chromatin 

accessibility, 3D chromosome contacts, or shape descriptors from imaging. 

Feature: An entity to which measurements are assigned, such as genes, promoters, 

genomic bins, or positions in an image. 

Horizontal, vertical, and diagonal integration: Creating a shared representation 

space for single cell measurements from multiple modalities anchoring on features 

(horizontal), cells (vertical), or neither (diagonal). See schematic above. 
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To accomplish horizontal integration, we can transfer the use of batch-correction 

methods. Methods I mentioned above, like LIGER, Harmony, and Seurat, were already 

extensively tested in the task of integrating single-cell transcriptome data with single-cell 

chromatin accessibility or single-cell DNA methylation data (Forcato et al., 2021; Liu et 

al., 2020; Stuart et al., 2019; Yang and Michailidis, 2016). To use these tools for 

multimodal integration, the common practice is converting chromatin accessibility and 

DNA methylation to a gene-expression-like format, for the purpose of matching features 

with single-cell transcriptome. Once features are matched, resolving modality difference 

wouldn’t be different from removing batch effects, by considering modality difference as 

a form of batch effect. The reason why these horizontal methods would work is primarily 

exploiting correlations within shared features. However, each modality also preserves 

distinct features, and this conversion inevitably distorts, and discards information obtained 

from the original format.  

In some cases, transforming different modalities to have shared features could discard 

informative features to a large degree. For example, relevant histone modifications can 

occur far from genes, and therefore assigning histone modifications to gene features to 

match transcriptomics will by necessity loss information. Meanwhile, feature matching 

could be not applicable in cases like integrating transcriptome data with chromatin 

structure data. To overcome this problem, we came to the second category, vertical 

integration, for a solution. Because vertical integration anchors modalities with shared 

cells, application of vertical integration is also limited to cases when multimodal 

information from the same cell is known. Fortunately, technological breakthroughs in joint 



 

11 

 

profiling make it possible to capture multiple data types from the same single cell. With 

these joint-profiling technologies, we are able to pull out paired gene expression/chromatin 

accessibility, paired DNA methylation/chromatin structure, and so on (Cao et al., 2018; 

Chen et al., 2019; Lee et al., 2019; Li et al., 2019; Ma et al., 2020b; Zhu et al., 2021). These 

joint-profiled data could serve as reference to train vertical integration methods (Jin et al., 

2020; Wu et al., 2021).  

Since horizontal and vertical methods require either anchored features or anchored cells, 

their applications are not applicable for all cases of multimodal integration. Therefore, 

there is extensive interest in diagonal integration because it doesn’t use any prior 

knowledge. The existing diagonal integration methods split the task into two parts (Cao et 

al., 2020b; Cao et al., 2021; Demetci et al., 2020; Yang et al., 2021). One is learning lower 

representation for each modality. The lower representation needs to preserve biological 

variation through distinguishing different cell types in each modality. The other task is 

modality alignment. Methods should close the gap between modalities by aligning up the 

same cell types. However, these two tasks seem to be disjoint in most existing methods, 

raising a doubt about whether these diagonal methods reach to a solution that is biological 

rather than simply mathematically optimal. 

In chapter III and IV, I will discuss two multimodal integration methods I have 

developed. One is vertical integration method, and the other falls into the category of 

horizontal integration. In the final chapter V, I will quantify pitfalls and discuss potential 

future directions of diagonal integration. 
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CHAPTER I 

MARKER-BASED AUTOMATIC CELL-TYPE ANNOTATION FOR 

GENERAL SINGLE CELL EXPRESSION DATA 
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Abstract  

Accurately identifying cell-types is a critical step in single-cell sequencing analyses. Here, 

we present marker-based automatic cell-type annotation (MACA), a new tool for 

annotating single-cell transcriptomics datasets. We developed MACA by testing 4 cell-

type scoring methods with 2 public cell-marker databases as reference in 6 single-cell 

studies. MACA compares favorably to 4 existing marker-based cell-type annotation 

methods in terms of accuracy and speed. We show that MACA can annotate a large single-

nuclei RNA-seq study in minutes on human hearts with ~290k cells. MACA scales easily 

to large datasets and can broadly help experts to annotate cell types in single-cell 

transcriptomics datasets, and we envision MACA provides a new opportunity for 

integration and standardization of cell-type annotation across multiple datasets. 

Introduction 

Identifying constituent cell-types in a single-cell dataset is fundamental to understand the 

underlying biology of the system. Many computational methods have been proposed to 

automatically label cells, and a benchmark study shows that a standard Support Vector 
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Machine (SVM) classifier outperforms most other sophisticated supervised methods and 

can achieve high accuracy in cell-type assignment (Abdelaal et al., 2019). However, due 

to lack of ground-truth in most single cell studies, supervised classification approaches are 

not feasible and may not be generalized for new single cell studies with different 

experimental designs. Therefore, unsupervised clustering approaches are still the 

predominant options for single-cell data analysis (Lähnemann et al., 2020). Unsupervised 

approaches usually require human assistance in both defining clustering resolution and 

manual annotation of cell-types. This results in cell-type annotation being time-consuming 

and less reproducible due to human inference. As more single cell studies are available, 

summarizing markers identified in these studies to construct a marker database becomes 

an alternative approach for automatic cell-type annotation. For example, PanglaoDB 

(Franzén et al., 2019b) and CellMarker (Zhang et al., 2019b) are two marker databases that 

summarize markers found in numerous single cell studies and cover a broad range of major 

cell-types in human and mouse. Meanwhile, NeuroExpresso (Mancarci et al., 2017) is a 

specialized database for brain cell-types. Taking advantage of those databases for robust 

cell-type identification, we present MACA, a marker-based automatic cell-type annotation 

method and show how MACA automatically annotates cell-types with high speed and 

accuracy. 

Method development 

MACA takes as input expression profiles measured by single cell or nuclei RNA-seq 

experiments. MACA calculates two cell-type labels for each cell based on 1) an individual 

cell expression profile and 2) a collective clustering profile (Figure 1.1A). From these, a 
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final cell-type label is generated according to a normalized confusion matrix. MACA first 

computes cell-type scores for each cell, using a scoring method based on a marker database 

or user-defined marker lists. The scoring method uses the raw gene count to calculate a 

cell-type score for each cell, according to gene markers of this cell-type. This results in 

converting a gene expression matrix to cell-type score matrix. Then, MACA generates a 

label (Label 1) for each cell by identifying the cell-type associated with the highest score. 

Independently, using the matrix of cell-type scores as input, the Louvain community 

detection algorithm is applied to generate Label 2, which is a clustering label to which a 

cell belongs (Blondel et al., 2008). Since the number of cell types is usually unknown, 

MACA tries clustering at greater resolution to over-cluster cells into many small but 

homogeneous groups. 

Both Label 1 and Label 2 serve complimentary functions. Label 1 is assigned on a per-

cell basis which may result in incorrectly annotating many cells due to noisiness in the 

maximum cell-type score for each cell. This may occur when the putative cell-type feature 

is covered up by ambient RNAs from dominant cell-types (Pliner et al., 2019).  On the 

other hand, Label 2 is likely to suffer from a common problem in single cell RNA-seq 

clustering analysis, where cells may share the same dominant features, even though they 

have been clustered into different groups because of subtle differences. Additionally, 

results from a clustering analysis can often vary since clustering is non-deterministic. Due 

to its dependence on user’s decisions, mostly the choices of clustering resolution and 

neighborhood size. 
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To address these issues, MACA combines Label 1 and Label 2 to get a comprehensive 

cell-type annotation by mapping Label 2 to Label 1 through a normalized confusion matrix 

(Figure 1.1B). In the confusion matrix 𝑪, 𝒄𝒊,𝒋 represents the number of cells that were 

clustered as the 𝒊𝒕𝒉 cluster in Label 2 and labeled as the 𝒋𝒕𝒉 cell-type in Label 1. The basic 

assumption of mapping Label 2 to Label 1 through a confusion matrix is that cells with the 

same clustering label (Label 2) should have the same cell-type label (Label 1). Ideally, if 

cells were identified to be in the same cluster, they should all share the same cell-type, and 

this cell-type has the highest score for cells in that cluster. However, in real data, this is 

rarely the case, as we argued above. Therefore, using a confusion matrix, we look for 

consensus between Label 1 and Label 2, by searching for the highest cell-type score in each 

cluster. Here, we compute the normalized confusion matrix 𝑪𝒏 through dividing confusion 

matrix 𝑪 by the size of the cluster: 𝒄𝒊,𝒋 =
𝒄𝒊,𝒋

∑ 𝒄𝒊,𝒋
𝑵
𝒋=𝟏

, and we search for column number with 

the largest value for each row (Figure 1b). If 𝒎𝒂𝒙𝒋(𝒄𝒊,𝒋) ≥ 𝟎. 𝟓, the 𝒊𝒕𝒉 cluster would be 

assigned as the 𝒋𝒕𝒉 cell-type, as more than 50% of cells in the 𝒊𝒕𝒉 cluster are labeled as the 

𝒋𝒕𝒉 cell-type (Case 1). For cases where 𝒎𝒂𝒙𝒋(𝒄𝒊,𝒋) < 𝟎. 𝟓, it is likely that cell identities of 

some cells were covered up by ambient RNAs from dominant cell-types (Case 2). 

Therefore, MACA records significant or at least the top-3 cell-types for each cell in the 𝒊𝒕𝒉 

cluster based on cell-type scores. To find significant cell-types for each cell, we get a 

distribution of scores of all cell-types for each cell and define those cell-types as significant 

if their z-scores > 3. If the number of significant cell-types is less than 3, we would keep 

the top-3 cell-types. Doing this can retrieve more potential cell-type labels for this cluster, 

and each cell will contribute at least 3 candidates into a pool of candidate cell-types for this 
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Figure 1.1. Schematic workflow of MACA. A, MACA converts gene expression matrix 

into cell-type score matrix based on cell marker database. MACA generates Label 1 by 

using max function and Label 2 by over-clustering all cells into small groups. MACA 

finally maps Label 2 to Label 1 via confusion matrix. B, Use of confusion matrix for 

cell-type annotation. How cluster label is assigned a cell type is shown in the panel on 

the right. 
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cluster. Then, MACA calculates frequency of each candidate cell-type in this pool and 

assigns the 𝒊𝒕𝒉 cluster as the cell-type with the highest frequency if the frequency exceeds 

half the size of the cluster (𝒎𝒂𝒙𝒋(𝒇𝒊,𝒋) ≥ 𝟎. 𝟓) (Case 2a). Otherwise, the 𝒊𝒕𝒉 cluster would 

be labeled as “unassigned” (𝒎𝒂𝒙𝒋(𝒇𝒊,𝒋) < 𝟎. 𝟓) (Case 2b), which is the case that cells in 

this cluster do not have an agreement on which cell-types they belong to. For the choice of 

0.5, we will show our examination in the next Results section. As we mentioned before, 

clustering-based cell-type identification largely depends on user’s choice, for example the 

choices of clustering resolution and neighborhood size. Therefore, the outcome may vary 

among different users. To have a more reproducible outcome, we cluster cells with 

different clustering parameters to get multiple clustering assignments (Label 2s). Repeating 

the procedure of mapping Label 2 to Label 1 will enable us to get an ensemble annotation 

through voting, and this ensemble annotation is less influenced by a single clustering 

choice. Using ensemble approach also offers a naïve way of scoring MACA-based cell-

type predictions. Users can set up a threshold to filter cells whose annotations are less 

consistent in outcomes of different clustering trials. In this study, we generated clusters 

using Louvain method with 3 different resolutions and 3 different numbers of 

neighborhood, which results in 9 different clustering labels (Label 2s). After mapping these 

9 Label 2s to Label 1, we generated 9 cell-type annotations. Then, we used a voting 

approach to get the final annotations (the highest votes from the 9 annotations). Users can 

also increase the number of clustering trials to have a larger voting pool for annotation 

ensemble or decrease the number to save computation time. Back to converting gene 

expression matrix to cell-type score matrix, we collected 4 different scoring methods that 
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were proposed to do the conversion. These scoring methods are either named by authors, 

or we named them after the last name of the first author. PlinerScore was a part of Garnett 

that was designed to annotate cell-types through supervised classification(Pliner et al., 

2019). The uniqueness of PlinerScore is the use of TF-IDF transformation to deal with 

specificity of a gene marker and a cutoff to deal with issue of free mRNA in single-cell 

RNA-seq data. AUCell comes from SENIC, which uses gene sets to quantify regulon 

activities of single-cell expression data (Aibar et al., 2017). In this study, AUCell quantifies 

the enrichment of every cell-type as an area under the recovery curve (AUC) across the 

ranking of all gene markers in a particular cell. This assessment is cell-wise and is different 

from PlinerScore that requires transformation of the whole dataset. Both CIM and 

DingScore simply use the total expression of all gene markers of a particular cell-type as 

the cell-type score (Ding et al., 2020; Efroni et al., 2015). CIM normalizes the total 

expression by multiplying a weight that is defined as the number of expressed gene markers 

divided by the number of all gene markers of this cell-type. DingScore, on the other hand, 

normalizes the total expression of one cell-type by dividing total expression of all genes. 

Since some cell-types have a longer list of marker genes than others, cell-types with more 

marker genes in the database would have larger cell-type scores. Normalization in CIM 

was considered to address this issue. However, PlinerScore and DingScore were not 

intentionally designed to cope with unbalanced marker lists. To deal with this issue, we did 

a similar processing to normalization in CIM, which is dividing the score of each cell type 

by the number of expressed markers in that cell type. However, AUCell is a completely 

different approach from the other 3 scoring methods, which does not simply sum up values 
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of marker genes for a given cell-type. So, we ran AUCell without extra processing for 

returned values. 

In practice, we build MACA in the analysis pipeline of Scanpy, and MACA takes data 

in the format of “anndata” in Python(Wolf et al., 2018). Expression data are preprocessed 

through cell and gene filtering, and transformed by LogNormlization method, the common 

practice in single cell analysis. Then, the user provides marker information in the form of 

Python dictionary, and MACA transforms gene expression matrix to cell-type score matrix. 

Next, annotation by MACA can be summarized into 4 steps as shown in Figure 1: 1) 

Louvain clustering to generate Label 2; 2) Generating Label 1 via max function; 3) 

Mapping Label 2 to Label 1 through normalized confusion matrix; 4) Repeating step 1 to 

3 to have ensembled annotation. 

Result 

The key component for optimal performance of MACA is constructing cell-type scores 

from the gene expression matrix. We investigated 4 scoring methods that have been 

proposed to transform gene expression matrix to cell-type score matrix (Aibar et al., 2017; 

Ding et al., 2020; Efroni et al., 2015; Pliner et al., 2019), and we tested these methods with 

2 public marker databases (Franzén et al., 2019b; Zhang et al., 2019b) in 6 single cell 

studies comprised of 3000 to 20000 cells (Baron et al., 2016; Cui et al., 2019a; Tian et al., 

2019; Vieira Braga et al., 2019; Wang et al., 2020c; Zheng et al., 2017), which include 3 

benchmark datasets (Abdelaal et al., 2019). To evaluate these annotation outcomes, we 

used Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Both ARI 

and NMI are calculated by measuring similarity or agreement between our annotations and 
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authors’ annotations. For the 3 benchmark datasets, authors’ annotations would be the 

ground truth label, while authors’ annotations in the other 3 datasets are at least created 

under careful investigation. Therefore, use of ARI and NMI, in this case, is to show how 

well we can reproduce authors’ outcomes. We found annotations using PlinerScore with 

markers in PanglaoDB have the largest agreement with authors’ annotations for all 6 

datasets, in terms of both ARI and NMI (Table 1.1). Therefore, MACA uses PanglaoDB 

with PlinerScore as the main marker database and scoring method, respectively. 

Next, we seek to compare MACA with other existing marker-based annotation tools. 

CellAssign and SCINA are two computational methods that have been proposed for 

automatic cell-type assignment (Zhang et al., 2019a; Zhang et al., 2019c). Both methods 

rely on statistical interference to compute the probabilities of cell types, which are time- 

and computation- intensive. Recently, Cell-ID was released for extraction of gene signature 

as well as cell-type annotation (Cortal et al., 2021). We also noticed scCATCH and SCSA, 

which are both cluster-based annotation tools (Cao et al., 2020c; Shao et al., 2020). Both 

scCATCH  and SCSA require identifying differential marker genes for each cluster via a 

statistical test implemented in Seurat and then matching identified cluster markers to 

marker database (Butler et al., 2018). Here, we compared MACA with CellAssign, SCINA, 

Cell-ID, and scCATCH using these 6 single cell studies and cell markers in PanglaoDB. 

We tested MACA, CellAssign, SCINA, Cell-ID, and scCATCH on a workstation with 16-

core CPU and 64GB memory. MACA can finish annotation within 1 minute (cells around 

3,000) and less than 2 minutes for a relatively large dataset (cells up to 20,000 cells). On 

the datasets used and on our computational resources, scCATCH and Cell-ID took longer 



 

22 

 

  

Table 1.1. Performance of MACA, CellAssign, SCINA, Cell-ID, and scCATACH in 

6 scRNA-seq datasets, measured by ARI and NMI.  8 different settings of MACA 

include using 4 cell-type scoring methods (PlinerScore, AUCell, CIM, and DingScore) 

with 2 marker databases (PanglaoDB and CellMarker). 

ARI 
PBMC (Zheng et al., 

2017) 

CellBench (Tian et 

al., 2019) 

Pancreas (Baron et 

al., 2016) 

Heart (Wang et al., 

2020) 

Heart (Cui et al., 

2019) 

Lung (Vieira et al., 

2019) 

PanglaoDB+Plin

erScore 
0.95 0.92 0.90 0.71 0.61 0.45 

PanglaoDB+AU

Cell 
0.04 0.00 0.78 0.39 0.47 0.29 

PanglaoDB+CIM 0.28 0.65 0.90 0.27 0.30 0.33 

PanglaoDB+Din

gScore 
0.83 0.74 0.69 0.07 0.44 0.20 

CellMarker+Plin

erScore 
0.38 0.43 0.27 0.57 0.13 0.21 

CellMarker+AU

Cell 
0.29 0.52 0.32 0.34 0.09 0.14 

CellMarker+CIM 0.24 0.60 0.54 0.56 0.07 0.09 

CellMarker+Din

gScore 
0.22 0.55 0.38 0.37 0.19 NA 

SCINA 0.46 0.63 0.89 0.13 0.55 0.31 

CellAssign NA 0.00 0.89 0.15 0.53 0.26 

Cell-ID 0.50 0.17 0.57 0.10 0.49 0.35 

scCATCH (best) 0.62 0.56 0.86 0.04 0.14 0.60 

scCATCH 

(average) 
0.57 0.40 0.66 0.04 0.05 0.35 

       

NMI 
PBMC (Zheng et al., 

2017) 

CellBench (Tian et 

al., 2019) 

Pancreas (Baron et 

al., 2016) 

Heart (Wang et al., 

2020) 

Heart (Cui et al., 

2019) 

Lung (Vieira et al., 

2019) 

PanglaoDB+Plin

erScore 
0.89 0.92 0.88 0.59 0.62 0.59 

PanglaoDB+AU

Cell 
0.09 0.00 0.79 0.41 0.50 0.31 

PanglaoDB+CIM 0.51 0.80 0.88 0.30 0.44 0.40 

PanglaoDB+Din

gScore 
0.74 0.85 0.70 0.10 0.47 0.33 

CellMarker+Plin

erScore 
0.44 0.64 0.57 0.51 0.32 0.42 

CellMarker+AU

Cell 
0.23 0.67 0.46 0.32 0.33 0.17 

CellMarker+CIM 0.49 0.78 0.73 0.41 0.31 0.21 

CellMarker+Din

gScore 
0.43 0.73 0.60 0.34 0.33 0.08 

SCINA 0.54 0.71 0.84 0.07 0.54 0.46 

CellAssign NA 0.06 0.86 0.08 0.51 0.49 

Cell-ID 0.67 0.38 0.74 0.08 0.55 0.58 

scCATCH (best) 0.77 0.70 0.84 0.05 0.30 0.73 

scCATCH 

(average) 
0.75 0.62 0.75 0.04 0.12 0.63 

       

# of cell-types 
PBMC (Zheng et al., 

2017) 

CellBench (Tian et 

al., 2019) 

Pancreas (Baron et 

al., 2016) 

Heart (Wang et al., 

2020) 

Heart (Cui et al., 

2019) 

Lung (Vieira et al., 

2019) 

MACA 8 6 11 8 7 13 

SCINA 14 14 17 16 23 41 

CellAssign NA 9 17 18 24 31 

Cell-ID 33 55 48 35 37 63 

scCATCH (best) 9 5 10 3 3 16 

Author's annotation 5 5 14 5 9 13 

 



 

23 

 

than MACA to compute annotations and ranks as the second and third fastest. In our hands, 

SCINA took around 20-minute time to finish annotation for a large dataset, and CellAssign 

took the longest time to complete cell-type assignment and failed to annotate data with > 

20,000 cells due to lack of memory (Table 1.2). Because annotation by scCATCH needs 

clustering first and differential marker identification is highly affected by clustering 

outcome, the investigator will need to do a thorough investigation to make sure that 

clustering is not overdone or underestimated. In this study, we reported the highest and the 

averaged outcomes of scCATCH in each dataset. Comparing these results with manual 

annotations from the authors, we found 1) MACA labels cells had a higher consensus than 

CellAssign, SCINA, Cell-ID, and scCATCH, in terms of both ARI and NMI, and 2) 

MACA and scCATCH identify similar numbers of cell-types to author’s annotations, while 

the other 3 methods, especially Cell-ID, report overall more different cell-types (Table 1.1). 

The low ARIs and NMIs of CellAssign and Cell-ID can be counted as results of 1) many 

“unassigned” cells and 2) exceeding numbers of different cell-types over the numbers 

reported by authors. It is important to note that other methods compared here were run on 

their default parameters. 

