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Abstract

Due to high penetration of renewable energy, converter-interfaced sources are increasing in

power systems and degrading the grid frequency response. Synthetic inertia emulation and

guaranteed primary frequency response is a challenging task. Still, there is high potential

for application of highly controllable converter-interfaced devices to help performance.

Renewable energy sources and demand side smart devices also need to be equipped with

innovative frequency control approaches that contribute to frequency regulation operations.

First, the wind turbine generator is chosen to represent an example of a converter-

interfaced source. An augmented system frequency response model is derived, including the

system frequency response model and a reduced-order model of the wind turbine generator

representing the supportive active power due to supplementary inputs. An output feedback

observer-based control is designed to provide guaranteed frequency performance. System

performance is analyzed for different short circuit ratio scenarios where a lower bound to

guarantee the performance is obtained.

Second, the load side control for frequency regulation with its challenges is introduced.

5G technology and its potential application in smart grids are analyzed. The effect of

communication delays and packet losses on inertia emulation are investigated to show the

need of using improved communication infrastructure.

Third, a robust delay compensation for primary frequency control using fast demand

response is proposed. Possible system structured uncertainties and communication delays are

considered to limit frequency variations using the proposed control approach. An uncertain

governor dead-band model is introduced to capture frequency response characteristics.

vi



Guaranteed inertial response is achieved and compared with a PI-based Smith predictor

controller to show the effectiveness of the proposed method.

Fourth, set theoretic methods for safety verification to provide guaranteed frequency

response are introduced. The Barrier certificate approach using a linear programming

relaxation by Handelman’s representation is proposed with its application to power systems.

Finally, the Handelman’s based barrier certificate approach for adequate frequency

performance is studied. The computational algorithm is provided for the proposed method

and validated using power system benchmark case studies with a discussion on a safety

supervisory control (SSC).
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Chapter 1

Introduction

The work in this dissertation is inspired by the high penetration of distributed energy

resources (DERs) connected by inverter-based devices resulting in new power system dy-

namics, particularly in terms of the frequency response. DERs are small and modular energy

generation and storage technologies, including wind turbines, micro-turbines, photovoltaics

(PV), and energy storage systems. Power system DERs, including renewable resources such

as wind turbine generator (WTG), PV, and battery energy storage system (BESS), have

received a lot of attention to address problems such as environmental impact, high energy

cost and low electric power reliability. Increased penetration of these devices into the power

networks with complex behaviors impacts frequency regulation services. DER control along

with demand side contributions can provide a stronger and more resilient grid.

Control synthesis towards guaranteed frequency performance is challenging, requiring

supplementary control loops for synthetic inertial and primary frequency response in power

systems. Moreover, building energy equipment is moving rapidly towards the Internet of

Things (IoT)-driven devices, which allows consumer connectivity and device management.

These device-level interfaces, along with improved communication infrastructure such as 5G

networks, can be leveraged to develop power system architectures with a large number of

monitoring and control devices to provide real-time reliable energy services [81]. Estimation

of the safety region is another challenging task impacting guaranteed frequency response.

Here, the term safety means a well-defined and allowable operating region, and a safe

1



response means the trajectories of all concerned states stay within defined safety limits.

This dissertation aims at establishing systematic frameworks for controller synthesis towards

guaranteed performance and focuses on the frequency control problem.

1.1 Background

Renewable generation resources, such as, wind and solar are gradually replacing conventional

synchronous generators. Among these renewable resources, wind energy has received lots of

investment and has become one of the fastest-growing energy sources globally. The modern

electric power grid should include adequate resources to meet customers’ energy requirements

[14]. The generation and load within a power grid should be maintained at a balanced level

at all times to provide reliable performance [120]. Significant power imbalances may lead

to severe frequency deviations, stability problems, or even widespread system blackouts

[76]. System frequency performance is an indicator of balance and imbalance in operating

conditions that must be well controlled during disturbances.

Diesel synchronous generators (DSGs) are a common choice for powering microgrids in

remote locations. A renewable source can reduce the operating cost by partially replacing

the usage rate of expensive diesel generators [132], [83]. Renewable energy resources, such

as, wind and solar, are mainly connected to the grid using power electronic interfaces that

ensure power injection at the rated grid frequency [62]. The variable nature of renewable

power poses challenges for frequency control in mixed diesel-renewable microgrids [61].

This variability may result in large frequency fluctuations without proper controls [119].

Furthermore, unacceptable frequency excursions caused by deterioration of inertial response

in the presence of large disturbances can adversely impact system reliability [121]. To

address the frequency stability challenges, renewable energy sources need to be equipped

with frequency control approaches that contribute to frequency regulation operations [27],

[82], [83]. Utilizing stored energy as a synthetic inertial response, commonly referred to as

inertia emulation, is one of the widely proposed approaches [112]. These controls can be

employed either in grid-connected mode or in island mode [135], [83].

2



The U.S. electric grid is evolving from a large, centralized power generation and control

architecture to a hybrid system that incorporates various DERs near the load. Utilizing

the response from the demand side as a synthetic inertial response can also help reduce

the rate of change of frequency (ROCOF) and provide a supplementary primary frequency

control loop. Utilizing demand control to provide grid services requires synchronized wide-

area control of a significant number of loads to deliver sufficient response. At the grid edge

where consumers connect to the grid, sensor arrays, high-speed networks, and advanced

communications create a dynamic space where energy is not only passively consumed but

generated, stored, managed, and traded [65]. The communication delays and packet losses

in sensors and actuators are an important challenge for inertia emulation control in power

systems with demand response (DR) [25], [137].

1.1.1 Traditional Frequency Regulation

Balancing generation and load continuously is difficult due to minute to minute load and

generation changes. This balancing can also be affected by longer-term variability resulting

from predictable load and weather patterns. Generation also may have fluctuation because

of unexpected trips or generation schedule failures [53]. In traditional frequency regulation,

synchronous generators are mainly accomplished for frequency control in the presence of

disturbances by adjusting their output based on the frequency measurements. Frequency

regulation basics represent frequency response on time scales that can be categorized into

three periods, namely, inertial response, primary control response, and secondary control

response as is illustrated in Fig. 1.1 [83]. The inertial and primary control responses have a

similar time scale of seconds, while the secondary control response has a slower time scale,

which is tens of seconds to minutes [128]. Secondary control response is out of the scope of

this dissertation and will not be discussed.

Inertial Response

In the presence of disturbances that cause an imbalance power in the grid, synchronous

generators and motors start to release kinetic energy of their rotating mass, which prevents
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Figure 1.1: Typical frequency response after a generator trip.
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severe frequency drop; this characteristic is called inertial response. The inertial response

provided by synchronous generators or motors can reduce the ROCOF but can lasts for only

a few seconds [120]. In power system analysis, the inertia characteristics are represented by

the inertia constant, defined as the kinetic energy in watt-seconds at rated speed divided by

the VA base, which mathematically serves as the time constant of the swing equation [128].

Primary Frequency Response

The primary frequency response is the first part of frequency control that stabilizes the

frequency in response to frequency deviations. As rotor speed slows down, the turbine-

governor senses the speed reduction and adjusts the prime movers output to stabilize the

rotor speed [120]. The primary frequency response can be provided by generator governor,

load, and other devices that can provide an immediate response based on their local control.

Primary response is mainly determined by the proportional gain and the dynamics of the

governors and turbines.

1.1.2 Frequency Performance with High Penetration of Renew-

able Energy

The electric grid underlies our economy and daily lives. Large and centralized power systems

are changing fast to a hybrid system with high penetrations of DERs. Increased penetration

of DERs results in unacceptable frequency excursions due to the deterioration of inertial

response in the presence of disturbances. The primary frequency response deviation refers

to the transient events since it denotes the part of the response before the steady-state

condition. Most renewable resources such as WTGs are connected to the grid through

inverters, reducing the natural inertial response to grid frequency changes. The doubly-

fed induction generator (DFIG) can be controlled to compensate for this reduction and

provide a faster response than traditional synchronous machines [83]. There are many

worldwide occasions as an example for degradation in frequency response in the presence

of renewable resources. For instance, a decline in the primary control response has been
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recorded in the Eastern Interconnection of the United States. Since 1994, the Eastern

Interconnection primary control response has declined roughly 20% even though it should

have been increasing in proportion to a 20% increase in customer demand [86].

Inadequate frequency response is defined as noncompliance with minimum ROCOF

constraints that result by generators’ ROCOF relays. Instantaneous minimum frequency

requirements may also result due to under-frequency load shedding relays known as the

nadir inadequacy [21]. The latter is the primary concern as larger excursions of frequency

and tie-line power may trigger unnecessary relay actions, in which case enough capacity is

available to achieve a safe and efficient steady-state operation in grids with high renewable

penetration [128].

Time and space-variant system inertia will make the availability of frequency control

services more uncertain and challenging in terms of the risk of significant frequency deviations

[128]. High penetration of renewable causes larger inertia variations that take place in shorter

time windows. Even at the same time, different locations could have different penetration

levels, and thus frequency dynamics vary in separate areas. Therefore, situational awareness

and adaptivity can be named a primary part of the frequency control that should be

considered when adding supplementary frequency control loops in power systems.

1.1.3 Frequency Control with Inverter-Interfaced Resources

Recently, inverter-interfaced sources have received lots of attention as a grid-feeding part

of grid-supporting functions. Primary frequency control can be equipped for most inverter-

interfaced DERs, where WTGs are the most suitable candidate since the stored kinetic

energy in the rotating mass can be readily utilized without additional storage [83]. Existing

inertia emulation methods generally couple the stored kinetic energy of WTGs to the ROCOF

[84, 51]. However, other applicable sources must operate at de-load conditions or integrate

with energy storage units to contribute to frequency regulations. The main two categories for

frequency control are known as synchronization signal-based [36, 125, 126] and supplementary

signal-based primary frequency control methods [22, 51, 71, 84]. Supplementary signal-based
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primary frequency control is well known as a common method in power systems frequency

regulation services.

Supplementary signal-based methods are the most common and representative methods

to provide an additional signal to contribute to primary frequency control. This method

provides a signal associated with the measured grid frequency deviation or its differential to

the output power or defined speed reference value to be tracked [41, 128]. The ROCOF can be

generated by filtering the frequency through a washout filter [51], while the synthetic primary

control response consistent with the frequency deviation. For off-shore wind farms connected

with high-voltage direct current (HVDC) transmission networks, the energy stored in the

DC-link can contribute with the kinetic energy for a longer support duration [128, 48, 71].

However, the effective inertial response using such methods can be challenging to quantify

as the emulated inertia constant is time-varying [117, 134, 83].

1.1.4 Frequency Control with Demand Response

The electric grid that underlies our economy is changing rapidly, and it is evolving from an

architecture of centralized power generation to a hybrid system that incorporates DERs near

the load. High penetration of DERs can result in severe frequency deviations in the presence

of disturbances. Utilizing response from the demand side as a synthetic inertial response can

help reduce ROCOF [81].

Utilizing demand control to provide grid services requires synchronized wide-area control

of a significant number of loads to deliver the needed response. At the grid edge,

consumers are connected to the grid with sensor arrays, high-speed networks, and advanced

communications that create a dynamic space to generate, store, manage, and trade energy.

The communication delays and packet losses in sensors and actuators are an essential

challenge for inertia emulation control in power systems with DR [25], [137]. The illustration

of frequency control with DR response and communication delay is shown in Fig. 1.2.

As shown in this loop, for utilizing DR in frequency excursions, the communication

infrastructure features, latency, and probability of packet losses play a crucial role by affecting

the obtained supplementary frequency control signal.
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Figure 1.2: DR loop for frequency regulation.
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1.2 Motivation and Objective

Despite the numerous suggested approaches for frequency control, utilizing these functions

towards adequate frequency response, i.e., bounded within the defined safety, is challenging.

Here, the term safety means a well-defined and allowable operating region, and a safe response

means the trajectories of all concerned states stay within defined safety limits, see Fig.

1.3 [5]. Many studies have proposed different techniques for synthetic inertia emulation,

and primary frequency control [16, 98, 114, 134, 132, 83, 81]. This dissertation proposes

some robust frequency response considering different control approaches with performance

guarantees.

One of the most challenging aspects lies in designing controllers for the large-scale power

system models, including some nonlinearities. Providing a robust frequency regulation

service is a critical point in control design. Model reduction is vital for the control design

of large-scale systems such as the power grid, as they are governed by differential equations

where the number of states can be extremely large [102]. The goal is to provide a low-

dimensional model that has similar response characteristics as the original system and

allows a level of storage and computational requirements manageable for practical design

and implementation [9], [83]. Model reduction is also beneficial for implementation and

deployment of dynamic feedback controllers which are dynamic systems and have the same

order as the plant, in general. The full-order plant contains faster electromagnetic dynamics

and slower electromechanical dynamics. The former are less relevant to the frequency

response, while the latter dominate the frequency behavior. Without model reduction, the

controller dynamics will also include the fast electromagnetic modes that are less relevant

to the frequency response but require small steps to simulate, and consume computation

resources of the embedded system once deployed [83].

Investigation of the effects of communication delays and packet losses on inertia emulation

control in a power system is another challenge in frequency regulation service. Networked

control systems (NCS) such as smart grids are spatially distributed systems in which the

communication between sensors, actuators, and controllers occurs through a shared band-
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Figure 1.3: Safety verification by barrier function.
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limited digital communication network [127]. This system structure requires ensuring data

packets are successfully transmitted between the control components to ensure the reliability

of such NCS. Addressing the network-induced delays and packet dropouts in NCS, a scalable

and pervasive communication infrastructure is crucial in both the construction and operation

of a smart grid [42]. As improved communication infrastructure are available with high

reliability, security, and massive input-output capability, frequency regulation using DR can

help in frequency regulation services in smart grids.

The aforementioned issues open a new door to the following research problem to provide

accurate frequency control in the presence of disturbances. The accuracy of the frequency

response can be indexed by a safe performance, where the safe performance means that

all trajectories should be maintained in a defined safe region. As pointed out in [116],

the available response time (equivalent to the deadband setting) for converter interfaced

sources to maintain bounded frequency response is usually uncertain [128]. There are a few

proposed methods for safety verification in frequency control of power system [134, 131].

In this dissertation, reachability using barrier function technique is introduced. A linear

programming (LP) relaxation is suggested to analyze and synthesize the safety region based

on the desired range of frequency deviations in the power system. The Handelman’s based

barrier certificate approach for guaranteed frequency performance is proposed, and validated

using power system benchmark case studies with a discussion on further control guidelines.

1.3 Dissertation Outline

This dissertation is organized as follows:

In Chapter 2, a robust output feedback control design for inertia emulation by wind

turbine generators is proposed. Necessary models for frequency control are developed, and

system frequency response (SFR) model and the concept of inertia emulation is discussed.

This work represents the WTG as a selected renewable converter-interfaced resource to

help frequency regulation in an islanded microgrid. Balanced truncation model reduction

technique is applied to the WTG and compared with selective modal analysis (SMA)-based
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model reduction technique. By combining the SFR model and the reduced-order model

of the WTG, an augmented SFR is obtained. The emulated inertial and primary control

responses are approximately evaluated by employing both linear quadratic regulator (LQR)

and H∞ methods in an output feedback control structure.

In Chapter 3, load-side control for frequency regulation is analyzed and investigated. This

work examines inertial response and ROCOF in a power system with inverter-interfaced air

conditioners (IACs). The control loop considers time delays and packet losses to show the

need to switch to 5G networks as an improved communication infrastructure in future smart

grids to have a guaranteed frequency regulation service.

In Chapter 4, a delay compensator for the DR controller using robust H∞ and µ-synthesis

control methods is proposed to guarantee inertial response and reduce the ROCOF in the

presence of disturbances. The robust control method considers model uncertainties, including

uncertain communication delays, governor dead-bands, and governor time constants. The

approach is validated using an illustrative example of a power system with IACs, where the

control loop includes defined parametric uncertainties.

In Chapter 5, the approaches on safety verification and its application in power systems

for guaranteed frequency response are discussed. The proposed techniques are classified by

set operation-based methods and passivity-based methods. The barrier certificate approach

as a vital class of passivity-based methods is widely employed to obtain a region of safety

(ROS). LP relaxation by Handelman’s representation as an alternative to the sum of squares

(SOS) for safety verification is proposed to encode the polynomial positivity problem and

reduce this problem to linear programming.

In chapter 6, guaranteed frequency performance using the Handelman’s based barrier

certificate approach is proposed. The proposed method is successfully implemented and

verified using power system benchmark examples. Further control guidelines on the barrier

certificate approach are discussed and verified on a diesel/wind fed microgrid to provide

guaranteed frequency response.

