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Abstract

Recent progress in magnetism has been driven by embracing the complexity associated

with entangled spin, orbital, and lattice degrees of freedom, and by understanding the

emergent quantum behaviors of magnetic systems. Over the past decades, intense efforts

have been devoted to “extreme quantum materials,” comprising low-dimensional lattices of

spin S = 1/2 degrees of freedom, that are candidates to host quantum spin liquid phases

with no classical counterpart. Finite-spin (S ≥ 1) systems that exhibit ground states with

short-ranged entanglement have not been the center of much attention because they are

expected to behave semi-classically. However, as we will demonstrate in this dissertation,

the traditional classical limit (1/S expansion) does not work for large classes of finite-spin

systems, which still admit an accurate classical or semi-classical treatment. To address

this important problem, we will exploit the fact that N -level systems admit more than

one classical limit. As we will demonstrate in this dissertation, different classical limits

lead to different generalizations of the so-called Landau-Lifshitz dynamics. In particular,

we will introduce a generalized classical spin dynamics based on coherent states of SU(N),

where N is the dimension of the local Hilbert space. This new approach also allows the

generalization of the semi-classical spin dynamics (1/S-expansion) from SU(2) to SU(N),

providing a better approximation that incorporates quantum effects in the spin dynamics

of large classes of realistic spin Hamiltonians, including S ≥ 1 systems with large single-

ion anisotropy and weakly coupled multi-spin units, such as dimers, trimers or tetramers.

Besides developing the mathematical formalism, we illustrate these ideas by comparing our

theoretical predictions against inelastic neutron scattering data of two realistic effective S = 1

iron-based compounds. In the last part of this dissertation, we generalize the concepts of

the magnetic skyrmions by taking alternative classical limits of quantum spin systems. In

vii



particular, we report the emergence of magnetic CP2 skyrmions in realistic spin-1 models

based on SU(3) coherent states.
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Chapter 1

Introduction

Magnetism was discovered in the ancient world. The first well-known application was the

magnetic compass, the earliest examples of which are from the 11th century. People in

Europe and China started using the so-called lodestone, which would align itself from north

to south (pole of the Earth) if allowed to move freely. This property turned out to be crucial

for navigation. A lodestone is actually a piece of naturally magnetic iron or magnetite

Fe3O4, which is the etymology of the word ferromagnetism. In a more modern formulation,

ferromagnetic materials are those which undergo a phase transition into a state that

spontaneously breaks time reversal symmetry below the so-called Curie temperature. The

characteristic of this state is that the electronic magnetic moments become spontaneously

aligned along a given direction. The origin of ferromagnetism must be attributed to intrinsic

magnetic interactions between electrons. Without these interactions, and in absence of an

external magnetic field, the magnetic moments would be thermally disordered, i.e., pointing

randomly in different directions. Dipole-dipole interactions can be ruled out as the possible

origin of ferromagnetism in most materials because this interaction is of the order of 10−5

eV' 0.1 K for two electrons that are separated by distance of a few angstroms [15], whereas

the observed magnetic Curie temperatures are of the order 102–103 K (10−3–10−2 eV). It was

not until the early days of quantum mechanics that scientists understood the microscopic

origin of ferromagnetism. This state of matter derives from four fundamental properties of

electrons [16]: 1. The electron’s spin; 2. The electron’s kinetic energy; 3. The Pauli exclusion

principle; 4. Coulomb repulsion between electrons.
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As a first approach, we can try to understand the microscopic origin of the magnetic

coupling by considering two electrons that are spatially localized by an external potential

and repel each other through the Coulomb interaction (Here we follow Auerbach [16]). We

will find out that the nature of non-interacting states determines the sign of interaction:

ferromagnetic vs. antiferromagnetic. First, we consider two electrons in two nearly

degenerate but orthogonal single-particle states: two electrons can occupy either or both

of the two states. Recall that due to the Fermi statistics (Pauli exclusion principle), the full

state (orbital times spin) of the two-electron system must be antisymmetric: if the orbital

state is symmetric the spin state must be antisymmetric and vice versa. To reduce the effect

of the Coulomb repulsion, two electrons may align with each other to form a symmetric spin

state, forcing an antisymmetric orbital state with zero probability of finding both electrons

at the same point (when the Coulomb interaction is largest). This quantum mechanical

property leads to an effective ferromagnetic (FM) interaction between the spins of both

electrons that explains the first Hund’s rule (the effective ferromagnetic interaction is of the

order one eV for valence electrons that occupy different orbitals of the same atom).

Let us consider now the simplest model for a Mott insulator, that is a two-site Hubbard

model with two electrons (one electron per orbital on average):

H = −t
∑
σ

(c†1σc2σ + h.c.) + U
∑
i=1,2

ni↑ni↓. (1.1)

The hopping amplitude t accounts for the finite electronic tunneling between the two orbitals1

and U is the on-site Coulomb repulsion. The off-site Coulomb interaction is ignored here

because we are assuming that the screening length is very short. The Hilbert space of this

half-filled two-site fermonic system has dimension six because the Pauli exclusion principle

rules out the possibility of two parallel spins on the same site. This means that we can

exactly diagonalize the two-site Hamiltonian.2 The first step is to choose a basis. We note

that the total spin is a good quantum number because the Hamiltonian is invariant under

1The first term is sometimes referred as the “kinetic” energy (hopping integral of the tight-binding model),
which has an overall minus sign because the hopping term includes the combined effect of the actual kinetic
energy of electrons and their attractive interactions with the lattice to be bounded in a solid.

2This is not possible for large (more than a few tens of sites) system size due to the exponential growth
of Hilbert space dimension.
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global spin rotations:

[Stot,H] = 0, (1.2)

where

Sztot =
1

2
(n1↑ − n1↓) +

1

2
(n2↑ − n2↓), S

+
tot = c†1↑c1↓ + c†2↑c2↓, S

−
tot = (S+

tot)
†. (1.3)

As a result, we can categorize the six basis states according to the eigenvalues of S2
tot and

Sztot. The Stot = 1 subspace is generated by the triplet

|Stot = 1〉1 = | ↑, ↑〉, |Stot = 1〉2 = | ↓, ↓〉, |Stot = 1〉3 =
1√
2

(| ↑, ↓〉+ | ↓, ↑〉), (1.4)

while the Stot = 0 subspace has also dimension three

|Stot = 0〉1 =
1√
2

(| ↑↓, 0〉+ |0, ↓↑〉),

|Stot = 0〉2 =
(| ↑, ↓〉 − | ↓, ↑〉) + (| ↑↓, 0〉 − |0, ↑↓〉)

2
,

|Stot = 0〉3 =
(| ↑, ↓〉 − | ↓, ↑〉)− (| ↑↓, 0〉 − |0, ↑↓〉)

2
. (1.5)

Due to the Pauli exclusion principle, we conclude that |Stot = 1〉 is an eigenstate of H (a

given electron cannot hop to the other orbital). Consequently, the diagonalization of H can

be restricted to the orthogonal 3-dimensional Stot = 0 subspace. The resulting eigenstates

include |Stot = 0〉1 with eigenvalue U , the Stot = 1 triplet with degenerate eigenvalue 0, and

the remaining two eigenstates are linear combinations of |Stot = 0〉2 and |Stot = 0〉3 with

eigenvalues U(1 ±
√

1 + 16t2/U2)/2. In the limit U/t � 1 3, the two eigenstates can be

approximated as

|ψgs〉 '
1√
2

(| ↑, ↓〉 − | ↓, ↑〉), with eigenvalue ' −4t2

U
, (1.6)

and

|ψhes〉 '
1√
2

(| ↑↓, 0〉 − |0, ↑↓〉), with eigenvalue ' U +
4t2

U
. (1.7)

3Hubbard provided an estimation [74] for 3d-transition metals: t ∼1 eV and U ∼10 eV.
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The spectrum of Eq. (1.1) in the large-U/t limit then consists of a low-energy sector including

an antisymmetric singlet ground state |ψgs〉 and an excited Stot = 1 triplet state separated

by the small energy gap 4t2/U , and a high-energy sector spanned by the states {|Stot =

0〉1, |ψhes〉} that accounts for “charge fluctuations” above the so-called Mott-Hubbard gap of

order U . Since U/|t| � 1, the low-energy physics of Eq. (1.1) is well described by an effective

spin Hamiltonian:

H̃ = J

(
S1 · S2 −

1

4

)
, J = 4t2/U, (1.8)

known as the isotropic antiferromagnetic (AFM) Heisenberg model, whose spectrum includes

the singlet ground state |ψgs〉 with energy εs = −J and the excited Stot = 1 triplet state with

energy εt = 0, which leads to a spin gap ∆s = J = 4t2/U . This simple exercise illustrates

the microscopic origin of the antiferromagnetism: the singlet configuration takes advantage

of the finite tunneling (hopping) into another site to reduce the “kinetic” energy while the

other electron is there. A similar virtual process is forbidden for the triplet state because of

the Pauli exclusion principle from this virtual process, implying that εt > εs. In his seminal

paper [74], Hubbard pointed out that the Hamiltonian Eq. (1.1) (on the lattice) provides a

good approximation in modeling the correlation effects in the d-bands of transition metals.

For this reason, antiferromagnetism is more common than ferromagnetism in nature. In

realistic systems, electrons (spins) cannot directly tunnel into another site, because the d- or

f -orbitals of magnetic ions are usually separated by a non-magnetic “bridge” ion such as O2−.

Nevertheless, as proposed by Kramer [82] and further developed by Anderson [9], electrons

(spins) of the magnetic ions can still interact with each other by hopping into the p-orbital of

the non-magnetic ion through a fourth-order process known as superexchange [9]. Depending

on the bond angles and filling of the atomic orbitals, the superexchange interaction can

either be ferromagnetic or antiferromagnetic, which is summarized by a set of semi-empirical

Goodenough-Kanamori rules (see Refs. [64, 78]). Other exchange mechanisms such as the

double exchange [166]—where the effective hopping of an electron is strongly affected by its

ferromagnetic Hund’s interaction with localized spins (first Hund’s rule)—are not analyzed

in this dissertation.
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We have seen that the the large-U/t limit of the half-filled Hubbard model is well

approximated by the isotropic AFM Heisenberg model (see Auerbach [16] for a more

mathematically rigorous derivation). In realistic materials, different types of magnetic

anisotropy can also emerge from various microscopic mechanisms. For example, the

combination of the (relativistic) spin-orbit interaction and crystal field splitting of a given

magnetic ion may lead to more general bilinear interactions in spin operators (anisotropic

exchange interactions) [49, 105]. In other words, besides the isotropic (scalar product)

Heisenberg interaction of Eq. (1.8), the exchange tensor can include a symmetric traceless

component (symmetric exchange anisotropies), and an antisymmetric component (the

Dzyaloshinskii–Moriya interaction). The allowed exchange anisotropies are obtained by

analyzing the space group symmetry of the material (two open-source codes provide such

symmetry analysis [147, 22]). In addition, the combination of the spin-orbit interaction and

crystal field splitting also leads to single-ion anisotropy terms for magnetic ions with spin

higher than one. These (exchange + single-ion) anisotropies in spin space turn out play a

rather important role in the low-energy physics for a large class of d- (transition-metal) and

f - (rare-earth) systems. In particular, we will consider two iron-based magnetic systems

in this dissertation, where the magnetic anisotropies are essential to explain some of the

observed experimental phenomena.

After examining the microscopic origin of the spin models, we proceed to study these

models themselves. The first challenge is that spins are intrinsic quantum mechanical objects

with no well-defined classical counterparts. Nevertheless, as a first approach, we can still

adopt the naive (and widely accepted) classical limit for a spin, i.e. a classical dipole field.

The ground state of the classical spin model is obtained by minimizing the classical energy 4.

At low enough temperatures, excitations of the classical spin model correspond to small

oscillations around the ground state configuration, known as spin waves, which are described

by the Landau-Lifshitz dynamics (LLD) — a classical spin (dipole field) precessing around

the molecular field, or by the semiclassical spin wave theory (SWT) that is obtained by

quantizing the harmonic oscillator Hamiltonian of each normal mode.

4By treating the spin as a rigid classical vector of length S, the minimization is done with respect to 2Ns
real parameters, where Ns is the number of spins.

5



The procedure described above turns out to be successful for bipartite lattices with

only nearest-neighbor AFM exchange interactions, such as the square and the honeycomb

lattices 5. However, this approach becomes problematic for non-bipartite lattices. For

example, let us consider the triangular lattice antiferromagnet in the Ising limit: H =

J
∑
〈i,j〉 S

z
i S

z
j . As shown in Fig. 1.1, after anti-aligning two spins, the third spin can only

be kept anti-parallel to one of the previous two spins. This property is known as geometric

frustration and it typically leads to ground state degeneracy: there are six degenerate ground

state configurations for an Ising model on a single triangle (the number of ground states

grows exponentially with the triangular lattice size [154]). The AFM Heisenberg model H =

J
∑
〈i,j〉 Si · Sj on a Kagome lattice provides another example of geometric frustration. The

total energy of the Kagome lattice system is minimal for spin configurations that minimize

the energy on each triangle [see Fig. 1.1]: H = J [(S1 + S2 + S3)2 − (S2
1 + S2

2 + S2
3)] /2 [34].

The second parentheses gives a constant contribution, whereas the first parentheses is non-

negative, i.e. the minimal energy of each triangle is given by any configuration that satisfies

S1 + S2 + S3 = 0. This very loose constraint leads to an infinite number of degenerate

ground states [34]!

The lattice geometry is not the only source of frustration: competing further neighbor

exchange interactions can also lead to frustration. For instance, the bipartite honeycomb

lattice becomes frustrated after introducing a second neighbor AFM interaction. The large

ground state degeneracy (originated from frustration) typically leads to stronger quantum

or/and thermal fluctuations that can preclude long-range magnetic ordering. Even in the

classical limit, thermal fluctuations can suppress long-range magnetic ordering leading to

the so-called classical spin liquid phase, which is believed to be a good starting point to

look for more exotic quantum spin liquid phases [114]. Since Anderson’s proposal of the

resonating-valence bond (RVB) theory for the triangular lattice in 1973 [11], tremendous

theoretical/numerical and experimental efforts 6 have been devoted to searching and

understanding the physics of quantum spin liquids. The main motivations are: a) it is

5This procedure works for a ferromagnet regardless of the lattice geometry, because the classical FM
ground state is an exact eigenstate of the Hamiltonian.

6At the time of writing, 30,952 articles related to the topic of quantum spin liquids have been appeared
since the publication of Anderson’s paper, according to the Web of Science database.
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Figure 1.1: Frustration leads to degeneracy. The triangular lattice in the Ising limit (left).
The Kagome lattice AFM (right).
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theoretically challenging for existing analytical and numerical approaches, b) the combination

of quantum phenomena and many-body effects leads to novel emergent behaviors, such as

fractional excitations, topological order, and long-range quantum entanglement [133].

Long-range magnetically ordered (spontaneous symmetry broken) materials appear to

be much more common. (To date there is no conclusive evidence of a quantum spin liquid

state in a real material). For instance, a series of numerical studies [25, 33, 156] suggest that

Anderson’s initial proposal of the RVB quantum spin liquid phase for the triangular lattice is

incorrect: the system develops the 3-sublattice long-range magnetic order in spite of strong

quantum fluctuations [38]. We also note that the extensive classical ground state degeneracy

does not always guarantee a disordered quantum ground state, because such degeneracy is

accidental, i.e., it is not a consequence of any (local) symmetry of the model and it is typically

lifted by the addition of other terms to the Hamiltonian. Zero-point/thermal fluctuations

of each competing ordering can lift the degeneracy and select a long-range ordered ground

state. This mechanism is known as “order by disorder” [151, 137, 87].

A widely advocated guiding principle to look for quantum spin liquids is to search for low-

spin frustrated systems [133] because the 1/S-expansion [10, 83, 97, 39, 101, 16] (conventional

spin wave theory) suggests that spin-S systems behave classically in the large-S limit. For

this reason, many efforts have been dedicated to the smallest spin S = 1/2 systems. However,

in this dissertation, we want to point out that the applicability of the traditional classical

(LLD) dynamics and semiclassical (SWT) dynamics to realistic spin systems (with a finite

value of S) is not just limited by the presence of large quantum fluctuations. As we will show

in this dissertation, there are large classes of realistic spin models whose spin dynamics is

not well described by the traditional SWT or LLD, but still admit an accurate semiclassical

or classical treatment. This apparent paradox disappears when we recognize that there is

more than one way of taking the classical limit of a spin system [62].

The necessity of introducing other classical limits for spins (or the failure of viewing

spins as classical dipole moments) can be understood by considering a very simple spin one

model, such as the single-ion Hamiltonian Ĥ = D(Ŝz)2 with D > 0 (easy-plane). The

excited eigenstates are the |Sz = ±1〉 doublet, while the ground state is the non-magnetic

state |Sz = 0〉, which has vanishing expectation values for all three dipole operators 〈Sz =
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0|Ŝµ|Sz = 0〉 = 0, µ = x, y, z. As a result, there are only two characteristic frequencies:

ω = 0 corresponding to transitions between states with the same energy and ω = D that

connects the ground state with the excited doublet. However, as we will see in Ch. 2, the

traditional classical limit, where spin states are represented with a classical dipolar field, leads

to a continuum of frequencies (the precession frequency depends on the initial value of the

z-component of the dipole moment). Consequently, instead of the two frequencies associated

with two discrete energy levels, the traditional classical approach produces a continuum of

excitations centered around ω = 0, which reflects the continuous Boltzmann distribution of

Sz for the dipole moment at a given temperature. As another example, we will revisit the

two-site isotropic AFM Heisenberg model Eq. (1.8) (hereafter we refer the system as a single

dimer) in Ch. 2 to illustrate the limitations of the conventional approach. Instead of two

frequencies associated discrete levels at ω = 0 and ω = J , the traditional Landau-Lifshitz

dynamics also predicts a continuum of excitation frequencies, as in the above-mentioned

example of the single-ion problem.

Although the two examples correspond to the extreme quantum limit, they reflect a

peculiarity of spins systems that arises from their intrinsic quantum mechanical origin.

Moreover, the two Hamiltonians correspond to the models of realistic materials in certain

limits. As we already mentioned, the combined effects of spin-orbit interaction and crystal

field splitting may lead to the easy-plane single-ion anisotropy in real d- (f -) electron

materials. When zJ (z is the coordination number and J is the characteristic energy scale

for exchange interactions) is smaller or comparable to D, the conventional classical approach

would definitely lead to a qualitatively incorrect description. In addition, there are multiple

examples of magnetic materials comprising weakly coupled dimers, which can be treated

with the generalized classical limit that is discussed in Ch. 2. Except for very particular

cases, it is impossible to solve the exact quantum dynamics of spin lattice systems because

the numerical cost grows exponentially in the number of spins Ns. Nevertheless, we can still

try to take an alternative classical limit of the spin system to vastly reduce the numerical

cost to linear in Ns.

Coherent states [121, 80], which have their origin in an early paper of Schrödinger [134],

were always considered as providing a possible link between quantum and classical mechanics.
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Since the local Hilbert space of a quantum spin-S system has dimension N = 2S + 1,

the coherent states of the special unitary group SU(N) provide a natural platform to take

the classical limit of a quantum spin-S system. We note that the traditional approach of

viewing spins as classical dipole moments corresponds to taking classical limit based on

SU(2) coherent states. As we will demonstrate in Ch. 2, by taking the classical limit based

on SU(3) coherent states for the single-ion problem, or SU(4) for the dimer problem, we can

capture the correct discrete nature of the transition frequencies. The SU(N) representation

of spins should not be confused with the symmetry of the spin Hamiltonian, i.e. the model

Hamiltonian need not be SU(N) invariant 7.

In summary, the classical limit for a spin system is associated with the coherent states of

a given group. The “optimal” choice of this group depends on the spin Hamiltonian under

consideration. In this dissertation, we will exploit this observation to generalize several

concepts and unify different approaches in the field of quantum magnetism. First, we will

consider the generalization for the classical dynamics, also known as LLD, which is only

known for traditional classical limit based on SU(2) coherent states. The generalization

is based on SU(N) coherent states that span the space of quantum mechanical states of

an N -dimensional Hilbert space. The original Landau-Lifshitz equation, that was first

introduced by Landau and Lifshitz [88] to describe the precession of the magnetization

under the influence of a (dipolar) molecular field in a solid, is generalized to describe the

precession of a classical SU(N) “color field” under the influence of an SU(N) molecular

field. This generalization enables us to describe the coherent multipolar excitations in an

S ≥ 1 system at any finite temperature. The next step corresponds to a generalization of

the semiclassical spin dynamics, i.e., the traditional SWT, from SU(2) to SU(N). The well-

known 1/S-expansion is generalized to an 1/M -expansion, where M is an integer number

that parametrizes different degenerate irreducible representations of SU(N). In particular,

we demonstrate that the 1/M -expansion is simply a loop-expansion [138]. The generalized

SWT provides a systematic scheme for including quantum many-body effects in magnets with

N − 1 “flavors” of low-energy excitations. Finally, we generalize the concept of magnetic

7Recall that this is already true for the traditional SWT and LLD: the SU(2) description of spins does
not require an SU(2) invariant spin Hamiltonian.
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skyrmions—one type of topological soliton that emerges in magnetic systems. The traditional

CP1 magnetic skyrmions are topological spin textures observed in quantum magnets. The

magnetic dipole moment rotates continuously from one direction to the opposite as we move

away from the origin in a radial direction. The skyrmion number represents the number

of times that the target manifold CP1 ∼= S2 wraps around the base manifold S2. As we

will show in this dissertation, different classical limits lead to a different target manifolds.

In particular, the classical limit of a spin system based on the fundamental representation

of SU(N) leads to the target manifold CPN−1. This generalization opens up a new way

of thinking and searching for different types of emergent topological solitons in quantum

magnets.

The outline of the dissertation is then organized as follows. In Ch. 2, we present the

rigorous formalism for taking the classical limit of a quantum spin system based on SU(N)

coherent states to generalize the well-known Landau-Lifshitz dynamics from SU(2) to SU(N).

In Ch. 3, we apply the generalized SU(3) Landau-Lifshitz dynamics to study the finite-

temperature dynamics of the effective S = 1 compound Ba2FeSi2O7. In Ch. 4, we discuss

the generalization of the conventional spin wave theory from SU(2) to SU(N) to incorporate

quantum effects semi-classically. Subsequently, in Ch. 5, we apply the SU(3) spin wave

theory to two effective S = 1 compounds Ba2FeSi2O7 and FeI2 to explain quantum many-

body phenomena revealed by inelastic neutron scattering data. In Ch. 6 we return to the

classical limit and explore the topological properties of a spin-1 model. In particular, we

report the emergence of CP2 magnetic skyrmions and skyrmion crystals in a realistic spin-1

model, which generalizes the concept of the CP1 magnetic skyrmions resulting from the usual

classical limit of spins based on SU(2) coherent states. The final conclusions and outlook

are given in Ch. 7.
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Chapter 2

The classical limit of a spin system

The classical mechanics of a point particle can be recovered by taking the ~ → 0 limit of

the quantum theory. However, this classical limit is not well defined for spins, which are

intrinsically quantum mechanical objects. In this chapter, we introduce a classical limit

of the dynamics of quantum spin systems based on coherent states of the special unitary

group SU(N), where N is the dimension of the local Hilbert space. This approach, which

generalizes the well-known Landau-Lifshitz dynamics from SU(2) to SU(N), provides a better

approximation to the exact quantum dynamics for a large class of realistic spin Hamiltonians,

including S ≥ 1 systems with large single-ion anisotropy and weakly coupled multi-spin units,

such as dimers or trimers. In Sec. 2.1, we review some basic concepts of group theory and

coherent states along with the mathematical background that is required to understand the

rest of the chapter. Sec. 2.2–2.3 includes the formalism of the generalized SU(N) Landau-

Lifshitz dynamics. In Sec. 2.3, we illustrate the necessity of the generalized dynamics by

computing the spin structure factors of I) a single-ion S = 1 model and II) a single dimer

with two S = 1/2 using different approaches and comparing the results against the exact

solution. In Sec. 2.4, we introduce numerical methods for solving the equations of motion of

the generalized dynamics.
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2.1 Lie groups, Lie algebras, representation theory,

and coherent states

The aim of this section is to review some basic notions of Lie groups/algebras and their

coherent states. It is an over-simplified summary of relevant material that has been extracted

from standard textbooks [80, 44, 120, 65], review articles [121, 172, 58], and lecture notes of

D. Arovas [13].

2.1.1 Properties of a group

A group G is a set of elements with a group operation ∗ (usually called multiplication)

[denoted as (G, ∗)], satisfying the following conditions:

• Closure: ∀ g1, g2 ∈ G, g3 = g1 ∗ g2 ∈ G.

• Associativity: g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3, ∀ g1,2,3 ∈ G.

• Identity: ∃ e ∈ G, e ∗ g = g ∗ e = g, ∀ g ∈ G.

• Inverse: ∃ g ∈ G,∃ g−1 ∈ G, g ∗ g−1 = g−1 ∗ g = e.

The following concepts are useful to understand the structure of a group.

• Group homomorphism: Given two groups (G, ∗) and (H, ·), a group homomorphism

is a map φ: G→ H such that φ(g1) ·φ(g2) = φ(g1∗g2), where g1,2 ∈ G and φ(g1,2) ∈ H.

If φ is bijective (one-to-one and onto), it is an isomorphism (denoted as G ∼= H).

Example: consider the group of positive real numbers (R+, ·) and the group of complex

numbers (C, ·), where · is the normal multiplication operator, the function fu : R+ → C

defined by fu(a) = au is a group homomorphism for u ∈ R+ and a ∈ C.

• Subgroups: A subgroup H of G is a set of elements that forms a group itself under

the same group operation. An invariant (normal) subgroup H ⊂ G such that g−1Hg =

H, ∀ g ∈ G. Example: the group of real numbers under addition (R,+) is an invariant

subgroup of the complex number (C,+).
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• Direct product group: Given two groups (G, ∗) and (H, ·), one can prove that

(see [65, 44]) the algebraic structure of the direct product G × H satisfies the group

axioms, whose elements are ordered pairs (g, h), where g ∈ G and h ∈ H, and the

group operation 4 is defined as (g1, h1)4(g2, h2) = (g1 ∗ g2, h1 · h2). Note that for

F = G×H, both G and H are the invariant subgroups of F .

• Left coset and Quotient (factor) group: Let H be a subgroup of G. The left

coset gH is defined as multiplying each element of H by an element g ∈ G. The set

of all left cosets is denoted as G/H = {gH, g ∈ G}. If H is an invariant subgroup

of G, then G/H also forms a group [65, 44], known as the quotient (factor) group.

Here we focus on the proof of closure: (gaha)(gbhb) = gagbg
−1
b hagbhb = gagbhchb, where

hc = g−1
b hagb ∈ H because H is an invariant subgroup of G. The usefulness of left coset

is that it provides a natural “regrouping” of the group structure. Example: consider

the group of integers (Z,+), which possesses an invariant subgroup formed by even

integers (2Z,+). The left cosets of even integers consists of the set of odd integers and

the set of even integers. As a result, the quotient group Z/2Z has only two elements,

which is isomorphic to the cyclic group {0, 1} with addition modulo 2.

2.1.2 Lie group, Lie algebra, and representations

The motivation for introducing Lie groups in physics is to describe continuous symmetries,

which are ubiquitous in nature. In particular, most discussions of this dissertation are based

on the seminal example of the Lie group SU(N), which arises naturally in the description

of an N -level quantum-mechanical system. SU(N) is the set of all (continuous) unitary

transformations with determinant equal to one. The formal definition of a Lie group is a

smooth manifold endowed with a group structure, such that the group operation G×G→

G : (g, g′) → gg′ and the inverse G → G : g → g−1 are smooth [65]. Loosely speaking, we

can think of a Lie group as an n-dimensional space Mn [a manifold is everywhere locally

equivalent (so-called homeomorphic) to Rn, see Appendix B], so an element of G is written

as g = g(x) and g(x3) = g(x1)g(x2), where x1,2,3 are points on Mn. Here x3(x1,x2) is a

continuous and differentiable function. In addition, the inverse function [g(x)]−1 = ψ(x) is
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also continuous and differentiable. Example: the SU(2) group element is parameterized as

g =

 a+ bi c+ di

−c+ di a− bi

 , (2.1)

under the constraint a2 + b2 + c2 + d2 = 1, where these numbers are all real. As a result, the

group multiplication and the inverse of SU(2) can be written as continuous and differentiable

functions of the real numbers. Note that a Lie group is not necessarily a matrix group (see

an example given in page 25-26 of [65]), but all Lie groups discussed in this dissertation are

matrix Lie groups.

In physics, a lot of information can be deduced by considering the infinitesimal form

of a continuous symmetry. For example, the Noether theorem, which relates a conserved

current with a continuous symmetry, was derived by considering the infinitesimal symmetry

transformation. This leads to the definition of a Lie algebra. The Lie algebra g of a matrix

Lie group G is the set of all matrices X such that exp(tX) ∈ G for all t ∈ R. In physics

texts, the exponential map is usually written as exp(−itT ) because the symmetry operation

of some Lie groups is usually unitary. Therefore, an extra i is added in the exponent to

guarantee that T is Hermitian, corresponding to some physical observables. We will follow

the physics convention in this dissertation. Equivalently, from the above definition, g is the

tangent space of G at the identity element because

− iT =
d exp(−itT )

dt

∣∣∣∣
t=0

. (2.2)

We note that the matrix of the Lie algebra can be obtained from the linearization of the

exponential map—which is valid when t� 1—this is the reason that a Lie algebra is related

to the infinitesimal form of the Lie group. A Lie algebra has the following three important

properties:

• Vector space over a field F: ∀ T1,2 ∈ g, α1T1 +α2T2 ∈ g, where α1,2 are some scalars

of some field F.

• Closed under a Lie bracket: ∀ T1,2 ∈ g, [T1, T2] ≡ T1T2 − T2T1 ∈ g.
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• The Jacobi identity: ∀ T1,2,3 ∈ g, [T1, [T2, T3]] + [T2, [T3, T1]] + [T3, [T1, T2]] = 0.

The basis vectors of a Lie algebra are called generators. In particular, the action of the Lie

bracket between generators tells us about the structure of the Lie algebra: [Ta, Tb] = ifabcTc

(summation over repeated indices is assumed), where the so-called structure constants fabc

are antisymmetric under exchange of any pair of indices.

The above discussions treat elements of Lie groups/algebras as abstract entities. Here we

will consider the representation of a Lie group/algebra: a finite-dimensional representation

of a Lie group is a homomorphism Π: G → GL(Vn), where Vn is an n-dimensional vector

space and GL(Vn) is the set of all n × n invertible matrices with matrix multiplication as

the group operation. Similarly, a finite-dimensional representation of a Lie algebra is also

an homomorphism π: g → gl(V) with the matrix commutator as the Lie bracket. The

dimension of the representation is the dimension of the vector space n = dimVn. Note that

one should not confuse the dimension of the group with the dimension of the representation.

We will illustrate this idea below with example for SU(N). If the homomorphism Π or π

is one-to-one, the representation is said to be faithful. A proper subspace Ww of Vn with

w < n is said to be invariant if Π(g)ω ∈ Ww, ∀ g ∈ G,∀ ω ∈ Ww. A similar definition holds

for the Lie algebra. If there is no proper invariant subspace, a representation is said to be

irreducible (irrep).

Let us conclude this subsection with two concrete examples of Lie groups.

• The Heisenberg-Weyl group: The Heisenberg-Weyl group H3 consists of translation

operators of a quantum mechanical particle in phase space (coordinates+momentum).

The corresponding Lie algebra h3 has three generators: the identity 1̂, the position

operator x̂, and the momentum operator p̂. The structure of h is determined by

the canonical commutation relations [x̂, p̂] = i~, [x̂, 1̂] = [p̂, 1̂] = 0. Any finite

translation in phase space can be written as an exponential map of the generators

exp
(
i
(
xx̂+ pp̂+ c1̂

))
∈ H3, where x, p, c ∈ R.

• The SU(N) group: The Lie algebra su(N), that is defined as the tangent space at the

identity element of SU(N), is a vector space over CN of dimension N2 − 1. In the

fundamental representation, the following matrices provide a basis for the generators
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of su(N)

ĝij (i 6= j), Ĥ1 =
1

2
(ĝ11 − ĝ22), . . . ĤN−1 =

1

2
(ĝN−1N−1 − ĝNN), (2.3)

where

ĝij ≡ |i〉〈j|, i, j = 1, 2, . . . N (2.4)

and

|i〉 = (0, . . . ,
ith

1 , . . . , 0)T (2.5)

represents the standard basis of CN . The matrices satisfy the following commutation

relations [
ĝij, ĝkl

]
= δkj ĝil − δilĝkj, (2.6)

and [
Ĥk, Ĥl

]
= 0, k, l = 1, . . . , N − 1, (2.7)

where the set of N − 1 generators {Ĥk} with k = 1, . . . , N − 1 spans the Cartan

subalgebra (maximal commutative subalgebra [65]) of su(N), and the remaining N(N−

1) generators ĝij are the so-called raising (lowering) operators if i < j (i > j). It is

important to keep in mind that the commutation relations given in Eqs. (2.6) and

(2.7) remain invariant under unitary changes of basis: ĝij → U−1ĝijU , Ĥk → U−1ĤkU .

Consider now an irreducible representation (irrep) of su(N) on the vector space V ,

where dim(V ) is equal to N . This is the so-called fundamental representation. The

highest-weight state |µ〉 ∈ V is defined by the condition

ĝij|µ〉 ≡ 0 ∀ i < j, (2.8)

i.e. the highest weight state vanishes under the operation of any raising operator. Note

that |µ〉 is also a common eigenvector of the Cartan subalgebra generators

Ĥ1|µ〉 =
1

2
λ1|µ〉, . . . , ĤN−1|µ〉 =

1

2
λN−1|µ〉. (2.9)
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The N − 1 eigenvalues [λ1, . . . , λN−1] are used to label the irreps of su(N) and the

dimension of the representation is given by Weyl’s dimension formula [44]. It is obvious

that the dimension of the representation is different from the dimension of su(N),

N2 − 1.

As an example, let us consider the particular cases of the su(2) and su(3) algebras.

The Cartan subalgebra of su(2) is one-dimensional, i.e., it is generated by a single

element {Ĥ1 = 2Sz} (hereafter we will use ~ as the unit of angular momentum).

Consequently, the irreducible representations of su(2) are labeled by a single number

λ1 and their dimension is λ1 + 1 = 2S + 1 . For su(3), the Cartan subalgebra is

bi-dimensional, implying that the irreducible representations are labeled by λ1 and λ2

and their dimension is

dim[λ1, λ2] =
1

2
(λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2). (2.10)

It is interesting to note that a given vector space V can host irreducible representations

of two different algebras: π1: g1 → gl1(V) and π1: g2 → gl2(V). As an example, let

us consider the Hilbert space of a spin one system (three-level system) with a basis of

states {|Sz = 1〉, |Sz = −1〉, |Sz = 0〉}. By definition, this is the linear space associated

with the irreducible representation S = 1 of the su(2) algebra. The same linear space

can be used to introduce the fundamental representation of the su(3) algebra. In this

representation, the generators of the Cartan subalgebra of su(3) are Ĥ1 = Ŝz/2 and

Ĥ2 = 3(Ŝz)2/4−Ŝz/4−1/2 and the highest-weight state is |1〉 (Ŝz|1〉 = |1〉) with λ1 = 1

and λ2 = 0. As expected, Eq. (2.10) confirms that the fundamental representation of

su(3) has dimension dim[1, 0] = 3. As we will see later, this freedom can be exploited

to express a given physical Hamiltonian in more than one way. For instance, a spin-one

Hamiltonian can be expressed in terms of generators of su(2) or in terms of generators

of su(3). These different “languages” lead to different approximations. Depending on

the Hamiltonian under consideration, one of these approximations will be better than

the rest.
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2.1.3 Coherent states of a Lie group

The concept of “coherent states” was first proposed by Schrödinger in 1926 [134]. He derived

them as the most classical states (i.e., minimum uncertainty ∆x∆p = ~/2) of a quantum

harmonic oscillator. The first practical application of this concept was introduced by Glauber

and Sudarshan in 1963 [60, 61, 59, 142] to describe the maximally coherent light state in

quantum optics, hence the name coherent state. Coherent states were originally constructed

as eigenstates of the annihilation operator of the Heisenberg-Weyl group:

â =

√
1

~
(x̂+ ip̂) (2.11)

The base state |0〉 for coherent states is defined by the condition

â|0〉 = 0. (2.12)

A coherent state is obtained by applying an element of the Heisenberg-Weyl group to the

base state [59]

|α〉 = eαâ
†−ᾱâ|0〉, (2.13)

where eαâ
†−ᾱâ ∈ H is the so-called displacement operator [172] and α, ᾱ ∈ C. By convention,

one can use two real numbers p and q with α = q + ip to label a coherent state. The wave

function of the coherent state |α〉 = |p, q〉 corresponds to the ground state of a simple

harmonic oscillator centered around the equilibrium position q and with average momentum

p (we can think of the description of a harmonic oscillator from a reference frame that moves

at a finite and constant speed). The square of the absolute value of this wave function is

|〈x|p, q〉|2 = (π~)−1/2 exp
{

(1/~)
[
−(x− q)2

]}
. (2.14)

The manifold of coherent states forms an over-complete basis of the Hilbert space of a point

particle in one-dimension [80]. The non-orthogonality of the coherent states leads to the
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finite overlap:

|〈p, q|p′, q′〉|2 = exp
{
−(1/2~)

[
(p− p′)2 + (q − q′)2

]}
= exp {−(1/2~)(α− α′)(ᾱ− ᾱ′)} . (2.15)

In his third seminal paper in 1963 [59], Glauber pointed out that there are three equivalent

definitions of coherent states: (i) the eigenstate of the annihilation operator, (ii) the state

obtained by applying a displacement operator of the Heisenberg-Weyl group on the vacuum

state of the harmonic oscillator, as given in Eq. (2.13), and (iii) the state with minimum

Heisenberg uncertainty. Ten years later, Perelomov [121] and Gilmore [57] observed that

the second definition of Glauber can be extended to an arbitrary Lie group by following the

same recipe as in Eq. (2.13). Below we focus our discussion on the SU(N) group.

