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Abstract

Artificial intelligence (AI) and machine learning (ML) methods and applications

have been continuously explored in many areas of scientific research. While these

methods have lead to many advances in climate science, there remains room for

growth especially in Earth System Modeling, analysis and predictability. Due to

their high computational expense and large volumes of complex data they produce,

earth system models (ESMs) provide an abundance of potential for enhancing both

our understanding of the climate system as well as improving performance of ESMs

themselves using ML techniques. Here I demonstrate 3 specific areas of development

using ML: statistical downscaling, predictability using non-linear latent spaces and

emulation of complex parametrization. These three areas of research illustrate the

ability of innovative ML methods to advance our understanding of climate systems

through ESMs.

In Aim 1, I present a first application of a fast super resolution convolutional neural

network (FSRCNN) based approach for downscaling earth system model (ESM)

simulations. We adapt the FSRCNN to improve reconstruction on ESM data, we term
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the FSRCNN-ESM. We find that FSRCNN-ESM outperforms FSRCNN and other

super-resolution methods in reconstructing high resolution images producing finer

spatial scale features with better accuracy for surface temperature, surface radiative

fluxes and precipitation.

In Aim 2, I construct a novel Multi-Input Multi-Output Autoencoder-decoder

(MIMO-AE) in an application of multi-task learning to capture the non-linear

relationship of Southern California precipitation (SC-PRECIP) and tropical Pacific

Ocean sea surface temperature (TP-SST) on monthly time-scales. I find that the

MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time of

up-to four months as compared to Niño 3.4 index and the El Niño Southern Oscillation

Longitudinal Index. I also use a MTL method to expand on a convolutional long

short term memory (conv-LSTM) to predict Nino 3.4 index by including multiple

input variables known to be associated with ENSO, namely sea level pressure (SLP),

outgoing longwave radiation (ORL) and surface level zonal winds (U).

In Aim 3, I demonstrate the capability of DNNs for learning computationally

expensive parameterizations in ESMs. This study develops a DNN to replace the full

radiation model in the E3SM.
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Chapter 1

Introduction

1.1 Introduction

Applications in machine learning (ML) and artificial intelligence (AI) have seen

rapid growth in recent years in many areas of scientific research. For example, the

emergence of ML techniques applied to biological sciences has lead to many profound

discoveries in genomics and proteomics. Despite having an abundance of potential

applications and resources, climate science has not seen similar improvements.

Emerging disciplines, such as climate informatics, seek to bridge the gap between

climate scientists and machine learning researchers. These efforts are in the early

stages of development with hopes that interdisciplinary research will vastly accelerate

our understanding of climate science.

Earth Systems Models (ESMs) are the primary tool used by scientists to

understand and predict the climate. The accuracy of ESMs has increased significantly

1



in recent years due to numerical modeling and computational ability developments.

The advancement in high-performance computing has allowed for ESMs to be run

at higher resolutions with more precision. Several limitations still exist, however.

The computational expense of running these models on large scales and over long

periods is enormous, even with access to super-computing capability. This cost

has led to a shortage of reliable local and regional scale climate data crucial for

determining climate change impacts on society. Even with the ability to run these

models at high resolutions, a single 30 year run of a 0.25◦ model can produce up to

10TB of multivariate data making post-run analysis complicated and challenging to

interpret. Thus, the growing abundance of ESM data offers many opportunities for

implementing ML and AI techniques for both model improvement and interpretation.

The accelerating growth of ESM data availability and computational resources

opens the door for vast improvements in data understanding. Early adoptions of

ML and AI techniques have provided promising results in the areas of reducing

run-time expense and in extracting useful information from the data once it is

produced (49; 98). These applications are still in their infancy and need to be

further developed and adapted to Earth sciences. I demonstrate here the usefulness

of advance ML capabilities in three areas of prominent ESM research: statistical

downscaling, predictability using non-linear latent spaces and emulation of complex

parameterization.
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1.1.1 Aim 1: Statistical Downscaling

ESMs are often limited in their spatial and temporal resolution due to computational

cost, leading to a shortage of regional and local scale climate data. Downscaling

techniques, statistical and dynamical, are often applied to provide higher resolution

outputs of climate projections. Dynamical downscaling techniques are based on Re-

gional Climate Models (RCMs), numerical climate predictions that are initialized with

boundary conditions from a Global Climate Model (GCM) to simulate atmospheric

and land surface processes at a higher resolution. For this proposal, however, I focus

on statistical downscaling (SD). SD aims to learn a statistical mapping between low

and high resolution climate data and are often more computationally efficient than

dynamical downscaling methods. Recent studies have shown that ML techniques,

like neural networks (117; 29) and support vector machines (34), for SD significantly

outperform other traditional SD methods. Many of these traditional SD methods

do not account for spatial dependencies within the climate model. ML techniques,

like computer vision approaches, have been developed to capture and exploit these

dependencies.

1.1.2 Aim 2: Predictability Using Non-Linear Latent Spaces

Teleconnections from natural modes of climate variability like El Nino Southern

Oscillation (ENSO) cause significant impacts on infrastructure and human health.

El Niño-Southern Oscillation (ENSO) is a large-scale ocean-atmosphere interaction
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that occurs in the equatorial Pacific Ocean and global atmosphere and is one of

the main drivers of inter-annual climate variability (4; 5; 93). El Niño (La Niña) is

the ocean component of this phenomena that is characterized by a period increase

(decrease) in sea surface temperature (SST). ENSO events are typically identified

using sea surface temperature (SST) anomalies averaged in the tropical eastern or

central Pacific ocean, such as the Niño 3 index (5◦ S - 5◦ N, 150◦ - 190◦ W), Niño 3.4

index (5◦ S - 5◦ N, 170◦ - 120◦ W), Niño 4 index (5◦ S - 5◦ N, 160◦ - 150◦ W) and

Niño 1+2 index (0◦ - 10◦ S, 90◦ - 80◦ W). While these methods of defining ENSO

events capture the canonical El Niño centered in the eastern equatorial Pacific, they

fail to capture a secondary ENSO event centered in the central Pacific known as the

Dateline El Niño (64), El Niño Modoki (2), central Pacific El Niño (53) or warm

tongue El Niño (62). Although there is no consistent name for this phenomenon,

here we will refer to it as the El Niño Modoki.

Research suggests that this failure to capture the full spectrum of ENSO events, in

addition to climate change, could result in inaccurate predictions by seasonal forecast

systems (112). This was evident in the 2015-2016 ENSO event, where statistical

and dynamical models predicted above-average winter and spring precipitation over

California similar to the 1982-1983 and 1997-1998 ENSO events (74). However, this

event resulted in below-normal precipitation anomalies in the Western United States

despite having a predicted Niño 3.4 index similar to events with heavy precipitation

in that area.
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Understanding the structure and developments of these atmospheric teleconnec-

tions in current and future climate scenarios is of great importance for extreme

weather prediction and forecasting in general. However, such patterns can be

difficult to detect on various spatial and temporal scales in large climate datasets.

These patterns have been traditionally identified using linear models like principal

components (PCs). However, the strict bi-orthogonality of the components can make

them difficult to interpret and do not necessarily relate to a physical phenomenon.

These analyses are also limited to capturing only linear dependencies and fail to

offer any insight on non-linear relationships. Furthermore, extreme events are often

identified using hand-picked thresholds based on human expertise and physics-based

simulations with no universal definition. Recent advances in AI and ML techniques

have shown great promise in the area of pattern recognition, spatial analysis,

predictability and tracking problems, especially in large and complex datasets.

Studies have demonstrated the usefulness of various ML methods, including CNNs,

ANNs, self organizing maps (SOM), and autoencoders, to detect, track and predict

extreme weather events or large-scale teleconnections in observational and model

climate data. These approaches have also shown advantages in identifying non-linear

modes of climate variability over other traditional methods (71; 56; 110; 43; 134).

1.1.3 Aim 3: Emulation of Complex Parameterization

Earth system processes are primarily described by non-linear differential equations

that interact with other complex and non-linear components on differing spatial and
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temporal, resolved and unresolved scales. The increase in the degrees of freedom with

resolution implies that solving these multi-scale equations for high resolution models

becomes computationally prohibitive, even on leadership-class high performance

computing. Moreover, the unresolved processes also account for a large source of

uncertainty in ESMs, as they are approximated from the resolved scales through

parameterization schemes.

Recently, researchers have moved towards ML techniques to aid in parameteriza-

tions of a wide range of variables including but not limited to radiation (18; 19; 61; 89),

ocean physics (59; 108), convection (60; 88) and ozone (87). ML can be used to

create new parametrizations, or improve current ones, by training a statistical model

to effectively emulate a complex physical phenomenon. ML techniques are capable of

learning and accurately simulating nonlinear functions when trained on large datasets.

Once trained, these models can provide fast calculation of sub-grid scale processes,

particularly on hybrid architectures. Current ML tools used for parametrization

tasks include neural networks (NN), deep learning, random forests (RF), and general

adversarial networks (GAN).

1.1.4 Research Objectives

While there have been significant contributions to the application of ML techniques

for ESM improvement, researchers are still in the beginning stages of what could

be achieved. Described in this dissertation is the implementation of advanced ML

techniques to improve the three areas of concern mentioned above: downscaling of
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ESM model output data using a novel computer vision approach, identifying non-

linear modes of climate variability in complex model data and reducing run-time

computational expense through deep learning parametrization. My goal is to improve

the performance and understanding of ESMs by using the latest ML algorithms.

Through this work, I also hope to aid in closing the gap between data science and

climate science.

Energy Exascale Earth Systems Model

In addition to using observational data, I also focus on applying ML techniques to data

derived from the DOEs Energy Exascale Earth Systems Model version 1 (E3SMv1)

(28) in aim 1 and 2. In aim3, I improve E3SM’s computational performance using

emulators to replace the full radiation scheme. fully coupled E3SMv1 was developed

from the Community Earth System Model (CESM1) (50). Improvements from the

CESM1 include:

• The E3SM Atmosphere Model (EAM) component which has a spectral-element

dynamical core, replaced parametrizations of turbulence, cloud microphysics

and shallow convection, enhanced aerosol parameterizations and a vertical

resolution increased to 72 levels

• New ocean and sea ices components based on the Model for Prediction Across

Scales (MPAS) framework that uses Spherical Centroidal Voronoi Tessellations

(SCVTs) for multiresolution modeling
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• The Model for Scale Adaptive River Transport (MOSART)

• The E3SM land model (ELM) that has options for representing soil hydrology

and biogeochemistry

These changes are described in more detail in (36). The performance of the E3SMv1

has shown to be consistent with other ESMs, with some notable improvements over

these different models, including increased representation of tropical variability and a

more accurate ability to simulate the Madden Julian Oscillation (36). The E3SMv1

has also shown improvement in ocean and sea ice behavior and finescale atmospheric

features in high-resolution simulations.
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Chapter 2

Reconstructing High Resolution

ESM Data Through a Novel Fast

Super Resolution Convolutional

Neural Network (FSRCNN)

Aim 1: Statistical Downscaling
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A version of this chapter has been accepted for publication in Geophysical

Research Letters:

Passarella, L. S., Mahajan, S., Pal, A., Norman, M. R. Reconstructing High

Resolution ESM data through a novel Fast Super Resolution Convolutional Neural

Network (FSRCNN). Geophysical Research Letters, e2021GL097571.

No revisions to this chapter have been made since the original publication.
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2.1 Abstract

We present a first application of a fast super resolution convolutional neural network

(FSRCNN) based approach for downscaling earth system model (ESM) simulations.

Unlike other SR approaches, FSRCNN uses the same input feature dimensions as the

low resolution input. This allows it to have smaller convolution layers, avoiding over-

smoothing, and reduced computational costs. We adapt the FSRCNN to improve

reconstruction on ESM data, we term the FSRCNN-ESM. We use high-resolution

(∼0.25◦) monthly averaged model output of five surface variables over North America

from the US Department of Energy’s Energy Exascale Earth System Model’s control

simulation. These high-resolution and corresponding coarsened low-resolution (∼1◦)

pairs of images are used to train the FSRCNN-ESM and evaluate its use as a

downscaling approach. We find that FSRCNN-ESM outperforms FSRCNN and other

super-resolution methods in reconstructing high resolution images producing finer

spatial scale features with better accuracy for surface temperature, surface radiative

fluxes and precipitation.

2.2 Plain Language Summary

High resolution global climate data is computationally expensive to run but crucial

for assessing climate change effects at local and regional scales. Here, we adapt a new

deep learning technique, called fast super-resolution convolutional neural network, to

remap climate data from low resolution to high resolution grids. This approach is
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faster and more accurate for statistical downscaling climate data compared to other

prevalent methods.

2.3 Introduction

Accurate and reliable climate data is critical for assessing the risk of climate change

to our society’s well-being. Increases in temperature, sea-level, and extreme weather

events can render many aspects of our society vulnerable including our health, natural

resources and energy-systems (86; 111). Local and regional climate future projection

data is the most crucial for planning and mitigating these risks, but is often the least

reliable (101). Current Earth System Models (ESMs) used for simulating Earth’s past

climate and future projections are often computationally limited to coarse horizontal

resolutions, generally between 1◦ to 3◦ (113). These low resolution models fail to

accurately simulate important physical processes such as precipitation extremes (55).

Recent advances in computing resources have allowed for global ESMs to be run at

higher resolutions (∼0.25◦) for longer time periods and have shown to improve the

simulations of regional mean climate as well as extremes (126; 76). However, these

high resolution models remain prohibitively expensive.