In chapter 7, the works in this dissertation are summarized, and future works are

proposed.
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1.4 Summary of Contributions

The contributions of this dissertation are summarized as follows:

• First, compared with the common inertia emulation methods for current-mode DERs

that lead to time-varying synthetic inertia responses, this dissertation studies the model

reference control (MRC) framework, which allows us to emulate the inertia precisely

and provide guaranteed performance for the frequency response. The proposed method

on the modified 33-node microgrid using a detailed full-order three-phase simulation

model is verified in MATLAB Simulink.

• Since MRC is more of a control task than a design method, the output feedback

LQR and H∞ controls are proposed with the Luenberger observer to realize the MRC-

based inertia emulation (IE). Compared with other proposed methods which use state-

feedback control design, the technical benefits are freedom to use a variety of model

reduction techniques, and more practical implementation since state measurements are

not available all the time.

• The investigation of the effects of communication delays and packet losses on inertia

emulation control in a power system with DR setting, where IACs represent the demand

load, is presented. The need to use improved communication structures such as the

5G network is discussed and validated by comprehensive simulation results.

• The state-space representation of a power system with DR, including communication

delays and governor dead-band is provided. The model uncertainties affecting the

primary frequency response include the governor dead-band, governor time constant

and uncertain communication delays. The governor dead-band as a critical operating

component is included in the system dynamic model using an uncertain droop curve.

The actual communication delay and dead-band are implemented in simulations to

provide realistic results.

• The robust H∞ and µ-synthesis output feedback delay compensation for primary

frequency with DR is designed using both frequency deviation and ROCOF to
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provide accurate frequency regulation. The performance robustness is guaranteed

in the presence of model uncertainties affecting the primary frequency response and

disturbances. A comparative study of the proposed method and the conventional PI-

based Smith predictor control method is presented.

• A set theory-based method for safety verification is presented. The Handelman’s

representation is introduced as a linear relaxation approach to show the barrier

function’s positivity. The proposed technique is verified on an illustrative example,

and the application in power systems is discussed.

• The computational algorithm for Handelman’s based barrier certificate approach

to verify safety region for guaranteed frequency performance is presented. The

proposed method is successfully implemented using power system benchmark examples,

including SMIB, two-area power system, and diesel/ wind fed microgrid. The safety

supervisory control (SSC) based on the barrier certificate approach is investigated on

a diesel/wind fed microgrid to provide guaranteed frequency response.
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Chapter 2

Robust Output Feedback Control for

Inertia Emulation

This chapter proposes a robust output feedback control for inertia emulation using wind

turbine generators and it is organized as follows. A mathematical model for frequency control

is presented beside discussion on traditional SFR and the objective of inertia emulation

control in Section 2.1. The diesel wind system modeling and the balanced truncation model

reduction technique are presented in Section 2.2. The proposed model reduction technique is

compared with the SMA-based model reduction. A LQR is designed and compared with an

H∞ control approach in Section 2.3. The proposed approach is validated by comprehensive

simulation results in Section 2.4. The results in this chapter appeared in [83].

2.1 Inertial Response

Traditional frequency response in the presence of a disturbance is led by synchronous

generators that limit the ROCOF by converting kinetic energy into electric power, known as

the inertial response. As the rotor speed slows down, the turbine-governor system adjusts

the prime mover output to arrest the speed deviation. The regulated primary frequency is

related to the governor response [99], [60]. Due to the frequency dead-band and response time

of the turbine-governor, the inertial response is dominant at the beginning of disturbance
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occurrence. The swing equation models this process:

2Hs∆ω = ∆Pm −∆Pd (2.1)

where s is the Laplace operator, 2Hs∆ω denotes the inertial response, ∆ω denotes the

primary frequency response and ∆Pd denotes the disturbance. With more renewable energy

penetration, fewer synchronous generators will be committed leading to smaller inertia H

in the system, and potentially inadequate inertial response. Wind turbines, for example,

are effectively decoupled from grid frequency and will not naturally respond to frequency

changes. Thus, controls must be designed to limit the ROCOF if grid support is needed.

Controlling the power output proportional and opposing the ROCOF is known as inertia

emulation. The traditional approach of an inertia emulation strategy for a WTG is illustrated

in Fig. 2.1. In a such strategy, the stored kinetic energy in a WTG will be released in

proportion to ROCOF. The speed of the induction motion will decline due to the energy

conversion [118]. Considering the conceptual representation of the inertia emulation in Fig.

2.1 (b), the swing equation is compensated by the power from the WTG:

2Hs∆ω = ∆Pm −∆Pd +Gw(s)Kies∆ω︸ ︷︷ ︸
∆Pg

(2.2)

where Gw(s) represents the dynamic response of WTG to generate the inertia emulation

power ∆Pg according to the ROCOF Kies∆ω. As described in [132] and [84], the

configuration in Fig. 2.1 can only produce synthetic inertial response where the equivalent

parameters are time varying and may be difficult to tune. This is easy to see if we rearrange

(2.2) as follows:

(2H −Gw(s)Kie)s∆ω = ∆Pm −∆Pd (2.3)

This poses challenges for dynamic security assessment, stability analysis and system

performance guarantees. See [132] and [118] for details on the derivation of equivalent

parameters of frequency response model under emulated inertia.
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Figure 2.1: Traditional inertia emulation function within a wind turbine. (a) Detailed
view. (b) Conceptual view.
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To overcome the aforementioned difficulties, the objective of the proposed controller is

to provide a specific amount of inertia emulation to achieve near-ideal response in the time

scale of inertial response in the sense that the equivalent parameters are nearly constant

[83]. In other words, we need to compensate the negative effect induced by Gw(s) in (2.3),

which mainly includes the primary mover dynamics and the internal controller response

time which is inherent and cannot be compensated by external controllers. So the synthetic

inertial response can only be ”near-ideal” compared with the conventional inertial response.

Fortunately, inner control loops of the converter are too fast (in the time scale of milliseconds)

to have sizable impacts on the frequency control [107]. On the other hand, the negative

impact induced by the primary mover dynamics, that is, the motion dynamics of the WTG,

can be compensated.

The idea to achieve near-ideal synthetic inertial response of WTG can be recast as a

tracking problem with respect to a dynamic reference model, known as the MRC. In the

MRC, we define a frequency response model with desired parameters as the reference. The

objective is to make the DSG speed precisely track the reference frequency using the support

from the WTG as shown in Fig. 2.2. Intuitively, the frequency response of the augmented

physical plant consisting of the diesel generator and the WTG will be the same as the

response of the reference model. Therefore, the emulated inertia constant is close to the one

of the reference model. To see this, let 2Hrfs∆ωrf and 2HDs∆ωd be the inertial response

of the reference model and DSG in Fig. 2.2, respectively, where Hrf is the desired inertia

constant and Hrf −HD = Hie > 0. The power balance condition holds as:

∆Pd = 2Hrfs∆ωrf = 2HDs∆ωd +∆Pg (2.4)

If the speed of DSG can track the speed of the reference model with the support of WTG,

that is, ∆ωrf ≈ ∆ωd, then the following relation holds:

∆Pg ≈ 2Hrfs∆ωd − 2HDs∆ωd = 2Hies∆ω (2.5)
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Therefore, the synthetic inertial response 2Hies∆ωd is emulated by the WTG. Traditional

strategy in Fig. 2.1 can be considered as an open-loop control with respect to the WTG

since no status information of the WTG is fed back to the inertia emulation module. Since

the MRC-based inertia emulation generates the control signal using both grid frequency and

WTG states as shown in Fig. 2.2, it can compensate the negative effect induced by the

motion dynamics of WTG. Nevertheless, the MRC is more of a control task than a design

methodology. In the following, a mathematical model incorporating both the diesel and

WTG will be derived, where an output feedback LQR and H∞ controllers will be designed

to realize the MRC-based inertia emulation.

2.2 Diesel-Wind System Modeling

In this section, the dynamic model of the WTG is presented. The wind turbine model is

assumed to be a type-3 WTG, which is one of the most common wind turbines used in

practice. Type-3 wind turbines are also called DFIG-based wind turbines. Note that the

proposed paradigm can be applied to any type of converter-interfaced DERs. But WTGs

are more readily suitable due to their inherit kinetic energy.

2.2.1 Wind Power and Wind Turbine

The power output of wind turbine in the form of kinetic energy in the wind crossing at a

speed vwind [m/s] and surface Awt [m
2] is expressed by [1]

Pwind =
1

2
ρ πR2

t︸︷︷︸
Awt

v3wind [W] (2.6)

where ρ denotes the air density, Rt is the radius of the wind turbine in meter and Awt

represents the wind turbine swept area. The output power of the wind turbine from Pwind

can be obtained by [128]
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PM =
1

2
ρ πR2

t︸︷︷︸
Awt

v3windCP (λ, θt) [W] (2.7)

The term CP (λ, θt) denotes the power coefficient, as a dimensionless parameter that describes

the energy extraction efficiency of a wind turbine, and is usually as a function of the tip speed

ratio λ and the pitch angle θt [degree] [128].

The relation between the turbine speed and the rotor mechanical and electric speed of

the electric machine can be expressed by

ωR = p× ωM = p× k × ωT [rad/s] (2.8)

ωr = ωm = ωt [p.u.] (2.9)

where ωT is the turbine speed, ωM and ωR are the rotor mechanical and electric speed of

the electric machine, respectively. k represents the gear ratio between the turbine and the

machine, and p is the pole pair number of the electric machine [128]. Here, the tip speed

ratio is

λ =
vtip
vwind

=
RωT

vwind

=
RωR

pkvwind

=
RωrωR

pkvwind

(2.10)

where (2.11) is the common expression used for the power coefficient [99].

Cp =0.22

(
116

λi
− 0.4θt − 5

)
e
− 12.5

λi (2.11)

and,

λi =

(
1

λ+ 0.08θt
− 0.035

θ3t + 1

)−1

(2.12)

The theoretical maximum value of the power coefficient is 0.593, i.e., CP,max = 0.593, which

is the so-called Betz’s limit [1]. The mechanical torque input to the electric machine can be

defined as
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TM =
PM

ωM

[Nm] (2.13)

In this dissertation instead of aggregating hundreds of WTGs in a wind farm, we will use

one electric machine with the desired rating and scale the wind turbine up closely to this

rating.

2.2.2 Doubly-Fed Induction Generator and Converter Model

The converter of the wind turbine generator includes the rotor-side and grid-side converters,

which control the speed of the generator and inject power into the grid, respectively [49].

Since, the rotor-side converter controls the generator speed by regulating the electromagnetic

torque, the frequency support function should be included within this subsystem. The grid-

side converter has less impact on the frequency support since the time scale of the DC

regulation is much faster than the rotor-side control current loop for stability reasons [132].

The differential equations of the fluxes in the dq axes and algebraic equations of the

DFIG are given by:

dλqs
dt

= ωb[Vqs −Rsiqs − ωsλds] (2.14)

dλds
dt

= ωb[Vds −Rsids + ωsλqs] (2.15)

dλqr
dt

= ωb[Vqr −Rriqr − (ωs − ωr)λdr] (2.16)

dλdr
dt

= ωb[Vdr −Rridr + (ωs − ωr)λqr] (2.17)

λqs = Lsiqs + Lmiqr (2.18)

λds = Lsids + Lmidr (2.19)

λqr = Lriqr + Lmiqs (2.20)

λdr = Lridr + Lmids (2.21)
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The dynamics of the induction machine are presented in (2.22)-(2.27), where, τm and τe

are the mechanical and electromagnetic torques (τe = (Lm/Ls)(λqsidr − λdsiqr)). ωfref is the

filtered reference speed for the wind turbine generator and ωrref is the reference rotor speed

which is computed as an optimal speed based on the maximum power point tracking (MPPT)

curve in a relation with the measured electric power as shown in Fig. 2.3 (Eq. (2.28)) [115],

[83]. The state variables related to the speed controller of the WTG are represented as x1

and x2. Also, x3 and x4 are defined as state variables related to the reactive power controller.

Qg and Pg are the reactive and active power of the wind turbine generator [99].

dωr

dt
=

(τm − τe)

2Hw

(2.22)

dωfref

dt
= ωc(ωrref − ωfref ) (2.23)

dx1
dt

= KIτ (ωfref − ωr + uc) (2.24)

dx2
dt

= KIQ(Qref −Qg) (2.25)

dx3
dt

= KIc(iqrref − iqr) (2.26)

dx4
dt

= KIc(idrref − idr) (2.27)

ωrref = −0.67(Pg)
2 + 1.42(Pg) + 0.51 (2.28)

The algebraic relations of the electric power are expressed in (2.29) and (2.30). The loop

of algebraic equations is closed by the algebraic relations in (2.31) and (2.32) [132], where

σ = (LrLs − L2
m)/(LrLs) is the leakage coefficient of the induction machine.

Pg = Vqsiqs + Vdsids + Vqriqr + Vdridr (2.29)

Qg = Vqsids − Vdsiqs + Vqridr − Vdriqr (2.30)

Vqr = x3 +KPc(iqrref − iqr)

+ (ωs − ωr)(σLridr + (
ΨsLm

Ls

)) (2.31)

Vdr = x4 +KPc(idrref − idr)− (ωs − ωr)(σLriqr) (2.32)
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Figure 2.3: Mechanical power extracted from wind turbine based on rotor speed.

24



where iqrref and idrref are expressed by (2.33) and (2.34).

iqrref =
−Lsτeref
LmΨs

(2.33)

idrref = x2 +KPQ
(Qgref −Qg) (2.34)

The model used for the DSG is the complete model as described in (2.35)-(2.37). This

model shows speed changes of the diesel generator based on power, mechanical power and

valve position variations [134], [60].

d∆ωd

dt
=

fb
2HD

(∆Pm − (∆Pd −∆Pg)) (2.35)

d∆Pm

dt
=

1

τd
(−∆Pm +∆Pv) (2.36)

d∆Pv

dt
=

1

τsm
(−∆Pv − (

∆ωd

fbRD

)) (2.37)

Here, ∆Pd is the disturbance which is the measured power flow variation at a specified

location [132] as shown in Fig. 2.2.

2.2.3 Model Reduction Technique

To reinforce the analysis in the following chapters, a reduced-order model of the WTG is

derived. Model reduction is critical for control design of large-scale systems, such as the

power grid, as they are governed by differential equations where the number of states can

be extremely large [102]. The goal is to provide a low-dimensional model that has a similar

response characteristics as the original system and allows a level of storage and computational

requirements manageable for practical design and implementation [9].

The model reduction is also beneficial for implementation and deployment of dynamic

feedback controllers which are dynamic systems and have the same order as the plant.

The full-order plant contains faster electromagnetic dynamics and slower electromechanical

dynamics. The former is less relevant to the frequency response, while the latter dominates

the frequency behavior. Without model reduction, the controller dynamics will also contain
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the fast electromagnetic modes that are less relevant to the frequency response but require

small steps to simulate, and consume considerable computation resources of the embedded

system once deployed [83].

One popular model reduction technique is the balanced truncation, which is a simple

efficient model reduction technique broadly used in reducing model orders of high order

linear systems. Balanced reduction was first introduced by Moore [80]. It has been shown

to provide accurate reduced order model representations of state-space systems. Since the

reduction procedure is based only on system inputs and outputs, model reduction may be

heavily dependent on the scaling of the states. However, balanced truncation is independent

of the particular system scaling since it uses balanced state space realizations [122].

This dissertation presents the balanced reduction method for large scale power systems

instead of the traditional reduction method defined as SMA [132]. Although the SMA

method has a nice physical interpretation in many cases, it is not the ideal method from

a control point of view, since it only relies on certain modes to reduce the order of a large

model. This dissertation is suggesting a more accurate method that can maintain the main

dynamical features of the whole system in the reduced model. The characteristic of this

method can help us provide a reliable reduced order model and design a proper, optimized

and robust controller to guarantee desired performance.

Assume a stable linear time-invariant system as illustrated by the n dimensional state-

space model in (2.38).

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) (2.38)

In balanced truncation, a balanced realization is first obtained to make the controllability and

observability Gramians Qc and Qo equal to the diagonal matrix of the Hankel singular values,

i.e., Σ = diag(σ1, . . . , σN) . These two Gramians should satisfy the Lyapunov equations:

AQc +QcA
T +BBT = 0

ATQo +QoA+ CTC = 0 (2.39)
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In addition, Qc and Qo form the bases for the controllable and observable subspaces [19].

Hence, the system is balanced when the controllability and observability Gramians are equal

[136].