We start by considering the simplest non-trivial case corresponding to coherent states of

SU(2). The three operators

Ŝ+ = ĝ12, Ŝ
− = ĝ21, Ŝ

z = Ĥ1, (2.16)

form a basis of su(2) generators. The corresponding highest-weight state |µ〉 = |Sz = S〉,

which satisfies Ŝ+|Sz = S〉 = 0, is chosen as the reference state. Like any other state, |µ〉 is

defined up to an arbitrary multiplicative phase. To remove this redundancy in the definition

of coherent states, it is necessary to identify the isotropic subgroup I, that leaves the reference

state invariant up to a multiplicative phase [172]. Since I = U(1) for the particular case of

SU(2), the manifold of coherent states is isomorphic to the coset space Ω̂ ∈ SU(2)/U(1):

|Ω(θ, φ)〉 ≡ Ω̂(θ, φ)|Sz = S〉 = e−iŜ
zφe−iŜ

yθ|Sz = S〉, (2.17)

where Ŝy = (Ŝ+− Ŝ−)/2i and θ, φ are two real parameters that parameterize the two-sphere

S2 ' CP1. In general, the manifold of the coherent states is isomorphic to G/I [172, 62],

and it is known as the quotient orbit. In the fundamental (S = 1/2) representation of SU(2),
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an arbitrary SU(2) coherent state can be expressed as

|Ω(θ, φ)〉 = cos
θ

2
e−iφ/2|1〉+ sin

θ

2
eiφ/2|2〉. (2.18)

Let us consider now the case of SU(3) coherent states. Unlike the SU(2) case, the manifold of

SU(3) coherent states depends on the irreducible representation under consideration. This

is so because the base (highest-weight) state for SU(3) coherent states is labelled by the

two integer numbers λ1 and λ2. The isotropic group becomes bigger when one of the two

numbers is zero, which corresponds to the so-called degenerate representations. Without

loss of generality, we consider the highest-weight state |1〉 = (1, 0, 0)T in the fundamental

[1, 0]-representation of su(3) in order to identify the isotropic subgroup for degenerate

representations. This state is invariant under the SU(2) group of transformations restricted to

the orthogonal subspace. In addition, the global multiplication by a phase [U(1) subgroup]

also leaves the reference state invariant in the quantum mechanical sense, implying that

I = SU(2)×U(1) ' U(2). The resulting manifold of SU(3) coherent states in the degenerate

representation is then isomorphic to the coset space SU(3)/U(2) ' S5/S1 ' CP2. Note that

the dimension of this manifold is 8 − 4 = 4 (recall that su(3) is eight-dimensional and u(2)

is four-dimensional). In the fundamental representation, a generic SU(3) coherent state can

be expressed as

|Ω(θ, φ, α1, α2)〉 = R(θ, φ, α1, α2)|1〉

= eiα1 sin θ cosφ|1〉+ eiα2 sin θ sinφ|2〉+ cos θ|3〉, (2.19)

where R(θ, φ, α1, α2) ∈ SU(3)/U(2), that takes the form [99]


sin θ cosφeiα1 cos θ cosφeiα1 − sinφe−iα2

sin θ sinφeiα2 cos θ sinφeiα2 cosφe−iα1

cos θ − sin θ 0

 . (2.20)
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Now we consider the simplest case when neither λ1 nor λ2 is zero (so-called non-degenerate

representation): the [1, 1]-representation. According to Eq. (2.10), the dimension of the [1, 1]-

representation is eight, which is the same as the adjoint representation [see Appendix A for

details]. Note that the underlying vector space of the adjoint representation is the Lie algebra

itself. As a result, the highest-weight state is now a linear combination of the eight generators

of su(3). At the same time, the highest-weight state is the common eigenstate of the two

Cartan subalgebra generators. Consequently, the highest-weight state is invariant under an

arbitrary U(1) transformation generated by H1 or H2. Therefore, the resulting manifold of

coherent states is isomorphic to SU(3)/[U(1)× U(1)] [62], whose dimension is 8− 2 = 6.

In general, the manifold of coherent states of SU(N) with N > 3 depends on the

representations. Here we focus on degenerate representations with only one non-zero

eigenvalue for the N − 1 elements of the Cartan subalgebra. In this scenario, a general

SU(N) coherent state with N > 3 can be constructed by a straightforward generalization of

the procedure that we applied to the SU(2) and SU(3) cases:

|Ω({pi})〉 ≡ Ω̂({pi})|µ〉, (2.21)

where Ω̂({pi}) ∈ SU(N)/I with I ' SU(N − 1) × U(1) ' U(N − 1). The SU(N) coherent

state, which is topologically equivalent to the complex projective space CPN−1, is then

parameterized by N2 − 1 − (N − 1)2 = 2(N − 1) real parameters {pi}. The explicit forms

of the SU(N) coherent states can be found in Ref. [113] [in the spherical coordinates with

2(N−1) real parameters] and in Ref. [58] (in terms of N−1 complex parameters). Similarly

to the H3 coherent states [see Eq. (2.15)], the SU(N) coherent states form an over-complete

basis of the Hilbert space of an N -level system. The overlap between two SU(N) coherent

states and the corresponding integration measure over the parameters {pi} can be found in

Ref. [113].
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2.2 Coherent states and classical limits

In this section, we will see that the coherent states of a general Lie group can be used to

define the classical limit of a quantum mechanical system. The manifold of coherent states

possesses a natural symplectic structure, which allows us to introduce a Poisson bracket. We

refer the interested readers to Appendix. B and Refs. [159, 58, 62] for detailed discussions on

the symplectic structure of the manifold of coherent states. Moreover, one can extend and

prove Dirac’s conjecture — the commutator between two quantum operators reduces to the

Poisson bracket in the classical limit — based on the coherent states for general Lie groups.

To begin with, we include the demonstration of Dirac’s conjecture for point particles

that was sketched by Yaffe in Ref. [159]. The expectation value of a quantum operator for

a coherent state of the Heisenberg-Weyl group [see Eq. (2.13)] is denoted as:

A(p, q) ≡ 〈p, q|Â|p, q〉. (2.22)

Similarly, the expectation value of the product of two operators 〈p, q|ÂB̂|p, q〉 is given by

(AB)(p, q) =

∫
dp′dq′

2π~
|〈p, q|p′, q′〉|2

× 〈p, q|Â|p
′, q′〉

〈p, q|p′, q′〉
〈p′, q′|B̂|p, q〉
〈p′, q′|p, q〉

, (2.23)

where we inserted the resolution of identity

Î =

∫
dpdq

2π~
|p, q〉〈p, q|. (2.24)

Dirac’s conjecture can be proved by taking the ~ → 0 limit of Eq. (2.23) [159]. According

to Eq. (2.15), the first factor of the integrand of Eq. (2.23) is a Gaussian that has a sharp

peak at p′ = p and q′ = q as ~→ 0. Note that the second factor is an analytical function of

α′ = (q′+ip′) for fixed p and q, while the third factor is an analytical function of ᾱ′ = (q′−ip′).

Therefore, we can expand the second and the third factors up to quadratic order in (α′−α)
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and (ᾱ′ − ᾱ), respectively,

〈p, q|Â|p′, q′〉
〈p, q|p′, q′〉

= A(α) +
dA

dα′

∣∣∣∣
α′=α

(α′ − α) +
1

2

d2A

dα′2

∣∣∣∣
α′=α

(α′ − α)2 +O
[
(α′ − α)3

]
, (2.25)

〈p′, q′|B̂|p, q〉
〈p′, q′|p, q〉

= B(α) +
dB

dᾱ′

∣∣∣∣
ᾱ′=ᾱ

(ᾱ′ − ᾱ) +
1

2

d2B

dᾱ′2

∣∣∣∣
ᾱ′=ᾱ

(ᾱ′ − ᾱ)2 +O
[
(ᾱ′ − ᾱ)3

]
. (2.26)

By combining the results, we have

(AB)(p, q) '
∫
dαdᾱ

2π~
|〈α|α′〉|2

{
A(α)B(α) +

dA

dα

dB

dᾱ
(α′ − α)(ᾱ′ − ᾱ) + L

}
, (2.27)

where L includes terms (up to quadratic order) that vanish after the integration. After

computing the Gaussian integrals and keeping contributions up to first order in ~, we obtain

(AB)(p, q) ' A(p, q)B(p, q) +
~
2

dA

dα

dB

dᾱ
. (2.28)

In the ~→ 0 limit, we have

lim
~→0

(AB)(p, q) = a(p, q)b(p, q), (2.29)

where

a(p, q) ≡ lim
~→0

A(p, q), b(p, q) ≡ lim
~→0

B(p, q). (2.30)

Note that the functions a(p, q) and b(q, p) are assumed to remain finite in the ~ → 0 limit.

They are the so-called classical operators [159], that resemble the operators Â and B̂ in the

classical limit. The relation (2.29) gives the factorization rule for the expectation value of

the product of two operators in the ~→ 0 limit.
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Finally, let us replace B̂ with the Hamiltonian operator Ĥ and consider the ~→ 0 limit

of the expectation value of the right-hand side of the Heisenberg equation (HE) of motion:

lim
~→0
− i
~
[
A,H

]
(p, q) = − lim

~→0

[
∂A

∂p

∂H

∂q
− ∂A

∂q

∂H

∂p

]
=
∂a

∂q

∂h

∂p
− ∂a

∂p

∂h

∂q

=
{
a(p, q), h(p, q)

}
PB
, (2.31)

where h(p, q) = lim~→0〈p, q|Ĥ|p, q〉 is the classical Hamiltonian. Note that in the above

derivation, we have used the fact that for the complex variable α = p+ iq, d/dα = (∂/∂p−

i∂/∂q)/2. After taking the same expectation value of the left-hand side of the HE, we obtain

lim
~→0
〈p, q|dÂ

dt
|p, q〉 =

da(p, q)

dt
=
{
a(p, q), h(p, q)

}
PB
. (2.32)

This completes the proof of Dirac’s conjecture. Here the coherent states of H3 play an

important role in linking the quantum and classical theories for a point particle. As we

already mentioned, the coherent states of the Heisenberg-Weyl group can be generalized to

any Lie group [121, 57], implying that we can take the classical limit of a given quantum

theory by introducing a manifold of coherent states of an appropriate Lie group [159]. In

the rest of this section, we focus our discussion on the classical limits of spin systems based

on the coherent states of the SU(N) group for degenerate representations.

The local Hilbert space of a quantum spin-S system has dimension N = 2S + 1. Since

the SU(N) group consists of all unitary basis transformations, with determinant equal to

1, of an N -level quantum-mechanical system, coherent states of SU(N) provide a natural

platform to define the classical limit of a spin system. However, as we mentioned previously,

the traditional approach has always been to use SU(2) coherent states to define a classical

limit of spin systems. While the SU(N) Lie group is not the only alternative, the purpose

of this section is to introduce this alternative path to illustrate the advantages of using Lie

groups larger than SU(2).

As before, the first step is to take the ~→ 0 limit of the expectation value of a quantum

operator for an SU(N) coherent state. As an example, let us consider the classical limit of
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the physical spin operator Ŝz in the highest-weight state of SU(2):

lim
~→0
〈Sz = S|Ŝz|Sz = S〉 = lim

~→0
~S. (2.33)

Note that we made ~ explicit in the above equation to indicate that the spin is an intrinsically

quantum-mechanical object, i.e., the simple definition of the classical operator given in

Eq. (2.30) does not exist for Ŝz in Eq. (2.33). However, we can still obtain a non-trivial

classical limit by simultaneously sending S = λ1/2 to infinity and ~ to zero, while keeping

the product finite. This simple procedure can be easily generalized to any quantum operator

Â, which is a polynomial function of the physical SU(N) generators. The classical limit of

an operator is then defined by taking the expectation value on a coherent state

a({αρ}) = 〈Ω({αρ})|Â|Ω({αρ})〉, (2.34)

where {αρ} is the set of N − 1 complex parameters that parametrize the SU(N)

coherent states, and simultaneously sending the eigenvalue λ1, that labels the degenerate

representations of SU(N), to infinity.

The second step is to consider the classical limit of the expectation value of the product

of two operators. We ought to prove that the factorization rule holds in the classical limit

〈Ω({αρ})|ÂB̂|Ω({αρ})〉
classical limit−−−−−−−→ a({αρ})b({αρ}). (2.35)

Indeed, the factorization rule holds for λ1 →∞. Here we show the proof explicitly for SU(2).

Consider the expectation value of the product of two on-site operators Â and B̂ for an SU(2)

coherent state,

AB(θ, φ) = 〈Ω(θ, φ)|ÂB̂|Ω(θ, φ)〉 =
(2S + 1)

4π

∫
d~Ω′|〈Ω|Ω′〉|2 〈Ω|Â|Ω

′〉
〈Ω|Ω′〉

〈Ω′|B̂|Ω〉
〈Ω′|Ω〉

, (2.36)

where we inserted the resolution of identity in terms of SU(2) coherent states, and

(2S + 1)

4π
d~Ω =

(2S + 1)

4π
dφdθ sin θ (2.37)
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is the Haar measure of SU(2). The first term of the above integrand is the overlap between

two SU(2) coherent states [16]

|〈Ω|Ω′〉|2 =

(
1 + ~Ω · ~Ω′

2

)2S

, (2.38)

where ~Ω = (sin θ cosφ, sin θ sinφ, cos θ). In the large-S limit [recall that S = λ1/2 for

SU(2)], the overlap becomes arbitrarily small except for ~Ω′ ' ~Ω, i.e., the coherent states

become asymptotically orthogonal for S →∞. The large value of S justifies a saddle-point

approximation to evaluate the integral in Eq. (2.36). After expanding the term ~Ω · ~Ω′ up to

the quadratic order in δγ = (γ′ − γ), where γ = θ, φ,

~Ω · ~Ω′ = cos θ cos(θ+ δθ) + cos(δφ) sin(θ) sin(θ+ δθ) = 1− 1

2
(δθ)2− 1

2
sin2 θ(δφ)2 +O

[
(δγ)3

]
,

(2.39)

we rewrite the square of the overlap as

|〈Ω|Ω′〉|2 = eln |〈Ω|Ω′〉|2 ' e2S ln
[

1− 1
4

(δθ)2− 1
4

sin2 θ(δφ)2
]
' e−S

[
(θ′−θ)2/2+sin2 θ(φ′−φ)2/2

]
. (2.40)

Since (for fixed θ and φ) the second factor and the third factor of the integrand in Eq. (2.36)

are analytical functions of the complex variables α′ = sin θ′φ′ + iθ′ and ᾱ′ = sin θ′φ′ − iθ′,

respectively, we can expand the two terms as we did in Eqs. (2.25) and (2.26),

AB(θ, φ) ' 2S + 1

4π

∫ 2π

0

dφ′
∫ π

0

dθ′ sin θ′

× e−S
[

(θ′−θ)2/2+sin2 θ(φ′−φ)2/2
]{
A(θ, φ)B(θ, φ)

− i

2

[
1

sin θ

∂A

∂θ

∂B

∂φ
(θ′ − θ)2 − 1

sin θ

∂A

∂φ

∂B

∂θ
(sin θ′φ′ − sin θφ)2

]
+

1

2

[
1

sin θ

∂A

∂θ

∂B

∂θ
(θ′ − θ)2 +

1

sin θ

∂A

∂φ

∂B

∂φ
(sin θ′φ′ − sin θφ)2

]
+ L

}
, (2.41)

where L includes terms (up to quadratic order) that vanish after the integration. Since the

width of the Gaussian goes to zero in the large-S limit, we can extend the integration limits

to infinity and set sin θ′ = sin θ to recover the familiar form of the Gaussian integration. In
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summary, we have

AB(θ, φ) = A(θ, φ)B(θ, φ)
(
1 + 1/(2S)

)
− i

2

1

S sin θ

[
∂A

∂θ

∂B

∂φ
− ∂A

∂φ

∂B

∂θ

]
+

1

2

1

S sin θ

[
∂A

∂θ

∂B

∂θ
+
∂A

∂φ

∂B

∂φ

]
+O

[
(1/S)2

]
(2.42)

By taking the large-S limit, we prove the factorization rule for SU(2)

AB(θ, φ)
S→∞−−−→ A(θ, φ)B(θ, φ). (2.43)

The above result also provides the definition of the Poisson bracket on the orbit of SU(2)

coherent states

{
A(θ, φ), B(θ, φ)}PB = −i lim

S→∞
S
[
A,B

]
(θ, φ) =

1

sin θ

(
∂A

∂φ

∂B

∂θ
− ∂A

∂θ

∂B

∂φ

)
. (2.44)

Note that {φ sin θ, θ}PB = 1, implying that φ sin θ and θ play the role of canonical coordinate

and momentum variables defined on the S2 ' CP1 manifold of SU(2) coherent states.

The general proof for SU(N) is non-trivial and can be found in Ref. [58]. The crucial

observation is that two distinct SU(N) coherent states become orthogonal in the limit λ1 →

∞. As a result, one can expand the integral associated with the expectation value in a

similar manner as in Eq. (2.27), but now in powers of 1/λ1. Finally, by expanding the

expectation value of the commutator between two operators up to the first order in 1/λ1

and then sending λ1 →∞, one can prove the generalization of Dirac’s conjecture applied to

the orbit of the SU(N) coherent states

{a({αρ}), b({αρ})}PB =
∑
µ,ν

gµν

(
∂a

∂αν
∂b

∂ᾱµ
− ∂a

∂ᾱµ
∂b

∂αν

)
= lim
λ1→∞
−iλ1〈Ω({αρ})|[Â, B̂]|Ω({αρ})〉,

(2.45)

where gµν is the Fubini-Study metric of CPN−1 (see Appendix B and Refs. [69, 58]).

For practical purposes, it is not always necessary to know a priori the exact form of the

Poisson bracket in order to obtain the classical equations of motion. In most cases, it is
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simpler to evaluate the right-hand side of Eq. (2.45). Namely, Eq. (2.45) provides us with a

simple recipe to derive the classical dynamics on the manifold of SU(N) coherent states. We

will follow this recipe in the next section to write down the generalized classical equations

of motion for a quantum spin system.

2.3 Classical spin dynamics

In the previous section we saw that the classical SU(N) dynamics of a quantum spin system

becomes exact for λ1 → ∞. However, for most systems of interest, the dimension of the

local Hilbert space is finite and λ1 = 1, implying that the classical dynamics is just an

approximation of the exact quantum dynamics. The big advantage of this approximation is

that the numerical cost of the simulations drops from an exponential to a linear dependence

in the number of spins. The mathematical procedure of taking the classical limit can be

physically represented as building a large SU(N) spin by ferromagnetically coupling M

replicas of the original spin and then sending M to infinity. By replacing the SU(N)

representation [λ1, . . . , 0] with [Mλ1, . . . , 0], the spin—originally a microscopic object—

becomes a macroscopic entity. It is important to note that the “ferromagnetic” coupling

between replicas corresponds to an SU(N) ferromagnetic Heisenberg interaction [16]. In other

words, the difference between alternative classical limits of a given spin system [e.g. SU(2)

and SU(N)] is dictated by the nature of the coupling between different replicas. This raises

the question about which classical limit better approximates the exact quantum dynamics.

As we will explain in this section, the short answer to this question is that the choice of

SU(N) coherent states with N = 2S + 1 guarantees that the dynamics will capture all the

coherent low-energy modes that can appear for a general Hamiltonian. To appreciate this

important point, we first derive two different classical dynamics based on SU(2) and SU(3)

coherent states for a common quantum spin Hamiltonian and then we provide the general

recipe to derive the classical dynamics for SU(N) coherent states.
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2.3.1 Classical equations of motion for spins

SU(2) and SU(3) Landau-Lifshitz dynamics

Consider the following S = 1 spin Hamiltonian

Ĥ =
1

2

∑
r,δ

∑
α,β

Ŝαr J
αβ
δ Ŝβr+δ +D

∑
r

(Ŝzr)
2, (2.46)

where Jαβδ is the exchange tensor on the bond δ and D is the strength of a single-ion

anisotropy term. This S = 1 system admits two classical limits: one based on SU(2) coherent

states (second representation with λ1 = 2) and another one based on the SU(3) coherent

states (fundamental representation with λ1 = 1 and λ2 = 0).

We will first consider the SU(2) classical limit. The time evolution of the spin components

[generators of SU(2)] is dictated by the Heisenberg Equation (HE) of motion

dŜαr
dt

= − i
~
[
Ŝαr , Ĥ

]
=
∑
δ

∑
µ,ν,β

Jµνδ εαµβŜβr Ŝ
ν
r+δ +D

∑
β

εα3β(Ŝβr Ŝ
z
r + ŜzrŜ

β
r ), (2.47)

where εαµβ is the Levi-Civita symbol. The classical limit of the interaction term is given by

Ŝβr Ŝ
ν
r+δ → 〈Ω|Ŝβr Ŝνr+δ|Ω〉 = 〈Ωr|Ŝβr |Ωr〉〈Ωr+δ|Ŝνr+δ|Ωr+δ〉 = sβrs

ν
r+δ

where we assumed that the coherent state of this system is a direct product of local coherent

states, i.e., |Ω〉 = ⊗r|Ωr〉. Since the single-ion anisotropy term is quadratic in the spin

operators, we must use the factorization rule given in Eq. (2.35), which is only exact in the

classical limit:

Ŝβr Ŝ
z
r + ŜzrŜ

β
r → 〈Ωr|Ŝβr Ŝzr + ŜzrŜ

β
r |Ωr〉

λ1→∞−−−−→ 2sβrs
z
r. (2.48)

As for the left-hand-side of the HE, the classical limit simply gives

dŜαr /dt→ 〈Ωr|dŜαr /dt|Ωr〉 = dsαr/dt. (2.49)
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Consequently, the resulting classical equation of motion for SU(2) coherent states takes the

form,
dsαr
dt

=
∑
δ

∑
µ,ν,β

Jµνδ εαµβsβrs
ν
r+δ + 2D

∑
βεα3βsβrs

z
r. (2.50)

This is simply the well-known Landau-Lifshitz (LL) equation without the damping term,

dsαr
dt

=
∑
µν

εαµνs
µ
rb
ν
r, br = − dh

dsr
, (2.51)

where h = 〈Ω|Ĥ|Ω〉 is the classical Hamiltonian. Note that in terms of spherical coordinates

θ and φ, Eq. (2.51) is equivalent to the Poisson bracket (2.45) on the orbit of SU(2):

dθ

dt
= − 1

sin θ

∂h

∂φ
= {θ, h}PB,

dφ

dt
=

1

sin θ

∂h

∂θ
= {φ, h}PB. (2.52)

Let us consider now the classical limit based on SU(3) coherent states. In this case we

need to compute the equation of motion of the eight generators of SU(3), T̂1−8, which can

be regarded as the components of the SU(3) spin. For this purpose, we are going to use the

basis of generators


T̂ 7

T̂ 5

T̂ 2

 =


−Ŝx

−Ŝy

−Ŝz

 ,



T̂ 3

T̂ 8

T̂ 1

T̂ 4

T̂ 6


=



−
(
Ŝx
)2

+
(
Ŝy
)2

1√
3

[
3
(
Ŝz
)2

− Ŝ2

]
ŜxŜy + ŜyŜx

−ŜzŜx − ŜxŜz

ŜyŜz + ŜzŜy


. (2.53)

These generators satisfy the commutation relation:

[T̂ µ, T̂ ν ] = i
∑
η

fµνηT̂
η. (2.54)
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The structure constants, fµνη, satisfy the relation [see Appendix A for definitions],

fηµν = − i
2

Tr (λη [λµ, λν ]) , (2.55)

where λµ are the Gell-Mann matrices. Note that, in the Cartesian basis

∣∣x1
〉

=
i√
2

(|+ 1〉 − | − 1〉),
∣∣x2
〉

=
1√
2

(|+ 1〉+ | − 1〉),
∣∣x3
〉

= −i|0〉, (2.56)

the SU(3) generators T̂ µj given in Eq. (2.53) are in fact represented by the Gell-Mann matrices

themselves:

T̂ µ =
(
λ̂µ

)
ab

∣∣xa〉〈xb∣∣ µ = 1, 2, · · · , 8. (2.57)

These generators are obtained by applying an SU(3) transformation (change of basis) to the

standard basis presented in Eq. (2.3). The advantage of the new “physical” basis is that it is

a direct sum of bases of irreps of the SO(3) group of rotations. The three elements, −T̂ 7,5,2,

are the three spin operators Ŝα which represent a local dipole moment and transform as

vectors under rotations [three-dimensional irrep of SO(3)]. The remaining five elements of

the basis, T̂ 3,8,1,4,6, are symmetric and traceless bilinear forms in the spin operators that

represent a nematic or quadrupolar moment [five-dimensional irrep of SO(3)]. Each irrep of

SO(3) corresponds to a different multipole, and the number of different irreps or multipoles

for the more general SU(N) group is N − 1. Importantly, the equations of motion that

dictate the dynamics of the different multipolar components are coupled. For instance, as

we will see below, the dynamics of the dipolar generators of SU(3), −T̂ 7,5,2, is coupled to

the dynamics of the nematic generators T̂ 3,8,1,4,6. By adopting the SU(3) approach, we are

treating the dipolar and the quadrupolar components on equal footing.

The first step is to rewrite the Hamiltonian in terms of the SU(3) generators:

Ĥ =
1

2

∑
r,δ

∑
µ,ν=7,5,2

T̂ µr J
µν
δ T̂ νr+δ +

D√
3

∑
r

(
T̂ 8
r +

2√
3

)
, (2.58)

where Jµνδ is the generalized exchange tensor for SU(3) spins that takes non-zero values

only for interactions between the dipolar components. Note that the second term of the
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above equation can be expressed in multiple ways. This ambiguity is removed by requiring

that each Hamiltonian term must be linear in the SU(3) generators acting on a given site

r [note that the generators of SU(N) together with the identity form a complete basis for

the complex vector space of N × N matrices]. As shown in Eq. (2.54), the quadrupolar

components T̂ 3,8,1,4,6 in general do not commute with the dipolar ones −T̂ 7,5,2. As a result,

the eight Heisenberg equations of motion for the SU(3) spin components on each site turn

out to be coupled:

dT̂ µr
dt

=
∑
δ

∑
ν,η=7,5,2

8∑
χ=1

Jνηδ fµνχT̂
χ
r T̂

η
r+δ +

D√
3

8∑
χ=1

fµ8χT̂
χ
r . (2.59)

As for the SU(2) case, the classical limit of the interaction term is again obtained by

assuming that the coherent state is a direct product of coherent states on each site. An

important difference, however, is that the classical limit of the single-ion term does not

require the use of the factorization rule, which can be a strong approximation for finite

values of λ1, because each term of Eq. (2.59) is now linear in the generators of SU(3) acting

on a given site r. After taking the classical limit on the left-hand side of the above equation,

we obtain the classical equations of motion for the SU(3) spins

dnµr
dt

=
∑
δ

∑
ν,η=7,5,2

8∑
χ=1

Jνηδ fµνχn
χ
rn

η
r+δ +

D√
3

8∑
χ=1

fµ8χn
χ
r . (2.60)

or
dnαr
dt

=
∑
µν

fαµνn
µ
rb
ν
r, br = − dh

dnr
, (2.61)

where

nαr = 〈Z|T̂αr |Z〉 = (λ̂α)abZ̄
a
rZ

b
r (2.62)

is the expectation value of the SU(3) generator based on the SU(3) coherent states |Z〉 =

⊗
∑

a Z
a
r |xa〉 [see Eq. (2.56) for definitions of |xa〉]. These expectation values are known

as the color fields in literature of high-energy physics [3]. We note that Eq. (2.61) can be

regarded as a generalization of the LLD (2.51).
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Clearly, the SU(3) approach becomes strictly necessary when the ground state of the

Hamiltonian under consideration has some form of nematic ordering, 〈T̂ 2,5,7〉 = 0 and 〈T̂ ν〉 6=

0 for some values of ν = 1, 3, 4, 5, 6, which can be either spontaneous or induced by a large

single-ion anisotropy term, such as the last term of Ĥ for D � |Jαβδ |. The simple reason is

that the SU(2) coherent states cannot describe a local quadrupolar moment. The need for

the SU(3) dynamics becomes a bit more subtle when the ground state exhibits some form

of magnetic (dipolar) ordering. Even in that case, nematic fluctuations can renormalize the

magnitude of the dipole moment or produce coherent low-energy modes, which are different

from the usual spin waves (dipolar fluctuations). These are the situations in which the SU(3)

dynamics becomes more appropriate than the traditional SU(2) dynamics. Put succinctly,

the SU(3) approach can faithfully represent all types of local fluctuations of a three-level

system.

SU(N) Landau-Lifshitz dynamics

The SU(2) LLD can be straightforwardly generalized to SU(N) spins by following the same

steps that we described for the SU(3) case. The classical equations of motion are obtained by:

(i) expressing the Hamiltonian in terms of generators of SU(N) under the condition that each

term must be linear in the SU(N) spin components acting on a given site; (ii) computing the

Heisenberg equation of motion for each generator of SU(N); and (iii) replacing the operators

with their expectation values for coherent states of SU(N). In general, the equations of

motion for the SU(N) “color fields” take the form,

dnr
dt

= nr × br, br = − dh

dnr
, (2.63)

where we have defined the generalized cross product on the orbit of SU(N):

(a× b)η ≡
∑
α,β

fαβηa
αbβ. (2.64)

Eq. (2.63) is one of the key results of this dissertation.

34



Based on the above discussion, it is apparent that to faithfully describe all types

fluctuations in a spin-S system, whose classical phase space is isomorphic to CPN−1, we

need to take the classical limit based on SU(N) coherent states with N = 2S + 1. We note

however that for particular spin Hamiltonians, a subgroup of SU(N) may also provide a

good approximation, as long as it incorporates the relevant components of the local order

parameter. As an example, we can just consider the case of a pure isotropic Heisenberg

model, the dynamics of which is well described by the traditional SU(2) LLD if the spin

S is large enough. The key observation is that the local order parameter of these systems

has a dominant dipolar character and the normal modes are coherent spin waves. Non-

dipolar fluctuations “are buried” in continuum of multiple spin waves. The classical SU(2)

dynamics breaks down when new modes associated with non-dipolar fluctuations emerge

below the continuum of multiple spin waves.

2.3.2 Single-ion model

Consider the following integer spin-S single-ion Hamiltonian,

ĤSI = D(Ŝz)2, (2.65)

with D > 0. This term controls the high-temperature dynamics of the Hamiltonian given

in Eq. (2.46) if |D| � |J ijδ |. The non-degenerate ground state of ĤSI is the eigenstate of Sz

with eigenvalue m = 0: |m = 0〉. The excited states are the doublets |±m〉 with 1 ≤ m ≤ S.

The exact quantum dynamics can be solved in a closed form as there is no interaction term

in the Hamiltonian. The transverse dynamical spin structure factor can be computed by

using the Lehmann representation:

S+−(ω) =
1

2πZ

∫ +∞

−∞
dteiωtTr

[
e−βĤSIŜ+(t)Ŝ−(0)

]
=

1

Z

S−1∑
m=0

e−βm
2D(S −m)(S +m+ 1)δ[ω − (2m+ 1)D]

= S−+(ω), (2.66)
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for ω ≥ 0, where

Z = 1 + 2
S∑

m=1

e−βm
2D (2.67)

is the partition function. Similarly,

Szz(ω) =
1

2πZ

∫ +∞

−∞
dteiωtTr

[
e−βĤSIŜz(t)Ŝz(0)

]
= − 1

Zβ

∂Z

∂D
δ(ω). (2.68)

The classical spin dynamics of this problem can also be solved analytically. Let us first

consider the SU(2) LL equations:

dsx

dt
= −2Dsysz,

dsy

dt
= 2Dsxsz,

dsz

dt
= 0. (2.69)

The solution is given by

s+(t) = s+(0)eiω̃−t, s−(t) = s−(0)eiω̃+t, sz(t) = sz(0), (2.70)

with ω̃± = ±2Dsz(0). The corresponding transverse dynamical spin structure factor is

computed by performing a thermal average over initial SU(2) coherent states (see discussions

in the next section for details), which reads

S+−
SU(2)(ω) =

S2
√
βD

(
1− ω2

4D2S2

)
e−β

ω2

4D

2D
√
πerf(

√
βDS)

Θ(2DS − |ω|) = S−+
SU(2)(ω), (2.71)

where erf(x) is the error function and Θ(x) is the Heaviside step function. Similarly,

SzzSU(2) = δ(ω)S2

[
− e−α√

α

1√
πerf(

√
α)

+
1

2α

]
, (2.72)

where α = βDS2.

Figure (2.1) shows a comparison between the exact result for the transverse dynamical

spin structure factor [see Eq. (2.66)] and the SU(2) classical approximation given in Eq. (2.71)

for three different spin values. Clearly, the quantum mechanical spectrum consists of discrete
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(a) (b) (c)

S=1 S=10 S=1000

Figure 2.1: Comparisons of the transverse dynamical spin structure factor between the
quantum (red triangle) and the SU(2) classical results (black line) for three different spin
values: (a) S = 1, (b) S = 10, and (c) S = 1000. In all three panels, the inverse temperature
βDS2 = 10−5, and the values of the dynamical structure factor are normalized to the
maximum intensity of the exact result.
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absorption peaks corresponding to ∆Sz = 1 (for ω > 0) transitions between discrete energy

levels, whereas the SU(2) classical theory produces a broad continuum of spectral weight

centered around ω = 0. The continuous character of the distribution arises from the

dependence of the spin precession frequency on the conserved quantity, sz(t) = sz(0), which

has a continuous distribution on the orbit of the SU(2) coherent states. For small values of S,

such as S = 1, the classical result based on SU(2) coherent states deviates strongly from the

exact quantum mechanical result [see Figs. (2.1)(a) and 1(b)]. Only for very large values of S

[see Fig. (2.1) (c) for S = 1000] does the SU(2) classical result become a good approximation.

The slow convergence of the quantum mechanical result to the large-S limit demonstrates

the need of implementing an alternative classical limit for realistic Hamiltonians, such as

ĤSI.

To illustrate the ideas discussed in Sec. 2.3.1, we now consider the classical limit of the

single-ion model based on SU(3) coherent states as an approximation for the extreme S = 1

case. The generalized SU(3) LL equations take the form

dn4

dt
= −Dn5,

dn5

dt
= Dn4,

dn6

dt
= −Dn7,

dn7

dt
= Dn6, (2.73)

dn1

dt
=
dn2

dt
=
dn3

dt
=
dn8

dt
= 0. (2.74)

The solution gives the time evolution of the classical dipole operators

s±(t) =
1

2

[
s±(0)∓ n4(0) + in6(0)

]
eiDt

+
1

2

[
s±(0)± n4(0)− in6(0)

]
e−iDt, (2.75)

where s± = −(n7 ± in5), and

sz(t) = sz(0) = −n2(0) (2.76)

is a conserved quantity. By computing the thermal average over initial SU(3) coherent states

of the Fourier transform of the spin-spin correlation function, we obtain the dynamical spin
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structure factor for ω ≥ 0:

S+−
SU(3)(ω) = δω,D

6 + 2eβD(βD − 3) + βD(βD + 4)

β2D2(eβD − βD − 1)
= S−+

SU(3)(ω), (2.77)

and

SzzSU(3)(ω) = δω,0
6eβD − βD [6 + βD (3 + βD)]− 6

3β2D2(eβD − βD − 1)
. (2.78)

Figure (2.2) shows the comparison between the exact transverse dynamical spin structure

factor of the S = 1 single-ion model and the results obtained with the SU(2) and SU(3)

classical approximations for βDS2 = 0.1. We can see that by working with the CP2 classical

phase space of the S = 1 system, we obtain a single transition at the correct frequency

ω = D, as opposed to the SU(2) classical approach. We also note that in the infinite

temperature limit, βDS2 → 0, the intensity of the SU(3) classical result coincides with the

exact quantum mechanical result if we renormalize the classical SU(3) spins Oj
r → κOj

r with

κ(N = 3, λ1 = 1) = 2. This renormalization factor is also required to satisfy the sum rule:

∑
j

∫
dωOjj(ω) = C1(N = 3, λ1 = 1) =

16

3
, (2.79)

associated with the quadratic Casimir operator of SU(3) with eigenvalue C1(N = 3, λ1 = 1),

which holds for the SU(3) spin structure factor

Ojj(ω) =
1

2πZ

∫ +∞

−∞
dteiωtTr

[
e−βĤÔj(t)Ôj(0)

]
. (2.80)

A similar renormalization factor sαr →
√

1 + 1/Ssαr must be applied to the classical spins

obtained from SU(2) coherent states to fulfill the sum rule in the infinite temperature

limit [75]. In general, the renormalization factor that must be applied to recover the sum

rule for arbitrary values of N and λ1 is:

κ(N, λ1) =

√
C1(N, λ1)√

(N − 1)3/(2N)λ1

=
√

1 +N/λ1, (2.81)
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Figure 2.2: Comparison of the transverse dynamical spin structure factor for the S = 1
single-ion model as a function of the energy transfer at the inverse temperature βDS2 = 0.1:
quantum (red star), SU(3) classical (blue cross), and SU(2) classical (black line).
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where C1(N, λ1) = (N − 1)3λ2
1/(2N) + (N − 1)3λ1/2 is the eigenvalue of the quadratic

Casimir operator of SU(N) for the degenerate irrep [λ1, 0, . . . , 0]. The eigenvalues of the

Casimir operators for semi-simple Lie groups were derived by Perelomov and Popov in [122].