In future, parameter tuning of those methods on a computer with higher memory should 

be carried out for a comprehensive benchmarking on many datasets. Finally, to better 

evaluate annotations, we used a machine learning approach to assess cell-type assignment. 

Training classifiers was recently proposed by Miao et al. to assist in finding a good 

clustering resolution (Miao et al., 2020), and we adopt this idea to evaluate our annotations. 

Basically, if the annotation is good enough, we can train a classifier to predict cell type 
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Runtime (in min) 
PBMC (Zheng 

et al., 2017) 

CellBench 

(Tian et al., 

2019) 

Pancreas (Baron 

et al., 2016) 

Heart (Wang 

et al., 2020) 

Heart (Cui 

et al., 2019) 

Lung (Vieira 

et al., 2019) 

MACA 1.5 1 1 1 1 1 

SCINA 18 5 16 8.5 8 19 

CellAssign NA 30 140 120 180 160 

Cell-ID 15 2 5 5 2 10 

scCATCH 7.5 NA 1.5 1 1 6.5 

 

Table 1.2. Runtime of 5 annotation tools across 6 benchmark datasets. MACA was 

much shorter than other methods tested in this benchmark, running a workstation with 

16-core CPU and 64GB memory. 
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using gene-expression values with high accuracy. Conversely, if there are many wrong 

labels, it would be hard for a classifier to make the right decision. We performed 5-fold 

cross-validated training, where we split one dataset into 4-fold training set and 1-fold 

testing set and trained a SVM classifier on the training sets and applied the classifier to 

predict labels for the testing set. This procedure repeats 5 times to get a mean accuracy. 

Instead of treating authors’ annotations as ground truth, this machine-learning evaluation 

provides an independent angle to judge annotation quality. Indeed, MACA achieves high 

concordance with authors’ reported annotations and higher mean of accuracies than other 

methods (Table 1.3). Of note, high accuracy of SVM classifier is not equal to correctness 

of annotation. Meanwhile, ARI and NMI reports similarity between two annotations but 

cannot reflect the difference of annotation resolution. For example, MACA may return less 

cell-types than authors. Moreover, annotation resolution of MACA highly depends on the 

number of cell-types in the marker database, and it is likely that MACA cannot annotate 

some rare subtypes that do not show up in the marker database. 

As we mentioned above, using ensemble approach also offers user an option to filter 

cells whose annotations are less consistent in outcomes of different clustering trials. 

However, it also causes loss of cells for downstream analysis, like cellular composition 

analysis. To find a good balance between having higher annotation quality and keeping 

most cells for downstream analysis, we tested threshold of voting from 1/9 to 9/9, where 

the numerator means the minimum number of votes required to keep the cell-annotation. 

With 1/9, all cells will be kept, with 2/9, cells with annotations with at least 2 votes will be 

kept, while only cells that have the same annotation across 9 clustering trials will be 
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Table 1.3. Mean accuracy of 5-fold SVM classifier. SVM classifiers were trained with 

labels from original reports, or generated by MACA, CellAssign, SCINA, Cell-ID, and 

scCATCH. Each data was split into 5 folds. Classifiers were trained on 4 folds, and they 

used the rest 1-fold to report accuracy. Results here came from the mean accuracy of 5-

fold training. The highest accuracies obtained for that dataset is shown in bold. For most 

datasets, PanglaoDB+PlinerScore and authors’ annotations achieve the highest 

accuracy in SVM classification. 
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considered if threshold is set up as 9/9. This evaluation may provide a reference for user to 

choose a threshold that serves user’s need. Of note, we kept all cells in other evaluations. 

Particularly, all cells were used in benchmark with other methods. Here, we suggest setting 

up the threshold as 7/9.  Next, we expect to show that annotation by MACA is applicable 

for most single cell RNA-seq platforms. We re-annotated PBMC data from a new study by 

Ding et al. (Ding et al., 2020). This data consists of two biological samples from 9 

platforms. We found that 1) both PBMC samples have the same major cell-types, and these 

9 platforms can successfully profile them (Figure 1.2A), and 2) annotation by MACA 

shows that all platforms profile similar cellular components for these two PBMC samples, 

except CEL-Seq2 (Figure 1.2B). These results are largely consistent to the original report 

(Ding et al., 2020). 

Finally, we applied MACA to a single-nuclei RNA-seq dataset from all 4 chambers of 

the human heart, comprised of ~290k nuclei (Tucker et al., 2020a). MACA could annotate 

each of the 4 chambers comprising of ~80K cells each in < 6 mins. Annotations by MACA 

have major agreement with author’s reported annotations with an average ARI and NMI 

of 0.63 and 0.76, respectively (Table 1.4). However, we also found some disagreements 

exist in annotation of cells in from left and right atria. Therefore, we investigated 

disagreement between MACA’s and author’s annotations, and found the biggest difference 

stems from disagreement in assignments for neuronal cells and lymphocytes, which are 

both small-population cell types in this dataset (1702 neuronal cells and 1503 lymphocytes 

out of ~290k). We found neuronal cells weren’t revealed and author-reported lymphocytes 

were reported as memory T cells in MACA’s annotation. 
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Figure 1.2. Integrated annotation of human PBMC and pancreas data across different 

single cell platforms. A, UMAP visualization of human PBMC data. Cells are colored 

according to annotation by MACA (left), source of sample (middle), and platform 

(right). UMAP dimension reduction is based on PlinerScore with PanglaoDB as marker 

database. B, cellular component analysis of human PBMC data. Proportion of each cell-

type identified by MACA is calculated for each platform for two PBMC samples, 

separately. 
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ARI LV RV LA RA 

MACA 0.84 0.81 0.69 0.69 
     

NMI LV RV LA RA 

MACA 0.70 0.63 0.61 0.58 
     

SVM_Accuracy LV RV LA RA 

MACA 0.85 0.85 0.85 0.82 

Authors' annotation 0.90 0.88 0.86 0.83 

 

Table 1.4. Performance of MACA in 4 human-chamber single-nuclei RNA-seq 

datasets, measured by ARI, NMI, and Accuracy of SVM classifier. RA: right atrium; 

LA: left atrium; RV: right ventricle; LV: left ventricle. The final MACA setting is using 

PanglaoDB as marker reference and PlinerScore as cell-type scoring method. The 

performance in human 4 chamber data (Tucker et al., 2020) is quantified by ARI and 

NMI against author’s annotations (top 4 rows). Both MACA’s and author’s annotation 

were used to train SVM classifiers. Datasets were split into 5 folds. SVM classifiers 

were trained on 4-fold data and tested on the rest 1-fold. Means of accuracies were 

reported to show how reasonable MACA’s and authors’ annotations are (bottom 2 

rows). 
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Conclusion 

By default, MACA works with the list marker genes and cell-types present in PanglaoDB, 

but users can also input their own gene-lists. A major limitation of MACA is that it can 

only annotate cell-types that are pre-defined in the marker reference, but with more marker 

gene-sets becoming available with single-cell sequencing studies, we believe that MACA 

will be useful to annotate heterogeneous single-cell datasets. This points us two future 

directions to improve MACA. First, with more atlas studies that profile all sorts of 

biological systems, more refined markers for small cell populations can be defined, and 

MACA could reach finer annotation resolution by integrating markers from these new atlas 

studies. Second, weights of markers should be incorporated into the scoring method of 

MACA, for example marker specificity and expression strength. However, at the current 

stage, all markers have equal weights when they contribute to cell-type scores, and we 

believe that incorporating marker weights will be beneficial for accurate annotation. With 

a more refined marker database and cell-type scoring method, MACA would rapidly 

perform integrated annotation across multiple datasets, and this is very critical for 

downstream analyses like cellular component analysis across datasets under different 

conditions. In fact, we noticed that combining PlinerScore and PanglaoDB to generate new 

features has the advantages of correcting batch effects for integrated annotation across 

datasets. In the next chapter, we extended the use of MACA to standardization of cell-type 

annotation across datasets. Here, we conclude that MACA is a suitable tool for automatic 

cell-type annotation that can aid both experts and non-experts in rapid annotation of their 

single-cell datasets. 
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CHAPTER II 

MARKER-BASED AND MODEL-FREE APPROACH FOR 

STANDARDIZATION AND INTEGRATION OF SINGLE-CELL 

TRANSCRIPTOMICS DATA 
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Abstract 

Single-cell transcriptomics datasets from the same anatomical sites generated by different 

research labs are becoming mainstream. However, fast, and computationally inexpensive 

tools for standardization of cell-type annotation and data integration are still needed to 

increase research inclusivity. To standardize cell-type annotation and integrate single-cell 

transcriptomics datasets, we have built a fast, model-free integration method called MASI 

(Marker-Assisted Standardization and Integration). MASI can run integrative annotation 

on a personal laptop for approximately one million cells, providing a cheap computational 

alternative for the single-cell data analysis community. We demonstrate that MASI 

outperforms other methods based on speed, and its performance for the tasks of data 

integration and cell-type annotation is comparable or even superior to other existing 

methods. We apply MASI for integrative lineage analysis and show that it preserves the 

underlying biological signal in datasets tested. Finally, to harness knowledge from single-
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cell atlases, we demonstrate three case studies that cover integration across research 

groups, biological conditions, and surveyed participants, respectively. 

Introduction 

Single-cell RNA-seq (scRNA-seq) technologies have rapidly evolved over the last decade. 

Numerous studies have demonstrated the utility of single-cell transcriptomics datasets in 

improving our understanding of cellular heterogeneity and molecular mechanisms at 

unprecedented resolution. Over the past years, many single-cell datasets have been made 

available from different research groups, using multiple single-cell platforms, and covering 

diverse biological conditions. Global collaborations, for example the Human Cell Atlas 

project, further make profiling millions of cells possible (Rozenblatt-Rosen et al., 2017). 

However, this trend of increasing data generation also introduces the challenge of data 

integration. Deep-learning-based approaches provide many solutions to integrate single-

cell datasets (Kimmel and Kelley, 2021; Lopez et al., 2018; Lotfollahi et al., 2021; Xu et 

al., 2021a). Additionally, their availability to a wider research community is still limited 

due to the computational cost. Besides the need to reduce computational burden, we also 

face another challenge of standardizing cell-type annotation for data integration. Different 

research groups have their own practices for cell-type annotation. The same cellular system 

profiled by different research groups could have different cell-type annotations. For 

example, Litviňuková et al.  defined 9 major cell types and 27 sub-types, while a similar 

atlas-level study by Tucker et al. defined 17 cell-types for the cardiovascular system 

(Litviňuková et al., 2020; Tucker et al., 2020b). Without the standardization of cell-type 

annotation, it is hard to establish agreement within the science community. This is also a 
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pressing issue for integrating COVID-19-related single-cell transcriptomics datasets that 

have been generated by researchers across the globe to understand the SARS-CoV-2 

disease mechanism (Chan Zuckerberg Initiative Single-Cell et al., 2020; Chua et al., 2020).  

To address these issues in integrative analysis of scRNA-seq data, we propose a fast, 

model-free method for standardization and integration of cell-type annotation. Our method 

relies on using putative cell-type markers from reference data to uniformly annotate query 

datasets, as putative cell-type markers are reliable cell-type indicators and should hold a 

constant truth across different studies. Because of its simplicity, our method can easily 

accommodate annotation for millions of cells using limited computational resources. Thus, 

we vision our tool could reach to a wider range of single-cell researchers who may not have 

advanced computational resources. 

Result 

Benchmark impacts of data processing on batch correction 

In our previous study, we found that converting the gene expression matrix to cell-type 

score matrix through a scoring method PlinerScore (Pliner et al., 2019) based on cell-type 

markers in PanglaoDB (Franzén et al., 2019a) can be used for integrative cell-type 

annotation (Xu et al., 2021b). The results in our previous study suggested a simple data 

processing pipeline could address batch effects within scRNA-seq data for integrative 

analysis. Here, we first wanted to examine how different processing steps may have 

impacts on revealing cell-type separation and batch-mixing. For this, we selected 4 batch-

involved datasets of 4 tissues and tested 10 different processing pipelines for revealing cell-

type separation and batch-mixing (Figure 2.1). The #1 pipeline is the most basic data 
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Figure 2.1. Illustration of 10 analysis pipelines for scRNA-seq data. Colored boxes 

highlight specific practices in a pipeline. 
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processing for scRNA-seq analysis, which does not take batch information into 

consideration for calculating the highly variable genes. The #2 pipeline differs from #1 in 

terms of identifying highly variable genes (HVG) by batch and only including shared 

HVGs in downstream processing. For #3 and #4 pipelines, we introduced cell-type markers 

that are obtained from either PanglaoDB or a specific reference data, and we only included 

those marker genes in the downstream analyses. For #5 and #6 pipelines, we further 

converted the gene expression matrix to a raw cell-type score matrix containing cell-types 

in PanglaoDB or in the specific reference data. In pipeline #7 and #8, we added a 

transformation process proposed by Pliner et al. (Pliner et al., 2019), before converting the 

gene expression matrix to a cell-type score matrix. #9 pipeline is a combination process of 

#2 and #8 pipelines. Deep-learning-based batch correction methods demonstrated a 

considerable success to integrative analysis of scRNA-seq data, and we noticed that the 

frequent practice across these methods is use of batch normalization layer and non-linear 

activation layer, which splits the whole dataset into multiple mini-batches, standardizes 

cells in each batch, and transforms the outcome with a non-linear activation function 

(Kimmel and Kelley, 2021; Lopez et al., 2018; Lotfollahi et al., 2021; Lotfollahi et al., 

2019; Xu et al., 2022a). This batch normalization and non-linear activation process do not 

require weight training, and we included it into the #10 pipeline.  

These 10 pipelines were evaluated in terms of how well these pipelines preserve cell-

type structure while mixing batches (Figure 2.2). We defined cell-type silhouette score to 

quantify how the processing pipeline reveals cell-type structure and batch entropy mixing 

score to evaluate how well batches are mixed. Based on our benchmark, we observed that 
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Figure 2.2. Benchmarking of impacts of 10 analysis pipelines on batch correction. Cell-

type silhouette score (column) measures how well a pipeline perverse cell-type 

variation, and batch entropy mixing score (row) quantifies how well a pipeline mixed 

cells from different batches. Dots located in the top right should present good integration 

outcomes. 
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pipelines that use conversion using cell-type markers either obtained from PanglaoDB or 

from a specific reference data largely mixed different datasets better, and revealed cell-

type structure (pipeline #5, #6, #7, and #8), while calling HVG by batch (pipeline #2) and 

using cell-type markers (pipeline #3 and #4) alone resulted in a lower batch entropy mixing 

score. We also noticed that the pipelines with PlinerScore (pipeline #7 and #8) had a slight 

improvement from the raw cell-type score pipelines (pipeline #5 and #6). Both pipeline #9 

and #10 have a higher batch entropy mixing score, but a lower cell-type silhouette score. 

For a good balance of cell-type silhouette and batch entropy mixing, we selected #8 as the 

processing pipeline for mapping cell-type labels for a query dataset when a reference is 

available. 

Workflow of MASI for integrative analysis 

To annotate cell-types for a query dataset based on a fully annotated reference dataset, we 

propose a new workflow termed MASI. MASI 1) identifies cell-type marker genes from 

the reference dataset, 2) processes data with the pipeline #8, 3) annotates cell types via 

MACA (Xu et al., 2021b), and 4) performs other downstream integrative analyses (Figure 

2.3A). Briefly, MACA is a marker-based cell-type annotation tool that converts a cell by 

gene matrix to cell by cell-type matrix, yielding a cell-type label for each identified cell 

cluster. The first step of the MASI workflow is to identify marker genes for each cell type 

via differential expression (DE) tests if author-verified markers are not available. To select 

the DE method that facilitates accurate cell-type annotation through MACA, we 

benchmarked 12 DE tests, including common DE tests implemented in Scanpy (Wolf et 

al., 2018) and Seurat (Stuart et al., 2019), and two newly proposed methods COSG (Dai et 
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Figure 2.3. Integrative annotation pipeline through MASI. A, A workflow of integrative 

annotation through MASI, including marker identification from reference data, label 

transferring by MACA, and downstream integrative analyses. B, Ensemble approach to 

identify robust cell-type markers from reference data. N DE test outcomes are 

aggregated to get final ranked marker list. C, Parallel computation for fast annotation to 

accommodate large-scale scRNA-seq data. 
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 al., 2022) and Cepo (Kim et al., 2021). For the 4 benchmark datasets, we found that marker 

genes obtained from these 12 DE tests have varying performances in terms of predicting 

cell types using MACA (Figure 2.4). This is consistent with results shown in other 

benchmark studies on DE tests (Mou et al., 2020; Soneson and Robinson, 2018; Squair et 

al., 2021), where none of single DE tests can faithfully identify reliable cell-type markers 

for all single-cell data. To account for influence by single DE test, we decided to construct 

ranked cell-type markers via an ensemble approach (Figure 2.3B and see Method in this 

chapter). Additionally, to accommodate large-scale scRNA-seq data, we reframed the 

MACA into a parallel manner by splitting data into multiple batches and distributing 

annotation onto multiple CPU cores (Figure 2.3C). This enables MACA to perform 

integrative analysis for large-scale scRNA-seq with limited computational resources. 

Benchmarking cell-type annotation and data integration 

We first benchmarked MASI and other selected methods using the 4 mixed-batch datasets 

that include a human pancreas data across 5 scRNA-seq platforms (Baron et al., 2016; Grün 

et al., 2016; Lawlor et al., 2017; Muraro et al., 2016; Segerstolpe et al., 2016), human 

hematopoietic data across 4 studies (Freytag et al., 2018; Oetjen et al., 2018; Sun et al., 

2019), human heart atlas (Litviňuková et al., 2020), and mouse brain data across 4 studies 

(Rosenberg et al., 2018a; Saunders et al., 2018; Schaum et al., 2018; Zeisel et al., 2015). 

The human heart atlas data were collected from two institutes and covered single-cell, 

single-nuclei, and CD45+-enriched data. We selected linear and non-linear support vector 

machine (SVM) classifiers as supervised methods for benchmarking as a benchmarking 

study have previously demonstrated that SVM outperformed most sophisticated cell-type 
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Figure 2.4. Benchmarking of impacts of 12 DE tests on MACA-based cell-type 

annotation. Cell-type markers are identified from a reference data using a specific DE 

test. Then, MACA annotates target data with markers identified by this specific DE test. 

Macro F1 score is reported to show how compatible the DE test is to MACA-based cell-

type annotation. 
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classification methods (Abdelaal et al., 2019). scNym (Kimmel and Kelley, 2021) and 

scArches (Lotfollahi et al., 2021) are semi-supervised deep learning methods for cell-type 

annotation and data integration, and we also included these two methods in our benchmark. 

For a fair comparison, our benchmark study was performed on a local workstation with 

64GB memory and Nvidia Quadro RTX 6000 as GPU support. Of note, both scNym and 

scArches use GPU to speed up computation, while MASI will not use GPU for computing. 

We first focused on how well mapping cell-type labels from reference data to query data 

is done by these methods. We used macro F1 and overall accuracy to quantify the 

performance of these methods in terms of how accurate annotation is for each cell type and 

how accurate annotation is for the overall dataset. We found that all methods have similar 

performance in terms of overall accuracy, but MASI has higher macro F1 scores across all 

datasets in our benchmark (Figure 2.5A). This suggests an advantage of MASI in 

annotating non-major cell types, considering most single cell data are class imbalanced. 

Next, we evaluated how well the representations learned by these methods reveal cell-type 

structures while mixing batches, using cell-type silhouette score and batch entropy mixing 

score. Here, MASI demonstrated a good balance between capturing cell-type variation and 

batch mixing (Figure 2.5B). 

Dependence on choice of reference dataset 

Given the high dependence on reference data for cell-type marker identification, MASI 

will not be able to annotate cell types in query data that have not been seen in reference 

data. However, it is still worth answering if a cell-type score matrix constructed using the 

reference data can preserve cell-type structure for query data, even though query data  
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Figure 2.5. Batch correction and label transferring benchmarks. A, Comparison of label 

transferring for MASI, supervised, and semi-supervised methods. ACC: overall 

accuracy. Macro F1 is average of F1 scores per cell type. A higher score in both metrics 

suggests better cell-type prediction. B, Comparison of batch correction for MASI, 

scNym, and scArches scANVI. Cell-type silhouette score measures how well the 

integrated representation by these methods preserves cell-type variation, while batch 

entropy mixing score measures how well the same cell type from different batches is 

mixed. 
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contains unseen cell types. To understand the impact of choice of reference dataset on the 

cell-type annotation in the query dataset, we swapped reference data from Oetjen et al. to 

10x Genomics data in the human hematopoietic benchmark dataset. The 10x Genomics 

data has only 12 cell types, while Oetjen et al. identified16 cell types in their original report 

(Oetjen et al., 2018). Thus, the query data would contain 4 extra unseen cell types. We 

performed marker gene identification and transformed the gene expression matrix to cell-

type score matrix as above. We observed that the 12-dimension cell-type score matrix built 

upon the 10x Genomics dataset as reference can reveal cell-type structure for the Oetjen et 

al. data that have 16 cell types in total. However, as erythrocytes and erythroid progenitor 

cell-types are not present in the reference, MASI mislabeled them as CD14+ monocytes 

and HSPCs, respectively (Figure 2.6). We next asked if we could identify subtypes from 

MASI-reported cell types to match the author-reported annotation resolution. Here, we 

used SCCAF, a computational method that was previously proposed for the identification 

of putative cell types through a machine learning approach (Miao et al., 2020). The concept 

behind this machine learning is: if the clustering resolution reflects the number of true cell 

types within the data, a machine learning classifier can achieve a high accuracy with the 

clustering label. We applied SCCAF to identify potential subtypes for each major cell type 

identified by MASI. We further evaluated how these three approaches, MASI annotation, 

SCCAF identification, and SCCAF+MASI annotation respectively, revealed a similar 

annotation resolution by calculating ARI and NMI against the author’s annotation. We 

found that SCCAF+MASI annotation matches the author’s annotation resolution more than 

MASI annotation and SCCAF identification alone (Figure 2.6). To summarize cell-type 
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Figure 2.6. Comparison of annotation resolution for MASI, SCCAF, and combination 

of SCCAF and MASI. 10X data is used as reference for label transferring. Cluster 

identification through SCCAF is based on 12-dimension cell-type score matrix. SCCAF 

is applied to MASI-reported annotation to further identify subtypes. ARI and NMI are 

calculated by comparing method-reported annotation with author-reported annotation. 
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identification, we conclude that the choice of reference data is critical to the performance 

of MASI. Moreover, to unravel potential subtypes, users can combine SCCAF and MASI 

to reach a finer annotation. 

