
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2022

Optimizing Strategic Planning With Long-term Sequential Decision Optimizing Strategic Planning With Long-term Sequential Decision

Making Under Uncertainty: A Decomposition Approach Making Under Uncertainty: A Decomposition Approach

Zeyu Liu
University of Tennessee, Knoxville, zliu65@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Industrial Engineering Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Liu, Zeyu, "Optimizing Strategic Planning With Long-term Sequential Decision Making Under Uncertainty: A
Decomposition Approach. " PhD diss., University of Tennessee, 2022.
https://trace.tennessee.edu/utk_graddiss/7246

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Zeyu Liu entitled "Optimizing Strategic

Planning With Long-term Sequential Decision Making Under Uncertainty: A Decomposition

Approach." I have examined the final electronic copy of this dissertation for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Industrial Engineering.

Xueping Li and Anahita Khojandi, Major Professor

We have read this dissertation and recommend its acceptance:

Xueping Li, Anahita Khojandi, Olufemi Omitaomu, Shuai Li

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Zeyu Liu entitled “Optimizing Strategic

Planning With Long-term Sequential Decision Making Under Uncertainty: A Decomposition

Approach.” I have examined the final paper copy of this thesis for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Industrial Engineering.

Xueping Li and Anahita Khojandi, Major Professors

We have read this thesis
and recommend its acceptance:

Xueping Li

Anahita Khojandi

Olufemi Omitaomu

Shuai Li

Accepted for the Council:

Dixie Thompson

Vice Provost and Dean of the Graduate School

To the Graduate Council:

I am submitting herewith a thesis written by Zeyu Liu entitled “Optimizing Strategic

Planning With Long-term Sequential Decision Making Under Uncertainty: A Decomposition

Approach.” I have examined the final electronic copy of this thesis for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Industrial Engineering.

Xueping Li and Anahita Khojandi, Major Professors

We have read this thesis
and recommend its acceptance:

Xueping Li

Anahita Khojandi

Olufemi Omitaomu

Shuai Li

Accepted for the Council:

Dixie Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Optimizing Strategic Planning With

Long-term Sequential Decision Making Under

Uncertainty: A Decomposition Approach

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Zeyu Liu

August 2022

© by Zeyu Liu, 2022

All Rights Reserved.

ii

for my mother & father,

and all members in my family

iii

Acknowledgements

I would like to thank Dr. Xueping Li and Dr. Anahita Khojandi, for your support, your

guidance, and your unwavering confidence in me, without whom I could not have become

the same person as I am.

I would like to thank Guirong Gong and Hao Liu, my parents, for everything.

I would like to thank Sarita Rattanakunuprakarn, Ziwei Liu, and Xudong Wang, for your

friendship and all the happy memories of us.

I would like to thank Dr. Yang Yang, for being the light in my darkest hours.

This work was supported in part by the Graduate Advancement, Training and Education

(GATE) Program between the Oak Ridge National Laboratory and the University of

Tennessee, Knoxville.

iv

per aspera ad astra

v

Abstract

The operations research literature has seen decision-making methods at both strategic and

operational levels, where high-level strategic plans are first devised, followed by long-term

policies that guide future day-to-day operations under uncertainties. Current literature

studies such problems on a case-by-case basis, without a unified approach. In this

study, we investigate the joint optimization of strategic and operational decisions from a

methodological perspective, by proposing a generic two-stage long-term strategic stochastic

decision-making (LSSD) framework, in which the first stage models strategic decisions

with linear programming (LP), and the second stage models operational decisions with

Markov decision processes (MDP). The joint optimization model is formulated as a nonlinear

programming (NLP) model, which is then reduced to an integer model through discretization.

As expected, the LSSD framework is computationally expensive. Thus, we develop

a novel solution algorithm for MDP, which exploit the Benders decomposition with the

“divide-and-conquer” strategy. We further prove mathematical properties to show that

the proposed multi-cut L-shaped (MCLD) algorithm is an exact algorithm for MDP. We

extend the MCLD algorithm to solve the LSSD framework by developing a two-step

backward decomposition (TSBD) method. To evaluate algorithm performances, we adopt

four benchmarking problems from the literature. Numerical experiments show that the

MCLD algorithm and the TSBD method outperform conventional benchmarks by up to

over 90% and 80% in algorithm runtime, respectively.

The practicality of the LSSD framework is further validated on a real-world critical

infrastructure systems (CISs) defense problem. In the past decades, “attacks” on CIS

vi

facilities from deliberate attempts or natural disasters have caused disastrous consequences

all over the globe. In this study, we strategically design CIS interconnections and allocate

defense resources, to protect the CIS network from sequential, stochastic attacks. The LSSD

framework is utilized to model the problem as an NLP model with an alternate integer

formulation. We estimate model parameters using real-world CIS data collected from a

middle-sized city in the U.S. Previously established algorithms are used to solve the problem

with over 45% improvements in algorithm runtime. Sensitivity analyses are conducted to

investigate model behaviors and provide insights to practitioners.