A computationally less expensive approach to derive high resolution climate data

over a region of interest is to map data from low resolution global model simulations

to high resolution grids using dynamical or statistical downscaling techniques.

Dynamical downscaling involves running high resolution regional dynamical models
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to extrapolate large scale boundary conditions obtained from a coarser global ESM to

finer resolutions on regional scales. Statistical downscaling (SD) aims to map coarse

resolution data to high resolution projections using statistical methods like linear

regression. Recent studies have shown that machine learning techniques, like neural

networks (117; 29) and support vector machines (34), for SD significantly outperform

other traditional SD methods. In this study, we use one such computer vision

approach called super-resolution (SR), which generates a high resolution image from

its low resolution equivalent. SR techniques attempt to generalize across images and

have been shown to learn local scale patterns more efficiently than other downscaling

methods (113).

One pioneering work in SR deep learning is a SR convolutional neural network

(SRCNN). A convolutional neural network is a type of artificial neural network that

convolves a kernel with the data to extract features for further use in the overall neural

network architecture (66; 65; 37). The SRCNN was originally proposed by Dong et al.

(26) and was shown to achieve significantly better performance over other traditional

and state of the art SR methods. Vandal et al. (114) demonstrated the usefulness of

using a stacked SRCNN, called DeepSD, to downscale ensemble ESMs and showed

that it outperforms other methods including bias correction spatial disaggregation

(BCSD), artificial neural networks (ANN), Lasso and support vector machines (SVM).

Several recent studies have used similar super resolution approaches to downscale

ESMs to higher resolutions and demonstrated significant skill. These include a

super resolution general adversarial network (SRGAN) (104) to downscale wind and
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solar radiation fields to 50x resolutions and a Laplacian pyramid super-resolution

network, termed, ResLap, that uses a residual dense block to allow hierarchical feature

extraction from the convolutional layers (16).

One common feature of these SR approaches is a pre-processing step where the

low resolution images are pre-interpolated to the desired high-resolution output image

size (say, using bilinear interpolation) before running the network. Dong et al. (27)

developed a method, termed as fast SRCNN (FSRCNN), that alleviates this pre-

processing and replaces it with a deconvolution layer at the end, facilitating mapping

directly at the resolution of the low resolution image. Since the computational

complexity of a CNN is proportional to the input image size, this lowers the

computational cost of the network significantly - almost by a factor of n2 compared

to a SRCNN, where n is the downscaling factor. Further, the smaller input image

size in FSRCNN implies that narrower filters can capture the same information,

thus allowing for more filters for greater feature extractions while also lowering

computational cost. This use of smaller kernel sizes to improve CNN models

was proved in Simonyan and Zisserman (103). The FSRCNN has been shown to

improve image reconstruction skill significantly compared to a general SRCNN for

high downscaling factors, with the convolution-deconvolution structure reducing edge

smoothing and loss of detail and improving feature reconstruction. Further, the

same FSRCNN network can be used for different upscaling factors with only the

deconvolution layer needing further tuning.
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Here, we present a first attempt to apply FSRCNN for ESM downscaling and

find that it is generally more skillful than DeepSD. Further, we improve upon the

FSRCNN by adapting it to use additional SRCNN-like convolutional layers after the

deconvolution step. By adding these additional convolutional layers, we are able to

extract more information and finer spatial details in the high resolution images. We

refer to this new adapted FSRCNN architecture as FSRCNN-ESM. Following previous

validation studies (104) of the application of super resolution approaches to climate

data, we also reconstruct high resolution data from a coarsened version of the same

data. We evaluate the reconstruction results using an objective evaluation metrics

like the mean absolute error, and find FSRCNN-ESM to be a promising downscaling

method with superior skills as compared to both DeepSD and FSRCNN. Section 2

describes the ESM data used as well as the improved FSRCNN network architecture

in more detail. We present the results of our objective and subjective evaluations in

Section 3 and summarize our work in Section 4.

2.4 Methods

2.4.1 Data Collection

For this study we use monthly output of a 30-year segment of the 1950-control

simulation with the global high resolution (0.25◦) configuration of the Energy Exascale

Earth Systems Model (E3SM) (28). Model data was obtained from the Earth System

Grid Federation (ESGF) (20). It should be noted that E3SM data is bilinearly
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interpolated from its native non-orthogonal cubed-sphere grid to an equivalent regular

0.25◦x0.25◦ longitude-latitude grid. We call this model data, E3SM-HR. This high

resolution data is interpolated to a 1◦x1◦ grid using a bicubic method to obtain the

corresponding low resolution input images, which lose the fine scale features present

in the high resolution data. Our goal is to reconstruct the high resolution images back

from these coarsened data using FSRCNN. When using a computer vision approach

to gridded E3SM data, we can think of each grid point as a pixel in an image. For

this study, we look at a subset of E3SM data corresponding to North America. The

low-resolution images as a result are 60× 60 pixels, while high-resolution images are

four times larger across both dimensions and have a size of 240× 240 pixels each.

We chose five variables to test the FSRCNN - surface temperature (TS), shortwave

heat flux (FSNS), longwave heat flux (FLNS), precipitation convective rate (PRECC)

and the large scale precipitation rate (PRECL). This results in 360 images for one

variable, or 1,800 images in total. We use all the variables together, each normalized

using the min-max scaler, in a single one-channel network when training so our

algorithm can learn how to extract multiple spatial features. The addition of multiple

variables in one network enhanced our reconstruction. For example, when training

just PRECC on a single network, the average mean square error (MSE) for testing

was 7.58e − 7. When using all variables together, the MSE on the testing dataset

for PRECC is 2.79e − 11 (see table 1). It is common in computer vision to learn

many different classifications of images in a single algorithm to improve feature
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reconstruction. Before training the model, we split the last 3 years of data into a

testing set, corresponding to 180 images or 36 images for a single variable.

We also explore the use of elevation as a second input channel to our methods.

Several studies have shown the addition of elevation as an input is important for

enhancing the reconstruction quality of precipitation data (113; 70).

2.4.2 Deep Learning

SRCNN and DeepSD

The SRCNN is trained to directly learn practical mappings between low resolution

and high resolution images with little pre- and post-processing (26). The low

resolution image must be interpolated to the desired output size before training using

a bicubic method. The SRCNN consists of three operations: patch extraction and

representation, non-linear mapping and reconstruction (26). The goal of an SRCNN

is to take the low resolution image Y and generate a high resolution image G that is

close to the ground truth image I.

Layer 1 of the SRCNN consists of 64 filters of 9x9 kernels, layer 2 has 32 filters

of 1x1 kernels and the output layer has a single filter with a 5x5 kernel, the same as

described in Dong et al. (26). We trained this SRCNN on 100 epochs with an adam

loss optimizer, sigmoid activation function and an initial learning rate of 0.001 using

tensorflow. The choice of a sigmoid activation function allows for back propagation
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to return an output value between 0 and 1 which is useful in this context, since we

normalize the images before training with a min-max scaler.

Vandal et al. (113) uses a stacked SRCNN apporach called DeepSD and here

we test that method against the FSRCNN-ESM. DeepSD uses elevation as a second

input channel for the SRCNNs to train on. The first SRCNN is used to interpolate

the images from a 1◦ resolution to 0.5◦. The estimated 0.5◦ resolution images are

then passed to the next SRCNN and interpolated to the final 0.25◦ images. Here, we

only use 2 stacked SRCNN, as opposed to 3 in the original paper, since we are only

downscaling by a factor of 4. It is important to note that Vandal et al. (113) used

the DeepSD method to downscale one variable, precipitation, and here we are using

it to downscale five.

General FSRCNN

The basic FSRCNN method was created to accelerate the SRCNN process and the

redesign involved three features: (1) smaller convolutional kernels but more feature

maps, (2) an added deconvolutional layer, and (3) the input feature dimension is

the same as the original low resolution image (73). Because the FSRCNN takes

the original 60 × 60 image as the input and does not have to interpolate it to

a 240 × 240 image, it learns 16 times fewer weights than the SRCNN and as a

result is much faster when training. The final reconstruction to the HR image then

requires a deconvolutional layer at the end to remap the data from the low resolution

reconstruction steps to a higher resolution grid. We note that the deconvolutional
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layer is not the same as an unpooling plus convolutional layer, sometimes known as

convolutional interpolation, which in its purest form resizes an image by copying pixels

as many times as needed to achieve the desired image size before passing through a

convolutional layer. A deconvolutional layer, also known as a transpose convolutional

layer, instead pads the image with zeros to desired size before upsampling the image

using learned kernels. dong2016accelerating found that replacing the deconvolutional

layer with an unpooling layer resulted in a significant drop in reconstruction quality.

The FSRCNN can be broken down into five parts: feature extraction, shrinking,

nonlinear mapping, extension, and deconvolution (27). The feature extraction step in

Dong et al. (27) consists of a 5 by 5 filter size with d number of filters. The number of

filters can be thought of as the number of desired learned features in the low resolution

image. The shrinking step is a 1 by 1 filter with s number of filters, here s < d, that

acts as a way to condense the number of features found in step 1. The nonlinear

mapping step maps the features in step 2 nonlinearly to a new set of features. It uses

multiple layers of nonlinear mapping with a filter size of 3 by 3. By selecting smaller

convolutional kernels but more feature maps (large d), the FSRCNN learns more non-

linear features in the data and creates better SR reconstruction results compared to

the SRCNN. The FSRCNN then moves on to the expansion layer, which acts like an

inverse of the shrinking layer, to generate a larger number of feature maps to improve

high resolution reconstruction. Finally, the FSRCNN uses the deconvolution step to

achieve the final high resolution image.
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FSRCNN-ESM Architecture

Here, we expand upon the basic FSRCNN method to maximize accuracy for image

reconstruction for E3SM data. We include additional convolutional layers after the

deconvolution step in the FSRCNN - an added patch extraction step consisting of

64 kernels, and a nonlinear mapping step with 32 kernals, similar to those in the

SRCNN - both of which are applied to the high resolution data generated after the

deconvolution step as shown in Fig. 1. Fig. 1 shows the SRCNN, original FSRCNN

and the new configuration. We refer to this new network as FSRCNN-ESM. We found

that these additions to the network further improve image reconstruction in our data,

as determined by a loss function. The loss is calculated by using a pixel-wise MSE

using the following equation:

MSE(I,G) =
1

N

∑
i,j

(Ii,j −Gi,j)
2(2.1)

where I is the original high resolution image and G is the generated high resolution

image and i and j denote the location of the pixel. The training loss decreased by

50% with the added feature extraction step after the deconvolutional layer in the

FSRCNN-ESM compared to the original FSRCNN architecture.
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Figure 2.1: The network architecture of the SRCNN (24,513 trainable parameters), FSRCNN (15,681 trainable
parameters) and our expanded FRSCNN-ESM (34,246 trainable parameters) used in this study. We add feature extraction
and nonlinear mapping layers after the deconvolutional layer because it was shown to significantly enhance image
reconstruction in our E3SM data.



Similarly, the average reconstruction loss in MSE for the FSRCNN was 0.000568

compared to the average MSE for the FSRCNN-ESM at 0.000261.

We also evaluate the impact of the addition of elevation as a second input on

reconstruction quality. Table 1 shows the MSE for variables in the test set for

the FSRCNN, FSRCNN plus elevation, FSRCNN-E3SM and FSRCNN-E3SM plus

elevation. Elevation improved the simple FSRCNN method, but we did not see the

same improvement for the FSRCNN-ESM. Therefore, we add elevation as an input

channel to the FSRCNN but not our FSRCNN-ESM in our further evaluations with

the testing data.

2.4.3 Evaluation Metrics

We evaluate the mean absolute error (MAE) for each reconstruction method on each

variable the testing dataset. Before computing the MAE, we scale the variables back

to their original values using min-max scaler. We define the MAE as follows:

MAE =
1

N

N∑
1

|Gi − Ii| (2.2)

where Gi is the predicted image i and Ii is the actual truth image. The MAE

for each variable is expressed in the variable’s units. Here N is 36, or the number of

images per variable in the testing dataset.

We also evaluate the skill of each method’s ability to reconstruct high resolution

images by computing the L1 and L2 error for each sample as follows:
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Table 2.1: The MSE for each variable in the test data set for the FSRCNN, FSRCNN
plus elevation, FSRCNN-ESM and FSRCNN-ESM plus elevation.

TS FSNS FSNT PRECC PRECL
FSRCNN 3.251e-5 4.377e-5 3.563e-5 3.299e-5 3.767 e-5

FSRCNN + elevation 3.189e-5 4.285e-5 3.499e-5 3.246e-5 3.709e-5
FSRCNN-ESM 2.628e-5 3.582e-5 3.026e-5 2.796e-5 3.233e-5

FSRCNN-ESM + elevation 3.336e-5 4.467e-5 3.841e-5 3.614e-4 4.167 e-5
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L1 =

∑
i,j |Gi,j − I1,j|∑

i,j |I1,j|
, L2 =

∑
i,j(Gi,j − I1,j)

2∑
i,j(I1,j)2

(2.3)

We compute both the L1 and L2 errors and the MAE across each variable on the

held out testing dataset.

2.5 Results

We compare the FSRCNN-ESM method as applied to E3SM data with the DeepSD

method (26) and with a basic bicubic interpolation using the above stated metrics

for determining image reconstruction quality: MSE, MAE, L1- and L2-error. We

also compare the computational training time of the FSRCNN and FSRCNN-E3SM

against DeepSD.