Annotation of spatial transcriptomics data with MASI  

Considering the capacity of MASI in integration of transcriptome data, we wonder if this 

also applies to sequencing-based spatial resolved transcriptome data. Thus, we examined 

this possibility in mapping cell type labels from scRNA-seq data to sequencing-based 

spatial transcriptomics data. We tested MASI on spatial hippocampus data profiled by 

Slide-seqV2, since Slide-seqV2 reaches a higher resolution of spatial profiling than 10X 

Visium (Stickels et al., 2021). Integrating Slide-seqV2 with scRNA-seq further suggests a 

potential application of MASI in spatial transcriptomic analysis (Figure 2.7A). MASI was 

able to assign cell type labels to the mouse hippocampus Slide-seqV2 data (Figure 2.7B). 

Spatial expression patterns of marker genes for 5 distinct cell types also match with their 

cell locations in space (Figure 2.7C). 

Integrative temporal analysis using cell-type score matrix 

An advantage of using cell-type scores as features is that it condenses biological 

information from high-dimension gene feature space into a lower dimension cell-type 

feature space. Meanwhile, we showed above that converting gene feature space to cell-type 

feature space is useful for mixing batches coming from different studies. Thus, we could 

apply our approach to a continuous system and study lineage differentiation. For this, we 

selected three datasets for integrative lineage analysis: 1) human peripheral blood 



 

47 

 

  

Figure 2.7. Integration of scRNA-seq and Slide-seqV2 by MASI. scRNA-seq is used as 

reference and Slide-seqV2 data is annotated according to cell type identified in the 

reference. Markers for principal cells, endothelial tip and oligodendrocyte are selected 

for visualization, shown below cell-type annotation. 
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 mononuclear cell (PBMC) data of patients with Kawasaki disease obtained before and 

after IVIG (intravenous immunoglobulin) treatment (Wang et al., 2021b), and 2) zebrafish 

embryo from two studies that cover 13 major developmental stages (Farrell Jeffrey et al., 

2018; Wagner Daniel et al., 2018). 

Human hematopoiesis studies were in multi-condition design, and we were able to 

obtain cell-type markers from an externally annotated 10X Genomics PBMC data. We 

constructed an integrative lineage map with cell-type score matrices and visualized 

population density and cell-type score (Figure 2.8A). Using cell-type scores to interpret 

data, we were able to identify lineage changes, which is consistent with the original report. 

For example, we observed decreased B1 B-cell and CD16+ monocyte lineages as well as 

restored plasma cell and CD4+ T native lineages after IVIG treatment for acute Kawasaki 

disease patients (Figure 2.8A). 

Our integrative analysis for developing zebrafish embryos consists of data from two 

independent data sources that cover different time points of post fertilization. Wanger et 

al. collected cells from 7 stages including 4, 6, 8, 10, 14, 18, and 24 hpf (hours post 

fertilization), while Farrell et al. designed 12 finer stages ranging from 3 to 12 hpf (Farrell 

Jeffrey et al., 2018; Wagner Daniel et al., 2018).  We were unable to find an external marker 

gene reference for the two developing zebrafish datasets. Given they were in a time-series 

design, we reasoned that the end-point data should contain all mature cell types. Therefore, 

we intrinsically selected the end-point data that has 30 cell types as reference to identify 

cell-type markers. Next, we transformed the combined gene expression matrix into a 30 

cell-type score matrix and built an integrative lineage map of the developing zebrafish 
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Figure 2.8. Integrative lineage analysis using cell-type score matrix. A, Integrative 

lineage analysis for multi-condition human hematopoiesis study. Cell density, cell-type 

score, and batch id for human hematopoiesis samples under different conditions are 

visualized separately through the first two ForceAtlas2. B, integrative lineage analysis 

for two developing zebrafish embryo data. Cells are visualized through UMAP and are 

colored according to developmental time (left), study id (middle), and developmental 

stages (right). C, Components of 8 major lineages along the developmental stages in 

zebrafish embryo. All lineages sum up to 1 in one stage, and data from the two studies 

are visualized separately. D, Identification of lineage origin time. Visual investigation 

is conducted by matching emergence of a cell-type with the earliest developmental stage 

in the data. 
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embryo. Because of the design differences, we manually summarized all developmental 

stages in 13 major stages (Figure 2.8B). In total, 2 independent studies cover 30 cell types 

along the 13 developmental stages. Instead of assigning cells to these 30 cell types, we 

annotated them as 8 major lineage types using MASI. The choice for these 8 major cell-

types was based on the lineages observed in 24 hpf. Markers for these 8 major lineage types 

were also identified from data at the 24 hpf time point. We then visualized how lineage 

components change along the developmental timeline (Figure 2.8C). First, we found that 

the two studies are largely consistent. Second, we observed a decline of germline and 

lineage diversification along these developmental stages (Figure 2.8C). We further 

investigated the original time point of different cell lineages based on our integrated lineage 

map and found that the development of germline can be retrieved back at least at the 3 hpf 

(Figure 2.8D). In Wagner et al., the earliest time point at which germline cells were 

observed is 4 hpf. However, in Farrell et al., the authors report that the germ layer appears 

before 4 hpf and that many other lineages do not separate until 4 hpf. This is consistent 

with our finding from the integrated lineage map, where we show that germline cells are 

observed at 3 hpf and are the major cell lineage component until that time point (Figure 

2.8C and D).  The notochord defines the longitudinal axis of the embryo and determines 

the orientation of the vertebral column, and our analysis suggests the notochord emerges 

at around 7 hpf, while both Farrell et al. and Wagner et al. showed emergence of the 

notochord takes place between 6hpf and 8hpf. We also observed that epidermal lineage 

appears at 3 hpf (Figure 2.8C and D), consistent with Farrell et al. who observed this 

epidermal lineage at 3.3 hpf. Additionally, we observe that non-neural ectoderm separates 
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from epidermal cells at 12 hpf in our analysis, as seen in Farrell et al. Taken together, these 

three analyses for temporal datasets using MASI shows a simple and intuitive approach for 

integrative lineage analysis. 

Case 1: Using human heart atlas for integration of single-cell human heart across 

studies 

Tucker et al. (Tucker et al., 2020b) and Litviňuková et al. (Litviňuková et al., 2020) provide 

two atlas level resources for human heart data at single-cell resolution. In addition, other 

human heart datasets are also available (Cui et al., 2019b; Wang et al., 2020c). However, 

these studies did not use the same cell-type naming style and reported annotation at 

different resolutions. The human heart atlas identified 27 subtypes while Tucker et al., (17 

subtypes), Wang et al. (5 cell types), and Cui et al. (9 cell types) reported different numbers 

of cell-types in their dataset (Cui et al., 2019b; Litviňuková et al., 2020; Tucker et al., 

2020b; Wang et al., 2020c). We think uniform annotation of cell-type labels and batch-

mixing of these datasets can yield insights into common themes and inter-human variability 

across these datasets. Since the human heart atlas data revealed the greatest number of 

subtypes, we chose human heart atlas data as reference. Because cell-type naming and 

annotation resolution vary among these studies, we changed to use ARI and NMI for 

evaluation. We found all methods compared here have similar performance for mapping 

cell-type labels to Tucker et al., but MASI shows better outcome than the other 4 methods 

in both Wang et al. and Cui et al. (Figure 2.9A). Moreover, both Wang et al. and Cui et al. 

have distinct difference in the number of cells profiled and both have a lower annotation 

resolution than Litviňuková et al. and Tucker et al. Relying on a greater resolution of 
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Figure 2.9. Transferring human heart atlas for integration of single-cell human heart 

across research groups. A, Comparison of label transferring for MASI, supervised, and 

semi-supervised methods. ARI and NMI are calculated by comparing method-reported 

annotation with author-reported annotation in a study-wise manner. B, Visualization of 

the integrative annotation by MASI. Cells are colored according to MASI-reported cell-

type annotation. C, Visualization of integration by MASI. Cells are colored according 

to study id. D, confusion matrix of MASI-reported annotation against author-reported 

annotation. Confusion matrix is normalized to have column sum as 1. Row names use 

the naming style of human heart atlas, and column names remain the original naming 

styles of Tucker et al, Wang et al, and Cui et al data. 
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Litviňuková et al. data, we were able to level up annotation for the other 3 studies (Figure 

2.9B). We visualized integration via MASI and observed no distinct batch differences 

(Figure 2.9C). We noticed MASI annotated several cells in Tucker et al. as fibroblast while 

the author-reported annotation for these cells includes cardiomyocyte, endothelium, and 

neural cells (Figure 2.9D).  With MASI, we identified pericyte in Wang et al. and natural 

killer cell in Cui et al., which were not reported by authors (Figure 2.9D). 

Case 2: Using human kidney atlas for integration of single-cell human kidney across 

multiple conditions 

The first human kidney atlas profiled 27 distinct cell types in mature kidney (Stewart 

Benjamin et al., 2019). This atlas study provides a good reference to understand cellular 

irregularities in kidney diseases. So far, independent single-cell studies have been 

conducted to reveal mechanisms in different kidney diseases (Arazi et al., 2019; Kuppe et 

al., 2021; Wilson et al., 2019; Wu et al., 2018a). An approach that can provide an 

integrative view for multiple kidney diseases may further add an insight into how cellular 

irregularities vary among different kidney diseases. We used kidney atlas data as reference 

and mapped cell-type labels to human kidney data that were collected under different 

conditions, including CKD (chronic kidney disease) and DKD (diabetic kidney disease). 

Benchmarking in this task showed MASI has better agreement with author-reported 

annotations with consistency (NMI values of 0.49, 0.648, and 0.728, respectively) (Figure 

2.10A). Overall mapping, cell type standardization and batch-mixing results are shown in 

Figure 2.10B and C. Next, we focused on the human DKD data, which came with its control 

set. Population density map suggested decrease of proximal tubule (Figure 2.10D) and 
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Figure 2.10. Transferring human kidney atlas for integration of single-cell human 

kidney across conditions.  A, Comparison of label transferring for MASI, supervised, 

and semi-supervised methods. ARI and NMI are calculated by comparing method-

reported annotation with author-reported annotation in a study-wise manner. B, 

Visualization of the integrative annotation by MASI. Cells are colored according to 

MASI-reported cell-type annotation. C, Visualization of integration by MASI. Cells are 

colored according to study id. d, Population densities in DKD and control samples. Cell 

type annotation is shown on the left panel. Cell type population densities of DKD and 

control samples are presented separately to highlight difference of cell type populations. 
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 increase of immune cells (Figure 2.10E), consistent with an increase of immune response 

identified in DKD patients. 

Case 3: transferring human lung atlas for integration of single-cell COVID19 data 

across participants 

Our third MASI application is transferring knowledge learned from human lung atlas to 

understand the global COVID19 pandemic at cellular level among healthy and COVID19 

participants. The human lung atlas data served as reference data with 59 identified subtypes 

(Travaglini et al., 2020). Using this annotation, we aimed to annotate 80 COVID19 samples 

collected from nasal swabs (58 participants and 32818 cells) and airways across different 

individuals (22 participants and 143168 cells) (Chan Zuckerberg Initiative Single-Cell et 

al., 2020; Chua et al., 2020). These COVID19 data included both negative (21 participants) 

and positive samples (59 participants) from multiple research institutes. Due to cell-type 

annotation and resolution differences, we cannot directly compare cellular differences 

between healthy and COVID19 participants. We used MASI to annotate the COVID19 

data to match the annotation resolution of human lung atlas. Again, we benchmarked MASI 

with two SVM classifiers, scNym, and scArches, using ARI and NMI as evaluation 

metrics. We found MASI has greater agreement with author-reported annotations for all 

COVID19 data than the other 4 methods (Figure 2.11A). Since cell-type annotations for 

all participants were leveled up to the same resolution, we were able to directly compare 

the cellular differences between healthy and COVID19 participants. We observed distinct 

cellular components between healthy and COVID19 groups, and the distinct cellular 

component is consistent across participants within the same group (Figure 2.11B). Then, 
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Figure 2.11. Transferring human lung atlas for integration of single-cell COVID19 data 

across individuals. A, Comparison of label transferring for MASI, supervised, and semi-

supervised methods. ARI and NMI are calculated by comparing method-reported 

annotation with author-reported annotation in a study-wise manner. B, Cellular 

components of healthy and COVID19 participants. Each column represents one 

individual. C, Cellular component comparison of healthy and COVID19 participants. 
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we quantified the changes of cellular composition for all cell types and found an increase 

in the proportion of Goblet cells and a decrease in ciliated cell proportions in the COVID19 

group (Figure 2.11C). This discovery may explain other investigations of SARS-CoV-2 

virus targeting ciliated cells via ACE2 (Ahn et al., 2021; Lee et al., 2020). 

Discussion 

Here, we present MASI, a new tool to quickly and accurately annotate single-cell datasets 

based on marker genes obtained from a reference dataset. We show that MASI can also be 

used for batch-mixing and serve as a data integration method for single-cell transcriptomics 

data. We benchmarked MASI with supervised and semi-supervised methods, and our 

results show that performance of MASI is comparable or even superior to supervised/semi-

supervised methods based on the benchmarking datasets used. We also showed that cell-

type scores can be used as features for integrative lineage analysis and demonstrated its 

intuitive interpretability. Finally, we showed the utility of MASI in three different case 

studies of data integration covering different research groups, biological conditions, and 

surveyed participants. Like other supervised and semi-supervised methods replying on 

reference data, accurate annotation via MASI is also dependent on the quality of reference 

data. Thus, the choice and resolution of the reference are critical to downstream analysis. 

If query data has unseen cell types not in reference, MASI in combination with SCCAF 

can be used to identify subtypes within major cell-types. Additionally, we showed that 

MASI can also be applied for cell-type prediction in spatial transcriptomics datasets using 

comparable single-cell transcriptomics datasets as reference.  
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There are many well-established integration methods available to address batch effects 

in scRNA-seq datasets, for example Seurat, Harmony, and LIGER (Korsunsky et al., 2019; 

Liu et al., 2020; Stuart et al., 2019). Additionally, some deep learning-based methods such 

as HDMC and CarDEC are also available (Lakkis et al., 2021; Wang et al., 2021a). In next 

chapter, I will also show another deep learning approach to address batch effects. While in 

this chapter, we rigorously tested cell-type score-based integration via MASI across 

various single-cell platforms, cytoplasm/nuclei, research groups, conditions, and 

individuals. Our analyses suggest marker-based feature engineering can be useful for 

reference-based cell-type annotation, batch-mixing, and data integration. We also 

demonstrate that integration via MASI preserves biological information for lineage 

analysis with 3 different examples. 

Overall, MASI is easy to set up and requires limited computation resources to run. It 

can be used for reference-based cell-type annotation and batch-mixing, which could 

facilitate quick hypothesis-driven exploration of diverse datasets obtained from different 

labs. Moreover, the democratization of single-cell transcriptomics data (larger cellular 

output with lower cost) could empower researchers even with limited computational 

resources to investigate millions of single cells among diverse biological systems. 

Methods 

Data preprocessing 

Raw gene expression count data were ‘LogNormalized’, which divides the total count in 

that cell and multiplies it by a scale factor of 10 000 (in all our analyses), followed by log-

transformation to get the normalized expression matrix. For implementing MASI, we 



 

59 

 

skipped the step of calling highly variable genes, because only the identified marker genes 

were used for integrative annotation. For training scNym and scArches, we used top 5000 

highly variable genes by batch, which were calculated using function 

“pp.highly_variable_genes” in Scanpy (Wolf et al., 2018). 

Marker rank aggregation 

We considered two ensemble marker ranking schemes. In the first scheme, the top 20 

marker genes from each DE test were compiled together. For the second scheme, only 

statistically significant marker genes based on the p-values corrected for multiple 

hypothesis correction were considered. In the first scheme, we searched the consensus 

ranking via robust rank aggregation (Kolde et al., 2012). In the second scheme, rank 

aggregation was done through Lancaster combination (Li et al., 2021). 

Weighing markers 

When data to be annotated contains distinct cell types and cell types do not share marker 

genes, we reasoned that weighing markers would not influence the final annotation by 

MASI. However, this can be beneficial to distinguish cell subtypes that share common 

markers, for example subtype T cells. We used a simple weighing strategy that returned 

good label transferring. Given N markers for cell type A, the 1st marker in this ranked list 

will contribute 100% of its expression to the cell-type score of A, while the Nth marker 

only contributes 50% of its expression. For the ith marker in the rest, we form this discount 

calculation 𝑨 = 𝟏 − (
𝒊

𝑵
) ∗ (

𝟏

𝟐
) to get their weights in cell-type A. Beside the weighing 
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strategy above, other weighing strategies, including Rank Order Centroid and Ratio 

method, can also be considered for customization. 

Converting gene expression matrix to cell-type score matrix 

Cell-type score for a given cell-type A with N expressed markers is calculated by summing 

up the expression of all N markers with consideration of weighing markers as above. This 

is defined as the raw cell-type score. From this, the PlinerScore is calculated by adding a 

TF-IDF transformation and suppressing expression values of a marker gene to zeros if they 

are below the X-percentile of expression values across all cells before the raw cell-type 

score conversion. The default value for PlinerScore threshold is 0.25 as the percentile 

threshold (Pliner et al., 2019). 

Classification by linear and non-linear SVM 

Both linear and non-linear SVM classifiers can be impacted by feature selection. As a 

benchmark reported, linear and non-linear SVM can have varying prediction accuracies for 

scRNA-seq data, when different feature selection processes were applied (Ma et al., 2021). 

Nevertheless, using more discriminative features should improve the accuracy of these two 

supervised models. Instead of using highly variable genes and PCA-reduced features, we 

used the same cell-type markers that were used for MASI to train both linear and non-linear 

SVM classifiers. 

Transfer learning through MASI 

Once cell-type markers are identified, Mapping cell-type labels to query data is performed 

using MACA (Xu et al., 2021b). Briefly, for each cell, MACA generates two labels - a per-
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cell cell-type Label 1 and group-based clustering Label 2. Then, MACA maps clustering 

Label 2 to cell-type Label 1 to get the overall cell-type annotation. In the previous, we used 

different clustering parameters to generate multiple Label 2s, for the purpose of 

reproducibility. In this study, we also ran Louvain community detection with a range of 

clustering parameters to get multiple clustering Label 2s. These include clustering 

resolution 3, 5, 7 with 5, 10, 15 as neighborhood sizes to over-cluster cells. With multiple 

clustering Label 2s, we were able to map them to Label 1 and get a more reproducible 

ensembled cell-type annotation. To accommodate for large-scale scRNA-seq data, we split 

the whole data into N batches and ran MACA with one batch per CPU core. 

Transfer learning using scNym and scArches 

Both scNym and scArches are deep-learning-based transfer learning methods. Therefore, 

an optimal outcome for a specific data might require customized parameter tuning. 

However, for benchmarking, we used default pipelines of both methods for all data 

involved in this study. Respective tutorials can be found at their host GitHub. 

2D visualization using UMAP 

To visualize integrations by these three methods, we used the same parameter setting for 

all datasets. We set up metrics “cosine” to define distance, cells within 0.1 were considered 

as neighbors, and minimum 15 cells form a community. 

Integrative lineage analysis 

We used ForceAtlas2 with PAGA (partition-based graph abstraction) initialization to 

layout integrative lineage maps with cell-type scores instead of any other hidden space 
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features, like PCA (Principal Component Analysis) representation or representation from 

neural network model (Jacomy et al., 2014; Wolf et al., 2019). To initialize PAGA, we 

performed Louvain community detection to assign cells as multiple meta cells. We used 

resolution 5 for Louvain community detection to get enough meta cells. Once cells are laid 

out on the ForceAtlas2 space, we directly visualize lineage paths with cell-type scores, 

without clustering cells into cell types. 

Evaluation metrics 

Overall accuracy: Acc=(Total number of correction predictions)/(Total number of cells).  

Macro F1: 𝑭𝟏 =
𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐫𝐞𝐜𝐚𝐥𝐥

(𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐫𝐞𝐜𝐚𝐥𝐥)
∗ 𝟐. F1 was calculated for each cell type, then macro F1 

is the average of F1 scores for all cell types. Because this metric doesn’t consider class 

weights for imbalanced data, a higher macro F1 could suggest correction predictions for 

both dominant and non-dominant cell types. 

Cell-type silhouette score: We first used function “sklearn.metrics.silhouette_score” in 

scikit-learn Python package to calculate a typical silhouette score. The author-reported cell 

type label served as the ground truth. This calculation uses the hidden space returned by 

integration methods with cell-type label. Both scNym and scArches learned a 10-

dimension hidden space representation by default. The lower representation by MASI 

depends on the number of unique cell type labeled available in the reference dataset. Next, 

we rescaled the score from 0 to 1 by (1+S)/2 to defined as cell-type silhouette score. The 

higher the score is, the better cell-type variation is captured. 

Batch entropy mixing score(Haghverdi et al., 2018): 𝑬 = ∑ 𝒙𝒊𝒍𝒐𝒈(𝒙𝒊)
𝒄
𝒊=𝟏 . In this study, 𝒙𝒊 

is the proportion of cells from batch 𝒊 in a region of the first two UMAPs, and ∑ 𝒙𝒊
𝒄
𝒊=𝟏 = 𝟏. 
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This score should quantify how well mixed cells from different batches are in a region. The 

same as Cell-type silhouette score, calculation of Batch entropy mixing score is based on 

the hidden space returned by integration methods with batch information as label. The 

higher the score is, the better mixing. 