vii

Table of Contents

1 Introduction 1

2 Model Formulation 10

2.1 MDP . 10

2.2 Formulation of The LSSD Framework . 12

2.3 Extension to CMDP . 14

2.4 Extension to CMDP With Variable Budgets 16

2.5 Decomposing The LSSD Framework . 17

2.6 Discretizing First-stage Decisions . 21

3 Solution Algorithm 25

3.1 The Decomposition of MDP . 27

3.2 The MCLD Algorithm . 32

3.3 Mathematical Property . 34

3.4 Special MDP . 40

3.4.1 Action-free Transition Probability . 40

3.4.2 Monotone Optimal Policy . 42

3.4.3 CMDP . 44

3.5 The TSBD Method . 46

3.5.1 INT . 46

3.5.2 INT-C & INT-VB . 49

viii

4 Computational Analysis 53

4.1 Performance of The MCLD Algorithm . 53

4.1.1 General MDP . 54

4.1.2 Microscopic Analysis . 56

4.1.3 Comparing With VI . 58

4.1.4 Special MDP . 61

4.2 Performance of The TSBD Method . 65

5 Defending Interdependent CIS 69

5.1 Current Literature . 70

5.2 Formulation of the CIS Model . 72

5.3 Case Study: Knoxville, Tennessee . 77

5.3.1 Data & Parameter Estimation . 78

5.3.2 Modified Model Formulation . 81

5.3.3 Applying The Decomposition Method 84

5.4 Case Study: Experiments & Results . 88

5.4.1 Baseline Model . 88

5.4.2 Sensitivity Analysis . 90

5.4.3 Algorithm Comparison . 99

5.5 Discussion . 101

6 Conclusion 105

Bibliography 108

Appendix 120

A MDP Benchmarking Problems 121

A.1 The Queueing Problem . 121

A.2 The Inventory Management Problem . 122

A.3 The Machine Maintenance Problem . 124

ix

A.4 The Data Transmission Problem . 125

B LSSD Benchmarking Problems 127

B.1 The Queueing Problem . 127

B.2 The Inventory Management Problem . 129

Vita 133

x

List of Tables

4.1 Configurations of benchmarking problems for general MDP. 55

4.2 Performance comparison on general MDP problems. 55

4.3 Configurations of testing problems with monotone optimal policies. 62

4.4 Performance comparison on problems with monotone optimal policies. 64

4.5 Configurations of testing problems for CMDP. 64

4.6 Performance comparison on CMDP problems. 64

4.7 Configurations of testing problems for the framework with regular MDP. . . 66

4.8 Performance comparison between NLP, INT, and TSBD. 66

4.9 Performance comparison between NLP-C, INT-C, and TSBD-C. 68

4.10 Performance comparison between NLP-VB, INT-VB, and TSBD-VB. 68

5.1 Estimated output from five types of CIS facilities. 82

5.2 Monetary values for CIS-6. 89

5.3 Monetary values for CIS-6 under different discount factors. 94

5.4 Summary of four CIS instances. 100

5.5 Algorithm comparison on four CIS instances. 102

xi

List of Figures

1.1 A high-level demonstration of the proposed two-stage framework. 3

3.1 A demonstration of the proposed decomposition approach. 28

4.1 Performance comparison between MPI and MCLD. 57

4.2 The convergence of values generated by MCLD. 59

4.3 The convergence of policies generated by MCLD. 59

4.4 Heat maps of MCLD improvements. 60

4.5 Comparing the convergence between MCLD and VI. 62

5.1 An demonstration of the CIS defense problem. 73

5.2 GIS locations of 59 CIS facilities in Knoxville, Tennessee. 79

5.3 A comparison between two types of CIS interconnectivity. 82

5.4 A small instance of six CIS facilities in Knoxville, Tennessee. 89

5.5 Electricity line constructions and CIS dependencies for CIS-6. 91

5.6 Resource allocation decisions for CIS-6. 91

5.7 Average defense intensity from the optimal policy. 92

5.8 Results for CIS-6 under different efficiency multipliers. 96

5.9 Facility output and resource costs for CIS-6 under different δ. 96

5.10 Resource usage in the optimal policy for CIS-6 under different δ. 98

5.11 Total objective and facility output for CIS-6 under different resource costs. . 98

5.12 Resource allocation for CIS-6 under intentional and random attacks. 100

xii

Chapter 1

Introduction

The combined optimization of strategic planning and long-term sequential decision making

has been studied in many distinct application areas in operations research. For example,

in a power generator placement problem (Kizito et al. 2021), the decision maker plans the

strategic locations of the power generators in the present, by considering the minimum cost

in future operations that satisfies customer demands during a potential power outage lasting

for days. In another study that models infrastructure flexibility (Torres-Rincón et al. 2021),

the decision maker first considers the optimal infrastructure network design that requires

strategic investment, and then optimizes flows in the network sequentially for multiple time

periods in the future. A problem with a similar structure is also studied in farmland irrigation

management (Li and Hu 2020), where the decision maker decides seed types and plant

densities before the farming season begins, and then sequentially chooses the optimal timing

of irrigation and the quantity of water during the farming season.

Although scattered among different application areas, these studies feature a common

decision making paradigm, where the decision maker optimizes for a strategic decision

that should be implemented in the present with substantial investments, as well as a

future operational policy that supports the functionality of the system in the long term.

The strategic decision is usually associated with relatively heavy investment, and imposes

constraints and impacts on the long-term operational policy. In this case, to search for an

1

optimal solution, the decision maker must consider the combined optimization of both the

strategic decision and the future operational policy, by evaluating the cost-benefit between

different long-term operational policies in order to choose the strategic decision in the present.

The joint decision-making process is illustrated in Figure 1.1.

A simple example would be a machine purchase & maintenance problem (Puterman

2014). Suppose that a factory wishes to purchase machines to satisfy production needs.

It is apparent that the future production level heavily depends on the current purchase

decision. But to reach a long-term profitable state, the factory also has to consider regular

maintenance strategies for the machines, so that the production level will not be affected by

machine failure. Thus, although purchasing cheaper machines seems to be a better choice

myopically, the low reliability and constant needs for maintenance of the machines could

instead cost more in the long-term, potentially making purchasing expensive machines a

more reasonable choice.

Similar to purchasing machines, strategic decisions often require substantial investments,

such as constructing facilities, designing logistics or utility networks, investing capital, etc.

The strategic decisions are typically only made once at the beginning of the entire decision-

making horizon and are assumed to be fixed afterward due to the high cost of modification. In

practice, the strategic decisions can be modeled using mathematical programming methods,

e.g., linear programming (LP), which has been extensively applied in the literature to a

variety of applications in the past decades (Bertsimas and Tsitsiklis 1997).

The long-term operational policy can be modeled by sequential decision making

models, which have long been a centerpiece in operations research. The popularity of

sequential decision making is indispensable to its successful applications in many areas,

such as manufacturing (Kazemi Zanjani et al. 2010), finance (Mulvey and Shetty 2004),

transportation (Delgado et al. 2019), healthcare (Ayer et al. 2012), risk management

(Ruszczyński 2010; Fan and Ruszczyński 2018), and artificial intelligence (Mnih et al. 2015;

Silver et al. 2017). Sequential decision making models become especially useful for practical

applications when uncertainties in constantly evolving environments are incorporated. Such

models often allow decision makers to dynamically prescribe optimal decisions facing different

2

Figure 1.1: A high-level demonstration of the proposed two-stage framework.

3

situations. As a result, sequential decision making under uncertainty features a combination

of determinism and stochasticism, where the model recommends a deterministic decision

(whether based on some probability distribution or not) under the current situation, and at

the same time considers the impact on all possible scenarios in an uncertain future.

Among many, stochastic programming has become one of the most adopted approaches

to model sequential decisions under uncertainty. In stochastic programming, at each decision

making epoch, a mathematical program is constructed for every scenario, resulting in a tree-

structured multistage model detailing the sample paths of all realizations of possible scenarios

(Birge and Louveaux 2011). A primary advantage of multistage stochastic programming lies

in its adroitness in modeling complex decisions with intricate system dynamics through a

variety of variables and constraints. However, a tree-structured scenario realization results

in an exponentially expanding model, scaled up with the number of decision epochs, limiting

the potential of practical implementations to large-scale problems. In fact, the applications

of multistage stochastic programming in many recent studies are restricted to less than 10

stages due to the expensive computation of large models (Delgado et al. 2019; Kıbış et al.

2020; Kuhn 2008; Yin and Büyüktahtakın 2021).