The controllability and observability Gramians are described as follows [136]:

Qo =

∫ ∞

0

eA
T tCTCeAtdt; Qc =

∫ ∞

0

eAtBBT eA
T tdt (2.40)

In order to transform a realization into a balanced form, a coordinate transformation matrix

T is needed to transform the balanced state vector xb to the original state vector x, where,

x = Txb, such that the transformed observability and controllability Gramians are diagonal

and equal [122] as computed by the following equations:

Q̃o = T−TQoT
−1; Q̃c = TQcT

T (2.41)

The transformation T can be computed by first calculating the matrix Qco = QcQo [19] and

determining its eigenmodes Qco = TΣ2T−1 . Note that the transformation T is chosen such

that the following identities are satisfied [136]:

Q̃c = Q̃o = T−1QcT
−T = T TQoT := Σ (2.42)

So, the balanced state-space model (2.38) is obtained by taking TAbT
−1 = A, CbT

−1 = C

and TBb = B [136]:

ẋb(t) = Abxb(t) +Bbu(t); yb(t) = Cbxb(t) (2.43)

The balanced realization gives us the new order of states based on observability and

controllability, where the first states are the most controllable and observable states [19].

Hence, (2.44) expresses the reduced order model by keeping nr states (x1, . . . , xnr) that are

the most controllable and observable states and most relevant from the control viewpoint

27



[122].

ẋr(t) = Arxr(t) +Bru(t); yr(t) = Crxr(t) (2.44)

Therefore, we can compute the reduced state space matrices using Tr =
[
Ir 0

]
T as:

Ar :=
[
Ir 0

]
T−1AT

Ir
0

 ; Br :=
[
Ir 0

]
T−1B; Cr := CT

Ir
0

 (2.45)

The error bound of balanced truncation is given by [136]:

∥∥∥y(t)− yr(t)

∥∥∥
2
≤ 2

n∑
nr+1

σi

∥∥∥u(t)∥∥∥
2
; ∀u ∈ L2 (2.46)

where L2 denotes the space of finite energy signals (i.e., the measurable square integrable

functions). In order to make the controller design procedure simple, a reduced linearized

model about the equilibrium point for the type-3 WTG based on balanced reduction

technique is used. A comparison with the SMA technique proposed in [132] is presented. It

provides us with a benchmark on how close the reduced model is to the full order linearized

model and its performance for all frequency ranges. The linearized full order model of the

WTG around the equilibrium point is given as:

∆ẋf = Af∆xf +Bfuc; ∆yf = Cf∆xf +Dfuc (2.47)

where

xf =
[
λqs, λds, λqr, λdr, ωr, ωfref , x1, x2, x3, x4

]T
(2.48)

The full order model is a 10th order model and ∆ gives the variation of each variable

around the equilibrium. ∆yf is considered as the WTG power output variation, (Pg), due

to the inertia emulation input. Then, the reduced order model of the WTG is expressed

in (2.49), where we keep only the most controllable and observable states with the highest
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Hankel singular value magnitudes and truncate the rest of the state variables from the

reduced realization. In other words, we are eliminating the states that are at the same time

difficult to control and difficult to observe [9].

∆ẋred(t) = Ared∆xred +Breduc

∆yred = Cred∆xred +Dreduc (2.49)

where, Ared, Bred, Cred and Dred are the state, control input, output and control feed-forward

matrices of the reduced order model, respectively.

2.3 Robust Observer-Based Control Design

In this section, two different control methods, a LQR and a static state feedback H∞

control for reference tracking are proposed. Since not all the state variables are available for

measurements and only the reduced model is used in the control design stage, a Luenberger

observer to estimate the state variables based on the measurements is employed. This results

in dynamic output feedback LQR and H∞ controllers.

2.3.1 Linear Quadratic Regulator

A tracking problem is considered for a defined physical plant as an aggregated model of the

DSG and WTG. This physical plant is the combination of (2.35)-(2.37) and (2.49) which is

given by:

ẋp = Apxp +Bpuc + Epud; yp = Cpxp (2.50)

where, xp =
[
∆ωd,∆Pm,∆Pv,∆xr1,∆xr2,∆xr3,∆xr4

]T
, yp = ∆ωd and ud is the disturbance

that is considered as the measured power flow variation [132] shown in Fig. 2.2 and the
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state-space model is

Ap =



0 fb
2HD

0 fb[Cred]
2HD

0 −1
τd

1
τd

01×4

−1
fbτsmRD

0 −1
τsm

01×4

04×1 04×1 04×1 [Ared]


;Bp =



fb[Dred]
2HD

0

0

[Bred]



Ep =


−fb
2HD

0

0

04×1

 ; Cp =
[
1 0 0 0 0 0 0

]

The reference signal (∆ωdrf ) for tracking is specified from the reference model similar to

the DSG model as:

ẋrf = Arfxrf + Erfudrf ; yrf = Crfxrf (2.51)

where xrf =
[
∆ωdrf ,∆Pmrf ,∆Pvrf

]T
, yrf = ∆ωdrf and

Arf =



−fbDrf

2Hrf

fb
2Hrf

0

0 −1
τdrf

1
τdrf

−1
fbτsmrfRrf

0 −1
τsmrf


;Erf =


−fb
2Hrf

0

0

 ;Crf =
[
1 0 0

]
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To formulate the control problem, we consider the LQR cost function:

J =

∫ ∞

0

[xTQx+ uTRu]dt (2.52)

where Q = CTQ
′
C is a diagonal, symmetric, positive semi-definite matrix of ∆ωd −∆ωdrf

weights and R is a diagonal, symmetric, positive definite matrix of control weights. The

optimal control problem minimizes (2.52) over all controls u ∈ L2(0,∞) with the tracking

constraint. The LQR problem has a unique solution for a controllable system and the optimal

input u∗ is given by [136]:

u∗ = −Kx = −
[
Kp, Krf

]
x (2.53)

Finally, the augmented closed loop system xaug =
[
xp, xrf

]T
is defined below:

ẋaug(t) = Âxaug(t) + B̂xaug(t) + Êd(t)

y(t) = yp − yrf = Ĉxaug(t) + D̂xaug(t) (2.54)

where, d =
[
ud, udrf

]
, Ĉ =

[
Cp,−Crf

]
, D̂ =

[
DpKp, DpKrf

]
, Â =

Ap 0

0 Arf

, B̂ =BpKp BpKrf

0 0

 and Ê =

Ep 0

0 Erf

.
To compute the feedback law, the observer in (2.55) is used to estimate the states and

we use the physical plant output measurements to get an output feedback controller as an

inertia emulation controller. Therefore, the LQR based-observer controller is expressed as

follows:

˙̂x(t) = Âx̂(t) + B̂u∗ + L(y(t)− ŷ(t)) + Êd(t)

ŷ(t) = Ĉx̂(t) (2.55)
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which can be written as:

˙̂x(t) = (Â+ B̂K − LĈ)x̂(t) + Ly(t) + Êd(t)

uie = Kx̂(t) (2.56)

where L is any matrix such that Â− LĈ is stable [136].

2.3.2 H∞ Control

The theoretical formulation of the H∞ control problem has been addressed in many books

and papers, see [136] for example. In this section, a static state feedback control for reference

tracking based on the H∞ control structure is used that is fully described in [132]. In this

case, the objective is the sub-optimal problem:

min
∥∥∥Gy/d

∥∥∥
∞
< γ ; γ > 0 (2.57)

where Gy/d is the transfer function from the disturbance to the tracking error where∥∥∥Gy/d

∥∥∥
∞

is defined as supess σ̄(Gy/d(jω)) [136]. σ̄(.) is the largest singular value of Gy/d(jω).

Equivalently, we can solve the multi-objective optimization problem defined in (2.58).

Necessary and sufficient conditions for solving this problem are presented in [132]:

min γ + α + β−αI K̄

K̄ −I

 < 0 ,

βI I

I −P̄

 > 0 , F̄ < 0 (2.58)

where there exists scalar variables γ, α, β > 0 and matrix variables P̄ , Q̄, L̄i > 0 , M̄i, V̄i

for i = 1, 2 and K̄. F̄ is a symmetric linear matrix inequality (LMI), which can be

computed based on [132]. Therefore, the controller given in (2.53) can guarantee the system

performance, where the static gain K = K̄P̄−1. Hence, similar to the LQR case, the use

of the Luenberger observer gives a dynamic controller based on the computed static H∞

control, and results in a dynamic output feedback controller.
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The control structure for the LQR and H∞ as output feedback control for reference

tracking based on inertia emulation control is illustrated in Fig. 2.4. The controller K̂ is a

dynamic output feedback controller based on the observer expressed in (2.56). The signal

d represents disturbances and Z represents measurements while y denotes the observed

outputs (∆ωd and ∆ωdrf ) from the physical plant. The dynamic of the controller K̂ can be

represented by

ˆ̇x(t) = (Â+ B̂K − LĈ)x̂(t) + Ly(t)

uie(t) = Kx̂(t) (2.59)

where the controller K is designed based on the LQR or H∞ control techniques.

2.4 Modified 33-Bus Microgrid Simulation Results

The proposed controllers are applied to a modified 33-bus microgrid simulated using

MATLAB Simulink platform [13], [104], [83]. The closed-loop system performance is tested

using the single diesel-wind system described in [132]. The WTG model is modified based

on the DFIG in the Simulink demo library by changing the aerodynamic model to the one

detailed in [99], where a two-mass model is reduced to the swing equations with combined

inertia of the turbine and generator [132].

For simulation purposes, time constants of turbine-governor system in the reference model

are considered equal to that in the diesel synchronous generator. Moreover, we only consider

tuning the inertia constants of the reference model and do not emulate load damping effects

[87]. The system parameters are given in Appendix A.1.

2.4.1 Model Reduction Results

The reduced 4th order model of the WTG is expressed in (2.61). Since there are only 4

states with the highest Hankel singular value magnitudes, only the 4 most controllable and

observable states are kept and the rest of the state variables are truncated from the reduced
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Figure 2.4: Output feedback observer-based control.
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realization [83]. In other words, the states that are at the same time difficult to control and

difficult to observe are eliminating [9]. The Hankel singular values are:

Hs = [1.6 1.2 1.1 1.1 0.02 0.01 0.003 0.0005 0 0]T (2.60)

Observe the sharp decrease in the magnitudes of the singular values after the 4th one

justifying keeping only 4 state variables and eliminating the rest in the following reduced

model:

∆ẋred(t) = Ared∆xred +Breduc

∆yred = Cred∆xred +Dreduc (2.61)

where,

Ared =


−638.5 −35.1 72.05 −288.3

35.1 −0.06 0.13 −101.1

−72.05 0.13 −0.28 353.7

−288.3 101.1 −353.7 −135.6

 ; Bred =


−45.87

0.37

−0.8

−17.25


Cred =

[
45.87 0.37 −0.8 17.25

]
; Dred = 0.94

A comparison of the accuracy using balanced truncation and SMA methods are presented

in Fig. 2.5. As shown, we can capture the full order model precisely. In addition, H∞ norms

for the difference between the reduced model transfer function and the full order transfer

function
(∥∥∥Gfull −Gred

∥∥∥
∞

)
, where

∥∥∥.∥∥∥
∞

is the H∞-norm, are given in Table 2.1. Balanced

truncation can reduce the order of the model with a much lower H∞ norm, validating the

accuracy.

The responses of the nonlinear system and the reduced order linear model are compared

in Fig. 2.6 in order to validate the latter under a step signal input. As shown in Fig. 2.6,

the modeling error using the balanced truncation is not significant. The mean squared error

between the reduced order model and nonlinear model for the speed of the DSG (ωd),
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Figure 2.5: Singular values of full order model and reduced models.

Table 2.1: H∞ norms comparison of reduced ordered models

Reduction Method H∞Norm

Balanced Truncation 0.065
SMA 3.707
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Figure 2.6: Response comparison of nonlinear and reduced order model physical plant.
(a) Step input. (b) WTG active power variation. (c) Speed of DSG. (d) Mechanical power
variation of diesel generator.
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WTG active power variation (Pg) and mechanical power variation of diesel generator (Pm),

captured as 0.034Hz, 1.4 × 10−6W and 0.0013MW, respectively. The closed-loop system

performance subject to a step load change at bus 18 as a disturbance is considered for two

different cases.

2.4.2 Closed-Loop Performance Under MRC Based IE - Case I

For the first case, the desired inertia in the reference model is two seconds, that is, Hrf = 2,

and the inertia constant of the DSG is set to one second, that is, HD = 1. In other

words, we will emulate one second inertia constant from the WTG, that is, Hie = 1.

Under the MRC paradigm, we compare three design approaches, that is, LQR, H∞, and

a simple proportional–integral (PI) controller. We also compare the MRC paradigm with

the conventional inertia emulation method. The ROCOF is obtained by a washout filter

kis/1 + 0.01s. We index the aforementioned controllers as follows:

• Controller 1: MRC-based IE with LRQ realization

• Controller 2: MRC-based IE with H∞ realization

• Controller 3: MRC-based IE with PI realization

• Controller 4: Conventional IE using a washout filter

The feedback gains obtained for Controllers 1 and 2 are given in (2.62) and (2.63):

Klqr = [− 9.98 − 2.27 0.01 − 4.25 0.04 − 0.41 − 0.47 9.94 1.06 − 0.04] (2.62)

KH∞ = [83.01 2.98 0.17 18.74 0.42 2.33 2.24 − 83.38 − 2.39 0.12] (2.63)

The PI gain for Controller 3 is obtained via the pidtune function in MATLAB and given as

Kp = 0.0113, KI = 0.6471. The IE gain for Controller 4 can be determined based on Eq.

(2.3), that is, ki = −Hie/(2fb). To emulate one second inertia constant, we set ki = −0.03.
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The closed-loop performance is illustrated in Fig. 2.7. As shown, the synthetic inertia

constant is accurately emulated using Controllers 1 and 2. However, both Controllers 3

and 4 have tracking errors. Fig. 2.7 (a) and (b) present the control inputs and the power

outputs of the WTG, respectively. Note that there exists a weak inertial response for the

field-oriented controlled DFIG-based WTG even without a supportive controller, and this

response is sensitive to the rotor current-controller bandwidth and cannot provide the exact

synthetic inertia. To have a precise comparison, the tracking error for each realization is

shown in Fig. 2.7 (d). It can be readily observed that Controller 2 outperforms all controllers

followed by Controller 1 with the objective to remove tracking error to get precise emulated

inertia.

2.4.3 Closed-Loop Performance Under MRC Based IE - Case II

In the second case, setting the desired inertia to five seconds (Hrf = 5), the closed-loop

performance using MRC based IE with different realizations is illustrated in Fig. 2.8. The

same indices as in the previous subsection reused to denote the controllers. In this case the

computed feedback laws (2.64) and (2.65) for Controller 1 and 2 are

Klqr = [−9.98 − 2.27 0.01 − 4.25 0.04 − 0.41 − 0.47 9.87 0.33 − 0.05] (2.64)

KH∞ = [288.9 5.86 0.20 44.43 1.35 − 3.51 13.30 − 289.16 − 1.21 0.019] (2.65)

The re-tuned PI gains for Controller 3 are Kp = 1.29 KI = 4.56. For conventional IE

(Controller 4), based on ki = −Hie/(2fb), to emulate four seconds inertia constant, ki is set

to −0.12. The performance of all controllers is shown in Fig. 2.8. As seen in the figure,

small tracking errors are obtained by Controllers 1 and 2, that is, the closed-loop system can

emulate the desired inertia under the presence of disturbance. It is clear that if the desired

inertia defined by the reference model increases, Controllers 3 and 4 are unable to track the

reference frequency well and their tracking errors are higher relative to the LQR and H∞

controllers. It can also be observed that Controller 2 outperforms all controllers followed by

Controller 1.
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Figure 2.7: Closed-loop performance under MRC based IE with LQR, H∞, PI controllers
realization and conventional IE with desired inertia set to two second. (a) Control input.
(b) Active power variation of WTG. (c) Speed of DSG. (d) Tracking error.
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Figure 2.8: Closed-loop performance under MRC based IE with LQR, H∞, PI controllers
realization and conventional IE with desired inertia set to five second. (a) Control input.
(b) Active power variation of WTG. (c) Speed of DSG. (d) Tracking error.
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For Cases I and II, the H∞ controller performs better than the LQR and PI controllers

since it has improved robustness properties in the presence of plant uncertainties, that is the

discrepancy between the reduced order linear model and the full order nonlinear model.

2.4.4 Control Performance for Different Short Circuit Ratios

As known, the SCR is often used as an index for the connection strength. The SCR of a

strong grid is discussed in [32], [111], [3]. The SCR is defined as the ratio between short

circuit apparent power from a 3-line to ground fault at a given location in the power system to

the rating of the inverter-based resource connected to that location [129]. As the numerator

of SCR relies on the specific measurement location, this location is usually stated along with

the SCR number that is defined as:

SCR =
MVASC

MWn

(2.66)

where MVASC is the short circuit MVA level at the point of interconnection (POI) without

the current contribution of the WTG, and MWn is the nominal power rating of the WTG

being connected at the POI. Here to analyze the sensitivity of the proposed technique, the

closed-loop system performance for different SCR values is provided by implementing the

MRC based inertia emulation with LQR and H∞ controllers [83]. The SCR values for three

different scenarios in a range of (1.95,5) are provided in Table 2.2 where the MWn = 1.1MVA.