Adjusted rand index (ARI): The rand index (RI) measures a similarity or agreement 

between two clustering labels. The ARI then is defined through ARI=(RI-expected 

RI)/(max(RI)-expected RI). In this study, we used ARI to measure the agreement between 

cell-type annotation reported by a transfer learning method and the author-reported cell-

type annotation. 

Normalized mutual information (NMI): Like ARI, NMI also qualifies the agreement 

between two clustering labels. It is defined as 𝑵𝑴𝑰 =  
𝑰 (𝑷,   𝑻)

√𝑯(𝑷)𝑯(𝑻)
. 𝑷 and 𝑻 are empirical 

categorical distributions for the predicted and real clustering, 𝑰 is the mutual entropy, and 

𝑯 is the Shannon entropy. 



 

64 

 

CHAPTER III 

MUTUAL INFORMATION LEARNING FOR INTEGRATION OF 

SINGLE-CELL OMICS DATA 
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 A version of this chapter is a manuscript by Yang Xu, Priyojit Das, and Rachel 

Patton McCord. This manuscript was published in Bioinformatics. 

This chapter was revised to be different from the original manuscript. Y.X. 

conceived and developed the method with guidance from R.P.M. and produced all the 

figures. P.D. computationally processed raw sequencing data for input to SMILE. Y.X. and 

R.P.M. wrote the manuscript with input from P.D. 

Abstract 

Deep learning approaches have empowered single-cell omics data analysis in many ways 

and generated new insights from complex cellular systems. As there is an increasing need 

for single cell omics data to be integrated across sources, types, and features of data, the 

challenges of integrating single-cell omics data are rising. Here, we present an 

unsupervised deep learning algorithm that learns discriminative representations for single-

cell data via maximizing mutual information, SMILE (Single-cell Mutual Information 

Learning). Using a unique cell-pairing design, SMILE successfully integrates multi-source 

single-cell transcriptome data, removing batch effects and projecting similar cell types, 

even from different tissues, into the shared space. SMILE can also integrate data from two 

or more modalities, such as joint profiling technologies using single-cell ATAC-seq, RNA-

seq, DNA methylation, Hi-C, and ChIP data. When paired cells are known, SMILE can 

integrate data with unmatched feature, such as genes for RNA-seq and genome wide peaks 

for ATAC-seq. Integrated representations learned from joint profiling technologies can 

then be used as a framework for comparing independent single source data. 
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Introduction 

Deep-learning-based single-cell analysis has gained great attention in recent years and has 

been used in a range of tasks, including accurate cell-type annotation (Ma and Pellegrini, 

2020), expression imputation (Arisdakessian et al., 2019), and doublet identification 

(Bernstein et al., 2020). In these tasks, deep learning showed some striking advantages. For 

example, in cell-type annotation, the automatic and accurate annotation using a deep 

classification model saves researchers from manual cell-type annotation (Kimmel and 

Kelley, 2021; Lopez et al., 2018; Ma and Pellegrini, 2020). Another application of deep 

learning is data imputation and denoising. Though there has been a dramatic improvement 

in scRNA-seq technology, the problem of measurement sparsity remains as a grand 

challenge in single-cell transcriptome data (Lähnemann et al., 2020). Due to the difficulty 

of modeling technical zero values and biological zeros, deep learning has become a more 

appealing alternative for this task. An autoencoder (AE) is a common artificial neural 

network that is used to learn representations for data in an unsupervised manner. Both 

DeepImpute (Arisdakessian et al., 2019) and DCA (Eraslan et al., 2019) adopt a variant of 

AE model to impute gene expression and de-noise scRNA-seq data. These approaches and 

many others are revealing the power of deep learning applied to single-cell omics datasets. 

Data integration is a rising challenge in single-cell analysis, as increasing numbers of 

single-cell omics datasets become available, and the types of omics data become more 

diverse. Consequently, data integration becomes a key research domain for understanding 

a complex cellular system from different angles (Argelaguet et al., 2021; Forcato et al., 

2021; Longo et al., 2021; Stuart et al., 2019). In single-cell transcriptomes, batch effects 
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are usually a prominent variation when comparing data from multiple sources and 

removing batch effects is a critical step for revealing biologically relevant variation. 

Besides integrating single-cell transcriptome data, integration of multimodal single-cell 

data is even becoming more important as technological breakthroughs make it possible to 

capture multiple data types from the same single cell. For example, sci-CAR and SHARE-

seq can simultaneously profile chromatin accessibility and gene expression for thousands 

of single cells (Cao et al., 2018; Ma et al., 2020b). scMethyl-HiC and sn-m3C-seq can 

profile DNA methylation and 3D chromatin structure at the same time at single-cell 

resolution (Lee et al., 2019; Li et al., 2019). However, these data types do not naturally 

share the same feature space: transcriptomes are described using genes as features, while 

chromatin accessibility is reported across all intergenic spaces. Therefore, integration of 

multimodal data is more challenging because of this feature discrepancy. Furthermore, a 

new technology named Paired-Tag now achieves joint profiling of gene expression and 5 

different histone marks for thousands of single nuclei (Zhu et al., 2021). This new 

technology brings the further challenge of integrating more than 2 modalities. 

Currently, there are 3 major approaches of integration for single-cell data integration: 

horizontal, vertical, and diagonal approaches, respectively. Argelaguet et al. outlined 

published methods in each category (Argelaguet et al., 2021). Horizontal approaches rely 

on feature anchors for integration. Methods in this category can address batch effects 

within multi-source single-cell transcriptome data or multimodal single-cell data 

integration, if shared features exist. Since independent single-cell assays over these years 

have generated most single-cell omics data, integrative analysis by horizontal approaches 
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is critical for a full use of these independent studies. On the other hand, vertical approaches 

will need cell anchors to learn the integration and have their unique niche when shared 

features do not exist across different data type, or matching features is counterintuitive. For 

example, in joint Methyl/Hi-C data, Hi-C data quantitates 2D interaction features across 

the genome while methyl measures the methylation level of genomic regions in 1D (Lee et 

al., 2019; Li et al., 2019). Either matching the 1D methylation features to 2D interaction 

features or vice versus is not practical. Meanwhile, horizontal approaches may not 

necessarily learn a shared space even though different data types can have shared features. 

In such case, vertical approaches are good alternatives for data integration. As for diagonal 

approaches, computational studies are showing a greater challenge, and there has not been 

a method that demonstrates a general use for most single-cell data integration. Though we 

expect to have an ideal diagonal method to solve most integration problems, horizontal and 

vertical methods are still the mainstream in data integration so far. 

To address challenges above in a single method, we designed a deep learning model, 

SMILE, that learns a discriminative representation for data integration in an unsupervised 

manner. In our approach, we restructured cells into pairs, and we aimed to maximize the 

similarity between the paired cells in the latent space. Because of this cell-pairing design, 

SMILE extends naturally into integration of multimodal single-cell data, where data from 

two sources (RNA-seq/ATAC-seq or Methyl/Hi-C) exist for each cell and thus form a 

natural pair. We demonstrated that SMILE can effectively project RNA-seq/ATAC-seq 

data, as well as Methyl/Hi-C data, into the shared space and achieve data integration. We 

demonstrate how our representation allows us to identify genes and regions of accessibility 
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that are critical for the mutual definition of distinctive cell types by these different data 

types. We also show how an integrated representation created using jointly profiled data 

can then be used to project and interpret single source data. Finally, we present a 

combinatorial use of SMILE models to integrate single-cell RNA-seq, H3K4me1, 

H3K9me3, H3K27me3, and H3K27ac data generated by Paired-Tag. In summary, SMILE 

performs as well or better than other methods designed for data integration while also 

having increased flexibility in terms of data input types. 

Method 

Architecture of SMILE, p(paired)SMILE and mp(modified paired)SMILE 

We proposed three different variants of SMILE models to serve different uses of single-

cell data integration (Figure 3.1). All three variants of SMILE have encoders as the main 

components for feature extraction. In SMILE, there is only one encoder. This encoder 

consists of three fully connected layers that have 1000, 512 and 128 nodes, respectively. 

Each fully connected layer is coupled with a BatchNorm layer to normalize output which 

is further activated by ReLu function. Different from SMILE, pSMILE and mpSMILE 

have another encoder that has the same structure as the one in SMILE but takes an input 

with different dimension. The use of two independent encoders (Encoder A and B) in 

pSMILE and mpSMILE is to handle inputs from two modalities with different features, for 

example RNA-seq and ATAC-seq. Therefore, pSMILE and mpSMILE do not require extra 

feature engineering to match features for inputs from two different data sources. Modified 

from pSMILE, mpSMILE has a duplicated Encoder A, which shares the same weights. 

Using duplicated encoders take advantage of the discriminative power of RNA-seq or  
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Figure 3.1. Architectures of 3 SMILE variants. A, Architecture of SMILE. Original 

input X represents a gene expression matrix where each row represents a cell, and each 

column stands for a gene. Random Gaussian noise is added to differentiate the input X 

into two Xs, which are the same except for the added noise. Encoder (green) projects X 

into 128-dimension representation z. Two independent fully connected layers (blue and 

grey) are stacked onto the encoder to further reduce z into 32-dimension output and K 

pseudo cell-type probabilities, respectively. B, Architecture of pSMILE. scRNA-

seq/scMethyl would be forwarded through Encoder A to produce representation za, and 

scATAC-seq/scHi-C would be forwarded through Encoder B to produce representation 

zb. Two one-layer MLPs in pSMILE are the same as those in SMILE. C, Architecture 

of mpSMILE. scRNA-seq or scMethyl data are forwarded through Encoder A to 

produce representation za, and scATAC-seq or scHi-C are forwarded through Encoder 

B to produce representation zb. mpSMILE has duplicated Encoder As, and cells in 

scRNA-seq/scMethyl part would be duplicated by adding gaussian noises and become 

self-pairs. 
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Methyl to learn a more discriminative representation. This is because we observed a 

compromise between the modality with more discriminative power and the other with less, 

and several other integration methods also show that giving more weight to RNA-seq data 

is critical for learning discriminative representation (Jain et al., 2021; Lin et al., 2021; Peng 

et al., 2021; Stuart et al., 2019). We stack two independent fully connected layers to the 

encoder(s), which further reduce the output from encoder(s) to a 32-dimension vector with 

ReLu activation and K pseudo cell-type probabilities with SoftMax activation. In this 

study, we set K to 25 for all datasets, based on the observation that most single-cell data 

would contain no more than 25 major cell-types unless it is an atlas-scale data. Meanwhile, 

though SMILE is fully unsupervised, it can be easily turned into a semi-supervised method 

with no extra modification of the model architecture, because of the incorporation of K 

pseudo cell-type probabilities. When cell-type labels are available for a proportion of data, 

K can be set as the number of known cell-types and the user can add a classification loss 

to reframe SMILE into semi-supervised learning. 

Next, we provide a detailed explanation about the architecture of SMILE (Figure 3.1A). 

The main component is a multi-layer perceptron (MLP) used as an encoder that projects 

cells from the original feature space X to representation z. To achieve this goal, SMILE 

relies on maximizing mutual information between X and z. Mutual information measures 

the dependency of z on X. If we maximize the dependency, we can end up using low-

dimension z to represent the high-dimension X. Contrastive learning is one approach to 

maximize mutual information, and it usually requires pairing one sample with a positive or 

negative sample for representation learning (Amid and Warmuth, 2019). Then, the goal is 
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to maximize similarity between the positive pair and dissimilarity between the negative 

pair in the representation z. Due to the lack of labels, pairing samples is a challenging task. 

However, treating a sample itself as its positive sample and any other cells as negative 

samples can be a shortcut for reframing the data into pairs, and Chen et al. demonstrated 

that such a simple framework can effectively learn visual representation for images (Chen 

et al., 2020a). In single-cell transcriptome data, we adopt the same framework to pair each 

cell to itself. To prevent each pair from being completely the same, we add gaussian noises 

to expression values of each cell. Then, we maximize mutual information by forcing each 

cell to be like its noise-added pair and to be distinct from all other cells. To implement this 

in the neural network, we used noise-contrastive estimation (NCE) as the core loss function 

to guide the neural network to learn (See Loss function in this chapter) (Wu et al., 2018b). 

We did not directly apply NCE on representation z, but further reduced z to a 32-dimension 

output and K pseudo cell-type probabilities, by stacking two independent one-layer MLPs 

onto the encoder. A one-layer MLP generating a 32-dimension vector will produce rectified 

linear unit (ReLU) activated output, and the other will produce probabilities of pseudo cell-

types with SoftMax activation. Finally, NCE was applied on the 32-dimension output and 

pseudo probabilities, independently. These two one-layer MLPs produce two independent 

outputs which both contribute to the representation learning of the encoder (Li et al., 2020). 

Once trained, the encoder serves as a feature extractor that projects data from the original 

space X to a low-dimension representation z. 

To apply SMILE to joint profiling data, we modified it into new architectures, pSMILE 

(Figure 3.1B) and mpSMILE (Figure 3.1C). These new architectures contain two separate 
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encoders (Encoder A and Encoder B). Encoder A projects RNA-seq or methylation data 

into representation za, while Encoder B handles projection of ATAC-seq or Hi-C into 

representation zb. We aim to learn za and zb that will be confined in the shared latent space, 

so we also apply the same one-layer MLPs to each, which further reduce them into 32-

dimension output and probabilities of K pseudo cell types. This is the same as we did in 

the basic SMILE model. Using the RNA/ATAC- or Methyl/Hi-C-joint data to train 

p/mpSMILE will be the same as using the self-paired data, except that we introduced two 

separate encoders to handle inputs from two modalities. Differentiating from pSMILE, 

mpSMILE has two duplicated Encoder As that share the same weights. In mpSMILE, 

besides pairing cells from RNA-sea/Methyl and their corresponding cells from ATAC-

sea/Hi-C, we will also do self-pairing for cells in RNA-seq/Methyl data as we did in 

SMILE, by introducing gaussian noise. As for the difference between pSMILE and 

mpSMILE, we provided experimental outcomes in Results in this chapter. 

Cell pairing 

SMILE takes paired cells as inputs. When using SMILE for integration of multi-source 

single-cell transcriptome data, we treat each cell itself as positive pair. To prevent the two 

cells in each pair from being completely the same, we add gaussian noise to differentiate 

them. Other noise-addition approaches should be applicable here. For example, randomly 

masking some expression values has been shown to an alternative way to learn 

discriminative representation for single-cell RNA-seq data (Ciortan and Defrance, 2021). 

Here, we choose gaussian noise, and the learning process will maximize the true 

similarities between the pair while minimizing the effect of gaussian noise. When using 
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pSMILE and mpSMILE for integration of multimodal single-cell data, we pair a cell from 

RNA-seq/Methyl with its counterpart from ATAC-seq/Hi-C. Since joint profiling 

quantifies two aspects of one single cell, we know that one cell in RNA-seq/Methyl has a 

corresponding cell in ATAC-seq/Hi-C. When RNA-seq and ATAC-seq come from two 

separate studies, the user may need to pair cells of the same cell type manually. Here, we 

suggest using “FindTransferAnchors” function in Seurat to generate cell pairs. Then, user 

can use these paired cells to train p/mpSMILE. 

Loss function 

Noise-contrastive estimation (NCE). The core concept of making cells resemble 

themselves resides in the use of NCE as the main loss function. In training, we divide a 

whole dataset into multiple batches, and each batch has N cells. For multi-source single-

cell transcriptome data, we differentiate each cell into two by adding random gaussian 

noise. Therefore, there are 2N cells in one batch. In each batch, each cell has itself as 

positive sample and the rest of 2(N-1) cells as its negative samples. For joint profiling data 

and in an N-pair batch, one of N cells in RNA-seq/Methyl has its corresponding cell among 

N in ATAC-seq/Hi-C as the positive sample and the rest of 2(N-1) cells summed from both 

RNA-seq/Methyl and ATAC-seq/Hi-C as negative samples. Let 𝑠𝑖𝑚 (𝑢, 𝑣) =  𝑢𝑇𝑣/

‖𝑢‖‖𝑣‖ denote the dot product between 𝐿2 normalized u and v. Then, NCE for a positive 

pair of examples (i,j) can be defined as (Eq. 1). 

𝐸𝑞. 1: 𝑙𝑜𝑠𝑠𝑖,𝑗 = − log
exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑗)/𝜏)

∑ exp (𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)2𝑁
𝑘=1 (𝑘≠𝑖)

 , where 𝜏 denotes a temperature parameter. 
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Mean squared error (MSE). We use MSE as additional loss function in p/mpSMILE to 

push the representation of ATAC-seq/Hi-C to be closer to the representation of RNA-

seq/Methyl in the latent space (Eq. 2). Of note, MSE alone is unable to drive the model to 

learn a discriminative representation. 

𝐸𝑞. 2: 𝑙𝑜𝑠𝑠𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑧𝑎 − 𝑧𝑏)𝑁

𝑖=1 , where 𝑧𝑎 and 𝑧𝑏are representations through Encoder 

A and B. 

Data integration through SMILE/pSMILE/mpSMILE 

We used “StandardScaler” in sklearn to scale all input data before training SMILE, except 

that the dimension-reduced Hi-C data has been scaled. We trained SMILE with batch size 

as 512 for all multi-source single-cell transcriptome data in this study, and the SMILE 

model can converge within 5 epochs in all cases, indicated by the total loss. In benchmark 

of integration of 4 joint profiling RNA-seq and ATAC-seq data, we use all cell pairs for 

training, and we trained p/mpSMILE for 20 epochs with batch size as 512. For sn-m3C-

seq data, we trained p/mpSMILE on whole data for 10 epochs with batch size as 512. For 

all experiments in this study, we used learning rate as 0.01 with 0.0005 weight decay. There 

are also 3 key parameters in all three SMILE variants, temperature  𝜏𝑁 for the 32-dimension 

output, temperature 𝜏𝐾 for the K pseudo cell-type probabilities, and variance of gaussian 

noise. In default setting, we fixed  𝜏𝑁 as 0.1, 𝜏𝐾 as 1, and gaussian variance as 1 for all 

integration by SMILE. For multimodal single-cell data integration by p/mpSMILE, we 

fixed gaussian variance as 1 across different datasets. Differently, we fixed  𝜏𝑁 as 0.05 and 

𝜏𝐾 as 0.15. A study published after our initial preprint provides detailed support that a 

fundamentally similar approach can learn discriminative representation for single-cell data 
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(Ciortan and Defrance, 2021). However, they did not extend their method to data 

integration, which is our focus in this study. 

Evaluation of data integration 

To evaluate batch-effect correction, we use ARI and silhouette score as the evaluation 

metrics. For ARI, we perform Leiden clustering to re-cluster cells using the batch-removed 

representation. Then, we compare the new clustering label with the cell-type label reported 

by the authors. For fair comparison with LIGER, Harmony, and Seurat, we use multiple 

resolutions to get the clustering label that has the highest ARI against author-reported cell-

type label, and report that ARI value as the performance of LIGER, Harmony, and Seurat 

in that data. For silhouette score, we defined batch silhouette and cell-type silhouette. Batch 

silhouette measures how well different batches align. We use batch information as labels 

to calculate a typical silhouette score S and then report its absolute value abs(S) as batch 

silhouette. Cell-type silhouette indicates how disguisable representation of cells from one 

cell-type are from other cell-types. Here, we use author-reported cell-type labels to 

calculate the typical silhouette score S and then transform it through (1+S)/2. Therefore, 

both batch and cell-type silhouette scores will range from 0 to 1. Batch silhouette scores 

closer to 0 indicate good batch correction, while cell-type silhouette scores closer to 1 show 

good cell-type separation. 

To evaluate integration of multimodal single-cell data, we also use the same silhouette 

scores as above, but we renamed batch silhouette as modal silhouette because we use 

modality information for calculation. Again, modal silhouette closer to 0 represents better 

mixing of RNA-seq and ATAC-seq data, while cell-type silhouette closer to 1 suggests 
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cells are separated by their cell-type no matter which modality they belong to. Meanwhile, 

we know each cell pair because of joint profiling. So, we also measure Euclidean distance 

of paired cells in the 2D UMAP space, before and after training, to show if paired cells 

become closer in the integrated representation. 

Evaluation of label transferring 

Once we have an integrated representation for multiple datasets, we can transfer labels 

from a known data to other unknown data. To evaluate label transferring, we use macro F1 

score. In integration of multi-source single-cell transcriptome data, we select one source as 

the training set to train a Support Vector Machine (SVM) classifier, and test the accuracy 

measured through macro F1 score in other sources. In joint profiling data, we reason a good 

integration should allow mutual label transferring, either from RNA-seq/Methyl to ATAC-

seq/Hi-C or back from ATAC-seq/Hi-C to RNA-seq/Methyl. So, we report a macro F1 

score for both transferring directions. We use the author-reported cell-type label as ground-

truth to train a SVM classifier on RNA-seq or Methyl and test it in ATAC-seq or Hi-C or 

vice versa.  

Processing of RNA-seq, ATAC-seq, Methyl, Hi-C, and histone marker data 

For RNA-seq data, raw gene expression count data was normalized through a 

‘LogNormalize’ method, which normalizes the raw count for each cell by its total count, 

then multiplies this by a scale factor (10,000 in our analysis), and log-transforms the result. 