Besides stochastic programming, the Markov decision process (MDP) is another com-

monly adopted approach to sequential decision making. At its core, MDP utilizes a Markov

process to model the dynamic transitions between system states, and makes optimal decisions

based on current system states with respect to a decision rule to ensure a maximized

aggregated reward in the entire process (Puterman 2014). Unlike stochastic programming,

MDP is widely used to model long-term decision making problems due to the guaranteed

existence of a stationary policy, i.e., a decision making rule independent of the decision

epochs (Howard 1960). Thus, MDP is commonly solved by dynamic programming algorithms

(Bellman 1957), saving the expensive computational requirement of going through tree-

structured models. In particular, a previous study has shown the advantage of dynamic

programming over multistage stochastic programming, especially in longer planning horizons

(Archibald et al. 1999).

4

In the literature, several studies have pioneered the hierarchical modeling that utilizes LP

to optimize strategic decisions, and MDP for operational decisions. For example, in a critical

infrastructure protection problem, network design strategies are extended with resource

allocation decisions to maximize intrusion detection (Jones et al. 2006). The “upper level”

optimization uses LP to model resource allocation and the “lower level” optimization uses

MDP to model intrusions to a facility under a stochastic environment. A similar framework

has been proposed for a production process to optimize revenue management policies (Cooper

and Mello 2007), in which the sequential decision making horizon is decomposed into two

portions, one using LP to coordinate commodity production and another using MDP to

satisfy arriving customer demands. The combined optimization of LP and MDP is also

applied to optimize a photovoltaic (PV) system with energy storage (Keerthisinghe et al.

2014). The proposed optimization framework solves stochastic linear programs for longer

horizons, and solves MDP for shorter time periods within the longer horizon.

Although the above studies have shown the practicality of combining LP with MDP

in modeling complex systems, the method still has limitations. By modeling a problem

as an MDP, the structure of the problem must fit a specific paradigm, in which the

essential elements of MDP, such as states, actions, transition probabilities, and rewards,

have to be explicitly defined. This sometimes makes modeling with MDP difficult, especially

for complex systems. Although constraints are allowed in the LP formulation of MDP

(Manne 1960; d’Epenoux 1960; Oliver 1960), the resulting models, such as constrained MDP

(CMDP), often focus on a particular type of constraints that impose upper bounds on the

policy (Derman and Klein 1965). Thus, compared with stochastic programming, constraints

that model complex system dynamics and sophisticated relationships between variables are

difficult to incorporate into MDP. Moreover, large-scale MDP problems are typically hard

to solve because of the curse of dimensionality, where the scales of the models grow so

large that traditional algorithms become intractable (de Farias and Van Roy 2003). The

negative impacts of model scale are more significant on CMDP, for which the mainstream

exact solution method remains to be the LP formulation (Altman 1999).

5

In fact, studies in the literature have pointed out solution algorithms as the main

difficulty in implementing the decision-making framework that combines LP with MDP

(Jones et al. 2006). As a result, current studies mostly choose to optimize the LP and

MDP models separately, without considering the global optimum of the two joint systems

(Cooper and Mello 2007; Keerthisinghe et al. 2014). Indeed, current solution methods

for MDP show disadvantages when facing another linear system. State-of-the-art exact

solution algorithms such as value iteration (VI) or policy iteration (PI) do not guarantee

full support on linear constraints. Variants in the literature often solve for near-optimal

solutions using approximate dynamic programming (ADP) or reinforcement learning (RL)

techniques (Achiam et al. 2017; Vieillard et al. 2019). The gaps in the literature not only

call for the generic formulation and analytical results of the joint decision-making approach,

but also exact solution algorithms that solve the joint model to the true global optimum.

In this study, we aim to fill in the gaps in the literature by proposing a generic

mathematical formulation that optimizes strategic decisions with sequential operational

decisions for a stochastic system in the long term. Specifically, we formulate the long-term

strategic stochastic decision-making (LSSD) framework by combining an LP model with

MDP. The LP model makes strategic decisions that have immediate impacts on the MDP,

which optimizes sequential, operational decisions for the stochastic system. In addition, we

also consider two extensions of the LSSD framework based on CMDP, where additional linear

constraints are added to the model to regulate the operational policy.

Facing the computational difficulties in solving the LSSD framework, we develop novel

exact algorithms that find the global optimum of the LSSD framework. We first investigate

a more efficient way of solving MDP exactly in its LP formulation, by exploiting the Benders

decomposition (Benders 1962). The novel solution method solves MDP much more efficiently

than brute-forcing the LP formulation directly. More importantly, unlike conventional

solution methods, the decomposition algorithm allows us to incorporate other linear systems

and optimize them in a joint way. Thus, we extend the novel algorithm for MDP to the LSSD

framework and develop decomposition methods to solve the framework and its extensions.

6

We further conduct computational analyses to evaluate the algorithm performances of the

proposed methods, using four benchmarking problems from the literature.

To further validate the LSSD framework, we apply the framework to a real-world problem

that protects interconnected critical infrastructure systems (CIS) from sequential attacks,

where the defender only receives stochastic information on the attacker’s intention. The

CIS protection problem is modeled using the LSSD framework, where strategic decisions

are made regarding defense resource allocation and CIS network design, and operational

decisions are made regarding the optimal defense strategies in response to the attacks. We

collect CIS data from a middle-sized city in the U.S., and conduct thorough estimations

of model parameters, especially the consequences of successful attacks, using real data as

well as data from the literature. Previously developed algorithms are implemented and

validated using the CIS protection problem. We have also conducted additional numerical

experiments to draw insights from the results of the LSSD framework for government agencies

to coordinate resources in response to the attacks on CIS networks.

We summarize the main contributions of this study to the current literature from both the

methodological perspective and the practical perspective. The methodological contributions

are as follows.

1. We propose a generic modeling framework, LSSD, that jointly optimizes strategic

planning with long-term sequential decision making under uncertainty;

2. We formulate the LSSD framework mathematically by hierarchically combining an LP

model with MDP;

3. We extend the LSSD framework by introducing additional linear constraints;

4. We transform LSSD into an alternative formulation to reduce nonlinearity, using

discretization and integer variables;

5. We propose a novel generic decomposition method that solves the LP formulation of

MDP efficiently;

7

6. We prove mathematical properties of the decomposition method and show that it is

an exact method that solves MDP; and

7. We extend the algorithm to solve the LSSD framework, greatly reducing the

computational complexity.

The practical contributions of this study are summarized as follows.

1. We include and extend four benchmarking problems from the literature to evaluate

algorithm performances;

2. We conduct computational analysis and show that our proposed algorithms solve MDP

and the LSSD framework significantly faster than the benchmarking methods;

3. We apply the proposed methodology to a real-world CIS defense problem under

stochastic sequential attacks, featuring interconnectivity between CIS facilities, as well

as long-term dynamic defense strategies;

4. We conduct a case study by collecting real-world data from a middle-sized city in the

U.S., and performing a thorough estimation on model parameters;

5. We design and conduct experiments to solve the CIS protection problem and show the

advantages of our proposed methods and algorithms; and

6. We conduct sensitivity analyses on five different model parameters. Insights are

provided to practitioners through thoroughly investigating model behaviors.