The performance for the MRC based inertia emulation with LQR and H∞ controllers,

by setting all parameters and controllers similar to Case II, are provided in Fig. 2.9 and Fig.

2.10, respectively. As it is clear, both proposed controllers can emulate the desired inertia

with a small tracking error. The tracking error varies in a negligible range for all scenarios.

The captured SCR lower bound by simulations is 0.26, that is the system performance with

the proposed techniques is guaranteed for SCR ≥ 0.26.

42



Table 2.2: SCR value for different scenarios

MVASC SCR

2.1 1.95
3.4 3.1
5.6 5.1

Figure 2.9: Closed-loop performance under MRC based IE with LQR realization for
different SCRs. (a) Control input. (b) Active power variation of WTG. (c) Speed of DSG.
(d) Tracking error.
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Figure 2.10: Closed-loop performance under MRC based IE with H∞ realization for
different SCRs. (a) Control input. (b) Active power variation of WTG. (c) Speed of DSG.
(d) Tracking error.
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2.5 Summary

In this chapter, new output feedback LQR and H∞ control laws for inertia emulation using

balanced truncation and the Luenberger observer are proposed. The controllers are applied to

the full order nonlinear model and compared favorably to a PI controller and a conventional

inertia emulation using a washout filter. The diesel generator speed follows the reference

model in the time scale of inertial response, and accurate emulated inertia is guaranteed by

generating additional active power from theWTG. The performance of the closed loop system

shows improved accuracy with the H∞ controller relative to the LQR controller, although

they both achieve the desired frequency response. The proposed technique is analyzed for

different SCR scenarios where a lower bound to guarantee the performance is obtained.
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Chapter 3

Primary Frequency Control with

Demand Response

Investigating the effects of communication delays and packet losses on inertia emulation and

primary frequency control in a power system with DR setting is highly demanded. This

chapter reviews communication limits on frequency regulation using demand response and

shows the need for improved communication for accurate frequency regulation in smart grids.

This chapter is organized as follows. Section 3.1 reviews communication network in

frequency control, including 5G technology. Section 3.2 introduces a power system model

with demand response for primary frequency control, including the problem formulation and

simulation results. The results in this chapter appeared in [81].

3.1 Communication Network in Demand Response

NCS such as smart grids are spatially distributed systems in which the communication

between sensors, actuators, and controllers occurs through a shared band-limited digital

communication network [127]. This system structure requires ensuring data packets to be

successfully transmitted between the control components to ensure the reliability of such

NCS. Addressing the network-induced delays and packet dropouts in NCS, a scalable and
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pervasive communication infrastructure is crucial in both the construction and operation of

a smart grid [42].

3.1.1 5G Technology Potential Application in Demand Response

In the past few years, the 5G network is being promoted widely across the world due to

its advantages in transfer speed, reliability, security, power consumption, and large number

of connections [2]. Hence, utilizing the 5G network can help achieve fast transfer speed,

low communication latency, high security, and a massive number of connections in future

smart grids [44]. The critical improvement in this network communication is in transfer

capacity, energy efficiency, and interference management. These features can be achieved

using 5G network as an ultra-dense cellular network, where 5G base stations are anticipated

to be 40–50 (BS/km2) as compared to 4G network base stations that are close to 8–10

(BS/km2) [44], [81]. The 5G massive multiple-input multiple-output (MIMO) antennas are

similar to existing 3G and 4G base station antennas, but with a significantly higher frequency

and beam-steering and beam-forming technologies that help the 5G base station antennas

to direct the radio signal to the users and devices rather than in all directions [101], see

Fig. 3.1. Moreover, robust security and high reliability are other achievements of using

5G networks. The 5G network architecture can enhance data transfer security and support

diversified services via end-to-end service level agreement assurance [44]. The 5G network

slices are separated from each other and can be regarded as individual structures managed

in the core network [130]. For the 5G network, the core network is being redesigned to better

integrate with the Internet and cloud-based services, and it also includes distributed servers

across the network that improve response times and reduce latencies [101], [81].

In general, the DR aggregator may receive the area control error (ACE) or other

defined control error for the system and send control signals to users to adjust their power

consumption and provide regulation power [44]. However, due to the network bandwidth

limits and network traffic congestion, usually, network-induced delays and packet dropouts

are unavoidable [127].
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Figure 3.1: The 4G base station with sector antennas and the 5G base station with multi-
element massive MIMO antenna array.
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In this case, the system frequency regulation as one of the critical regulatory processes

will become unstable when the communication delay time is over 0.4–0.5 s [94], [93]. The

significant advantages of 5G network make it an application potential for DR in smart grids.

In this framework, the massive machine-type communications’ feature of 5G network allows

to achieve large numbers of communication links among different loads that provide more

accurate and applicable demand response control [44], [88]. Moreover, the fast transfer speeds

and low communication latencies in 5G networks for remote control allow DR aggregators

to send and receive information signal with an acceptable delay and packet loss where the

delay time can decrease to 1 ms [81].

This dissertation shows the effects of time delays and packet losses in inertia emulation

and ROCOF control using demand response as a part of frequency regulation. The primary

aim is to show the need for 5G networks in future smart grids, where low communication

delays and low probability of packet losses lead to accurate frequency regulation.

3.2 Communication Effects on Demand Response

This section shows the effects of time delays and packet losses in inertia emulation and

ROCOF control using demand response as a part of frequency regulation. The primary aim

is to show the need for 5G networks in future smart grids, where low communication delays

and low probability of packet losses lead to accurate frequency regulation [81].

3.2.1 Power System Model with IACs

Inertia emulation control in a power system model with inverter-interfaced air conditioners

(IACs) is considered to analyze the effects of communication delays and packet losses [43].

The general structure of the power system with IACs is illustrated in Fig. 3.2, where the DR

controller is connected to the IACs to provide the required amount of support to the grid.

When a disturbance ∆PL occurs, the system frequency changes. In systems with high levels

of renewables, the frequency nadir and the ROCOF can exceed the nominal operational

constraints.
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Figure 3.2: Transfer function model of power system with IACs.
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Thus, controlling the ROCOF and frequency nadir has a significant role in mitigating the

impact of disturbances. ROCOF can be used as a key index for the control of frequency

excursion [82, 83]. Generating units will regulate the power generation ∆PG to recover the

system frequency. However, when DR is considered in the power system, the DR controller

can also receive the ROCOF (∆ḟ ) and send control signals to the IACs to adjust their

power consumption and provide regulation power ∆PIAC . However, the measurement and

data transfer of ROCOF and control signal (uc) are subject to communication delays [124].

Considering IACs as the load demand that can be controlled by the DR controller, the

frequency regulation capacity can be evaluated as:

∆fIACs(s) =
(1 + Tcs)(1 + CiRis)DR(s)

(1 + Tcs)(1 + CiRis) + kQRiC(s)
∆f(s) (3.1)

where ∆f represents the the power system’s frequency deviation and ∆fIACs is the

compressor’s operating frequency deviation. Here, by considering the inertia emulation as

the short time period of frequency regulation process, the outdoor temperature is assumed

to be fixed, and there is no change to the setpoint temperature [45], [43]. Ci and Ri are the

thermal capacity, and thermal resistance of room-i, Tc represents the inertia time constant of

the compressor, and kQ is the coefficient of the cooling capacity [43], [45]. The proportional-

integral controller C(s) has been verified to achieve the adjustment of the compressor’s

operating frequency [45]. The controller of the IACs providing regulation capacity for the

power system is represented by DR(s) = −KPDR
+ −KIDR

/s that is considered as a DR

controller. The power consumption of the IACs can be described as:

PIACs =
Kp

1 + Tcs
fIACs(s) + µp (3.2)

whereKp and µp are the coefficients of the power consumption. The IACs regulation capacity

is expressed in (3.3), where in this framework it is connected to the primary model by ∆ḟ

(ROCOF) to provide inertia emulation control [43].

∆PIACs =
Kp(1 + CiRis)

(1 + Tcs)(1 + CiRis) + kQRiC(s)
DR(s)∆f(s) (3.3)
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Note that the regulation capacity provided by one IAC is small, so the aggregated regulation

capacity of a large-scale IACs is generally considered in modeling and simulation [45], [43].

Based on the presented power system model with IACs in Fig. 3.2, the frequency

deviation can be obtained by

(2Hs+D)∆f(s) = ∆PG −∆PL +∆PIACs (3.4)

where D and H express the load damping and the inertia constant of the system, respectively

[43]. The load deviation is represented by ∆PL, and ∆PG is the regulation power provided

by the generator that can be described as:

∆PG =
(FHPTrs+ 1)

(Tgs+ 1)(Tts+ 1)(Trs+ 1)
(−K − 1

RG

)∆f(s) (3.5)

where Tg, Tt, and Tr are the time constants of the speed governor, turbine, and reheating

process, respectively. FHP represents the high-pressure turbine constant, and RG denotes

the speed droop. Then, the ROCOF can be easily obtained by computing ∆ḟ and will be

sent to the DR controller to provide the required regulation power for inertial response in

the presence of disturbances.

In the provided model, the system frequency deviation is initially detected by the DR

control center, and then a control signal will be sent to each IAC’s controller to adjust the

required regulation capacity. In this send and receive process, the communication delay

(e−τs) and packet loss can happen due to the network bandwidth limits and network traffic

congestion. Here, it has been assumed that an actual delay and packet loss on the ROCOF

signal exist, and our comprehensive results are shown to validate the need for 5G networks

in future smart grids.

3.2.2 Illustrations and Discussions

In the given model, the generator inertia H is set to 6 s and the load damping factor D

to 1. The control parameters for the generator RG and KG are 0.1 and 0.5, respectively.
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For the DR controller (DR(s)), the parameters KPDR
and KIDR

are set to 200 and 0.02,

respectively. Also, the time constants for the speed governor are selected as Tg = 0.2 s,

Tt = 0.3 s, and Tr = 7 s. The simulation results for the power system model with IACs

control loop and parameters given in [43] are presented in this section with a disturbance

of 20 MW step increase in load and a system capacity of 800 MW. Fig. 3.3 shows the

frequency regulation for different communication delays in sending ROCOF signal, i.e., the

derivative of frequency ∆ḟ , to the DR controller. Clearly, increasing the delay lowers the

frequency nadir and decreases the emulated inertia, and it could lead to instability of the

system. The fluctuations of ROCOF using DR with IACs decrease as time progresses, and

they are affected by the communication delays as seen in Fig. 3.4. Furthermore, Fig. 3.5

shows the regulation power in the inertial response time scale.

Fig. 3.6 shows the results for different packet loss durations in the ROCOF signal

transmission. The packet loss starts at t = 0.5 s and is applied for different time durations.

As the results show, losing data impacts the ROCOF and inertial emulation control as it

it is clear in Fig. 3.6 and Fig. 3.7. Increasing the duration time of packet loss will lower

the frequency nadir and decrease the emulated inertia provided by DR with IACs. Fig. 3.8

shows the impact of data losses on the regulation power. The presented results provide an

insight to the impact of different communication technologies on the frequency regulation

in power systems, particularly future smart grids with many loads to deliver a deterministic

and necessary response to the grid. Note that using a 5G network can reduce the delay to

1-10 ms and help guarantee inertial response. The packet loss as an infinite delay can also

be reduced using 5G network, and it can help provide a more reliable and secure grid.

3.3 Summary

This chapter investigates the effect of communication delays and packet losses on inertia

emulation using a power system model considering services provided by IACs. The results

show that time delays and packet losses in the transmission of the ROCOF signal to the DR

aggregator through the communication network can cause instability and/or severe frequency
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excursions. Therefore, adopting a new communication technology, such as 5G, with low

latency and packet loss will have a significant impact in improving future smart grids with

guaranteed inertia emulation performance.
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Chapter 4

Robust Delay Compensation for

Primary Frequency Control

In this chapter, a robust delay compensation of demand response for frequency regulation is

proposed to arrest system uncertainties as well as delay in data transmission.

This chapter is organized as follows. Section 4.1 introduces the objective for primary

frequency control using demand response. Section 4.2 represent the problem formulation for

investigating the communication effect on frequency regulation. In 4.3 a robust controller

approach is proposed for frequency regulation in the presence of delay and uncertainties

following by the numerical results in Section 4.4.

4.1 Objective for Primary Frequency Control

In recent years, there is increasing usage of renewable resources. These renewable resources

are mainly connected to the grid with power electronic interfaces and are decoupled electro-

mechanically from the grid [82]. Traditional frequency response in the presence of a

disturbance is led by synchronous generators that limit the ROCOF by converting kinetic

energy into electric power, known as the inertial response. As the rotor speed slows down,

the turbine-governor system adjusts the prime mover output to reduce speed deviation. The

regulated primary frequency is related to the governor response [99]. Due to the frequency
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dead-band and response time of the turbine-governor, the inertial response is dominant at

the beginning of disturbance occurrence. The swing equation models this process [132]:

∆f =
1

2Hs
[∆Pm −∆PL] (4.1)

where 2Hs∆f expresses the inertial response. If few synchronous generators are committed

due to high penetration of renewable resources, then there is less inertia H in the system

and potentially inadequate inertial response. Fast DR control may help the grid frequency

regulation by quickly adjusting the demand, such as in adjusting the inverter-interfaced air

conditioner (IAC) load.

4.1.1 Application of DR in Primary Frequency Control

Frequency control by adjusting the demand side power regulation has become more viable

with the advent of smart metering technology [40]. The traditional approach is for the

generation to satisfy the generation-demand mismatch. Adequate response can also be

achieved by proper demand control [105], [4]. Recently, the application of DR has been

proposed in many studies for frequency excursion control [94], [70]. DR with fast dynamics

can operate faster than traditional generators and can improve the frequency response in the

presence of disturbances and uncertainties [10]. In this framework, if the frequency deviation

of the power system exceeds the defined threshold, the DR control loop is activated, and

control signals are sent to appliances to adjust their set points. Supplementary controllers

can be designed to limit the ROCOF and frequency nadir when grid support is needed.

The traditional primary frequency control process shown in Fig. 4.1 is governed by the

swing equation modified by the active power from the DR [99]:

∆f =
1

2Hs
[∆Pm −∆PL +GDR(s)KDR∆f︸ ︷︷ ︸

∆PDR

] (4.2)

where GDR(s) represents the dynamic response of DR to generate power (∆PDR) according

to the frequency deviation KDR∆f .

59



Figure 4.1: Conventional primary frequency control system with DR participation.
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As described in [132] and [84], the configuration in Fig. 4.1 can only provide synthetic

primary frequency response as the equivalent parameters are time-varying and may be

difficult to tune. This poses challenges for dynamic security assessment, stability analysis,

and system performance guarantees [99]. Moreover, utilizing DR control to provide grid

services requires synchronized wide-area control of a significant number of loads to enable

sufficient response. The communication delays in sensors and actuators are also a challenge

for primary frequency control with DR [25], [137].

To address the above-mentioned difficulties, the objective of the proposed robust

controllers is to provide a primary frequency regulation that achieves near-ideal response

in the time scale of primary frequency response in the presence of uncertainties and

disturbances. System uncertainties considered here are communication delays, governor

dead-band and governor time constant. In other words, we need to compensate the effect

induced by GDR(s) in (4.2), which mainly includes the primary mover dynamics and the

internal controller response time which is inherent and cannot be compensated by external

controllers.

4.2 Primary Frequency Control in Power Systems with

IACs

Primary frequency control in power system model with IACs is considered to design

robust controllers to compensate the uncertain communication delays and other parametric

uncertainties in the system [43]. As (4.2) includes all relevant frequency characteristics, it is

sufficient to consider only the parameter uncertainty and the governor dead-band uncertainty.

The general structure of the power system with IACs is illustrated in Fig. 4.2, where the

DR controller (DR(s)) is connected to the IACs to provide the required grid support. In the

presence of a disturbance (∆PL), the system frequency will deviate from the nominal value

and in systems with many renewables, the frequency nadir, and the ROCOF can exceed

nominal operational constraints.
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Figure 4.2: Closed-loop system structure of power system with IACs.
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A supplementary control to recover the primary frequency response can play a significant

role in mitigating disturbances. Traditional generation units can provide appropriate power

∆Pm to recover the system frequency. Still, the DR controller can also reduce the ROCOF

(∆ḟ) and the frequency deviation (∆f) by having IACs adjust their power consumption

∆PIAC . The measurement and communication of ROCOF and ∆f are subject to delays

[124].

Considering IACs as a controllable resource, the frequency regulation capability can be

evaluated as [45]:

∆fIACs(s) =
(1 + Tcs)(1 + CiRis)DR(s)

(1 + Tcs)(1 + CiRis) + kQRiC(s)
∆f(s) (4.3)

Here, during the short period of the frequency regulation process [45], the outdoor

temperature is assumed to be fixed, and there is no change in the set point temperature [43].