Note that the eigenvalue of the quadratic Casimir operator of SU(N) in the physical basis

considered in this work can be obtained by multiplying the eigenvalue in the basis adopted

by Perelomov and Popov by a factor (N − 1)2/2.

In the low temperature limit, βDS2 → ∞, the dynamics is controlled by the normal

modes of the quadratic fluctuations around the minimum energy classical state. The intensity

of each excited mode is proportional to T because of the equipartition theorem. The exact

quantum mechanical result can be recovered by multiplying the classical dynamical spin

structure factor by βω, which is a well-known quantum-classical correspondence for the

harmonic oscillator [169, 75] [see also Sec. 4.3.4 and Appendix C]. Note also that the ground

state of ĤSI has no net dipole moment, 〈Ŝ〉 = 0, for D > 0. In other words, the state has only

a net quadrupolar moment, implying that the orbit of SU(2) coherent states is incapable of

representing the classical limit of this state. This is another clear indicator that one needs to

use a bigger Lie algebra to define a classical limit of ĤSI in order to capture the qualitative

aspects of the exact quantum mechanical solution.

In summary, the spin dynamics of ĤSI is well approximated by a classical LL dynamics

based on SU(3) coherent states, but it is not well-described by the traditional SU(2) LL

dynamics. Assuming that |D| is comparable or bigger than zJ (z is the coordination number

and J is the characteristic energy scale of the exchange tensor), this statement holds true

for the full Hamiltonian Ĥ [see Eq. (2.46)] for two simple reasons. In the high-T limit, the

dynamics of Ĥ is well approximated by the dynamics of ĤSI. The basic role of the interaction

term of Ĥ is to broaden the delta function shown in Fig. (2.2). In the low-T limit, the ground

state of Ĥ is a quantum paramagnet with no net dipolar moment for D > 0. As we already

explained for the single-ion case, such a state has no classical counterpart within the orbit of

SU(2) coherent states. We note that this statement remains true for the magnetically ordered

state if the system is relatively close the to quantum critical point (QCP) that divides this

phase from the quantum paramagnet [48] (see also Ch. 3), implying that it is still necessary

to use SU(3) coherent states to approximate the spin dynamics of the ordered magnet in
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the proximity of the QCP. Interestingly, this statement remains true for the easy-axis case

D < 0 with |D| comparable or bigger than zJ . In this limit, the ground state is an Ising-like

magnetically ordered state, which certainly has a classical counterpart in SU(2) coherent

states. However, the low-energy modes of this classical ground state include quadrupolar

fluctuations [17], which are not captured by the traditional SU(2) LL dynamics.

2.3.3 Single-dimer problem

Consider the single-dimer problem introduced in Ch. 1

Ĥ = JŜ1 · Ŝ2, (2.82)

the eigenstates and eigenvalues of which are,

|1〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) Es = −3J

4
|2〉 = | ↑↑〉

|3〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) Et = J

4

|4〉 = | ↓↓〉

. (2.83)

The dynamical spin structure factor (DSSF) is computed by the Lehmann representation,

Sµµqm(q, ω) =
1

Z

4∑
i,j=1

δ(ω + Ei − Ej)e−βEi〈i|Ŝµq |j〉〈j|Ŝ
µ
−q|i〉, (2.84)

where

Z = e−
βJ
4 (3 + eβJ) (2.85)

is the partition function. Due to the SU(2) invariance of the model Hamiltonian, we have

Sxxqm(0, ω) = Syyqm(0, ω) = Szzqm(0, ω) =
δ(ω)

3 + eβJ
, (2.86)
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and

Sxxqm(π, ω) = Syyqm(π, ω) = Szzqm(π, ω) =
eβJδ(ω − J) + δ(ω + J)

2(3 + eβJ)
. (2.87)

We can verify that the sum rule is satisfied,

∑
α=x,y,z

∫
dω
∑
q

Sααqm(q, ω) =
3

2
= 2× 1

2
×
(

1

2
+ 1

)
= NsS(S + 1), (2.88)

where Ns = 2 is the number of sites.

Now we consider the SU(2) classical limit of the dimer. The Landau-Lifshitz equation is

written as
dS1

dt
= JS2 × S1,

dS2

dt
= JS1 × S2, (2.89)

or equivalently,

dSt
dt

= 0
dSd
dt

= JSt × Sd, where St = S1 + S2, Sd = S1 − S2. (2.90)

As a result, we have a “single-spin” Sd precessing in an “external field” St. The solution is

Sx̃d (t) = Sx̃d (0) cosωt− S ỹd(0) sinωt, S ỹd(t) = S ỹd(0) cosωt+ Sx̃d (0) sinωt, S z̃d(t) = S z̃d(0),

(2.91)

where ˇ̃z = St/|St| is the unit vector in the direction of the total dipole moment, and ˇ̃x, ˇ̃y

are unit vectors of the perpendicular plane of ˇ̃z. We note, however, that the characteristic

precession frequency ω = J |St| =
√

2SJ
√

1 + cos θ12 is dictated by the initial angle θ12

between the two spin in the dimer (note that this angle is a conserved quantity because

St is conserved). The spectrum is then continuous because θ12 is a continuous variable.

Moreover, in the high-T limit, the excitation spectrum has a maximum at ω = 2JS/
√

3

(see Fig. 2.3). This is determined by maximizing sin2(θ12/2) sin θ, where the first factor

corresponds to amplitude of the transition (S1 − S2)2, and the second factor represents the

number of states in phase space that contributes to a given frequency ω = J |St|. This

result is qualitatively incorrect ! Nevertheless, for the purposes of comparison, we will still

compute the corresponding DSSF. By choosing S1(0) as the reference (to be fixed) and
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Figure 2.3: Comparisons of Sαα(π, ω) for the single dimer as a function of the energy
transfer at the inverse temperature βJ = 0.1: quantum (red star), SU(4) classical (blue
cross), and SU(2) classical (black line).
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ˇ̃y = ˇ̃z × S1(0)/|S1(0)|. We have (for ω ≥ 0)

Sαα(0, ω) =
1

6
δ(ω)

[
1

2
+ 2

(
1

βJ
− 1

4
coth(βJ/4)

)]
, (2.92)

and

Sαα(π, ω) =

exp

[
β(J2−2ω2)

4J

]
βω(J2 − ω2)

3J2 sinh(Jβ/4)
Θ(J − |ω|). (2.93)

Now we show that the correct classical limit for the dimer is based on the coherent

states of SU(4). Instead of repeating the procedure outlined above and applying the

Heisenberg equations (HE) of motion to (2.82), one can formulate an equivalent dynamics

in the Schröodinger picture by explicitly introducing an SU(4) coherent state for the dimer.

Because of the equivalence of the HE and Schrödinger pictures, together with the one-to-

one correspondence between coherent states and expectation values, the resulting dynamics

is entirely equivalent to the classical equations (2.63). In the “Schrödinger” picture, we

have [46],
d

dt
Z = −ihZ, where h = Ĥ, (2.94)

i.e. the dimer is treated as a single SU(4) spin. By choosing the eigen-basis [listed in

Eq. (2.83)] of Ĥ as the basis for Z, the solution to Eq. (2.94) is given by

Z(t) = z1e
i 3J

4
t + (z2 + z3 + z4)e−i

J
4
t, (2.95)

where z1,2,3,4 are complex variables depending on the initial condition. In the classical limit,

the DSSF is computed as

SααSU(4)(q, ω) =
1

2πZSU(4)

∫ +∞

−∞
dteiωt

∫
D[{αi}]〈Z({αi}, t)|Ŝαq |Z({αi}, t)〉

× 〈Z({αi}, 0)|Ŝα−q|Z({αi}, 0)〉 exp
[
− β〈Z({αi}|Ĥ|Z({αi}〉

]
, (2.96)

where

ZSU(4) =

∫
D[{αi}] exp

[
− β〈Z({αi}|Ĥ|Z({αi}〉

]
. (2.97)
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We note that the above expression is obtained by applying the factorization rule, Eq. (2.35),

to the quantum correlation function, 〈Z|Ŝα(t)Ŝα(0)e−βĤ|Z〉. The integration
∫
D[{αi}] goes

over the manifold of SU(4) coherent states with parameters {αi}. Here we use the angular

parameterization for CP3 ' S7/S1 [113]. In this parameterization, an SU(4) coherent state

is written as

|Z〉 = cos θ|1〉+ eiα1 sin θ cosχ|2〉+ eiα2 sin θ sinχ cosφ|3〉+ eiα3 sin θ sinχ sinφ|4〉, (2.98)

where α1,2,3 ∈ [0, 2π) and θ, χ, φ ∈ [0, π/2). The Haar measure for SU(4) [113] is

dΩSU(4) =
6

π3
dθdχdφdα1dα2dα3 sin5 θ cos θ sin3 χ cosχ sinφ cosφ, where

∫
dΩSU(4) = 1.

(2.99)

After integrating over these angular variables, we have (for ω ≥ 0)

SααSU(4)(0, ω) = −βJ(βJ(βJ(βJ + 4) + 12) + 24)− 24eβJ + 24

6β2J2 (β(−J)(βJ + 2) + 2eβJ − 2)
δ(ω), α = x, y, z (2.100)

and

SααSU(4)(π, ω) =
6eβJ(βJ − 4) + βJ(βJ(βJ + 6) + 18) + 24

6β2J2 (β(−J)(βJ + 2) + 2eβJ − 2)
δ(ω − J) α = x, y, z, (2.101)

implying that by taking the classical limit of Eq. (2.82) based on the SU(4) coherent states,

we capture the correct discrete nature of the excitation spectrum for the dimer problem (see

Fig. 2.3).

Finally, we have

lim
β→∞

βJSααSU(4)(π, ω) = lim
β→∞

Sααqm(π, ω) =
1

2
, (2.102)

which verifies the classical-to-quantum correspondence factor (see Sec. 4.3.4 and Appendix C)

at T = 0, and

lim
β→0

κ2
SU(4)SααSU(4)(π, ω) = lim

β→0
Sααqm(π, ω) =

1

8
, (2.103)

which verifies the rescaling factor κSU(4) =
√

5 [see Eq. (2.81)] for the fundamental

representation of SU(4) in the infinite temperature limit.

46



As was the case for the single-ion model, we find that the exact quantum spin dynamics of

the single dimer is well approximated by the classical LL dynamics based on SU(4) coherent

states but is qualitatively different from the result obtained with the traditional SU(2) LL

dynamics. By treating the single dimer as a whole, the intra-dimer exchange term becomes a

generalized Zeeman term (linear coupling between an SU(4) “magnetic field” and the SU(4)

spin). Systems where the dimers form a lattice connected by a relatively weak inter-dimer

exchange interaction J ′ (|J ′| . J), such as the spin ladder illustrated in Fig. 2.4a, become

SU(4) spin lattices in the new language. The Hamiltonian of the spin ladder is written as

Ĥ = J
∑
i

Ŝdi · Ŝui + J ′
∑
i

∑
m=d,u

Ŝmi · Ŝmi+1, (2.104)

where m = d, u is the label of the two chains. By using the so-called bond-operator

approach [131, 116], the Hamiltonian Eq. (2.104) reduces to a single chain of SU(4) spins

(see Fig. 2.4b),

Ĥ =
∑
i

∑
µ

Bµ(J)T̂ µi +
∑
i

∑
µ,ν

T̂ µi J µν(J ′)T̂ νi+1, (2.105)

where T̂ µi denotes the µ-th SU(4) generator 1 at “site” (rung of the ladder) i. The intra-

dimer interaction J determines the “Zeeman energy” that splits the singlet and the triplet

states of the ith dimer, where the magnitude of the SU(4) “magnetic field” Bµ is equal to J

and its direction is parallel to the SU(4) generator Ŝdi · Ŝui . While the inter-dimer exchange

interaction J ′ leads to an anisotropic exchange interaction between SU(4) spins, where the

exchange tensor J µν is a linear function of J ′ [116]. Large experimental [118, 155, 152]

and numerical efforts [21, 149, 157] (just to name a few) have been dedicated to study the

spin-ladder problem because it is one of the most fundamental problems in low-dimensional

quantum magnetism. One drawback of these numerical techniques (such as the quantum

Monte Carlo method [149]) is that they cannot handle finite-temperature dynamics for

quantum spin lattice problems. Although the bond-operator method [131, 116] provides

an alternative analytical approach to study the the finite-temperature dynamics, it only

considers the Boltzmann distribution of the normal modes (harmonic approximation),

1Bilinear in bond operators that create singlet and triplet excitations at rung i.
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Figure 2.4: The spin ladder problem. a. The original problem: J denotes the exchange
interactions between the dimers (rungs of the ladder) and J ′ labels the inter-dimer exchange
interactions (along the legs of the ladder); m = d, u is the label of the two chains. b. The
SU(4) representation: The anisotropic “exchange” model with an exchange tensor J µν(J ′)
in a “magnetic field” B(J).
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i.e. any kind of non-linear effect is missed in this treatment. We conjecture that the

classical SU(4) spin dynamics of the ladder problem for weakly coupled dimers provides

a good approximation to the exact result at any temperature after properly rescaling the

temperature axis. To the best of our knowledge, the application of the classical SU(N)

dynamics to weakly coupled multi-spin unit systems (such as the spin ladder problem) has

not been discussed in literature and it is an interesting topic for future studies.

2.4 Numerical methods

In this section, we explain the elementary numerical methods for the classical SU(N) LLD.

More advanced and efficient numerical methods are discussed in detail in Ref. [46] and

implemented in the open-source code Sunny.jl [22].

Here we explain how to compute the thermodynamic properties of an Ns-site quantum

spin-S system in the classical limit based on SU(N) coherent states. Let us assume that the

spin system is described by the Hamiltonian Ĥ. By exploiting the factorization rule given

in Eq. (2.35), the expectation value of a thermodynamic observable Ô is given by,

〈Ô〉 =
1

Z
Tr[e−βĤÔ] =

1

Z

∫
D[{αρr}]〈Ω|e−βĤÔ|Ω〉

classical limit−−−−−−−→ 1

Z

∫
D[{αρr}]e−βh[{αρr}]o[{αρr}], Z =

∫
D[{αρ}]e−βh[{αρr}], (2.106)

where D[{αρr}] is the integration measure over the set of Ns(N − 1) complex parameters

{αρr} of the SU(N) coherent states, and h and o are the classical limits defined in Eq. (2.34)

for Ĥ and Ô, respectively. Here Ô can be any static observables, such as the energy, the

magnetization, the static structure factor Sµν(q) = 1/Ns

∑
r e
−iq·rŜµr Ŝ

µ
0 , etc. It can also

be a dynamical observable, such as the dynamical spin structure factor [see Eq. (2.66) for

the definition of the single-ion model]. Unlike the results of the single-ion problem given in

Eqs. (2.71) and (2.77), for most systems of interest it is difficult to find analytical expressions

for integrals in Eq. (2.106). In Sec. 2.4.1, we explain how to use the Monte Carlo method to

evaluate these high-dimensional integrals. Moreover, we need the numerical solution of the
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classical equations of motion to be able to compute dynamical quantities. The algorithms

are presented in Sec. 2.4.2.

2.4.1 Monte Carlo sampling on CPN−1

An ensemble of states that follows the Boltzmann distribution (2.106) can be generated

by the standard Metropolis-Hastings Monte Carlo algorithm [103, 66]. Here we provide

the details of this algorithm for classical SU(3) spins, whose coherent states form the CP2

manifold. This example will allow us to illustrate the general scheme for classical SU(N)

spins with coherent states in a CPN−1 manifold. As we will demonstrate below, knowing

the integration measure of the CPN−1 manifold [see Ref. [113]] in terms of 2(N − 1) real

parameters (angles) is enough to propose a Monte Carlo move.

The classical limit for a spin-1 system is based on direct products of SU(3) coherent

states,

|Z〉 = ⊗r|Zr〉, (2.107)

where the coherent state on a particular site r is parameterized with four angles,

|Zr〉 = cos θr|0〉+ eiα1,r sin θr cosφr|1〉+ eiα2,r sin θr sinφr| − 1〉. (2.108)

The resulting manifold of coherent states is S5/S1 ∼ CP2. The “local MC move” must be

uniformly distributed on S5/S1, the integration measure of which is given by

dΩ4 =
2

π2
dθdφdα1dα2 sin3 θ cos θ sinφ cosφ, (2.109)

with ∫ π/2

0

dθ

∫ π/2

0

dφ

∫ 2π

0

dα1

∫ 2π

0

dα2f(θ, φ, α1, α2) = 1, (2.110)

where f(θ, φ, α1, α2) is known as the joint distribution function. By integrating the joint

distribution function over the other variables, we obtain the distribution function for θ, φ,

and α1,2:

f(θ) = 4 sin3 θ cos θ, f(φ) = sin(2φ), f(α1,2) =
1

2π
. (2.111)
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To generate random numbers that follow the above distribution functions, we apply the

inverse transform sampling method by generating a local random move from the cumulative

distribution function of the f ’s given in the above equation:

θ = sin−1(U
1/4
1 ), φ = sin−1(U

1/2
2 ), α1,2 = 2πU3,4, (2.112)

where U1,2,3,4 are pseudo-random numbers uniformly distributed between zero and one. Once

the system is thermalized, we save the angle snapshots or take measurements every every

Nmes MC sweeps, where the interval Nmes sweeps should be greater than the autocorrelation

time.

2.4.2 Dynamical spin structure factor (classical)

The Fourier transform of the spin-spin correlation function is known as the dynamical spin

structure factor,

Sµν(q, ω) =
1

2πN

∫ +∞

−∞
dteiωt

∑
i,j

e−iq·(ri−rj)〈Ŝµi (t)Ŝνj (0)〉. (2.113)

Neutron scattering experiments provide a direct probe of the dynamical structure factor,

where the neutron scattering intensity I(q, ω) is related to the dynamical structure factor

through

I(q, ω) ∝ f 2(q)
∑
µ,ν

(
δµν −

qµqν
q2

)
Sµν(q, ω), (2.114)

where f(q) is the magnetic form factor of the magnetic ion and the factor in the bracket

is known as the neutron polarization factor [87]. By taking the classical limit as shown in

Eq. (2.106), the (classical) dynamical spin structure factor is computed as

Sµν(q, ω) =
τ

2π

∑
IC

sµ(q, ω)sν(−q,−ω), (2.115)

where the sum runs over the ensemble of initial conditions obtained from the MC procedure

discussed in the previous section, and τ is time interval of the evolution, which should be
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longer than any characteristic time of the system. The quantity

sµ(q, ω) =
1√
Ns

∑
r

1

τ

∑
t

e−iq·r+iωtsµ(r, t) (2.116)

is the Fourier transform of the classical dipolar operator sµ(r, t), which is obtained by

numerically solving the generalized Landau-Lifshitz equation Eq. (2.63) with the fourth

order Runge-Kutta (RK4) method and Ns is the total number of sites in the finite lattice

system.

52



Chapter 3

Applications of the classical spin

dynamics

3.1 Motivation

In this chapter we seek to test the hypothesis proposed in Ch. 2, i.e., that the low-

energy excitations of large classes of spin systems are better described by classical limit

based on SU(N) coherent states. To this end, we consider the case of the effective spin-1

antiferromagnet Ba2FeSi2O7.

3.2 The Ba2FeSi2O7 compound

Figure 3.1 (a) illustrates the crystal structure of Ba2FeSi2O7 comprising layers of FeSi2O7

separated by Ba atoms. As shown in Fig. 3.1 (b), the FeO4 tetrahedra of the FeSi2O7 layer

are connected via SiO4 polyhedra and the two adjacent Fe2+ (magnetic) atoms are coupled

through the super-exchange interaction, J , that is mediated by the two oxygen ligands (red

dashed line in Fig. 3.1 (b)). The magnetic ions of each layer from square lattices that

are vertically stacked along the c-axis, leading to a quasi-two-dimensional simple tetragonal

spin-lattice.

The single-ion state of the Fe2+ ion is illustrated in Fig. 3.2. Due to the combined effects

of the crystal field and spin orbit coupling, the five S = 2 energy levels of the Fe2+ split into
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Figure 3.1: (a) Crystal structure of Ba2FeSi2O7. Ba atoms separate layers (with exchange
interaction J ′) composed of FeSi2O7, resulting in a quasi-two-dimensional structure. (b)
In-plane magnetic unit cell formed by Fe2+ with exchange interaction J . (c) The Brillouin
zone. The coordinates (H K L) of the reciprocal lattice of the origin lattice are related
to (kx ky kz) of the magnetic lattice formed by the Fe2+ atoms through kx = 2π(H − K),
ky = 2π(H + K), and kz = 2πL. (d) Illustration of the spin fluctuation modes. T1 and T2

indicate transverse fluctuation in the ab-plane and out-of the plane, respectively. L indicates
longitudinal fluctuation of spin.
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Figure 3.2: (a) Orbital energy states of Fe2+ with a tetrahedral crystal field (∆Td),
tetragonal distortion (δTetra), and spin orbit coupling (λ). (b) The left panel shows inelastic
neutron scattering data measured at T=90 K, symmetrized over negative and positive H
and integrated over L=[0.9, 2.1] and K=[-0.1,0.1]. The integrated scattering intensity over
H=[-2, 2] is shown in the right panel. The two peaks were fitted with Gaussian functions
(solid blue line). Arrows indicate the peak centers at 1.32 meV and 3.2 meV.
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a singlet Sz=0 ground state and two excited Sz = ±1 and Sz = ±2 doublets with energies

D and 4D, respectively (see Fig. 3.2 (a)). As a result, the spin excitations of Ba2FeSi2O7 are

generically described by an antiferromagnetic S = 2 spin Hamiltonian on a simple tetragonal

lattice:

Ĥ = J
∑
〈r,r′〉

[
Ŝxr Ŝ

x
r′ + Ŝyr Ŝ

y
r′ + ∆ŜzrŜ

z
r′

]
+ J ′

∑
〈〈r,r′〉〉

[
Ŝxr Ŝ

x
r′ + Ŝyr Ŝ

y
r′ + ∆′ŜzrŜ

z
r′

]
+D

∑
r

(Ŝzr)
2. (3.1)

Because the gap D of the Sz = ±1 doublet is four times smaller than the gap of the Sz = ±2

doublet and the dominant super-exchange interaction J is smaller than D/4 in Ba2FeSi2O7,

the low-energy spectrum is well captured by projecting the S = 2 spin Hamiltonian into the

Sz = 0 and Sz = ±1 low-energy states. The resulting effective S = 1 model is written as

Ĥeff = J̃
∑
〈r,r′〉

[
Ŝxr Ŝ

x
r′ + Ŝyr Ŝ

y
r′ + ∆̃ŜzrŜ

z
r′

]
+ J̃ ′

∑
〈〈r,r′〉〉

[
Ŝxr Ŝ

x
r′ + Ŝyr Ŝ

y
r′ + ∆̃′ŜzrŜ

z
r′

]
+ D̃

∑
r

(Ŝzr)
2. (3.2)

with J̃ = 3J , J̃ ′ = 3J ′, ∆̃ = ∆/3, ∆̃′ = ∆′/3 and D̃ = D.

3.3 Inelastic neutron scattering data

Figure 3.3(a) shows the temperature dependence of the unpolarized neutron scattering

intensity I(Q, E) [see Eq. (2.114)] of Ba2FeSi2O7. Below TN, the spectrum exhibits sharp spin

waves corresponding to acoustic (T1) and optical (T2) transverse modes at the zone center

(ZC), Qm = (1, 0, 0.5). The longitudinal mode is observed as a broad continuum above the

T1-mode throughout the entire Brillouin zone (BZ) due to decay into a pair of transverse

modes Ref. [48]. While the sharp spin waves disappear above TN, a broad dispersion with a

finite gap emerges at the ZC. With increasing temperature, the gap size increases up to an
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Figure 3.3: (a) Contour maps of the INS data as a function of energy and momentum
transfer along the [H, 0, 1.5] direction measured at T = 1.6 K, 6 K, 10 K, and 40 K. The T1,
T1, and L indicate the acoustic and optical transverse modes, and the longitudinal mode in
the spectra. (b) Resolution convoluted INS intensities calculated by the LLD method at the
temperatures indicated in each subpanel. (c) Polarized neutron scattering at Q = (1, 0, 0)
measured at 10 K (T > TN). The Non-spin-flip (spin-flip) channel for the z-polarization
response correspond to the transverse (longitudinal) component of I(Q, E). The green-
shaded region indicates the magnetic INS response extracted by fitting a DLDHO function
to data. (d) Green (red) shaded region indicates the transverse (longitudinal) component of
I(Q, E) calculated by LLD.
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energy approximately equal to D (gap of the single-ion problem) and the bandwidth becomes

narrower. To understand the diffusive spectra above TN, our experimental collaborators

performed a polarized neutron scattering experiment. Fig. 3.3 (c) shows the neutron spin

polarization dependence of the I(E) at Q = (1, 0, 0). The neutron spin-flip and non-spin-flip

dependence are coupled to the sample magnetization and the wave-vector, allowing us to

extract the directional dependence of the dynamical spin structure factor [see Eq. (2.113)].

For this polarization geometry, the neutron spin polarization along [0, 1, 0] provides separate

in-plane (S⊥ = Sxx(Q, E) + Syy(Q, E)) and out-of plane (S‖ = Szz(Q, E)) components of

S(Q, E), for the non spin-flip and spin-flip channels, respectively. The resulting spectra

exhibits dominant scattering intensity for the non spin-flip channel, indicating the diffusive

spectra at 10 K mainly comes from the in-plane components of S(Q, E).

3.4 Simulation details

The model parameters of this calculation are listed in Table 5.1 by fitting the GSWT

calculation with the INS data that will be discussed in Sec. 5.1. The simulations are done on

finite lattices of 24× 24× 12 sites. The spin snapshots are saved every 100 MC sweeps (the

interval of 100 sweeps is greater than the autocorrelation time of ' 60 MC sweeps). Finally,

we have verified that the sum rule,
∫
dωSµν(Q, ω) = Sµν(Q), which relates the integration of

the dynamical spin structure factor and the static spin structure factor obtained from MC,

is satisfied to a good approximation for the number of initial conditions that we are using.

For the results shown in this work, we used 200 and 2000 initial conditions for temperatures

below and above TN, respectively.

3.5 Comparison with experiments

The resulting I(Q, E) is compared to the experimental data in Fig. 3.3(b). Because the

classical approximation underestimates the value of Néel temperature TN by a factor of

∼ 3, TN ' 3T cl
N , we compare the measured and calculated spectra at the same values of

T/TN and T cl/T cl
N , respectively. Below the TN, the calculated spectrum exhibits the two
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transverse modes, T1 and T2, and the longitudinal mode, L. Since the LLD calculation at

low temperatures coincides with the generalized linear spin wave calculation [48] [see also,

Ch. 5], the decay and renormalization of the T2 and L-modes observed at 2 K [Fig. 3.4(a)] are

not captured by this classical approximation. Above TN, the LLD calculation reproduces the

gapped nature of the spectrum, representing an excitation between the |Sz = 0〉 and | ± 1〉

states with a finite dispersion due to the exchange interaction. As the temperature increases,

the mode becomes a less-dispersive broad peak centered around an energy Ep ' D. In the

classical description, this diffusive mode originates from the combined effect of the “external

SU(3) field,” D, which induces a precession of each SU(3) moment with frequency D/~

(center of the peak), and the random molecular field generated by the exchange interaction

between the fluctuating neighboring moments, which determines the width of the peak. We

note that the traditional LL dynamics based on SU(2) coherent states cannot capture this

gapped diffusive mode and gives a qualitatively incorrect result in the high-temperature

limit.

The computed spectra reproduce the main characteristics of the observed dispersions

and bandwidth. Since the |Sz = 0〉 and | ± 1〉 states are connected by the components

that are transverse to the z-axis, S±=Sx ± iSy, the corresponding intensity of I(Q, E)

should appear in the channel S⊥=Sxx(Q, ω) + Syy(Q, ω) [see Fig. 3.3(d)], which is in good

agreement with the polarization dependence of the measured S(Q, ω). However, it is also

clear from the comparison that the calculated spectrum underestimates the width of the

mode at temperatures T & TN . As was mentioned in Sec. 2.3.2, this discrepancy arises from

an inadequate normalization of the SU(3) spins at T & TN , an issue which we pursue further

now.

To explore the origin of this disagreement, Fig. 3.4 compares the measured and calculated

energy scans at ZC with varying temperature. We consider a wave vector Q = (1, 0, 0.2)

that is close, but not exactly equal, to the ordering wave vector Qm in order to avoid the

tail of the Bragg reflection below TN and the technical challenges associated with calculating

the spectrum at ZC. The three modes discussed above are visible in the spectrum shown in

Fig. 3.4(a). In particular, the Goldstone mode becomes visible because of its finite energy at

Q = (1, 0, 0.2) generated by the L-dispersion produced by the small inter-layer coupling J ′.

58



While the T1 and T2 transverse modes remain nearly unchanged with increasing temperature,

the frequency of the L-mode decreases and the model becomes broader and indistinguishable

from the quasi-elastic scattering near TN. Above TN, the quasi-elastic scattering continuously

evolves into a broad peak centered at finite energy, the energy of which increases gradually

with the temperature (see Fig. 3.4(c)).

Figure 3.4(b)-(c) shows a comparison between the LLD calculation and the INS data

across TN. Remarkably, the spectral weight for the longitudinal mode (indicated by arrow)

is enhanced and shifts to low-energy with decreasing temperature, which is consistent with

the data. Above TN, the LLD calculation gives a diffusive peak-shaped spectrum centered

at a energy Ep that approaches D for T � TN , as expected from the single-ion result [see

Sec. 2.3.2]. It is important to note that the usual LL dynamics based on SU(2) coherent states

predicts a qualitatively different behavior in the entire temperature range. The longitudinal

mode is not captured below TN and the diffusive peak remains centered around Ep = 0 for

T > TN.

As it is clear from 3.4(c), the main shortcoming of the SU(3) LL dynamics is that

it underestimates the width of the diffusive peak. This discrepancy can be removed in

the high-temperature limit by applying an adequate renormalization of the SU(3) spins

nηr → κnηr, with κ = 2 in the high-temperature (T � TN) limit [see Sec. 2.3.2]. This

renormalization guarantees that the SU(3) spin dynamical structure factor satisfies the exact

sum rule in the high-T limit, and it increases the theoretical Néel temperature to T cl
N '

7.5 K, which is approximately 2.3 K higher than the experimental value. Fig. 3.5 (a) shows

comparison between the new results obtained after applying this renormalization factor and

the experimental data measured at the same temperature T cl = T exp. The comparison reveals

an excellent agreement at the highest temperatures. As expected, significant deviations are

observed at the lowest two temperatures, T = 12 K and T = 10 K, because they are relatively

close to the theoretical Néel temperature T cl
N ' 7.5 K of the classical simulation with κ = 2.

In other words, since the energy Ep of the diffusive peak goes to zero at the Néel temperature,

its position is shifted to the left relative to the measured peak at T = 10 K. The emergence

of a quasielastic peak (centered at E = 0) in the theoretical calculation is the clear indicator

of proximity to the Néel temperature T cl
N . Figures 3.5 (b) and (c) show a comparison of
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Figure 3.4: (a) Measured constant momentum scans at the ZC with temperatures below TN

and (b) corresponding calculated spectra from LLD. The transverse and longitudinal modes
are indicated with labels ‘T1’, ‘T2’, and ‘L’. (c) Comparison of the measured and calculated
momentum scans above TN. The spectral weight for the resonant excitation (longitudinal
mode) arising above TN (below TN) was fitted with DLDHO function, and the fitting results
are indicated by the shaded regions. The extracted spectral shapes of the resonant modes are
compared with the LLD calculations shown by the blue solid line in (c). (d)(e) Comparison
of contour plots of the constant momentum scans between data and LLD calculation across
TN.

Figure 3.5: (a) Comparison of the measured energy scans at the ZC above TN and I(Q, E)
(b) At T=10 K and (c) at T=40 K, with the results obtained from LLD simulations with
renormalized SU(3) spins (nηr → κnηr).
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the dispersion and intensity of the mode, I(Q, E), along the same direction in reciprocal

space that is presented in Fig. 3.3. As it is clear from these figures, the agreement between

experiment and theory also exhibits a significant improvement away from the ZC.

3.6 Conclusions

In summary, the generalized classical LL dynamics based on SU(3) spins reproduces to a

good approximation the measured INS cross section over the full temperature range from

T � TN to T � TN. The most significant quantitative deviations are observed at very

low temperatures T � TN and very close to TN. As we have demonstrated in Ref. [48],

the former are due to quantum corrections that account for the decay of the longitudinal

mode into two transverse modes. The latter are due to an expected discrepancy between

the measured value of of the Néel temperature TN = 5.2 K and the value T cl
N ' 7.5 K that

is obtained from the simulations after applying the rescaling factor κ = 2 to the classical

SU(3) spins. This rescaling factor arises from enforcing the sum rule in the infinite T limit.

Similarly, the LL dynamics of unrenormalized classical SU(3) (κ = 1) leads to the correct

sum rule in the zero temperature limit after quantizing the normal modes. Therefore, the

correct scaling factor should be a function κ(T ) that monotonically interpolates between the

two limiting cases κ(0) = 1 and κ(∞) = 2. Clearly, this interpolation should produce a more

accurate estimate of the Néel temperature and the dynamical spin structure factor near TN.

Finding the optimal interpolation function κ(T ) is also a challenge for the traditional SU(2)

LL dynamics and is a topic worthy of further study.
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Chapter 4

Generalized spin wave theory

4.1 Introduction

In Ch. 3, we saw that experimental data of the high-temperature dynamics of the effective

S = 1 system Ba2FeSi2O7 is well reproduced by the SU(3) classical spin dynamics introduced

in Ch. 2. Quantum fluctuations become increasingly important below the classical-to-

quantum cross-over temperature, i.e., when kBT is smaller than, or comparable to, the

characteristic energy, ~ω, of a given mode. Genuine many-body effects induced by quantum

fluctuations —such as the decay and renormalization of the spectra— cannot be explained

with the classical spin dynamics. In this chapter, we present a semiclassical approach

to incorporating such quantum effects that is applicable to a large class of realistic spin

systems. In particular, the approach is appropriate when a spin system has a ground

state that still admits a classical limit, while the transitions into the excited states must be

described quantum mechanically. In general, these classical ground states break translational

symmetry and are written as direct products of coherent states. Each coherent state can

either represent the quantum mechanical state of a single spin — as in the examples of

Ba2FeSi2O7 and FeI2, discussed in Chpts. 3 and 5, respectively — or a locally entangled

state of a multi-spin unit, such a the singlet ground state of a spin dimer [131, 100].

At low temperatures, the normal (collective) modes associated with small fluctuations of

the classical ground state are known as spin waves. Following the conventional paradigm, we

introduce bosonic operators that satisfy [bi, b
†
j] = δij in order to quantize these spin waves.
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The corresponding bosonic particle is known as a magnon. We briefly review the conventional

SU(2) spin wave theory (SWT) in Sec. 4.2. Similar to the SU(N) generalization of the

Landau-Lifshitz dynamics discussed in previous chapters, the conventional SWT must also be

generalized. In Sec. 4.3, we present the formalism for the SU(N) SWT. In particular, we will

see that the integer parameter M , which labels the different degenerate irreps of SU(N) (see

Sec. 2.3) plays the role of 1/~, i.e. it is the control parameter for the semiclassical expansion

of the SU(N) spin wave theory. For this reason, we will call it “1/M -expansion” [110, 17, 48],

which is a generalization of the well-known 1/S expansion. The formalism introduced in this

chapter will be applied in Ch. 5.