This dissertation is structured into six chapters. In Chapter 1, we lay the foundation

by introducing the research problem and discussing relevant studies in the literature. In

Chapter 2, we formulate the mathematical model of the LSSD framework and consider

the extensions based on CMDP. We further analyze the framework using a decomposition

method and propose alternate formulations that reduce the nonlinearity in the models. In

Chapter 3, we first develop a novel decomposition algorithm for the MDP, and then extend

the algorithm to solve the LSSD framework as well as its extensions. In Chapter 4, we

8

conduct computational analysis using benchmarking problems from the literature to evaluate

the algorithms developed in the previous chapter. We also design experiments to analyze

the algorithm behavior in detail. In Chapter 5, we apply the LSSD framework to the CIS

protection problem. We formulate the mathematical framework, estimate model parameters,

optimize with developed algorithms, and conduct experiments to analyze model results. In

Chapter 6, we draw conclusions and provide insights.

9

Chapter 2

Model Formulation

In this chapter, we formulate the mathematical model of the LSSD framework and present

two extensions based on CMDP. We further analyze the model using a decomposition method

and propose an alternate formulation that reduces nonlinearity in the model. Alternate

formulations are also applied to the extensions. We begin this chapter by introducing the

notation of MDP.

2.1 MDP

We define an MDP as a five-element tuple (S,A, T,R, γ), where S denotes the set of system

states, A denotes the set of available actions, T : S × S × A → R+ denotes the transition

probability, R : S → A denotes the reward function and γ denotes the discount factor

(Puterman 2014). In addition, we let α ∈ R|S|+ be the initial state distribution, i.e., 0 � α �

1,αT · 1 = 1. Note that we use bold letters to represent the vector form of variables and

parameters, and we use letters with subscripts, e.g. αs, ∀s ∈ S, to denote an element in

the vector. In this study, we let the action set A be independent of the state set S, which

includes the situation where some actions are not available under specific states, since one

can easily set the state transition probability to 0 for unavailable actions.

Specifically, we focus on infinite horizon MDP with discount (0 < γ < 1) that makes

sequential decisions at the decision epochs t = 0, 1, 2, ...,∞. The decisions are made

10

according to a policy π : S → A, which takes an action at ∈ A based on the current

system state st ∈ S. After an action is taken, the system obtains a reward R(st, at). Then,

the system transitions to a new state st+1 at the next decision epoch with the transition

probability T (st+1|st, at). The objective of the MDP is to maximize the accumulated reward

over the entire decision making horizon. As such, the value function Vt : S → R of the MDP

can be defined as the accumulated reward-to-go starting from t,

Vt(s) = R(st, at) + γ
∑
s′∈S

T (s′|st, at)V ∗t+1(s′), ∀ s ∈ S, (2.1.1)

where V ∗t (s) denotes the Bellman optimality equation (Bellman 1957),

V ∗t (s) = max
a∈A

{
R(st, at) + γ

∑
s′∈S

T (s′|st, at)V ∗t+1(s′)
}
, ∀ s ∈ S. (2.1.2)

It has been proved that the optimal solution, i.e., a policy π∗ that solves V ∗0 (s), ∀ s ∈ S,

always exists for the infinite horizon MDP (Howard 1960).

Since the Bellman optimality equation uses dynamic programming in essence, there exists

an LP equivalent to the infinite horizon MDP (Manne 1960; d’Epenoux 1960; Oliver 1960).

Let v ∈ R|S| denote the value of each state and V ∗ the value of the MDP, the linear program

can be written as follows:

V ∗ := min
∑
s∈S

αsvs (2.1.3)

s.t. vs − γ
∑
s′∈S

T (s′|s, a)vs′ ≥ R(s, a), ∀ s ∈ S, a ∈ A; (2.1.4)

vs unrestricted, ∀ s ∈ S. (2.1.5)

In the following, we refer to this linear program as the LP formulation of MDP. The LP

formulation constructs a constraint for each state-action pair (s, a), resulting in a total of

|S| · |A| constraints. Thus, the size of the LP formulation scales nonlinearly with the size of

the states and actions, making it difficult to optimize for large-scale implementations.

11

2.2 Formulation of The LSSD Framework

We formulate the LSSD framework as a two-stage model. As discussed in the previous

chapter, we model the strategic decisions in the first stage with LP, and the operational

decisions in the second stage with MDP. In the first stage, we consider a generic LP model

to promote applications to different practical problems. Let x ∈ Rn
+ be the decision making

variable representing the strategic decisions with dimension n. The generic LP model can

be written as (Bertsimas and Tsitsiklis 1997)

max
n∑
i=1

cixi (2.2.1)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.2.2)

xi ≥ 0 ∀ i = 1, . . . , n, (2.2.3)

where wi,j denotes an element in the coefficient matrix Wm×n and b denotes a vector of the

right-hand-side constraints.

The second stage makes sequential decisions through an MDP. Note that in the LP

formulation of MDP, i.e., Equation (2.1.3) – (2.1.5), the objective is to minimize the state

values, even though the objective of MDP is to maximize the accumulated reward. The

LP formulation of MDP functions well on its own with the minimizing objective. However,

when combining the LP formulation with another linear system, the objective causes conflict

between the two systems, especially when the other system changes the parameters of the

MDP. As a result, a minimizing objective makes the model choose the set of parameters

with the worst objective value. Thus, instead of the LP formulation of MDP, we consider

the following dual problem of the LP formulation of MDP (Puterman 2014).

max
∑
s∈S

∑
a∈A

R(s, a)ys,a (2.2.4)

s.t.
∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

T (s|s′, a)ys′,a = αs ∀ s ∈ S; (2.2.5)

12

ys,a ≥ 0 ∀ s ∈ S, a ∈ A, (2.2.6)

where the decision-making variable ys,a represents an occupation measure, suggesting the

number of times that action a is taken under state s (Dolgov and Durfee 2005).

In this study, we make an important assumption about the relationship between the

strategic decisions x and the MDP model. Specifically, we assume that the state set S, the

action set A, and the discount factor γ are not affected by the values of x.

Assumption 2.1. The state set S, the action set A, and the discount factor γ in the second

stage MDP remain fixed for all possible values of x.

Assumption 2.1 are widely adopted by the literature regarding MDP parameter ambiguity

(Satia and Lave Jr 1973; Mannor et al. 2007; Bäuerle and Rieder 2019; Steimle et al. 2021b).

Even though in practice, strategic decisions may lead to different a state or action set, it is

always possible to model the MDP in such a way that S and A contain all possible states

and actions no matter the value of x. States that cannot be visited or actions that cannot

be taken are then modeled by setting the state transitions to 0, or the rewards to negative

infinity.