The proportional-integral controller C(s) can adjust the compressor’s operating frequency

[45] to change the load. In this framework, the DR controller providing regulation capacity

is designed as a robust controller to compensate for the uncertainties of the model, including

uncertain communication delays. The power consumption of the IACs can be described as

[45]:

PIACs =
Kp

1 + Tcs
f(s) (4.4)

The IACs regulation capacity is determined in (4.5), where it interacts with the main model

by ∆ḟ and ∆f to provide primary frequency control.

∆PIACs =
Kp(1 + CiRis)

(1 + Tcs)(1 + CiRis) + kQRiC(s)
DR(s)∆di(s) (4.5)

where ∆di(s) = [∆f(s);∆ḟ(s)] , and C(s) = KPC +KIC/s. Note that since the regulation

capacity provided by a single IAC is small, the aggregated regulation capacity of the

numerous IACs is generally considered in modeling and simulation [45], [43].
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Based on the presented power system model with IACs in Fig. 4.2, the frequency

deviation can be obtained by:

(2Hs+D)∆f(s) = ∆Pm −∆PL +∆PIACs (4.6)

where the regulation power provided by the generator (∆Pm) is [45]:

∆Pm =
(FHPTrs+ 1)

(Tgs+ 1)(Tts+ 1)(Trs+ 1)
(−K(s)− 1

RG

)∆f(s) (4.7)

Here, K(s) is an integral controller with gain K to increase the regulation capacity provided

by generator as the system frequency deviations increase.

In the proposed approach, the system frequency deviation and ROCOF are detected first

by the control center. An appropriate control signal will be sent to each IAC controller to

adjust consumption. In this send and receive procedure, the communication delay (e−τs) can

occur due to the network bandwidth limits and network congestion. The Padé approximation

model can approximate the communication delay process. Here, ∆di can be affected by the

delay and defined as

∆d̂i = e−τs∆di ≈
∑m

j=0 ajx
j

1 +
∑n

k=1 bkx
k
∆di (4.8)

where m ≥ 0, n ≥ 1, and ∆d̂i denotes [∆f̂ ; ∆
ˆ̇f ]. Note that in this dissertation, the delay is

modeled by a first order Padé approximation in (4.9) with m = 1 and n = 2. However, all

simulation results are presented based on applying the actual delay.

e−τs ≈
1− τ

2
s

1 + τ
2
s

(4.9)

4.2.1 Model Uncertainties

There are many uncertain parameters in electric power system models, so appropriate

handling of uncertain parameters is essential [27]. The first parametric uncertainty of the

physical plant considered is the governor time constant (Tg) expressed by (4.10), which
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affects the time of maximum frequency deviation and the transient behavior [67]. The

second parametric uncertainty considered is the communication delay (τ) modeled as (4.11).

Tg = Tg0 +KTgδTg , δTg ∈ [−1, 1] (4.10)

τ = τ0 +Kτsδτ , δτ ∈ [−1, 1] (4.11)

That is, Tg ∈ [Tg0 −KTg , Tg0 +KTg ], τ ∈ [τ0 −Kτs , τ0 +Kτs ].

The significance of modeling governor dead-band is investigated in [59], [100]. The impact

of governor dead-band and droop control on the generating unit performance and its impact

on primary frequency response are considered as the third uncertainty in the modeling [100].

Governor dead-band is one of the significant factors for settling frequency, as illustrated by

this dissertation. Considering the governor’s dead-band, frequency deviation must exceed a

specific value to trigger the governor action [57]. Generally, the static frequency deviation

will be larger given a dead-band [58]. Here, we are modeling the dead-band as an uncertain

droop curve ( −1
RG

) that can vary between the upper and lower bounds of droop to approximate

the non-step dead-band as shown in Fig. 4.3.

The droop uncertainty can be represented by:

RG = RG0 +KRG
δRG

, δRG
∈ [−1, 1] (4.12)

The interval representing the frequency dead-band can be obtained by an approximate

projection on ∆f axis in the range of [−0.6 × 10−3 − δf , 0.6 × 10−3 + δf ] p.u. based on

the intersection of the uncertain droop curve and non-step dead-band [59]. The proposed

control structure will manage this uncertain dead-band and communication delays and other

parametric uncertainty in the system to provide regulated primary frequency response.

4.3 Robust Control Design

The interconnected systems including uncertainties may be rearranged to fit the general

framework for robust control design that is illustrated in Fig. 4.4 where z denotes the
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Figure 4.3: Dead-band and droop curve.

Figure 4.4: General control framework.
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controlled signals, d represents the external signals, uc is the control signal, and y is the

measured outputs. In this section, two different robust control methods, a dynamic H∞

output feedback and a dynamic µ-synthesis output feedback for primary frequency control

with DR, are presented. A state-space dynamic model of the proposed model in Fig.

4.2 is also provided for design control procedures. The primary aim of the controllers

is communication delay compensation and guaranteed primary frequency response in the

presence of uncertainties and disturbances.

4.3.1 State Space Dynamic Model

Let us consider a stable linear time-invariant system as illustrated by the n dimensional

state-space model in (4.13).

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t) +Du(t) (4.13)

where A, B, C, and D are the state, control input, output, and control matrices of the

plant model. The state-space representation of the augmented physical plant, including the

communication delay in (4.9) can be extracted as:

ẋp(t) = Apxp(t) +Bpu(t)

yp(t) = Cpxp(t) +Dpu(t) (4.14)

where xp = [∆x1,∆x2,∆x3,∆Pm,∆x5,∆Pv,∆x7,∆f,∆f̂ ] represents all state variable of

the proposed system. ∆x1, ∆x2, ∆x3 are considered as internal state variables related to

∆PIAC and ∆x5 is defined as state variables related to the reheat system. The measured

outputs denoted by yp are the ∆f̂ and ∆ ˆ̇f , and u = [ud, uc] represents the disturbance ud

and the control input uc. Here, Ap, Bp, Cp, and Dp expressing the state-space model are

defined in (4.15). The obtained state-space representation model in (4.14) is used in design

control procedure where the uncertain augmented plant is derived based on the closed-loop

system diagram with structured uncertainty shown in Fig. 4.5.
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Figure 4.5: Closed-loop system with structured uncertainty.
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Bp =
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0 0

1
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0
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0 0

0 0

0 0

0 1
2H

0 1
2HR



;Cp =

0 0 0 0 0 0 0 0 1

0 Kp
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KpTa

2HR
1

2HR
0 0 0 −D

2HR
+ −2

τR
−2
τ

 ;

Dp =

0 0

0 1
2HR

 (4.15)

Here, the structured uncertainty block ∆ that is represented by its general form (4.16) can

be obtained from the system dynamics. Hence, the augmented system can be illustrated
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in a standard feedback configuration of lower linear fractional transformation (LFT) [136].

In this work, the defined parametric uncertainties construct a 3 × 3 parametric diagonal

uncertainty as shown in Fig. 4.5.

∆ = {δIn ; δ ∈ C} ⊂ ∆ ⊂ Cn×n (4.16)

As it can be seen from Fig. 4.5, the weighting functions w1, w2, wd,and wu are chosen to

improve the system performance in the control design procedure where a proper selection is

w1 =
0.02
s+0.5

, w2 =
0.001
s+0.5

, wd =
0.25

s+0.25
, wu = 0.6s+0.276

s+1000
.

The state-space dynamic model, including parametric uncertainties of the system with

specified weighting function, is used to design the robust controllers in the following sessions.

4.3.2 H∞ Control

The theoretical formulation of the H∞ control problem has been addressed in many books

and papers; see [136] for example. This section uses a dynamic output feedback control for

delay compensation and disturbance rejection based on the H∞ control structure for the

uncertain system model. The H∞ control method is an optimization control problem which

minimizes the infinity-norm of the lower LFT, FL(G,Kc), as described in (4.17).

∥FL(G,Kc)∥∞ < γ (4.17)

where FL(G,Kc) := G11 + G12Kc(I − G22Kc)
−1G21 denotes the transfer function matrix of

the nominal closed-loop system from the disturbance signal to the controlled output signals

[136]. Here, G11, G12, G21, and G22 are the partitions of G satisfying

z
y

 =

G11 G12

G21 G22

 d
uc

 (4.18)

The transfer function matrix of the nominal closed-loop system from the disturbance signal to

the controlled output signals can be represented by Gzd. Based on the H∞ control theory, the
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objective is to find a controller Kc(s) such that the obtained closed-loop system is internally

stable and

∥Gzd∥∞ ≤ γ; for some γ > 0 (4.19)

However, there is no analytic method to solve the mentioned optimization problem. That is,

the solution for this optimization problem is not unique [15], [26]. In this dissertation, the

robust control toolbox in MATLAB is used to find the dynamic controller Kc. Note that if

the augmented plant is a generalized state-space model with uncertainties or tunable control

design blocks, then the algorithm uses the nominal or current value of those elements to find

the controller.

4.3.3 µ-Synthesis Method

Although the interconnection structure can become quite complicated for complex systems,

many software packages, such as the µ analysis and synthesis toolbox, are available and can

be used to generate the interconnection structure from system components [136]. µ-synthesis

for the α = µ case is the general optimization in (4.20) that is not fully solved yet [136].

min
Kc

∥FL(G,Kc)∥α; for α = 2 or ∞ and µ (4.20)

However, µ may be determined by scaling and applying ∥.∥∞-norm by a reasonable approach

called D-K iteration method that is defined as:

min
Kc

inf
D,D−1∈H∞

∥DFL(G,Kc)D
−1∥∞ (4.21)

where, D denotes the minimum phase scaling matrix that is a positive definite symmetric

matrix with appropriate dimension that satisfies D(s)∆ = ∆(s)D(s) [136]. With either

Kc or D fixed, the global optimum in the other variable may be found using the µ and

H∞ solutions [89]. The structured uncertainties to design Kc using the µ-synthesis method

may include structured unmodeled dynamics and parametric perturbation. As mentioned

in Section 4.2, this dissertation considers parametric uncertainties of the system including
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uncertain communication delay, governor dead-band and governor time constant that play

a significant role in primary frequency control. The D-K iteration process can be defined as

follows [12]:

• Using H∞ synthesis to find a controller that minimizes the closed-loop gain of the

nominal system.

• Performing a robustness performance analysis to estimate the robust H∞ performance

of the closed-loop system. This quantity is denoted as a scaled H∞-norm, including

the minimum phase scaling matrix D. (the D step)

• Finding a new controller to minimize the scaled H∞-norm obtained in the second step.

(the K step)

• Returning to the second and the third steps until robust performance stops improving.

Here, µ synthesis MATLAB toolbox is used to do the D-K iteration process and find the

optimal dynamic control Kc. In this framework, the upper bound of µu of the robust H∞

performance for the current controller Kc can be obtained in the D step. The D step obtains

robust performance for the closed-loop uncertain system FL(G,Kc).

The proposed robust control method based on µ-synthesis can overcome uncertain

communication delays and other specified parametric uncertainty in the system. Thus,

the µ-synthesis method can provide an efficient robust controller for primary frequency

response in the presence of uncertainties and disturbances. Simulation results to validate

the effectiveness of the proposed control method are illustrated in Section 4.4, in comparison

with H∞ control and a conventional PI-based Smith predictor control.

4.4 Numerical Results

4.4.1 System Stability Analysis

The open-loop bode diagram of the proposed system in Fig. 4.6 with all parameters defined

in Appendix A.2, is illustrated to show the effect of the delay on the system frequency
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Figure 4.6: Open-loop system bode diagram. (a) Open -loop system without delay (b)
Open-loop system considering 1 second delay.
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performance. As shown, the delay will affect the system phase margin that may

cause instability by reducing the system minimum gain stability margin. The effect of

communication delays on the system root locus are also represented in Fig. 4.7. As shown the

root loci crosses over from the left-half plane to the right-half plane with 1 s communication

delay. Hence, increasing communication delay may result in an unstable system. The result

obtained shows that a delay compensator is critical to having a stable system, particularly

when the delay is considered as an uncertain parameter and may increase in unforeseen ways.

In general, the H∞, and µ-synthesis controller obtained using the MATLAB robust

control toolbox is a high-order dynamic controller. Hence, the reduced order model of both

controllers are provided. The reduced order model of the designed controllers, considering

only 5% degradation in performance is used to simplify implementation. The γ value for the

H∞ controller is 3.7× 10−3. The γ value for the µ-synthesis controller is 0.9 and the robust

performance found by D-K iteration is 0.89. That is, the gain from disturbance to error

remains below 0.89 for up to 1/0.89 times the uncertainty specified in the model. Hence, the

controller provides robust performance for the full range of defined uncertainties.

The robust performance considering the µ-synthesis controller is evaluated with robust

stability margins (1/µ) as shown in Fig. 4.8. The performance level analysis shows the

robustness to the modeled uncertainty where the robust performance gain remains below

1 for the full range of the modeled uncertainties. The closed-loop uncertain system bode

diagram with µ-synthesis and H∞ control approach is shown in Fig. 4.9 and Fig. 4.10,

respectively. The results show the stability of the system within the defined uncertainty

range.

4.4.2 Simulation Results

The proposed controllers are implemented on a power system model using the MATLAB

Simulink platform. The closed-loop system performance is tested using the actual delay and

dead-band in the simulations. The generation capacity of the system is 800 MW, and the

disturbance is a 16 MW load change. The uncertainty bound for KTg , Kτs , and KRG
are

defined as the intervals [0.1, 0.3], [0.1, 4], and [0.05, 0.2], respectively.
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Figure 4.7: Open-loop system root locus. (a) Open-loop system without delay (b) Open-
loop system considering 1 second delay.
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Case I

For the first case, different delays arise from communicating the measurements. There are

two scenarios in this case:

• Scenario 1: τ =1s, dead-band=± 0.6×10−3, RG = 0.07, Tg = 0.2.

• Scenario 2: τ =4s, dead-band=± 0.6×10−3, RG = 0.07, Tg = 0.2.

The PI-based Smith predictor control method is considered based on the traditional primary

frequency control with DR, where its parameters are determined to capture the inertial

response. The closed-loop system performance is illustrated in Fig. 4.11 and Fig. 4.12. As

shown, the primary frequency response is regulated properly using both H∞ and µ-synthesis

control methods for considered delays. It can be seen that the µ-synthesis control method is

more robust than the H∞ and the conventional PI-based Smith predictor controller in the

presence of different communication delays. The result obtained of the µ-synthesis method

shows that the maximal robust performance is about 0.89, which means that the gain from

disturbance to error remains below 0.89 for up to 1/0.89 times the uncertainty specified in

the model. Hence, the controller provides robust performance for the full range of defined

uncertainties.

Case II

In the second case, all uncertainties defined in Section 4.2.1 are considered. The closed-loop

system performance with different realizations is illustrated in Fig. 4.13 and Fig. 4.14 and

compared to the same PI-based Smith predictor control as Case I. There are two scenarios

in this case:

• Scenario 1: τ =4 s, dead-band=± 0.6×10−3, RG = 0.1, Tg = 0.1.

• Scenario 2: τ =0.5 s, dead-band=± 0.8×10−3, RG = 0.05, Tg = 0.3.

As seen in these figures, system performance under different values of uncertain

parameters may change based on the applied robust control methods.
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Figure 4.11: Case I: Scenario 1, Closed-loop system response in the presence of uncertain
communication delay. (a) Frequency deviation, (b) ROCOF.
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Figure 4.12: Case I: Scenario 2, Closed-loop system response in the presence of uncertain
communication delay. (a) Frequency deviation, (b) ROCOF.
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Figure 4.13: Case II: Scenario 1, Closed-loop system response in the presence all
uncertainties including communication delays, governor time constant, and uncertain dead-
band. (a) Frequency deviation, (b) ROCOF.
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Figure 4.14: Case II: Scenario 2, Closed-loop system response in the presence all
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band. (a) Frequency deviation, (b) ROCOF.
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The µ-synthesis controller outperforms in all cases by providing a frequency response with

smaller oscillations and overshoot compared to the other control methods. In the case of using

conventional PI-based Smith predictor controller, system performance is not guaranteed

under different uncertainty conditions and larger oscillations can be observed. The frequency

nadir is reduced using the designed robust controllers.

4.5 Discussion

Complexity and uncertainty in generation, loads, communication network and nature of

DERs are critical challenges and need to be considered to provide reliable power grids. This

dissertation investigates the most important uncertainties in the frequency regulation with

DR, that are structured and parametric uncertainties. As shown in this chapter, conventional

controls may fail to meet the primary frequency control objectives or even in microgrid

performance that is studied in [15]. Considering the uncertainties in a realistic power system,

this chapter proposes robust control techniques as a powerful technique for inertial and

primary frequency control with fast demand response. The contributions of this chapter

are not only limited to the applications of the proposed robust control techniques for the

primary frequency control with DR. The suggested H∞ and µ-synthesis controllers could

be applied to microgrids with DR and DERs connected to the distribution system. The

Microgrid system either in grid forming or grid following operating mode can benefit from

the proposed techniques in frequency regulation services.