4.2 SU(2) spin wave theory

As mentioned above, the starting point of SWT is the classical ground state configuration. To

describe small fluctuations of the spins around the ground state, Holstein and Primakoff [71]

introduced a bosonic representation of the spin operators [SU(2) generators] in the local

reference frame whose z-axis is aligned with the direction of the ordered moment sj ≡

〈Ωj|Ŝ|Ωj〉 = S(sin θj cosφj, sin θj sinφj, cos θj), where θj, φj are the parameters of the local

SU(2) coherent state |Ωj〉. The Holstein-Primakoff representation of the spin operators is:

ˆ̃S+
j =

√
2S − b†jbjbj,

ˆ̃S−j = b†j

√
2S − b†jbj,

ˆ̃Szj = S − b†jbj. (4.1)

where ˆ̃Sµ represents the component of the spin operator in the local reference frame. Using

the canonical commutation relations for the bosonic operators, [bj, b
†
j] = 1, we recover the

SU(2) spin operator commutation relations: [ ˆ̃Sµ, ˆ̃Sν ] = iεµνρ ˆ̃Sρ,

The well-known 1/S expansion is obtained by expanding the square roots in Eq. (4.1) in

powers of 1/S [10, 83, 97, 39, 101, 16]. In Appendix C, we use a square lattice antiferromagnet

(SLAFM) as an example to illustrate the application of conventional SWT in the harmonic

approximation. The theoretical framework for higher order quantum corrections in 1/S has

been discussed thoroughly in Refs. [38, 174, 108] and used to explain many-body quantum

effects observed in a large number of S = 1/2 systems [141, 72, 95, 98, 124]. However,
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as we explained in Ch. 2, the SU(2) approach must be generalized to study the dynamical

properties of S ≥ 1 systems under general conditions. This will be the main topic of the

remaining sections of this chapter.

4.3 SU(N) spin wave theory

4.3.1 SU(N) Schwinger boson representation

The SU(N) generators introduced in Eq. (2.3) can be written as bilinear forms in terms of

N “flavors” of Schwinger boson (SB) operators [16],

ĝmm′ = b†mbm′ , (4.2)

where 1 ≤ m(m′) ≤ N is the flavor index of the SB. The SB operators satisfy an additional

local constraint
N∑
m=1

b†r,mbr,m = M, (4.3)

which determines the finite-dimensional local Hilbert space of a spin system. Here M = λ1 is

an integer equal to the maximum eigenvalue of the Cartan subalgebra generator Ĥ1 defined

in Eq. (2.9) (note that λj = 0 for 2 ≤ j ≤ N − 1), that labels different degenerate irreps of

SU(N). The dimension D of the representation (i.e. of the local Hilbert space) is
(
M+N−1
N−1

)
.

Note that D = N for the fundamental M = 1 representation. In other words, the finite

dimensional space of the spin system under consideration is obtained as a projection of the

Fock space of the canonical bosons [16].

By combining the canonical commutation relations and the constraint, [bm, b
†
m′ ] = δmm′ ,

we can demonstrate that bilinear forms given in (4.2) obey the SU(N) commutation relations

given in Eq. (2.6). The number of bosons is M = 1 for the fundamental representation of

SU(N) and it is higher than one for other irreducible representations. For instance, as it is

illustrated in Figure 4.1, M = 2 for the spin one representation of SU(2) and N = 2 (two

flavors needed to get the generators of SU(2)).
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Figure 4.1: In terms of the SU(2) Schwinger bosons (SBs), we have Ŝz = (b†1b1 − b†2b2)/2.
Left panel: the total number of SBs is M = 1 in the fundamental representation of SU(2).
Right panel: M = 2 for the S = 1 representation of SU(2).
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The SU(N) Schwinger boson representation of the spin operators should not be confused

with the Schwinger boson approximation [14, 16, 56, 170], which is qualitatively different

from the semi-classical approach that we describe below.

4.3.2 Choice of N

As mentioned in Sec. 4.1, the SWT is a semi-classical theory, the starting point of which is

the classical limit. Since there is more than one way of taking the classical limit of a quantum

spin system, there are multiple choices of spin wave theories that can be used to describe

them. However, as is the case of the classical limit of a spin-S system (see Ch. 2), by using

the SU(N) SWT with N = 2S + 1 flavors of SBs, all unitary transformations among the

N levels are faithfully represented, i.e., all local low-energy excitations (fluctuations of the

classical state) can be captured by using generators of SU(N). In contrast, for N ′ < 2S + 1

(i.e. M > 1), multipolar excitations associated with generators of SU(N), which are not

generators of SU(N ′), can only be recovered by including corrections up to infinite order,

which can account for the formation of bound states between the quasiparticles that are

obtained at the quadratic level [110]. For instance, quadrupolar modes of S = 1 systems can

only be obtained in the conventional SU(2) SWT by summing ladder diagrams up to infinite

order in the 1/S (or loop) expansion, but they can be captured at the quadratic level by

using the SU(3) SWT [17].

4.3.3 1/M-expansion

Let us work with the fundamental representation of SU(N). To make connection with

realistic spin Hamiltonians, we will work with a hermitian basis (physical basis) of SU(N)

generators [see Sec. 2.3.1 for definitions]:

T̂ µr = b†rT µr br, µ = 1, 2, . . . , N2 − 1, (4.4)
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where br = (br1, br2, . . . , brN)T and T µr is an N × N hermitian matrix. Let us consider a

general spin Hamiltonian

Ĥ =
1

2

∑
r,δ

N2−1∑
µ,ν=1

J µν
δ T̂ µr T̂

ν
r+δ +

∑
r

N2−1∑
µ=1

DµT̂ µ. (4.5)

The first term of Ĥ corresponds to an anisotropic exchange interaction between two SU(N)

spins connected by the bond δ. In most cases, the exchange tensor J µν
δ has non-zero matrix

elements connecting dipolar components (anisotropic Heisenberg model). In some cases,

biquadratic spin interactions of the form Kij(Ŝi·Ŝj)2 are also present and the SU(3) exchange

tensor has finite matrix elements connecting quadrupolar components [104, 24]. The second

term of Ĥ represents any arbitrary on-site term that can be interpreted as generalized Zeeman

coupling between the SU(N) spin and an external SU(N) field. For instance, the sum of the

usual Zeeman term −Ŝ · h and the single-ion anisotropy D(Ŝz)2.

We assume that the ground state |ψmf〉 of Ĥ admits a classical limit, i.e., it is well

approximated by a direct product of local SU(N) coherent states: |ψmf〉 = ⊗r|ψr〉. Given

Ns sites, the resulting 2(N − 1)Ns variational parameters are determined by minimizing the

classical energy Emf = 〈ψmf|Ĥ|ψmf〉. If |ψmf〉 breaks the translation symmetry, which is the

case for most systems of interest, Ns reduces to the number of different sublattices of the

ordered state.

Now we associate the local state |ψr〉 that minimizes Emf with a single-particle state of

a local Schwinger boson b̃†r1

|ψr〉 = b̃†r1|∅〉, (4.6)

where |∅〉 is the common vacuum of the local Schwinger bosons b̃†rm, m = 1, . . . , N . We can

introduce an SU(N) transformation b̃†r = b†rU
†
r that maps the original Schwinger bosons b†r

into a new set of Schwinger bosons b̃†r containing the boson b̃†r1 that creates the lowest energy

state. Clearly, the new bosons satisfy the same commutation relations and their single-

particle states span the local Hilbert space of the system. We note that this transformation

aligns the quantization axis along the direction of the ordered SU(N) spin1, as it is done in the

1The transformation Ur is the same as Eq. (2.21) if the “highest-weight” boson is chosen to be condensed.
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traditional SWT with the SU(2) Holstein-Primakoff representation [110] [see Eq. (4.1)], where

the m = 1 SB operator corresponds to the “↑” boson. In this way, fluctuations generated

by T̂ µr above |ψmf〉 are represented by the boson number fluctuations of the remaining N − 1

(non-condensed) bosons.

The classical or mean field ground state |ψr〉 can then be expressed as a condensation of

the boson b̃†r1:

b̃†r1 = b̃r1 =
√
M

√√√√1− 1

M

N∑
m=2

b̃†rmb̃r1. (4.7)

This leads to the generalized Holstein-Primakoff transformation for the SU(N) generators

T̂ µr = [T̃ µr ]11

(
M −

N∑
m=2

b̃†rmb̃rm

)
+

N∑
m=2

b̃†rm[T̃ µr ]m1

√√√√1− 1

M

N∑
m=2

b̃†rmb̃rm + h.c.


+

N∑
m,m′=2

[T̃ µr ]mm′ b̃
†
rmb̃rm′ , (4.8)

where T̃ µr = UrT µr U †r . As in the case of the 1/S-expansion, we implement a Taylor expansion

of the square-root that appears in the above equation. This is justified by assuming∑N
m=2〈b̃†rmb̃rm〉 � M . After plugging Eq. (4.8) into the general Hamiltonian Eq. (4.5)

and expanding the square root, we obtain

Ĥ = M2H(0) +MĤ(2) +M1/2Ĥ(3) +M0Ĥ(4) +O(M−1), (4.9)

where Ĥ(n) denotes the terms of the n-th power in the N − 1 uncondensed SB operators

b̃†rm and b̃rm with m 6= 1. We note that M2H(0) = 〈ψmf|Ĥ|ψmf〉 corresponds to the classical

Hamiltonian of the spin system, which is the only term that survives in the infinite M

limit (classical limit of the system). As discussed in Sec. 4.3.1, the value of M sets the

representation of SU(N). We have again reached the same conclusion presented in Ch. 2—

the classical limit ~ → 0 for a quantum spin system is equivalent to sending the dimension

of the representation M to infinity. For this reason, we will refer to Eq. (4.9) as a 1/M -

expansion [110]. Quantum effects can be taken into account order by order in 1/M . The

well-known 1/S-expansion is recovered for the particular case N = 2 and M = 2S. The
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linear term Ĥ(1) is absent in Eq. (4.9) because |ψmf〉 corresponds to the state with minimal

classical energy. Below we present a general scheme for doing calculations with the 1/M

expansion.

Linear spin wave theory

The quadratic bosonic Hamiltonian Ĥ(2) corresponds to a theory of non-interacting bosons.

After Fourier transforming into the momentum space, Ĥ(2) can be diagonalized by means of

the standard Bogoliubov transformation for bosons [43]

Ĥ(2) =
∑
k,n

ωk,n

(
β†k,nβk,n +

1

2

)
, (4.10)

where β†k,n creates a quasi-(Bogoliubov-) particle with momentum k in band n 2, that is

related to b̃k,α and b̃†k,α through a para-unitary transformation [43]. The explicit expressions

for the transformation are given in Appendix D.

We note that the quasi-particle dispersion relation ωk,n obtained above is identical to that

of the linearized SU(N) Landau-Lifshitz dynamics, where we consider small fluctuations of

the SU(N) color field near its “mean-field” value n
(0)
r :

nr(t) = n(0)
r + δnr(t). (4.11)

The SU(N) Landau-Lifshitz equation Eq. (2.63) becomes

dδnr
dt

= δnr × b(0)
r + n(0)

r × δbr, (4.12)

where b
(0)
r is the “mean-field” value of the molecular field and δbr is its fluctuation. As

we show in Appendix C with the example of the SLAFM, the corresponding Hamiltonian

HLLLD of the linearized equations of motion has the same structure as Ĥ(2) by recalling

that δnr is parameterized by N − 1 complex numbers zr,2 . . . zr,N in the fundamental

representation, i.e. HLLLD can be obtained from Ĥ(2) (before the Fourier and Bogoliubov

transforms) by replacing b̃r,α (b̃†r,α) with zr,α (z∗r,α). After applying Fourier and para-unitary

2The number of bands is equal to (N − 1)Ns, where Ns is the number of sublattices.
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(Bogoliubov) transformations (or a canonical transformation that preserves the form of

Hamilton’s equation) to the complex variables zr,α, we have

HLLLD =
∑
k,n

ωk,nz̃
∗
k,nz̃k,n, (4.13)

where z̃∗k,n (z̃k,n) is the amplitude of the normal-mode with the frequency ±ωk,n. In summary,

in both approaches, the normal modes of the small oscillations of SU(N) spins around the

ordered state are described by a collection of decoupled harmonic oscillators with labels k

and n.

The connection between the two approaches becomes more evident by recalling the

process of the canonical quantization. Begin by associating
√

2<(z̃k,n) = xk,n with the

canonical coordinate and
√

2=(z̃k,n) = pk,n with the canonical momentum. Then promote

x and p to be operators while enforcing [x̂, p̂] = i (~ ≡ 1). The quasi-particle operator

then corresponds to the “ladder operator,” β†k,n = 1/
√

2(x̂k,n + ip̂k,n). Finally, we should

keep in mind that a quantum harmonic oscillator has a non-vanishing zero-point energy

[see Eq. (4.10)] whereas the amplitude of a classical harmonic oscillator is continuous. This

difference leads to different results for the dynamical correlation functions. We discuss this

in Sec. 4.3.4.

The harmonic approximation 3 becomes insufficient in presence of strong fluctuations.

If the strong fluctuations are predominantly of thermal origin, we must solve the full (non-

linear) LL equations by using the numerical techniques introduced in Sec. 2.4. Whereas if the

fluctuations are of quantum origin, we must take into account the higher order corrections

of Ĥ in powers of 1/M , which can be significant for low enough values of M .

Loop expansion

The higher order corrections in the 1/M expansion (n ≥ 3-particle terms) correspond to

interactions between quasiparticles of the linear spin wave theory. These terms account

for many-body effects in the spin system, such as the decay and renormalization of the

quasiparticle dispersion relation and the existence of the multi-magnon bound states. After

3It is also known as the random phase or Gaussian approximation, depending on the context.

70



Fourier transforming into the reciprocal space and applying a Bogoliubov transformation

that diagonalizes the quadratic Hamiltonian Ĥ(2), the higher order terms, Ĥ(n) n ≥ 3, can

be expressed as

Ĥ(n) =
∑

q1,q2...qn

∑
n1,n2,...nn

δ(q1 + q2 + . . .+ qn)×
[

1

n!
V

(n)
0 ({qi}, {ni})βq1n1βq2n2 . . . βqnnn

+
V

(n)
1 ({qi}, {ni})

1!(n− 1)!
β†q̄1n1

βq2n2 . . . βqnnn +
V

(n)
2 ({qi}, {ni})

2!(n− 2)!
β†q̄1n1

β†q̄2n2
. . .βqnnn +. . .+ h.c.

]
,

(4.14)

where V
(n)
i is the vertex function of order n, with i “outgoing” particles (β†) and n − i

“incoming particles” (β). The above expression has been put into normal-order. For order n

terms, there are Quotient[n/2]+1 types (and their hermitian conjugates) of vertex functions

because each function V
(n)
i is fully symmetric with respect to the band and momentum indices

of the i “outgoing” particles and n − i “incoming particles”, respectively [see Fig. 4.2(a)].

See Appendix E for derivation of the vertex functions for SU(3).

After determining the vertex functions, V (n), we are ready to construct a systematic

perturbation theory that is controlled by 1/M . We will first demonstrate that the 1/M

expansion is just a particular example of the loop expansion commonly used to describe

spontaneous symmetry breaking in particle theory [138]. The connection is more evident

after noticing that M becomes an overall prefactor of the rescaled Hamiltonian (4.9), H̄ =

Ĥ/M , after we have rescaled the bosonic fields according to b̄r,ν = b̃r,ν/
√
M . Since the

original interaction vertices V (n) (n ≥ 3) scale as V (n) ∼ (M)2−n
2 , all vertices of the rescaled

Hamiltonian H̄({b̄r,ν , b̄†r,ν}) become of order M , while the propagator is still of order 1/M .

Thus, the order p of a particular one-particle irreducible diagram is V − I, where V is the

number of vertices and I is the number of internal lines. (Note that the frequency ω is of

order M0 because the quadratic contribution 〈H̄(2)〉 is independent of M .) Since the number

of loops is L = I − V + 1, 4 we obtain the desired result: p = 1− L.

Let us rederive this result without rescaling the fields and the Hamiltonian. As we

already mentioned, Eq. (4.9) tells us that the interaction vertices V (n) (n ≥ 3) scale as

4Every vertex introduces a delta function that reduces the number of independent momenta by one,
except for one delta function that is left over for overall energy momentum conservation.
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Figure 4.2: (a) The interaction vertex V
(n)
i . (b) An example diagram that contributes to

the self-energy Σ with L = 2 loops, I = 5 internal lines, and n = 4 cubic vertices V (3). (c)
Diagrammatic representation of the Dyson equation G = G0 + G0ΣG [equivalent to (4.16)]:
the blue bold line denotes the dressed (interacting) quasi-particle propagator G and the thin
line denotes the bare (non-interacting) propagator G0.
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V (n) ∼ (M)2−n
2 . The quasi-particle propagator,

G0,α(k, iω) = (−iω + ωk,α)−1, (4.15)

where ω is the Matsubara frequency, scales as G0,α(k) ∼M−1 because ωk,α is of order M [see

Eq. (4.9)]. The dressed single-particle propagator is obtained from the Dyson equation,

G−1(k, iω) = G−1
0 (k, iω)− Σ(k, iω), (4.16)

where Σ(k, iω) is the single-particle self-energy. Fig. 4.2(c) gives the diagrammatic

representation of the Dyson equation. At a given order in M , the dressed propagator

includes two external legs, L independent loops, I internal lines (bare propagators G0) and

Vn interaction vertices of the type V (n) [see Fig. 4.2(b) for an example]. After a summation

over the Matsubara frequency ω ∼ M1, each loop gives a contribution of order M1. Hence,

the order p of a particular one-particle irreducible diagram contributing to Σ(k, iω) is

p = L− I +
∑
n≥3

Vn

[
2− n

2

]
. (4.17)

Since each internal line connects a pair of vertices, we have

∑
n≥3

nVn = 2I + 2, (4.18)

where
∑

n≥3 nVn is the total number of lines. Furthermore, the number of loops is equal to

the number of independent momentum integrals. From the conservation of momentum at

each vertex, we have

L = I −
(∑
n≥3

Vn − 1
)
. (4.19)

By combining the above results, we obtain

p = 1 +
∑
n≥3

Vn −
∑
n≥3

nVn
2

= 1− L, (4.20)
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implying again that the order of a given diagram is determined by the number of loops.

We note that the Dyson equation (4.16) is a self-consistent equation for ω. Quite often, to

simplify the calculation, the so-called on-shell approximation: Σ(k, ω)→ Σ(k, ωk) is adopted

after making the analytical continuation ω ± i0+ → iω. In this way, the renormalized poles

of the dressed propagator G are calculated as

ω̃q,n − iΓ̃q,α = ωq,n + Σn(k, ωk,n), (4.21)

where <[Σn(k, ωk,n] gives the renormalization of the quasi-particle dispersion relation ωq,n

obtained from the LSWT and =[Σn(k, ωk,n] gives the inverse of life time of the dressed

particles [recall that the lifetime for non-interacting quasi-particle is infinity].

4.3.4 Dynamical spin structure factor (quantum)

As mentioned in Sec. 2.4.2, neutron scattering experiments provide a direct probe for the

dynamical spin structure factor (DSSF) [see Eq. (2.113)]. We have also provided the

numerical recipes (see Sec. 2.4.2) for computing the DSSF in the classical limit. In this

section, we sketch the calculation of the DSSF by using the 1/M expansion to incorporate

quantum effects at T = 0. In general, one can extend the definition of the DSSF to the

correlation function between any two SU(N) generators given in Eq. (4.4). Although the

correlation function between non-dipolar generators cannot be directly probed by neutron

scattering experiments, part of the spectral weight of the DSSF will be transferred to non-

dipolar quasiparticle excitations in the presence of terms that hybridize the different modes.

In these cases, neutron scattering experiments can still reveal the presence and the dispersion

of quasiparticle excitations with a predominant non-dipolar character. Therefore, for the sake

of completeness, we consider the generalized dynamical structure factor between two SU(N)

generators:

Oµν(q, ω) =
1

2πNs

∫ +∞

−∞
dteiωt

∑
i,j

e−iq·(ri−rj)〈T̂ µi (t)T̂ νj (0)〉, (4.22)

where Ns is the number of sites and 〈. . .〉 denotes the expectation value in the state of

thermodynamic equilibrium (ground state at T = 0). In practice, it is more convenient to
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compute the imaginary-time dynamical spin susceptibility,

χµν(q, iω) = − 1

2πNs

∫ β

0

dτeiωτ
∑
i,j

e−iq·(ri−rj)〈Tτ
[
T̂ µi (τ)T̂ νj (0)

]
〉, (4.23)

where Tτ denotes time-ordering in imaginary time and ω is the Matsubara frequency [4].

Eq. (4.22) can be obtained by applying the fluctuation-dissipation theorem at T = 0 after

the analytic continuation iω → ω + i0+:

Oµν(q, ω) = −2=
[
χµν(q, ω + i0+)

]
. (4.24)

Below we consider the leading order contributions to Eq. (4.22) up to O[M−1]. To achieve

this goal, we expand the square root in Eq. (4.8)

T̂ µ = M T̃ µ11 +
√
M

N∑
α=2

(
T̃ µα1b̃

†
α + T̃ µ1αb̃α

)
+

N∑
α,β=2

(
T̃ µαβ − T̃

µ
11δαβ

)
b̃†αb̃β

− 1

2
√
M

N∑
α,β=2

(
T̃ µα1b̃

†
αb̃
†
β b̃β + T̃ µ1αb̃

†
β b̃β b̃α

)
+O(M−3/2). (4.25)

After expressing these cubic contributions in terms of the Bogoliubov quasiparticle operators

[38, 174, 108] and imposing normal ordering, we obtain the following corrections to terms

that are linear and quadratic in the bosonic operators:

T̂ µ 'M T̃ µ11 +
√
M

N∑
α=2

(
Λµ
αb̃
†
α + h.c.

)
+

N∑
α,β=2

(
T̃ µαβ − T̃

µ
11δαβ

)
b̃†αb̃β, (4.26)

where

Λµ
α = T̃ µα1

[
1− 1

2M

N∑
β=2

(
N̄βα + N̄ββ

)]
− 1

2M
T̃ µ1α

N∑
β=2

∆αβ. (4.27)

In the above expression, we have introduced short-handed notations for the vacuum

expectations between the uncondensed SBs

N̄αβ = 〈b̃†αb̃β〉 ∆αβ = 〈b̃αb̃β〉. (4.28)
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After plugging Eq. (4.26) into Eq. (4.23) and Fourier transforming in space, χµν acquires

three contributions of O[1/M ],

χµν(q, iω) = χµνelastic(0, 0) + χµνqp(q, iω) + χµνtc (q, iω), (4.29)

where χµνelastic, χ
µν
qp and χµνtc are elastic, one-particle and two-particle corrections, respectively.

The elastic contribution includes the square of the first term of Eq. (4.26), T µ11T ν11M
2, and

the quantum correction arising from the product of the first and third terms of Eq. (4.26):

−2M T̃ µ11

N∑
α,β=2

(
T̃ ναβ − T̃ ν11δαβ

)
N̄αβ.

χµνqp includes contributions from the quasi-particle channel associated with “transverse

fluctuations” of the SU(N) order parameter, while χµνtc includes two-particle contributions

associated with “longitudinal fluctuations” of the SU(N) order parameter [108]. Below we

consider the latter two contributions separately.

Transverse fluctuations

The quasi-particle channel is written as

χµν(q, iω) =
MNu

Ns

∑
m,n

N∑
α,β=2

(Λµ
n,α)∗

Λµ
n,α

T [G11(q, iω)] [G12(q, iω)]

[G21(q, iω)] [G22(q, iω)]


(n,α),(m,β)

(Λν
m,β)∗

Λν
m,β

 ,

(4.30)

where we have explicitly recovered the sublattice indices m and n for the boson operators.

Fourier transform of these operators is given by

b̃r,(m,α) =
1√
Nu

∑
k

eik·r b̃k,(m,α). (4.31)
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Here Nu is the number of magnetic unit cells and the ratio Ns/Nu is the number of

nonequivalent sublattices. The 2 × 2 block matrix in Eq. (4.30) is the interacting single-

particle Green’s function for the uncondensed SBs,

G(q, iω) = − 1

2π

∫ β

0

dτeiωτ 〈Tτ
[
~bq(τ)~b†q(0)

]
〉, (4.32)

where ~bq = (b̃q,(m,α), b̃
†
−q,(m,α))

T is a 2Ns/Nu(N − 1)-component vector 5. We note that the

poles of G(q, iω) are the same as those of G(q, iω) [see Eq. (4.16)]. The difference is that

the numerator of G(q, iω) contains the “matrix elements” that connects the vacuum of the

quasi-particles with the excited states created by ~b†q [see Appendix D for details], whereas

the numerator of G(q, iω) is one.

In the harmonic approximation, Λµ
α ' T̃

µ
α1, G(q, iω) reduces to the non-interacting single-

particle Green’s function

G0(q, iω) =
1

−iωA+ Ĥ(2)
, (4.33)

where

A =

I[Ns/Nu(N−1)]×[Ns/Nu(N−1)] 0

0 −I[Ns/Nu(N−1)]×[Ns/Nu(N−1)]

 . (4.34)

Since the poles of G0 and G0 are the same, the inelastic part of Oµν(q, ω) is given by

−2=
[
χµνqp(q, ω+ i0+)

]
∼Mδ(ω−ωq,n), which is O[M0] because the quasi-particle dispersion

relation ωq,n is O[M ] [see Eq. (4.10)], implying that the delta function δ(ω − ωq,n) is

O[M−1]. Since ωq,n (frequency of the normal modes) is the same as the dispersion relation

that is obtained from the linearized SU(N) Landau-Lifshitz dynamics (see Sec. 2.3), the

two approaches give identical pole positions in the harmonic approximation. However, as

illustrated in Appendix C, the spectral weight of the quantum result at T = 0 is obtained by

multiplying the classical result by βω. This is so because a quantum harmonic oscillator has

finite zero-point energy, whereas a classical harmonic oscillator has solutions with arbitrarily

small amplitude/energy [see Appendix C].

5The label m goes over the Ns/Nu sublattice indices and α goes over the N − 1 uncondensed SBs flavor
indices.
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Now we consider the 1/M quantum correction to χµνqp beyond the harmonic approxima-

tion. From the normal ordering of the cubic terms in the full expression of Λµ
α given in

Eq. (4.27), we obtain the 1/M correction to the coefficients of the linear terms in b̃(b̃†). By

using Eq. (4.21), we include the 1/M (one-loop) self-energy corrections Σone-loop to the poles

of the quasi-particle propagator, where <[Σone-loop] changes the pole positions relative to the

harmonic approximation and =[Σone-loop] accounts for the broadening of the delta function

peaks.

Longitudinal fluctuations

The two-particle continuum channel is written as

χµνtc (q, iω) = − 1

2πNu

∑
k,k′

∑
m,n

∑
{αi}

Ξµ
m,(α1,α2)Ξ

ν
n,(α3,α4)

×
∫ β

0

dτeiωτ
〈
Tτ
[
b̃†k,(m,α1)(τ)b̃k+q,(m,α2)(τ)b̃†k′,(n,α3)(0)b̃k′−q,(n,α4)(0)

]〉
, (4.35)

where

Ξµ
m,(α,β) = T̃ µm,(α,β) − δα,βT̃

µ
m,(1,1). (4.36)

By using the Wick’s theorem [4], we have

χµνtc (q, iω) =
1

Nuβ

∑
k

∑
ω′

∑
{mi}

∑
{αi}

Ξµ
m,(α1,α2)Ξ

ν
n,(α3,α4)

×
(

[G21(k, iω′)](m,α1),(n,α3)[G12(k + q, iω′ + iω)](m,α2),(n,α4)

+ [G22(k, iω′)](m,α1),(n,α4)[G11(k + q, iω′ + iω)](m,α2),(n,α3)

)
. (4.37)

We note that in the spirit of 1/M correction, we should replace the Green’s function in the

above equation with the non-interacting Green’s function given in Eq. (4.33). This is because

the leading terms of the longitudinal channel is already 1/M smaller than the leading terms

in the transverse channel [108].
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After summing over the Matsubara frequency ω′ and taking the analytic continuation,

we have

Oµνtc (q, ω) ∼
∑
k

∑
n,n′

δ(ω − ωk,n − ωk+q,n′), (4.38)

where the details of the calculation are given in Appendix D. We note that the above result

is explicitly of the order O[M−1].
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Chapter 5

Applications of the generalized spin

wave theory

In this chapter we will apply the generalized SU(3) spin wave theory introduced in Ch. 4 to

two realistic effective S = 1 systems. Our goal is to study their low-temperature dynamics,

which in both cases can be modeled by a Hamiltonian of the form (2.58). Since the magnitude

of the single-ion anisotropy |D| in both systems is bigger than zJ , where z is the coordination

number and J is the characteristic energy scale of the exchange tensor, we must use the

SU(3) description to capture their low-temperature dynamics. In Sec. 5.1, we first consider

the easy-plane system (D > 0) Ba2FeSi2O7 introduced in Ch. 3, the ground state of which

has no traditional SU(2) counterpart, i.e. it is not an SU(2) coherent state. By applying the

1/M expansion introduced in Ch. 4 (up to one-loop correction), we capture the decay and

renormalization of a longitudinal mode revealed by the INS experiments [48]. In Sec. 5.2,

we consider the easy-axis system (D < 0) FeI2, the ground state of which is an Ising-like

ordered state. This ground state certainly has a classical counterpart in SU(2) coherent

states. However, as we will show in Sec. 5.2, we still need to use the SU(3) spin wave theory

to capture various many-body effects revealed by the INS and THz experiments [17, 18, 91].
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5.1 Decay and renormalization of a longitudinal mode

in Ba2FeSi2O7

5.1.1 Introduction: longitudinal mode in spin-1 magnets

In easy-plane quantum magnets like Ba2FeSi2O7, phase transitions can be driven by

either fluctuations of the phase or the amplitude of the order parameter [119]. The

phase fluctuations are the transverse modes of the order parameter (Goldstone modes in

the long-wavelength limit), whereas amplitude fluctuations correspond to the longitudinal

modes. Due to the gapless nature of the Goldstone transverse modes, the longitudinal or

“Higgs” mode is kinematically allowed to decay into two transverse modes. This decay

becomes more significant in low-dimensional systems. Indeed, the longitudinal mode in

two-dimensional (2D) antiferromagnets was originally assumed to be overdamped due to an

infrared divergence of the imaginary part of the longitudinal susceptibility [40, 130]. However,

more recent theoretical work has predicted that the longitudinal peak should remain visible

even in 2D [125, 126, 54, 129]. One aspect of this problem, which has not been emphasized

in previous works, is that the rather strong decay of the longitudinal mode is accompanied

by a significant renormalization of the gap and dispersion of the modes. As noted above,

this additional many-body effect provides a hard test for theories that attempt to reproduce

the measured decay of the Higgs mode.

As a starting point to understand the physics described above, we focus on the quasi-2D

Heisenberg square lattice material Ba2FeSi2O7 (introduced in Ch. 3) with effective S = 1, an

antiferromagnetic exchange coupling (J̃) and a strong easy-plane single-ion anisotropy (D̃).

In this case, α = J̃/D̃ can be viewed as a tuning parameter that can be used to drive a system

from a quantum paramagnet (QPM) to an antiferromagnet (AFM) with an intervening

quantum critial point (QCP), as shown in Fig. 5.1. Near the QCP, spontaneous symmetry

breaking produces two transverse modes (one a Goldstone mode) and a longitudinal Higgs

mode. The longitudinal mode is unstable with respect to decay into a pair of transverse

modes, resulting in an intrinsic line broadening [174, 76].
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Figure 5.1: Schematic phase diagram illustrating the O(2) quantum critical point (QCP)
between the antiferromagnetic (AFM) state and the quantum paramagnet (QPM) as a
function of J/D (J is a Heisenberg exchange and D is a easy-plane single-ion anisotropy).
The low-energy excitations of the QPM are two degenerate Sz=±1 modes (black line) with a
gap, ∆, which closes at the QCP. The spontaneous U(1) symmetry breaking leads to a gapless
magnon or transverse mode (T−mode), indicated with a blue line, which is accompanied by
a gapped longitudinal mode (L−mode) indicated with the orange line. Near the QCP, the
energy and the lifetime of the L−mode are strongly renormalized (dashed orange line) due
to the decay into the continuum of two transverse modes (shaded orange region).
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The high-quality neutron-scattering data of Ba2FeSi2O7 provided by our collaborators

reveals a complex spectrum where transverse modes are resolution limited, while a

longitudinal mode displays significant Q-dependent broadening throughout the Brillouin

zone (BZ), demonstrating the importance of quasi-particle decay even away from the long-

wavelength limit. The neutron-scattering results further show that the longitudinal mode has

a very small gap, indicating that Ba2FeSi2O7 is relatively close to a QCP. To understand the

inelastic neutron-scattering data, we performed a generalized SU(3) spin-wave calculation,

as introduced in Ch. 4, and compute the low-energy excitation spectrum of an effective low-

energy spin S = 1 model. In particular, we show that the one-loop correction is enough to

account for the broadening of the longitudinal mode and the large renormalization of the gap

and the dispersion of this mode. We further show that not including the one-loop correction

results in Hamiltonian parameters that place the exact ground state of the spin Hamiltonian

for Ba2FeSi2O7 on the nonmagnetic side of the QCP — contrary to experimental fact. This

provides a dramatic demonstration of the importance of including renormalization effects,

where the linear spin-wave calculation overestimates the stability range of the magnetically

ordered state. The fact that the one-loop correction can simultaneously account for the

real and imaginary part of the self-energy of the longitudinal mode, as well as of the

renormalization of the transverse mode dispersion, confirms that the easy-plane quantum

magnet Ba2FeSi2O7 is an ideal platform for studying many-body effects in the proximity of

the O(2) QCP.

5.1.2 Inelastic neutron scattering data

An overview of the inelastic neutron-scattering data is presented in Fig. 5.2 through contour

maps of the neutron-scattering intensity, I(Q, ω), along [H,H, 0.5] and [H, 0, 0.5]. For both

spectra, strongly dispersive spin excitations extending up to energy ∼ 2.7 meV are observed.

There are several distinct features in the inelastic neutron-scattering data. An intense

spin-wave excitation emanates from the magnetic zone center (ZC), Q = (1, 0, 0.5), which

arises due to the in-phase oscillation between Fe2+ spins in the plane. We refer to this mode

as T1. Along the [H, 0, 0.5] direction toward the zone boundary (ZB) at Q = (0, 0, 0.5), the

T1-mode reaches its maximum energy of ∼ 2.5 meV. Another weak, but sharp mode, is visible
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Figure 5.2: (a) Contour map of the inelastic neutron scattering (INS) data as a function of
energy and momentum transfer along the [H,0,0.5] direction measured at T=1.6 K (< TN)
using the HYSPEC time-of-flight spectrometer at SNS. (d) Contour map of the INS data as
a function of energy and momentum transfer along [H,H,0.5] direction measured at T=1.4 K
(< TN) using the cold Neutron Triple-Axis spectrometer (CTAX) at HFIR. The instrumental
resolutions at dE=2.5 meV for each instrument are indicated with blue bars along the y-axis
in (a) and (d). The two transverse modes and the longitudinal mode are labeled with T1,
T2, and L, respectively. (b),(c),(e), and (f) INS intensities calculated by the generalized
linear spin wave theory (GLSWT) and GLSWT plus one-loop corrections (GLSWT+one-
loop) with the parameter sets A and B given in Table 5.1, respectively. The instrumental
resolution of HYSPEC and CTAX was modeled in the calculated spectra using a Lorentzian
function.
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along [H, 0, 0.5] with an energy of 2.5 meV at the ZC. We refer to this mode as T2. These two

modes are expected for a strong easy-plane antiferromagnet, where transverse magnons split

into gapless in-plane fluctuations (T1-mode) and gapped out-of-plane fluctuations (T2-mode).

The finite value of the energy gap of the out-of-plane fluctuation at the ZC is associated with

the strength of the easy-plane single-ion anisotropy [128].

The T1 and T2 transverse magnon modes are also observed along the [H,H, 0.5] direction

in Fig. 5.2 (d). Noticeably, an additional sharp mode is observed at the top of the T1-mode.

This mode is visible along the entire Brillouin zone boundary. We refer to this additional

mode as “L”-mode. The L-mode is visible in the spectra along [H, 0, 0.5] as well, however,

it exhibits dramatic line broadening near the ZC. The experimental analysis reveals that the

L-mode is three times broader than the instrumental resolution at the ZC, whereas it has

comparable line width to instrumental resolution near the ZB (see Ref. [48] for details of the

analysis).

5.1.3 Generalized spin wave theory calculations

The magnetically ordered (AFM) state of Ba2FeSi2O7 (see the bottom right of Fig. 3.1) can

be approximated by a product (mean-field) state of normalized SU(3) coherent states,

|ψr〉 = cos θ|0〉+
(

sin θ cosφ|1〉+ sin θ sinφ| − 1〉
)
eiQm·r, (5.1)

where Qm = (π, π, π) [(1, 0, 0.5) in the chemical lattice] is the AFM ordering wave vector.