As such, the strategic decision x only affects the transition probability T (s′|s, a) and

the reward R(s, a). Since the values of T (s′|s, a) and R(s, a) change, we introduce variables

τs′,s,a ∈ [0, 1], ∀ s′, s ∈ S, a ∈ A and rs,a ∈ R, ∀ s ∈ S, a ∈ A to represent the values of

T (s′|s, a) and R(s, a), respectively, under the influence of x. Further, the effect of x on τs′,s,a

and rs,a are considered in a generic way. We introduce functions G : Rn
+ × [0, 1]S×S×A → R

and H : Rn
+ × RS×A → R to model the connections between the first and the second stage.

Specifically, the values of τs′,s,a and rs,a are subject to the following constraints.

G(x, τ) = 0;

H(x, r) = 0;∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A.

13

Using the above notation, the mathematical model of the two-stage LSSD framework is

formulated as the following nonlinear program (NLP).

NLP := max
n∑
i=1

cixi +
∑
s∈S

∑
a∈A

rs,ays,a (2.2.7)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.2.8)

G(x, τ) = 0; (2.2.9)

H(x, r) = 0; (2.2.10)∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A; (2.2.11)

∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs,s′,ays′,a = αs ∀ s ∈ S; (2.2.12)

x,y � 0, τ , r unrestricted. (2.2.13)

In the model, nonlinearity arises when we combine an LP model with MDP. Specifically, in

the first stage, the strategic decision x leads to different choices of τs′,s,a and rs,a. Then,

in order to calculate the optimal policy, τs′,s,a and rs,a are multiplied with the second-

stage decision-making variable ys,a in the objective as well as Constraint (2.2.12), leading to

nonlinear terms in the model.

2.3 Extension to CMDP

The practical significance of CMDP arises from the areas where general MDPs tend to

be inadequate. Especially, when an MDP is optimized subject to multiple objectives

(Armony and Ward 2010; Boussard and Miura 2011), or when certain resource limitations

are present (Bhandari et al. 2008; Chen et al. 2018), additional constraints are required

to eliminate infeasible policies. Due to the uniqueness of applications, CMDP has seen

different formulations in the literature (Altman 1999; Heyman and Sobel 2004), all of which

produce the same optimal policy in the essence. For consistency, in this study, we adopt

14

the formulation closely related to the dual problem of an unconstrained MDP (Heyman and

Sobel 2004; Dolgov and Durfee 2005).

Let di : S × A → R, i ∈ D, be the cost functions of taking an action under a state,

where D is the set of constraint indices, representing |D| types of costs, each associated

with a different upper bounds (“budgets”) D̄i ∈ R, i ∈ D. Using the dual formulation of

unconstrained MDP, CMDP can be represent as follows.

max
∑
s∈S

∑
a∈A

R(s, a)ys,a (2.3.1)

s.t.
∑
a∈A

ys,a − γ
∑
s′∈S

∑
a∈A

T (s|s′, a)ys′,a = α(s), ∀ s ∈ S; (2.3.2)

∑
s∈S

∑
a∈A

di(s, a)ys,a ≤ D̄i, ∀ i ∈ D; (2.3.3)

ys,a ≥ 0, ∀ s ∈ S, a ∈ A. (2.3.4)

Similar to the dual formulation, ys,a is the decision-making variable, representing an

occupation measure, i.e., the number of times the action a is taken under state s (Dolgov

and Durfee 2005). Thus, the additional constraint (2.3.3) can be interpreted as a resource

limitation applied to the aggregated actions taken under all states.

The integration of CMDP with another linear system becomes an easy extension based on

the formulation (2.2.7) – (2.2.13). The following model shows the formulation of combining

a linear system of strategic decision-making with CMDP (NLP-C).

NLP-C := max
n∑
i=1

cixi +
∑
s∈S

∑
a∈A

rs,ays,a (2.3.5)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.3.6)

G(x, τ) = 0; (2.3.7)

H(x, r) = 0; (2.3.8)∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A; (2.3.9)

15

∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs,s′,ays′,a = αs ∀ s ∈ S; (2.3.10)

∑
s∈S

∑
a∈A

di(s, a)ys,a ≤ D̄i, ∀ i ∈ D; (2.3.11)

x,y � 0, τ , r unrestricted. (2.3.12)

The additional constraint, i.e., Constraint (2.3.11), imposes a heavier computational cost on

top of the original nonlinear system.

2.4 Extension to CMDP With Variable Budgets

Often, when conducting strategic planning, decision makers are not only concerned with

future revenue, but also with the present investment of implementing the decisions

(Blumentritt 2006). The “perfect” future operational policy becomes useless if the current

budget does not permit it. A practical example would be the bidding for contracts, where

tenders submit proposals or quotations in response to solicitations from contracting authority

(Samuelson 1986). In the context of CMDP, the budget of each proposal can be seen as a

possible value for D̄i. Since the decision maker needs to find the optimal “bid” from multiple

CMDP “tenders” in the second stage, we consider D̄i as another decision-making variable

in the first stage.

Specifically, we let D̄i be the maximum budget that the decision maker is willing to pay,

and use Di ∈ R, i ∈ D as an additional variable that connects the two stages of the model.

In addition, we introduce a weight coefficient η ∈ [0, 1], representing the importance of the

budget to the decision maker. The extension to CMDP with variable budgets (NLP-VB)

can be formulated as the following program.

NLP-VB := max
n∑
i=1

cixi − η
∑
i∈D

Di +
∑
s∈S

∑
a∈A

rs,ays,a (2.4.1)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.4.2)

16

G(x, τ) = 0; (2.4.3)

H(x, r) = 0; (2.4.4)∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A; (2.4.5)

∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs,s′,ays′,a = αs ∀ s ∈ S; (2.4.6)

∑
s∈S

∑
a∈A

di(s, a)ys,a ≤ Di ∀ i ∈ D; (2.4.7)

Di ≤ D̄i ∀ i ∈ D; (2.4.8)

x,y,D � 0, z ∈ {0, 1}K , τ , r unrestricted. (2.4.9)

In the model, the occupation measure ys,a in the second stage is constrained to be less than

Di, and the objective in the first stage seeks to find the MDP with the minimum Di. When

η = 1, the decision maker evaluates the budget to the full extent. When η = 0, the model is

equivalent to the formulation (2.3.5) – (2.3.12) without the variable budgets.

2.5 Decomposing The LSSD Framework

In this section, we analyze the previously proposed models, in particular, the formulation

(2.2.7) – (2.2.13), as it is the foundation of the two extensions. Specifically, we apply the

generalized Benders decomposition technique to the model formulation (Geoffrion 1972),

with the intent to reduce the nonlinearity in the objective as well as constraints.