2.5.1 Reconstruction Evaluation

Figure 2 show samples of reconstruction of high resolution images over a part of

Northern America from low-resolution images using bicubic interpolation, DeepSD,

FSRCNN and FSRCNN-ESM approaches. We randomly pick one sample of a summer

(June) month from 3 years of reconstruction test data for each of the five variables to

visually illustrate the reconstruction quality. The inset plot shows a zoomed in portion

to better visualize some of the finer spatial details of some region, generally over the

Rocky Mountains and over Northern Andes - regions that show strong gradients in

the high resolution images owing to the topography there. The plots (first column)
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show the loss of fine-scale features as the high resolution images (last column) are

interpolated to low-resolution images. To restate, the goal is then to reconstruct the

high resolution image from these low resolution images. It is clear that a bicubic

interpolation to downscale performs poorly. The DeepSD generally improves over the

bicubic interpolation, but still lacks the finer-scale details noted in the high resolution

images - this is apparent in most of the images for all variables. For example, the

DeepSD is not able to discern the strong gradients over the Northern Andes clearly

for convective precipitation (PRECC) (Figure 2, second and fourth rows). Similarly,

it is not able to capture the fine scale features of surface temperature (TS), net surface

shortwave radiation (FSNS), net surface longwave radiation flux (FLNS) and large-

scale precipitation (PRECL) over North America in the summer (Figure 2, first, third

and fifth rows). It is clear visually that FSRCNN-ESM better generates finer details

in high resolution data when compared to the DeepSD and bicubic interpolation,

which both tend to over-smooth the images. For the above stated examples, the

FSRCNN-ESM is able to isolate the strong gradients in PRECC over the Northern

Andes and in TS, FSNS, FLNS and PRECL over North America in the summer.

To quantify the reconstruction skill of these methods, we use the MAE metric

over the testing dataset. Table 2 summarizes the results of our analysis for the three

methods. We calculate the MAE for each variable image over each month in the

testing dataset. Consistent with the visual illustrations (Figure 2), the FSRCNN-

ESM generally outperforms the other methods in terms of this metric across most

variables and months, with the exception of FSNS in which the FSRCNN had a
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Figure 2.2: Super resolution reconstruction results for a sample in June.
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higher reconsturction skill on average. Dong et al. (27) noted that a large fraction of

the increase in reconstruction results came from replacing the bicubic interpolation

step in the SRCNN with the deconvolution layer in FSRCNN when they partitioned

their error metric into different steps. We see this here with the increase in skill

from DeepSD to both the FSRCNN and FSRCNN-ESM. It is interesting to note

that the bicubic interpolation skill is comparable to DeepSD for our data, and

exceeds it for most variables. Most methods tend to underestimate precipitation

variables. Precipitation occurs intermittently and is a highly non-linear process

and results from multi-scale, multi-phase physical processes creating large spatial

heterogeneity. The above suggest that image reconstruction becomes more difficult

as spatial heterogeneity increases.

We also use the L1 and L2 error metrics to quantify reconstruction skill of the

various methods on our held out testing dataset. Figure 3 shows the histogram of the

L1 and L2 errors for FSRCNN-ESM (a,e), the original FSRCNN (b,f), DeepSD (c,g)

and bicubic (d,h) respectively.The majority of our FSRCNN-ESM predicted samples

(Figure 3a) have a L1 error less than 10% and an L2 error less than 1% suggesting

the effectiveness of our FSRCNN-ESM for interpolating E3SM data to high resolution

grids. Our FSRCNN-ESM also generally achieves better reconstruction skill compared

to the other two methods based on both the metrics, consistent with the findings using

the MAE metric.

27



28

Table 2.2: The mean absolute error (MAE) for surface temperature (TS K) , shortwave heat flux (FSNS w/m2), longwave
heat flux (FLNS w/m2), precipitation convective rate (PRECC mm/day) and the large scale precipitation rate (PRECL
mm/day). The PSNR for the variables is averaged across each month and presented here in terms of logarithmic decibel
scale.

Bicubic TS DeepSD TS FSRCNN TS FSRCNN-ESM TS Bicubic FSNS DeepSD FSNS FSRCNN FSNS FSRCNN-ESM FSNS
Jan 0.377 0.499 0.013 0.061 3.869 3.208 1.179 1.128
Feb 0.409 0.511 0.106 0.074 3.116 2.527 0.949 0.863
Mar 0.314 0.437 0.117 0.046 1.736 1.116 0.070 0.520
Apr 0.294 0.417 0.069 0.003 0.318 0.289 0.620 0.788
May 0.380 0.504 0.048 0.011 0.319 0.978 0.617 0.998
Jun 0.432 0.558 0.063 0.027 0.215 0.847 0.479 0.499
Jul 0.469 0.586 0.141 0.031 0.058 0.567 0.313 0.312
Aug 0.430 0.547 0.125 0.006 0.606 0.021 0.238 0.056
Sep 0.394 0.514 0.048 0.017 1.304 0.676 0.523 0.356
Oct 0.260 0.392 0.070 0.023 2.502 1.886 1.162 0.926
Nov 0.188 0.335 0.047 0.030 3.392 2.715 1.029 1.028
Dec 0.327 0.453 0.072 0.046 4.088 3.421 1.124 1.096

Bicubic FLNS DeepSD FLNS FSRCNN FLNS FSRCNN-ESM FLNS Bicubic PRECC DeepSD PRECC FSRCNN PRECC FSRCNN-ESM PRECC
Jan 0.409 0.217 0.187 0.164 0.071 0.041 0.038 0.033
Feb 0.361 0.169 0.141 0.115 0.091 0.061 0.058 0.053
Mar 0.302 0.110 0.085 0.057 0.092 0.062 0.059 0.054
Apr 0.269 0.077 0.054 0.024 0.079 0.049 0.046 0.041
May 0.222 0.030 0.009 0.023 0.023 0.006 0.009 0.014
Jun 0.261 0.069 0.046 0.015 0.016 0.046 0.049 0.054
Jul 0.288 0.096 0.072 0.042 0.033 0.063 0.066 0.071
Aug 0.294 0.102 0.077 0.048 0.033 0.063 0.066 0.072
Sep 0.365 0.173 0.145 0.120 0.041 0.070 0.073 0.079
Oct 0.362 0.170 0.143 0.117 0.031 0.061 0.064 0.069
Nov 0.435 0.243 0.211 0.190 0.013 0.016 0.019 0.024
Dec 0.439 0.247 0.215 0.194 0.054 0.024 0.021 0.016

Bicubic PRECL DeepSD PRECL FSRCNN PRECL FSRCNN-ESM PRECL
Jan 0.106 0.062 0.057 0.049
Feb 0.137 0.093 0.088 0.080
Mar 0.138 0.094 0.089 0.081
Apr 0.119 0.074 0.069 0.062
May 0.034 0.009 0.014 0.022
Jun 0.025 0.069 0.074 0.082
Jul 0.050 0.094 0.099 0.107
Aug 0.051 0.095 0.100 0.107
Sep 0.061 0.106 0.110 0.118
Oct 0.047 0.091 0.096 0.104
Nov 0.020 0.024 0.029 0.036
Dec 0.081 0.036 0.032 0.024



Figure 2.3: L1 and L2 error computed for all reconstruction methods on the held
out testing dataset (a-h) and the cumulative training time in minutes (i) and the
training loss (j) for the DeepSD, FSRCNN and FSRCNN-ESM over 100 epochs.
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2.5.2 Computational Performance

Figure 3j shows the cumulative CPU computational time required to train FSRCNN-

ESM (blue), DeepSD (red) and FSRCNN (green) on 100 epochs. FSRCNN-ESM

completed training 600% faster than the DeepSD, comparable to the decrease in

training time with the FSRCNN, while still maintaining similar loss values (Figure

3i). This is largely due to the fact that the DeepSD has a pre-processing step of

interpolating low resolution images to the desired output size before training, while

the FSRCNN-ESM uses the low resolution image size. As stated earlier this allows

using narrower filters on the smaller images, reducing the total number of parameters

and computations. Once trained, however, the DeepSD and FSRCNN-ESM take

roughly the same amount of time, about 25 seconds, to downscale all 1,800 images.

Dong et al. (27) showed that an FSRCNN with similar number of steps as a

SRCNN produced a speed-up of about 40x when upscaling by a factor of three. This

was largely (about 30x) due to the narrower filters in the FSRCNN that led to the

large difference between the number of trainable parameters in the nonlinear mapping

step of SRCNN and that in the corresponding three steps (combination of shrinking,

non-linear mapping and expanding steps) in FSRCNN. The use of the low-res image

as input in the FSRCNN contributed to the remaining reduction in computational

cost of network training. The computation of FSRCNN-ESM only provides a speed

up of 6x over the DeepSD for a upscaling factor of four. The increase in cost of

FSRCNN-ESM as compared to the base FSRCNN is due to the addition of new patch
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extraction, nonlinear mapping and reconstruction steps after the deconvolution step

in FSRCNN-ESM. The combination of these new steps is equivalent to a full SRCNN

in itself that uses the full HR image size as an input, but with narrower filters. The

use of narrower filters in these steps then still allows for a faster training of the overall

FSRCNN-ESM network as compared to the DeepSD.

2.6 Summary and Discussion

We apply a novel super-resolution based approach for downscaling ESM data that

uses a modified version of the FSRCNN method. We find that this FSRCNN-ESM

is able to map low resolution climate images to a four times higher resolution with a

better skill than DeepSD, FSRCNN and bicubic interpolation; for surface radiative

fluxes and large scale and convective precipitation; while remaining computationally

inexpensive to train. Our FSRCNN-ESM is also able to downscale images in a single-

step process and without need for access to GPUs for training. The FSRCNN-ESM

as a result is a more approchable method of downscaling using machine learning.

This study focused on reconstructing monthly averaged images. In the future,

we will explore the application of FSRCNN-ESM for downscaling higher temporal

resolution data like daily and sub-daily data, and target extreme events. Also,

FSRCNN-ESM does not consider the concurrency of images of the different variables

- the network is agnostic of the presence of data for other variables. In the future,

we plan to use multi-channel approaches (114; 104; 16) using all the concurrent
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variables simultaneously in the network for reconstruction allowing the network access

to more correlated data, which may improve reconstruction skill. We also plan to

evaluate the FSRCNN-ESM against other recent machine learning approaches that

have been used for downscaling, for example, SRGAN (104), and ResLap (16), all of

which have been shown to perform better than the SRCNN or other approaches

for different variables, regions and scaling factors.This study is the first to use

FSRCNN for ESM data and we applied the original version of FSRCNN here, and

with some improvements (FSRCNN-ESM), to demonstrate its utility. We plan to

explore the applicability of the latest advances in FSRCNN and SRCNN to ESM

downscaling in the future. Some advanced applications include using GANs as a

latent blank to improve image reconstruction on an SRCNN (12), using a student-

teacher supervised learning approach to training (120), applying skip connections to

alleviate the vanishing gradient problem (140), and the use of a multi-path residual

to improve efficiency in the SRCNN (121).

The resolution of finer scales in the high resolution model and scale-agnostic nature

of current sub-grid scale physical parameterizations used in climate models imply

that a low-resolution model simulation is not statistically equivalent to coarsened

data from a high-resolution model. For example, the simulation of precipitation

extremes is found to be stronger in high resolution simulations than the low resolution

simulations, even after conservative mapping of high-resolution simulation data to

the low-resolution grid (127; 125; 76). In order to apply FSRCNN-ESM directly to

low-resolution model output to generate high resolution images at the skill of a high
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resolution simulation, we would thus require a bias-correction step. We plan to explore

traditional bias-correcting methods as well as utilize machine learning approaches for

it. We would also explore the use of nudged simulations or regionally refined models

to generate equivalent pairs of low-resolution and high-resolution model simulations

that could be used for training a FSRCNN-ESM network.
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3.1 Abstract

We construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE)

in an application of multi-task learning to isolate the non-linear dependence of SC-

PRECIP on tropical Pacific Ocean sea surface temperature (SST) on monthly time-

scales. The MIMO-AE expands on the general autoencoder architecture and is trained

on both monthly sea surface temperature (SST) anomalies over deep tropical Pacific

Ocean (TP-SST) and Southern California precipitation anomalies (SC-PRECIP)

simultaneously. This allows it to capture the co-variability of the two fields in a

shared nonlinear latent space that can be condensed into an index, which we term as

MIMO-AE index. We use a transfer learning approach by first training the MIMO-AE

on 100 years of output from a historical simulation with the Energy Exascale Earth

Systems Model version 1 (E3SMv1) and then passing observational data through

the trained MIMO-AE model. We further use Long Short-Term Memory (LSTM)

networks to assess sub-seasonal predictability of SC-PRECIP using the MIMO-AE

index. We find that the MIMO-AE index provides enhanced predictability of SC-

PRECIP up-to a two-month lead-time as compared to Niño 3.4 index and the El

Nino Southern Oscillation Longitudinal Index.

Plain Language Summary

Traditional El Niño Southern Oscillation indices, like the Niño 3.4 index, although

well-predicted themselves, fail to offer reliable sub-seasonal to seasonal predictions of
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Western US precipitation. Here, we use a machine learning approach called a multi-

input, multi-output autoencoder to isolate and maximize the relationship between

tropical Pacific and Southern California precipitation and project it onto a new index,

which we call MIMO-AE index. Using machine learning based time-series predictions,

we find that MIMO-AE index offers enhanced predictability of Southern California

precipitation up-to a lead time of two months as compared to other ENSO indices.