4.6 Summary

In this chapter, robustH∞ and µ-synthesis dynamic output feedback control laws for primary

frequency regulation with DR are proposed. The suggested robust control techniques aim

to overcome parametric uncertainties, including communication delays, governor dead-band,

and governor time constants in the power system. The controllers are applied to the full-order

model and compare favorably to a conventional PI-based Smith predictor control method.
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The performance of the closed-loop system shows improved accuracy with the µ-synthesis

controller relative to theH∞ controller, although they both achieve improved frequency nadir

and reduced ROCOF. Therefore, without providing a specified margin for the frequency,

adequate primary frequency response with robustness in the presence of disturbances can

be achieved by adopting the proposed control approaches. These methods are analyzed for

different possible parametric uncertainties scenarios based on an uncertainty range for each

parameter, including communication delay.
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Chapter 5

Set Theoretic Methods for Safety

Verification

In this chapter, safety verification and its application in power systems for guaranteed

frequency response are discussed. The barrier certificate approach with an LP relaxation

by Handelman’s representation as an alternative to the SOS for verifying safety region is

proposed.

This chapter is organized as follows. Section 5.1 introduces the general concept of safety

verification considering different available approaches. Section 5.2 represent the region of

safety definition. Section 5.3 reviews set operation based methods to verify safety region.

Section 5.5 proposes barrier function positivty by Handelman’s representation technique,

including the application of safety verification in power systems.

5.1 Safety Verification

Safety verification is one of the active research areas and its use significantly increased in

such modern engineering systems that contain subsystems with safety critical limits, such

as chemical processes, biological networks, communication networks and several cooperative

control problems [24]. The main challenge would be verifying safety region and safety analysis

for large scale systems such as power systems or platooning. Many approaches have been
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done in this area to provide a scalable solution for these kinds of complex problems. The

aim of this chapter is reviewing applicable methods for power systems safety verification. In

real world power system operations, to avoid loss of generation and load, maintaining system

frequency within operating limits has become more challenging with the advent of renewable

generations. Inadequate system frequency response caused by large number of penetrations

of renewable in inverter-interfaced sources can occur even in the presence of a small power

disturbance [133], leading to unnecessary relay actions. Therefore, it is essential to find the

system limits and guidelines for further control design.

In traditional methods for safety verification, the objective is to produce a finite set of

trajectories that cover all system behaviors [69]. Some major techniques to achieve this

goal are Monte Carlo simulation [37], rapid exploring random trees [17] and robust test case

generation [47]. However, these methods are not able to prove that the system is safe if

there is no observation for any trajectories crossing the unsafe region, since some trajectories

may have been missed due to the uncertain initial states, inputs and parameters [5], see Fig.

5.1. Set theoretic methods including set operation based methods are based on numerical

discretization of the continuous systems. These methods try to find the boundaries for all

possible trajectories at each time step [20], using either forward reachable sets or backward

reachable sets [75]. The proposed solutions are considered as interval mathematics [8],[6],

Hamilton-Jacobi partial differential equations (PDEs) [113], [46] and nonlinear optimization

[20]. However, computation of the exact reachable set is only possible for special cases [68].

Hence, a possibility to prove the safety of a system is to over approximate the set of reachable

states, see Fig. 5.2.(a) and Fig. 5.2.(b) [5].

In passivity based methods, all presented solutions are about finding a barrier that cannot

be crossed by system trajectories and separate them from the unsafe region, see Fig. 5.3 [5].

However, the difficulty of this approach is finding a proper barrier certificate for the given

problem. Addressing this issue, [24] expresses a novel idea for verifying safety region of a

network of interconnected systems that satisfy a dissipativity property. This framework tries

to construct an invariant set as the sub-level set of a Lyapunov function comprised of local

storage functions for each subsystem [24].
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Figure 5.1: Safety verification by simulation.

Figure 5.2: Safety verification by (a) reachable sets, (b) over-approximated reachable sets.

Figure 5.3: Safety verification by barrier function.
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Therefore, by only knowledge of local dissipativity features of each subsystem and static

interconnection matrix, safety verification can be represented as a SOS feasibility problem.

Constructing a barrier certificate in order to verify safety is another useful tools that

can help us design online monitoring functions for multi-mode devices. In this construction,

the approach is to show that starting from some initial conditions, system trajectories will

not reach the unsafe region [97]. In this case, similar to the Lyapunov approach for proving

stability, the main challenge is encoding positivity of the barrier certificate over the domain

of interest and finding the function itself. There are various works done in this area that

propose different computational methods for verifying a state space constraint of a network

of interconnected dynamical systems and finding barrier certificate functions.

To be more classified, if the system dynamics and safety specifications can be represented

as polynomials, references [91] and [97] propose a passivity-based approach that formulates

safety verification as a SOS optimization problem. As long as the SoS program is feasible,

the safety property can be verified, and a polynomial barrier certificate is obtained such that

no trajectory of the system starting from the initial set can cross this barrier to reach an

unsafe region [134]. In [97], a framework for worst-case and stochastic safety verification

using barrier certificate by SoS optimization is proposed. In this case, safety verification

can be cast either in the worst-case setting or the stochastic setting. A problem instance

in the former setting may consist of a system with an uncertain disturbance input, where

a hard bound on the input magnitude is known, and the objective is showing that for all

possible disturbance inputs the system cannot yield to the unsafe region [97]. On the other

hand, in the latter setting no hard bound is given, but instead a stochastic characterization

of the disturbance is available, and we are asked to show that the probability of the system

evolving to the unsafe region is sufficiently small [97].

This chapter focuses on safety verification based on worst-case setting to find the proper

barrier function. As an application of this method, barrier certificate approach for hybrid

system safety verification is considered in [134]. This framework tries to build the condition

without specific initial sets. Moreover, despite the mentioned issues, [134] provides useful

flexibility between accuracy and computational complexity by choosing an appropriate
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polynomial order for the barrier function [134]. However, the proposed formulation requires

us to define a particular initial set as a SoS polynomial that makes this method conservative

for several groups of systems such as power systems. Moreover, the required computations

based on the SoS programming would be the primary challenge of this method that makes it

inapplicable from a scalability point of view. To solve this problem, a new convex approach

to stability analysis of nonlinear systems utilizing Handelman’s theorem to discover a new

set of affine feasible condition by Linear programming (LP) is introduced in [50],[131].

Although there are various approaches proposed as a solution of safety verification,

the reviewed methods are really conservative or not applicable to apply for all dynamical

systems, particularly power systems. However, scalability of all presented methods is the

most challenging factor that prohibit it from power system application, as realistic power

system networks are really high order systems [131].

5.2 Region of Safety

This section represents the concept of ROS, including other required notations and

preliminaries.

5.2.1 Notations

The set of real numbers denotes by R and the Euclidean n-space by Rn. For a function f ,

column vector gradient with respect to vector variables x is expressed by ▽xf . The Kronecker

product is denoted by ⊗ and Im expresses the m×m identity matrix.

5.2.2 Definitions

Invariant Set

In the presented methods for safety verification, barrier certificate or Lyapunov function

construct an invariant set. A set ν is an invariant set for ẋ = g(x) if x(0) ∈ ν ⇒ x(t) ∈ ν

for all t ≥ 0 and ν is said to be robustly invariant for the system ẋ = g(x,w) if

90



x(0) ∈ ν ⇒ x(t) ∈ ν for all t ≥ 0 and all w ∈ W [18].

Convex Polyhedra

A convex polyhedron is defined by a conjunction of affine constraints of the form a0 +∑n
j=1 ajxj ≥ 0 where the xj and aj are variables and constants in Q, respectively [77].

Region of Safety

System safety is the property that can maintain system trajectories within a given

bounded region, meaning that system trajectories starting from a set of possible initial

states will remain inside the region of interest [97].

Consider the dynamics of a system governed by a set of ordinary differential equations

(ODEs) as:

ẋ(t) = f(x(t), d(t)); t ∈ [0, T ] (5.1)

where T > 0 is a terminal time, x(t) is the state vector in Rn and d(t) denotes disturbances

in Rm that are bounded in a set D. The signal d(t) is assumed to be piecewise continuous

and bounded on any finite time interval. The vector field f : Rn ×Rm → Rn is such that for

any d and initial condition x0, (5.1) has a unique solution defined for all t ∈ [0, T ]. Denote

the sets of safe, unsafe and computation by Xs, Xu and X, respectively. Also, let XI be the

initial set that belongs to Xs and ϕ(t|x0, d) be the trajectories initialized in x0 ∈ XI under

the disturbance d. Then, safety and ROS can be defined as follows [131]:

Definition 5.1 (Safety). Given (5.1), X, XI , Xu and D, the system has the safety property

if there is no time instant T ≥ 0 and no piecewise constant bounded disturbance d : [0, T ] → D

such that ϕ(t|x0, d) ∩Xu ̸= 0 for any t ∈ [0, T ] [134].

Definition 5.2 (Region of Safety (ROS)). A set that only initializes trajectories with the

property specified in the Safety definition is called a ROS [128].
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5.3 Set Operation Based Methods

Verifying safety using set operation based methods can be conducted by forward and

backward reachable sets. If we consider analyzing systems of the form (2.14), (or any other

differential operator corresponding to the given time domain), there are two ways to approach

the problem of reachability analysis, illustrated in Fig. 5.4 [79]. The first one is forward

reachability computation method that is verifying reachable set based on the given initial

set and follow this set forward in time under the flow of (2.14) to compute what is known as

the forward reachable set. The other approach, which is more appreciated, considers the set

of terminal states T (Target set) and follows the flow of (2.14) backward in time to compute

the backward reachable set [75].

In set operation based method, either forward reachable set or backward reachable

set, computation can be considered as Lagrangian and Eulerian (level set) methods. The

efficiency of Lagrangian method relies on the acceptable various representation of sets, such

as, boxes, ellipsoids, polytops and so on. However, representation of sets as ellipsoids and

polytopes (particularly zonotopes) are more common [34].

Lagrangian Methods

Using Lagrangian method, an over-approximation of the reachable set can be obtained

by generating the sets under the vector fields of linear systems efficiently [66]. The boundary

obtained by Lagrangian method is a barrier of all possible trajectories of a system that is

represented by a set of nonlinear differential-algebraic equations in (5.2) under various input

and parameter uncertainties [7].

ẋ(t) = f(x(t), y(t), d(t)) (5.2)

0 = g(x(t), y(t), d(t)) ; t ∈ [0, T ]

In this case, proposing an accurate and appropriate model of uncertainties is a critical

point. In power grids, a large number of uncertainties and their ranges can be obtained by

measurements.
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Figure 5.4: Illustration of forward and backward reachable sets.
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Measured uncertainties based on their features can be defined as a sub-class of polytops

instead of defining them one by one [55]. After obtaining the state space model of the

system including uncertainties, the reachable sets at each time step and during time steps

can be computed with an over-approximation via the following closed-form solutions [131]:

S(tj+1) = eAnjS(tj)⊕ ϕ0(A, nj, Z0)⊕ φ∆(Z∆,nj
) (5.3)

S(nj) =C(S(tj), e
AnjS(tj)⊕ ϕ0(A, nj, Z0))⊕ (5.4)

φ∆(Z∆,nj
)⊕ ψ

where S(tj+1) is the reachable set at time step tj+1, S(nj) is the reachable set between

tj and tj+1 and eAnjS(tj) is the impact of the memory of computed reachable sets [131].

ϕ0(A, nj, Z0)) expresses the gain of reachable set in the presence of uncertainty Z0 that is

a deterministic uncertainty, φ∆(Z∆,nj
) represents the increase of reachable set caused by

uncertainty Z∆ and ψ is the increment of reachable set as a result of trajectories curve in

[tj, tj+1] where ⊕ is the Minkowski addition. C(.) represents the convex hall computation

function.

The centralized Lagrangian method computes the reachable sets based on (5.3) and

(5.4) and can be mentioned as one of the useful methods in control verification [110], [56].

The more advantages of this method are identifications of stability regions [72] and transient

stability analysis [29]. Although this method can provide significant advantages in evaluating

system dynamics subject to disturbances, it is computationally impractical to apply to

a large-scale nonlinear dynamic system due to the high dimensionality and operational

flexibility [73]. To solve this problem, a distributed or compositional formal analysis [6],

[29] is studied for efficient calculation and verification. In this case, the dynamics of a large-

scale system to linear differential inclusions by using the full model can represent and then

compositionally computes the set of linearization errors [6], [131].
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Eulerian Methods

This method, known as level set method, represents the initial set at time t by the zero

sub-level sets of a proper function ϕ(x, t) : Rn × R → R. where the surface of the initial

set at t is expressed as ϕ(x, t) = 0 [131]. Then, by moving (x, t) to another close point

(x+ dx, t+ dt) on the defined surface, the variation in ϕ can be expressed as [131]:

∆ϕ = ϕ(x+ dx, t+ dt)− ϕ(x, t) = 0 (5.5)

This expression leads to the Hamilton-Jacobi PDE:

∑
i

∂ϕ

∂xi

dx

dt
+
∂ϕ

∂t
= 0 (5.6)

Considering (5.1), we will have

∑
i

∂ϕ

∂xi
f(x, d) +

∂ϕ

∂t
= 0 (5.7)

The obtained PDE describes the propagation of the reachable set boundary as a function

of time under the system vector field [128]. The precise reachable sets can be obtained by

solving this PDE. This method is also known as the convergent approximation [113]. This

approach is helpful to analyze transient stability [46] and voltage stability [109] in power

systems. However, since this method needs to discretize the state space model to obtain

numerical solutions, it leads to an exponentially increasing computational complexity and

limits its applications to systems with no more than four continuous states [6], [131]. In order

to solve this issue, the initial set at time t can be expressed alternatively like the occupation

measure in [38]. However, propagating such a measure will lead to other type of PDEs closer

to the level set method, Liouville’s PDE, that can be mentioned in a different category

from the computation perspective. Using this method, safety verification can be analyzed

based on the defined desired target that is usually considered as an unsafe set in backward

reachable set approximation method. Verifying safety can be obtained by following the
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forward reachable set and its intersection with the specified unsafe set. Therefore, using the

presented set operation methods in this dissertation, the system safety property is guaranteed

when (5.8) is satisfied.

Reachable set ∩ Unsafe set = ∅ (5.8)

Set operation based methods carry several advantages such as high accuracy, flexible

computation complexity and adjustable shape and representation power. Some disadvan-

tages caused by no closed form description and extremely high computation complexity,

particularly in the Eulerian method are still there. The Lagrangian method is not applicable

for nonlinear systems and linearization is needed in all cases. These drawbacks motivate us

to look for the other techniques to verify safety, such as passivity based methods.

5.4 Passivity-Based Method

Beside the set operation based methods, there are different approaches for safety verification

relying on set invariance [18], where invariant sets are established by considering sub-level

sets of Lyapunov functions [24].

5.4.1 Dissipativity Approach

One of the contributions of safety verification is to propose a computational method in order

to find an invariant set to separate unsafe region of the state space from the safe region

by finding a proper Lyapunov function using local dissipativity storage functions and SoS

techniques [91]. This work is particularly motivated by networks which induce a unique

equilibrium point such as communication systems [52], biological networks [108] and several

cooperative control problems [11]. Addressing this motivation, a computational method for

verifying a state space safety constraints of a network of interconnected dynamical systems

satisfying a dissaptivity property is presented in [24]. In the proposed method an invariant

set as the sub-level set of a Lyapunov function consist of local storage functions for all

subsystems is constructed and safety verification is posed as a SOS feasibility problem.
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Let’s consider N dynamical subsystems of the form

ẋi = fi(xi, ui, w), yi = hi(xi) (5.9)

where each subsystems has state xi ∈ Rni, input ui ∈ Rm, output yi ∈ Rm and disturbance

w ∈ W ⊂ Rm that can be assumed as zero [24]. fi(xi, ui, w) is a polynomial function in xi

and ui and hi is a polynomial only in xi. Consider the whole system including interconnected

systems via a feedback matrix K ∈ RN×N such that:

u = (K ⊗ Im)y (5.10)

where u ≜ [uT1 · · ·uTN ]T , y ≜ [yT1 · · · yTN ]T and the aggregate state for the interconnected

system is x ≜ [xT1 · · · xTN ]T ∈ Rn where n =
∑N

i=1 ni. The considered feedback is static

and linear, and its structure is allowed to be arbitrary and Kronecker product with identity

serves to accommodate non-scalar subsystems. [24]. Let K̂ ≜ K ⊗ Im such that u = K̂y,

then we define h(x) ≜ [h1(x1)
T · · ·hN(xN)T ]T followed by µ(x) ≜ K̂h(x) where µ(x) ∈ RNm,

h(x) ∈ RNm and K̂ ∈ RNm×Nm. Therefore f(x,w) can be defined as:

f(x,w) ≜ [f1(x1, µ1(x), w)
T · · · fN(xN , µN(x), w)

T ]T (5.11)

then the closed loop dynamical system including all subsystems defined in (5.7) is expressed

by

ẋ = f(x,w) (5.12)

This proposed method is based on dissipativity property considering two primary assump-

tions. Assumption 4.1 brings unique value for the equilibrium point inputs and outputs of

the subsystems (i.e. u∗ ≜ Ky∗ and y∗ ≜ h(x∗)) as this suggested method is particularly

motivated by networks which induce a unique equilibrium.