Then, we use “highly_variable_genes” function in Scanpy to find most variable genes as 

input for SMILE (Wolf et al., 2018). For ATAC-seq data at peak level, we perform TF-
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IDF transformation and select top 90-percentile peaks as the input for SMILE. For ATAC-

seq data at gene level, we first use “CreateGeneActivityMatrix” function in Seurat to sum 

up all peaks that fall within a gene body and its 2,000bp upstream, and we use this new 

quantification to represent gene activity (Stuart et al., 2019). Then, we apply LogNormalize 

to gene activity matrix and find most variable genes as input for SMILE. For CG 

methylation data, we first calculate CG methylation level for all non-overlapping 

autosomal 100 kb bins across entire human genome. Then, we apply LogNormalize to the 

binned CG methylation data. For Hi-C data, we use scHiCluster with default setting to 

generate an imputed Hi-C matrix at 1MB resolution for each cell (Zhou et al., 2019). Due 

to the size of Hi-C matrix, we are unable to concatenate all chromosomes to get a genome-

wide Hi-C matrix. Therefore, we use a dimension-reduced Hi-C data of whole genome, 

which is implemented in scHiCluster. For histone mark data, we perform TF-IDF to 

transform the raw peak data and select top 95-percentile peaks as the input for SMILE. 

Downstream analysis 

We performed wilcoxon test to identify key differential genes/peaks and their ranking in 

mouse skin RNA-seq, ATAC-seq gene activity, and ATAC-seq peak data, using author-

reported cell-type label. We only selected top 15 genes in RNA-seq, top 150 genes in 

ATAC-seq gene activity, and top 3000 peaks in ATAC-seq peak of each cluster as key 

differential genes. For testing which features contribute to the representation learned by 

SMILE, key genes/peaks for each cluster were sequentially assigned values of zero and 

then the dataset was fed back through the encoder to determine the effect on the 

representation. We also suppressed activity value of each gene to zero and forwarded the 
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data with one gene suppressed through the encoder. Then, we measure how much 

disruption one gene has on the integrated representation, and we selected the top 5% genes 

that have the most disruption in one particular cell type. Finally, we forwarded data, in 

which these top 5% screened genes were suppressed to 0s, through the encoder again to 

measure the collective disruption on the integrated representation. To screen candidate 

peaks, we first assigned all peaks into 50 topics via negative matrix factorization, and used 

the same approach to identify which topic contributes most to a particular cell type. Our 

screening approach is also conceptually similar to the motif screening used to probe a deep 

learning representation in study by Fudenberg et al. (Fudenberg et al., 2020). 

Results 

SMILE accommodates many single cell data types  

Before we demonstrate applications of SMILE in data integration, we first show that 

SMILE can handle most types of single-cell omics data separately. We tested SMILE on 

RNA-seq data from human pancreas, ATAC-seq data from Mouse ATAC Atlas, and Hi-C 

data from mouse embryo cells(Baron et al., 2016; Collombet et al., 2020; Cusanovich et 

al., 2018). SMILE can effectively learn a discriminative representation for single-cell 

human pancreas RNA-seq (Figure 3.2A). Meanwhile, SMILE distinguishes tissue types 

within the Mouse ATAC Atlas, and it also recovers major cell types in the brain tissue 

(Figure 3.2A). In the task of clustering single-cell Hi-C data, SMILE has a slight advantage 

of distinguishing different cell stages compared to PCA (the baseline) (Figure 3.2B). 

However, we want to point out that, for a single source data, SMILE does not show 

substantial difference from a standard PCA approach. Since PCA finds most variations and 
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Figure 3.2. Application of SMILE in single-source scRNA-seq, scATAC-seq and scHi-

C. A, UMAP visualization of SMILE representation of Human pancreas and Mouse 

ATAC Atlas. Left panel is the visualization of single-cell human pancreas RNA-seq 

data. Middle panel is the visualization of whole dataset and cells are colored by tissue 

types. Right panel is the visualization of a subset of cells from mouse brain. Cells are 

colored by cell-types reported by the author. B, UMAP visualization of SMILE 

representation of mouse embryo single cell Hi-C data (left), and comparison of SMILE 

and PCA (baseline) for each different chromosome separately (right). Cells are colored 

by developmental stages. Calculation of ARI and macro F1 is based on the 

developmental stage of a cell as the ground truth. 
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it is unlikely that unwanted variations are confounded within single-source data, there 

would be no obvious advantage of using SMILE to find biological variations. Instead, we 

turn to data integration as the primary application of SMILE is for single-cell data 

integration. 

SMILE eliminates batch effects in single-cell transcriptome data from multiple 

sources  

It is now common to find multiple single-cell transcriptomics datasets for the same tissue 

or biological system generated by different techniques or research groups. A standard 

clustering analysis often fails to identify cell types, but instead only detects differences 

between experimental batches. In contrast, SMILE directly learns a representation that is 

not confounded by batch effect and can be combined with common clustering methods for 

cell type identification. We tested batch-effect correction in human pancreas data, human 

peripheral blood mononuclear cell (PBMC) data, and human heart data (Baron et al., 2016; 

Grün et al., 2016; Lawlor et al., 2017; Litviňuková et al., 2020; Muraro et al., 2016; 

Segerstolpe et al., 2016; Tucker et al., 2020b; Zheng et al., 2017). To benchmark the 

performance of SMILE in removing batch effects, we compared SMILE with LIGER, 

Harmony, and Seurat. These 3 methods have been reported as the 3 top methods in a 

benchmarking study of batch-effect correction (Butler et al., 2018; Korsunsky et al., 2019; 

Liu et al., 2020; Tran et al., 2020). We found that SMILE has comparable performance to 

Harmony across these 3 systems in terms of batch and cell-type silhouette scores (Figure 

3.3A). Meanwhile, the integrated representations learned by SMILE and Harmony are 

friendly for de novo clustering and label transferring via classification, as measured 
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Figure 3.3. Integration of multi-source single-cell transcriptome data using SMILE. A, 

Evaluation of batch-effects correction. Batch and cell-type silhouette scores measure 

how well different batches are mixed while distinct cell-types are separated apart. Batch 

silhouette closer to 0 indicates a good mixing of different batches, while cell-type 

silhouette closer to 1 represents that distinct cell-types are separated well in the 

integrated representation. ARI shows how well the learned representation can recover 

cell-types. ARI closer to 1 indicates that the clustering labels better match original cell-

type labels in that study. label transferring is measured through macro F1 score. SVM 

classifiers are trained with single source data, and then macro F1s are calculated by 

assigning cell types to the rest of the data sources using that classifier. B-D, UMAP 

visualization of integrated representations of B) human pancreas data, C) human PBMC 

data, and D) human heart data, using raw data, or representations learned by LIGER, 

Harmony, Seurat, and SMILE. Cells in upper rows are colored according to their 

sources or batch ID, and cells in lower rows are colored by putative cell-types reported 

in original studies. 
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 through ARI and macro F1 scores (Figure 3.3A). Both methods removed batch effects and 

recovered cell types identified in original reports (Figure 3.3B-D). In our benchmark study, 

LIGER is ranked as the 4th place in all 4 metrics. We also noticed LIGER returns the worst 

representation in human PBMC data (Figure 3.3C). On the other hand, Seurat ranks as the 

best method overall. However, a substantial disadvantage of Seurat is its inefficient 

computation design for large datasets. 

Joint clustering through mpSMILE improves upon previous methods and reveals key 

biological variables 

Moving from integration of multi-source single-cell transcriptome data, we next tested the 

performance of pSMILE on a simulated joint single-cell transcriptome dataset and two 

joint profiling datasets generated by SNARE-seq and sci-CAR to demonstrate the 

applicability of SMILE in multimodal single-cell data integration (Cao et al., 2018; Chen 

et al., 2019). The results with simulated joint data, produced by splitting a single scRNA-

seq dataset into two subsets with separate genes indicates that pSMILE can integrate data 

from two entirely different feature spaces (Figure 3.4). It is often observed that RNA-seq 

data has a greater cell type discriminative power than ATAC-seq, and other integration 

methods give more weights to RNA-seq in representation learning (Jain et al., 2021; Lin et 

al., 2021; Peng et al., 2021; Stuart et al., 2019). Therefore, we introduced mpSMILE to 

take advantage of the discriminative power of RNA-seq. 

In this part, we benchmarked methods that fall into all 3 integration categories 

(horizontal, vertical, and diagonal). We selected UnionCom to represent the diagonal 

approach (Cao et al., 2020b), LIGER and Harmony for horizontal (Korsunsky et al., 2019; 
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Figure 3.4. Integration of synthetic multimodal single-cell data through pSMILE. A, 

Construction of synthetic multimodal single-cell data. The synthetic multimodal data is 

based on a real single-cell RNA-seq data from mouse cortex. Data 1 and data 2 have the 

same cells, and each cell in data 1 is paired with its corresponding cell in data 2. Data 1 

and data 2 are generated from the original data through splitting genes into two halves. 

Therefore, data1 and data 2 do not share any common features. B, UMAP visualization 

of integrated representation of mouse cortex by pSMILE. Cells are colored by cell-types 

(left) and data types (right). 
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 Liu et al., 2020), and MCIA and Seurat for vertical (Meng et al., 2014; Stuart et al., 2019). 

Our mpSMILE stands with MCIA and Seurat in the category of vertical approach. Though 

Seurat falls into the category of vertical approach, there is one difference of Seurat from 

MCIA and SMILE. When projecting joint profiling data into the same space, SMILE 

accomplishes a similar purpose as Seurat, but with more flexibility of input. Seurat 

implements canonical correlation analysis (CCA) to project both RNA-seq and ATAC-seq 

data into the same low-dimension space (Stuart et al., 2019). The use of CCA requires the 

two datasets to share the same features. As shown above, SMILE can’t work with datasets 

where the two data types involve entirely different features (e.g., genes vs. genomic bins). 

To make the data work for all methods compare SMILE with Seurat_v3, we re-quantified 

the ATAC-seq into gene activities, and we further included mouse brain and mouse skin 

datasets generated by SHARE-seq (Ma et al., 2020b). Since cell pairs are known in these 

datasets, we used all pairs to train all 3 vertical methods both Seurat_v3 and mpSMILE. 

We ran all methods with default settings, and we visualized integration results by these 

methods through UMAP with the same settings. We found that all vertical methods 

outperform the two horizontal approaches, LIGER, and Harmony. This suggests that there 

is a more prominent unknown discrepancy between two modalities, even though two 

modalities have been processed to have shared features. In our hands, UnionCom, the 

diagonal approach, failed integration tasks for all 4 datasets. Currently, there does not 

appear to exist a truly successful diagonal method to integrate complex multimodal single-

cell data without knowing either feature or cell anchors. All three vertical approaches, 

MCIA, Seurat, and mpSMILE were able to project ATAC-seq and RNA-seq data into the  
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shared space while discriminating cell types for the mixed cell-lines data, but MCIA shows 

less power of cell-type discrimination than the other two (Figure 3.5A). Of note, Seurat 

showed poor performance on the mouse kidney data by sci-CAR and the mouse brain data 

by SHARE-seq, failing to project the two data sources into the shared space and distinguish 

cell types (Figure 3.5A an C). For the mouse skin data by SHARE-seq, MCIA, Seurat and 

mpSMILE have comparable performance (Figure 3.5D). In summary, we conclude that 

horizontal methods may not necessarily address modality discrepancy, even though the 

feature discrepancy is solved via feature engineering. This emphasizes the benefit of joint 

profiling data to create an integrated space through vertical methods onto which other 

single source data can be projected for comparison and cell type annotation. Compared to 

Seurat, MCIA and mpSMILE show a higher performance with mutual label transferring. 

Surprisingly, Seurat has good label transferring from RNA-seq to ATAC-seq, but this 

quality of label transfer is not reversible, as shown with lower macro F1 scores from 

ATAC-seq to RNA-seq. Comparing MCIA and mpSMILE, we observed that SMILE has 

better multimodal integration in terms of modal and cell-type silhouette scores (Figure 

3.5A). In terms of using pSMILE or mpSMILE, we would always recommend mpSMILE 

for discriminative representation learning. However, if user highlights equal contribution 

from both modalities, pSMILE should an alternative. 

To evaluate which biological factors drive the co-embedding we observe, we set 

candidate genes from the mouse skin to zero and passed this altered data through the 

mpSMILE encoder to evaluate whether the co-embedding would be disrupted. Indeed, 

when we remove key differential genes, clusters are greatly disrupted in the co-embedding 
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Figure 3.5. Integration of scRNA-seq and scATAC-seq through mpSMILE. A, 

Evaluation of integration by modal silhouette, cell-type silhouette, macro F1 (RtoA), 

and macro F1 (AtoR). For macro F1 and cell-type silhouette score, 1 indicates the best 

performance, and higher is better. RtoA represents label transferring from RNA-seq to 

ATAC-seq, and AtoR represents from ATAC-seq to RNA-seq. For modal silhouette 

score, 0 is the best, indicating that both modalities align up.  B-D, UMAP visualization 

of integrated representation of (B) mixed cell-lines, (C) mouse kidney, (D mouse skin 

data. From left to right, methods used for integration are UnionCom, LIGER, Harmony, 

MCIA, Seurat, and mpSMILE. Cells are colored by cell-type in the upper panels and 

colored by data types in the lower panels. E, boxplot of Euclidean distances between 

paired cells. Salmon box: original data was forwarded through trained mpSMILE and 

Euclidean distances between cells in RNA-seq and their corresponding cells in ATAC-

seq were measured in the integrated 2D PCA. Green box or blue box: either key 

differential genes or non-key genes were suppressed to zeros, then the suppressed data 

was forwarded through trained mpSMILE, and Euclidean distances between cells in 

RNA-seq and their corresponding cells in ATAC-seq were measured in the integrated 

2D PCA. Upper panel is suppression of key gene expression, and lower panel is 

suppression of key gene activity. 
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 (Figure 3.5E). Next, since this type of evaluation is rapid and does not require re-

training, we asked if we could use a screening approach to identify gene or peak sets that 

contribute to the co-embedding for each cell-type. We focused on 8 previously identified 

cell-types (Ma et al., 2020b). Then, we suppressed the gene activity value of each gene to 

zero one at a time and test how this suppression affects the co-embedding. We then selected 

the top 5% genes that can disrupt the co-embedding. We observed that the disruption by 

top 5% screened genes is larger than the disruption by random genes but lower than 

separately identified key differential genes (Figure 3.6). 

Though p/mpSMILE was designed to do joint clustering for joint profiling data, it can 

be combined with pair-identification tools to achieve integration for non-joint-profiling 

data. Seurat implements “FindTransferAnchors” function, which can identify quality pairs 

in bimodal datasets. Here, we combined Seurat and SMILE to achieve integration for non-

joint-profiling human hematopoiesis and mouse kidney data(Granja et al., 2019; Miao et 

al., 2021). Empowered by Seurat, SMILE did decent integration for both non-joint-

profiling datasets (Figure 3.7A). Since RNA-seq and ATAC-seq were annotated separately 

by authors, we can fairly compare the performance of Seurat and SMILE, even though 

SMILE relies on Seurat for anchor identification. Consistent to our benchmarking in joint 

profiling data, SMILE demonstrated better modality mixing, in terms of modality 

silhouette. We found SMILE favorably compares to Seurat in terms of cell-type silhouette 

and macro F1 from RNA-seq to ATAC-seq. Surprisingly, SMILE significantly 

outperforms Seurat in label transferring from ATAC-seq to RNA-seq, indicating SMILE 

learns an integration that better preserves mutual information between two modalities 
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Figure 3.6. Explanation of co-embedding of RNA-seq and ATAC-seq by cluster-

specific differential genes and top 95-percentile genes identified through screening. 

Boxplot of Euclidean distances of paired cells in 2D PCA. Salmon box: original data 

was forwarded through trained mpSMILE and Euclidean distances between cells in 

RNA-seq and their corresponding cells in ATAC-seq were measured in the integrated 

2D PCA. boxes of other colors: a random gene set that contains the same number of 

genes as key differential genes, key differential genes that are specific to each cell type, 

and top 95-percentile genes identified through screening. These gene sets were 

suppressed to zeros, and the suppressed data were forwarded through trained 

mpSMILE. Euclidean distances between cells in RNA-seq and their corresponding cells 

in ATAC-seq were measured in the integrated 2D PCA. 
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(Figure 3.7B). Of note, after pairing is accomplished, SMILE can allow the user to input 

mismatched features for the two modalities. 

Application of p/mpSMILE in joint profiling DNA methylation and chromosome 

structure data 

We next evaluated the applicability of SMILE to the integration of joint profiling DNA 

methylation and chromosome structure data of mESC and NMuMG cells, and the human 

prefrontal cortex (PFC) (Lee et al., 2019; Li et al., 2019). Unlike integration of RNA-seq 

and ATAC-seq, it is difficult to match DNA methylation features to chromosome structure 

features since chromosome contacts are represented in a two-dimensional space. Therefore, 

using CCA for integration of Methyl and Hi-C as in Seurat would be a challenging task. 

Indeed, any horizontal integration method requiring matched features will not fit this task. 

Thus, SMILE has the unique advantage of not requiring feature matching. We applied 

pSMILE in both mESC and NMuMG data and human PFC data. pSMILE can distinguish 

mESC and NMuMG cells but only revealed 5 major cell types in human PFC (Figure 3.8A 

and B). Then, we applied mpSMILE by using Methyl data in place of RNA-seq and Hi-C 

in place of ATAC-seq, because Methyl data recovers more distinct cell types in Lee et al. 

(Lee et al., 2019). However, mpSMILE did not reveal more cell types than pSMILE (Figure 

3.8B). Because we used all 100kb bins of CG methylation as input for SMILE, it is possible 

that SMILE cannot fully unlock the discriminative power of methylation data. Thus, we 

further projected Hi-C cells onto the tSNE space of CG methylation from the original study, 

but in a SMILE manner. The tSNE space of CG methylation preserves the distinct structure 

for each cell type identified by the author, and it should save us from learning 
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Figure 3.7. Integration of multimodal human hematopoiesis and mouse kidney data 

through Seurat and mpSMILE. (A and B) UMAP visualization of integrated 

representation of human hematopoiesis (A) and mouse kidney (B) data, by Seurat and 

mpSMILE. Cells are colored by author-reported cell types (left panel) and colored by 

modality types (right panel). (C) Comparison of Seurat and mpSMILE. Calculations of 

modality silhouette, cell-type silhouette and two macro F1 scores are based on author-

reported cell types as the ground truth. 
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discriminative representation for Methyl data. However, neuron sub-types did not align 

well with their methylation counterparts in this projection task, though other cell types did 

(Figure 3.8C). These results suggest that the Hi-C data on human PFC has less 

discriminative power to distinguish certain neuron sub-types than DNA methylation data, 

as the original report showed. This is also consistent to a new study in mouse forebrain, 

where chromatin conformation data has less ability to reveal neuron sub-types than 

expression data (Tan et al., 2021). 

Combining SMILE and pSMILE for integration of more than 2 data modalities 

The recently published Paired-Tag technology can jointly profile one histone mark and 

gene expression from the same nucleus (Zhu et al., 2021). The unique design of this study 

paired RNA-seq data with 5 different histone marks, and it provides us demonstration data 

to show how we can combine SMILE and pSMILE to achieve integration of more than 2 

modalities. With these modifications, SMILE can integrate RNA-seq, H3K4me1, 

H3K9me3, H3K27me3, and H3K27ac (Figure 3.9A). In the first step, we used SMILE to 

integrate RNA-seq data from 6 batches, as we did previously for multi-source 

transcriptome data. Then, we replaced Encoder A in pSMILE with the trained encoder in 

SMILE with frozen weights. Therefore, RNA-seq data would be only forwarded through 

the Encoder A to generate representation za and no gradients will be sent back during 

training. Since SMILE had already learned discriminative representation for RNA-seq 

data, training pSMILE in the second step was aimed to project histone mark data into the 

representation of RNA-seq. Because these histone mark data are not paired, we trained 4 

pSMILE models with 4 paired RNA-seq/Histone marker data. Finally, we can project all 
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Figure 3.8. Integration of scMethyl and scHi-C through p/mpSMILE. A and B, UMAP 

visualization of integrated representation of A) mESC and NMuMG cells and B) human 

PFC data, by p/mpSMILE. Cells are colored by cell-types reported by the author (left 

panel), or data types (right panel). C, Projection of Hi-C onto tSNE space of CG 

methylation using SMILE. We used the tSNE space of CG methylation as input for 

Encoder A instead of 100kb bins of CG methylation. Training SMILE in this case 

becomes training Encoder B to project Hi-C data into the tSNE space of CG 

methylation, though we visualized the integrated representation through UMAP. Top 

row: Hi-C and methylation data on the same graph. Second row: Same representation 

as above, but with CG methylation (left) and Hi-C (right) shown separately. Red circle 

highlights region of indistinct neuronal cell types. 
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 nuclei from the 5 modalities into the same UMAP space for visualization. Indeed, this 

approach preserved distinct properties of cell types while mixing data types (Figure 3.9B).  

As we did above with the ATAC-seq and RNA-seq joint profile, this learned encoder could 

be used to screen for which modification peaks are most important for cell type 

discrimination. 

Discussion 

Contrastive learning has been extensively shown to learn good representation for different 

data types (Amid and Warmuth, 2019; Chen et al., 2020a). A simultaneous study further 

extended contrastive learning to single-cell RNA-seq analysis (Ciortan and Defrance, 

2021). However, all these previous studies focus on learning good data representation and 

have not shown a potential use of contrastive learning in data integration. Here, we 

designed SMILE, a contrastive-learning-based integration method, and introduced the new 

use of contrastive learning. We presented three variants of SMILE models that perform 

single-cell omics data integration in different cases. Through our benchmarking, we 

demonstrated that our SMILE approach effectively accomplished both batch-correction for 

multi-source transcriptome data and multimodal single-cell data integration with 

comparable or even better outcomes than existing tools. Encoders learned by SMILE can 

be used to determine what biological factors underlie the derived joint clustering and to 

transfer cell type labels to future related experiments. We further applied our SMILE to the 

joint Methyl and Hi-C data, and we showed that SMILE can save users from engineering 

shared features if cell anchors exist for training. Finally, we demonstrated how to combine 

or modify our SMILE models to address the integration of more than 2 modalities. For the 
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Figure 3.9. Integration of Paired-Tag mouse brain data through SMILE. A, Procedure 

of combining SMILE and pSMILE for integration of Paired-Tag data. B, UMAP 

visualization of integrated representation of mouse brain data. Cells are colored by cell-

types (upper panel) and data types (lower panel). 
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joint-profiling data and the Paired-Tag data, the learned encoders could be used to project 

other single source datasets (e.g., ATAC-seq, ChIP-seq, or Hi-C without paired RNA-seq 

or Methylation data) into the shared space for cell-type classification or cellular 

composition analysis across different conditions. 