3.2 Introduction

While El Niño-Southern Oscillation (ENSO) is a prominent predictor of precipitation

over California, extracting sub-seasonal and seasonal predictability afforded from

it remains a challenge (75; 122). This was apparent during the 2015-16 Central

Pacific (or Modoki) El Niño event, when California received just above average

precipitation, in contrast to the forecast of heavy precipitation associated with the

canonical (Eastern Pacific) 1982-83 and 1997-98 strong El Niño events (21; 67; 74).

Perfect model studies with dynamical models suggest that the potential predictability

of Western US precipitation on sub-seasonal to seasonal timescales maybe larger

than the observed forecast skills of dynamical and statistical models (3). Although,

dynamical models capture the chaotic and non-linear nature of the climate system,

their predictive skill is limited by systematic model biases (largely originating from

the errors in the representation of sub-grid scale processes that grow rapidly) and

from complications of model initialization from sparse observations.
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Statistical modeling, that also suffers from sparse data, suggests that over

California tropical Pacific sea surface temperatures (TP-SSTs) offer predictability

largely only for Southern California precipitation (SC-PRECIP), explaining about

20% of the variability there on seasonal to inter-annual timescales (52; 48; 119; 17).

However, ENSO-induced predictability of regional climate using statistical models has

largely been assessed from the linear relationship with ENSO, using linear regression

or singular value decomposition, ignoring the inherent non-linearity of the climate

system. Although, some studies have used non-linear machine learning approaches

to study ENSO associated atmospheric teleconnections (46; 130).

Further, traditional representations of ENSO in these linear statistical models,

include spatial averages over specific regions of the tropical Pacific like the Niño

3.4 index, or use linear empirical orthogonal functions. These approaches prove

to be inadequate in capturing the full spectrum of spatial variability of ENSO’s

SST pattern and the associated diversity of remote responses affecting regional

climate predictability (112; 129). Several recent studies have explored methods to

better capture ENSO’s variability, diversity and non-linearity (129). However, these

approaches largely devise indices that represent the oceanic or atmospheric variability

over the tropical Pacific in isolation of its remote teleconnections.

Empirical orthogonal functions (EOFs), or principal component analysis (PCA),

have generally been used to describe the two ENSO flavors, canonical and ENSO

Modoki. The Niño 3.4 index and ENSO Modoki Index (EMI) are typically chosen

to represent the 2 leading EOF patterns in SST data (2; 68). However, the strict
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bi-orthogonality of the components can make them difficult to interpret and do not

necessarily relate to a physical phenomenon (116). Several studies have also shown

that these two types of ENSO events are not entirely orthogonal to begin with (62;

135; 105). As a result, the nonlinear nature of ENSO has been continuously explored

(41; 1; 107; 129). williams2018diversity, for example, developed a new nonlinear

ENSO index, the ENSO Longitude Index (ELI), that captures the response of deep

convection associated with ENSO across the equatorial pacific. The ELI was also

able to better capture remote climate impacts, in this case precipitation over the US,

over tradition indices such as the Niño 3.4 index.

Explainable machine learning methods, like autoencoders, offer an avenue for

identifying dominant nonlinear variability and co-variability patterns that might offer

enhanced predictability. Autoencoders are artificial neural networks that regenerate

the original data from efficient representations (encodings) of the data. They

are typically used for dimensionality reduction, analogous to linear transformation

methods like principal component analysis (PCA) (44; 123; 124). They, however,

transform data to non-linear latent spaces via non-linear activation functions, thus

offering the additional capability of capturing the underlying non-linear relationships

within the data (124; 13; 81). Simplifying to a single hidden layer autoencoder

with linear activation functions yields the PCA vector spaces. Studies show that

autoencoders can better detect dominant variability patterns over other techniques,

like the PCA (124; 139; 30). Some studies (106; 43) have also demonstrated the use
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of autoencoders to effectively identify modes of climate variability, including those

related to ENSO.

Multitask learning (MTL) is a sub-field of machine learning used to solve multiple

learning tasks at the same time while exploiting commonalities and differences across

tasks (11). MTL has been applied to many problems including natural language

processing (22; 69; 15), speech recognition (23; 57; 109; 102) and computer vision

(35; 24; 54) to improve prediction accuracy and learning efficiency of task-specific

models. Recent studies have shown the usefulness of multi-input multi-output

(MIMO) convolutional neural networks and autoencoders for segmenting data and

extracting useful information when there are multiple variables present (97; 132; 33).

For example, ghifary2015domain used a multi-output autoencoder, which they call

a multi-task autoencoder (MTAE), for domain generalization. The MTAE has a

single input variable with multiple outputs where the input-hidden weights represent

variable shared parameters and the hidden-output weights represent domain-specific

parameters. MTAE learns features shared across all domains.

Here, we expand on the MTAE approach and construct a novel multi-input multi-

output autoencoder (MIMO-AE) to effectively extract the most prominent shared

features between monthly TP-SSTs and SC-PRECIP anomalies and capture their

underlying non-linear relationship. Our network architecture is designed to yield a

temporal index of the co-variability of the two variables. We further use Long Short-

term Memory (LSTM) models to predict this monthly index, which we decode to

generate predicted SC-PRECIP, and evaluate its predictive skill. We use data from
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an Earth System model (ESM) as well as observational data to train and validate the

MIMO-AE. We overcome the lack of available observational data by using a transfer

learning approach, whereby, MIMO-AE is trained on the ESM data and applied to

observational data. ham2019deep used a similar transfer learning approach to train

a convolutional neural network (CNN) with global SST and heat content data from

historical simulations of 21 CMIP5 models to predict the observed Niño 3.4 index.

3.2.1 Model Simulations and Data

We train and test the MIMO-AE on a historical 165 year run (100 years for training

and 65 for testing) of the Energy Exascale Earth System Model version 1 (E3SMv1)

(28). The atmosphere component model features a 110km nominal horizontal

resolution and 72 vertical layers and the ocean model’s nominal resolution ranges from

60 km in the mid-latitudes and 30 km near the equator and poles with 60 vertical

layers. E3SMv1 is found to effectively capture temporal variability of ENSO and

reproduce ENSO associated spatial SST patterns when compared to observational

datasets (36), although with a larger westward extent of SST anomalies during El

Nino events. It also simulates the teleconnections of ENSO to US winter season

precipitation well (78).

We use observed SSTs from the Hadley Centre Global Sea Ice and Sea Surface

Temperature (HadISST 1.1) dataset that spans 1870-2020 at a 1◦ resolution (96).

Data can be downloaded from the web at https://www.metoffice.gov.uk/hadobs/

hadisst/. We use observed precipitation data from NOAA’s PRECipitation
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REConstruction over Land (PREC/L) at 1◦ resolution (14). PREC/L is a global

analysis of interpolated rain gauge observations from 1948 to 2020 and can be found

open access at https://psl.noaa.gov/data/gridded/data.precl.html. We trim

the observed SST data to range from 1948-2020 to match the available observed

precipitation data.

3.3 Methodology

3.3.1 Autoencoder

An autoencoder is an unsupervised neural network that is trained to learn an

identity function, a function that returns the same value as its input. It aims to

efficiently compress and encode data by minimizing the reconstruction error. A

simple autoencoder, shown in figure 3.1a, contains a hidden layer h that describes

a representation of important attributes of the input (37). The general autoencoder

consists of two parts: an encoder and a decoder. The encoder maps input x to h by

a chosen activation function f(),

h = f(x · we) (3.1)

where we are the encoder weights. The decoder then maps h to the reconstruction of

x, represented by x′:

x′ = f(h · wd) (3.2)
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Figure 3.1: A simple autoencoder architecture.
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where wd are the decoder weights.

By using a linear activation function, the autoencoder behaves similarly to a

PCA (7; 94). The number of hidden layers can also be increased to create a deep

autoencoder, with the middle layer often referred to as the bottleneck layer. Tang

and Hsieh (106) used such an autoencoder to extract the leading nonlinear mode of

interannual variability of upper ocean heat content over the tropical Pacific, with

a single node bottleneck hidden layer. They found considerable asymmetry in the

spatial pattern between characteristic El Niño and La Nina episodes from their

network. For spatio-temporal data, the temporal vectors at the bottleneck nodes

are analogous to PCs. The value of a temporal vector at a given time t results

from passing the spatial data at t through the network. The non-linear activation

functions imply that the spatial pattern derived from reconstructing the data using

the decoder varies with the magnitude of the temporal vector at t, unlike PCs which

yield a standing spatial pattern (106).

MIMO-AE

Figure 3.2 illustrates our MIMO-AE architecture designed to extract the non-linear

relationship between TP-SSTs and SC-PRECIP on monthly timescales. The encoder

consists of two separate input temporal vectors (TP-SST and SC-PRECIP) that are

passed through two hidden layers before concatenating and passing through a single

hidden node. The input (and output) vectors represent SST anomalies at each grid

box within the boxed domain over tropical Pacific and precipitation anomalies over
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Figure 3.2: Our MIMO-AE Architecture.
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Figure 3.3: Training losses for MIMO-AE over 100 epochs using scaled data (c).
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Figure 3.4: The average R2 between the E3SM-only trained MIMO-AE
reconstructed and original input data for Southern California precipitation (d) and
Tropical Pacific SST (e).
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Figure 3.5: The average R2 between the transfer learning trained MIMO-AE
reconstructed and original input data for Southern California precipitation (d) and
Tropical Pacific SST (e).
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Table 3.1: R2 values of MIMO-AE indices against traditional ENSO indices over
different activation functions.

Activation Function Niño 3.4 PC1 PC2 ELI Precipitation
ReLU 0.856 0.843 0.027 0.461 0.589
SeLU 0.813 0.833 0.012 0.475 0.641
TanH 0.892 0.837 0.035 0.511 0.651
Leaky ReLU 0.928 0.906 0.002 0.491 0.483
eLU 0.766 0.841 0.029 0.491 0.614
sigmoid 0.868 0.964 0.029 0.546 0.306
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each grid box in the boxed domain over Southern California (Figure 3.2). The

first hidden layer, consisting of 50 nodes each for the two variables, can be thought

of as feature extraction of the original data. The next hidden layer then shrinks the

data to 10 hidden nodes, again separately for the two variables, in order to reduce

the computational complexity of data. This data is then passed to a single hidden

node that is shared by the two input variables. This hidden node represents the

shared non-linear latent structure of both the SST and precipitation vectors. The

vectors are then split back into two from the shared hidden node and passed through

the decoder, which is identical in structure to the encoder, to reconstruct back to

the original shape in the output layer. We use the ”tanh”, or hyperbolic tangent,

activation function for all the hidden layers.

We found that using more than one hidden node resulted in the MIMO-AE

learning either the precipitation pattern or the SST pattern and not the shared

variability of both.

We performed several iterations of the network design with different number of

hidden layers, neurons and activation functions and chose the MIMO-AE architecture

(described above) that exhibited a low value of the training loss function as well as

explaining a large fraction of the variability of SC-PRECIP. The loss is calculated by

using a mean squared error (MSE) using the following equation:

MSE =
1

N

∑
i

(Pi − Ti)2 (3.3)
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where Pi is the predicted value of the reconstructed data at point i and Ti is the

true value of the data at point i, which here is the original input data. MIMO-AE

was trained on first 100 years of the E3SM simulation data for 100 epochs with an

AdaGrad loss optimizer using tensorflow on one CPU node on the National Energy

Research Scientific Computing Center’s (NERSC) Cori super computer. The training

loss for the encoder (orange) and decoder (green) are shown in figure 3.3.

Figure 3.4d and e show the R2 values (fraction of variance explained) between the

reconstructions from the MIMO-AE and the original data for the 100 years of training

data for TP-SSTs and SC-PRECIP respectively. The MIMO-AE explains about 80%

of the variability of Southern California for most grid points and about 30% of the

variability of TP-SSTs over most of the domain. The relatively weaker explained

variability of MIMO-AE over tropical Pacific is an artefact of our network design

preference. We chose a network that explained a larger fraction of SC-PRECIP rather

than (say) equally for both variables, since our goal was largely to assess predictability

of SC-PRECIP. Likewise, a network can be designed to explain a larger fraction of

TP-SST rather than SC-PRECIP.

We refer to the temporal vector of the single node bottleneck layer that represents

the dominant non-linear mode of co-variability of TP-SSTs and SC-PRECIP as the

MIMO-AE index, hereafter. We apply the MIMO-AE-E3SM trained on 100 years of

E3SM historical simulation on the latter 65 years of the run. As a form of transfer

learning, we combine the first 100 years of the E3SM simulation with 32 years of

observational data (1948-1979) to train another MIMO-AE network for application to
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remaining observational data (1980-2020), termed MIMO-AE-OBS. Although, we find

that using MIMO-AE-E3SM on observational data imparted similar predictability

skills (Results section) as MIMO-AE-OBS for observational data. ham2019deep

also used a transfer learning approach, whereby, they train a convolutional neural

network (CNN) with global SST and heat content data from historical simulations

of 21 CMIP5 models. They retrained the network with observational data but with

weights initialized from the CMIP5-trained network, which was then used to predict

the observed Niño 3.4 index. While we have not investigated their approach to transfer

learning in our exploratory study of MIMO-AE here, we plan to apply this and other

transfer learning methods to MIMO-AE in the future.