The generalized Benders decomposition divides a mathematical program into two parts, a

master problem (MP) and a subproblem (SP). This decomposition method is widely adopted

in the literature when the model contains nonlinear constraints or objectives, rendering

the regular Benders decomposition non-applicable. By applying the generalized Benders

decomposition, when the solution to the MP is fixed, the SP is transformed into a linear

system, allowing it to be solved using conventional algorithms, reducing the nonlinearity in

the model (Geoffrion 1972).

17

In our model, the MP and SP corresponds to the first stage (LP) and the second stage

(MDP) formulation. The MP contains the strategic decision x as well as the connecting

variables τ and r, with an additional variable θ representing the value of the subproblem.

max
n∑
i=1

cixi + θ (2.5.1)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.5.2)

G(x, τ) = 0; (2.5.3)

H(x, r) = 0; (2.5.4)∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A; (2.5.5)

x � 0, τ , r, θ unrestricted. (2.5.6)

Let τ̄ and r̄ be the solutions obtained from the MP. The SP uses the solution to formulate

the MDP:

θ := max
∑
s∈S

∑
a∈A

r̄s,ays,a (2.5.7)

s.t.
∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τ̄s,s′,ays′,a = αs ∀ s ∈ S; (2.5.8)

y � 0. (2.5.9)

As such, the nonlinearity in the original formulation is alleviated, as the connecting variables

τ and r are converted into coefficients, instead of variables.

In order to obtain the optimal solution to the decomposed model, Additional constraints

are derived from the SP and added back to the MP (Geoffrion 1972). The MP is then

solved to produce new solutions of τ̄ and r̄, from which a new SP is formulated. The process

continues as an iterative algorithm until convergence conditions are met. Typically, two types

of constraints, or cuts, are derived, i.e., feasibility cuts and optimality cuts. The feasibility

cuts ensure that the solutions produced by the first stage are feasible for the second stage.

18

In our model, since the second stage is an MDP, it is always feasible no matter the first-stage

solutions. Thus the following proposition of complete recourse holds (Birge and Louveaux

2011).

Proposition 2.1. The SP (2.5.7) – (2.5.9) has complete recourse, i.e., ∀ τ̄ , r̄, there always

exists a feasible solution ȳ.

Proof. The proposition holds since model (2.5.7) – (2.5.9) is an infinite-horizon, discount

MDP. It has been proved that optimal policy for an infinite-horizon, discount MDP always

exists (Howard 1960). Thus, there always exists a feasible solution to the model (2.5.7) –

(2.5.9).

Proposition 2.1 suggests that no feasibility cuts are required to reach the optimal solution,

and only optimality cuts need to be derived. To do so, we apply Lagrangian relaxation to

the SP. Let vs be the Lagrangian multiplier corresponding to the Constraint (2.5.8). The SP

is relaxed to an unconstrained optimization problem.

sup
y�0

{∑
s∈S

∑
a∈A

rs,ays,a +
∑
s∈S

vs · (αs −
∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs,s′,ays′,a)
}
. (2.5.10)

The value vs can be obtained from the SP easily using duality with fixed τ̄ and r̄. With a

simple transformation, the optimality cuts can be formulation as follows.

θ ≤
∑
s∈S

∑
a∈A

sup
y�0

{
(rs,a − vs + γ

∑
s′∈S

τs′,s,avs′)ys,a

}
+
∑
s∈S

αsvs, (2.5.11)

Then, the MP to be solved iteratively takes the following form.

max
n∑
i=1

cixi + θ (2.5.12)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.5.13)

G(x, τ) = 0; (2.5.14)

H(x, r) = 0; (2.5.15)

19

∑
s′∈S

τs′,s,a = 1 ∀ s ∈ S, a ∈ A; (2.5.16)

θ ≤
∑
s∈S

∑
a∈A

sup
y�0

{
(rs,a − vs + γ

∑
s′∈S

τs′,s,av
`
s′)ys,a

}
+
∑
s∈S

αsv
`
s ∀ ` = 1, . . . , L

(2.5.17)

x � 0, τ , r, θ unrestricted, (2.5.18)

where ` = 1, 2, . . . , L denotes the number of iterations. Note that the optimality cut (2.5.11)

is formulated in an intuitive way. The term
∑

s∈S αsvs matches the objective of the primal

LP formulation of MDP. The term rs,a− vs + γ
∑

s′∈S τs′,s,avs′ matches the constraints of the

primal LP formulation of MDP. Such duality occurs in the cut since it is derived through

the Lagrangian method.

However, generalized Benders decomposition does not fully remove nonlinearity from the

model. The supremum in the optimality cut (2.5.11) cannot be evaluated in a closed form,

since the sign of the term rs,a− vs + γ
∑

s′∈S τs′,s,avs′ remains inconclusive. Considering that

the supremum is taken with respect to y � 0, we can characterize the supremum in the

following way.

sup
y�0

{
(rs,a − vs + γ

∑
s′∈S

τs′,s,avs′)ys,a

}
=

∞ if rs,a − vs + γ
∑

s′∈S τs′,s,avs′ > 0;

0 otherwise.

(2.5.19)

When rs,a − vs + γ
∑

s′∈S τs′,s,avs′ > 0, the optimality cut does not bind in the MP, since

the cut is equivalent to θ ≤ ∞. Interestingly, if r̄s,a − vs + γ
∑

s′∈S τ̄s′,s,avs′ > 0 holds for

some τ̄ and r̄, it also suggests that τ̄ and r̄ violate the feasibility of the constraints in a

primal formulation with state value vs. Thus, τ̄ and r̄ are a pair of MDP parameters that

have never been evaluated by the optimality cuts added in the previous iterations. As a

result, such a pair of parameters would provide the MP with a larger objective, with fewer

binding constraints. Note that by modeling Equation (2.5.19) using integer programming

(IP) techniques such as the big-M method, it is possible to approximate the supremum

20

with integer variables. However, doing so trades one form of nonlinearity with another, not

necessarily helping reduce the computational complexity of the model.

Nonetheless, Equation (2.5.19) still provides us with intuitive insights regarding how

generalized Benders decomposition behaves when applied to the two-stage LSSD framework.

Specifically, the MP would prefer to produce a pair of parameters τ̄ and r̄ that have never

been evaluated in previous iterations, which provides a better objective value. Then, the SP

evaluates such a pair of parameters and produce an optimality cut (2.5.11) that binds the

current pair of τ̄ and r̄ with the value
∑

s∈S αsvs, which is also the objective of the primal

LP formulation of MDP. In a new iteration, the MP would search for another pair of τ̄ and

r̄ representing a new MDP. Finally, when all possible sets of MDP parameters generated

by the first stage are evaluated, one after another, the model solves the MP to obtain the

optimal one.