The basic SMILE model demonstrates its ability to remove batch effects, without 

specific batch-effect modeling. Simply adding random gaussian noises to each gene 

expression, SMILE could learn to preserve batch-invariant cell-type structure form multi-

source data. It could be possible that batch effects exist in the form of gaussian noise. 

Revisiting we convert gene expression matrix to cell-type score matrix in Chapter II, we 

may have possible explanation why this conversion addresses batch effects so well without 

batch modeling neither: Summing all marker genes of one cell-type is countering off 

random gaussian noises in each marker gene. Another explanation would be avoiding 

encoding batch-effects into the latent space. Unlike PCA that encodes all possible variation 

into latent space, MACA and MASI converted gene expression matrix to cell-type score 

matrix, and each dimension has a biological meaning. SMILE also avoided learning latent 

representation by capturing major variations. 

Integrating single-cell data is still a grand challenge in the community. Among 3 

categories of integration approaches, our method falls into the category of horizontal 

approach for integration of multi-source single-cell transcriptome data and the category of 

vertical approach for multimodal single-cell data integration. The distinct difference 

between horizontal and vertical approaches is either using features or cells as anchors. 

When data are generated through separated single-cell assays, cell anchors are not available 
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and horizontal approaches can rely on shared features to bring data from different sources 

to the shared space. However, anchoring cells may be necessary for data integration when 

engineering shared features is not straightforward. As we demonstrated in joint Methyl/Hi-

C data, Hi-C data quantitates 2D interaction features across the genome while methyl 

measures the methylation level of genomic regions in 1D. Either matching the 1D 

methylation features to 2D interaction features or vice versus is difficult. Increasing 

numbers of joint profiling technologies are coming out and will provide more cell-anchored 

references, and we could combine SMILE with these joint profiling technologies to achieve 

multimodal integration that brings gene expression, epigenetic modification, chromatin 

structure and even imaging-based phenotypes to the shared space. With the ability to 

integrate data without shared features, SMILE has its niche in such scenarios. 

In these joint profiling datasets, where the pairing between datasets is already known, it 

may be less obvious why an integrated representation is needed. Indeed, some uses of such 

data uses just one datatype to classify cell types and then examines the properties of the 

other data within those established categories (Lee et al., 2019). We show here that by 

learning a joint representation where each datatype is separately projected into the space, 

we can evaluate what biological features are most important for allowing the two datatypes 

to be embedded in the same space. Further, with this type of joint representation, we can 

then project a new single source data (i.e., ATAC-seq or Hi-C) from a different experiment 

onto this joint space. Thus, we can use the power of both paired datatypes to create the 

representation space and call cell types, and then we can take a new dataset that has only 
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one type of data and compare it and annotate cell types for the new single data based on 

the joint space. 

Overall, our SMILE approach shows the ability to integrate single-cell omics data as a 

comprehensive tool. One limitation of SMILE for multimodal integration is that cell pairs 

must be known. Therefore, training SMILE involves creating self-pairs across a single 

modality or using the natural pairs in joint profiling data. We combined Seurat and SMILE 

to show how SMILE can also be used for non-joint profiling data. A benchmark study on 

computational cell-anchor identification methods would provide insight about anchoring 

cells with higher accuracy, rather than relying on joint profiling assays. 

Ideally, we would like to perform integration without knowing either feature or cell 

anchors, and developing useful diagonal methods is needed for single-cell community. 

However, diagonal integration faces extreme computational and theoretical challenges. So 

far, none of the integration methods in this category have been extensively tested across 

multiple datasets. In our hands, the diagonal approach, UnionCom, did not achieve any 

ideal integration of multimodal single-cell data. Therefore, we argue that horizontal or 

vertical integration still play a critical role in revealing underlying mechanisms for 

multimodal data. In the end, we leave an open question to the field to discuss if either 

anchoring feature or cell is necessary to learn the integrated representation for multimodal 

single-cell data. 
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CHAPTER IV 

INTEGRATING SINGLE-CELL CHROMATIN ACCESSIBILITY 

AND GENE EXPRESSION DATA VIA CYCLE-CONSISTENT 

ADVERSARIAL NETWORK 
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 A version of this chapter is a manuscript by Yang Xu, Edmon Begoli, and Rachel 

Patton McCord. This manuscript is currently under peer-review. 

This chapter was revised to be different from the original manuscript. Y.X. 

conceived and developed the method with guidance from R.P.M. and produced all the 

figures. E.B. provided critical suggestions on building adversarial network. Y.X. and 

R.P.M. wrote the manuscript. 

Abstract 

The boom in single-cell technologies has brought a surge of high dimensional data that 

come from different sources and represent cellular systems from different views. With 

advances in these single-cell technologies, integrating single-cell data across modalities 

arises as a new computational challenge. Here, we present a novel adversarial approach, 

sciCAN, to integrate single-cell chromatin accessibility and gene expression data in an 

unsupervised manner. We benchmarked sciCAN with 5 existing methods in 5 scATAC-

seq/scRNA-seq datasets, and we demonstrated that our method dealt with data integration 

with consistent performance across datasets and better balance of mutual transferring 

between modalities than the other 5 existing methods. We further applied sciCAN to 10X 

Multiome data and confirmed that the integrated representation preserves biological 

relationships within the hematopoietic hierarchy. Finally, we investigated CRISPR-

perturbed single-cell K562 ATAC-seq and RNA-seq data to identify cells with related 

responses to different perturbations in these different modalities. 
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Introduction 

Within the last decade, single-cell technologies have advanced our understanding in a 

broad range of biological systems. Single-cell RNA-seq and single-cell ATAC-seq, along 

with other single-cell assays, have revealed distinct cellular heterogeneity at a 

comprehensive level, from genomic variations to epigenomic modifications and 

transcriptomic regulation (Carter and Zhao, 2021; Kelsey et al., 2017; Macaulay et al., 

2017; Stuart and Satija, 2019; Wagner and Klein, 2020). Analyses based on single-cell data 

have also provided reliable databases for biomedical research and valuable references for 

medical discovery. As the number of single-cell omics datasets grows, there is increasing 

demand for fast and accurate computation. Consequently, deep learning has become a 

trending topic in single-cell data analysis. Much recent research has focused on developing 

reliable and fast deep learning tools to accommodate the scaling demand, such as cell-type 

annotation (Ma and Pellegrini, 2020), doublet identification (Bernstein et al., 2020), data 

de-noising (Arisdakessian et al., 2019), and batch correction (Lopez et al., 2018). 

Among all applications of deep learning in single-cell analysis, data integration remains 

one of the grand and rising challenges in the community (Efremova and Teichmann, 2020; 

Ma et al., 2020a). Many different single-cell RNA-seq platforms were simultaneously and 

rapidly developed, leading to an initial focus on methods to integrate datasets from 

different platforms. Batch effects are usually the most prominent variation when datasets 

from different sources are collected for integrative analysis but often are not biologically 

relevant. Single-cell databases confounded by batch effects are not applicable for general 

use. Therefore, removing batch effects is a critical step for revealing true biological 
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variation and necessary for building batch-invariant and applicable databases. So far, 

multiple methods have been proposed to address this problem (Butler et al., 2018; Hie et 

al., 2019; Korsunsky et al., 2019; Liu et al., 2020; Lopez et al., 2018; Polański et al., 2020). 

Among these integration methods, deep generative models were also extensively tested in 

single-cell analysis and demonstrated their efficacy of learning discriminative 

representation from the original high dimensional space. The most common generative 

models are Variational Autoencoder (VAE). Variants of VAE models, which differ in their 

sampling approaches, have been proposed to learn representations for single-cell gene 

expression data (Bahrami et al., 2020; Dincer et al., 2020; Lopez et al., 2018; Lotfollahi et 

al., 2019; Wang et al., 2019). The core component of VAE is the use of reconstruction loss, 

which encodes a sample in a representation that is drawn from a certain distribution, for 

example, a Gaussian distribution. The use of reconstruction loss also has an advantage of 

mapping noisy data to high-quality data, which further extends the ability of generative 

model to de-noise data or impute gene expression. Instead of using VAE to learn 

representation for single-cell RNA-seq data, two research groups simultaneously modified 

VAE to address batch effects using an adversarial approach (Bahrami et al., 2020; Dincer 

et al., 2020). Two methods, named scGAN and AD-AE, respectively, used generative 

adversarial network (GAN) as the main framework for learning the latent space that is not 

entangled with batch effects. Starting from a VAE model, both scGAN (Bahrami et al., 

2020) and AD-AE (Dincer et al., 2020) introduced adversarial domain loss into the 

generative model and transferred the learning from reconstruction of data to diminishing 

of non-biological variation. This approach turned out to be effective in removing batch 
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effects within single-cell gene expression data. Previous work has only focused on the use 

of adversarial learning in single-cell RNA-seq data. 

Considering the success of deep generative models in batch-effect correction, we 

extended its use to single-cell data integration across different modalities. In this study, we 

focus on modality differences and developed an improved adversarial domain adaption 

approach to address multimodal data integration for chromatin accessibility (ATAC-seq) 

and gene expression (RNA-seq) data. Our method differs from both scGAN and AD-AE 

in that it uses a cycle-consistent adversarial network to learn the joint representation for 

both chromatin accessibility and gene expression data (Zhu et al., 2017). We term our 

method sciCAN (single-cell chromatin accessibility and gene expression data integration 

via Cycle-consistent Adversarial Network), which removes modality differences while 

keeping true biological variation. We previously developed a deep learning method, 

SMILE, to perform integration of multimodal single-cell data (Xu et al., 2022a). SMILE 

requires cell anchors for integration. This limits the use of SMILE in cases where 

corresponding cells are known across modalities. Different from our previous work, 

sciCAN doesn’t require cell anchors and thus, it can be applied to most non-joint profiled 

single-cell data. We first benchmarked our method with 5 existing methods across 5 

ATAC-seq/RNA-seq datasets, and we demonstrated that our method deals with data 

integration with a better ability to transfer cell type labels in both directions between 

modalities than the other 5 methods. To demonstrate the method’s utility in integrative 

analyses, we applied sciCAN to joint-profiled peripheral blood mononuclear cells (PBMC) 

data by 10X Multiome platform and we confirmed that the hematopoietic hierarchy is 
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conserved at both chromatin accessibility and gene expression levels. Finally, we 

investigated CRSIPR-perturbed single-cell K562 ATAC-seq and RNA-seq data, and we 

identified that some cells in both modalities share common biological responses, even 

though the two modalities were profiled with different gene perturbations. Combining the 

results above, we expect our work will fill the gap to allow generative models to be used 

in integrative analysis of multimodal single-cell data. 

Results 

Overview of sciCAN and potential applications 

We first show the model architecture of sciCAN, which contains two major components, 

representation learning and modality alignment (Figure 4.1A). Encoder E serves as a 

feature extractor that projects both high dimensional chromatin accessibility and gene 

expression data into the joint low dimension space. For representation learning, we use 

noise contrastive estimation (NCE) as the single loss function to guide E to learn the 

discriminative representation that can preserve the intrinsic data structure for both 

modalities. For modality alignment, we use two separate discriminator networks for two 

distinct uses. The first discriminator network Drna is attached to E and is trained with 

adversarial domain adaptation loss. Drna aims to distinguish which source the latent space 

z extracted by E comes from, while E is pushed to learn the joint distribution so that Drna 

is less able to distinguish the modality source of latent space z. The second discriminator 

network Datac follows a generator network G that generates chromatin accessibility data 

based latent space z from gene expression data. Adversarial training here will push G to 

find a connection between chromatin accessibility and gene expression data. Since the 
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Figure 4.1. Overview of sciCAN and potential applications. A, sciCAN model 

architecture. sciCAN contains two major components, representation learning and 

modality alignment. The representation learning part of the model is highlighted in the 

red box, and the modality alignment part in the purple box. Inputs of scATAC-seq and 

scRNA-seq have been preprocessed to have the same feature dimensions, so they can 

share one single encoder E. The final total loss (L) is the sum of loss of representation 

learning in red and loss of modality alignment in purple. Of note, calculation of NCE is 

independent for scATAC-seq and scRNA-seq data. B, downstream integrative analyses 

can include but are not limited to co-embedding, co-trajectory, and label transferring. 
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generated chromatin accessibility data is based on the latent space z of real gene expression 

data, the new latent space z' of generated data should align with its corresponding z of real 

gene expression data. Therefore, we add cycle-consistent loss as demonstrated in 

cycleGAN method to facilitate finding the connection between two modalities (Zhu et al., 

2017). In practice, we build E with fully connected layers, which are followed by a batch 

normalization layer with Rectified Linear Unit (ReLU) activation. Drna takes the 128-

dimension z as input and forwards it through a three-layer multi-layer perceptron (MLP) to 

produce 1-dimension sigmoid activated output that predicts if the input z comes from 

single-cell RNA-seq data. Differently, Datac takes output from G and forwards the input 

through a three-layer MLP to produce 1-dimension sigmoid activated output that predicts 

if input is generated by G. G is a decoder structure, which has two-layer MLP to restore 

dimension-reduced z to the original dimension of input data. Instead of calculating NCE 

directly on z, we further reduced z to 32-dimension output with linear transformation and 

25-dimension SoftMax activated output, through two separated one-layer MLPs. This 

practice is the same as our previous study, in which we demonstrated an effective approach 

to learn discriminative representation for single-cell data (Xu et al., 2021c). Once model 

training is done, we use encoder E to project both modalities into the joint representation 

for downstream analyses (Figure 4.1B). 

Benchmark of sciCAN with existing integration methods 

To demonstrate the competency of sciCAN in the task of data integration, we first selected 

3 top integration methods for comparison that have been extensively tested in integrating 

single-cell RNA-seq data (Tran et al., 2020), including LIGER (Liu et al., 2020), Harmony 
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(Korsunsky et al., 2019), and Seurat(Stuart et al., 2019). Besides integration specialized 

methods, we noticed availability of streamline analysis tools for single-cell ATAC-seq 

data, including ArchR (Granja et al., 2021), MAESTRO (Wang et al., 2020b), and Cicero 

(Pliner et al., 2018). These streamline analysis tools either built in capacity of integrating 

ATAC-seq and RNA-seq (ArchR and MAESTRO) or not (Cicero). Both ArchR and 

MAESTRO used Seurat as infrastructure to integrate ATAC-seq and RNA-seq data, while 

ArchR did modification to differentiate from Seurat. Thus, we included ArchR in our 

benchmark test. As sciCAN shares the same architecture as SMILE to learn representation 

for single-cell data and both methods are proposed for data integration, we also included 

SMILE. However, SMILE requires cell anchors across modalities to learn the joint 

representation, but benchmark datasets do not all include this information. Therefore, we 

used Seurat to identify cell anchors and SMILE would reply on Seurat-identified cell 

anchors to integrate ATAC-seq and RNA-seq data. For the benchmark purpose, we 

collected 5 datasets that consist of distinct cellular systems. They are mixed cell lines (Chen 

et al., 2019), human hematopoiesis (Granja et al., 2019), human lung (Wang et al., 2020a), 

mouse skin (Ma et al., 2020b), and mouse kidney (Miao et al., 2021), respectively. RNA-

seq and ATAC-seq modalities may have different numbers of cells and even different 

numbers of cell types, except where both modalities were jointly profiled.  

We introduced two variants of silhouette score to measure modality mixing and cell-

type preserving, respectively. The first metric, modality silhouette, evaluates how well two 

modalities align, and it directly reports whether discrepancy between chromatin 

accessibility and gene expression data is removed (maximum alignment gives a score of 
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0). Across 5 datasets, Harmony, Seurat, and sciCAN integrated chromatin accessibility and 

gene expression data well, giving a smaller modality silhouette value. Among all methods, 

LIGER ranked the last in modality mixing, with the worst modality silhouette values in 3 

datasets (Figure 4.2A). Though all 6 methods diminish the modality difference between 

chromatin accessibility and gene expression, it did not necessarily indicate that they learned 

to present distinctness of each cell-type. This led to the use of cell-type silhouette, which 

quantifies how well the joint representation reflects the data structure by distinguishing 

cell-types (in this case, a value of 1 is ideal). Here, we used the author-reported labels as 

the ground truth. All other 5 methods, except sciCAN, reported the last-ranked cell-type 

silhouette in the 5 datasets at least once (Figure 4.2A). Though ArchR performs integration 

upon infrastructure of Seurat, we observed noticeable difference between ArchR and 

Seurat. Different from Seurat that maps connections between RNA-seq and ATAC-seq 

data as whole, ArchR only does the “subspace” mapping (Granja et al., 2021), and this 

“subspace” mapping is highly influenced by a good estimation on correspondence between 

RNA-seq “subspace” and ATAC-seq “subspace”. Considering good balance between 

modality mixing and cell-type preserving, sciCAN shows the most consistence of 

integration across the 5 datasets among all methods. 

Next, we focused on label transferring. Here, our goal is that the user could rely on the 

integrated space to predict cell-type labels for data from a single modality, given 

availability of cell-type labels from the other modality. We found Seurat has overall the 

best performance for label transferring from RNA-seq to ATAC-seq (Figure 4.2B). This 

may relate to the design of Seurat. Different from the other 3 methods, Seurat inherently 
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Figure 4.2. Benchmarking of sciCAN against other 5 existing integration methods. A, 

Integration evaluation by modality and cell-type silhouette scores across 5 datasets. x 

axis corresponds to modality silhouette score while y axis to cell-type silhouette score. 

Ideal integration should be in the top left corner of each dot plot. To generate the dot 

plot, we randomly subsample 20% cell population to calculate both modality and cell-

type silhouette scores for each method and each dataset. B, Integration evaluation by F1 

scores across 5 datasets. upper panel corresponds to label transferring from RNA-seq to 

ATAC-seq (RtoA) while lower panel indicates label transferring from ATAC-seq to 

RNA-seq (AtoR). A Boxplots was plotted based on F1 scores for all cell type in that 

dataset. The median value was marked with a horizontal line within the box, and the 

“X” mark represents macro F1 score, which is the average of F1 scores for all cell types. 
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uses gene expression data as reference data and projects chromatin accessibility data to the 

gene expression space. Contrarily, sciCAN has overall the best performance of label 

transferring from ATAC-seq to RNA-seq (Figure 4.2B).  Among all methods, LIGER 

shows the worst performance regarding label transferring (Figure 4.2B). 

The default architecture of sciCAN shown in Fig. 1 has RNA-seq data playing the 

central role, primarily because RNA-seq data usually shows greater discriminative power 

than ATAC-seq in terms of cell-type identification (Jain et al., 2021; Lin et al., 2021; Peng 

et al., 2021; Stuart et al., 2019; Xu et al., 2021c). We wondered if this setup is critical to 

good integration by sciCAN. Thus, we switched the roles of RNA-seq and ATAC-seq data 

in the model training. Indeed, the ATAC-centered sciCAN model is consistently less 

accurate than RNA-centered sciCAN, suggesting discriminative representation learning 

benefits from taking advantage of the cell-type discriminative power of RNA-seq (Figure 

4.3). Combining the results above, we conclude that the RNA-centered sciCAN shows 

consistently good integration performance across different cellular systems. 

Integration learned by sciCAN preserves hematopoietic hierarchy 

The hematopoietic hierarchy has been extensively studied through  single-cell analysis. 

Independent studies using scRNA-seq or scATAC-seq alone also confirmed that the 

cellular hierarchy of the hematopoietic system is observed at both chromatin accessibility 

and gene expression levels (Buenrostro et al., 2018; Corces et al., 2016; Han et al., 2018; 

Rodriguez-Fraticelli et al., 2018; Velten et al., 2017). Thus, hematopoietic data can be a 

good example for us to verify whether the integration learned by sciCAN is biologically 

meaningful. Instead of using scRNA-seq and scATAC-seq data that were profiled 
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Figure 4.3. Comparison of RNA-centered and ATAC-centered integration by sciCAN.  

Performances of RNA-centered and ATAC-centered sciCAN were evaluated by 

modality- and cell-type silhouette scores, and RtoA and AtoR macro F1 scores.   
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separately, we utilized a jointly-profiled human PBMC dataset obtained through the 10X 

Multiome platform, which enables us to evaluate the integration with ground truth. 

Blinding ourselves to cell pairing information, our first task is co-embedding RNA-seq and 

ATAC-seq and performing co-trajectory analysis to evaluate whether the joint 

representation learned by sciCAN preserves the hematopoietic hierarchy at both chromatin 

accessibility and gene expression levels. Indeed, PAGA, a trajectory inference tool for 

single-cell data, constructed a hematopoietic stem cell (HSC)-centered trajectory with the 

128-dimension joint representation learned by sciCAN (Wolf et al., 2019). We also 

confirmed that progenitor cells surround the HSCs and branch towards their differentiated 

cells, and their lineage commitments at both chromatin accessibility and gene expression 

levels can be explained by the same gene signatures (Figure 4.4). Given that the integrated 

representation learned by sciCAN preserved the hematopoietic hierarchy, we next asked if 

we could infer transcriptional dynamics between chromatin accessibility and gene 

expression across the trajectory from progenitor to differentiated cells. To do so, we 

borrowed and transformed the concept of RNA velocity into activity-expression velocity. 