Although a general SU(3) coherent state is a parameterized by 4 independent parameters

[see Eq. (2.54)], the two independent parameters θ and φ are enough to describe the collinear

order under consideration. The three basis states |m〉 (m = 0,±1) are represented by creating

a boson with quantum number m from the vacuum: |m〉 = b†r,m|∅〉. As discussed in Ch. 4,

the next step is to align the quantization axis with the direction of the local SU(3) order

parameter. The spatial dependence of the transformation Ur can be removed by working in

a twisted frame, where the original AFM order becomes a FM one. This can be done by

rotating the spin reference frame of one of the two sublattices of the tetragonal lattice by

an angle π along the z-axis: Szr → Szr, and Sx,yr → −Sx,yr . In the new reference frame, the
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effective S = 1 model for Ba2FeSi2O7 given in Eq. (3.2) becomes

H̃eff = J̃
∑
〈r,r′〉,ν

aνS
ν
rS

ν
r′ + J̃ ′

∑
〈r,r′〉,ν

bνS
ν
rS

ν
r′ + D̃

∑
r

(Szr)
2, (5.2)

where ax = ay = bx = by = −1, az = ∆̃ and bz = ∆̃′. Then we write H̃eff in terms of SU(3)

SBs. In this calculation, we choose the local “0” boson to be condensed and perform the

1/M expansion (see Eq. (4.9)) for (5.2). The classical Hamiltonian is given by

H(0) = (2J̃∆̃ + J̃ ′∆̃′) sin4 θ cos2 2φ

− 1

2
(2J̃ + J̃ ′) sin2 2θ(1 + sin 2φ) + D̃ sin2 θ. (5.3)

Since the AFM order is invariant under time reversal followed by one lattice translation,

the states |Sz = ±1〉 must have equal weight in the mean field state (5.1), implying that

φ = π/4. By minimizing H(0) with respect to θ, we obtain

x ≡ sin2 θ =
1

2
− D̃

8(2J̃ + J̃ ′)
. (5.4)

The quadratic (GLSWT) Hamiltonian is written in terms of the two uncondensed SBs,

H(2) =
∑

k,α=±1

[
Ak,αb̃

†
k,αb̃k,α −

Bk,α
2

(
b̃−k,αb̃k,α + b̃†k,αb̃

†
−k,α

)]
, (5.5)

where γxyk = cos(kx) + cos(ky), γ
z
k = cos(kz) and the expressions for Ak,α and Bk,α are given

in Appendix E. We note that the two uncondensed SBs are decoupled in (5.5), which is not

true for a generic system. Note that the collinear mean-field state (5.1) has a residual Z2

symmetry associated with a π-rotation along the direction of the ordered moments (local

z̃-axis). The bosonic operator b̃†+1 picks up minus sign under this Z2 symmetry because it

creates the state with S̃z = −1. In contrast, the bosonic operator b̃†−1 remains invariant

because it creates the state with S̃z = 0. This symmetry analysis implies that the b̃+1 and

b̃−1 bosons must be decoupled in H(2) because a non-vanishing hybridization term would

otherwise break this Z2 symmetry.
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The diagonal form of H(2),

H(2) =
∑

k,α=±1

ωk,α

(
β†k,αβk,α +

1

2

)
, (5.6)

is then obtained by applying an independent Bogoliubov transformation for each bosonic

flavor,

b̃k,±1 = uk,±1βk,±1 + vk,±1β
†
−k,±1, (5.7)

with

uk,±1 =

√
1

2

(
|Ak,±1|
ωk,±1

+ 1

)
, vk,±1 =

Bk,±
|Bk,±|

√
1

2

(
|Ak,±1|
ωk,±1

− 1

)
. (5.8)

The operators β†k,±1 create quasi-particles with energy

ωk,±1 =
√
A2
k,±1 −B2

k,±1, (5.9)

where ωk,+1(ωk,−1) is the dispersion relation of the transverse (longitudinal) modes.

In the Sec. 5.1.4, we will show that although the GLSW approach discussed above can

reproduce the dispersion relations of all observed low-energy modes in Ba2FeSi2O7 , it cannot

account for various interaction effects that are revealed by the INS experiments. To capture

these effects, we must then include the next order terms in the 1/M -expansion.

After Fourier transforming and applying a Bogoliubov transformation, the cubic

contributions to the generalized spin wave theory become

H(3) = H(3)
c +H(3)

l , (5.10)

where

H(3)
c =

1√
Ns

∑
qi

∑
αi=±1

δ(q1 + q2 + q3)

×
[

1

3!
V (3)
s (q1,2,3, α1,2,3)βq1,α1βq2,α2βq3,α3

+
1

2!
V

(3)
d (q1,2,3, α1,2,3)β†q̄1,α1

β†q̄2,α2
βq3,α3 + h.c.

]
, (5.11)
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and

H(3)
l =

1√
Ns

∑
q

∑
α=±1

[
V

(3)
l (q,0, q;α,−1, α)β†0,−1 + h.c.

]
=
√
Ns

∑
α=±1

[
VL,αβ

†
0,−1 + h.c.

]
. (5.12)

Here V
(3)
d and V

(3)
s are the decay and sink vertices, respectively. The symmetry allowed

cubic vertices are depicted in the second and third lines of Fig. 5.3. Note that, unlike the

SU(2) case, collinear magnetic ordering does not preclude cubic terms in the expansion

(4.9) of the generalized SU(N) spin wave theory with N > 2. For the SU(3) case under

consideration, the residual Z2 symmetry only requires that the b̃+1 boson must appear an

even number of times (e.g., b̃+1b̃+1 or b̃†+1b̃
†
+1) in the cubic terms. H(3)

l is a linear term that

originates from the normal-ordering of the cubic term. This term renormalizes the optimal

value θ that was obtained from the minimization of H(0). The integral of V
(3)
l (q;α,−1) over

the entire Brillouin zone is the so-called cubic-linear vertex, which is non-zero only for the

longitudinal boson at the ordering wave vector q = 0 (in the twisted frame). The explicit

forms of V
(3)
d,s and V

(3)
l are derived in Appendix E.

Knowing the interaction vertices, as discussed in Sec. 4.3.3, we compute the self-energy

diagrams up to a certain order in M to include the many-body effects. Here we consider

the lowest-order (one-loop) O[M0] Feynman diagrams [see Fig. 5.4]. Since the inverse of the

bare boson propagator is of order O(M1), the remaining diagrams of order O(M0) give a

relative 1/M correction to the poles of the bare propagators.

The contributions to the self-energy from the decay and from the source diagrams shown

in Fig. 5.4 are

Σd
α(q, iω) =

1

2Ns

∑
k,α1,α2=±1

|V (3)
d (k̄,k + q̄, q;α1, α2, α)|2

iω − ωk,α1 − ωq+k̄,α2

, (5.13)

and

Σs
α(q, iω) = − 1

2Ns

∑
k,α1,α2=±1

|V (3)
s (k, k̄ + q̄, q;α1, α2, α)|2

iω + ωk,α1 + ωq+k̄,α2

, (5.14)

respectively.
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Figure 5.3: Basic ingredients of the perturbative field theory in 1/M for Ba2FeSi2O7.
Solid (dash) lines represent the bare propagator of the transverse (longitudinal) boson. The
symmetry-allowed cubic vertices are shown on the second and third lines. The red (blue)
dot represents a decay (sink) vertex. The cubic-linear vertices are listed on the fourth line.

The last line represents the normal vertex V
(4,N)
αα from H(4).

Figure 5.4: Diagrammatic representation of the Dyson equation for Ba2FeSi2O7. (a) One-
loop diagrams that contribute up to the order M0 for the transverse boson. (b) One-loop
diagrams that contribute up to the order M0 for the longitudinal boson. The dressed
propagator is denoted by a thick line, whereas the bare propagator is denoted by a thin
line.
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Finally, the diagrams that appear in the last line for both panels of Fig. 5.4 arise from

the normal ordering of the quartic term H(4) in Eq. (4.9). These contributions simply

renormalize the quadratic Hamiltonian:

H(4)
NO =

∑
q,α,α′

[
V

(4,N)
αα′ β†q,αβq,α′ + (V

(4,A)
αα′ β−q,αβq,α′ + h.c.)

]
, (5.15)

where V
(4,N)
αα′ (V

(4,A)
αα′ ) represents the normal (anomalous) contributions. Since H(4)

NO is of order

M0, only the diagonal normal contribution arising from the normal vertex V
(4,N)
αα′ δα,α′ gives

a relative correction of order 1/M to the bare single-particle energy given in Eq. (5.9) (the

anomalous terms in Eq. (5.15) give a relative correction contribution order 1/M2). The

derivation of V
(4,N)
αα is included in Appendix E.

We note the parallel between the decay, sink, and quartic diagrams that give the 1/M

correction to the single-particle self-energy and the ones that appear in the 1/S expansion

of the standard SU(2) spin wave theory of non-collinear Heisenberg magnets [38]. The

main difference is that the SU(3) theory includes an extra bosonic flavor that enables more

symmetry-allowed decay channels. In addition, the cubic-linear diagram exists even in

absence of magnetic field because the magnitude of the ordered magnetic moment can be

renormalized by changing the variational parameter θ. These diagrams, shown in the third

line of Fig. 5.4 (a) and the fourth line of Fig. 5.4 (b), are obtained by contracting one of

the legs of the decay vertex with the cubic-linear vertex shown in Fig. 5.3. By using the

Feynman rules, the cubic-linear diagrams are calculated as

Σcl
α(q) = − 1

ω0,−1

([
V

(3)
d (0, q̄, q;α,−1, α)

]∗
VL,α + h.c.

)
. (5.16)

After the analytical continuation ω ± i0+ → iω, we adopt the on-shell approximation

Eq. 4.21 discussed in Sec. 4.3.3 for Eq. (5.13) and Eq. (5.14). The renormalized pole of the

dressed propagator G is then calculated as ω̃q,α−iΓ̃q,α = ωq,α+V
(4,N)
q,αα +Σcl

α(q)+Σs
α(q, ωq,α)+

Σd
α(q, ωq,α), where the imaginary part of the pole Γ̃k,α arises from the decay term Σd

α. This

accounts for the observed broadening of the the longitudinal mode in most regions of the

BZ [see Fig. 5.2 (c)(f)]. The calculation of the dynamical spin structure factor is already

summarized in Sec. 4.3.4. We note that Sµνtc in Eq. (4.29) is not analyzed in comparison
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with experiments, as it only contributes to the continuum. Moreover, the shift in the real

part of the pole implies a corresponding renormalization in the model parameters. By fitting

the neutron-scattering data with the renormalized dispersion peaks ωL(Qm) at the ZC, we

obtain the set of optimal Hamiltonian parameters listed as set B in Table 5.1 and discussed

further below.

5.1.4 Comparison with INS experiments

To understand the spin excitation spectrum of Ba2FeSi2O7 and demonstrate the importance

of using the one-loop corrections, we start the comparison between experiment and theory

with the GLSWT (i.e. without one-loop corrections). Figure 5.2 (b) and (e) shows contour

plots of I(Q, ω) calculated with the GLSWT along the [H, 0, 0.5] and [H,H, 0.5] directions,

respectively. The Hamiltonian parameters (see set A in Table 5.1) are extracted by fitting

the measured positions of the quasi-particle peaks (Gaussian-fitted peak centers of the

experimental data) at the ZC. The GLSWT reproduces the dispersion of the two observed

transverse modes, T1 and T2, along the [H, 0, 0.5] and [H,H, 0.5] directions [Fig. 5.2 (b) ,(e)].

Noticeably, the calculated longitudinal mode closely reproduces the experimental dispersion

of the “L”-mode, which demonstrates that the SU(3) spin-wave theory describes the quasi-

particles in Ba2FeSi2O7.

Notably, the GLSWT does not reproduce the broadening and renormalization of the

longitudinal modes observed in the inelastic neutron-scattering data. This is because the

effect arises from the decay of a longitudinal mode into two transverse modes, which is

induced by the cubic term Ĥ of the expansion Eq. (4.9). To capture this effect, the 1/M -

correction from the one-loop expansion (see Sec. 4.3) must be included. The GLSWT+one-

loop correction can then describe the broadened spectrum of the longitudinal mode. The

new Hamiltonian parameters, which are determined via the same procedure that is described

above [see set B in Table 5.1], allow us to reproduce the observed spectrum [Fig. 5.2 (c), (f)].

A more in-depth comparison between theory and experiment is shown in Fig. 5.5 (a)

and (b). These figures show the quasi-particle dispersions along the [H, 0, 0.5] direction

calculated with the GLSWT and GLSWT plus one-loop corrections compared to the

measured dispersion. Near the ZC, Qm = (1, 0, 0.5), the energy of longitudinal mode
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Table 5.1: The parameters of the effective S = 1 model extracted by fitting the Gaussian-
peak centers of the experimental dispersion with the GLSWT and GLSWT + one loop
calculated energies at the zone center Qm = (1, 0, 0.5). In both cases, we assume J̃ ′ = 0.1J̃ ,
and ∆̃ = ∆̃′ = 1/3, i.e. ∆ = ∆′ = 1 for the S = 2 model (Heisenberg model without
exchange anisotropy). The parameter set is referred to by its label (A or B) in the text.

Theory Label J̃ (meV) D̃ (meV)

GLSWT A 0.242 1.630

GLSWT + one-loop B 0.263 1.432

GLSWT GLSWT + one-loop
a b

L

T2

e      Q=(1,0,0.5)
        GLSWT
        GLSWT 
       + one-loop

c d
GLSWT GLSWT + one-loop

     Q=(0,0,0.5)
        GLSWT
        GLSWT 
       + one-loop

     Q=(0.5,0.5,0.5)
        GLSWT
        GLSWT 
       + one-loop

LT1

L

T1
f g
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Figure 5.5: Comparison of the measured and calculated dispersion along the [H, 0, 0.5] (a,
b) and [H,H, 0.5] (c, d) directions. In all panels of this figure, the theoretical results are
obtained for the parameter set B in Table 5.1. a–d Blue and orange filled circles indicate the
measured transverse and longitudinal modes. Dots and error bars indicate peak centers and
full width at half maxima (FWHM) of the observed modes, respectively. Lines indicate the
calculated dispersions obtained from the GLSWT and GLSWT+one-loop corrections. The
red-shaded region in b and d depict the decay (line broadening) of the longitudinal mode
given by the one-loop corrections. e–g Comparison between the measured (blue dots) and
calculated (orange and black lines) INS intensities at three high-symmetric Q-points at (1,
0, 0.5), (0, 0, 0.5), and (0.5, 0.5, 0.5). For GLSWT, two transverse and longitudinal modes
are denoted with T1, T2, and L.
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obtained from the GLSWT is noticeably higher than the peak center of the measured “L”-

mode (orange dots). The discrepancy in the dispersion is resolved by introducing the one-loop

corrections. The real part of the self-energy renormalizes the energy of the longitudinal mode,

leading to a better agreement with the observed peak positions near the ZC. At the same

time, the imaginary part of the self-energy obtained from the decay diagrams, Σd
α, leads to an

intrinsic line broadening of the longitudinal mode that is missing in the GLSWT. In Fig. 5.5

b and d, the lower (upper) boundary of the red-shaded region is given by ω̃k,−1(∓)Γ̃k,−1,

representing theoretical line broadening of the longitudinal mode that is compared against

the experimental FWHM (orange error bars). In particular, the effects mentioned above are

most striking at Qm = (1, 0, 0.5), therefore we present a comparison of the intensity line-cut

at this momentum transfer in Fig. 5.5 (e). It is interesting to note that the energy shift of

the transverse mode is also captured by the one-loop corrections.

After verifying that the one-loop corrections can simultaneously capture the broadening

of the longitudinal mode and the energy shift of both the transverse and the longitudinal

modes at the magnetic ZC, it is natural to ask if this also holds true far away from the

ZC. Figure 5.5f and g show the intensity cuts for two representative points on the ZB.

At a first glance, the peak centers of both modes are reasonably reproduced by the one-

loop corrections. A more detailed analysis reveals that the experimental FWHM of both

peaks is equal to the instrumental resolution. However, as illustrated in Fig. 5.6a, since

the longitudinal modes are still inside the two-magnon continuum, the one-loop correction

predicts an intrinsic broadening (black curves) in Fig. 5.5f, g.

To understand the origin of this discrepancy, we trace back the decay channel of the

longitudinal mode on the zone boundaries. The two-magnon continuum at the zone edge

starts at an energy equal to the sum of the single-magnon energies at the zone center and the

zone boundary. Due to the U(1) symmetry of the effective Hamiltonian, the magnons are

gapless at the zone center, implying that the onset of the two-magnon continuum coincides

with the single-magnon branch (see Fig. 5.6).

In absence of U(1) symmetry, the magnon modes become gapped and the longitudinal

mode does not need to lie inside the two-magnon continuum for arbitrary values of the

wave vector (see Fig. 5.6b). A small magnon gap pushes the onset of the two-magnon
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Figure 5.6: Kinematic constraints for the decay of the longitudinal mode. The blue (orange)
curve shows the calculated transverse (longitudinal) band dispersions along [H, 0, 0.5] with
the GLSWT (using parameters set B in Table 5.1). The light blue-shaded areas indicate
the two-transverse mode continuum, whose lower edge is indicated with a black solid line
(Emin

2 ). a Results of the effective S = 1 model. b Same as a but for a gapped branch of
transverse modes (an ad hoc gap has been added to Eq. (5.5)).
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continuum to be above the energy of the longitudinal mode at the zone boundaries. This

modification of the two-magnon spectrum precludes the decay of the longitudinal mode near

the zone boundary and explains the experimental observation. We therefore conjecture that

the single-magnon dispersion is indeed gapped.

Unfortunately, it is difficult to extract the size of this gap from our INS data because

of the large quasi-elastic scattering. We note that the gap can be captured by working

with the original spin S = 2 Hamiltonian (Eq. (3.1)). The tetragonal symmetry allows

for a single-ion anisotropy term of the form HA = A
∑

i[(S
x
i )4 + (Syi )4], which breaks the

global U(1) symmetry, generating a finite gap for the transverse mode. However, when we

project the original S = 2 Hamiltonian onto the low-energy space to obtain the effective spin

S = 1 Hamiltonian (Eq. (3.2)), the term HA simply renormalizes the single-ion anisotropy,

implying that the low-energy model acquires an “emergent” U(1) symmetry that is absent

in the original high-energy model. Lastly, we note that the energies of the longitudinal

mode on the zone boundaries after the one-loop corrections are slightly lower than the

measured values. This level of discrepancy can be attributed to the missing second-order

corrections O[J2/(3D)] to the low-energy model Eq. (3.2) or to missing terms in the original

Hamiltonian (3.1). A simple analysis shows that a second nearest-neighbor AFM interaction

with J̃2 ∼ 0.2J̃ can account for this discrepancy. For simplicity, J̃2 is not included in our

calculation. Except for the discrepancy near the zone boundaries, the effective S = 1 model

with one-loop corrections successfully captures most features of the INS data inside the BZ.

Finally, we emphasize that the loop expansion preserves the Goldstone mode that results

from the spontaneous breaking of the emergent U(1) symmetry group of H̃eff . More

specifically, as it is shown in Appendix E, the O(M0) correction to the real part of the

self-energy vanishes for the Goldstone mode, although the individual contributions from

the diagrams shown in Fig. 5.4 diverge as 1/q in the long-wavelength limit. We note that

previous attempts to computie the decay of the longitudinal mode [76] have not accounted

for the renormalization of the single-particle dispersion arising from the 1/M correction to

thereal part of the self-energy. This correction leads to a significant change in the extracted

ratio α = J̃/D̃ of Ba2FeSi2O7, cf. αGLSW = 0.152, and αGLSW+one loop = 0.187. This

change is a direct consequence of the substantial renormalization of the energy ωL(Qm) of
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the longitudinal mode at the ZC. In fact, an accurate calculation that goes beyond the

one-loop approximation estimates that the critical αc required to close the gap ωL(Qm)

for J̃ ′ = 0.1J̃ , and ∆̃ = ∆̃′ = 1/3 is around 0.158 [See Appendix E]. In other words,

the Hamiltonian parameters extracted from fitting the experiment with GLSWT place

Ba2FeSi2O7 on the quantum paramagnetic side of the phase diagram shown in Fig. 5.1,

which obviously contradicts the experimental evidence. In contrast, the set of parameters

obtained from GLSWT+one-loop correction (αGLSW+one loop = 0.152) place the material at

the magnetically ordered phase of the exact phase diagram. Furthermore, the calculated

ordered moment is very close to the measured value 2.95 µB (see Supplement Note 12 of

Ref. [48] for discussion of the reduction of the ordered moment). In general, nonlinear

corrections become increasingly important upon approaching the QCP, and logarithmic

corrections due to multi-loop vertex renormalizations become relevant very close to this

point [125, 84, 2, 115]. The fact that a one-loop correction is enough to reproduce the

spectrum of Ba2FeSi2O7 indicates that this material is still far enough from that critical

regime.

5.1.5 Conclusions

In summary, Ba2FeSi2O7 provides a natural realization of a quasi-2D easy-plane antifer-

romagnet in proximity to the QCP, which signals the transition into the QPM phase.

Previous examples of low-dimensional easy-plane quantum magnets in the proximity of

this QCP were typically located on the quantum paramagnetic side of the quantum phase

transition [81, 164, 165, 175]. Ba2FeSi2O7 then allows us to explain the strong decay and

renormalization effects of the low-energy transverse and longitudinal modes of the AFM

state. Furthermore, the distance to the O(2) QCP could be in principle controlled by

chemical substitution, while the application of an in-plane magnetic field, that gaps out

the transverse modes, can be used to control the decay rate of the longitudinal mode.

Here, we have used the INS data of Ba2FeSi2O7 as a platform to test a loop expansion

based on an SU(3) spin-wave theory, that captures the longitudinal and the transverse modes

at the linear level. This loop expansion, which generalizes the well-known 1/S-expansion of

the SU(2) spin-wave theory, allows us to reproduce the measured width and renormalization
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of the longitudinal and transverse modes near the zone center by just including a one-loop

correction. Small discrepancies near the zone boundary are attributed to limitations of the

effective low-energy S = 1 model that we adopted for this work.

5.2 Many-body effects observed in FeI2

5.2.1 Introduction: two magnon bound state in spin-1 magnets

Depending on spin-space anisotropies and the range of magnetic interactions, single-magnon

quasiparticles in a quantum magnet can interact attractively, generating multi-magnon

bound states (BS). The existence of such BS was first predicted in the 1930s by Bethe [27]

in 1D quantum magnets, using a spin-1/2 Heisenberg model. These exchange-driven BS are

usually observed in 1D ferromagnetic spin chains with S ≤ 1 [146, 73, 36]: two magnons

in such a system can bind on adjacent sites because the proximity of two spin-flips reduces

the energy via the ferromagnetic exchange interaction. In this section, we demonstrate that

the effective spin-1 triangular lattice antiferromagnet FeI2 supports similar BS physics. One

distinctive feature for the BS in FeI2 is that the two spin-flips preferably happen on the

same site, known as the single-ion two-magnon bound state (TMBS). As mentioned in

the beginning of this chapter, the low-temperature dynamics of FeI2 can be modeled by

an anisotropic Heisenberg model with a strong easy-axis anisotropy D < 0. Moreover, the

nearest-neighbor exchange interaction J1 of FeI2 is ferromagnetic. Although the exchange

anisotropies and competing further-neighbor exchange interactions are necessary to explain

the complex magnetic structure [see Fig. 5.7a for the magnetic order in the triangular

plane] and details of the excitation spectrum, the balance between D and J1 is sufficient

to understand the TMBS physics in FeI2. For this reason, let us ignore the exchange

anisotropies and further-neighbor exchange interactions for a moment. The energy cost of a

single-magnon excitation [Fig. 5.7b] with respect to the ground state [Fig. 5.7a] is 2|J1|+ |D|

whereas the energy cost of two spin flips on the same site is 4|J1|. In addition, the energy

cost of two single spin flips on adjacent sites is 3|J1|+ 2|D|. As a result, the TMBS becomes

the lowest energy excitation given strong enough easy-axis anisotropy (c.f. |J1/D| ∼ 0.1 for
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Figure 5.7: Single-ion states of Fe2+ ions accessible at low energy correspond to S = 1
magnetic moments with uniaxial anisotropy. The sketches represent a plane of spins in the
a ground state configuration, and examples of b a one-magnon elementary excitation, c a
two-magnon bound-state (TMBS), d a 4-magnon bound-state, e a 4-magnon anti-bound-
state, and f a 6-magnon bound-state. The grey shadows represent the particular spins that
are deviated as compared to the ground state. Reprinted from Fig. 1 of Ref. [91].
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FeI2). We note that the TMBS with |∆Sz| = 2 is quadrupolar in nature, which calls for the

SU(3) representation. As mentioned already in Ch. 4, quadrupolar modes of S = 1 systems

can only be obtained in the conventional SU(2) SWT by summing ladder diagrams up to

infinite order in the 1/S (or loop) expansion, but they can be captured at the quadratic level

by using the SU(3) SWT.

In Sec. 5.2.2, we first present a complete description of FeI2. Then in Sec. 5.2.3, we apply

the SU(3) LSWT to study the low-energy excitations of FeI2, as revealed by INS experiments.

In particular, we demonstrate that the observed spectral weight of the TMBS, which in

principle should be invisible to neutrons due to its quadrupolar nature (dipole selection

rule), originates from a hybridization with the single-magnon band through off-diagonal

exchange interactions. Given the rich spectrum of quasi-particles in FeI2, we also apply the

one-loop corrections to investigate the decay of these quasi-particles in Sec. 5.2.4. In contrast

with Ba2FeSi2O7, which admits spontaneous decay of the longitudinal mode, the decay of

quasi-particles in FeI2 is induced by an external magnetic field applied perpendicularly to

the triangular plane, which tunes the kinematic conditions for decay. As we will show

in Sec. 5.2.4, most experimental features are captured by the GLSWT+one-loop [or the

generalized non-linear spin wave theory (GNLSWT) up to the one-loop order] calculations,

except the phenomenon at 3T. While the GLSWT+one-loop calculation predicts strong

decay for one particular band, no visible broadening is observed in the experimental results.

Remarkably, this qualitative discrepancy can be resolved by taking into account 4 magnon

bound states [see Fig. 5.7 d-e], which are observed in the terahertz (THz) spectroscopy

measurement by our collaborators [91]. Including this distinct quasiparticle in our GNLSWT

calculations is impractical (non-perturbative) as it requires to sum ladder diagrams to infinite

order in a perturbative loop expansion. We avoid this problem by performing an exact

diagonalization (ED) of the SU(3) spin-wave Hamiltonian at quartic order on a finite lattice.

The results are summarized in Sec. 5.2.5.

5.2.2 The FeI2 compound

The FeI2 compound has spatially-complex exchange pathways between magnetic Fe2+ ions

residing on perfect triangular-lattice layers and spin-orbit effects within the weakly-distorted
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trigonal environment of I− ligands [Fig. 5.8a]. At the single-ion level, a well-isolated triplet is

stabilized below 10 meV [Fig. 5.8b] and maps onto an effective S=1 model with an easy-axis

single-ion anisotropy D [19], where D is estimated to lie between 1.9 and 2.2 meV from bulk

suceptibility and Mössbauer measurements [53, 26]. The magnetic exchange interactions are

an order of magnitude smaller [123] and stabilize a collinear c-axis magnetic order [55, 158, 52]

below TN =9.5 K [148] through a first order transition with no apparent lattice distortion [55].

The magnetic structure features an up-up-down-down stripe configuration in the ab-plane

that shifts by one unit along the a-axis between subsequent triangular layers [Fig. 5.8c].

With a propagation vector km = (1/4, 0, 1/4), this yields three magnetic domains in the

material, related by 120◦ rotations.

The minimal model which explains the observed magnetic structure at low temperature

[Fig. 5.8c] is a Heisenberg model with easy-axis single-ion anisotropy:

Ĥ =
∑
〈i,j〉

JijŜi · Ŝj −D
∑
i

(Ŝzi )2. (5.17)

Within the triangular plane, the up-up-down-down stripe structure requires competing

exchange interactions between first, second and third neighbors [144], with J1 < 0

ferromagnetic, J2> 0 antiferromagnetic, and J3 such that J1−2J3 < 0 and J1+2J2+2J3 > 0.

5.2.3 Non-interacting theory: The hybridization mechanism

Fig. 5.9a displays the INS data of FeI2 along the high-symmetry path indicated in the figure.

The data contain two separate excitation bands, corresponding to TMBS and one-magnon

excitations, indicated by white arrows. To capture the TMBS, we must employ the SU(3)

SWT for the effective S = 1 system FeI2. For the magnetically ordered ground state [see

Fig. 5.8c], we choose b̃†i,+1 to be condensed bosons in the local frame, while b̃†i,0 will be taken

to create a single magnon and b̃†i,−1 a TMBS. Although the SU(3) SWT is sufficient to capture

both dipolar and quadrupolar excitations at the linear level, they remain decoupled for the

minimal model (5.17), which is purely diagonal (Heisenberg), because they carry different

quantum numbers. This implies that the TMBS excitation is completely flat, localized and

invisible in neutron-scattering experiments. Thus, an unexplained aspect of the INS data is
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Figure 5.8: a. Local coordination environment of Fe2+ ions and hierarchy of single-ion
energy-scales. b. Trigonal crystal structure of FeI2, showing triangular layers of Fe2+ ions
and resulting symmetry-inequivalent magnetic exchange pathways, mediated by I− ligands,
up to third nearest neighbors in-plane (J1, J2, J3) and fourth nearest neighbors out-of-plane
(J
′
0, J

′
1, J

′
2a, J

′

2b). c. Magnetic structure of FeI2, showing ferromagnetic planes (gray) arranged
in a up-up-down-down (blue-blue-green-green) sequence.

Figure 5.9: a. Energy-resolved neutron-scattering intensity collected at T = 1.8 K.
White boxes indicate symmetry-equivalent positions in reciprocal space with large intensity
disparities that are predicted by a Heisenberg model with the usual Fe2+ form factor. b.
Generalized spin-wave theory fit to the data using the anisotropic model. c. Hybridization
effect from anisotropic exchange interaction Jz± represented through the relative weight of
b†i,−1 (TMBS, red) and bi0 (one-magnon, blue) in a given excitation eigenvector.
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the dispersive nature of the TMBS excitation wherever it approaches the one-magnon band

(Fig. 5.9a). Given the overlap between the calculated TMBS energy and LSWT magnon

dispersion, the INS data suggest that a strong hybridization occurs between dipolar and

quadrupolar fluctuations.

A symmetry analysis of spin-space anisotropy for nearest-neighbor bonds yields four

independent parameters such that the corresponding exchange Hamiltonian can be written

Hn.n. =
∑
〈i,j〉

{
Jzz1 Szi S

z
j + J±1

(
S+
i S
−
j + S−i S

+
j

)
+ J±±1

(
γijS

+
i S

+
j + γ∗ijS

−
i S
−
j

)
− iJz±1

2

[
(γ∗ijS

+
i − γijS−i )Szj + Szi (γ∗ijS

+
j − γijS−j )

] }
,

where γij = 1, e−i2π/3, and ei2π/3 for bond a1, a2, and a1 + a2 [see Fig. 5.8a],

respectively. Before proceeding to the details of the calculation, we note that the nearest-

neighbor symmetric off-diagonal exchange interaction Jz±1 is responsible for hybridizing the

overlapping one-magnon and TMBS bands. At quadratic order in the SU(3) Schwinger

boson representation [see Sec.4.3], Szi S
+
j maps onto (b̃†i,−1b̃i,0 + b̃†j,−1b̃j,0), introducing an on-

site coupling transforming a single magnon into a TMBS. As a result, these overlapping

bands (excitations) acquire a mixed dipolar-quadupolar character.

To progress, we introduce a 15-parameter (minimal to explain various features of the

INS data) model that includes all four anisotropic exchange parameters on nearest-neighbor

bonds, diagonal XXZ anisotropy for the five non-negligible further-neighbor interactions,

and single-ion anisotropy. Since the magnetic unit cell contains four nonequivalent sites

(see Fig. 5.8c), we must introduce 4 × 2 = 8 uncondensed SBs to account for all coherent

low-energy excitations. The quadratic Hamiltonian is written as

Ĥ(2) =
1

2

∑
qαβ

∑
m,n 6=1


b̃†(α,q)m

b̃†(β,q)m

b̃(α,q̄)m

b̃(β,q̄)m



T 
∆α
mn Θαβ

mn;q 0 Ξαβ
mn;q

Θαβ∗
nm;q ∆β

mn Ξαβ
nm;q̄ 0

0 Ξαβ∗
mn;q̄ ∆α

nm Θαβ∗
mn;q̄

Ξαβ∗
nm;q 0 Θαβ

nm;q̄ ∆β
nm




b̃(α,q)n

b̃(β,q)n

b̃†(α,q̄)n

b̃†(β,q̄)n


−
∑
m6=1

∑
i

∆i
mm, (5.18)
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where q̄ ≡ −q, α = 1, ..., 4 is the sublattice index, and b̃(α,q)σ = N
−1/2
uc

∑
r e
−iq·r b̃(α,r)σ. Nuc

is the total number of the magnetic unit cells and r the coordinates of lattice sites. The

following quantities originate from expanding Eq. (4.8):

∆α
mn = M

∑
β

∑
δαβ>0

∑
µν

S̃µ11(β)J µν
δαβ
S̃νmn(α)− D

2
Q̃zzmn(α), (5.19)

Θαβ
mn;q = M

∑
δαβ>0

∑
µν

S̃µ∗1m(α)J µν
δαβ
S̃ν1n(β)eiq·δαβ , (5.20)

Ξαβ
mn;q = M

∑
δαβ>0

∑
µν

S̃µ∗1m(α)J µν
δαβ
S̃ν∗1n(β)eiq·δαβ , (5.21)

where δαβ are the bond vectors connecting sublattices α and β and the summation over

δαβ > 0 avoids double-counting of each bond. The calligraphic letters in the above equation

denote the corresponding operators in the local reference frame [see Eq. (4.8)],

S̃µr = UrSµrU †r Q̃zzr = Ur(Szr)2U †r . (5.22)

After diagonalizing Ĥ(2) by means of the Bogoliubov transform (numerically for the

case of FeI2), we have eight distinctive bands with hybridized dipolar (one-magnon) and

quadrupolar (TMBS) characters:

Ĥ(2) =
∑
q

8∑
n=1

ωq,n

(
β†q,nβq,n +

1

2

)
. (5.23)

As we mentioned in Sec. 5.2.2, the FeI2 compound has three equivalent magnetic domains

related by 120◦ rotations. To account for this effect, we applied the 120◦ rotations to

the results (wave vectors) of one of the three magnetic domains. The resulting dispersion

relations without (with) Jz± are depicted in the upper (lower) panel Fig. 5.9c. The relative

weight of the b̃i,0 and b̃i,−1 bosons is shown in blue and red colors, respectively. As expected,

the two modes are strongly hybridized in the region where the dipolar and quadrupolar

excitations have practically the same energy. The model parameters are extracted by

performing a fit to data with the calculated neutron intensity in the harmonic approximation

[see Sec. 4.3.4] along high-symmetry paths in the (h, k, 0)-plane and for selected cuts in the
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l-direction. The remaining data are used to check the fit [see the Supplementary Info of

Ref. [17] for more details]. The fitted results are in remarkable agreement with the data

[Fig. 5.9c]. The best-fit model parameters are summarized in Table 5.2.

5.2.4 Perturbative approach: The field-induced decay of quasi-

particles

As shown in Fig. 5.9b,d, the microscopic interactions in FeI2 allow bands of distinct

elementary quasiparticles to overlap and strongly hybridize. Consequently, it is natural to

wonder if decays are possible for these excitations. Although kinematic conditions for decay

are not met in FeI2 in the absence of a magnetic field, we conjecture that the relative Zeeman

shift between initial and final states with different quantum spin numbers can compensate

for this discrepancy [see right panel of Fig. 5.10] and activate decay processes for an adequate

magnetic field. To search for magnon decay processes in FeI2, our experimental collaborators

applied a magnetic field perpendicular to the triangular planes to tune the relative position

of magnetic excitations, and performed the corresponding INS experiments. Interestingly, a

slight misalignment between the magnetic field direction and the c-axis of the FeI2 crystal

selects a single magnetic domain out of the three, which dramatically simplifies interpretation

of the results.

In Fig. 5.11, we compare the SU(3) GLSW calculations by using the model parameters

listed in Table 5.2 and g = 3.8(5) with the INS data for µ0H = 0, 1, 2, 3 and 4 T. For

µ0H ≤ 2 T, the number, dispersion, intensity, linewidth, and field-dependence of all the

observed modes are in excellent agreement with GLSW predictions for all measured momenta

(Fig. 5.11A). However, there are noticeable discrepancies between the INS data and GLSW

predictions for µ0H = 3 T and µ0H = 4 T. For instance, as indicated by the white box in

Fig. 5.11A, the INS intensities of one of the excitations are broadened, implying the decay

of the corresponding quasiparticles, which cannot be explained with the GLSW calculation.

Therefore, we performed GNLSW calculations up to the one-loop order to take into account

the decay. We note that the steps to derive the interacting vertex functions for FeI2 are

the same as Ba2FeSi2O7 [see Appendix E], so we do not repeat the calculations here. In
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Table 5.2: The best GLSWT fitting parameters in units of Kelvin (K) of inelastic
neutron-scattering data for FeI2.

J±1 J±±1 Jz±1 J±2 J±3 J
′±
0 J

′±
1 J

′±
2a D

Mean -1.385 -1.010 -3.017 0.136 0.977 0.167 0.085 0.360 25.729
SD 0.009 0.005 0.006 0.009 0.006 0.005 0.002 0.004 0.020

Jzz1 Jzz2 Jzz3 J
′zz
0 J

′zz
1 J

′zz
2a ETMBS

Mean -2.461 0.719 4.720 0.000 0.000 0.143 2.822
SD 0.895 0.993 0.990 - - 0.396 0.001

Figure 5.10: (Left). All symmetry-allowed cubic interaction vertices between initial single-
quasiparticle and final two-quasiparticle states for a S= 1 system. The green and red lines
represent propagators for the SM and TMBS quasiparticles, respectively. The processes
highlighted in gray are the relevant magnon decay channels in FeI2. (Right). Effect of a
magnetic field on the kinematic condition underlying decay processes. The Zeeman shift of a
given (initial or final) state α depends on the total spin quantum number [∆Sz]α as Eα(H)=
−gµBµ0H[∆Sz]α where g=3.8. Decays are kinematically allowed if Efinal(H)−Einital(H) ≤ 0.