2.6 Discretizing First-stage Decisions

The results in the previous section intuitively explain the relationship between the first and

the second stage variables, and how they make optimal decisions in a collective way. By

decomposing the model, obtaining the optimal solution requires evaluating possible sets of

MDP parameters generated by the first stage one by one, in a discrete fashion. This provides

us with incentives to consider a discretized version of the model, where all MDPs generated

by the first-stage model are predefined.

As such, we consider a set of K MDP models Mk = (S,A, Tk, Rk, γ), k = 1, . . . , K,

representing the possible outcomes of the first-stage decision x. The significance of

considering multiple MDP models arises in many practical applications, where integer

variables are widely utilized in modeling decision making, such as facility location, network

design, vehicle routing, scheduling, etc (Conforti et al. 2014). In the literature, multiple MDP

models are widely considered when MDP parameters such as the transition probability or

the reward become ambiguous (Buchholz and Scheftelowitsch 2019; Steimle et al. 2021b).

21

Since all MDP models are predefined, the first-stage decision x no longer leads to different

τ and r, but different MDP models. We further introduce a binary variable zk ∈ {0, 1},

k = 1, . . . , K denoting the choice of the strategic decision and the following MDP models.

Similar to previous models, we use a generic function F : Rn × {0, 1}K → R to model

the relationship between x and z. In addition, we use the variable V ∈ R to denote the

objective of the MDP selected by the variable z. In the second stage, we expand the decision-

making variable yk,s,a with an extra dimension that accounts for all K models. The K-MDP

formulation with a discretized first stage, denoted by INT, is shown as follows

INT := max
n∑
i=1

cixi + V (2.6.1)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.6.2)

F (x, z) = 0; (2.6.3)

K∑
k=1

zk = 1; (2.6.4)

V ≤
∑
s∈S

∑
a∈A

Rk(s, a)yk,s,a +M · (1− zk) ∀ k = 1, . . . , K; (2.6.5)

∑
a∈A

yk,s,a − γ
∑
a∈A

∑
s′∈S

Tk(s
′|s, a)yk,s′,a = αs · zk ∀ s ∈ S, k = 1, . . . , K;

(2.6.6)

x,y � 0, z ∈ {0, 1}K , V unrestricted. (2.6.7)

In the model, M denotes a very large number. It guarantees that V will take the objective

value of the MDP selected by the variable z. The variable zk is also present at the Constraint

(2.6.6), to ensure the feasibility of all MDP models that are not selected by z.

The discretized model is formulated with mixed integer programming (MIP). Although

in the essence, integer variables still bring nonlinearity to the model, there are established

algorithms such as branch-and-bound to solve MIP models relatively efficiently (Conforti

et al. 2014). The discretization reduces the nonlinearity of variable multiplication, since the

22

transition probability Tk(s
′|s, a) and reward Rk(s, a) are now parameters to a specific MDP

model.

Note that by discretizing the first stage, formulation (2.6.1) – (2.6.7) is not necessarily

equivalent to the original formulation (2.2.7) – (2.2.13). The two formulations are equivalent

when the first-stage decisions can be naturally discretized, e.g., choosing facility sites among

selected candidate locations, deciding on the number of integer resources such as personnel,

or designing a network with a finite number of connectivities between nodes. Under

situations where the first-stage decisions do not lead to discretized decisions, methods such

as sample average approximation can still be applied to transform the model into the integer

formulation (Birge and Louveaux 2011), in which case the integer formulation provides a

near-optimal estimate towards the true optimal objective.

Adopting the same idea, we are also able to discretize the first stages of the two extensions

to CMDP and CMDP with variable budgets. The extension to CMDP is straightforward.

The following MIP model (INT-C) shows the discretized formulation of K CMDP models.

INT-C := max
n∑
i=1

cixi + V (2.6.8)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.6.9)

F (x, z) = 0; (2.6.10)

K∑
k=1

zk = 1; (2.6.11)

V ≤
∑
s∈S

∑
a∈A

Rk(s, a)yk,s,a +M · (1− zk) ∀k = 1, . . . , K; (2.6.12)

∑
a∈A

yk,s,a − γ
∑
a∈A

∑
s′∈S

Tk(s
′|s, a)yk,s′,a = αs · zk ∀ s ∈ S, k = 1, . . . , K;

(2.6.13)∑
s∈S

∑
a∈A

di(s, a)yk,s,a ≤ D̄i ∀ i ∈ D, k = 1, . . . , K; (2.6.14)

x,y � 0, z ∈ {0, 1}K , V unrestricted. (2.6.15)

23

To model different budgets for different MDP models, similar to yk,s,a, the budget variable

Dk,i is also expanded with an extra dimension that accounts for all K MDP models. The

following MIP model shows the discretized formulation of K CMDP models with variable

budgets (INT-VB).

INT-VB := max
n∑
i=1

cixi + V (2.6.16)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (2.6.17)

F (x, z) = 0; (2.6.18)

K∑
k=1

zk = 1; (2.6.19)

V ≤
∑
s∈S

∑
a∈A

Rk(s, a)yk,s,a − η
∑
i∈D

Dk,i +M · (1− zk) ∀k = 1, . . . , K;

(2.6.20)∑
a∈A

yk,s,a − γ
∑
a∈A

∑
s′∈S

Tk(s
′|s, a)yk,s′,a = αs · zk ∀ s ∈ S, k = 1, . . . , K;

(2.6.21)∑
s∈S

∑
a∈A

di(s, a)yk,s,a ≤ Dk,i ∀ i ∈ D, k = 1, . . . , K; (2.6.22)

Dk,i ≤ D̄i ∀ k = 1, . . . , K, i ∈ D; (2.6.23)

x,y,D � 0, z ∈ {0, 1}K , V unrestricted. (2.6.24)

Although with reduced nonlinearity, the above integer formulations are still too complex

to solve efficiently. The complexity mainly comes from two fronts. First, integer variables in

the models require branching algorithms, whose computational costs increase exponentially

with the size of the problem. Second, the curse of dimensionality in MDP models suggests

large numbers of variables and constraints, rendering the models even more difficult to solve.

Therefore, algorithm development is urgently required in order to solve the proposed models

efficiently.

24

Chapter 3

Solution Algorithm

In this chapter, we develop novel algorithms with the aim to solve the models proposed

in Chapter 2 more efficiently. As discussed, the main computational burden of solving the

nonlinear models comes from two fronts: the nonlinearity of integer variables, and the curse

of dimensionality of MDP. Since branching strategies of integer variables often depend on

specific applications and problem instances, in this study, we focus on exact algorithms

that solve MDP in its LP formulation. First, we propose a novel, exact solution algorithm

for MDP using the Benders decomposition method. Specifically, we develop a multi-cut

L-shaped (MCLD) algorithm that solves MDP iteratively. Then, we construct a two-step

backward decomposition (TSBD) method that utilizes the MDP solution algorithm as a

foundation to optimize the LSSD framework and its extensions.