3.3.2 LSTM

To study predictability, we also train long-short term memory (LSTM) recurrent

neural networks as our time series prediction models. LSTMs are a special

kind of recurrent neural network that learn long term dependencies whose cells

are constructed with internal mechanisms called ”gates” that control the flow of

information through the cell (45). There are three types of gates: forget, input and

output. These allow for the model to learn what features in the data are important

to keep or throw away before passing it down the line to the next cell. LSTM models

are constructed individually for each of the time series of MIMO-AE index, Niño 3.4

index, ELI and regionally averaged SC-PRECIP anomalies using the first 100 years of

the E3SM data. We train separate LSTMs for the above listed time series using the
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first 32 year segment of observational dataset used. LSTM models have recently been

shown to perform better at time series prediction over linear models for Niño 3.4 index

(47; 85; 10; 38), and we use them here to evaluate the predictability of these indices

as well as SC-PRECIP. Given a predicted value of MIMO-AE index, predicted SC-

PRECIP (and TP-SSTs) can be constructed by passing the index through the decoder

of MIMO-AE. We optimize the LSTM architecture by choosing the number of hidden

nodes that maintains a low training loss for all indices, found to be 100 nodes. We

train separate LSTMs for each of the forecast lead times ranging from 1 to 12 months

and evaluate their predictive skill on the remaining 65 years of E3SM data and the

30 years of observational data.

3.3.3 Pearson Correlation

The Pearson Correlation Coefficient (R) was used to evaluate the performance of

prediction using the following equation

PCC =

∑N
i=1(ytruei − ytruei) · (ypredi − ȳpredi)√∑N

i=1(ytruei − ytruei)2 ·
√∑N

i=1(ypredi − ȳpredi)2

(3.4)

where ytruei is the observed Niño 3.4 index and ypredi is the predicted index and N is

the sample size.
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3.3.4 Effective sample size

Auto-correlation and filtering causes a loss in temporal degrees of freedom when

computing the prediction skill of our indices. To correct for this loss, we calculate

the effective sample size using the following equation:

Neffective =
N

1 + 2
∑N

i γ
2
i

(3.5)

where γi is the auto-correlation of our SC-PRECIP time series at lag i Livezey and

Chen (72).

3.3.5 Fisher Transformation

We also compute the Fisher transformation of Pearson’s correlation for null hypothesis

testing and to compute confidence intervals of the correlation skills. The Fisher

transformation of Pearson’s correlation is approximately normally distributed. The

confidence intervals of R for, say, two standard normal deviates can be computed as

follows:

Z = archtanh(R) (3.6)

StandardError =
1√

Neffective − 3
(3.7)

Delta = 1.96 ∗ StandardError (3.8)

LowerBound = tanh(Z −Delta) (3.9)
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UpperBound = tanh(Z +Delta) (3.10)

where R is the Pearson correlation coefficient found in equation 3.4 and Neffective is

the effective sample size found in equation 3.5.

3.4 Results

3.4.1 MIMO-AE

Figure 3.6a shows the time evolution of the standardized MIMO-AE index for a

segment (last 20 years, 1994-2013) of the 65 years of testing data. MIMO-AE index

was generated by passing the TP-SST and SC-PRECIP data through the MIMO-

AE network trained on the prior 100 years of simulation. Also, shown are the time

series of standardized Niño 3.4 index, ELI and regionally averaged SC-PRECIP. We

apply a three month running average to each time series. Fig. 3b shows the same

but for a segment of the observational data (2000-2019). To reiterate, MIMO-AE

index is computed by passing the observed data through the E3SM trained MIMO-

AE network. For both E3SM and observations, MIMO-AE index exhibits higher

correlation with SC-PRECIP than Niño 3.4 index or ELI, given that precipitation

data is fed in the generation of MIMO-AE index. The correlation between MIMO-

AE is weak with both Niño 3.4 index and ELI both for E3SM and observational

data. However, the correlation between MIMO-AE and Niño 3.4 is higher than the

correlation between SC-PRECIP and Niño 3.4. The above correlations are indicative
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of the shared variability capture by MIMO-AE. Further, in observational data, all

indices spike during the 1982-83 and 1996-97 El Niño events, but only the Niño 3.4

peaks during the 2015-16 El Niño event. Thus, both ELI and MIMO-AE categorize

the 2015/2016 event weaker than the Niño 3.4.

Fig. 3.7c and d show the probability density functions of the Niño 3.4, ELI,

MIMO-AE index and domain averaged SC-PRECIP for E3SM testing data and

observations. While the Niño 3.4 index tends to be symmetric, the ELI is skewed

towards the left (westwards), both for E3SM data and observations as noted by

williams2018diversity, with a thicker right tail (eastwards). ELI is a non-linear SST-

based index and represents the average longitude of deep convective activity over the

tropical Pacific governing the Rossby wave trains originating from there. MIMO-AE

which represents the shared co-variability between the TP-SSTs and SC-PRECIP also

shows a leftwards skewed distribution with a larger number of strong positive events

than strong negative events. The leftwards skewness may follow from the density

function of precipitation that is naturally skewed leftwards, even for monthly average

data (77). But, it could also be reflective of the skewed relationship between TP-

SSTs and SC-PRECIP, with some events over the tropical Pacific triggering extreme

positive anomalous events in SC-PRECIP. While, co-variability between the two

remains weaker during strong negative SC-PRECIP anomalous events. The skewness

of MIMO-AE index is noted to be stronger in E3SM than in observations.
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Figure 3.6: Standardized time series of MIMO-AE index (blue), Niño 3.4 (orange),
ELI (green) and domain averaged SC-PRECIP (black) for a segment (last 40 years,
1974-2013) of the 65 years of testing data for the E3SM historical simulation (a); and
a segment (last 40 years, 1980-2019) of the observed testing data (b).
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Figure 3.7: The probability density distributions for the Niño 3.4 index (orange), ELI (green), MIMO-AE index (blue)
and SC-PRECIP (black) for E3SM data (c); and observational data (d).



Figure 3.8: Composite of reconstructions of TP-SST and SC-PRECIP for the top
10 strongest positive and negative MIMO-AE events for E3SM testing data (e).
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Figure 3.9: Composite of reconstructions of TP-SST and SC-PRECIP for the top
10 strongest positive and negative MIMO-AE events for observed testing data (f).
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Figure 3.10: The December to February average reconstructions for the three strong El-Niño events of 1981-82, 1997-98,
and 2015-16 in observations (g).
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Figure 3.11: The December to February average reconstructions for the three strong El-Niño events of 1981-82, 1997-98,
and 2015-16 in E3SM (g).



some events over the tropical Pacific triggering extreme positive anomalous events

in SC-PRECIP.

Fig. 3.8e shows the composite of reconstructions of TP-SST and SC-PRECIP

during the strongest 10 positive and negative MIMO-AE index values for both the

E3SM testing data. Strong (negative) SC-PRECIP anomalies during those events

are associated with strong positive (negative) anomalies in central tropical Pacific

and northeast tropical Pacific and weak positive (negative) anomalies in the Eastern

tropical Pacific. Similar patterns are noted for the strongest positive and negative

MIMO-index values for reconstructions of TP-SST when observation data is passed

through the MIMO-AE network (figure 3.9g). Figure 3.10f shows the December to

February average reconstructions for the three strongest El-Niño events (1981-82,

1997-98, 2015-16) in observations (and E3SM figure 3.11). It is apparent that the

spatial patterns of the reconstructions are not standing, but rather vary for each of the

years. The 2015-16 El Niño events is associated with weak positive anomalies in the

MIMO-AE latent space for SC-PRECIP and TP-SST over much of tropical Pacific. In

contrast, the 1981-82 and 1997-98 events are associated with strong positive anomalies

both in SC-PRECIP and TP-SST, with the stronger 1997-98 SC-PRECIP associated

with stronger TP-SST anomalies. When a separate MIMO-AE network is trained on

all of the observation data (1948-2020), the spatial pattern of the TP-SST during

1981-82 and 1997-98 exhibits a narrow band of strong anomalies over equatorial

Pacific including coastal Eastern Pacific (not shown), illustrating model
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Figure 3.12: The peak SSTA along the equator and the corresponding longitude in which they occur for model and
observational data respectively (ab,e,f) and compare the Nino 3.4 and MIMO-AE indicies averaged from December to
February (DJF c,g) and June to August (JJA d,h) for each year in E3SM data and observed.



bias in E3SM-only trained network. Although, using some observational data

along with E3SM data to train the network showed little impact on our predictability

results here (next section), we plan to reduce the influence of model bias in our

MIMO-AE by appropriately weighing the observational data used during training.

The scatter plots in figure 3.12(a,b,e,f) show the peak SSTA along the equator

and the corresponding longitude in which they occur for model and observational

data respectively. We compare the spatial distribution of ENSO events defined by

both the Niño 3.4 index (figure 3.10a,i) and the MIMO-AE (figure 3.10b,j). For both

the MIMO-AE and Niño 3.4, events in the western Pacific are generally weaker than

those in the east. Similarly, the largest events always occur in the eastern Pacific for

both indices. The MIMO-AE captures a greater spatial distribution of events over

the Niño 3.4 as seen in the historgrams in figure 3.11(a,b,i,j). This is likely due to the

spatial constraints used when calculating the Niño 3.4 index and suggests the MIMO-

AE can effectively distinguish different flavors of ENSO events, such as the ENSO

Modoki. This is seen in the high magnitude of events in the 160 − 200◦ longitude

region captured by the MIMO-AE compared to the Niño 3.4 in the observational data

set (figure 3.10j).

The scatter plots in figure 3.12(c,d,g,h) compare the Nino 3.4 and MIMO-AE

indicies averaged from December to February (DJF 3.12c,k) and June to August

(JJA 3.12d,l) for each year. The MIMO-AE categorizes the 2015-2016 ENSO event

in observational data as being a neutral ENSO event during boreal winter and a
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stronger event in the summer, although not as strong as the 1997-1998 and 1982-

1983 events where western US precipitation was far above average in observational

data (figure 3.12k,i). The MIMO-AE also captures extreme precipitation events over

Southern California, such as the years 1992-1993 and 2004-2005 which both saw

roughly 200% above average rainfall in the area. These years are also associated

with ENSO Modoki events which have been shown to have a positive influence on

precipitation in the western US (137; 136). Additionally, there is a tendency for a

higher MIMO-AE in boreal summer in both model and observations. A similar bias

was found for the ELI in williams2018diversity. This tendency is associated with the

seasonal cycle of cold-pool and warm-tongue phases of ENSO and is not captured in

the Niño 3.4 index, but is effectively captured by the MIMO-AE and ELI (129).

Figure 3.13 shows the slope values of the regression of TP-SST anomalies and

US precipitation anomalies on Niño 3.4 index as well as MIMO-AE for E3SM and

observational data. We use the false discovery rate (FDR) approach (Renard et al.;

128; 115) to account for mutiple hypothesis being tested as once (in this case the

number of pixel values M). We compute a constrained critical value, αFDR, for a

given global significance level, α, as follows:

αFDR = max
j=1,2,...,M

{pj : pj ≤ α(j/M)} (3.11)

where, pj represents the p-value of the deviance statistic for grid-point j, and M is

the total number of grid points. SC-PRECIP is more strongly related to MIMO-AE
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Figure 3.13: The slope values for Niño 3.4 and MIMO-AE regressed onto tropical
pacific SST anomalies and US precipitation anomalies for the observational data from
1948-2020
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than Niño 3.4, given that precipitation information is passed through the network.

However, over the tropical Pacific, SSTs the MIMO-AE generates a weaker response

than shown for Niño 3.4. The MIMO-AE not only picks up a strong precipitation

response in the Western US, but also picks up the known weaker response in the

Southeast in model data. The SST pattern is weaker for the MIMO-AE, however,

this is expected given that the MIMO-AE is trying to maximize both the precipitation

and SST patterns.

3.4.2 Predictability of Precipitation Using the MIMO-AE

index

We use LSTM models to predict the MIMO-AE index for lead times of 1 to 12

months. Figure 3.14a shows the predictive skill of the LSTMs to predict the MIMO-