105



Figure 5.11: Magnetic field dependence of neutron scattering spectra of FeI2

and comparison with SU(3)-generalized linear spin-wave (GLSW) calculations.
a, Momentum- and energy-dependence of the neutron-scattering intensity at T = 1.8 K
and µ0H = 0, 1 and 2 T (AF phase). Momenta perpendicular to the (h,−0.5h, 0) cut
direction are integrated over |∆k| ≤ 0.05 and |∆l| ≤ 0.05. The arrows mark and track the
dominant character of the corresponding bands: solid green for single-magnon (SM) and
dashed red for single-ion two-magnon bound-states (TMBS). b, Same cuts at µ0H = 3 and
4 T revealing departures from GLSW calculations. The black arrows mark the energy of a 4-
magnon excitation, originating from the binding of two single-ion bound-states by exchange
interactions, and effect not accounted for by GLSW calculations as highlighted by the white
double-sided arrow. The yellow dashed box indicates regions of momentum-energy where
excitations lineshape are dramatically broadened, indicating strong magnon decay. c-d,
Constant-Q cuts through the data (open symbols) and GLSW predictions (lines) for various
magnetic fields highlighting: c, the 4-magnon bound-state as an extra peak shoulders around
E ≈ 2.5 meV for h=−0.8 and µ0H = 3 and 4 T (dashed arrows), and d, magnon decay
around E ≈ 3.5-4.5 meV for h=−0.5 and µ0H = 3 T (dashed box).
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addition, the contributing one-loop self-energy diagrams for FeI2 are also parallel to those of

Ba2FeSi2O7 [see Fig. 5.4]. The only difference is that the intermediate processes involve only

two quasiparticles for Ba2FeSi2O7 but eight for FeI2. Due to the strong single-ion anisotropy,

D/J1 ∼ 18.6, the cubic-linear and quartic diagrams [corresponding to the diagrams shown on

the last two lines of Fig. 5.4 (a)(b)] give negligible contribution (10−3|J1|) to the self-energy.

We therefore neglect these contributions in our calculation.

For µ0H = 4 T, Fig. 5.12b, the GNLSWT calculations predict large decay rates for

the top of the E4 and E6 bands (see band labeling in Fig. 5.12). This yields a broadened

neutron-scattering response highlighted by the dashed yellow box in Fig. 5.12b, in excellent

agreement with the experimental observations. While the hybrid character of all the bands

is fully accounted for in our quantitative decay rate calculations, it is instructive to focus on

their dominant character at a given wave-vector to elucidate their decay mechanism. The

broadening of band E4 around 3.7 meV stems from the emission of a ∆Sz = +2 single-

ion bound-state on branch E2 by a ∆Sz = +1 single-magnon, which correspondingly loses

energy and momentum. The broadening observed around 4.4 meV for band E6 corresponds

to a ∆Sz =−2 single-ion bound state decaying into two single-magnon excitations: one at

the bottom of the E2 band with ∆Sz = +1 and one at a different wave-vector of the E6

band, where the ∆Sz =−1 character dominates. These decay processes correspond to the

spontaneous creation and annihilation of a single-ion bound-state through a net change of

two units of angular momentum, implying that the relevant interaction vertices are mediated

by the anisotropic, spin-non-conserving term J±±S+
i S

+
j . See vertices enclosed by black boxes

in Fig. 5.10b.

Surprisingly, a qualitatively different phenomenon occurs for µ0H = 3 T, Fig. 5.12B.

While the GLSWT+one-loop calculations predict strong decay for excitations at the bottom

of the E4 band, no visible broadening is observed in the experimental results of Fig. 5.11B.

We note that this branch lies proximate to a four-magnon bound-state (4MBS) that been

revealed by the THz experiments [91] [see also, the black dashed arrow in Fig. 5.11B]. As

we will show in the next subsection, including the 4MBS in the calculation can explain the

lack of observed decay.
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Figure 5.12: SU(3)-generalized non-linear spin-wave (GNLSW) calculations at the one-
loop order for in the (h,−0.5h, 0) cut direction showing in turn: the renormalized spectra +
kinematic conditions for decay, decay rate, and realistic neutron scattering intensity. A 3 T.
B 4 T. In the left-most panels for both A and B, The eight hybridized bands are numbered
and color-coded to reflect the value of ∆Sz they carry as a function of momentum-transfer.
Shaded regions indicate two-particle continua.
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5.2.5 Non-perturbative approach: The effects of 4-magnon bound

states

As shown in Fig. 5.9, the single-ion TMBS have an almost flat dispersion throughout the

Brillouin Zone, and given J1 is ferromagnetic (attractive interaction), the TMBS display

a strong propensity to form bound states with themselves, leading to the so-called 4MBS.

Just as with the inclusion of the TMBS with the conventional SU(2) SWT, the inclusion of

the 4MBS with the SU(3) SWT is also a non-perturbative calculation, i.e., it requires the

summation of ladder diagrams to infinite order in a perturbative loop expansion. However,

here we show that we can avoid this problem by performing an exact diagonalization (ED)

study in the truncated subspace S1,2, with the number of quasiparticles ≤ 2 on a finite lattice.

In this section, we briefly review the ED calculation. The detailed comparisons of the ED

calculation with INS and THz data can be found in Refs. [18, 91].

As the Hilbert space dimension becomes prohibitively large for ED if we include states

with three quasiparticles, our calculation only accounts for 1-, 2- and 4-magnon excitations.

The excluded states have only perturbative effects because of their higher energy scales

compared to that of a single quasiparticle. The subspace S1,2 is spanned by the basis {|i〉, |i ≤

j〉} with |i〉 = β†i |∅〉 and |i ≤ j〉 = ζijβ
†
i β
†
j |∅〉, where i stands for the dictionary index of

(ni, qi), |∅〉 refers to the vacuum of the β (Bogoliubov)-quasiparticles [see Eq. (5.23)], and

ζi 6=j = 1 and ζi=j = 1/
√

2! are normalization factors. Introducing the projector P1,2 to the

subspace S1,2, the restricted Hamiltonian is obtained by the projection

P1,2HP1,2 =

 H11 H12

h.c. H22

 , (5.24)

with matrix elements

Hi,j
11 = δijεni,qi , H

i,j≤k
12 =

1√
Nuc

V (S1)
ni,nj ,nk

(qi, qj, qk)ζj,k,

Hi≤j,k≤l
22 = δikδjl(εni,qi + εnj ,qj)ζ

2
ij +

1

Nuc

Uni,nj ,nk,nl(qi, qj, qk, ql)ζijζkl. (5.25)
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Here the function Uni,nj ,nk,nl(qi,j,k,l) accounts for the interaction between β-quasiparticles,

H(4) =
1

2!2!Nuc

∑
ijkl

δ(qi+qj+qk+ql−G)Uni,nj ,nk,nl(qi, qj, qk, ql)β
†
ni,q̄iβ

†
nj ,q̄jβnk,qkβnl,ql ,(5.26)

where G is the reciprocal lattice vector. The diagonalization of P1,2HP1,2 is done for a

fixed center of mass momentum. It reveals that the spectrum includes four energy levels

below the two-particle continuum with a strong 4-magnon character (see Ref. [18]), which

are identified as the 4-magnon bound states. After the inclusion of the 4MBS, we explain

the strong suppression of decays observed in the experiments at 3 T [18], which stems from

the finite probability that the decay products of the corresponding decay channel will form

a four-magnon bound-state instead of propagating independently in the system.

5.2.6 Conclusions

In summary, we have applied the generalized SU(3) spin wave theory introduced in

Ch. 4 to account for the rich quantum many-body effects observed in FeI2. Interestingly,

these intriguing many-body phenomena are captured at different complexity levels of

the 1/M expansion based on the SU(3) classical theory: the non-interacting theory for

the hybridization mechanism, the GLSWT + one-loop (perturbative) calculation for the

field induced decay, and the exact diagonalization (non-perturbative) calculation for the

suppression of one of the decay channels. The excellent agreement between the experimental

data and the theoretical prediction confirms that the generalized SU(N) dynamics is an

adequate framework to model quantum magnets with strong single-ion anisotropy.

Finally, we note that FeI2 provides an outstanding example of a spin one system with

a classical (Ising-like) ground state, the excitation spectrum of which still exhibits rich

quantum many-body effects. This simple example illustrates the need to consider alternative

semi-classical theories that can capture the many-body quantum effects of general quantum

magnets.
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Chapter 6

CP2 Skyrmions and Skyrmion crystals

In Ch. 4 – Ch. 5 we focused on the collective modes of a general quantum magnet. In

particular, we demonstrated that these quasi-particles can be obtained by linearizing the

generalized classical equation of motion (2.63) and applying the canonical quantization

procedure (see Sec. 4.3.3). In this chapter, we will consider a different category of “particles”

that arise as stationary solutions of the equations of motion (they correspond to local

minima of the classical Hamiltonian). These solutions of the non-linear field equations are

generically known as topological solitons and they appear in different areas of physics [29].

Their topological character (intrinsic stability against continuous deformations) makes them

behave as emergent mesoscale particles that can be used for different applications [51]. Here

we will focus on one particular example of magnetic soliton — the magnetic skyrmions —

that corresponds to some localized vortex-like inhomogeneous spin textures and carries an

integer topological charge.

6.1 Introduction: magnetic skyrmions and their gen-

eralization

Lord Kelvin’s vision of the atom as a vortex in ether [145] inspired Skyrme [139, 140] to

explain the origin of nucleons as emergent, topologically non-trivial configurations of a

pion field described by a 3+1 dimensional O(4) non-linear σ-model. In modern language,
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these “skyrmions” are examples of topological solitons, and Skyrme’s model has become the

prototype of a classical theory that supports these solutions. Besides its important role in

high-energy physics and cosmology, Skyrme’s model also led to important developments in

other areas of physics. For instance, the baby Skyrme model [30, 31, 90] (planar reduction of

the non-linear σ-model), which is as an extension of the Heisenberg model [30, 31, 127], has

baby skyrmion solutions in the presence of a chiral symmetry breaking Dzyaloshinskii-Moriya

(DM) interaction [49, 107, 106, 28].

Periodic arrays of magnetic skyrmions and single skyrmion metastable states were

originally observed in chiral magnets, such as MnSi, Fe1−xCoxSi, FeGe and Cu2OSeO3 [109,

162, 161, 136, 1]. This discovery sparked the interest of the community at large and spawned

efforts in multiple directions. Identifying realistic conditions for the emergence of novel

magnetic skyrmions is one of the main goals of modern condensed matter physics. Novel

mechanisms are usually accompanied by new properties. For instance, while skyrmions

of chiral magnets have a fixed vector chirality, this is still a degree of freedom in cen-

trosymmetric materials, such as BaFe1−x−0.05ScxMg0.05O19, La2−2xSr1+2xMn2O7, Gd2PdSi3

and Gd3Ru4Al12 [160, 163, 96, 132, 86, 35, 70], where skyrmions arise from frustration, i.e.,

from competing exchange or dipolar interactions [117, 92, 94, 67, 23, 153, 68].

The target manifold of the above-mentioned planar baby skyrmions is S2 ∼= CP1, i.e.,

the usual 2D sphere, corresponding to normalized dipoles or the conventional classical limit

of a quantum spin system based on SU(2) coherent states. In Ch. 2, we have demonstrated

that there is more than one way of taking the classical limit for a quantum spin system. As

a result, we should now consider the more general target complex projective space CPN−1

that represents the normalized N -component complex vectors, up to an irrelevant complex

phase, i.e., the generalized classical limit based on SU(N) coherent states. The topologically

distinct, smooth mappings from the base manifold S2 (2D sphere ∼= compactified plane) to

the target manifold CPN−1 can be labeled by the integers: Π2(CPN−1) = Z. This homotopy

group suggests generalizations of the planar Skyrme’s model to N > 2, such as the CP2 non-

linear σ-model [63, 45, 47] and in the Faddeev-Skyrme type model [50, 6]. In recent work,

Akagi et al. considered the SU(3) version of the Heisenberg model with a DM interaction,

whose continuum limit becomes a gauged CP2 nonlinear σ-model with a background uniform
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gauge field [3]. An attractive aspect of this model is that it admits analytical solution by

the application of techniques developed for the gauged non-linear σ-model. However, it

may be challenging to find materials described by this model because SU(3) can only be an

accidental symmetry of spin-spin interactions of real quantum magnets.

The main purpose of this chapter is to demonstrate that exotic CP2 skyrmions

readily emerge in simple and realistic spin-1 (N = 3) models and their higher-spin

generalizations. Remarkably, isolated CP2 skyrmions can either be metastable states of

a quantum paramagnet (QPM) or of a fully polarized (FP) ferromagnet. Unlike the “usual”

CP1 magnetic skyrmions, the dipolar field of the metastable CP2 skyrmions of quantum

paramagnets vanishes away from the skyrmion core. Moreover, the application of an external

magnetic field to the QPM induces stable triangular crystals of CP2 skyrmions in the field

interval that separates the QPM from the FP state.

6.2 Spin-1 model

To illustrate the basic ideas we consider a minimal spin-1 model defined on the triangular

lattice (TL):

Ĥ =
∑
〈i,j〉

Jij

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + ∆Ŝzi Ŝ

z
j

)
− h

∑
i

Ŝzi +D
∑
i

(
Ŝzi

)2

. (6.1)

The first term includes an easy-axis ferromagnetic (FM) nearest-neighbor exchange interac-

tion J1 < 0 and a second-nearest-neighbor antiferromagnetic (AFM) exchange J2 > 0. For

simplicity, we assume that the exchange anisotropy, defined by the dimensionless parameter

∆ > 1, is the same for both interactions. The second and third terms represent the Zeeman

coupling to an external field and an easy-plane single-ion anisotropy (D > 0), respectively.

Ĥ is invariant under the space-group of the TL and the U(1) group of global spin rotations

along the field-axis. We will adopt |J1| as the unit of energy (i.e. J1 = −1).

The first step is to take the classical limit of Ĥ, where multiple approaches are possible [62,

167] (see also, Ch. 2). To correctly capture low-energy excitations of this spin-1 model, it

is important to retain more information about spin fluctuations in the (N =3)-dimensional
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local Hilbert space. Therefore, we will take the classical limit of Eq. (6.1) based on coherent

states of SU(3) by following procedures discussed in Sec. 2.3.1. To begin with, we rewrite Ĥ

in terms of SU(3) spin components defined in (2.53),

Ĥ =
∑
〈i,j〉

IµijT̂
µ
i T̂

µ
j −

∑
i

BµT̂ µi , (6.2)

where Iµij = Jij(∆δµ,2 + δµ,5 + δµ,7) and Bµ = (−hδµ,2 − Dδµ,8/
√

3). Then we evaluate the

expectation value of Ĥ in SU(3) coherent states |Z〉:

H ≡ 〈Z|Ĥ|Z〉. (6.3)

By using the definition (2.62) of the SU(3) color field (classical limit of SU(3) spin operators),

we can express

H =
∑
〈i,j〉

Iµijn
µ
i n

µ
j −

∑
i

Bµnµi . (6.4)

To avoid an explicit use of the structure constants of SU(3), we introduce the operator

field nj = nµj λµ. Topological soliton solutions of the color field become well-defined in the

continuum (long wavelength) limit, where the Hamiltonian can be approximated by

H '
∫

dr2

[
−I

µ
1

2
∂an

µ∂an
µ +
Iµ2
2

(
∇2nµ

)2 − Bµnµ
]
. (6.5)

Here ∂a denotes the spatial derivatives and there is an implicit summation over the repeated

a index. The coupling constants can be expressed in terms of the parameters of the lattice

model (6.2):

Iµ1 =
3

2
(Iµ1 + 3Iµ2 ), Iµ2 =

3

32
(Iµ1 + 9Iµ2 ),

Bµ = Bµ − 3(∆− 1)(J1 + J2)δµ,8. (6.6)

Eq. (6.5) corresponds to an anisotropic non-linear CP2 sigma-model. For skyrmion solutions

the base plane R2 can be compactified to S2 because the color field takes a constant value,

n∞, at spatial infinity. These spin textures can then be characterized by the topological
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charge of the mapping n : R2 ∼ S2 7→ CP 2:

C = − i

32π

∫
dxdyεjk Tr (n [∂jn, ∂kn]) . (6.7)

For the lattice systems of interest, the CP2 skyrmion charge can be computed after

interpolating the color fields on nearest-neighbor sites, nj and nk, along the CP2 geodesic:

C =
∑
4jkl

ρjkl =
1

2π

∑
4jkl

(γjl + γlk + γkj) , (6.8)

where 4jkl denotes each oriented triangular plaquette of nearest-neighbor sites j → k → l

and γkj = arg [〈Zk | Zj〉] is the Berry connection on the bond j → k. The explicit derivations

of Eq. (6.7), (6.8) are given in Appendix F.

6.3 Methods and simulation details

The T = 0 phase diagram Fig. 6.1 is obtained by numerically minimizing the classical spin

Hamiltonian H (6.4) on a finite lattice. Two crucial steps are useful to improve the efficiency

of the local gradient-based minimization algorithms [77]. In the first step, we set multiple

random initial conditions |Z〉 (∼ 50 for our case), where |Zj〉 on every site j is uniformly

sampled on the CP2 ' S5/S1 manifold. After running the minimization algorithm, we keep

the solution with the lowest energy for a given set of Hamiltonian parameters. In the next

step, half of the initial conditions are randomly generated, while the other half correspond

to the lowest-energy solutions obtained in the first step within a predefined neighborhood of

the Hamiltonian parameters. This procedure is iterated until the phase diagram converges.

The shape and size of this unit cell is dictated by the symmetry-related magnetic ordering

wave vectors Qν (ν = 1, 2, 3) [see Figs. 6.2a and b], which are determined by minimizing the

exchange interaction in momentum space: J(q) =
∑

jl Jjle
iq·(rj−rl). The ratio between both

exchange interactions, J2/|J1| = 2/(1 +
√

5), is tuned to fix the magnitude of the ordering

wave vectors, |Qν | = |b1|/5 [67], corresponding to a magnetic unit cell of linear size L = 5.

The numerical minimization for the phase diagram Fig. 6.1 is done in a cell of 10× 10 spins
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Figure 6.1: T = 0 phase diagram of the classical Hamiltonian H as a function of the
single-ion anisotropy D and the external field h, for J2/|J1| = 2/(1 +

√
5) and ∆ = 2.6. The

two insets show the phases for small-D and large-D, respectively. The solid (dashed) lines
indicate 1st- (2nd-) order phase transitions.
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containing four magnetic unit cells (L = 5). A we will see later, the relevant qualitative

aspects of the phase diagram do not depend on the particular choice of the model. The

three ordering wave vectors, which are related by the C6 symmetry of the TL, are parallel

to the Γ-Mν directions (denoted in Fig. 6.2).

6.4 Phase diagram

The resulting phase diagram shown in Fig. 6.1 includes multiple magnetically ordered phases

between the FP phase and the QPM phase, where every spin is in the |0〉 state. Below we

include a complete characterization for all remaining phases that appear in Fig. 6.1.

6.4.1 SkX phases

Two field-induced CP2 skyrmion crystals (SkX-I and SkX-II) appear in the region D � |J1|.

As shown in Fig. 6.2a, the CP2 skyrmions of the SkX-I crystal have dipole moments that

evolve continuously into the purely nematic state (|0〉) as they move away from the core.

Conversely, Fig. 6.2b shows that the spins in the SkX-II phase have a strong quadrupolar

character at the skyrmion core (the small dipolar moment is in fact completely suppressed

in the large D/|J1| limit), and they evolve continuously into the magnetic state |1〉 as they

move away from the core. The CP2 skyrmion density distribution ρjkl is also indicated with

colored triangular plaquettes in Fig. 6.2a, b for SkX-I and SkX-II, respectively. As shown in

the inset of Fig. 6.1, the phase SkX-II extends down to D/|J1| ' 5, while the phase SkX-I

disappears near D/|J1| ' 8.

6.4.2 Single-Q orderings

New competing orderings appear in intermediate D/|J1| region. In particular, a significant

fraction of the phase diagram is occupied by the so-called canted spiral (CS) phase,

|Zj〉 = cos θ|0〉j + eiQ·rj sin θ cosφ|1〉j + e−iQ·rj sin θ sinφ|1̄〉j, (6.9)
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Figure 6.2: a, b Real space distribution of the dipolar sector of the CP2 skyrmion crystals
SkX-I and SkX-II. The length of the arrow represents the magnitude of the dipole moment

of the color field |〈Ŝj〉| =
√

(n7
j)

2 + (n5
j)

2 + (n2
j)

2. The color scale of the arrows indicates

〈Ŝzj 〉 = −n2
j . The insets display the static spin structure factors S⊥(q) = n7

qn
7
q̄ + n5

qn
5
q̄ and

Szz(q) = n2
qn

2
q̄, with nq =

∑
j e

iq·rjnj/L. The CP2 skyrmion density distribution ρjkl [see
Eq. (6.8)] is indicated by the color of the triangular plaquettes

.
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where θ and φ are variational parameters, and Q can take any values among {Q1, Q2, Q3}.

Upon increasing D, the magnitude of the dipole moment of each spin, |〈Ŝj〉|, is continuously

suppressed to zero at the boundary,

Dc = h

√
1− 4J2(Q)

h2 + 4J2(Q)
− 2J(Q)

(
1− 2J(Q)√

h2 + 4J2(Q)

)
, (6.10)

which signals the second order transition into the QPM phase. In between the two Skyrmion

crystal phases, there are two modulated vertical spiral phases MVS-I and MVS-II with a

polarization plane parallel to the ẑ-axis. Unlike the case of spirals described by SU(2)

coherent states, the magnitude of the dipole moment is continuously modulated as the dipole

moment rotates along the ẑ axis [see Fig. 6.3a b]. In the large-D/|J1| limit, the two spirals

become vertical spiral states in the pseudo-spin variables.

6.4.3 Modulated double-Q orderings

There are three different modulated double-Q (MDQ I-III) orderings in the phase diagram

[see Fig. 6.4]. Similar to the relation between MVS-I and MVS-II, the MDQ-I and MDQ-II

phases appearing in the small D/|J1| region have the same symmetry and are separated by

a first order metamagnetic transition. The MDQ-III phase, which occupies a small region

above the QPM phase in the large D/|J1| region, is the pseudospin counterpart of the 2-

q′ phase reported in Ref. [92]. Since we have chosen a strong enough easy-axis exchange

anisotropy ∆ [see Eq. (1) of the main text], which translates into an effective single-ion

easy-axis anisotropy D̃ (K term of Ref. [92]) upon taking the long wavelength limit of the

effective pseudospin model [see Eq. (22) of the main text], the MDQ-III phase eventually

disappears for D/|J1| & 25. The existence of the MDQ-III phase for moderately large values

of D/|J1| results from higher order terms in Jij/D not included in the effective pseudospin

model (19) of the main text. As shown in Fig. 6.4, the CP2 skyrmion charge distribution of

these MDQ orderings displays a stripe structure.

6.4.4 3Q spiral orderings

There are three triple-Q spiral orderings [3QS I-III] whose transverse spin structure factor

exhibits dominant weight in one of the three ordering wave vectors Qν (ν = 1, 2, 3)

119



Figure 6.3: Real space distribution of the dipolar sector of the color fields for the three
single-Q orderings. a MVS-I. b MVS-II. c CS. The length of the arrow represents the

magnitude of the dipole moment of the color field |〈Ŝj〉| =
√

(n7
j)

2 + (n5
j)

2 + (n2
j)

2. The

color scale of the arrows indicates 〈Ŝzj 〉 = −n2
j . The insets display the static spin structure

factors S⊥(q) = 〈n7
qn

7
q̄ + n5

qn
5
q̄〉 and Szz(q) = 〈n2

qn
2
q̄〉, with nq =

∑
j e

iq·rjnj/
√
N .

Figure 6.4: Real space distribution of the dipolar sector of the color fields for the
three modulated double-Q orderings: a MDQ-I, b MDQ-II, and c MDQ-III. The length
of the arrow represents the magnitude of the dipole moment of the color field |〈Ŝj〉| =√

(n7
j)

2 + (n5
j)

2 + (n2
j)

2. The color scale of the arrows indicates 〈Ŝzj 〉 = −n2
j . The insets

display the static spin structure factors S⊥(q) = 〈n7
qn

7
q̄ + n5

qn
5
q̄〉 and Szz(q) = 〈n2

qn
2
q̄〉, with

nq =
∑

j e
iq·rjnj/

√
N . The CP2 skyrmion density distribution ρjkl [see Eq. (16) of the main

text] is indicated by the color of the triangular plaquettes in all three panels.
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[see Fig. 6.5 a-c]. The CP2 Skyrmion density of these 3QS phases displays a staggered

distribution. Upon increasing D for a fixed value of h, the subdominant weights are

continuously suppressed for the 3QS-I and 3QS-II states, leading to a second order phase

transition into MVS-I, and MVS-II, respectively. The additional characteristic of the 3QS-III

state is that the longitudinal spin structure factor has a equal weights on the three ordering

wave vectors Qν .

6.5 Large-D limit

In the remaining sections of this chapter, we will focus on the SkX phases and the single-

skyrmion metastable solutions that emerge in their proximity. The origin of the CP2

skyrmion crystals can be understood by analyzing the small |Jij|/D regime, where Ĥ can be

reduced via first order degenerate perturbation theory in Jij/D to an effective pseudo-spin-

1/2 low-energy Hamiltonian,

Ĥeff =
∑
〈i,j〉

J̃ij(ŝ
x
i ŝ
x
j + ŝyi ŝ

y
j + ∆̃ŝzi ŝ

z
j)− h̃

∑
i

ŝzi . (6.11)

The pseudo-spin-1/2 operators are the projection of the original spin operators into the

low-energy subspace S0 generated by the quasi-degenerate doublet {|0〉j, |1〉j} (see Fig. 6.6):

ŝzj = P0Ŝ
z
jP0 −

1

2
, ŝ±j =

P0Ŝ
±
j P0√
2

, (6.12)

where P0 is the projection operator of the low-energy subspace.

Importantly, the first state of the doublet has a net quadrupolar moment but no net

dipole moment, 〈0|Ŝj|0〉j = 0, while the second state maximizes the dipole moment along

the ẑ-direction 〈1|Ŝj|1〉j = ẑ. This means that three pseudo-spin operators generate an

SU(2) subgroup of SU(3) different from the SU(2) subgroup of spin rotations.

Ĥeff represents an effective triangular easy-axis XXZ model with effective exchange,

anisotropy and field parameters J̃ij = 2Jij, ∆̃ = ∆
2

and h̃ = h−D−3∆(J1 +J2), respectively.

This model is known to exhibit a field-induced CP1 SkX phase [92, 67] that survives in the
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Figure 6.5: Real space distribution of the dipolar sector of the color fields for the three
3Q spiral orderings: a 3QS-I, b 3QS-II, and c 3QS-III. The length of the arrow represents

the magnitude of the dipole moment of the color field |〈Ŝj〉| =
√

(n7
j)

2 + (n5
j)

2 + (n2
j)

2. The

color scale of the arrows indicates 〈Ŝzj 〉 = −n2
j . The insets display the static spin structure

factors S⊥(q) = 〈n7
qn

7
q̄ + n5

qn
5
q̄〉 and Szz(q) = 〈n2

qn
2
q̄〉, with nq =

∑
j e

iq·rjnj/
√
N . The CP2

skyrmion density distribution ρjkl [see Eq. (16) of the main text] is indicated by the color of
the triangular plaquettes in all three panels.

Figure 6.6: Spectrum of the single-ion model ĤSI = D(Ŝz)2 − hŜz. The shaded region
denotes the effective regime with a quasi-degenerate doublet: {|0〉, |1〉}.
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long-wavelength limit [94]:

Heff '
∫

dr2

[
−J

η
1

2
∂añ

η · ∂añη +
J η

2

2

(
∇2ñη

)2 − B̃ñz + D̃ñ2
z

]
, (6.13)

where η = x, y, z denotes the three components of the unit vector field ñ (|ñ| = 1), and

J η
1 =

3s2

2
(J̃1 + 3J̃2)[1 + (∆̃− 1)δηz],

J η
2 =

3s2

32
(J̃1 + 9J̃2)[1 + (∆̃− 1)δηz]

B̃ = sh̃, D̃ = 3s2(∆̃− 1)(J̃1 + J̃2), (6.14)

with s = 1/2. Although the target manifold of this theory is CP1 (orbit of SU(2) coherent

states that belong S0), we must keep in mind that Ĥeff describes the large D/|J1| limit where

the CP2 skyrmions of the original spin-1 model become asymptotically close to CP1 pseudo-

spin skyrmions. In other words, the SkXs include a finite |1̄〉 component for finite D/|J1|,

which increases upon decreasing D. This component, which only appears in the low-energy

model when second order corrections in Jij are included, is responsible for the metamagnetic

transition between the MVS-I and MVS-II phases (the transition disappears in the D →∞

limit).

Since Ĥeff(h) and Ĥeff(−h) are related by a pseudo-time-reversal (PTR) transformation

(ŝj → −ŝj on the lattice and ñ→ −ñ in the continuum) their corresponding ground states

are related by the same transformation. In particular, the ground state (ñ = ẑ) that is

obtained above the saturation field (B̃ > B̃sat) corresponds to the FP state (〈Ŝj〉 = ẑ) in

the original spin-1 variables, while the ground state (ñ = −ẑ) below the negative saturation

field (B̃ < −B̃sat) corresponds to the QPM phase (|Zj〉 = |0〉j). Correspondingly, the

SkX induced by a positive h has pseudo-spins polarized along the quadrupolar direction

(|0〉) near the core of the skyrmions and parallel to the dipolar one (|1〉) at the midpoints

between two cores. This explains the origin of the SkX-II crystals depicted in Fig. 6.2 b. The

negative B counterpart of this phase, which is obtained by applying the PTR transformation,

corresponds to the SkX-I crystal shown in Fig. 6.2a. In this case the skyrmion cores are

magnetic, while the midpoints are practically quadrupolar (they become purely quadrupolar
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in the large D/|J1| limit). This simple reasoning explains the origin of the novel SkX phases

included in the T = 0 phase diagram ofH shown in Fig. 6.1. The intermediate phase between

the SkX-I and SkX-II ground state of H induced by positive and negative values of h is a

single-Q spiral with a polarization plane parallel to the c-axis, known as vertical spiral (VS).

This explains the origin of the MVS-I and MVS-II phases in between the two SkX phases

(the first order transition between both phases disappears in the large-D limit [92]).

Single-skyrmion solutions. Besides the SkX phases shown in Fig. 6.7, the effective field

theory (6.13) is known to support metastable CP1 single-skyrmion solutions beyond the

saturation fields |B̃| > B̃sat. The pseudo-spin variable is anti-parallel to the external field at

the core, and it gradually rotates towards the direction parallel to the field upon moving away

from the center. Interestingly, this pseudo-spin texture translates into metastable single-

skyrmion solutions of the QPM phase that have a magnetic core and a nematic periphery,

as it is shown in Figs. 6.7a and b for different sets of Hamiltonian parameters. The CP2

skyrmions are metastable solutions in the QPM phase for D & 14, implying that these exotic

magnetic-nematic textures should emerge in real magnets under quite general conditions.

Similarly, the metastable pseudo-spin single-skyrmion solutions of the FP phase (B̃ >

B̃sat) lead to a spin texture with a nematic (non-magnetic) core and a magnetic (FP)

periphery, like the one shown in Fig. 6.7c. Interestingly, this exotic CP2 skyrmion solution

remains metastable down to D ' 4|J1|, and it coexists with regular (CP1) metastable

skyrmion solutions, like the one shown Fig. 6.7d, which emerge below D ' 4.25|J1|.

6.6 Discussion

In summary, we have demonstrated that CP2 skyrmion textures emerge in realistic models of

hexagonal magnets out of the combination of geometric frustration with competing exchange

and single-ion anisotropies. It is important to note that the skyrmion crystals and metastable

solutions reported in this work survive in the long wavelength limit [94], implying that

the above described CP2 skyrmion phases should also exist in extensions of the model to

honeycomb and Kagome lattice geometries. The generic spin-1 model considered in this

work describes a series of triangular antiferromagnets in the form of ABX3, BX2, and
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Figure 6.7: Dipolar sector of CP2 skyrmions. The color scale indicates the value of n2
j

(〈Ŝzj 〉). a, b Skyrmion excitation on top of a QPM background. c, d Skyrmion excitation

on top of a fully polarized background. J2/|J1| = 2/(1 +
√

5) and ∆ = 2.6 in (a), (c), and
(d). J2/|J1| = 2/(3 +

√
5) and ∆ = 2.2 in b. In these panels, a. D = 17.1|J1|, H = 13|J1|.

b. D = 18.3|J1|, H = 14|J1|. c. D = 7|J1|, H = 5|J1|. d. D = 4|J1|, H = 2|J1|.
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ABO2 [42, 102, 32], where A is a an alkali metal, B is a transition metal, and X is a

halogen atom. Several Ni-based compounds, including NiGa2S4 [112], Ba3NiSb2O9 [37],

Na2BaNi(PO4)2 [93], are also found to be realizations of spin-1 models on TLs. Some of

these compounds have been already identified as candidates to host crystals of CP1 magnetic

skyrmions that are stabilized by the combination of frustration and exchange anisotropy [8].

Others, such as FeI2 [17, 91], are described by the the Hamiltonian (6.1), but the sign of

the single-ion and exchange anisotropies is opposite to the case of interest in this work.

Related compounds, such as CsFeCl3, are known to be quantum paramagnets described by

the Hamiltonian (6.1) [85] with a dominant easy-plane single-ion anisotropy D/J1 ' 10.

An alternative route to find realizations of our spin-1 Hamiltonian is to consider hexagonal

materials comprising 4f magnetic ions with a singlet single-ion ground state and an excited

Ising-like doublet (the effective easy-plane single-ion anisotropy D is equal to the singlet-

doublet gap). Ultracold atoms are also powerful platforms to realize spin-1 models with

tunable single-ion anisotropy [41].

Our results demonstrate that magnetic field induced CP2 skyrmion crystals should emerge

in the presence of a dominant single-ion easy-plane anisotropy D that is strong enough to

stabilize a QPM at T = 0. In terms of SU(3) spins, the single-ion anisotropy acts as

an external SU(3) field that couples linearly to one component (T̂ 8
j ) of the quadrupolar

moment. Correspondingly, the QPM can be regarded as a uniform quadrupolar state induced

by a strong enough T̂ 8
j component of the SU(3) field. The field-induced quantum phase

transition between this uniform quadrupolar state and the skyrmion crystals is presaged by

the emergence of metastable CP2 single-skyrmion solutions consisting of a magnetic skyrmion

core that decays continuously into a quadrupolar periphery. These novel skyrmions can be

induced by increasing the strength of the magnetic field in the neighborhood of a given

magnetic ion of a frustrated quantum paramagnet with competing exchange and single-ion

anisotropies.
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Chapter 7

Conclusions and outlooks

In this dissertation we have generalized three important notions in the field of quantum

magnetism: (I) classical or Landau-Lifshitz dynamics, (II) spin wave theory, and (III)

magnetic topological solitons, in particular magnetic solitons that may emerge in real

materials. Some approaches, which bear different names in literature, such as the “multi-

flavor” linear spin wave theory [79] or the “bond-operator method” [131], are particular

examples that can now unified through an important observation: there is more than one

way of taking the classical limit for a quantum spin system. By applying these generalized

tools and concepts to realistic finite-spin (S ≥ 1) systems, we have uncovered a number

of physical phenomena that cannot be captured with the traditional approaches: the

temperature evolution of a coherent mode in a spin-1 magnet; the existence of multi-magnon

bound states; the spontaneous/field-induced decay of quasi-particles of mixed dipolar and

quarupolar characters; and the emergence of the unconventional CP2 skyrmions. These

examples illustrate the important point that systems that are well-described by a generalized

semi-classical approach can still exhibit unconventional behaviors that are rooted in the

quantum mechanical origin of spin degrees of freedom.

The first step of solving the dynamics of a quantum spin system is to choose an adequate

Lie algebra to describe the problem. A given spin Hamiltonian can be expressed as a function

of generators of different Lie algebras [24]. These different representations should in principle

lead to the same exact solution. However, except for very particular cases, it is impossible

to solve the problem posed by an interacting quantum spin system without making any
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approximation. As a result, the “optimal choice” of the representation should lead to a

classical or “mean-field” state that best captures the qualitative properties of the system

under consideration.

We note that similar arguments hold for other topics in condensed matter physics. For

instance, in the plasmon theory of the interacting electron gas [4], one can predict the

RPA free energy by including the leading order fluctuations in the mean-field value of the

(bosonic) auxiliary Hubbard-Stratonovich field, which, in the canonical formalism, would

require the summation of a subset of ring diagrams to infinite order. Another example can

be found in the mean-field BCS Hamiltonian, which explains the superconducting transition

temperature for conventional superconductors [4]. This model was obtained by performing a

mean-field decoupling on the full BCS Hamiltonian by introducing the order parameter (that

corresponds to the creation/annihilation of Cooper pairs) and assuming the order parameter

is static [20].