Assumption 4.1. When w = 0, (5.12) admits a unique equilibrium x∗ ≜ [x∗
T

1 · · · x∗TN ] such

that f(x∗, 0) = 0.
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Since this equilibrium points are from complex interaction subsystems and direct

computation may be challenging, theory of equilibrium independent passivity (EIP) is

provided in [39] expressed in definition I. EIP allows us to treat unknown equilibrium point

as an independent variable in SOS programming.

Definition 5.3. The system Σ is EIP on u∗ if for every u∗ ∈ U∗ there exist a once

differentiable and positive definite storage function Su∗ : x→ R such that [24]:

Su∗(x)|x∗ = 0 (5.13)

Ṡu∗ = ▽xSu∗(x)f(x, u) ≤ (u− u∗)T (y − y∗) (5.14)

where Σ is referring to a general dynamical system described as

ẋ = f(x, u) (5.15)

y = h(x, u)

The second assumption is the the primary restriction in the proposed method since it

makes this methodology applicable for such systems considered in a network context [24].

Assumption 4.2. For Any subsystems included in the whole system (5.7), there exist

nonempty set χ∗
i ⊂ Rni such that for each x∗i ∈ χ∗

i there exist a unique u∗i ∈ Rm such that

fi(x
∗
i , u

∗
i , 0) = 0 (5.16)

Now let define ku,i : χ
∗
i → Rm such that fi(x

∗
i , ku,i(x

∗
i ), 0) = 0 where ku,i(.) is a map from

equilibrium to input for subsystem i. There exist Si(., .) : Rni×Rni → R ≥ 0 as a polynomial

and σ(., .) : Rni×Rni → R such that for all x∗i ∈ χ∗
i each subsystem shows passivity structure

by satisfying the following inequality represented in (5.17) [24].

▽xi
Si(xi, x

∗
i )fi(xi, ui, w) ≤ (ui − u∗i )

T (yi − y∗i )− ρi(yi − y∗i ) + σi(xi, x
∗
i ) (5.17)

∀xi, ∀ui, ∀w ∈ W
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where ρi is a positive semi-definite function and yi∗ ≜ hi(x
∗
i ). In this case, safety condition

is to verify that the resulting trajectories of the interconnected systems will not cross the

unsafe region, represents by an invariant region as a sub-level set {x : V (x) ≤ γ} where

V (x) is a Lyapunov function for ẋ = f(x, 0) and γ ∈ R ≥ 0. The way of constructing

V (x) comprised of the storage function defined in Assumption 4.2. Therefore, using SOS

programming technique sub-level set ν ≜ {x : V (x) ≤ 1} satisfies the safety condition, thus

verifying safety. Where ν is a robustly invariant set for (5.12) and V (x) is considered as

(5.18) for some constant di > 0. More details are provided in [24] and [23].

V (x, x∗) ≜
n∑

i=1

diSi(xi, x
∗
i ) (5.18)

This method can be helpful for verifying safety of those systems that include intercon-

nected subsystems, but it can be a conservative method since satisfying Assumption 4.2 is

a necessary condition to safety verification based on dissipativity approach. Moreover, for

other types of systems such as power systems even satisfying Assumption 4.1 is a critical

and challenging point, particularly, with a system with extremely large number of states.

5.4.2 Barrier Certificate Approach

As an alternative for automated verification of properties such as safety and reachability for

continuous and hybrid systems, the theoretical concept of barrier certificate is proposed in

[95], [128]. A barrier certificate is a function of state satisfying some necessary inequalities

on both the function itself and its derivative along the flow of the system. The barrier

certificate can deliver for both worst-case and stochastic settings [128]. Here the former case

is considered. This means that we are looking for a barrier to prevent system trajectories

from moving to the unsafe region for all possible disturbance inputs [97]. The existence of a

barrier certificate can provide a certificate to guarantee unreachability of the system states

from a given initial set to a given unsafe region. The use of barrier certificates for verifying

safety is similar to the use of Lyapunov function for proving stability and eliminates the need

to propagate sets of states [95]. The key to computing a barrier certificate is to search the
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functions that are point-wise positive over a set [131]. An illustration of the relation between

the safe set and unsafe set using barrier certificate approach is shown in Fig. 5.5.

5.5 Barrier Certificate Positivity

A number of ways could be found to establish the barrier certificate B(x) satisfying the

required condition for invariant set-based barrier certificates. The existence of a barrier

certificate can be considered by convex conditions for the class of continuous systems and

a large class of systems incorporating constraints such as algebraic equations, memory-less

uncertainties and integral quadratic constraints as dynamic uncertainties [95].

Since zero sublevel sets of the barrier function can express the region of safety, we only

need to find the barrier function as a positive definite polynomial to guarantee stability and

verify safety. Let the system in (5.1), X, Xu, XI and D be given and assume f is a continuous

function where the objective is to find B(x) : Rn → R satisfying the following conditions in

(5.19).

B(x) ≤ 0 ∀x ∈ XI

B(x) > 0 ∀x ∈ Xu

∂B

∂x
f(x, d) < 0 ∀(x, d) ∈ X × D (5.19)

A function B(x) satisfying the above conditions is called a barrier certificate. The zero level

set of a barrier certificate provides a barrier between possible system trajectories and the

given unsafe region [95].

5.5.1 Handelman’s Representation

Representing polynomials by positive linear functions on compact convex polyhedra was first

introduced in [35]. Considering K as a compact polyhedron in Euclidean d-space, defined

by linear inequalities, βi ≥ 0, and consider f as a polynomial in d variables that are strictly
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Figure 5.5: The relation between the safe set, unsafe set and region of safety.
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positive on K, then f can be represented as a positive linear combination of products of

members of {βi}. To be clear, let K be a compact polyhedra set of the form

K := {x ∈ Rd : βi(x, g) ≥ 0, g ∈ R} (5.20)

where βi ⊆ R[x] are affine functions of x. For each set K defined in (5.20) and ni for

i = 1, · · · ,m, the mth Handelman’s monomial corresponding to K is defined by

PK
ni
(x) =

m∏
i=1

(βi)
ni (5.21)

Then the Handelman’s polynomials with degree D ≥ 1 corresponding to K can be expressed

by (5.22).

PD(K) =
∑

|m|≤D

λmP
K
m (x), λm ∈ R ≥ 0 (5.22)

where γm are non-negative constants. Hence, to prove the positivity of a polynomial function

over the compact polyhedra sets K, the basis can be selected by Handelman’s polynomials

[35]. The expression of Handelman representation is defined in Theorem 5.4.

Theorem 5.4. A polynomial P (x) is strictly positive over a compact polyhedron K defined

in (5.20) if and only if there exist non-negative coefficients γm such that P (x) : Rn → R with

a bounded degree D can be expressed by [35]

P (x) =
∑
m

λmP
K
m (x) ∀λm ≥ 0 (5.23)

If P (x) is of degree D̃, such that D̃ ≥ D, the unknown coefficients (λm) can be obtained

by solving an equality for each monomials with similar degree. It means that to certify

the positivity (non-negativity) of P (x) on K we only need to solve a linear programming

feasibility problem. The general procedure for proving positivity of P (x) over K is described

as follows [131]:

1. Choose a degree limit D and construct the Handelman’s polynomial PD(K) with

unknown multipliers λm.
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2. Let P (x) = PD(K)

3. Equate coefficients on both sides (the given polynomial and the Handelman represen-

tation) to obtain a set of linear inequality constraints involving λm.

4. Use a LP solver to solve these constraints. If feasible, the results yields a proof that

P (x) is positive semi-definite over K.

Consider the example in [131] with the polynomial p(x1, x2) = −2x31 + 6x21x2 + 7x21 −

6x1x
2
2 − 14x1x2 + 2x32 + 7x22 − 9 and the set K : (x1 − x2 − 3 ≥ 0 ∧ x2 − x1 − 1 ≥ 0). Then,

the positivity of p over K can be proved by representing p as follows

p(x1, x2) = λ1f
2
1 f2 + 3f1f2 (5.24)

where f1 = x1 − x2 − 3, f2 = x2 − x1 − 1 ≥ 0, λ1 = 2 and λ2 = 3.

5.5.2 An Illustrative Example

Let us consider two interconnected subsystems defined by [24]

ẋ1 = −x31 + u1 + w1 + C1, y1 = x31 (5.25)

ẋ2 = −x2 + u2 + w2 + C2, y2 = x2 (5.26)

where C1, C2 are given constants and |w1(t)| ≤ 0.1 and |w2(t)| ≤ 1. The subsystems are

connected by u1 = y2 and u2 = −y1. The system is in the safe condition when x1 and x2 are

in the defined safe set {x1−4 ≤ 0}∪{x2−4 ≤ 0}. The safety of the system is verified by the

proposed method for two different cases with (C1, C2) = (−1,−1) and (C1, C2) = (2,−2).

The obtained safe region is illustrated in Fig. 5.6, which shows that in both cases the safety

region could be verified by the zero level-set of the computed barrier function. If we initialize

the system trajectories inside the green box (initial set) the will stay inside the safe region

and the safety properties are verified.
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Figure 5.6: Safety verification, (a) (C1, C2) = (−1,−1), (b) (C1, C2) = (2,−2).
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5.5.3 Application of Safety Verification in Power Systems

In general, safety verification of the system carrying critical limits can guide us for further

control design. In other words, it can be employed to design the safety supervisory control

based on the obtained barrier certificate or safety region to control the system in emergent

conditions. Several works have been done based on safety verification for verifying power

grid constraints satisfaction in both set operation-based and passivity-based methods. As

an example of the set operation-based method, the stability region of a stable equilibrium

point with the purpose of power system stability analysis is proposed in [46].

In this case, the backward reachable set is computed based on Hamilton–Jacobi–Isaac

(HJI) PDE that yields the stability region of the equilibrium point, and a transient stability

design method is presented based on the obtained reachable set. In addition, the stability

analysis is performed for a set of operating conditions using reachability analysis [6], which

makes it applicable to obtain the bounds for all possible system trajectories.

For the class of passivity-based methods, verifying power grid voltage constraint

satisfaction is considered in [92]. This work aims to turn the static power flow equations

into a system of differential-algebraic equations and apply a safety verification by the barrier

certificate method. Moreover, in some cases, removing timescale separation between voltage

and frequency dynamics makes it critical that faster-timescale stabilizing control laws are

also guaranteed by constructing the satisfaction of voltage limits during transients[63]. As

a solution for this problem, [63] applied a barrier function method to compute distributed

active and reactive power set-point control laws that certify satisfaction of voltage limits

during transients. As another example, a safety supervisory control for the adequate

frequency response in the presence of the worst-case disturbance is designed in [134].

The suggested controller structure has been developed based on the barrier certificate

method that could properly separate the ROS from the unsafe region defined for the grid

frequency constraint. Similarly, in [131], a hybrid controller is proposed to do the safe

recovery procedure based on the largest ROS that is derived based on the barrier certificate

methodology. Computational complexity is the primary challenge of all proposed techniques
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facing large-scale networks such as power systems. However, the advantage of passivity-

based methods for safety verification is obtaining the barrier certificate as a function of

system states that can be employed in the grid’s control structure, such as supervisory

control.

5.6 Summary

In this chapter, safety verification methods and their application to power system are

presented. The methods are classified into set operation based methods and passivity based

methods. Pros and cons of the approaches are discussed. Set operation based methods

are analyzed and considered as applicable and efficient for high order systems. Passivity

based methods are described based on different approaches such as dissipativity and barrier

certificate approach. To encode the positivity of the barrier certificate function, LP relaxation

by Handelman’s representation is proposed.
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Chapter 6

Handelman’s based Barrier

Certificate Approach for Guaranteed

Frequency Performance

Frequency excursions can arise due to a high penetration of DERs and requires a frequency

support function to be integrated in future grids. The appropriate design for these support

functions with the concept of region of safety to ensure adequate response is critical as

stability synthesis of power systems. This chapter reviews a computational method for

safety verification with the Handelman’s theorem and linear relaxation. The Handelman’s

representation is used to formulate the problem, leading to a linear program that possesses

much lower computational complexity. The proposed approach is validated using power

system benchmark case studies with a discussion on further control guidelines.

This chapter is organized as follows. Section 6.1 reviews guaranteed frequency

performance with the help of safety verification. Section 6.2 introduces a Handelman’s based

barrier certificate approach, including the problem formulation and computational method.

Section 6.3 validates the proposed framework considering various power system case studies.

Section 6.4 provides a discussion on control guidelines, including safety supervisory control

implemented on full-scale nonlinear diesel/wind fed microgrid model.
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6.1 Guaranteed Frequency Performance

High penetration of DERs as converter-based devices has a significant impact on power

system dynamics, particularly the frequency response. Significant power imbalances may

lead to severe frequency deviations, stability problems, or even widespread system blackouts

[76]. Maintaining frequency variation in a low band requires adjustments in the protection

and control set points within the system such as the re-coordination of AGC, time correction,

governor response set points, generation and load trip set points, and other frequency

controlled protection devices [54]. As shown in Fig. 6.1 [85], any disturbances can cause

frequency response crossing the determined safety limit, resulting in unnecessary relay

actions. The aim of this dissertation is finding the safe operating region for frequency with

further control design guidelines.

Control synthesis towards guaranteed frequency performance is critical as a supple-

mentary control loops for synthetic inertial and primary frequency response. Converter-

interfaced sources have received lots of attention as a grid-feeding part of grid-supporting

functions where frequency control can be equipped for most converter-interfaced DERs. In

this framework, the accuracy of the frequency response can be indexed by a safe performance,

where the safe performance means that all trajectories should be maintained in a defined safe

region. Constructing a barrier certificate in order to verify safety is a useful tool that can

help us design online monitoring functions for multi-mode devices [97]. A barrier certificate

is a function of state that divides the state space into safe and unsafe regions. All system

trajectories starting from a given initial set inside the barrier function fall into one side while

the unsafe region locates on the other. Thus, the problem of safety verification is converted

to the problem of barrier certificate generation [123].

6.2 Handelman’s based Barrier Certificate Approach

A barrier certificate is a function of state satisfying some necessary inequalities on both the

function itself and its derivative along the flow of the system [96]. The barrier certificate can

deliver for both worst-case and stochastic settings. Here the former case is considered.
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Figure 6.1: Primary frequency response considering safety limit.

109



This means that we are looking for a barrier to prevent system trajectories from moving to

the unsafe region for all possible disturbance inputs [97]. The key to computing a barrier

certificate is to search the functions that are point-wise positive over a set [131]. Since zero

sublevel sets of the barrier function can express the region of safety, we only need to find the

barrier function as a positive definite polynomial to guarantee stability and verify safety as

described in Section 5.5.

6.2.1 Network Systems

In this section, a general model for a network of systems is proposed. Consider a network

(it might include N dynamical subsystems) of the form:

ẋ = f(x, u, w); y = h(x, u) (6.1)

where x is the systems state vector, u is the input vector, w is the disturbance signal and

y represents the output vector of the network. As such (6.1) represents the dynamic of

the network, and there is no need to access the individual subsystems dynamic equations.

We briefly describe the barrier certificate approach and the Handelman’s representation to

find the barrier function by solving an LP problem that is based on a convex optimization

problem for a network of systems.

6.2.2 Computational Method

Considering preliminaries and definitions in Section 5.5, for a network system (It can be

include of interconnected subsystems) constructed by polynomial functions and considering

its barrier function as a polynomial, there is a tractable computation method to find a

barrier certificate. The Handelman’s representation can be used to compute the coefficients

of the barrier certificate by solving the corresponding LP. Based on the condition expressed

in (5.23), the problem of searching a barrier certificate in (5.2) can be expressed as follows:
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− PD(XI)−B(x) = 0, x ∈ XI

− PD(Xu) +B(x) = 0, x ∈ Xu

− PD(X × D)− ∂B

∂x
f(x, d) = 0, ∀(x, d) ∈ X × D (6.2)

where PD(XI), PD(Xu), and PD(X×D) are Handelman’s polynomials over sets XI , Xu, and

X×D, respectively. Here, the objective is to prove the positivity of the B(x) as a candidate

barrier certificate. Based on the obtained B(x), safety property of the system can be

verified [123]. Increasing the degree bound D for the representations; and/or subdividing the

polyhedra K1,. . .Kp such that K =
⋃p

j=1Kj to prove positivity of p over each subdivisions,

may help in case of infeasiblity [103]. A comprehensive description to compute the barrier

certificate B(x) using Handelman’s representation is illustrated in Algorithm 1.