AE index for the 65 years of E3SM testing data. The predictive skill is computed as

the correlation between the LSTM predicted value and the true value of the MIMO-

AE index when data is passed through the network. The predictive skill of Niño 3.4

index and ELI index using LSTMs are also shown. One standard deviation spread,

computed using the Fisher transformation, are shown as color shadings. The MIMO-

AE index exhibits a lower predictive skill than both the Niño 3.4 and the ELI index

at all lead times longer than two months. This is likely due to the presence of noisy

precipitation data in MIMO-AE, which demonstrates poor temporal auto-correlations

on these time scales (77), offering little predictive skill.
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Figure 3.14: Predictive skill of MIMO-AE index (blue), Niño 3.4 index (orange)
and ELI (green) and domain averaged SC-PRECIP (black) at forecast lead times of 1
to 12 months for E3SM testing data (a). Shading represents one standard deviation
of the correlation coefficients. Predictive skill of domain average SC-PRECIP as a
function of initialization calendar month and forecast lead time from domain average
SC-PRECIP, MIMO-AE index, ELI and Niño 3.4 index for E3SM testing data (b).
Cross markings indicate values significant at the 95% confidence level.
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Figure 3.15: Predictability of SC-PRECIP using MIMO-AE. Predictive skill of
MIMO-AE index (blue), Niño 3.4 index (orange) and ELI (green) at predicting
domain averaged SC-PRECIP at forecast lead times of 1 to 12 months for E3SM
testing data (a). Shading represents one standard deviation of the correlation
coefficients. Predictive skill of domain average SC-PRECIP as a function of
initialization calendar month and forecast lead time from domain average SC-
PRECIP, MIMO-AE index, ELI and Niño 3.4 index for E3SM testing data (b). Cross
markings indicate values significant at the 95% confidence level.
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Figure 3.16: Predictability of SC-PRECIP using MIMO-AE. Predictive skill of
MIMO-AE index (blue), Niño 3.4 index (orange) and ELI (green) at predicting
domain averaged SC-PRECIP at forecast lead times of 1 to 12 months for
observational testing data (c). Shading represents one standard deviation of the
correlation coefficients. Predictive skill of domain average SC-PRECIP as a function
of initialization calendar month and forecast lead time from domain average SC-
PRECIP, MIMO-AE index, ELI and Niño 3.4 index observational testing data (d).
Cross markings indicate values significant at the 95% confidence level.
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Figure 3.17: Predictive skill of E3SM-only trained MIMO-AE index (blue), Niño 3.4
index (orange) and ELI (green) and domain averaged SC-PRECIP (black) at forecast
lead times of 1 to 12 months for E3SM testing data (a). Predictive skill of domain
average SC-PRECIP as a function of initialization calendar month and forecast lead
time from domain average SC-PRECIP, MIMO-AE index, ELI and Niño 3.4 index
for E3SM testing data (b).
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Figure 3.18: Predictive skill of E3SM-only trained MIMO-AE index (blue), Niño
3.4 index (orange) and ELI (green) and domain averaged SC-PRECIP (black) at
forecast lead times of 1 to 12 months for observational testing data (c). Predictive
skill of domain average SC-PRECIP as a function of initialization calendar month
and forecast lead time from domain average SC-PRECIP, MIMO-AE index, ELI and
Niño 3.4 index observational testing data (d).
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Figure 3.19: Predictability of SC-PRECIP using E3SM-only trained MIMO-AE.
Predictive skill of MIMO-AE index (blue), Niño 3.4 index (orange) and ELI (green)
at predicting domain averaged SC-PRECIP at forecast lead times of 1 to 12 months
for E3SM testing data (a). Shading represents one standard deviation of the
correlation coefficients. Predictive skill of domain average SC-PRECIP as a function
of initialization calendar month and forecast lead time from domain average SC-
PRECIP, MIMO-AE index, ELI and Niño 3.4 index for E3SM testing data (b). Cross
markings indicate values significant at the 95% confidence level.
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Figure 3.20: Predictability of SC-PRECIP using E3SM-only trained MIMO-AE.
Predictive skill of MIMO-AE index (blue), Niño 3.4 index (orange) and ELI (green)
at predicting domain averaged SC-PRECIP at forecast lead times of 1 to 12 months
for observational testing data (c). Predictive skill of domain average SC-PRECIP
as a function of initialization calendar month and forecast lead time from domain
average SC-PRECIP, MIMO-AE index, ELI and Niño 3.4 index observational testing
data (d).
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This is evident in the Figure 3.14a and 3.15c, which also shows the predictive skill

of domain averaged SC-PRECIP using LSTMs, and serves as a baseline for evaluation

of predictive skill. Precipitation shows a high skill at a lead time of one month like the

other indices, but offers poor predictive skill at longer lead times. MIMO-AE index

provides more predictive skill than precipitation itself for two and three month lead

times, likely due to the inclusion of TP-SSTs, which have higher predictive skill due to

the thermal inertia of the oceanic mixed layer. But, MIMO-AE index provides poor

skill for longer lead times. Figure 3.14b shows the LSTM skills as a function of the

calendar month when the prediction is initialized for all indices and generally reflect

Fig. 3.14a, while also showing the well-known spring predictability barrier associated

with Nino3.4 and ELI. MIMO-AE does not appear to suffer from the spring barrier

that affects Niño 3.4 index and ELI - both of which demonstrate substantially weaker

predictive skill in the Spring months as compared to other months.

The above results hold for the observational data too, with the the MIMO-AE

index exhibiting poorer predictive skill when compared to Niño 3.4 index and ELI

on these monthly time scales. Similar to E3SM data, MIMO-AE index demonstrates

statistically significant skill (critical value = 0.32 for 28 degrees of freedom at the 0.05

significance level for a one-tailed test) at a lead time of 2 months, while precipitation

time series exhibits no skill at lead time longer than one month irrespective of the

initial month of predictions (Figure 3.15d).
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3.4.3 SC-PRECIP Predictability from MIMO-AE Index

To evaluate the predictability of SC-PRECIP using the MIMO-AE index, we pass

the predicted MIMO-AE index values through the decoder part of the MIMO-AE

to construct spatio-temporal predictions of SC-PRECIP anomalies. Figure 4a shows

the skill of predicted SC-PRECIP. The predicted spatial pattern of the SC-PRECIP

constructed by the MIMO-AE decoder is domain averaged to compute predictive

skill. For the Niño 3.4 and ELI, we predict domain average SC-PRECIP from

LSTM predicted values of the indices by using linear regression models (also shown).

The linear regression models were constructed using the training data for E3SM

and observations separately. MIMO-AE generated predicted precipitation exhibits

stronger skill than other indices for lead times of up to 3-months.

However, MIMO-AE index’s skills at lead times of one to three months are

statistically indistinguishable from that of SC-PRECIP index at the 95% confidence

level based on a two-tailed Student’s t-test of the Fisher transformations of the

correlations. To account for the auto-correlation in the time-series’, we use effective

sample size for the null hypothesis tests. Although, the improved skill is a significant

improvement over that of Niño 3.4 index and ELI. MIMO-AE skills are weaker

and also indistinguishable from that of SC-PRECIP for longer lags, and become

statistically indifferent from zero at a lead time of 6-months and longer. The skill

of Niño 3.4 and ELI is statistically insignificant at all lead times on these monthly

scales. The enhanced predictive skill of precipitation from MIMO-AE up to a lead
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time of 3 months is noted for almost all initialization calendar months of the year as

compared to other indices (Figure 3.15b).

Enhanced predictive skill of MIMO-AE of SC-PRECIP is also noted for the 41

years of observation testing data (Figure 3.16c). The improvement in MIMO-AE skill

as compared to other indicies is statistically significant at two to four months lead

times at the 95% confidence level. The high skill at 1-month lead time is statistically

indifferent from that of SC-PRECIP. And, the skills are statistically zero for 6-months

lead time and longer. Also, the enhanced skill of MIMO-AE is noted for almost all

initialization calendar months of the year (Figure 4d). Similar to E3SM, the Niño 3.4

index and ELI demonstrate weak skill at all lead month lengths on monthly scales,

although they are statistically different from zero for 1-month and 2-month lead times.

This is consistent with other studies (75; 91; 122) that find poor skill from ENSO on

noisier sub-seasonal time scales over Western US - largely due to atmospheric noise - in

spite of significant correlations between SC-PRECIP and Niño 3.4 index on smoother

seasonal and inter-annual time scales in observational data (52; 48; 119; 17).

3.5 Summary and Discussion

In a novel approach, we apply MIMO-AE to extract the non-linear relationships

between TP-SST and SC-PRECIP on monthly scales and find it to be a powerful

tool to enhance sub-seasonal regional predictability. We design the network to yield

a temporal index of the projection of these two data sets on the inherent non-linear
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space of the network. MIMO-AE is trained on first 100 years of an E3SMv1 historical

simulation (1850-2014) and applied on the latter 65 years. Another MIMO-AE

network is trained on a combined dataset of 100-years of E3SM data and 32 years

of observational data and applied to the latter 41 years of of the record (1980-2020).

To assess the predictability of SC-PRECIP afforded by MIMO-AE on monthly time

scales, we use LSTMs of the MIMO-AE index. LSTMs are trained separately for the

E3SM simulation and observational data. LSTM-predicted values of MIMO-AE index

are decoded using the MIMO-AE decoder to yield predicted SC-PRECIP. We find

that the MIMO-AE index offers statistically significant improvements in predictive

skill of SC-PRECIP up to a lead time of up to four months for both E3SM and

observations, as compared to that imparted by both Niño 3.4 and ELI.

Studies (75; 122; 119; 17) suggest enhanced sub-seasonal and seasonal predictabil-

ity of Western US precipitation from atmospheric variables; like geopotential heights,

upper level zonal winds, moisture transport, etc.; as well as Northern Pacific SSTs.

While we have only utilized TP-SST here for demonstrating the use of multi-task

learning for enhanced predictive skills, we plan to incorporate additional variables

in the future within the MIMO-AE framework. Further, atmospheric noise is often

associated with poor predictability of regional climate induced by modes of climate

variability on seasonal timescales (122; 17). We plan to explore techniques, like de-

noising autoencoders, that account for the presence of noise in data and the modeled

system and may allow for the extraction of predictability through the atmospheric

noise on seasonal and longer time scales. Also, we train our MIMO-AE here using a
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historical simulation from E3SMv1, which inherits E3SM’s model bias. In the future,

we plan to use multi-model simulations from the CMIP6 archive and use Bayesian and

other transfer learning approaches to weight the available observations appropriately

while training network architectures.

Our MIMO-AE approach can be applied to assess the predictability of regional

climate across the globe, both where linear correlations are known to exist - like

the Southeast US, where ENSO influence is strong - and where the signal to noise

ratio is low. Additionally, our results demonstrate the promise of multi-task learning

to enhance predictability afforded by remote teleconnections, supporting a focused

exploration of other pertinent multi-task and multi-modal methods, like multi-task

CNNs for such purposes. Also, here we utilize two separate networks, MIMO-AE to

extract the non-linear relationship between TP-SST and SC-PRECIP, and LSTMs

to make predictions. We plan to condense these two into one combined MIMO-

AE-LSTM network to account for spatial and temporal variability simultaneously to

assess predictability in a more coherent manner.

Dynamical models exhibit more skill at predicting tropical SSTs than precip-

itation. It would be interesting to explore hybrid models that utilize dynamical

models predicted tropical SSTs with MIMO-AE-like networks that extract non-

linear remote teleconnections to make regional climate predictions. Further, machine

learning models have demonstrated significantly more skill at seasonal and multi-

annual predictions of tropical SSTs than dynamical models (39). Combining such
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networks with multi-task learning methods provides the potential to further enhance

predictability of regional climate.
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The E3SMv1 data used in this study is freely available through the Earth Sys-

tem Grid Federation (ESGF) distributed archives via https://doi.org/10.1029/

2018MS001603 and is available through the ESGF interface https://esgf-node.

llnl.gov/projects/e3sm/ (28).

Observational SST data from the HadISST 1.1 dataset (96) can be downloaded

from the web at https://www.metoffice.gov.uk/hadobs/hadisst/. Observed

precipitation data from NOAA’s PREC/L (14) can also be found open access at

https://psl.noaa.gov/data/gridded/data.precl.html.
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Chapter 4

Exploring the Use of a Multi-Input

Conv-LSTM to predict Niño 3.4

index.

Aim II: Predictability Using Non-Linear Latent

Spaces
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4.1 Abstract

The advance prediction of El Niño Southern Oscillation (ENSO) is a challenging and

important scientific problem due to its complex nature and wide ranging impacts on

global short-term climate. Many prediction models fail to capture the spatiotemporal

aspects of ENSO variability. Recent advances in ENSO prediction have show the

usefulness of a deep learning approach called a convolutional long short term memory

(conv-LSTM) for capturing both the spatial and temporal dependencies of ENSO.

Here we expand on previous works using a conv-LSTM for ENSO prediction by

including multiple input variables known to be associated with ENSO variability

and predictability. We use this multi-input conv-LSTM to predict tropical Pacific sea

surface temperature (SST) patterns and subsequent Niño 3.4 index in Earth systems

model (ESM) and observational data.

Plain Language Summary

Predicting ENSO is a complex scientific problem made even more difficult by climate

model uncertainty. Recent advances in machine learning have improved prediction

including a technique called ConvLSTM. Here, we use the ConvLSTM approach

to predict Niño 3.4 index with a combination of climate variables in ESM and

observational data.
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4.2 Introduction

El Niño-Southern Oscillation (ENSO) is a large-scale ocean-atmosphere interaction

that occurs in the equatorial Pacific Ocean and global atmosphere (93). ENSO is

one of the main drivers of inter-annual climate variability and as a result has a vast

impact on global short term climate. El Niño (La Nina) is the ocean component

of this phenomena that is characterized by a period increase (decrease) in sea

surface temperature (SST) while the Southern Oscillation (SO) describes the bimodal

variation in atmospheric pressure between the western and eastern Pacific. The

Climate Prediction Center of NOAAs National Centers for Environmental Prediction

defines an El Niño event as 5-month running SST means in the Niño 3.4 region (5◦

N - 5◦ S, 120◦ - 170◦ W) exceed 0.4◦C for 6 months or more.

ENSO has been shown to influence a number of meteorological events ranging

from Atlantic tropical cyclones and Pacific typhoons (100) to severe droughts in

Southeast Asia and Southern Africa (25). Because of these wide reaching impacts,

the problem of ENSO forecasting and prediction is one of great importance. However,

the prediction and understanding of ENSO remains a challenge for scientists as there

is no unified theory of how the inner oscillations mechanism of ENSO works (118).

Furthermore, the relationship between global warming and ENSO is uncertain and

is difficult to assess due to climate model uncertainty. zheng2016intermodel found

that the change in ENSO SST amplitudes showed large uncertainty in ESMs while

cai2014increasing found that ENSO response could double due to future climate
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warming. To advance our understanding of the relationship between a warming

climate and ENSO, improved GCM simulation and prediction of ENSO is required.

Predicting ENSO is complicated by two complex dependencies: spatial and

temporal. This poses a challenge when building a model to efficiently predict ENSO

variability. Three general approaches exist for prediction of ENSO: statistical-based

methods, machine learning (ML) methods and a hybrid approach (133). Statistical

methods generally have a hard time extracting nonlinear features and therefor fall

short when predicting El Niño and La Nina events. Recently, ML techniques have

developed to handle this issue. The most common ML methods for predicting

ENSO including Support Vector Regression (90), Random Forests (RF) (90) and

Long Short Term Memory (LSTM) (131). However, these methods fail to tackle the

spatiotemporal dependencies mentioned above. Instead, they learn a time series on a

certain latitude and longitude point to preform prediction which ignores the spatial

component of ENSO prediction (42).