Returning to the problem of spin dynamics, we first choose a representation (Lie group)

and express the spin Hamiltonian as a function the generators of the corresponding Lie

algebra. We then make the “classical” approximation by replacing the quantum spin

Hamiltonian with its expectation value for a coherent states of the Lie group. Here we

have used two realistic spin systems to illustrate how the coherent states of SU(2S + 1)

better estimate the ground state energy and the excitations of a quantum spin-S system with

large single-ion anisotropy. In Ch. 2, we briefly sketched the necessity of using the SU(N)

representation for another large class of spin systems comprising weakly coupled multi-spin

units (e.g., weakly coupled spin dimers, trimers, or quadrumers) [131, 116, 46]. We saw

that the classical Hamiltonian based on SU(4) coherent states, i.e., the states that span the

local Hilbert space of a spin-1/2 single bond unit, provides an adequate classical limit for

treating such quantum spin systems. The classical approximations made in this dissertation

can only account for very short-ranged quantum entanglement, such as the singlet character

of the ground state of an antiferromagnetic Heisenberg model for a single dimer system. It

is interesting to ask if an even more general “classical” approach based on groups, which are

not necessarily Lie groups, can account for the highly entangled nature of the ground states

of certain spin systems.
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In Ch. 6 and Ref. [168], we reported the emergence of CP2 skyrmions and skyrmion

crystals in a realistic spin-1 model. An important conclusion that can be drawn from our

study, as compared to other proposals to realize CP2 skyrmions in quantum magnets [3, 5],

is that the spin-1 Hamiltonian does not need to be SU(3) invariant. A result from homotopy

theory, that π2(CP2) = Z, was one of the most important motivations that led to the

discussions presented in Ch. 6. Here CP2 ' SU(3)/[SU(2) × U(1)] is the manifold of the

SU(3) coherent states in the fundamental representation (see Ch. 2). Given that the (target)

manifold of SU(3) coherent states depends on the representation, we may also ask if new types

of topological solitons can emerge in real materials by working with other representations of

SU(3). Indeed, as it has been explored recently in a series of studies [150, 7, 143], the flag

manifold SU(3)/[U(1)×U(1)], which corresponds to the first non-degenerate representation

of SU(3) [62], supports an exotic type of topological solitons with two charge labels, given by

π2(SU(3)/[U(1)×U(1)]) = Z× Z. However, as in Refs. [3, 5], the starting point of all these

studies is an SU(3) invariant Hamiltonian, which can be challenging to realize in magnetic

systems. We are instead interested in exploring the possibility of finding physically realizable

spin Hamiltonians that support these new types of topological solitons.

In Ch. 6, we also showed that the CP2 SkXs, which emerged from Eq. (6.1) in the large-

D limit, are reminiscent of the field-induced CP1 SkXs reported in Ref. [92], although the

relevant doublet leading to the SkXs in our study is the non-magnetic state |Sz = 0〉 and

the “spin-up” state |Sz = 1〉. On the other hand, it is also worth reinvestigating the spin-1

model that gives rise to the field-induced CP1 SkX phases because they were obtained using

the traditional SU(2) representation in Ref. [92], whereas the SU(3) approach is obviously

more appropriate.

Another thrilling aspect of a topologically non-trivial spin texture (e.g., a SkX) is that it

may be relevant to our understanding of the spontaneous topological Hall effect in itinerant

electron systems. As it was pointed out in Ref. [171], the “real-space Berry curvature”

(emergent gauge field) acting on itinerant electrons can have two sources: the non-trivial

topological texture of localized (dipolar) spin fields, or spin-orbit coupling. The resulting

Berry curvature provides an unified explanation for the spontaneous topological Hall effect

observed in systems with various (non-collinear/collinear) (dipolar) spin structures. Based
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on the results presented in this dissertation, we can begin asking questions about the

consequences of the Berry curvature generated by more general multipolar fields, as in the

case of CP2 SkXs, where we found smooth topological textures in which the dipolar field is

continuously transformed into a quadrupolar field. Finally, it is also interesting to study the

spin dynamics of CP2 skyrmions and their interactions with external currents and applied

magnetic and strain fields. In contrast to spin wave excitations, skyrmions usually move

very slowly and have a long lifetime, owing to the fact that discontinuous changes in spin

configurations have large energy costs [135]. Langevin dynamics (also known as stochastic

Landau-Lishitz-Gilbert dynamics) offer an approach that allows description of the motion

of skyrmion systems that are in contact with a thermal bath (see Ref. [111] for a complete

discussion in the context of the (CP1) magnetic skyrmion dynamics). It consists of the

LLD discussed in this dissertation with the addition of damping and noise terms that mimic

the effect of a thermal bath. Like the SU(N) generalization of the LLD, it also necessary

to generalize the traditional Langevin dynamics in order to describe the motion of CPN−1

skyrmions.
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antiferromagnets. Can. J. Phys., 75(9):605–655.

[43] Colpa, J. (1978). Diagonalization of the quadratic boson hamiltonian. Physica A:

Statistical Mechanics and its Applications, 93(3):327–353.

[44] Cornwell, J. (1997). Group Theory in Physics: An Introduction. ISSN. Elsevier Science.

135



[45] D’Adda, A., Luscher, M., and Di Vecchia, P. (1978). A 1/n Expandable Series of

Nonlinear Sigma Models with Instantons. Nucl. Phys. B, 146:63–76.

[46] Dahlbom, D., Zhang, H., Miles, C., Bai, X., Batista, C. D., and Barros, K. (2022).

Geometric integration of classical spin dynamics via a mean-field schrödinger equation.

[47] Din, A. M. and Zakrzewski, W. (1980). General classical solutions in the cpn−1 model.

Nuclear Physics, 174:397–406.

[48] Do, S.-H., Zhang, H., Williams, T. J., Hong, T., Garlea, V. O., Rodriguez-Rivera,

J. A., Jang, T.-H., Cheong, S.-W., Park, J.-H., Batista, C. D., and Christianson, A. D.

(2021). Decay and renormalization of a longitudinal mode in a quasi-two-dimensional

antiferromagnet. Nature Communications, 12(1):5331.

[49] Dzyaloshinsky, I. (1958). A thermodynamic theory of weak ferromagnetism of

antiferromagnetics. J. Phys. Chem. Solids, 4:241.

[50] Ferreira, L. A. and Klimas, P. (2010). Exact vortex solutions in a cpnskyrme-faddeev

type model. Journal of High Energy Physics, 2010(10):8.

[51] Fert, A., Reyren, N., and Cros, V. (2017). Magnetic skyrmions: advances in physics

and potential applications. Nature Reviews Materials, 2(7):17031.

[52] Friedt, J., Sanchez, J., and Shenoy, G. (1976). Electronic and magnetic properties of

metal diiodides mi2 (m= v, cr, mn, fe, co, ni, and cd) from 129i mössbauer spectroscopy.

The Journal of Chemical Physics, 65(12):5093–5102.
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on a breathing kagomé lattice. Nature Communications, 10(1):5831.

[71] Holstein, T. and Primakoff, H. (1940). Field dependence of the intrinsic domain

magnetization of a ferromagnet. Phys. Rev., 58:1098–1113.

[72] Hong, T., Qiu, Y., Matsumoto, M., Tennant, D. A., Coester, K., Schmidt, K. P.,

Awwadi, F. F., Turnbull, M. M., Agrawal, H., and Chernyshev, A. L. (2017). Field

induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion

in a quantum antiferromagnet. Nature Communications, 8(1):15148.

[73] Hoogerbeets, R., Duyneveldt, A. J. v., Phaff, A. C., Swuste, C. H. W., and Jonge, W. J.

M. d. (1984). Evidence for magnon bound-state excitations in the quantum chain system

(C6H11N3)CuCl3. J. Phys. C: Solid State Phys., 17(14):2595–2608.

[74] Hubbard, J. (1963). Electron correlations in narrow energy bands. Proceedings of the

Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238–

257.

[75] Huberman, T., Tennant, D. A., Cowley, R. A., Coldea, R., and Frost, C. D. (2008).

A study of the quantum classical crossover in the spin dynamics of the 2ds= 5/2

antiferromagnet rb2mnf4: neutron scattering, computer simulations and analytic theories.

Journal of Statistical Mechanics: Theory and Experiment, 2008(05):P05017.

[76] Jain, A., Krautloher, M., Porras, J., Ryu, G. H., Chen, D. P., Abernathy, D. L., Park,

J. T., Ivanov, A., Chaloupka, J., Khaliullin, G., Keimer, B., and Kim, B. J. (2017). Higgs

mode and its decay in a two dimensional antiferromagnet. Nat. Phys., 13:633–637.

[77] Johnson, S. G. (2011). The NLopt nonlinear-optimization package,

http://github.com/stevengj/nlopt.

138



[78] Kanamori, J. (1957). Theory of the magnetic properties of ferrous and cobaltous oxides,

ii. Progress of Theoretical Physics, 17(2):197–222.

[79] Kim, F. H., Penc, K., Nataf, P., and Mila, F. (2017). Linear flavor-wave theory for fully

antisymmetric su(n) irreducible representations. Phys. Rev. B, 96:205142.

[80] Klauder, J. and Skagerstam, B. (1985). Coherent States: Applications in Physics and

Mathematical Physics. World Scientific.

[81] Kohama, Y., Sologubenko, A. V., Dilley, N. R., Zapf, V. S., Jaime, M., Mydosh, J. A.,

Paduan-Filho, A., Al-Hassanieh, K. A., Sengupta, P., Gangadharaiah, S., Chernyshev,

A. L., and Batista, C. D. (2011). Thermal transport and strong mass renormalization in

nicl2−4SC(nh2)2. Phys. Rev. Lett., 106:037203.

[82] Kramers, H. (1934). L’interaction entre les atomes magnétogènes dans un cristal
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A Representation of SU(3)

In this appendix, we present some discussions about the representation of SU(3).

A.1 Fundamental representation

In Gell-Mann’s quark model, he introduced eight 3 × 3 traceless and Hermitian matrices

as the generators of su(3) in the fundamental representation [the [1, 0]-representation, see

Eq. (2.10)]:

λ̂1 =


0 1 0

1 0 0

0 0 0

 , λ̂2 =


0 −i 0

i 0 0

0 0 0

 , λ̂3 =


1 0 0

0 −1 0

0 0 0

 ,

λ̂4 =


0 0 1

0 0 0

1 0 0

 , λ̂5 =


0 0 −i

0 0 0

i 0 0

 , λ̂6 =


0 0 0

0 0 1

0 1 0

 ,

λ̂7 =


0 0 0

0 0 −i

0 i 0

 , λ̂8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

The eight matrices, which formed a basis for the quark model, are direct generalizations of

the Pauli matrices of su(2). Note that the Gell-Mann matrices are written in the basis of

eigenstates of Ŝz of S = 1: {|+ 1〉, |−1〉, |0〉}. In this dissertation, to make connections with

realistic spin Hamiltonians, we consider a change of basis and write the eight generators in
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terms of SU(2) spin operators in the S = 1 representation:


T̂ 7

T̂ 5

T̂ 2

 =


−Ŝx

−Ŝy

−Ŝz

 ,



T̂ 3

T̂ 8

T̂ 1

T̂ 4

T̂ 6


=



−
(
Ŝx
)2

+
(
Ŝy
)2

1√
3

[
3
(
Ŝz
)2

− Ŝ2

]
ŜxŜy + ŜyŜx

−ŜzŜx − ŜxŜz

ŜyŜz + ŜzŜy


(1)

These generators satisfy the commutation relation:

[T̂ µ, T̂ ν ] = ifµνηT̂
η, (2)

where the structure constants are related to the Gell-Mann matrices through

fηµν = − i
2

Tr
(
λ̂η

[
λ̂µ, λ̂ν

])
. (3)

Interestingly, in the Cartesian basis

∣∣x1
〉

=
i√
2

(|+ 1〉 − | − 1〉),
∣∣x2
〉

=
1√
2

(|+ 1〉+ | − 1〉),
∣∣x3
〉

= −i|0〉, (4)

the SU(3) generators given in Eq. (1), T̂ µj , are again represented by the Gell-Mann matrices:

T̂ µ =
(
λ̂µ

)
ab

∣∣xa〉〈xb∣∣ µ = 1, 2, · · · , 8. (5)

A.2 Adjoint representation

The adjoint representation of a Lie algebra is a linear map from the Lie algebra to itself:

adX(Y ) : g→ g, X, Y ∈ g:

adT̂µ(T̂ ν) ≡ [T̂ µ, T̂ ν ] = ifµνηT̂
η. (6)
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Since the underlying vector space of representation is the Lie algebra itself, the dimension

of the adjoint representation is equal to the dimension of the Lie algebra. In particular, the

dimension of the adjoint representation of su(3) is 32−1 = 8, which has the same dimension

as the [1, 1]-representation [see Eq. (2.10)]. The matrix form of the µ-th generator is written

as

[adT̂µ ]ην = ifµνη, µ, ν, η = 1 · · · 8. (7)

In summary, there are in total eight 8× 8 matrices in the adjoint representation of su(3).
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B Symplectic structure on the manifold of coherent

states

In this appendix, we will illustrate that the manifold of coherent states possesses a natural

symplectic structure, which can be used to define the classical equations of motion, i.e.

the Poisson bracket. To achieve this goal, we will first review some basic concepts from

differential geometry. Then we will apply these concepts to the manifold of coherent states

of the Heisenberg-Weyl group and SU(N). The discussions presented here can be sketchy

for some mathematical-oriented readers. We guide those readers to refer to textbooks for

differential geometry [69, 89], the standard textbook for mathematical methods in classical

mechanics [12], and these research articles [159, 58, 62].

B.1 Some concepts from differential geometry

Manifold. Here we skip the formal definition of a manifold by saying that a manifold is a

topological space (a set of points, along with a set of neighborhoods for each point, satisfying

a set of axioms relating points and neighborhoods) that resembles (so-called homeomorphic

to) Euclidean space near each point. Examples of manifold include a plane, a sphere, a torus,

etc. A general manifold may have addition structures. For example, a Riemannian metric

on a manifold allows distances and angles to be defined. As another example, a symplectic

manifold with a symplectic structure serve as the phase spaces in the Hamiltonian formalism

of classical mechanics, which is discussed in the next subsection of this appendix.

1-forms. Consider the Euclidean space Rn. Let v ∈ Rn be a vector in this space. A

one-form is a linear map ω: Rn → R, such that:

ω(a1v1 + a2v2) = a1ω(v1) + a2ω(v2), ∀ a1,2 ∈ R, ∀ v1,2 ∈ Rn. (8)

Note that the space of 1-forms on Rn is itself n-dimensional, which is called the dual space

[Rn]∗. In differential geometry, the basis of Rn is denoted with the subscript {ei}, whereas

that of the dual [Rn]∗ is denoted with the superscript {ej} with ej(ei) = δji ∈ R, i.e. ej acting

on ei gives us the Kronecker delta. [Warning: We distinguish the subscript/superscript only
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in this appendix of this dissertation. In other chapters, we use subscripts/superscripts freely.

This is because: 1. The dual space of Rn is itself. 2. In most cases, we work with a fixed

basis of a vector space. 3. We are lazy.] Now we consider a concrete example of 1-form.

Let u = uie
i ∈ [Rn]∗ and v = viei ∈ Rn [vi (contravariant) and ui (covariant) is called the

component of the vector with respect to the basis vector ei and ej, respectively]. Now let us

act u on v:

u(v) = uie
i(vjej) = uiv

jei(ej) = uiv
jδij = ujv

j. (9)

If we identify u as a force in R3 (more precisely [R3]∗), its work on the displacement v is a

1-form acting on v.

Differential 1-forms. Consider a differentiable function f that maps elements of an n-

dimensional manifold M to R: f(v) ∈ R, ∀ v ∈ M. Note that f is not necessarily a

1-form (see an example below). However, we claim that the differentiation of f at v, df(v):

T (Mv) → R, is a 1-form, where T (Mv) is the tangent space of M at v, which is also

n-dimensional and locally like Rn. To see this, let us notice that the differentiation of a

function at v is written as

df(v) =
∂f

∂vi
dvi. (10)

Given a fixed point v ∈ M, we have the information of ∂f
∂vi

. As a result, we can identify

the set { ∂f
∂vi
} as the basis of the tangent vectors and dvi as the components. Therefore, we

call df(v) a differential 1-form, because it satisfies the definition of a 1-form. Finally, the

differential 1-forms also form the dual space [T (Mv)]
∗, and is called the cotangent space at

v. As an example, consider a function f defined on R2:

f(x, y) = x2 + y2. (11)

Apparently, f is not a 1-form because it is not a linear function. But at a particular point in

R2, for instance (x, y) = (1, 1), df = 2dx+2dy is a 1-form because it is now a linear function.

Consider if (dx, dy) = (2, 1), then df = 6, and if (dx, dy) = (3, 2), then df = 10.

Bilinear maps. The motivation to define the bilinear map is to introduce the concept of

tensors. A map ω: Rn × Rn → R is called a bilinear map, if it is linear on each slot, i.e.
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∀ vi ∈ Rn, ai ∈ R:

ω(a1v1 + a2v2,v3) = a1ω(v1,v2) + a2ω(v2,v3)

ω(v1, a1v2 + a2v3) = a1ω(v1,v2) + a2ω(v2,v3). (12)

Tensor products. The tensor product of two 1-forms ω1 and ω2 is defined as the bilinear

map ω1 ⊗ ω2 such that

(ω1 ⊗ ω2)(v1,v2) = ω1(v1)ω2(v2). (13)

In the component form, we have ω1 = (ω1)ie
i, ω2 = (ω2)je

j, and let v1 = 1ek and v2 = 1el:

(ω1 ⊗ ω2)(v1,v2) = ω1(v1) + ω2(v2)

= (ω1)ie
i(ek)(ω2)je

j(el)

= (ω1)iδ
i
k(ω2)jδ

j
l

= (ω1)k(ω2)l. (14)

Inner product and metric tensor. The inner product g(v1,v2) is a bilinear map with the

following additional properties:

• g(v1,v2) = g(v2,v1),

• g(v,v) ≥ 0, ∀ v,

• g(v,v) = 0 if and only if v = 0.

Notice that the inner product can be viewed as a generalization of a dot product [a 1-form,

see Eq. (9)], if we define

ui = giju
j. (15)

The dot product is then written as

uivj = giju
ivj, (16)
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where for this particular case, gij = δij. Furthermore, note that the action of the inner

product gives the square of the norm of a vector g(v,v) = |v|2. Therefore, the inner

product g is called a metric tensor and the “component” gij is called a metric. The inner

product can also act on the product space of the tangent space of a manifold M at v:

T (Mv) × T (Mv) → R, which gives us the infinitesimal distance on the manifold. For

example, in the spherical coordinates of R3

ds2 = dr ⊗ dr + rdθ ⊗ dθ + r2 sin2 θdφ⊗ dφ, (17)

where the metric is written as

gij =


1 0 0

0 r2 0

0 0 r2 sin2 θ

 (18)

in the basis of (dr, dθ, dφ)T .

2-forms. A 2-form is a map ω : Rn × Rn → Rn, which is bilinear and antisymmetric:

ω2(a1v1 + a2v2,v3) = a1ω(v1,v)

ω2(v1,v2) = −ω(v2,v1)

∀ a1,2 ∈ R, v1,2,3 ∈ Rn. (19)

Note that a 2-form is the exterior (wedge) product of two 1-forms: ω2 = ω1 ∧ ω2, where the

exterior product is defined as

ω1 ∧ ω2 ≡ ω1 ⊗ ω2 − ω2 ⊗ ω1, (20)

satisfying ω1 ∧ ω2 = −ω2 ∧ ω1, and ω ∧ ω = 0. The exterior product is closely related to the

cross product in R3. Consider the exterior product of two 1-forms:

u = uie
i, v = vje

j, i = 1, . . . 3. (21)
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u ∧ v = (u1v2 − u2v1)e1 ∧ e2 + (u2v3 − u3v2)(e2 ∧ e3) + (u3v1 − u1v3)(e3 ∧ e1). (22)

The coefficients in the basis {e1 ∧ e2, e2 ∧ e3, e3 ∧ e1} of the exterior space ∧2[R3] are the

same as those of the cross product of two vectors. However, it is important to notice that

the exterior is a bi-vector, instead of a vector as the case of the cross product. Based on the

definition Eq. (20), the value of a 2-form ω = ω1 ∧ ω2 on two vectors in Rn is given by

ω1 ∧ ω2(v1,v2) =

∣∣∣∣∣∣ω1(v1) ω2(v1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣ . (23)

Let us view ω1,2 as the coordinate functions along the ω1,2 axes. This leads to the geometric

interpretation of a 2-form: it is the oriented area of the image of the parallelogram with

sides ω(v1) and ω(v2) on the ω1-ω2 plane [12]. In general, the value of a k-form acting on k

vectors is given by

ω1 ∧ ω2 . . . ∧ ωk(v1,v2, . . . ,vk) =

∣∣∣∣∣∣∣∣∣
ω1(v1) . . . ωk(v1)

...
...

ω1(vk) . . . ωk(vk).

∣∣∣∣∣∣∣∣∣ (24)

A differential 2-form is a two-form: T (Mv)×T (Mv)→ R, where T (Mv) is the tangent

space of a manifold at v ∈M. Consider two differential 1-form on R2

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2

dg =
∂g

∂x1
dx1 +

∂g

∂x2
dx2. (25)
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Their exterior product leads to a differential 2-form:

(df ∧ dg) = (
∂f

∂x1
dx1 +

∂f

∂x2
dx2) ∧ (

∂g

∂x1
dx1 +

∂g

∂x2
dx2)

= (
∂f

∂x1

∂g

∂x1
dx1 ∧ dx1) + (

∂f

∂x2

∂g

∂x2
dx2 ∧ dx2)

+ (
∂f

∂x1

∂g

∂x2
dx1 ∧ dx2) + (

∂f

∂x2

∂g

∂x1
dx2 ∧ dx1)

= (
∂f

∂x1

∂g

∂x2
− ∂f

∂x2

∂g

∂x1
)dx1 ∧ dx2

= J (f, g;x)dx1 ∧ dx2, (26)

where J (f, g;x) is the Jacobian determinant. If we treat f and g as some non-linear

maps: R2 → R2, the value of the differential 2-form gives the oriented area of a distorted

parallelogram, whose sides are the images of the maps.

Exterior derivatives and integrations of differential forms. Consider a differential k-form

ωk on the manifold M

ωk = ai1,i2,...,ikdx
ii ∧ dxi2 . . . ∧ dxik . (27)

The exterior derivative of ωk is a k + 1 form [12]:

dωk = dai1,i2,...,ik ∧ dxii ∧ dxi2 . . . ∧ dxik . (28)

Note that dωk generalizes the concepts of a curl operator, a divergence operator, etc. Recall

that the curl of a vector field is introduced when considering the integration of the vector

field along a closed loop, whose value is equal to the integration of the curl of the vector field

over the surface enclosed by the loop, known as the Stokes theorem. Whereas the divergence

of a vector field is introduced when considering the integration of the vector field over a

closed surface, whose value is equal to the integration of the divergence of the vector field

over the volume enclosed by the surface, known as the Gauss theorem. Similarly, dωk and

ωk are related to each other through the generalized Stokes theorem:

∫
∂Σ

ωk =

∫
Σ

dωk, (29)
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where Σ is called a k+1 chain on the manifoldM [12]. Finally, we provide a proof for Eq. (28)

by considering a 1-form ω = a(x1, x2)dx1 on the R2-plane, which is the tangent space of some

manifold M. Let us compute the loop integral of ω(v(t)), where v(t) ∈ R2, and t ∈ [0, 1] is

a continuous “time” variable such that v(0) = v(1). Without loss of generality, we choose

the loop to be a parallelogram with sides η and χ. The loop integral is given by

I(η,χ) =

∫ 1

0

dt
{

[a(ηt)− a(ηt+ χ)] dx1(η)− [a(χt)− a(χt+ η)]dx1(χ)
}

=

∫ 1

0

dt
{

[a(ηt)− a(ηt+ χ)] η1 − [a(χt)− a(χt+ η)]χ1
}
, (30)

where η1 and χ1 are the components of η and χ, respectively. At the same time,

a(ηt+ χ)− a(ηt) =
∂a

∂x1
χ1 +

∂a

∂x2
χ2 +O[η2,χ2], (31)

and

a(χt+ η)− a(χt) =
∂a

∂x1
η1 +

∂a

∂x2
η2 +O[η2,χ2]. (32)

As a result,

I(η,χ) =

∫
∂Σ

ω =
∂a

∂x2
(χ1η2 − χ2η1) +O[η2,χ2]. (33)

By using Eq. (28), we have

dω = da(x1, x2) ∧ dx1

=

(
∂a

∂x1
dx1 +

∂a

∂x2
dx2

)
∧ dx1

=
∂a

∂x1
dx1 ∧ dx1 +

∂a

∂x2
dx2 ∧ dx2

=
∂a

∂x2
dx2 ∧ dx1. (34)

The corresponding integral dω(η,χ) over the oriented surface enclosed by η and χ is then

given by ∫
Σ

dω =

∫
Σ

∂a

∂x2
dx2 ∧ dx1(η,χ) =

∂a

∂x2
(χ1η2 − χ2η1) +O[η2,χ2]. (35)

This concludes the proof for Eq. (28).
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B.2 Classical phase space

Classical mechanics for point particles

In the Hamiltonian formalism of the classical mechanics, the state of an n-particle system

lives in a 2n-dimensional phase space (a manifoldM2n) with coordinates q = (q1, q2, . . . , qn)

(canonical positions) and p = (p1, p2, . . . , pn) (canonical momenta). A function f(q,p)

defined on the classical phase space is a mapM2n → R. If f has no explicit time dependence,

its time evolution is dictated by the Hamiltonian equation of motion

df(q,p)

dt
=
∑
i

(
∂f

∂qi
∂h

∂pi
− ∂f

∂pi
∂h

∂qi

)
≡ {f(p, q), h(p, q)}PB, (36)

where h(p, q) is the classical Hamiltonian function of the system and {·, ·} is the so-called

Poisson bracket. Based on the discussions in the previous section, given a particular point

v0 = (q0,p0) in phase space, df and dh are differential 1-forms acting on T (M2n
v0

), i.e. the

tangent space of M2n at v0. Correspondingly, ∂f(h)/∂q(p)i ∈ T (M2n
v0

) are tangent vectors

at v0. The Poisson bracket in Eq. (36), which is antisymmetric, can then be viewed as the

action of a differential 2-form on T (M2n
v0

)⊗ T (M2n
v0

), where the 2-form is written as

ω = ωijdq
i ∧ dpj, ωij = δij. (37)

Note that the differential 2-form given in Eq. (37) satisfies the following properties: 1. The

exterior derivative [see Eq. (28) for definition] dω = dδij ∧ dqi ∧ dpj = 0. The form ω is then

called closed because according to the Stokes theorem Eq. (29), the integration of ω over a

closed surface also vanishes. 2. The form is non-degenerate, i.e. if there ∃ v1 ∈ T (M2n
v0

),

ω(v1,v2) = 0, ∀ v2 ∈ T (M2n
v0

), then v1 = 0. A differential 2-form satisfies these two

properties is called symplectic and the manifold with such a 2-form is said to have a symplectic

structure.

Manifold of coherent states

We have seen that the Poisson bracket of point particles is closely related to the symplectic

structure on the classical phase space. Now we will see that the manifold of coherent states
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of a Lie group inherently possesses a symplectic structure, which provides a natural platform

to define the classical mechanics for a general system, e.g. a spin system. (write later, say

about when it is difficult to define the classical limit, then we can use the coherent states)

Consider a Lie group G. The Lie algebra g of G is a vector space. Correspondingly, the

dual vector space g∗ consists of 1-forms of g. The dot product [see Eq. (9)] defines the action

of 1-forms on the vectors

〈u, v〉 ≡ uiv
i, u ∈ g∗, v ∈ g, (38)

where ui and vi are the components of the 1-form and vectors, respectively. To discuss the

coherent states, we first fix the representation for G. One natural choice for the space of

representation [see Chapter 2.1] is the Lie algebra g, known as the adjoint representation.

The representation is given by

Adg(λ) ≡ gλg−1, g ∈ G, λ ∈ g. (39)

Correspondingly, the adjoint representation of a Lie algebra element [see the example for

su(3) in Appendix A] is given by

adλ(η) ≡ i[λ, η], η, λ ∈ g (40)

where the above result is obtained by writing g = e−itη in Eq. (39) and taking the derivative

at t = 0 afterwards. This is justified because g consists of tangent vectors of G at the

identity element. In the same way, we introduce the coadjoint representation, whose space

of representation is g∗ with Ad∗g = [Adg−1 ]∗. It is defined such that the structure of the dot

product is preserved

〈Ad∗gu,Adgv〉 = 〈u,Adg−1Adgv〉 = 〈u, v〉. (41)

By using Kirillov’s orbit method [cite], the coadjoint orbit Γ is generated by the action of

Ad∗g to a reference element u0 ∈ g∗:

Γ = {Ad∗gu0 | g ∈ G/H}, (42)
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where H is the isotropic subgroup such that ∀ h ∈ H, Ad∗hu0 = u0. Note that Γ is indeed

the manifold of coherent states, where a coherent state is now associated with a point on Γ.

Based on Eq. (39), the tangent space of Γ at a point u is a subspace of g∗:

T (Γu) = {ũ ∈ g∗ | 〈ũ, w〉 = 〈ad∗vu,w〉

= −〈u, advw〉 = −i〈u, [v, w]〉, for some v ∈ g/hu, w ∈ g}, (43)

where ũ represents the tangent vectors and

hu = {v ∈ g|〈u, [v, w]〉 = 0, u ∈ g∗, and ∀ w ∈ g} (44)

is the Lie algebra of the isotropic group H at u. This tells us that the dot product between

the tangent vector ũ ∈ g∗ and the 1-form w ∈ g is equal to some commutator of w with

another element v of g/hu. The one-to-one map between ũ and a commutator naturally leads

to a differential 2-form acting on T (Γu)⊗ T (Γu):

ω(ad∗vu, ad∗wu) = 〈u, [v, w]〉 u ∈ g∗, v, w ∈ g/hu, (45)

or in component form ω(ad∗vu, ad∗wu) = iuivjwkc
jk
i , where cjki is the structure constant

of the Lie algebra g. ω is an obvious 2-form because ω(ad∗vu, ad∗wu) = −ω(ad∗wu, ad∗vu).

Furthermore, ω is a symplectic 2-form because: 1. It is closed as ω only depends on the

structure constant of the Lie algebra with dcjki = 0. 2. It is non-degenerate as v, w ∈ g/hu

and Eq. (44) implies that if ω(ad∗vu, ad∗wu) = 0, ∀ ad∗wu ∈ g/hu, then ad∗vu = 0. In summary,

the symplectic structure on the coadjoint orbit (manifold of coherent states) is inherited

from the Lie algebra.

Given the symplectic structure on Γ, we are ready to define the Poisson bracket. Consider

two functions f(η) and g(η) defined on Γ. At a particular point η0 of Γ, the tangent vectors

are [∂f(η)/∂ηi]|η=η0 and [∂g(η)/∂ηi]|η=η0 , and the Poisson bracket is simply the action of the

symplectic form introduced above on the tangent vectors

{f(η), g(η)}PB ≡
∂f(η)

∂ηj
∂g(η)

∂ηk
cjki η

i. (46)
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In chapter 2, we saw that the manifold of coherent states of point particles is the coadjoint

orbit of the Heisenberg-Weyl group H3. The corresponding Lie algebra h3 is spanned by the

generators η1 = q, η2 = p, and η3 = 1, with the commutation relations [η1, η2] = i~δjkη3,

[η1, η3] = [η2, η3] = 0, where we have dropped the “particle” label and assuming they are

identical. Based on Eq. (46), the Poisson bracket is then given By

{f(η), g(η)}PB =

[
∂f

∂η1

∂g

∂η2
− ∂f

∂η2

∂g

∂η1

]
η3, (47)

where the factor ~ is dropped as an overall factor to follow the traditional definition for a

Poisson bracket. We have again recovered Eq. (36) by using the natural symplectic structure

on the coadjoint orbit of H3 inherited from h3.

In general, one can define the classical mechanics on the coadjoint orbit of an arbitrary Lie

group. In this dissertation, we focus on the coadjoint orbit of the group H3 and the SU(N)

group. These two examples of coadjoint orbits fall into the category of the Kähler manifold,

which has a complex structure and Riemannian structure in addition to the symplectic

structure. The symplectic 2-form on a Kähler manifold takes the form

ω = gjkdα
j ∧ dᾱk, (48)

where αj, ᾱk are some complex coordinates and gjk is the metric tensor of the coadjoint

orbit. To see that gjk is indeed a metric tensor, we consider Γ(H3), which is isomorphic to

C with α = q + ip and ᾱ = q − ip. The “distance” between two coherent states on Γ(H3) is

defined as

s(α, α′) = − ln |〈α|α′〉|2, (49)

where the expression of |〈α|α′〉|2 is given in Eq. (2.15). Note that 0 < |〈α|α′〉|2 < 1 implies

that s(α, α′) is positive definite for α 6= α′. Finally, as expected, the “distance” is zero for

α = α′: s(α, α) = − ln〈α|α〉 = − ln 1 = 0. Then by definition and using Eq. (2.15), the

metric tensor is given by

gαα′ =
∂s(α, α′)

∂ᾱ∂α′
= − 1

2~
. (50)
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Consequently,

ω = − 1

2~
dα ∧ dᾱ = − 1

2~
d(q + ip) ∧ d(q − ip) =

i

~
dq ∧ dp, (51)

where we recover the symplectic form for a point particle if we drop the overall factor i/~.

Similarly, for Γ(SU(N)) ∼= CPN−1, the “distance” function is given by

s({αj, ᾱj}) = ln(1 + α1ᾱ1 + . . . αN−1ᾱN−1), (52)

and

gjk =
∂ ln s

∂ᾱj∂αk
(53)

is the so-called Fubini-Study metric of CPN−1. The corresponding Poisson bracket takes the

form

{f, g} = gjk

(
∂f

∂ᾱj
∂g

∂αk
− ∂f

∂αk
∂g

∂ᾱj

)
. (54)
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C Classical to quantum correspondence

In this appendix, we use a square lattice antiferromagnet (SL-AFM) to illustrate the idea of

classical to quantum correspondence for the dynamical spin structure factor S(q, ω). Let us

assume that the SL-AFM is described by the isotropic Heisenberg Hamiltonian

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj, (55)

where J > 0 is the exchange constant for the nearest neighbor pairs 〈i, j〉 of the square

lattice. The system develops a long-range AFM order at T = 0 [see Fig. 1].