Algorithm 1: Barrier certificate by Handelman’s representation

Input: f(x): system vector field, XI : initial set, XU : unsafe set, X: computation
set, D0: degree of barrier certificate, D: degree bound of Handelman
polynomial

Output: B(x): The barrier certificate as ROS
Construct B(x) by polynomial degree D0;
Construct PD Handelman polynomial degree D (5.23);
Set up the linear programming by equating B(x) and PD as (6.2);
Solve the LP problem;
if The LP is feasible then

Verified ROS by B(x).
else

”Not found B(x) with the degree bound D”
end
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6.3 Power System Case Studies

As a power system application, this dissertation investigates the region of safety for different

power networks, including SMIB benchmark, and a two-area interconnected power system

with AGC to verify the scalability for higher order systems in this section.

6.3.1 SMIB Benchmark

In the most power systems, synchronous generators are the critical components such that

safety verification or even design a stabilizer starts from modeling of these components

[28]. To further demonstrate the proposed approach, a simple example is illustrated as a

benchmark. Consider the linearized SMIB system as follows∆δ̇

∆ω̇

 =

 0 6.28

−20.44 −0.14

∆δ

∆ω

 (6.3)

where the safety specification is defined as Xu = {[∆δ,∆ω]T : −0.5 ≤ ∆ω ≤ 0.5}. Define

an unsafe set as the gray box shown in Fig. 6.2 and the given computation and initial set

an invariant set which is a zero level set of B(x) is obtained as the ROS where the D is set

to 8. The obtained result shows the region that can maintain the system’s trajectories away

from the unsafe region. Here the green box is the largest obtained initial set to initialize the

trajectory (∆ω) to be maintained in the safe region.

6.3.2 Two-Area Power System

Consider a two-area power system, which consists of two interconnected control areas as

shown in Fig 6.3 [30]. The two areas are connected by a tie line of reactance Xr. To

maintain power balance, the generated active power of the network is the same as power

demand, and any disturbance will have an effect on the system frequency regulation. The

challenge of this stabilizing procedure is that it may not be able to preserve the frequency

in a specified safe boundary.
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Figure 6.2: Computed ROS for SMIB benchmark.

Figure 6.3: Two-area interconnected power system with AGC.
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This challenge is the reason for using primary frequency control given by ∆PP1 and ∆PP2

for each area. Also, Each area has to maintain a scheduled power interchange between

the areas, which is approximated by a generating unit Gi equipped with primary frequency

control [64], [31]. The primary objective of the AGC is regulating the frequency to the desired

nominal value and keeping the power exchange between controlled areas to a specified value

[30]. Since AGC is one of the control loops without human operator intervention, analyzing

its vulnerability by safety verification can be a critical point in such interconnected power

systems for further control designs [30].

The model of the two-area power system considered as a case study can be described as

[64], [30]

∆ḟ1 =
f0

2H1SB1

(∆PP1 +∆PAGC1 −
1

Dl1

∆f1 − PT sin∆ϕ) (6.4)

∆ḟ2 =
f0

2H2SB2

(∆PP2 +∆PAGC2 −
1

Dl2

∆f2 + PT sin∆ϕ) (6.5)

∆ϕ̇ = 2π(∆f1 −∆f2) (6.6)

∆ ˙PAGC1 = (
1

Dl1

CP1f0
2S1H1SB1

− 1

S1

1

TN1

)∆f1 −
CP1f0

2S1H1SB1

∆PP1

− CP1f0
2S1H1SB1

∆PAGC1 − (
1

TN1

− CP1f0
2S1H1SB1

)PT sin∆ϕ

− 2πCP1PT (∆f1 −∆f2)cos∆ϕ− Ka1

TN1

P1 (6.7)

where ∆P12 = −∆P21 = PT sin∆ϕ is describing the power flow on the tie line (note that the

active power losses are neglected on the line). ∆P1,2 = − 1
S1,2

∆f1,2 is the primary frequency

control law. All required parameters are defined in Appendix A.3 [30].

In this case, the system is considered in a safe condition when the frequency of each

area lies in a defined safe set [−1.5, 1.5]. Auxiliary variables Z1 and Z2 are considered

to replace the nonlinear non-polynomial functions sin∆ϕ and cos∆ϕ with the polynomials

approximation, respectively [90]. Safety verification is analyzed for the worst-case scenario

such that both areas are disturbed with a bounded disturbance input Ud = 350. The obtained

safe region by the proposed method is illustrated in Fig. 6.4.
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Figure 6.4: Two-area interconnected power system with AGC. (a) B(x) = 0 on ∆ϕ, ∆f1
and ∆f2 axis, (b) projection of B(x) = 0 on ∆f1 and ∆f2 axis.
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This set is the zero level set of the computed barrier function that separates the safe and

unsafe region to keep the system trajectories inside the desired range.

6.4 Discussion on Further Control Guidelines

Developed control structures for the grid interfacing power electronics converters to provide

both grid support and power dispatch functions is highly demanded [74]. Complex switching

behaviors have been introduced as converter interfaced power resources (CIPR) can operate

in many different modes, including grid-forming and grid-following. As CIPR are capable

enough to switch between different modes such as maximum power point tracking (MPPT)

and frequency regulation, they can be easily programmed and controlled, particularly in

grid-forming. However, providing a precise control to get a reliable contribution from CIPR

by stitching between available modes is critical to guaranteed frequency performance.

With the review of the concept ROS, the safe switching synthesis principle is interpreted

based on the property of ROS in this section. As a further control guideline, safety

supervisory control (SSC) is suggested as the common and applicable approach to synthesize

the supportive modes in CIPR such as wind turbine generators (WTGs) to guarantee

performance [133]. The SSC control approach is illustrated in Fig. 6.5 where MPPT used

as a technique for resources with variable power to maximize energy extraction under all

conditions. The proposed switching technique can be applied on photovoltaic (PV) solar

systems, and WTGs. The SSC enables the system awareness capability and provides real-

time systemic safety margin for renewable sources. A diesel/ wind fed microgrid is considered

to show the SSC effectiveness with first verifying its region of safety using the proposed

approach in Section 5.5.

6.4.1 Diesel/ Wind Fed Microgrid

A four-bus system as an illustration of a diesel/ wind fed microgrid with a 600 MW thermal

plant, including four identical units is considered as shown in Fig. 6.6 [99].
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Figure 6.5: SSC integrated in CIPR and its corresponding finite-state machine.

Figure 6.6: Diesel/ wind fed microgrid.
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The classic system frequency response model can represent the frequency dynamics of the

system as follows:

d∆ωd

dt
=

fb
2HD

(∆Pm − (∆Pd −∆Pg)−
D

fb
∆ωd) (6.8)

d∆Pm

dt
=

1

τd
(−∆Pm +∆Pv) (6.9)

d∆Pv

dt
=

1

τsm
(−∆Pv − (

∆ωd

fbRD

)) (6.10)

where ∆Pd is a large disturbance, such as, generation loss or abrupt load changes, and ∆Pg

represents the active power variation due to the frequency control loop form a type-3 WTG

connected to a reference bus. Note that the SFR model has the potential to describe system

frequency response in a complex power network as shown in many recent studies [78, 106, 33].

The wind farm is assumed to be an aggregation of 200 individual GE 1.5 MW WTGs with

rated speed of 450 rad/s (or 72 Hz) and rated output of 300 MW [134]. To model the WTG

a reduced-order model can be obtained Based on selected modal analysis (SMA) [99] with

Ard = −0.0723 and Brd1 = 0.6, Crd = 0.0127 and Drd1 = −0.1. SMA technique provide

a computationally truncable reduced-order model for hybrid system safety verification fully

described in [99], [132]. WTG operating condition and other required parameters are given

in Appendix A.4.

The disturbance, d is set to 0.24 p.u. at t = 20 s as an increment in the load change to

verify the ROS. The obtained result in Fig. 6.7 and Fig. 6.8 show the 3D and 2D projection

of the ROS. This region is used for the SSC design purpose.

For simulation purposes to verify the SSC effectiveness, the full-order nonlinear model of

a synchronous generator (SG) is used but scaled down to microgrid rating. A type-3 wind

turbine with an averaged converter model is used as a WTG model. Detailed description of

model used in simulation can be found in [134], [133]. The system under the disturbance

set about 0.24 p.u. is simulated. The frequency response and the value of safety supervisor

are shown in Fig. 6.9. The inertia emulation (IE) to provide guaranteed synthetic inertia is

activated when the supervisor’s value crosses zero.
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Figure 6.7: Four-bus system region of safety with the disturbance d = 0.24.

Figure 6.8: Four-bus system region of safety with the disturbance d = 0.24.
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Figure 6.9: Frequency response under no inertia emulation and inertia emulation activated
via safety supervisory control (SSC), (a) frequency response, (b) value of safety supervisor.
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As seen, the nadir of the frequency response with activated SSC is exactly at the safety limit,

indicating the estimated ROS is highly precise.

6.5 Summary

Inadequate frequency response is a critical challenge arising due to the high penetration of

DERs in power systems. Large frequency excursion during the transient period, that is, the

period of inertial and primary responses can trigger unnecessary relay actions. Frequency

regulation supports are needed to overcome the aforementioned challenges. Due to the

complex behavior of large-scale systems, including power systems, verifying safety is essential.

There are different methods for safety verification with various computational costs and

effectiveness. This chapter proposes an LP relaxation with the Handelman’s representation

to find the barrier certificate for a network systems that can be represented by polynomial

functions. The proposed method has potential for applications in practical power grids,

including different types of power plants, renewable energy resources, and control actuators

since there is no need to represent the network based on its subsystems dynamic equations.

Simulation results are provided for three case studies involving interconnected systems. A

comprehensive supportive function including inertial emulation, primary response and safety

recovery with de-loaded WTGs using the SSC is studied.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

High penetration of renewable sources can reduce the operating cost by partially replacing the

more expensive generators. Renewable energy sources such as wind are connected to the grid

using power electronic interfaces. The variable nature of renewable power poses challenges

for frequency control in mixed diesel-renewable microgrids. To address the frequency

stability challenges, renewable energy sources need to be equipped with innovative frequency

control approaches that contribute to frequency regulation operations. These controls

can be employed either in grid connected mode or in islanded mode. A greater demand

for regulation capacity to maintain the system balance between power generation and

consumption is required to decrease the adverse effect on system frequency in the presence

of disturbances and fluctuations caused by the renewable resources. Traditional frequency

regulation implemented by large generation units may not satisfy the need in systems

with high levels of renewable energy resources. Recent developments in communication

infrastructure provide an opportunity for using DR to regulate the power imbalance and

control frequency excursions.

In chapter 2, new output feedback LQR and H∞ control laws for inertia emulation using

balanced truncation and the Luenberger observer are proposed. The controllers are applied

to a full order nonlinear model and compared favorably to a PI controller and a conventional
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inertia emulation using a washout filter. The diesel generator speed follows the reference

model in the time scale of inertial response, and accurate emulated inertia is guaranteed

by generating additional active power from the WTG. The performance of the closed loop

system shows improved accuracy with the H∞ controller relative to the LQR controller,

although they both achieve the desired frequency response. Therefore, without providing

a specified margin for the frequency, adequate frequency response with robustness in the

presence of disturbances can be achieved by setting the desired inertia based on the network

operating point. The proposed technique is analyzed for different SCR scenarios where a

lower bound to guarantee the performance is obtained.

Chapter 3 investigates the effect of communication delays and packet losses on inertia

emulation using a power system model considering services provided by IACs. The results

show that time delays and packet losses in the transmission of the ROCOF signal to the DR

aggregator through the communication network can cause instability and/or severe frequency

excursions. Therefore, adopting a new communication technology, such as 5G, with low

latency and packet loss will have a significant impact in improving future smart grids with

guaranteed inertia emulation performance.

A robustH∞ and µ-synthesis dynamic output feedback control laws for primary frequency

regulation with DR are proposed in chapter 4. The suggested robust control techniques aim

to overcome parametric uncertainties, including communication delays, governor dead-band

and governor time constants in a power system. The controllers are applied to the full-

order model and compared favorably to a conventional PI-based Smith predictor control

method. The performance of the closed-loop system shows improved accuracy with the

µ-synthesis controller relative to the H∞ controller, although they both achieve improved

frequency nadir and reduced ROCOF. Therefore, without providing a specified margin for

the frequency, adequate primary frequency response with robustness is obtained by adopting

the proposed robust delay compensation control.

In chapter 5 safety verification methods and their application to power system are

presented. The methods are classified into set operation based methods and passivity

based methods. Pros and cons of the approaches are discussed. First, set operation based
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methods are analyzed and considered as applicable and efficient for high order systems. Then,

passivity based methods are described based on different approaches such as dissipativity

and barrier certificate approach. To encode the positivity of the barrier certificate function,

LP relaxation by Handelman’s representation is proposed.

The Handelman’s based barrier certificate approach for guaranteed frequency perfor-

mance is proposed in chapter 6. This chapter proposes an LP relaxation thanks to the

Handelman’s representation to find the barrier certificate for a network of systems that

can be represented by polynomial functions. The proposed method has the potential for

applications in practical power grids, including different types of power plants, renewable

energy resources, and control actuators. Simulation results are provided for three case studies

involving interconnected systems. A comprehensive supportive function including inertial

emulation, primary response and safety recovery with de-loaded WTGs using the SSC is

studied.

7.2 Future Works

Based on the works to date, continuing research in the following direction is needed.

• Considering the fast regulating time and programmability of power electronic convert-

ers, the proposed safety-supervisory controller will be designed for converter-interfaced

sources/loads to limit the frequency response nadir as a support of power grids.

• Robust unknown-input observer-based control may be considered for grids integrated

with DERs for delay compensation and false data rejection.

• Novel demand response control technologies for frequency regulation services with

high integration of renewable recourses should be studied. Analysis of 5G potential

applications with hardware in the loop test bench in future power grids is needed.

• Motivated by the computational issues to implement barrier certificate approach on

large scale systems, the Handelman’s based barrier certificate approach can be utilized
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and validated on large scale power systems with experimental implementation. To

scale the safety verification technique for guaranteed frequency performance to higher

dimensional systems, data based methods and data driven control should be studied.
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Appendix

A Summary of Parameters

A.1 Modified 33-Bus Microgrid Parameters

Variables are in per unit unless specified otherwise.

Sbase = 1.1 MVA, Vbase = 575 V, f̄ = 377 (rad⁄s).

Operating condition: Wind speed: 11 m/s, Pg = 0.8, Qg = 0, Vds = 0, Vqs = 1.

Equilibrium point for the linearization: (for the dynamic equations)

λds = 1.015, λqs = 0.002, λdr = 1.041, λqr = 0.223, ωr = 1.19 , x1 = −0.641, x2 = 0.261,

x3 = 0.011, x4 = 0.005. (For the algebraic equations) ids = 0.084, iqs = −0.631, idr = 0.261,

iqr = 0.671, Vqr = −0.196, Vdr = 0.048.

Diesel generator: rated power = 1 MW, HD = 1 (s), τsm = 0.1 (s), τd = 0.2 (s).

Wind turbine generator:

rated power = 1 MW, Hw = 2 (s), τsm = 0.1 (s), τd = 0.2 (s), KIτ = 0.1, KPc = 0.6, KIc = 8,

KIQ = 5, KPQ
= 1.

A.2 Power System Model with IACs Parameters

Variables are in per unit unless specified otherwise. Sbase = 800 MVA, fbase = 60 Hz.

IACs operating condition: Tc = 0.02, Ci = 60.55, Ri = 3.191, kQ = 0.034, kp = 0.016,

K = 0.5, KPC = 0.52, KIC = 0.032, τ0 = 1s.

Diesel generator: H = 10 (s), Tg0 = 0.2 (s), Tt = 0.3 (s), Tr = 7 (s), Fr = 0.3 (s),

RG0 = 0.05, D = 1.

142



A.3 Two-Area Power System with AGC Parameters

SB1,2 = 10, f0 = 50 (Hz), H1,2 = 50, S1,2 = 0.002 (Hz/MW), CP1 = 0.1, TN1 = 30, PT = 1000

(MW), Ka = 100, Dl1,2 = 1/200 (MW/Hz).

A.4 Diesel/ Wind Fed Microgrid Parameters

ωs = 60 (Hz), D = 1, HD = 4(s), τd = 0.3 (s),τsm = 0.1(s), RD = 0.05.
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