Several deep learning methods have been introduced to address this issue. A

Temporal Convolutional Network (TCN) was proposed by yan2020temporal and

was proven to work better than the LSTM approach for predicting ENSO at 1,

3, 6, and 12 month lead times. Similar to the TCN, both he2019dlenso and

mu2019enso use a convolutional LSTM (ConvLSTM) to predict El Niño and La

Nina events. The ConvLSTM was first proposed by xingjian2015convolutional as a

method to improve the LSTM by adding convolutional structures to both the input-

to-state and state-to-state transitions. This allows for more accurate learning of
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spatiotemporal data. he2019dlenso proved the effectiveness of using this method to

predict ENSO by creating a sequence to sequence model whose encoder and decoder

are both ConvLSTM. Their model was shown to be more efficient than traditional

LSTM and deterministic models when using reanalysis climate data. mu2019enso

uses a ConvLSTM with added rolling mechanism (ConvLSTM-RM) which improved

prediction performance in a real-world dataset over multiple other prediction methods

including SVR, feed forward neural networks (FNN), convolutional neural networks

(CNN), LSTM and auto-regressive moving average (ARIMA) models. Both of these

papers prove the ability of the Conv-LSTM to capture the spatial and temporal

components of ENSO as well as learn the non linear features over traditional statistical

and common ML methods.

In this study, we expand on sa simple Conv-LSTM method to include multiple

input variables to predict Niño 3.4 in the latest version of the Energy Exascale Earth

Systems Model (E3SM v1) and observational data.

4.3 Methods

4.3.1 Model and observational data

For this study we use monthly E3SM v1 (28) data taken from the Earth System

Grid Federation (ESGF) (20) at 0.25 degrees. The E3SM v1 was shown to

effectively capture temporal variability of ENSO and outperformed other ESMs when

reproducing ENSO spacial patterns when compared to observational datasets (36).
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We chose four variables over the Niño 3.4 region to train our ConLSTM-FC in

addition to sea surface temperature anomalies (SSTs) including sea level pressure

(PSL), surface zonal wind component (U) and outgoing longwave radiation (OLR).

These variables have all been related to ENSO variability. We compare different

combinations of these variables at different forecasting lead times to determine the

best model for ENSO prediction in the E3SM. We take the area average of these

variables before training and running the models.

4.3.2 Convolutional Long-Short Term Memory with Fully

Connected Layer (ConvLSTM-FC)

ConvLSTM builds on the original LSTM model, introduced by hochreiter1997long,

in order to solve 3D prediction problems. LSTM are a special kind of recurrent

neural network that learn long term dependencies whose cells are constructed with

internal mechanisms called ”gates” that control the flow of information through the

cell (45). There are three types of gates: forget, input and output. These allow for the

model to learn what features in the data are important to keep or throw away before

passing it down the line to the next cell. LSTM has been shown to perform well for

many temporal learning tasks, however it does not solve spatial aspects of a problem.

To resolve this issue, xingjian2015convolutional introduced a convolution structure

to the LSTM. The cell inputs, outputs and hidden states are all composed of 3D

tensors where the last two dimensions are spatial rows and columns. The ConvLSTM
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predicts the future state of a point in the grid by using the inputs and past states of

its neighboring points. For more information on the structure of the ConvLSTM see

xingjian2015convolutional.

In this study, we make use of the ConvLSTM with an added FC layer to predict

Niño 3.4 index at 6 9 and 12 month lead times. By adding the FC layer after the

ConvLSTM, we can better predict the index directly. Figure 1 shows the architecture

of our ConvLSTM-FC model. The input consists of a time series of variables from

t = 1 to k, where k is the number of lead months. The inputs are then passed to

the ConvLSTM layer. The output from the ConvLSTM layer is then flattened and

passed through a fully connected layer where the output is the next k number of Niño

3.4 indices predicted.

We test a combination of different input variables and lead times to determine

which model works best for predicting ENSO in the E3SM. The combinations are as

follows:

• ConvLSTM-FC-1var: SST at 6, 9 and 12 lead times

• ConvLSTM-FC-2var: SST and PSL at 6, 9 and 12 lead times

• ConvLSTM-FC-3var: SST, PSL and U at 6, 9 and 12 lead times

• ConvLSTM-FC-4var: SST, PSL, U and ORL at 6, 9 and 12 lead times
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Figure 4.1: The general architecture for the multi-input conv-LSTM to predict future SST patterns.



We use 27 years of monthly E3SM data for training each model configuration

and 3 years for testing the fully trained models. We also initialize lead times over

all months to improve the skill of forecasting and to reduce the effect of the Spring

prediction barrier. Each model configuration was trained for 100 epochs with an

AdaGrad loss optimizer using tensorflow on one CPU node on the National Energy

Research Scientific Computing Center’s (NERSC) Cori super computer. AdaGrad,

Adaptive Gradient, proposed by duchi2011adaptive is a modified stochastic gradient

decent method that increases or decreases its learning rate based on parameters of

the data being trained.

4.3.3 Evaluation Metrics

Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC) were used to

evaluate the performance of each trained model on the held out test set. A smaller

MSE and larger PCC indicate better performance of the model. These metrics are

defined as follows:

MSE =
1

N

N∑
i=1

(yobsi − ypredi)2 (4.1)

PCC =

∑N
i=1(yobsi − yobsi) · (ypredi − ȳpredi)√∑N

i=1(yobsi − yobsi)2 ·
√∑N

i=1(ypredi − ȳpredi)2

(4.2)

where yobsi is the observed Niño 3.4 index and ypredi is the predicted index.
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4.4 Experimental Results

4.4.1 Comparison of Different Models to Predict Niño 3.4

We first compare the ability of the ConvLSTM-FC to predict the Nino 3.4 index

in the E3SM against other commonly used machine learning time series regression

models including FNN, CNN, and LSTM. The models were trained only using SST

in the Niño 3.4 region as an input variable for 27 years of data. SST variability in

the tropical Pacific Ocean is generally caused by ENSO events, so we use this simple

input for testing these different methods (51). The models are all trained over 100

epochs, with an AdaGrad loss optimizer using tensorflow.

Table 1 shows the MSE and PCC for each model on the unseen 3 year test set for 6,

9 and 12 month lead times. From table 1 we see that (1) the ConvLSTM-FC model

outperforms all other models on both evaluation metrics across the three different

lead times; (2) the LSTM significantly under performs compared to the other models

which is in line with previous findings that LSTM fails to capture spatiotemporal

details and also confirms the crucial need for a model to effectively capture both of

those aspects in ENSO prediction; (3) all of the models show a consistent decrease

in skill with an increase in lead times with the highest skill being the 6 month lead

time and the lowest with the 12 month.
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Table 4.1: Performance Comparison of Different Machine Learning Models

Lead Time Metric FNN CNN LSTM ConvLSTM-FC
6-month MSE 0.5415 0.5954 1.978 0.4343

PCC 0.8577 0.8389 0.2794 0.8858
9-month MSE 0.7589 0.6693 1.991 0.5853

PCC 0.8107 0.8090 0.0938 0.8672
12-month MSE 0.9115 0.8547 2.002 0.7378

PCC 0.7245 0.7339 0.0192 0.7760
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4.4.2 Exploration of Different ConvLSTM-FC Architecture

We further investigate the use of the ConvLSTM-FC to capture and predict the Niño

3.4 index in our E3SM data by testing 4 different combinations of input variables.

We build upon the simple SST model by adding variables also known to be influence

by ENSO variability namely PSL, U and ORL. The combinations are again defined

as follows:

• ConvLSTM-FC-1var: SST at 6, 9 and 12 lead times

• ConvLSTM-FC-2var: SST and PSL at 6, 9 and 12 lead times

• ConvLSTM-FC-3var: SST, PSL and U at 6, 9 and 12 lead times

• ConvLSTM-FC-4var: SST, PSL, U and ORL at 6, 9 and 12 lead times

We compare prediction skill of the Niño 3.4 index for these combinations on the

unseen test set after training. From figure 2 and 3, (1) the skill of index prediction

generally decreased with advance prediction time; (2) for a 6 month lead time, the

2 variable structure outperformed the other configurations with an MSE of 0.4194

and a PCC of 0.9044; (3) the 3 variable structure for the 9 month lead time had the

highest prediction skill with an MSE of 0.4247 and PCC of 0.9051; (4) both the 1

variable and 3 varible structure performed well for the 12 month lead predictions with

the 1 variable structure being slightly more skillful with an MSE of 0.7378 and PCC

of 0.7760; (5) the lowest PCC value for all models was still above 0.5 which strongly
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Figure 4.2: Performance comparison of different variable combinations in the
ConvLSTM-FC.
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Figure 4.3: ConvLSTM-FC architecture used in this study.
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suggests an overall effectiveness of using a ConvLSTM approach to predicting

Niño 3.4 index in the E3SM.

4.5 Conclusions

In this paper, we present a ConvLSTM-FC approach to predicting Niño 3.4 indices in

a GCM, namely the E3SM. We found this method outperforms other commonly used

ML time series regression models. This is the first time a ConvLSTM method has

been used to forecast ENSO variability in a GCM to our knowledge. We also explore

the optimal input variables for Niño 3.4 index prediction using a ConvLSTM-FC at

three different lead times.

The ConvLSTM model has been proved as an effective way of capturing the spatial

and temporal details of ENSO in a GCM. Future workwill investigate the impact of

model resolution on the ConvLSTM-FC’s ability to accurately capture ENSO events.
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Chapter 5

Simulation of Full Radiation

Transfer Calculations in the E3SM

Using a Deep Neural Network

Aim III: Emulation of Complex Parameterization
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5.1 Abstract

This study develops a Deep Neural Network (DNN) to replace the full radiation

model in the Department of Energys (DOE) Energy Exascale Earth System Model

(E3SM). This study will build upon research that demonstrated the ability of a DNN

to imitate just the shortwave and longwave radiative transfer calculations in a super-

parameterized version of E3SM with an accuracy of 90-95% while also proving to be

qualitatively similar to the original parametrizations in year-long simulations (89).

We have run the E3SM at an ultra-low resolution (800 km) for a year while saving

the input and output variables of the radiation module for each grid box at each

time step. We use this data to train a dense, fully-connected, feed-forward DNN. We

validate the impact of using the DNN on the model climate in a year long run of a

single column model.

5.2 Plain Language Summary

The calculation of radiative transfer equations in a global climate model are often

the most computationally expensive due to their complex nature. Here, we learn

these equations through the use of a deep neural network (DNN) to reduce this

computational time while maintaining high accuracy.
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5.3 Introduction

The representation of radiative forcing in atmospheric general circulation models

are among the most computationally expensive physical properties due to their

complex nature (80; 83). In a typical general circulation model (GCM), such as the

National Center for Atmospheric Research (NCAR) Community Atmospheric Model

(CAM), the computation of model physics for a moderate resolution accounts for

70% of computational expense. The radiative transfer calculations for CAM take up

60% of that time required to solve those parameterizations (61). Even for weather

prediction models such as the GME, the German Weather Services operational global

numerical weather prediction model, the radiation calculations took over 25% of total

computational time (79). These radiative computations are critical for providing

accurate simulations of Earth-atmosphere systems and analyzing climate change

forcing. As such, this raises an important need for reducing computational time

while retaining high accuracy.

While recent developments in computing capabilities have generally improved the

process of solving these radiative transfer calculations, they still remain incredibly

time consuming. Direct radiative models that compute the radiative fluxes at each

grid point for every time step are generally used for reference only as they are too

computationally expensive for full GCMs (82). Several techniques have been used to

replace this line-by-line model in order to reduce computational expense including

the correlated- k method (63) and reducing the spacial and temporal resolution
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(84). More recently, machine learning (ML) based methods have been explored for

applications in parameterization including shallow neural networks (18; 61), random

forests (RF) (138) generative adversarial networks (GAN) (31), and deep learning

(95; 89; 40; 32).

Many papers exploring the use of ML techniques for parameterization only

evaluate the method’s offline ability, meaning the ability of the model to predict

variables on a pre-computed dataset. Offline training generally fails to account for

feedback loops between input and output variables and therefor accuracy measured

in offline testing does not directly correlate with online accuracy, in this case using

the trained model to replace parameterizations in the GCM itself. This often leads to

online runs crashing within a few days of simulation due to numerical instability of

the trained model (8). This instability is commonly caused by flawed choices of ML

architecture and hyperparameters as well as inputs generated by the coupled GCM

that are much different than any the ML model saw during training (9). Despite

these obstacles, however, recent papers have proven that these ML methods can be

used to accurately emulate parameterization schemes in online GCM simulations.

Pal et al. (89) trained two deep neural networks (DNN) to emulate the long-wave

(LW) and short wave (SW) radiation equations in a super parametrized version of

the Department of Energys (DOE) Energy Exascale Earth System Model (E3SM)

and successfully ran an online simulation with the trained DNNs for 1 year.

This study builds upon the work of Pal et al. (89), but here we use a novel approach

of training a single DNN on the full radiation model in an ultra low-resolution run
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of the E3SM version 1 (v1). Previous studies that have emulated GCM radiation

schemes using NNs have used two separate networks to learn both the SW and LW

equations (58; 32; 89). We investigate the ability of one DNN to approximate a portion

of both the SW and LW radiation equations in both offline and online testing. We first

evaluate the DNN’s skill on a held-out testing dataset and then replace the partial

radiation equations in the ultra-low resolution E3SMv1 with our DNN. We run the

DNN surrogate model for 1 year on a single column model to explore the accuracy of

our full radiation DNN.