To simplify the calculation, with loss of generality, we choose the local quantization axis

to be along the z-axis. This is justified because of the SU(2) invariance of the Heisenberg

model Eq. (55)—the ordered moments pointing to different directions have the degenerate

energy. To further simplify the calculation, we introduce a twisted reference frame, where

the AFM ordering becomes a FM one. This can be done by rotating the spin reference

frame of one of the two sublattices of the square lattice by an angle π along the z direction:

Ŝxr → Ŝxr and Ŝy,zr → −Ŝy,zr . Correspondingly, the Hamiltonian Eq. (55) takes the following

form in the twisted frame

˜̂H =
∑
〈i,j〉

(
Ŝxi Ŝ

x
y − Ŝxi Ŝxy − Ŝzi Ŝzy

)
. (56)

We will first solve the problem quantum mechanically. By using Eq. (4.1) 1, and expand up

to quadratic order in boson operators, we have

H(2) = S
∑
〈i,j〉

[
bibj + b†ib

†
j + b†ibi + b†jbj

]
. (57)

We introduce the Fourier transform on the boson operator

bi =
1√
N

∑
k

eik·rbk, (58)

1Note that ˆ̃Sµ = Ŝµ because we have chosen the quantization axis to be along the z axis
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Figure 1: The AFM order on a square lattice at T = 0
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where N is the number of sites. The quadratic Hamiltonian is then written as

H(2) =
∑
k

[
Akb

†
kbk −

1

2
Bk(b†kb

†
−k + b−kbk)

]
, (59)

where

Ak = 4JS, Bk = −4JSγk, γk =
1

4

∑
δ

eik·δ =
1

2
(cos kx + cos ky) . (60)

H(2) is diagonalized by the standard Bogoliubov transform

bk = ukβk + vkβ
†
−k (61)

under conditions u2
k − v2

k = 1 and

u2
k + v2

k =
Ak√

A2
k −B2

k

, 2ukvk =
Bk√

A2
k −B2

k

. (62)

As a result, the linear spin-wave Hamiltonian takes the following form:

H(0) +H(2) = −2JS(S + 1)N +
∑
k

ωk

(
β†kβk +

1

2

)
, (63)

where the spin-wave dispersion relation is given by

ωk =
√
A2
k −B2

k = 4JS
√

1− γ2
k. (64)

Now we compute the dynamical spin structure factor Sµµ(q, ω) [see Eq. (4.22) for

definition] in the harmonic approximation. The spin operators in the lab reference frame are

related to those in the twisted frame through

Ŝxr → Ŝxr Ŝyr → eiQ·rŜyr Ŝzr → eiQ·rŜzr, (65)
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where Q = (π, π). By following the procedures discussed in Sec. 4.3.4, we have

Sxx(q, ω) = Syy(q, ω) =
S

2
(uq + vq)

2δ(ω − ωq) (66)

Szz(q, ω) = δq,Qδω,0

[
S2 − 2S

1

N

∑
k

v2
k

]
. (67)

Let us now consider the linearized L-L dynamics for the same problem. After taking

classical limit of Eq. (56) based on SU(2) coherent states and using Eq. (2.50), we have

dS̃xi
dt

= J
∑
〈,j〉

(
S̃yi S̃

z
j − S̃zi S̃

y
j

)
dS̃yi
dt

= J
∑
〈,j〉

(
−S̃zi S̃xj − S̃xi S̃zj

)
dS̃zi
dt

= J
∑
〈,j〉

(
S̃xi S̃

y
j + S̃yi S̃

x
j

)
. (68)

We now propose the following mean-field ansatz

S̃µi (t) = 〈S̃µi 〉+ δS̃µi (t). (69)

In the twisted frame, by choosing the quantization axis along the z direction, we have

〈S̃x,yi 〉 = 0, 〈S̃zi 〉 = S. (70)

After plugging Eq. (69) into Eq. (68) and keeping terms to the linear order in δS̃µi , we obtain

the linearized L-L equations

dδS̃xi
dt

= J
∑
〈,j〉

(
δS̃yi 〈S̃zj 〉 − 〈S̃zi 〉δS̃

y
j

)
dδS̃yi
dt

= J
∑
〈,j〉

(
−〈S̃zi 〉δS̃xj − δS̃xi 〈S̃zj 〉

)
dδS̃zi
dt

= 0. (71)
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To make connections with the SWT calculation, we note that the fluctuations δS̃µ are

parameterized by two real independent numbers:

δS̃xi =
√
Sxi δS̃yi =

√
Syi δS̃zi =

√
S2 − S(x2

i + y2
i ) ' S − 1

2
(x2

i + y2
i ), (72)

where we assume that the fluctuations away from the ordered moment are small. By taking

the classical limit and using the mean-field ansatz (69), the Hamiltonian Eq. (56) is written

as

H̃ = H̃LLLD −NS2 = S
∑
〈i,j〉

(zizj + z∗i z
∗
j + z∗i zi + z∗j zj)−NS2, (73)

where zi = 1/
√

2(xi+iyi) and H̃ is the corresponding Hamiltonian of the linearized equations

of motion (71). Notice that HLLLD can be obtained from Ĥ(2) (57) by replacing b̃i (b̃†i ) with

zi (z∗i ). As a result, after the Fourier transform and Bogoliubov transform on the variable

zi(z
∗
i ), we have

HLLLD =
∑
k

ωkz̃
∗
kz̃k, (74)

where ωk is identical to Eq. (64) and

zk = ukz̃k + vkz̃
∗
−k, (75)

where z̃k corresponds to the amplitude of the “normal mode” ωk.

Now we compute the dynamical spin structure factor in the classical limit with the

linearized dynamics. We note that

Sxx(q, ω) = 〈δSxq,ωδSx−q,−ω〉

=
S

2
δ(ω − ωq)(uq + vq)

2

∫
dz̃qdz̃

∗
q(z̃
∗
qz̃q)e

−βH̃LLLD∫
dz̃qdz̃∗qe

−βH̃LLLD

=
S

2
δ(ω − ωq)

1

βωq
(uq + vq)

2 = Syy(q, ω), (76)
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and

Szz(q, ω) = 〈δSxq,ωδSx−q,−ω〉

= δq,0δω,0

(
S2 − 2S

1

N

∑
k

v2
k〈z̃∗kz̃k〉

)

= δq,0δω,0

(
S2 − 2S

1

N

∑
k

v2
k

βωk

)
. (77)

Here we have explicitly demonstrated that the quantum mechanical result for the

transverse spin structure factor (66) at T = 0 can be obtained after multiplying the classical

result (76) by βω. This is the classical to quantum correspondence relation we mentioned in

many places of this dissertation.
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D Miscellaneous calculations for the SU(N) spin wave

theory

D.1 Bogoliubov transformation for boson operators

The quadratic (generalized linear spin wave) Hamiltonian obtained from the 1/M -expansion

[see Eq. (4.9)] takes a general form in terms of the N − 1 uncondensed SBs in momentum

space:

Ĥ(2) =
∑
q

~b†qH(2)(q)~bq, (78)

where ~bq = (b̃q,(m,α), b̃
†
−q,(m,α))

T is a 2Ns/Nu(N − 1)-component vector, and H(2) is a

2Ns/Nu(N − 1) × 2Ns/Nu(N − 1) matrix. The label m goes over the Ns/Nu sublattice

indices whereas α goes over the N−1 uncondensed SBs flavor indices. The above-mentioned

quadratic Hamiltonian is diagonalized by introducing a Bogoliubov transformation on the

bosonic operators~bq = U(q)~βq, where U(q), instead of being unitary for fermionic systems, is

para-unitary to preserve the canonical commutation relations between the bosonic operators

before and after the transformation [43]. The n-th column of the matrix U(q) can be obtained

by solving the following eigenvalue problem

AH(2)(q)Un(q) = εn(q)Un(q), (79)

where

A =

I[Ns/Nu(N−1)]×[Ns/Nu(N−1)] 0

0 −I[Ns/Nu(N−1)]×[Ns/Nu(N−1)]

 . (80)

The matrix AH(2)(q) has Ns/Nu(N − 1) pairs of positive and negative eigenvalues, and the

spin wave energies are given by two times the positive energies ωq,n = 2εq,n > 0:

Ĥ(2) =
∑
k,n

ωk,n

(
β†k,nβk,n +

1

2

)
. (81)
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D.2 Single-particle Green’s function G

By using the Bogoliubov transformation (79), the explicit expression of the single-particle

Green’s function G(0) defined in Eq. (4.33) given as

G(q; iω) =
∑
n

{
gn,−(q)

ωq,n − iω
+

gn,+(q)

ω−q,n + iω

}
, (82)

where

gn,−(q) =

[U11(q)]n ⊗ [U †11(q)]n [U11(q)]n ⊗ [U †21(q)]n

[U21(q)]n ⊗ [U †11(q)]n [U21(q)]n ⊗ [U †21(q)]n

 , (83)

and

gn,+(q) =

[U∗21(q̄)]n ⊗ [U∗21(q̄)]†n [U∗21(q̄)]n ⊗ [U∗11(q̄)]†n

[U∗11(q̄)]n ⊗ [U∗21(q̄)]†n [U∗11(q̄)]n ⊗ [U∗11(q̄)]†n

 . (84)

In the above expressions, we have used the 2 × 2 block matrix notations for U(q) and ⊗

denotes the tensor product between two column vectors.

D.3 Matsubara sum in the continuum channel

The following Matsubara summation results are useful (assuming ξ1, ξ2 > 0)

1

β

∑
ω

1

ξ1 − iω
1

ξ2 − iω
= − 1

ξ2 − ξ1

(
1

e−βξ1 − 1
− 1

e−βξ2 − 1

)
1

β

∑
ω

1

ξ1 + iω

1

ξ2 + iω
= − 1

ξ2 − ξ1

(
1

eβξ1 − 1
− 1

eβξ2 − 1

)
1

β

∑
ω

1

ξ1 + iω

1

ξ2 − iω
= − 1

ξ2 + ξ1

(
1

eβξ1 − 1
+

1

e−βξ2 − 1

)
. (85)

In the limit T → 0 or β →∞, only the third term is non-vanishing, we have

1

β

∑
ω

1

ξ1 + iω

1

ξ2 − iω
=

1

ξ2 + ξ1

. (86)
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By using the above results, Eq. (4.37) after the summation over ω′ is written as

χµνct (q; iω) =
1

Nu

∑
k

∑
n,n′

∑
{αi}

Ξµ
α1α2

Ξν
α3α4

×
{[
g21
n,−(k)

]
α1α3

[
g12
n′,+(k + q)

]
α2α4

ωk,n + ωk+q,n′ + iω
+

[
g21
n,+(k)

]
α1α3

[
g12
n′,−(k + q)

]
α2α4

ωk,n + ωk+q,n′ − iω

+

[
g22
n,−(k)

]
α1α4

[
g11
n′,+(k + q)

]
α2α3

ωk,n + ωk+q,n′ + iω
+

[
g22
n,+(k)

]
α1α4

[
g11
n′,−(k + q)

]
α2α3

ωk,n + ωk+q,n′ − iω

}
, (87)

where we have again introduced the 2×2 block matrix notations for gn,±(q). Taking analytic

continuation iω = ω ± i0+ such that the causality is preserved [108], we have

χµνct (q;ω) =
1

Nu

∑
k

∑
n,n′

∑
{αi}

Ξµ
α1α2

Ξν
α3α4

×
{[
g21
n,−(k)

]
α1α3

[
g12
n′,+(k + q)

]
α2α4

ωk,n + ωk+q,n′ + ω − i0+
+

[
g21
n,+(k)

]
α1α3

[
g12
n′,−(k + q)

]
α2α4

ωk,n + ωk+q,n′ − ω − i0+

+

[
g22
n,−(k)

]
α1α4

[
g11
n′,+(k + q)

]
α2α3

ωk,n + ωk+q,n′ + ω − i0+
+

[
g22
n,+(k)

]
α1α4

[
g11
n′,−(k + q)

]
α2α3

ωk,n + ωk+q,n′ − ω − i0+

}
, (88)

After using the fluctuation-dissipation theorem at T = 0 (4.24), we have

Oµνtc (q, ω) =
1

Nu

[∑
k

2∑
n,n′=1

∑
{αi}

Ξµ
α1α2

Ξν
α3α4

δ(ω − ωk,n − ωk+q,n′)

([
g21
n,+(k)

]
α1α3

[
g12
n′,−(k + q)

]
ββ′

+
[
g22
n,+(k)

]
α1α4

[
g11
n′,−(k + q)

]
α2α3

)]
. (89)

We note that the first and third term in the curly bracket of Eq. (88) does not have imaginary

part for ω > 0. In summary, as evident from its name, Oµνct (q, ω) probes the two-particle

continuum

Oµνtc (q, ω) ∼
∑
k

∑
n,n′

δ(ω − ωk,n − ωk+q,n′). (90)
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E Supplemental Info for Sec. 5.1

E.1 Expressions for the generalized linear spin-wave calculation

The expressions for the coefficients Ak,α and Bk,α of the quadratic Hamiltonian H(2) (5.5)

are:

Ak,+1 = −8(x− 1)x(2J̃ + J̃ ′)− (x− 1)D̃ + 2
(
x(1 + ∆̃)− 1

)
J̃γxyk + 2

(
x(1 + ∆̃′)− 1

)
J̃ ′γzk,

Bk,+1 = −2
(
x(∆̃− 1) + 1

)
J̃γxyk − 2

(
x(∆̃′ − 1) + 1

)
J̃ ′γzk,

Ak,−1 = −16(x− 1)x(2J̃ + J̃ ′)− (2x− 1)D − 2(1− 2x)2(J̃γxyk + J̃ ′γzk),

Bk,−1 = 2(1− 2x)2(J̃γxyk + J̃ ′γzk) (91)

E.2 Cubic vertex functions

In this section, we derive the cubic and cubic-linear vertices given in Eq. (5.11) and Eq. (5.12).

The cubic Hamiltonian has three contributions

H(3) = H(3)
intra +H(3)

inter +H(3)
D , (92)

with

H(3)
intra = J̃

∑
〈r,r′〉,ν

∑
α,β=±1

{ ∑
α′=±1

aν
[
2S̃ναβS̃ν0α′ b̃†rαb̃rβ b̃r′α′

]
− aν

[
S̃ν0αS̃ν00

(
b̃†rβ b̃rβ b̃rα + 2b̃†r′β b̃r′β b̃rα

)]
+ h.c.

}
,

H(3)
inter = J̃ ′

∑
〈r,r′〉,ν

∑
α,β=±1

{ ∑
α′=±1

bν
[
2S̃ναβS̃ν0α′ b̃†rαb̃rβ b̃r′α′

]
− bν

[
S̃ν0αS̃ν00

(
b̃†rβ b̃rβ b̃rα + 2b̃†r′β b̃r′β b̃rα

)]
+ h.c.

}
,

H(3)
D =

D̃

2

∑
r

∑
α,β=±1

[
Ã0αb̃

†
rβ b̃rβ b̃rα + h.c.

]
,
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To simplify the notation, we will write a particular term of (92) (in momentum space)

as (I) = b̃†q̄1,αb̃q2,β b̃q3,γf(qi, t), with

f(q1,2,3, t) =


1 t = 0

γxyq3 t = 1

γzq3 t = 2

. (93)

The Nambu spinor of the bosonic operators can be Bogoliubov transformed into the quasi-

particle representation ~bk = U(k)~βk, where the matrix elements of U(k) are obtained from

the Bogoliubov coefficients given in Eq. (5.8)

U(k) =

U11
2×2(k) U12

2×2(k)

U21
2×2(k) U22

2×2(k)



=


uk,+1 0 vk,+1 0

0 uk,−1 0 vk,−1

vk,+1 0 uk,+1 0

0 vk,−1 0 uk,−1

 .

After applying the above-mentioned Bogoliubov transformation, we obtain

(I) =
∑
n1,2,3

{
F (a)(αβγ, n1,2,3; q1,2,3, t)βq1,n1βq2,n2βq3,n3

+ F (b)(αβγ, n1,2,3; q1,2,3, t)β
†
q̄1,n1

β†q̄2,n2
β†q̄3,n3

+ F (c)(αβγ, n1,2,3; q1,2,3, t)β
†
q̄1,n1

β†q̄2,n2
βq3,n3

+ F (d)(αβγ, n1,2,3; q1,2,3, t)β
†
q̄1,n1

βq2,n2βq3,n3

+ L(c)(αβγ, n1,2,3; q1,2,3, t)δq3,q̄2δn3,n2β
†
q̄1,n1

+ L(d)(αβγ, n1,2,3; q1,2,3, t)δq2,q̄1δn2,n1βq3,n3

}
. (94)

The explicit forms of F (a,b,c,d) and L(c,d) can be obtained by simple algebras, which are not

shown here for neatness.
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The “sink” (“source”) function F (a) (F (b)) is symmetric under permutations of all three

legs (momenta and flavors). Consequently, we introduce the symmetrized functions

F̃ (a) ≡
∑

P (q1,2,3;n1,2,3)

F (a), F̃ (b) ≡
∑

P (q1,2,3;n1,2,3)

F (b).

Similarly, the “decay” function F (c) and the “fusion” function F (d) are symmetrized for the

two outgoing and the two incoming legs, respectively,

F̃ (c) =
∑

P (q1,2;n1,2)

F (c), F̃ (d) =
∑

P (q2,3;n2,3)

F (c).

After inserting the above results into Eq. (92), we obtain the explicit forms of the cubic

vertices in V
(3)
s/d Eq. (5.11) and V L

α in Eq. (5.12).

E.3 Quartic vertex

The quartic Hamiltonian is written as

H(4) = H(4)
intra +H(4)

inter, (95)

with

H(4)
intra = J̃

∑
〈r,r′〉,ν

∑
α,β=±1

{[
aνS̃ν00S̃ν00b̃

†
rαb̃
†
r′β b̃rαb̃r′β

]
+

∑
α′β′=±1

[
aνS̃ναβS̃να′β′ b̃†rαb̃

†
r′α′ b̃rβ b̃r′β′

]
− 2

∑
α′=±1

[
aνS̃ναβS̃ν00b̃

†
rαb̃
†
r′α′ b̃rβ b̃r′α′

]
−
∑
α′=±1

[
aνS̃να0S̃νβ0b̃

†
rαb̃
†
r′β b̃

†
r′α′ b̃r′α′ + h.c.

]
−
∑
α′=±1

[
aνS̃να0S̃ν0β b̃†rαb̃

†
r′α′ b̃r′α′ b̃r′β + h.c.

]}
.

Similarly to the cubic contribution,H(4)
inter can be obtained fromH(4)

intra by substituting J̃ → J̃ ′,

aν → bν . The matrix elements appear in the normal ordering of the quartic vertex are defined
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as:

N̄αβ
rr′ ≡

1

N

∑
〈r,r′〉

〈b†rαbr′β〉 =
1

N

∑
k

∑
n

U21
α,n(k)

[
U21
β,n(k)

]∗
cos
[
k · (r′ − r)

]
,

∆αβ
rr′ ≡

1

N

∑
〈r,r′〉

〈brαbr′β〉 =
1

N

∑
k

∑
n

U11
α,n(k)

[
U21
β,n(k)

]∗
cos
[
k · (r′ − r)

]
,

∆̄αβ
rr′ ≡

1

N

∑
〈r,r′〉

〈b†rαb
†
r′β〉 =

1

N

∑
k

∑
n

U21
α,n(k)

[
U11
β,n(k)

]∗
cos
[
k · (r′ − r)

]
,

We note that some of these matrix elements are equal to zero because of the residual

U(1) symmetry of the antiferromagnetic order. To obtain the normal-ordered Hamiltonian

Eq. (5.15), we apply a mean-field (Hartree-Fock) decoupling to the quartic Hamiltonian

Eq. (95), for example,

b̃†rαb̃
†
r′β b̃rαb̃r′β ' ∆αβ

rr′ b̃
†
rαb̃
†
r′β + N̄ββ

r′r′ b̃
†
rαb̃rα + N̄βα

r′r b̃
†
rαb̃r′β + ∆̄αβ

rr′ b̃rαb̃r′β

+ N̄αα
rr b̃

†
r′βbr′β + N̄αβ

rr′ b̃
†
r′β b̃rα. (96)

The coefficients V
(4,N)
αα that appear in the normal term of Eq. (5.15) can be derived after

consecutive Fourier and Bogoliubov transformations.

E.4 One-loop diagrams in the long-wavelength limit

Without loss of generality, we consider an isotropic Heisenberg model, i.e. J̃ = J̃ ′, ∆̃ = ∆̃′ to

show the 1/q divergence of the one-loop diagrams involving the Goldstone mode. According

to Eq. (5.8),

lim
q→0

uq,+, vq,+ =

√
J̃d

v0,+

1
√
q
,−

√
J̃d

v0,+

1
√
q

(97)

where v0,+ = 2J̃d
√
D̃/(4J̃d2) + 1/d is the spin wave velocity of the Goldstone mode and

d = 3 is the spatial dimension of the lattice equal to half of the coordination number. Note

that the cubic vertices are proportional to a product of the Bogoliubov coefficients of three

legs

V
(3)
d,s ∝ u(v)q1,αu(v)q2,βu(v)q3,γ. (98)
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For the decay and sink diagrams shown on the second line of Fig. 5.4 (a), we can choose,

for instance, q3 = q ∼ 0, γ = +1 to contract with the leg of the long-wavelength bosons.

Consequently,

Σ(d,s)(+) ∼ |V (3)
d,s (q1,2, q;αβ+)|2 ∼ (1/

√
q)2 ∼ 1/q. (99)

As for the cubic-linear diagrams, we need to choose two legs to contract with the long-

wavelength boson, implying that

Σ(cl)(+) ∼ V
(3)
d (0,−qq;−+ +) ∼ 1/q. (100)

Finally, notice that V
(4,N)

++ ∼ 1/q in the long-wavelength limit, because the quadratic

forms of the transverse boson in Eq. (96) after the Bogoliubov transformation are

proportional to u(v)q,+1u(v)q,+1. By adding up all diagrams in O(M0), we have verified that

the coefficient of the 1/q-factor vanishes, implying that the Goldstone mode is preserved

after the one-loop correction.

E.5 Estimation of the quantum critical point (QCP)

Let us recall that the linear order term Ĥ(1) O[M3/2] vanishes in the expansion of the

Hamiltonian [see Eq. (4.9)] because the mean-field value of (the order parameter) θ or x

given in Eq. (5.4) corresponds to the state with minimal classical energy. As we mentioned in

Sec. 5.1.3, Ĥ(3)
l is a linear term O[M1/2] that originates from the normal-ordering of the cubic

term [see Eq. (5.12)]. Consequently, the presence of Ĥ(3)
l leads to a renormalization in the

order parameter x = sin2 θ. In the GLSWT+one-loop approximation, such renormalization

is taken into account by including the so-called cubic-linear diagrams [see Fig. 5.4]. We may

also wonder the corresponding renormalization effects by enforcing Ĥ(1) + Ĥ(3)
l = 0. For

Ba2FeSi2O7, the linear order term is written as

Ĥ(1) = 4
√
Ns

√
x(1− x)(2x− 1)(2J̃ + J̃ ′)(u0,−1 + v0,−1)(β†0,−1 + h.c.) (101)
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and the cubic-linear term is given as

Ĥ(3)
l =

5∑
T=1

V
(3;T )
c−l (β†0,−1 + h.c.), (102)

where V
(3;T )
c−l are results of integration over the first Brillouin zone, i.e., (1/Ns

∑
q)

V
(1)
c−l =

8Jd
√

(1− x)x√
Ns

∑
q

(
vq,+1v0,−1vq,+1γq + vq,+1u0,−1vq,+1γq

)
,

V
(2)
c−l =

2
√

(1− x)x
(
2Jd(1− 2x)− 1

2
D
)

√
Ns

∑
q

(
vq,+1vq,+1v0,−1 + vq,+1vq,+1u0,−1

)
,

V
(3)
c−l =

8Jd
√

(1− x)x(1− 2x)√
Ns

∑
q

(
vq,+1vq,+1v0,−1γ0 + vq,+1vq,+1u0,−1γ0

)
,

V
(4)
c−l =

2
√

(1− x)x
(
2Jd(1− 2x)− 1

2
D
)

√
Ns

∑
q

(
vq,−1vq,−1v0,−1 + vq,−1v0,−1vq,−1

+ u0,−1uq,−1vq,−1 + v0,−1uq,−1vq,−1

+ vq,−1u0,−1vq,−1 + vq,−1vq,−1u0,−1

)
,

V
(5)
c−l =

16Jd
√

(1− x)x(1− 2x)√
Ns

∑
q

(
vq,−1vq,−1v0,−1γ0 + vq,−1v0,−1vq,−1γq

+ u0,−1uq,−1vq,−1γq + v0,−1uq,−1vq,−1γq

+ vq,−1u0,−1vq,−1γq + vq,−1vq,−1u0,−1γ0
)
. (103)

After adding up Ĥ(1)+Ĥ(3)
l , we find the renormalized x̃ by requiring a vanishing coefficient

of β†0,−1. Then we plug x̃ into Eq. (91) and ask the corresponding changes in the quasiparticle

dispersion relations Eq. (5.5). We note that this calculation does not lead to results of

a particular order in M , i.e., it is a non-perturbative calculation (not controlled by M).

Consequently, it gives an incorrect dispersion relation for the transverse mode T1 (complex

frequencies): the Goldstone mode is no longer preserved. Nevertheless, we can still look for

the corresponding non-perturbative effects in the longitudinal mode L as it is gapped in the

AFM phase.
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Figure 2 shows the comparison of the dispersion relations obtained from the GLSWT,

GLSWT+one-loop, and the non-perturbative calculations. We see that near the ordering

wave vectorQm (indicated by the orange vertical line), the non-perturbative calculation gives

the smallest gap for the L-mode. Recall that the L-mode becomes gapless at the QCP, that

signals a quantum phase transition from the AFM phase to the quantum paramagnetic phase

(QPM). As a result, the critical αc = J̃/D̃ is obtained by requiring ωL(Qm) = 0. Then the

results given in Fig. 2 imply that the non-perturbative calculation would predict the largest

αc compared to the GLSWT calculation and the perturbative calculation. Interestingly, it

turns out that non-perturbative effects captured by the above-mentioned non-perturbative

calculation become dominant upon approaching the QCP from the AFM side. To verify

this argument, we compared the value of αc obtained from the non-perturbative calculation

for the isotropic model (J̃ = J̃ ′, and ∆̃ = ∆̃′ = 1) against a quantum Monte-Carlo (QMC)

simulation on the same model [173]: In 3D, QMC predicts αc = 0.1, and the non-perturbative

calculation gives practically the same value (αc = 0.1000(5) for the latter); In 2D, QMC

predicts αc = 0.178, whereas the non-perturbative calculation gives αc = 0.17(6). The

amazing agreement of αc between the non-perturbative calculation and the QMC simulation

suggests that we can use the above-mentioned non-perturbative calculation to estimate the

QCP for Ba2FeSi2O7, given it is a quasi-2D system (J̃ ′/J̃ = 0.1). We have, for Ba2FeSi2O7

(J̃ ′ = 0.1J̃ , and ∆̃ = ∆̃′ = 1/3), αc ' 0.158. We note that the parameters set A αGLSW =

0.152 extracted from fitting the experiment with the GLSWT place Ba2FeSi2O7 on the QPM

side of the phase diagram, whereas the parameters set B obtained from the GLSWT+one-

loop correction (αGLSW+one loop = 0.187) place the material at the magnetically ordered phase

of the exact phase diagram.
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Figure 2: Dispersion relations for the longitudinal mode L obtained from the SU(3)
generalized linear spin wave theory (GLSWT) calculation (black line), GLSWT+one-loop
correction calculation (red stars), and the non-perturbative calculation (blue triangles)
described in this section. The orange vertical line denotes the position corresponding to
the AFM ordering wave vector q = (π, π, π) in the magnetic lattice or (1, 0, 0.5) in the
chemical lattice. All results in this figure are obtained by using parameter set B listed in
Table 5.1.
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F Berry phase and solid angle in CP2

F.1 Continuum limit

Topological soliton solutions of the classical color field become well-defined in the continuum

limit that holds for λ� a, where λ is the characteristic wave-length of the spin configuration

and a is the lattice parameter. In this limit, we use a Taylor expansion to express the value

of the field nmj on the site j (with coordinates rj) in terms of the field nmi on the neighboring

site located at ri:

nmj = nmi + rij∂kn
m
i +O

(
r2
ij

)
(104)

where rj = ri + rijek, rij = |ri − rj| (rij coincides with the lattice parameter a when i and

j are nearest-neighbor sites) and ek is a unit vector that points in the k-direction of the

plane. Since the lattice spin Hamiltonians that we will consider include only interactions

between spins on neighboring sites, we can use Eq. (104) to define a continuum limit of the

spin Hamiltonian by replacing the sum over lattice sites with the integral a−2
∫

d2x.

Since the color field takes a constant value n∞ at spatial infinity for skyrmion

configurations, the base plane R2 can be compactified to S2. Thus, these spin textures are

characterized by the topological degree (or skyrmion charge) of the mapping n : S2 7→ CP 2:

C = − i

32π

∫
dxdyεjk Tr (n [∂jn, ∂kn]) (105)

It is important to note that there is a one-to-one correspondence between the color field nj

and Zj that defines a coherent state. In other words, we can also express the Hamiltonian

and the skyrmion density in terms of the Zj field that in the continuum limit becomes a Z(r)

field. We can think of both alternative descriptions as the classical limit of the Schrödinger

and the Heisenberg representations. In the former case, the dynamical variables are wave

functions that become coherent states with coordinates Zj . In the latter case, the dynamical

variables are operators T̂ µj (observables), which in the classical limit are replaced by their

expectation value
〈
T µj
〉

that coincides with the color field nµj .
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Depending on the application, it may be more convenient to work with one representation

of the classical SU(3) spin field or with the other one. For this reason, it is useful to derive

an expression of the skyrmion density in terms of the Zj-field. As expected, the skyrmion

density defined in Eq. (105) turns out to be proportional to the Berry curvature of the Z(r)

field. To demonstrate this statement we just need to introduce the SU(3) Berry connection,

A(r) = i 〈Z |∇r|Z〉 (106)

and the corresponding SU(3) Berry curvature:

B(r) = ∇×A(r). (107)

According to Stokes theorem, the integral of the Berry connection over a closed loop C is

equal to the integral of the Berry curvature over the oriented surface enclosed by C:

∮
C

Ajdxj =

∫
SC

[∂xAy − ∂yAx] dxdy. (108)

Our next goal is to demonstrate that the skyrmion density is proportional to the Berry

curvature:

∂xAy − ∂yAx = − i

16
2 Tr (n [∂xn, ∂yn]) = − i

16
εjk Tr (n [∂jn, ∂kn]) . (109)

To demonstrate this equivalence, we first need to demonstrate that the infinitesimal

“geodesic” SU(3) spin rotation that transforms the coherent state |Z(r)〉 into |Z(r + δr)〉

up to a phase factor eiδϕ is:

eiδϕ|Z(r + δr)〉 = Ûr+δr,r|Z(r)〉 =

(
I− i

4
fµvηn

µ∂rn
ν · δrT η

)
|Z(r)〉. (110)

In other words,

Ûr+δr,r = I + iŵ · δr = I− i

4
fµvηn

µT̂ η∂rn
v · δr. (111)
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To demonstrate this statement, we need to show that the operator field n(r) is transformed

into n(r + δr)

Ûr+δr,rn(r)Û †r,δr =n(r) +
i

4
fµνηn

µ∂rn
ν · δr

[
n(r), T̂ η

]
= n(r) +

1

4
nαnµfµνηfαεηT̂

ε∂rn
ν · δr

=n(r) +
1

4
nαnµ∂rn

v · δrT̂ ε
[

8

3
(δµαδvε − δµεδαv) + 4 (dµαηdvεη − dvαηdµεη)

]
.

(112)

By using the following relationships that can be obtained from the constraint given in Eq. (11)

of the main text:

∂rn
mnm = 0, (113)

∂rn
m = 3dmqpn

p∂rn
q, (114)

dµαηn
µnα =

2

3
nη, (115)

2

3
nηdvεη∂rn

ν =
2

9
∂rn

ε, (116)

dvαη∂rn
vnα =

1

3
∂rn

η, (117)

1

3
dεαηn

µ∂rn
η =

1

9
∂rn

ε, (118)

we obtain the desired result:

Ûr+δr,rn(r)Û †r+δr,r = n(r) + ∂rn(r) · δr = n(r + δr). (119)

Since ∂r|Z〉 = iŵδr|Z〉, we have:

∂xAy − ∂yAx = i (∂x〈Z|) (∂y|Z〉 − ∂y〈Z|) (∂x|Z〉) =

= i 〈Z |[ŵx, ŵy]|Z〉 −
1

16
fµνηfηγεfαβγn

µnηnε∂xn
ν∂yn

β

=
1

4
fαβγ∂xn

γ∂yn
βnα

= − i
8

Tr (n [∂xn, ∂yn]) = − i

16
εjk Tr (n [∂jn, ∂kn]) ,

(120)
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where we have used the following relationships:

nµnεfµνηfγεη =
8

3
(nγnν − 4

3
δνγ) + 4(nµnεdµγηdνεη −

2

3
dνγηn

η), (121)

∂xn
νnµnεfµνηfγεη = −32

9
∂xn

γ +
4

3
nµdµγη∂xn

η − 8

9
∂xn

γ

= −32

9
∂xn

γ +
4

9
∂xn

γ − 8

9
∂xn

γ = −4∂xn
γ. (122)

This concludes the demonstration of Eq. (109). From this result and Eq. (105), we obtain:

C = − i

32π

∫
d2xεjk Tr (n [∂jn, ∂kn]) =

1

2π

∫
dx dy (∂xAy − ∂yAx) . (123)

F.2 On the lattice

For lattice systems, the color field is only defined on discrete lattice points. Thus, to compute

the skyrmion number of a given spin configuration we must introduce an interpolation

procedure that allows us to to define the spin configuration on any point of the plane R2.

This can be done by connecting color fields nj and nk on nearest-neighbor sites j and k

along the geodesic in CP2. According to this prescription, the contribution to the skyrmion

number of a given triangular plaquette jkl of the triangular lattice is:

ρjkl = − i

32π

∫
∆jkl

dxdyεjk Tr (n [∂jn, ∂kn]) , (124)

where 4jlk is the triangle formed by the lattice sites jkl. Consequently, the total skyrmion

number is equal to the sum of this contribution over all the triangles jkl of the triangular

lattice:

C =
∑
∆jkl

ρjkl. (125)

Our next step is to demonstrate that:

ρjkl =
1

2π
(γjl + γlk + γkj) , (126)
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where

γkj = arg [〈Zk | Zj〉] (127)

is the Berry connection on the bond j → k and

γjl + γlk + γkj =

∮
∆jkl

Ajdxj (128)

is the Berry phase associated with the triangle jkl. From Eqs. (108) and (105), we have

ρjkl = − i

32π

∫
∆jkl

dxdyεjk Tr (n [∂jn, ∂kn]) =
1

2π

∮
∆jkl

Ajdxj. (129)

Consequently, we just need to demonstrate Eq. (126).

We first note that, up to a phase factor eiδϕ, the “geodesic” SU(3) spin rotation that

connects the coherent states |Z(r)〉 and |Z(r + δr)〉 is the one given in Eq. (22) and it can

be rewritten as

eiδϕ|Z(r + δr)〉 = Ûr,δr|Z(r)〉 =

(
I +

i

4
[n(r), ∂rn(r)] δr

)
|Z(r)〉. (130)

The next observation is that:

n(r)|Z(r)〉 =
2√
3
|Z(r)〉 (131)

by definition of the coherent state |Z(r)〉. Consequently, we have

eiδϕ =

〈
Z(r + δr)

∣∣∣∣(I +
i

4
[n(r), ∂rn(r)] δr

)∣∣∣∣Z(r)

〉
(132)

or

eiδϕ = 〈Z(r + δr) | Z(r)〉+

〈
Z(r)

∣∣∣∣( i4 [n(r), ∂rn(r)] δr

)∣∣∣∣Z(r)

〉
= 〈Z(r + δr) | Z(r)〉,

(133)

where we have used that 〈Z(r) |[n(r), ∂rn(r)]|Z(r)〉 = 0 because of Eq. (131). This

important result shows that, to linear order in δr, the Berry phase accumulated by the
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rotation of the coherent state state |Z(r)〉 along a geodesic of CP2 is equal the the overlap

〈Z(r + δr) | Z(r)〉.

Let us consider now the Berry phase that is obtained when the coherent state |Zj〉 is

rotated into the coherent state |Zk〉 along the SU(3) geodesic that connects these two points.

After dividing the rotation Ûrk,rj into a product of N →∞ small rotations:

Ûrkj/N = exp

{
i

4N
[n (rj) ,n (rk)]

}
, (134)

γkj = arg
[〈
Zk

∣∣∣Ûrk,rj ∣∣∣Zj

〉]
= arg

[〈
Zk

∣∣∣∣(Ûrkj/N)N ∣∣∣∣Zj

〉]
= arg

[〈
Zk

∣∣∣Ûrkj/N ∣∣∣Z (rk − rkj/N)
〉〈
Z (rk − rkj/N)

∣∣∣Ûrkj/N . . .∣∣∣Z (rj + rkj/N)
〉

×
〈
Z (rj + rkj/N)

∣∣∣Ûrkj/N ∣∣∣Zj

〉]
, (135)

where rkj ≡ rk − rj and the last identity is obtained by inserting expansions of the identity

between the unitary operations in an orthonormal basis that includes the coherent state

|Z (rj + nrkj/N)〉 for the identity operator that is inserted on the left of
(
Ûrkj/N

)n
with

1 ≤ n ≤ N . After taking the N →∞ limit and using Eq. (133),

lim
N→∞

arg
[〈
Z (rj + (n+ 1)rkj/N)

∣∣∣Ûrkj/N ∣∣∣Z (rj + nrkj/N)
〉]

= lim
N→∞

arg [〈Z (rj + (n+ 1)rkj/N) | Z (rj + nrkj/N)〉] (136)

we obtain the desired result:

γkj = arg
[〈
Zk

∣∣∣Ûrk,rj ∣∣∣Zj

〉]
=

∫ |rk−rj |
0

〈Z(a) |∂a|Z(a)〉 da (137)

with |Z(a)〉 = Ûrj+ar̂kj ,rj |Z (rj)〉 and r̂kj ≡ rk − rj/ |rk − rj|, which implies Eq. (128).
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G Mapping between color field and SU(3) coherent

states

Eq. (126) is clearly very useful when we are working with coherent states (the Z-field) instead

of working with the color field n(r). In the latter case, it may be useful to find a coherent state

|Z(r)〉 associated with the field n(r) to keep using the simple formula provided by Eq. (126)

. Note that the coherent state |Z(r)〉 is defined up to a phase factor (gauge freedom), which

does not affect the value of the Berry phase on a closed loop. Correspondingly, we just need

a procedure that allows us to find some state |Z(r)〉 (a particular gauge choice) for a given

n(r).

Eq. (10) of the main text establishes a mapping |Zj〉 → n(r) between an SU(3) coherent

state |Z(r)〉 and the color field n(r). Let us find the inverse mapping n(r)→ |Zj〉 keeping

in mind that a coherent states are defined up to a phase factor (gauge freedom). Given the

highest weight state, |+ 1〉 that satisfies:

T̂ 3
j |+1〉 =

2√
3
|+1〉 , (138)

we can obtain the coherent state |Z(r)〉 by applying an SU(3) transformation Û that satisfies

|Zj〉 = Ûj |+1〉

nj =
2√
3
Ûj

ˆ̃T 3
j Û
†
j .

(139)

This immediately implies that |Z(r)〉 is the highest-weight eigenstate of the color field n(r)

nj |Zj〉 =
2√
3
|Zj〉 , (140)

and allows us to obtain the coherent state |Z(r)〉 for given color field n(r). As expected,

the normalized eigenstate |Z(r)〉 is defined up to a multiplicative phase factor.
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