In the original RNA velocity concept, positive velocity is inferred when an increase in 

unspliced transcripts is followed by up-regulation in spliced transcripts (Bergen et al., 

2021; La Manno et al., 2018). This idea was further extended to velocity analysis of nuclear 

mRNA vs cytoplasmic mRNA (Xia et al., 2019), and of more compact vs less compact 

chromatin regions (Tedesco et al., 2021). Here, we reframed this analysis into activity-

expression velocity. We found that the trajectories of the resulting velocity calculation 

follow the expected hematopoietic differentiation (from stem and progenitor to 
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Figure 4.4. Integration learned by sciCAN preserves hematopoietic hierarchy. A, Co-

trajectory analysis via PAGA using joint representation learned by sciCAN. Each dot is 

the sum of all cells annotated as the same cell type. Trajectory is visualized using RNA-

seq (upper panel) and ATAC-seq (lower panel), separately. B, Enrichments of signature 

genes for 3 different lineages using both RNA-seq (top) and ATAC-seq (bottom) data. 

Color bar indicates gene expression (top) or gene activity level (bottom), respectively. 
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differentiated type) when we calculate positive velocity as an increase in gene expression 

first, followed by an increase in gene activity (accessibility).  This directionality suggests 

that in this system gene expression may be activated first, followed by a chromatin state 

encoding of this expression pattern as the new cell type is established. Given the joint 

representation, we predicted gene expression based on gene activity. Then, we used the 

true activity matrix and the predicted expression matrix to compute the activity-expression 

velocity with scVelo (Bergen et al., 2020). Taking advantage of the ground truth from the 

cell pairing information, we also performed the same analysis using the true activity matrix 

and true expression matrix. We found that velocity computed with the predicted expression 

data resembles and correlates well with the velocity computed with true expression data, 

in accordance with the correlation between predicted and actual expression (Figure 4.5). 

Consistent with co-trajectory analysis, velocity with predicted expression data revealed 

that MK/E progenitor cells move towards erythroblasts while G/M progenitor cells move 

towards monocytes (Figure 4.5). Combining the results above, we concluded that sciCAN 

preserves meaningful biological information within the learned joint representation. 

sciCAN identifies common responses after CRISPR perturbation 

Combining single-cell sequencing with CRISPR enables a systematic examination of 

cellular response to genetic perturbation. Dixit et al. first introduced Perturb-seq to identify 

single-cell cellular response at the expression level after CRISPR perturbation (Dixit et al., 

2016). Then, Perturb-ATAC was introduced to profile single-cell chromatin accessibility 

after CRISPR perturbation (Rubin et al., 2019). Nevertheless, a CRISPR-coupled joint-

profiling single-cell assay has not been introduced. Therefore, multiple modality data 
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Figure 4.5. Activity-expression velocity of the hematopoietic hierarchy. Velocity was 

calculated using predicted expression data (upper panel) or true expression data (lower 

panel). Activity-expression velocity of signature gene CA1, GNLY, or VCAN with 

either predicted expression data (upper panel) or true expression data (lower panel). 

Left: CA1, GNLY, or VCAN expression (predicted from ATAC-seq or measured by 

RNA-seq) is plotted vs. gene activity (accessibility) for each cell. Cell type indicated by 

color that corresponds to labels in previous panels. Dotted line indicates an estimated 

‘steady-state’ ratio. Area above the dotted line suggests positive velocity, in which 

opening up of gene accessibility leads to up-regulation of its expression. Middle: the 

calculated velocity of CA1, GNLY, or VCAN superimposed onto the integrated 

representation across the hematopoietic hierarchy. Right: the expression of CA1 

predicted by ATAC-seq vs. the true expression of CA1, GNLY, or VCAN 

superimposed onto the integrated representation. 
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 integration is needed to determine how single cell responses to genetic perturbation 

compare at the transcriptomic and chromatin accessibility levels. As the final 

demonstration about potential application of sciCAN, we performed computational 

integration via sciCAN to create a joint view of cellular response after CRISPR 

perturbation. We selected single-cell K562 RNA-seq data by Perturb-seq and single-cell 

K562 ATAC-seq data through Spear-ATAC (Dixit et al., 2016; Pierce et al., 2021). 

Notably these two studies used quite different sgRNA sets, sharing only 3 targets (sgELF1, 

sgYY1, and sgGABPA), so the integration cannot simply group like targets, but instead will 

be challenged to find similar biological responses to different gene perturbations. First, 

sciCAN enabled us to co-embed and co-cluster RNA-seq and ATAC-seq data, and we 

identified 3 distinct clusters (Figure 4.6A). Next, we asked if the co-clustering makes sense 

in terms of gene signatures that lead to these clusters. Though the two studies used different 

sgRNA sets, we found gene activities of these 3 clusters have strong correlation to the gene 

expression profiles of the corresponding clusters in RNA-seq (Figure 4.6B). Further, cells 

within each cluster shared gene signatures in both expression and accessibility (Figure 

4.6C). This suggests that cells may have similar response to different CRISPR-

perturbations. Next, we ranked sgRNA targets for each cluster in both RNA-seq and 

ATAC-seq data. We found the 3 shared targets are in the top ranking in cluster 1 in RNA-

seq but not ATAC-seq (Figure 4.6D). We reason those cellular responses to perturbation 

at the chromatin accessibility level may be more variable than the responses at the gene 

expression level. Indeed, none of the ATAC-seq cell clusters have strongly dominant 

sgRNA targets as seen in the RNA-seq data. Therefore, we separated out cells that were 
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Figure 4.6. sciCAN identifies common response after CRISPR perturbation. A, 

Visualization of single-cell CRISPR-perturbed K562 RNA-seq and ATAC-seq data via 

UMAP. Cells are colored by identified cell clusters (left) and modality source (right). 

B, Spearman correlation between RNA-seq and ATAC-seq profiles of cells in different 

clusters in both modalities. Gene expression or gene activity matrix was averaged by 

cell clusters. C, Shared gene signatures of the 3 cell clusters in both modalities. 

Differential gene activities or expression were identified through ‘wilxocon’ test in 

Scanpy package. D, Ranking of sgRNA representation in each cluster (blue = C0, 

orange = C1, green = C2) in both RNA-seq (left) and ATAC-seq (right) data. Genes 

perturbed in both experiments are highlighted. E, Gene signatures of cells targeted by 

sgELE1, sgYY1, and sgGABPA in cell cluster 1. F, Genes whose activity patterns 

distinguish cells in cluster 0 and cluster 2 among cells in these clusters perturbed by the 

same gRNAs. 
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 targeted by the common targets sgELF1, sgYY1, and sgGABPA for a closer examination. 

We found that cells targeted by sgELF1, sgYY1, and sgGABPA in cluster 1 in both RNA-

seq and ATAC-seq do have a distinct gene expression and activity signature compared to 

cluster 0 and 2, even though these cells were perturbed by the same sgRNAs (Figure 4.6E). 

Shifting our focus to cluster 0 and 2, it is surprising that cells in these two clusters share 

the same top 5 sgRNAs (sgCEP55, sgOGG1, sgPTGER2 sgCAPBP7, sgCIT), in RNA-seq 

but are perturbed with completely different sgRNAs in ATAC-seq. To understand what 

makes cluster 0 and 2 different, we performed a differential gene activity test using cells 

targeted by the top 5 sgRNAs in cluster 0 and 2 ATAC-seq data. We then examined cells 

targeted by the shared top 5 sgRNAs in cluster 0 and 2 RNA-seq, and we found that the 

differential genes we identified through ATAC-seq could partially explain the different 

clustering of these cells in RNA-seq (Figure 4.6F). Therefore, our integrated representation 

of these two independent datasets allows us to gain a better understanding of two 

subpopulations of cells that respond differently to the same gene perturbation. 

Conclusion 

In this study, we designed a novel adversarial approach for integration of single-cell 

chromatin accessibility and gene expression data. By benchmarking our method against 5 

existing integration methods in 5 ATAC-seq/RNA-seq datasets, our showed that sciCAN 

and Seurat have overall superior performance of data integration. However, sciCAN shows 

good mutual label transferring either from RNA-seq to ATAC-seq or from ATAC-seq to 

RNA-seq, while this mutual information is lost via Seurat integration. In cases where 

researchers may want to translate ATAC-seq to RNA-seq for inferring gene expression, 
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sciCAN would have an advantage over Seurat. We further demonstrated that sciCAN can 

be applied to different integrative analyses, like co-trajectory, activity-expression velocity, 

and co-clustering. All these results above demonstrate that sciCAN could empower 

integrative single-cell analysis for novel biological discoveries. 

Methods 

Representation learning 

Deep metric learning has shown effective representation learning without supervision. 

Chen et al. used a simple framework to learn visual representations in a self-supervised 

manner (Chen et al., 2020b). They duplicated each image into two counterparts through 

image perturbation. The goal of learning is to maximize the consistency of any paired 

replicates in the latent space z. To achieve this goal, NCE is applied as loss function as 

shown in (1). In an N-sample batch, there will be 2N samples through data augmentation, 

and each augmented image i has its corresponding counterpart j which is the same, despite 

the added image perturbation. Then, cos quantifies the cosine similarity of image i and j/k 

in the latent space z. Chen et al. demonstrated that this simple framework turns out to be a 

highly effective way to learn the discriminative representation without supervision. We 

adapted this approach in our previous study and showed the sample framework can produce 

discriminative representations for single-cell data (Xu et al., 2021c). Because of the 

property of this metric learning, our method is fully unsupervised. Users do not need to 

provide cell-type labels to start model training. 

(1) 𝑙𝑖,𝑗 = − log
exp (𝑐𝑜𝑠(𝑧𝑖,𝑧𝑗)/𝜏)

∑ exp (𝑐𝑜𝑠(𝑧𝑖,𝑧𝑘)/𝜏)2𝑁
𝑘=1
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Domain adaptation 

Generative models with adversarial domain adaptation were successfully shown to transfer 

targets to source style and have general applications in image translation (Tzeng et al., 

2017). Recently, both scGAN (Bahrami et al., 2020) and AD-AE (Dincer et al., 2020) 

incorporated adversarial domain adaption into a generative model for removing batch 

effects within single-cell expression data. For both studies, the goal is to find a batch-

invariant representation for single-cell gene expression data from various sources. To 

achieve this, they stacked a discriminator to the encoder and trained the discriminator to 

distinguish which source the cell comes from using the latent space z projected by the 

encoder. Adversarial training, in this case, will push the encoder to approximate the joint 

distribution and become capable of projecting cells with data from different modalities to 

the same integrated representation. Here, we also used domain adaptation to train a 

discriminator to identify the modality source while the encoder is pushed to diminish 

modality difference. 

Cycle-consistent adversarial network 

Besides the use of adversarial domain adaptation above, we further introduced a cycle-

consistent adversarial part. This practice stems from a method called cycleGAN, which 

presented a state-of-the-art outcome for the task of transferring image styles from one 

domain to another (Zhu et al., 2017). The success of establishing a connection between two 

image domains relies on the concept called "cycle consistency". Starting from the original 

image, a generator network translates the image to the other domain. Then, a second 

generator network translates the image back to its original domain. Through this cycle, the 
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translated-back image should be the same as the original image. Based on this information, 

adversarial training of generators can establish a reversible connection between two image 

domains. Different from the goal of cycleGAN, we aim to learn joint representation instead 

of translating chromatin accessibility to gene expression or vice versa. However, the 

fundamental concept is the same: we establish a cycle from encoder to generator, and from 

generator back to encoder. Then, the cycle-consistency loss is applied at the level of latent 

space z. 

Data preprocessing 

All methods benchmarked in our study require anchoring genes for integration. We used a 

common practice that transforms the sparse ATAC-seq peak matrix to a gene activity 

matrix (Fang et al., 2021; Stuart et al., 2019; Stuart et al., 2020; Wang et al., 2020b). Here, 

we briefly explain the rationale behind this transformation. RNA-seq measures gene 

expression, so in a matrix of single-cell gene expression data, each row represents one cell, 

and each column contains expression values of one gene. The whole matrix represents gene 

expression levels of all genes across all cells. ATAC-seq, on the other hand, quantifies how 

accessible genomic loci are to regulatory proteins. Therefore, in a matrix of single-cell 

chromatin accessibility data, each row is one cell (the same as single-cell gene expression 

data) and each column contains accessibility values of one genomic locus. The sum of 

accessibility values of all genomic loci upstream of and within one gene body may relate 

to the potential of transcription of that gene. Therefore, to convert ATAC-seq data to a 

form that can be compared to RNA-seq data (a matrix of cells by genes), all accessibility 

peaks upstream of and within each gene body are summed to represent gene activity. In the 
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converted gene activity matrix, each row is one cell, and each column is accessibility values 

of one gene. Therefore, after conversion, we can do a simple filtering and reordering to 

match features of chromatin accessibility and gene expression data. The Signac package 

provides this conversion process, and we ran the code available at 

https://satijalab.org/signac/articles/pbmc_vignette.html (Stuart et al., 2020). After we have 

both a gene activity matrix and a gene expression matrix, we normalize both modality data 

with (Log+1)-transformation, which adds 1 as a pseudo count to the matrix before log-

transformation. Then, we identify the top 3000 highly variable genes (HVG) for each 

modality and use all identified HVG as features for integration. To identify the top 3000 

HVG, we use Scanpy by calling the highly_variable_genes function (Wolf et al., 2018). 

Model training 

We trained sciCAN in all datasets for 100 epochs. The learning rate starts from 0.005 with 

0.0005 weight decay. All weights in the sciCAN model are updated through stochastic 

gradient descending. In the NCE loss function, temperature 𝜏 is a crucial parameter that 

affects discriminative power of the final representation. We set as 𝜏 = 0.15 for the 32-

dimension linear-transformed output and 𝜏 = 0.5 for the 25-dimension SoftMax activated 

output, which is consistent to the practice in our previous study (Xu et al., 2021c). Detailed 

training code is also provided on sciCAN GitHub 

(https://github.com/rpmccordlab/sciCAN). 

https://satijalab.org/signac/articles/pbmc_vignette.html
https://github.com/rpmccordlab/sciCAN
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Integration via LIGER 

Multimodal single-cell data integration by LIGER was demonstrated in its published 

tutorial (Liu et al., 2020). We used default parameters to perform integration of chromatin 

accessibility and gene expression data, and the final dimension of integrated representation 

by LIGER is 20 for all 5 benchmark datasets. Briefly, LIGER uses integrative nonnegative 

matrix factorization (iNMF) to identify metagenes that are shared between ATAC-seq and 

RNA-seq (Yang and Michailidis, 2016). These metagenes are a weighted matrix of factor 

loadings of observed gene expression/activity. Then, cell loadings of these metagenes are 

used to perform joint clustering and other downstream analysis. Ideally, representations of 

cells from both modalities after iNMF should have been integrated in the same latent space 

and can be visualized via tSNE or UMAP (Becht et al., 2018; Kobak and Berens, 2019). 

Integration via Harmony 

Harmony is the second integration method benchmarked in our study. Originally, Harmony 

was designed to correct batch effects within single-cell RNA-seq datasets (Korsunsky et 

al., 2019). Later, the novel use of Harmony in multimodal single-cell data integration was 

discussed in reviews (Argelaguet et al., 2021; Forcato et al., 2021). Meanwhile, a batch-

correction benchmark study showed that Harmony was ranked among the top 3 methods, 

with LIGER and Seurat, for integrating single-cell RNA-seq data (Tran et al., 2020). 

Therefore, we included Harmony in our benchmarking of multimodal single-cell data 

integration. Harmony learns the joint representation through an iterative k-means 

clustering, and the outcome is a linear correction function that transforms the original 

principal components (PCs) to the batch-corrected PCs. Batch information is necessary to 
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guide Harmony to distinguish what variation should be diminished during the k-means 

iterations. Principally, to integrate chromatin accessibility and gene expression data, 

modality information serves as the same role of batch information. Again, we used the 

default procedure of Harmony, in which we reduced the whole dataset into the first 30 PCs. 

Integration via Seurat 

Seurat uses canonical correlation analysis to learn the shared latent space between two 

modalities. This approach is different from LIGER, Harmony, and our method, in a way 

that Seurat will first identify confident cell pairs between the two modalities. Then, Seurat 

uses these paired cells as anchors to learn a mutual neighborhood graph. Finally, it 

computes a projection that brings all other cells to this shared latent space. Because of its 

“anchor” design, Seurat needs pairwise computation of anchor points when datasets come 

from more than two sources. Since we only deal with the modality difference between 

chromatin accessibility and gene expression in this study, we do not need to perform 

pairwise computation of anchor points with Seurat. For benchmarking, we ran Seurat v3 

with the default tutorial, and the final dimension of integrated representation by Seurat 

would be 50. 

Integration via ArchR 

ArchR uses Seurat as infrastructure to integrate RNA-seq with ATAC-seq data. Different 

from Seurat, ArchR constrains the mapping from ATAC-seq to RNA-seq in a “subspace”. 

An initial unconstrained mapping was done through Seurat. This step is aimed to estimate 

what clusters in ATAC-seq have good correspondence to a certain number of clusters in 
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RNA-seq. Then, the “subspace” or constrained mapping will only project a number of 

clusters in ATAC-seq onto their corresponded clusters in RNA-seq. 

Integration via SMILE 

We previously proposed SMILE to integrate multimodal single-cell data when cell anchor 

information was obtained from co-assay profiling. Because sciCAN and SMILE share the 

same architecture to learn lower dimension hidden space for single-cell data, SMILE also 

generate 128-dimension hidden space. To use SMILE for integration in this situation, we 

had to rely on external tool, like Seurat, to identify cell anchors. Once cell anchors 

identified, SMILE was trained based on anchored data and projected the rest of unanchored 

data into the joint representation space. A tutorial can be found at SMILE GitHub 

(https://github.com/rpmccordlab/SMILE). 

Activity-expression velocity 

Activity-expression velocity was calculated with scVelo (Bergen et al., 2020). We replaced 

the spliced layer with the gene activity matrix and the unspliced layer with the gene 

expression matrix, given the concept that increase of gene expression would follow 

increase in gene activity. To estimate first and second moments, we used the 128-

dimension joint space learned by sciCAN, instead of PCA space. 

Evaluation 

To evaluate integration by each method, we proposed 4 metrics: 

Modality and cell-type silhouette score. As we mentioned before, sciCAN and SMILE 

reduces each dataset into 128-dimension spaces, while LIGER reduces the data to 20 

https://github.com/rpmccordlab/SMILE
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dimensions, Harmony to 30, and both Seurat and ArchR to 50. Since final dimensions of 

the integrated representations by the 6 methods are not the same, we further used Uniform 

Manifold Approximation and Projection (UMAP) to reduce them into 2-dimensions with 

the same UMAP running parameters (McInnes et al., 2018). Then, we calculated modality 

and cell-type silhouette scores on the 2D UMAP spaces. A typical silhouette score S ranges 

from -1 to 1. To better reflect the integration outcome, we define modality silhouette as 

𝑎𝑏𝑠(𝑆) and cell-type silhouette as (1 + 𝑆)/2. Of note, we used different labels to calculate 

modality and cell-type silhouette. For modality silhouette, the label used is modality 

information. A good integration should have chromatin accessibility and gene expression 

data largely overlapped. Therefore, 0 is the best outcome, and we ignore the 

positive/negative sign by using the absolute value of the typical silhouette score S. For cell-

type silhouette, we used the author-reported annotation label to calculate S and then scale 

the output to the range from 0 to 1. Thus, cell-type silhouette 1 indicates the best integration 

that preserves cell-type structure. 

F1 score from RNA-seq to ATAC-seq, and from ATAC-seq to RNA-seq. A useful 

integration of modalities should have the ability to transfer cell type labels from one 

datatype to another, either from RNA-seq to ATAC-seq or from ATAC-seq to RNA-seq. 

Given cell-type label availability from a single modality, the user should be able to predict 

cell-types for the other modality, with a fair accuracy. To evaluate how friendly the joint 

representation is for label transferring, we trained a Support Vector Machine (SVM) 

classifier with one modality and tested it with the other modality. The choice of SVM is 

simply based on a constant superior performance of SVM classifier across datasets. Then, 
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we used macro F1 and F1 score for each cell type to evaluate SVM classifiers trained with 

different joint representations by these 6 methods. Macro F1 score is the average of F1 

scores for all cell-types, and it can help us reveal if integration is good for non-major cell-

types. This is because cell-types are not balanced in most single-cell data and revealing 

non-major cell-types is critical for most single-cell analysis. A high macro F1 score can 

suggest that integration is also good for non-major cell-types. Meanwhile, individual F1 

scores for all cell type also report which cell-type prediction is the hard case and what is 

the highest F1 score the classifier can reach to. 
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CHAPTER V 

DIAGONAL INTEGRATION OF MULTIMODAL SINGLE-CELL 

DATA: AN ENCHANTING GOAL BUT A HAZARDOUS JOURNEY 
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 A version of this chapter is a manuscript by Yang Xu and Rachel Patton McCord. 

This manuscript was published in Nature communications. 

This chapter was revised to be different from the original manuscript. Y.X. 

conceived concept with guidance from R.P.M. and produced all analysis results. Y.X. and 

R.P.M. wrote the manuscript. 

Introduction 

With the advance of new single-cell technologies, single-cell computational analysis has 

moved into the multi-omics era. Integrating multi-omics single-cell data, therefore, has 

gained increasing attention from the single-cell community. This key research domain 

promises to help us understand complex cellular systems from different viewpoints, such 

as gene expression, chromosome structure, and even cellular imaging. Computational 

integration methods that match one modality with another can reveal a detailed picture of 

regulatory networks and cellular function. However, different types of ‘omics data usually 

do not share the same features. For instance, transcriptomics describes expression of genes, 

while epigenomics measures histone modifications or accessibility across all regions of the 

genome. This feature discrepancy presents the first challenge to the development of 

integration methods. The other challenge stems from how single-cell data have been 

collected over the years. Though recent technologies enable multiple measurements to be 

made simultaneously on the same single cells (“joint-profiling”) (Lee et al., 2019; Li et al., 

2019; Ma et al., 2020b), most single-cell datasets profile different aspects of biology one 

at a time in independent groups of cells. Therefore, we lack ground truth about what is 

happening at the level of epigenetics, transcriptomics, and proteomics in the same single 
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cell. This makes it difficult to evaluate the quality of proposed integration methods. In 

recent years, many integration methods have been published to address different scenarios 

of multimodal single-cell data integration. A recent key review summarized three major 

approaches of multimodal single-cell data integration and outlined published methods in 

each category (Argelaguet et al., 2021). Of these categories, “horizontal integration” 

methods require anchored features to align up different modalities, while “vertical 

integration” methods need shared cells from multiple modalities as anchors. The “diagonal 

integration” approach requires neither anchoring cells nor features for integration, 

presenting a distinct advantage over horizontal and vertical methods. Because no prior 

knowledge is required, accurate diagonal integration is also challenging to achieve. Despite 

the rapid increase in new diagonal integration methods, there is not a single diagonal 

method that has been extensively examined and carefully benchmarked for its utility in 

multimodal integration in complex cellular systems. 