5.4 Methods

5.4.1 E3SM

We train a DNN to emulate the full radiation transfer equations in the ultra-

low resolution Enegry Exascale Earth Systems Model version 1 (E3SMv1) (28).

The E3SM’s Atmosphere Model (EAM), is based on the Community Atmosphere

Model Version 5 (CAM5) with some additional modifications and improvements.

Enhancements from the CAM5 include the EAM using a default spectral-element

dynamical core, replaced parametrizations of turbulence, cloud microphysics and

shallow convection, enhanced aerosol parameterizations and a vertical resolution

increased to 72 levels.
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5.4.2 Single Column Model

We run a prognostic simulation of our trained DNN in the E3SM on the single

column model (SCM). The E3SM SCM is based off of the Community Atmosphere

Model (CAM) and is useful for testing and evaluating the new parameteriza-

tion and is widely used to identify weaknesses and biases in model simulation

and can be found online at https://github.com/E3SM-Project/scmlib/wiki/

E3SM-Single-Column-Model-Home (6).

5.4.3 Data Collection and Preparation

We gather our data for training the DNN by running the E3SM V1 at an ultra-

low resolution for 1 year while saving the input and output variables of a subset of

the original radiative calculations at each grid space for every time step. From this

configuration, around 3 million samples were generated for the DNN to train on.

Table 3.1 provides a list of the input and output variables used in this study. We

select a small sample of variables to investigate the ability to learn both LW and

SW equations in one DNN, 1,234 inputs and 154 outputs. The full radiation model

includes the computation of cloud optics, conversion of aerosol masses to bulk optical
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Table 5.1: The input and output variables used for training the DNN.

Input Variable Vertical Levels Output Parameter Vertical Levels
0.2-0.7 micro-meter surface albedo: direct radiation 1 Surface Net LW FLux 1
0.7-5.0 micro-meter surface albedo: direct radiation 1 Outgoing Net LW FLux 1
0.2-0.7 micro-meter surface albedo: diffuse radiation 1 Downwelling LW FLux at Surface 1
0.7-5.0 micro-meter surface albedo: diffuse radiation 1 Downwelling SW FLux at Surface 1

Fractional Cloud Cover 72 Surface Absorbed Solar Flux 1
Cloud Fraction of Snow Clouds 72 Surface Net SW FLux 1

Convective Cloud Fraction 72 Outgoing Net SW FLux 1
Ice Fraction 1 LW Heating Rate 72

Land Fraction 1 SW Heating Rate 72
Land Fraction Ramp 1 Direct Solar Radiation on Surface (< 0.7) 1

Snow Depth 1 Direct Solar Radiation on Surface (>= 0.7) 1
Upward Longwave Flux 1 Diffuse Solar Radiation on Surface (< 0.7) 1

Pressure 72 Diffuse Solar Radiation on Surface (>= 0.7) 1
Temperature 72

Ice Radiative Effective Diameter in Clouds 72
In-cloud Cloud Ice Water Path 72

In-cloud Cloud Liquid Water Path 72
Upward LW Radiation 1

Prognosed Value of Mu for Clouds 72
Wet Diameter for All Modes 72 (4 modes)

Aerosol Water (g/g) for All Modes 72 (4 modes)



properties for SW and LW radiation, and SW and LW radiation calculation (89).

By selecting a subset of these, we are able to test the ability of a DNN to emulated

some LW and SW calculations before moving on to the more computationally heavy

calculations of the full radiation model.

After obtaining the original E3SMv1 data for 1 year, we spilt it into three sets:

• Training set: A random 80% subset of the data used to train the DNN

• Testing set: The remaining random 20% subset of the data held-out for testing

the accuracy of the trained DNN

• Validation set: A random 10% split of the training set used for validation during

each epoch

The DNN uses a sigmoid method for mapping variables into a desired range. This

functions allows for back propagation to be useful and takes any range real number

and returns an output value between 0 and 1. We also use a min-max scaler to

standardize the radiation variables before training using the following equations:

X̂j =
Xj −mini(Xj)

maxi(Xj)−mini(Xj)
(5.1)

Ŷj =
Yj −mini(Yj)

maxi(Yj)−mini(Yj)
(5.2)

where Xjs are the input variables, Yjs are output variables, i is the training sample

number and j is the specific variable. For the ultra-low resolution E3SM and after
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reducing the number of input variables further, we end up with 1594 input radiation

variables and 154 output radiation variables.

5.4.4 DNN Parameter Exploration, Training and Implemen-

tation

We construct a fully connected, feed-forward DNN to learn the radiation parameters.

Our DNN is written using the Python library keras (https://keras.io/) and trained

on one GPU node on the National Energy Research Scientific Computing Center’s

(NERSC) Cori super computer. We carried out parameter exploration on a subset

of the training data to determine the optimal number of hidden layers, neurons and

batch size. The loss is computed using mean squared error (MSE) between the original

parameterization output variable Yj and its corresponding DNN prediction output

variable YjDNN . The equation used for MSE is as follows:

MSE =

∑N
i=1(Yj − YjDNN)2

N
(5.3)

where N is the total number of output samples. We use MSE over root mean squared

error (RMSE) because variables were scaled prior to training and therefor RMSE

would be redundant.

Figure 5.1a shows the results of several different combinations of hidden layers

and neurons on training and validation loss across 100 epochs. We chose a 2 layer, 64

neuron DNN for this study as it minimized the loss in both training and validation
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sets while not overfitting during validation. Figure 5.1b shows the results of batch

size on the chosen DNN configuration. We chose 1024 samples for the batch size as

it still performed well and cut down on computational time significantly.

5.5 Results

5.5.1 Offline Verification

We investigate the offline accuracy by evaluating the DNN’s performance on the held-

out testing dataset. We compute the L1 and L2 errors (figure 2) between the predicted

and actual scaled output parameters. The L1 and L2 errors are computed as follows:

L1 =

∑
i,j |Gi,j − I1,j|∑

i,j |I1,j|
(5.4)

L2 =

∑
i,j(Gi,j − I1,j)

2∑
i,j(I1,j)2

(5.5)

A majority of the L1 and L2 testing sample errors are bellow 0.1, or 10%, verifying

the effectiveness of the trained DNN to successfully emulate the radiation equations

in an offline, static dataset. We also visualize this effectiveness by plotting a random

sample of scaled predicted and actual output parameters and their corresponding

difference (figure 5.3). We can see from figure 5.3 that a majority of the difference

between predicted and observed parameters occur in the short and long wave heating
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Figure 5.1: Parameter exploration for (a) number of layers and neurons and (b)
batch size.
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rates (parameters 72 to 144). This suggests the DNN is not learning parameters

at different levels in the atmosphere as effective as static variables.

We can also see this in figure 5.4 which plots the MSE for each parameter.

Although there is a spike in MSE across variables 90 through 110 which correspond

to longwave heating rates, the overall MSE for the entire dataset remains at 0.025.

The model’s difficulty in predicting longwave heating rates at mid-levels could be due

to the ultra-low resolution and subsequent absence of clouds. However, the skill of

the DNN on this held out testing dataset suggests the ability of using one DNN to

emulate both SW and LW parameters. From figure 5.3 and 5.4 , we can also see that

the model learns efficiently across parameters for both SW and LW variables without

a bias towards one or the other. The DNN learned parameters skillfully across all

global grid points across a calendar year.

5.6 Prognostic Simulation Full Global Model

Next, we replace the radiative transfer equations in the E3SM with our trained DNN

and run the model for 30 years. We compare the DNN model (RADDNN) with

a reference 30 year run of the ultra low resolution model (e3sm low res) for online

analysis. The following equations show the calculation of output parameters (Pout)

given the input parameters (Iin) and the trained DNN weights (W ) and biases (b):

h1 = f(IinW1 + b1) (5.6)
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Figure 5.2: The mean squared error for each output variable from the trained DNN model.
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Figure 5.3: An example of predicted and actual output parameters (a) and the resulting difference (b).



h2 = f(h1W2 + b2) (5.7)

Pout = f(h2W3 + b3) (5.8)

where f() is the activation function, in this instance a sigmoid

From figures 5.4 and 5.5, we see that by the end of the first year the RADDNN

model is already diverging from the reference dataset quickly. We investigate this

variation by looking at the surface net LW flux (FLNS) and SW flux (FSNS)

predicted in the first 9 months at each column number (ncol) compared to the original

E3SM reference model. We can see that the DNN model starts to diverge around

month 5 and 5 for both FLNS and FSNS. This highlights the issues addressed by

brenowitz2020machine, that DNN models tend to become numerically unstable due

to the nature of feedback loops in couple models providing inputs unlike those in the

training dataset. Although our model did not become fully unstable and collapse,

these issues did lead to unrealistic predictions of variables. This lead to our predicted

output parameters of the DNN to converge into a single predicted number, such as

FLNS in figure 5.4, or continuously get larger as seen in the prediction of FSNS in

figure 5.5.

We also replace the full radiative transfer parameterization with the trained DNN

and ran a simulation of the SCM for a year and found similar results of instability

across the years run.
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Figure 5.4: Predicted FLNS (red) and reference FLNS (blue) across every column
(ncol) for the first 9 months of simulation.
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Figure 5.5: Predicted FSNS (red) and reference FSNS (blue) across every column
(ncol) for the first 9 months of simulation.
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5.7 Future Work

The ability of ML techniques to learn GCM parameterizations is continuously

explored. Previous studies have proved the usefulness of NNs to learn LW and SW

radiation parameterizations separately. Here, we show that DNNs are capable of

learning a subset of the full radiation model in an offline ultra low resolution E3SM

simulation. Offline simulations of the subset of the full radiation equations show high

accuracy, 90− 95%. By replacing the radiation equations with the trained DNN and

running the model for 30 years, the E3SM ran 133% faster than the original model.

While the RADDNN model still ran for 30 years without crashing, the model did

suffer from unreasonable predictions of output parameters. This caused several issues

to persist in the overall model, such as higher than expected temperatures at all

pressure levels and extreme fluctuations in short wave and longwave heat fluxes.

Future work will look into methods to bias correct or account for the errors mention

above. A general adversarial network (GAN) is a ML method that is commonly used

to generate more data from a given sample (92). GANs may be useful for overcoming

the lack of data available for training DNNs to emulate parameterizations and could

create a more robust training dataset. This may improve the DNNs ability to predict

out of sample inputs and lead to a more stable online simulation.
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Chapter 6

Conclusion

This dissertation explored three areas of machine learning applicability to Earth

Systems Models and demonstrated the usefulness of these methods in advancing

our understanding of ESM modeling, analysis and predictability, namely statistical

downscaling, predictability using non-linear latent spaces and emulation of complex

parameterization.

In chapter 2 aim 1, I demonstrate the ability of a novel super-resolution based

approach for downscaling ESM data that uses a modified version of the FSRCNN

method. I find that this FSRCNN-ESM is able to map low resolution climate images

to a four times higher resolution with a better skill than DeepSD, FSRCNN and

bicubic interpolation; for surface radiative fluxes and large scale and convective

precipitation; while remaining computationally inexpensive to train. The FSRCNN-

ESM is also able to downscale images in a single-step process and without need for
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access to GPUs for training. The FSRCNN-ESM as a result is a more approachable

method of downscaling using machine learning.

Chapter 3 aim 2 part 1 establishes the ability of ML techniques to improve analysis

and predictability of complex, non-linear latent spaces. ML can be used as an effective

tool for isolating a well tropical Pacfic SST variability. In a novel approach, I apply

MIMO-AE to extract the non-linear relationships between TP-SST and SC-PRECIP

on monthly scales and find it to be a powerful tool to enhance sub-seasonal regional

predictability. I design the network to yield a temporal index of the projection of these

two data sets on the inherent non-linear space of the network. MIMO-AE is trained

on first 100 years of an E3SMv1 historical simulation (1850-2014) and applied on

the latter 65 years. Another MIMO-AE network is trained on a combined dataset of

100-years of E3SM data and 32 years of observational data and applied to the latter

41 years of of the record (1980-2020). To assess the predictability of SC-PRECIP

afforded by MIMO-AE on monthly time scales, we use LSTMs of the MIMO-AE

index. LSTMs are trained separately for the E3SM simulation and observational data.

LSTM-predicted values of MIMO-AE index are decoded using the MIMO-AE decoder

to yield predicted SC-PRECIP. We find that the MIMO-AE index offers statistically

significant improvements in predictive skill of SC-PRECIP up to a lead time of up

to four months for both E3SM and observations, as compared to that imparted by

both Niño 3.4 and ELI. The use of advanced ML techniques and multi-talk learning

to enhance predictability of tropical Pacific variability and teleconnections is further
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shown in chapter 4 aim 2 part 2. By adding additional variables to a conv-LSTM

model, I can more efficiently predict the Niño 3.4 index in the E3SM.

Finally, chapter 5 aim 3 demonstrates the capability of DNNs for learning

computationally expensive parameterizations in ESMs. I show the skill of prediction

in offline verification for a single DNN emulation of the full radiation transfer

equations in the E3SM. Future work will continue to improve the ability of online

simulation and reduce the instability the DNN introduces to the model.

While there continues to be emerging challenges in the application of ML to

Earth systems data, I demonstrate through this dissertation the vast ability of ML to

advance the performance and understanding of ESMs using the latest ML algorithms.
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