The enchanting goal 

In this comment, we focus solely on diagonal integration. Over the past three years, there 

has been a steady increase in publications describing new diagonal methods for the 

integration of multimodal single-cell data (Cao et al., 2020b; Cao et al., 2021; Demetci et 

al., 2020; Liu et al., 2019; Stark et al., 2020; Welch et al., 2017; Yang et al., 2021), 

indicating strong interest in the unique advantages of diagonal integration. Since horizontal 

and vertical methods require either anchored features or anchored cells, their application is 

limited to cases where it is feasible to engineer matched features (which is often quite 

difficult, particularly with disparate measures such as cell imaging and gene expression) or 
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where multiple modalities have been measured within the same cell.  Therefore, an 

effective diagonal integration method would greatly expand the scope of possible data 

integration and is enchanting to the community. When we considered the mechanisms that 

previously published methods use to align modalities, we observed that they are all 

similarly built upon the foundation of manifold alignment, which projects data from 

different modalities into a common space while preserving the intrinsic structure within 

each modality. Therefore, these methods can generally be described in two steps: 1) 

preserving cell type structure within each modality; and 2) aligning cells across modalities. 

Each method differs with respect to the representation learning that preserves cell-type 

structure within each modality and the alignment approach to close the gap between 

modalities. Thus, they try to solve two problems at the same time and have varying 

performances of balancing representation learning and modality alignment. Nevertheless, 

they all share the same underlying principle. 

The hazardous journey 

Manifold alignment assumes that data from different modalities were generated from a 

similar distribution or through a similar process. In an ideal experiment, quantification of 

multi-omics data may satisfy this requirement. But, in reality, there are many unknown 

variations, and different research labs have different practices of data generation. 

Therefore, we need to ask how an algorithm distinguishes a true biological alignment that 

correctly matches the same cell types in different modalities from any other potential 

artificial alignments. The only judgment the algorithm can make is whether the alignment 

is the optimal solution. Thus, any artificial alignment that satisfies a mathematical optimum 
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can stand out as the best solution, but will not necessarily represent the accurate biological 

solution. There seems to lack ais no mechanism   for diagonal algorithms to distinguish a 

true biological alignment from any artificial alignments without prior knowledge. To 

demonstrate this pitfall, we illustrate artificial and biologically incorrect alignments 

resulting from integration applied to a simulated multimodal dataset generated from real 

single-cell data where the ground truth is known. We began with single-cell RNA-seq data 

from mouse cortex and split the genes into two parts to represent two different “modalities” 

with different feature spaces, but which come from the same cell population (Figure 5.1) 

(Zeisel et al., 2015). We preserved some shared genes between the two modalities, and 

both modalities should have a similar power to distinguish the seven cell types. We tested 

five diagonal methods on five simulated scenarios (Cao et al., 2020b; Cao et al., 2021; 

Demetci et al., 2020; Liu et al., 2019; Yang et al., 2021). These methods can distinguish 

cell types in both modalities separately, and they all align both modalities with no 

noticeable gap. However, when we investigate cell type correspondence between 

modalities, we find that these methods all fail at least in one scenario in terms of accurately 

matching cell types. Since these methods share fundamentally the same mechanism for 

modality alignment, we conclude that such errors in alignment will be a widespread 

problem across diagonal methods. We propose that the use of such simulated data should 

provide a benchmark for future method developments. Developers can investigate in which 

scenarios their methods may fail and potential reasons for this failure. 
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Figure 5.1. Artificial alignments by diagonal methods in 5 scenarios. A, 5 scenarios of 

simulated multimodal single-cell data, showing how each modality was generated. B 

and C, Visualization of integration by selected diagonal methods. Cells are colored by 

modality source (B) and cell type identity (C). The two modalities were split into 

separate visualizations in c to make artificial alignment errors visible. 
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Searching for solid ground 

Given the outcomes above, we argue that a safe practice in applying diagonal methods is 

to incorporate certain prior knowledge. Indeed, Yang et al. briefly mentioned that more 

than one alignment can look equally optimal and incorporating prior knowledge can help 

deal with issue of artificial alignments (Yang et al., 2021). At the same time, Pamona only 

succeeds in complicated integration when it uses shared cells across modalities (Cao et al., 

2021). Both publications briefly acknowledge the possibility of artificial alignment we 

comment on, but this issue has not been highlighted consistently as a key message for those 

who intend to apply these tools for data integration. Instead, the problem of diagonal 

integration may come across as solved, and users run the risk of pursuing hypotheses based 

on erroneous artificial alignment. For example, users could falsely think an enriched  

signature in one type of data is correlated with an enriched signature in another data type, 

even though the two aligned cell types in two modalities are not the same. 

Considering the incorporation of prior knowledge into future method development, we 

suggest the following directions here. The first direction is to use partly shared features 

(Figure 5.2A). Incorporating shared features is feasible for datasets like RNA-seq, ATAC-

seq, and other data that are quantified along the linear genome. A pioneering study 

proposed using partially shared features and extensively benchmarked this hybrid approach 

with well-established and reliable integration methods (Jain et al., 2021). Moving forward, 

we recommend additional work should continue to investigate how to achieve meaningful 

integration with minimal shared features. Along with our recommended simulated data 

above, there is a need for benchmarking datasets that can be used to evaluate the degree 
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Figure 5.2. Conceptual models for integration of multimodal single-cell data. Models 

can be designed to consider (A) partially shared features, (B) known feature links 

between two modalities, and (C) shared cells as prior knowledge. 
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and type of shared features that are required to achieve accurate integration. Meanwhile, 

engineering different modalities to have shared features may not be applicable in cases like 

integrating gene expression data with chromatin structure data. In such cases, alternative 

approaches can be constructing a feature-relation matrix, which links features in one 

modality to possible corresponding features in the other (Figure 5.2B). For example, given 

an enhancer-promoter contact in Hi-C data, we can hypothesize which gene would be under 

impact and which histone mark may explain the regulation (Duren et al., 2021). However, 

this approach must be developed with substantial underlying knowledge to support the 

presumed feature connections. There are also cases in which the construction of feature-

relations is not straightforward or lacks experimental support, as in the integration of 

single-cell omics and single-cell imaging data. This leads to our second recommended 

direction, using cell anchors or cell labels (Figure 5.2C). In this case, the integration task 

will be reframed into semi-supervised learning. In recent years, joint-profiling technologies 

generated multi-omics data at single cell resolution (Lee et al., 2019; Ma et al., 2020b; Zhu 

et al., 2021), and these joint-profiled single-cell data could serve as reference for learning 

the integrated space. We envision that combining joint-profiling technologies and diagonal 

methods would become a standard framework for multimodal single-cell data integration. 

Further work is needed to determine how many cells must be profiled by joint methods to 

represent sufficient complexity to facilitate integration of disparate datasets. Even so, 

algorithms could misalign cell types that do not show up in the training set. Thus, methods 

should be evaluated for whether they force all data to be aligned to the previously 

represented cell types or would allow them to be separate. 
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As diagonal integration gains more attention, the problem of artificial alignment and the 

two future directions we propose remain major challenges to overcome. When applying 

diagonal methods in complex situations, the community needs to cautiously evaluate 

conclusions generated by these methods. In a fast-moving and competitive field, there is 

strong temptation to show only the advantages of a new method and where it succeeds, 

making broad claims of general utility while minimizing any potential shortcomings. But 

it is equally valuable to clearly show scenarios where methods fail, both to inform potential 

users and to facilitate future research. We encourage the community to contribute 

additional guidelines for reliable use of diagonal integration methods and to propose 

additional challenging benchmark tests that will clearly reveal what problems are yet to be 

solved. 
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CONCLUSION THE DIVERSITY OF MULTI-OMICS 
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The conclusion chapter contains a partial manuscript by Yang Xu and Rachel 

Patton McCord, which was published in BMC Bioinformatics. This chapter also includes 

some unpublished results that will be considered for peer review. 

1.  Power single-cell transcriptome for diverse research projects 

In Chapter I, I introduced a marker-based cell-type annotation tool MACA for single-cell 

transcriptome data (Xu et al., 2021b). In Chapter II, we built a marker-assisted integration 

tool termed MASI, based on the study of MACA (Xu et al., 2022b). We demonstrated that 

the marker-based integration approach outperforms model-based methods, even deep-

learning models, regarding batch correction and cell-type annotation for multi-source 

single-cell transcriptome data. Many computational methods were proposed to address the 

issue of integration for single-cell transcriptome data. These methods used sophisticated 

designs to model batch effects and would require intensive computation. However, our 

methods, MACA and MASI, indicated that these methods may complicated the problem 

of batch correction. Instead, MACA and MASI used a general data processing pipeline, 

and we demonstrated this simple practice deals with batch effects in a wide variety of cases. 

We could propose these two marker-based approaches to diverse research projects that 

involve single-cell transcriptome data. 

1.1. The diverse research projects 

Combining single-cell transcriptome technology with chemical treatments could help us 

understand cellular functions under a range of conditions at system level. For example, 

Kang et al. treated PBMC cells with  IFN-β and then performed scRNA-seq to study how 
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different immune cell types response to the same treatment (Kang et al., 2018). Another 

study combined small molecules that induce somatic cells back to pluripotent stem cells 

with scRNA-seq to identify key intermediate states of cell reprogramming (Guan et al., 

2022). Studies like this could draw a picture of how a small molecule leads differentiated 

cells back to pluripotent cells and what gene modules are reprogrammed along the path. 

Besides treating cells with chemicals, combining single-cell transcriptome technology with 

genetic or molecular engineering tools could generate even more diverse single-cell data 

to understand more complicated functions of gene networks. A CRISPR-coupled scRNA-

seq could be used to study cell-type-wise response of a cellular system to genetic 

perturbation (Dixit et al., 2016). Injecting cells with tracible tags and then using scRNA-

seq to profile these tagged cells could reveal what the their lineage fates are and what 

intermediate states these cells went through (Bandler et al., 2021). 

Studies can also be designed to cover multiple conditions. For example, we have just 

been through the COVID-19 pandemic, and we are still working on to reveal molecular the 

mechanism of SARS-CoV-2 in detail. Three independent studies from multiple research 

institutes recorded cellular profiles of patients, from mild, to moderate, and to severe with 

scRNA-seq, and this research group revealed how SARS-CoV-2 infection progresses in 

our immune systems in multiple tissues and even in different races (Chan Zuckerberg 

Initiative Single-Cell et al., 2020; Chua et al., 2020; Zhang et al., 2020). These studies 

together could draw a more comprehensive picture about COVID-19, instead of them 

alone. More beneficially, combining all these 3 studies, we would be more confident to 
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make a medical and public health plan to intervene immune defense, prevent a patient 

deteriorate to a severe stage, and lower the risk of death. 

There are even more single-cell studies similar to those above. We are witnessing that 

numerous research groups across the globe empower single-cell transcriptome data for 

diverse purposes. Integrating these single-cell data serve as keys to unravel mysteries of 

complicated cellular systems and molecular networks. 

1.2. Towards data-driven integration 

In MACA, all marker genes were given equal weights for their contribution in defining cell 

types. In MASI, we differentiated marker weights given what ranking the marker is in the 

reference data. Nevertheless, both approaches of assigning marker weights didn’t consider 

how much contribution a marker gene makes in a particular data. Learning marker weights 

based on data itself could enable more precisive integration analysis. Meanwhile, data-

driven integration can also deal with the problem of generalization. In most supervised 

machine learning approaches, models learned from a reference are not applied well to new 

target data. Additional weight fine-tuning on the target data itself is required for the purpose 

of good generalization. It should be the same for our marker-based annotation. Neither 

assigning markers equal contribution nor ranking markers based on reference data could 

fit property of target data. 

Thus, we wish to learn marker weights based on data itself in the future. This could be 

achieved through self-supervised or unsupervised learning. For self-supervised learning, 

marker weights can be fine-tuned with pseudo labels. In MASI, we have shown that 

annotation based on reference data correctly predicts cell-type labels for majority of cells. 
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Self-supervised learning could further take advantage of the existing correctness to further 

correct wrong labels (Asano et al., 2019; Caron et al., 2018). On the other model, we could 

also learn marker weights from scratch by an unsupervised approach. In recent years, 

contrastive learning has demonstrated its effectiveness to learn visual representation for 

unlabeled data (Chen et al., 2020a; Chen et al., 2020c). The same practice can be used here 

for learning marker weights that better represent the data itself. We have been working on 

both self-supervised and unsupervised approach towards data-driven integration, and data-

driven integration will still be our next goal. 

2. The diversity of multi-omics 

From Chapter III to V, I discussed integration methods in 3 different categories for 

multimodal integration. We developed two different integration methods, SMILE and 

sciCAN, and they are aimed to address different integration difficulties. We aim to build 

to tools that cover single-cell multi-omics data from transcriptome to chromatin 

accessibility, DNA methylation and even to chromatin structure data. However, we still 

need more computational integration tools because of the diversity of multi-omics data. In 

this thesis, I primarily focused on data integration. However, analysis of each modality has 

its own unique challenges. Without solving what is the better computational analysis to 

represent each modality truthfully, integration could be distortion to each modality. One 

modality I did not cover extensively in this thesis is the spatial transcriptome. Different 

from conventional single-cell transcriptome, spatial transcriptome further incorporates 

spatial locations of cells in a tissue and provides extra information for us to understand 

regulatory landscape in situ. Meanwhile, single-cell chromatin structure data is also 
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standout example because it has such a distinct data format from any other modalities and 

has extreme data sparsity. Before I close this thesis, I would like to further acknowledge 

these two fields and their challenges. This includes one published work relevant to spatial 

transcriptome: a computational method I developed named CoSTA (Xu and McCord, 

2021), and an ongoing project in which we examined impacts of feature extraction on data 

analysis. 

2.1. Spatial transcriptome 

I briefly mentioned integration of single-cell transcriptome and spatial transcriptome data 

in previous chapters. Here, let me elaborate more challenges of analyzing spatial data and 

additional effort we made. Evolving from single-cell transcriptomics, spatial 

transcriptomics further incorporated spatial information. This newly research domain has 

been attracting extensive attention from single-cell research community recently. Different 

spatial technologies have enabled high resolution measurements of how gene regulation is 

spatially organized but sacrifice balance between genome-wide transcriptome profiling and 

single-cell resolution (Burgess, 2019). While we consider integration of spatial 

transcriptomics data with other modalities, analyses and data practices for spatial 

transcriptome data deserve more careful consideration, in order to make full use of the 

extra spatial information. Thus, we need more wise data practices and analysis strategies 

for spatial transcriptome. 

A few current analysis pipelines often treat each pixel in an expression matrix of spatial 

data as an independent feature, thus losing spatial information. For example, the seqFISH+ 

technique can fluorescently detect 10,000 mRNAs in situ at single cell resolution, and there 
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are often groups of cells that have correlated gene expression with their neighbors to make 

up larger structures. However, the original report analyzed these expression patterns using 

PCA and hierarchical clustering, treating each cell as an independent feature, rather than 

preserving spatial positions of cell neighbors (Eng et al., 2019). Slide-seq similarly 

produces high-throughput spatially resolved transcription information, using sequencing 

rather than fluorescence. Previous analyses of Slide-seq data first identified spatially non-

random gene expression, but then looked for genes expressed in similar patterns using 

pixel-level overlap analysis rather than according to spatial features (Rodriques et al., 

2019). Existing algorithms for analysis of spatial transcriptomics are based on statistical 

modeling and primarily propose to distinguish spatially expressing or variable genes from 

random spatial expression noise. For example, both SpatialDE and SPARK analysis 

approaches estimate how significant the spatial pattern of a gene is (Sun et al., 2020; 

Valentine et al., 2018). SpatialDE further builds in an unsupervised pattern detection 

algorithm to cluster significant SE genes into different groups which have certain spatial 

patterns in collective. SPARK, in contrast, was designed only for finding SE genes. To 

examine spatial relationships between genes, this method still relies on hierarchical 

clustering that uses individual pixels as features. Therefore, even though SPARK can 

identify genes with significant spatial patterns, the latter part of the SPARK analysis 

decouples the expression from its original spatial context.  

Thus far, existing spatial transcriptomics analyses involve either multi-step complex 

feature engineering for spatial quantification or human-imposed rigid or statistical 

modeling-based screening of candidate SE genes. In the existing methods, the similarity of 
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expression pattern between two genes is either binary-- whether or not the genes cluster 

together-- or is quantified based on pixel-level correlation. To address spatial data analysis, 

I also proposed a computer-vision-inspired approach to examine relationships between 

spatial expression patterns of different genes while preserving the full spatial context. I 

adopt an unsupervised ConvNet learning strategy for Spatial Transcriptomics Analysis 

(CoSTA).  This new method, named CoSTA, can find quantitative comparisons between 

gene expression patterns in a way that preserves spatial relationships between neighboring 

cells and tissue regions (Figure 6.1). Applying CoSTA to published MERFISH and Slide-

seq data, we show that CoSTA identifies specific but biologically-relevant gene sets with 

significant spatial relationships. 

2.2. 3D genome at single-cell resolution 

Among all modalities, chromatin structure data stands out alone because it has distinct 

format from other modalities. Modalities, for example transcriptome and chromatin 

accessibility, represent the enrichment of a transcriptomic and epigenomic properties along 

the linear genome. These modalities are presented in the form of 1D information. 

Differently, chromatin structure data reflects how frequently one genomic locus contacts 

with others. A simple way to present chromatin structure data can be a 2D symmetrical 

contact matrix. However, this data representation can be misleading that contacts only 

happen between two loci. For example, we could observe contact between A and B, and 

contact between B and C. If we could represent chromatin structure data in a 3D form, it is 

possible that A, B, and C form the one contact simultaneously. 
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Figure 6.1. Unsupervised neural network model to learn spatial feature. 
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Because chromatin structure data goes beyond 1D information, there would be multiple 

ways of feature extraction and multiple angles of data interpretation (McCord et al., 2022). 

At the scale of whole genome, each chromosome may occupy a certain space within the 

nucleus (Cremer and Cremer, 2001). The arrangement of chromosome territories can vary 

among different cell types, and the cell-type specific chromosome arrangement could 

exhibit biological functions for purpose (Das et al., 2020; Parada et al., 2004). Within the 

scope of each chromosome, it is well known that chromosome is compartmentalized into 

active and inactive regions (Lieberman-Aiden et al., 2009). This compartmentalization is 

highly correlated to other linear features, like histone modification, CpG enrichment, and 

Lamin-associated domains (LADs) (Briand and Collas, 2020; Tan et al., 2021; van Steensel 

and Belmont, 2017; Xu et al., 2019). Taking advantage of this correlation could serves a 

link to integrate chromatin structure data with other epigenomic data. Going deeper, we 

can further reach to the scale to examine how chromatin is arranged within a compartment. 

This led to the concept of topological associated domains (TADs) (Beagan and Phillips-

Cremins, 2020). Regulatory regions can be blocked by TADs and can’t cast their influence 

on genes nearly. This local scale of chromatin arrange could endow cells with more precise 

gene regulation. Finally, the most refined scale would be specific contacts between two 

loci. Such contacts involving of enhancers and gene promoters could play a critical role in 

cellular programming. 

However, there has not been a benchmark study to show which feature space better 

represent chromatin structure data so far. We have performed a preliminary examination 

on this issue (Figure 6.2). We found different feature spaces have different degrees of 
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Figure 6.2. Single-cell 3D genome data analysis with 3 different levels of features. 3 

different feature types are extracted from the same single-cell 3D genome data. Contact-

based features is the most refined scale, gene-based feature reflects interactions at a 

local scale, while compartment-based feature represents a global scale. Both cell-type 

silhouette score and cell-type entropy mixing score measures how different cell types 

are separated out using these feature spaces. Higher is better for cell-type silhouette 

score, but lower is better for cell-type entropy mixing score. 
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discriminative power to reveal different cell types within a single-cell 3D genome data. 

Interestingly, if we only include self-interaction for data analysis, we can separate out every 

cell type, even for hard cases. This suggests a risk of identifying variation that does not 

involve long-range structural contacts, even though 3D genome data is aimed to reveal 

structural biological information. Moreover, we don’t know if combining all features from 

the small to large scale of chromatin structure would be more beneficial than analyzing 

structure data with each feature space independently. Lack of this kind of benchmark 

motivated us to comprehensively examined impacts of different features on single-cell 

chromatin structure data analysis. Meanwhile, we aimed to address if the choice of feature 

from chromatin structure data would affect the integration with other single-cell modalities 

and how much the influence would be. 

3. Conclusion 

In this thesis, I presented multiple computational methods for integrating multi-source 

single-cell transcriptome data and multimodal single-cell data. I aimed to build a 

comprehensive toolbox to cover a wide range of integration applications. Building a 

comprehensive toolbox is not a lonely journey but a community effort. Over these years, 

the single-cell research community has grown into globe and built numerous tools for 

diverse analysis problems. To end this thesis, I would like to acknowledge that the diversity 

of single-cell multi-omics opens the opportunities to understand complex cellular systems 

from multiple levels as well as presenting grand challenges of developing suitable 

computational tools for precise and accurate data analysis.  
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