In the literature, many studies have considered decomposition techniques for MDP to

alleviate the curse of dimensionality (Daoui et al. 2010). Special structures in the Markovian

transition diagram play important roles, such as the strongly communicating classes (SCC)

(Ross and Varadarajan 1991; Abbad and Boustique 2003; Larach et al. 2017). Other types of

decomposition involves the hierarchical structures (Bai et al. 2015), distributed optimization

(Fu et al. 2015), parallel computing (Chen and Lu 2013; Chafik and Daoui 2015), or fluid

optimization (Bertsimas and Mǐsić 2016). As such, most of the approaches decompose an

MDP into smaller MDPs and solve them with dynamic programming algorithms (Abbad

25

and Boustique 2003; Chen and Lu 2013; Larach et al. 2017), while only a few consider the

decomposition of the LP formulation with exact solution methods (Kushner and Chen 1974;

Dean and Lin 1995; Fu et al. 2015). Especially, the Dantzig-Wolfe decomposition (Dantzig

and Wolfe 1960) was applied to the LP formulation of MDP (Kushner and Chen 1974; Dean

and Lin 1995). However, since the Dantzig-Wolfe decomposition requires a block angular

shape in the linear program, it only applies to MDP with special structures in the transition

diagrams (Kushner and Chen 1974).

As a decomposition method closely related to Dantzig-Wolfe, the Benders decomposition

(Benders 1962) has been utilized by many studies in the current literature to solve MDP-

related problems (Rebennack 2016). Most of the studies feature a combination of MDP

with additional constraints that model system dynamics, where the Benders decomposition

is only applied to the newly added constraints, rather than the MDP itself (Dimitrov and

Morton 2009; Regan and Boutilier 2012; Vickson et al. 2020; Rokhforoz and Fink 2021).

The Benders decomposition has also been used to solve the recently proposed multi-model

MDP (MMDP) (Steimle et al. 2021b; Steimle et al. 2021a). Specifically, the Benders

method decomposes MMDP into smaller problems, each characterizing an MDP with a

particular set of parameters (Steimle et al. 2021a), but each MDP is still solved as a whole.

Interestingly, the generalized Benders method (Geoffrion 1972) has been adopted to derive

approximate dynamic programming algorithms to solve the MDP from a reinforcement

learning perspective (Warrington et al. 2019; Warrington 2019). The resulting algorithm

consecutively generates lower bounds to yield approximated solutions (Warrington 2019).

To the best of our knowledge, the current literature has not seen algorithms that apply

the Benders decomposition directly to solve MDP exactly. In this study, we propose a

novel decomposition approach for MDP based on the Benders decomposition. The resulting

Benders decomposition of MDP breaks down the LP formulation into smaller, easier-to-solve

linear programs, leading to an algorithm that solves optimal policies for MDP problems much

more efficiently. Different from the Dantzig-Wolfe decomposition (Kushner and Chen 1974;

Dean and Lin 1995), our approach does not require a special structure in the transition

diagram, making it a generalized method for all types of MDP problems. Furthermore, the

26

Benders decomposition of MDP provides intuitive interpretations of model variables, from

which the optimal policy can be easily derived.

Figure 3.1 demonstrates the utilization of the Benders decomposition for solving MDP.

The method also exploits the primal-dual relationships of the decomposed model and

computes both the optimal state values as well as the optimal policy. The proposed

method can be easily applied to the LSSD framework since the LP model in the extensive

form remains unchanged in the decomposed model, making it advantageous compared with

state-of-the-art MDP solution methods in the literature, such as modified policy iteration

(MPI) (Puterman and Shin 1978) or reinforcement learning (Sutton and Barto 2018), whose

dynamic programming structures prove difficult to incorporate additional linear systems.

As such, the Benders decomposition of MDP not only serves as a reliable algorithm for

solving MDP problems, but also as an efficient method of the LSSD framework, expanding

the computational capability of the current literature for long-term strategic reasoning in

complex stochastic systems.

3.1 The Decomposition of MDP

The motivation for decomposing MDP comes from the need to solve MDP in its LP

formulation, where the curse of dimensionality indicates an LP model with large numbers of

variables and constraints. In the literature, methods for solving large-scale linear programs

have been thoroughly studied over the years. In the following, we use the well-established

Benders decomposition to decompose the infinite horizon MDP and propose an L-shaped

algorithm to solve the decomposed MDP efficiently. The Benders decomposition adopts a

“divide-and-conquer” strategy by decomposing a large-scale linear program into an MP and

multiple SPs (Benders 1962). The resulting algorithm, the L-shaped algorithm, consecutively

adds constraints (cuts) to the feasible region until optimality is obtained (Birge and Louveaux

2011).

The Benders decomposition is widely used in stochastic programming problems, where

the extensive form of a large-scale linear program is decomposed into smaller ones that are

27

Figure 3.1: A demonstration of the proposed decomposition approach.

28

much easier to solve. In stochastic programming, the decomposition particularly focuses on

separating possible scenarios to be realized in the future, which corresponds to the possible

future states in the MDP. Since α represents a probability distribution over the states, we

write the objective of the LP formulation of MDP as

V ∗ = min
∑
s∈S

αsvs = min Es[vs], (3.1.1)

where v ∈ {v : vs− γ
∑

s′∈S T (s′|s, a)vs′ ≥ R(s, a), ∀ s ∈ S, a ∈ A}. Next, we define a lower

bound Ṽ of V ∗, such that

Ṽ := min Es[min vs] ≤ min Es[vs] = V ∗, (3.1.2)

with v defined in the same domain as in V ∗. Then, Ṽ formulates the extensive form of a

stochastic programming representation of MDP:

Ṽ = min Es[min vs] (3.1.3)

s.t. vs − γ
∑
s′∈S

T (s′|s, a)vs′ ≥ R(s, a), ∀ s ∈ S, a ∈ A; (3.1.4)

vs unrestricted, ∀ s ∈ S. (3.1.5)

Although Ṽ is a lower bound of V ∗, we later show that the equality holds, i.e., Ṽ = V ∗, so

that the two formulations for MDP are equivalent.

Now we decompose the extensive form into two stages. Let Q := Es[min vs], the MP in

the first stage becomes an unconstrained optimization problem:

Ṽ = min Q, (3.1.6)

where Q := Es
[
Q(s)

]
=
∑

s αsQ(s) is the expected value over all SPs in the second stage,

with

Q(s) := min νs (3.1.7)

29

s.t. νs ≥ R(s, a) + γ
∑
s′∈S

T (s′|s, a)Q(s′), ∀ a ∈ A; (3.1.8)

νs unrestricted. (3.1.9)

In an SP, the variable to be optimized, νs ∈ R, is alone in the objective function. With

constraints added for every action, each SP is equivalent to finding the tightest lower bound

of νs using Q from the master problem. On the other hand, Q(s) is also the objective value

of the SP for state s, representing the value function V (s). We define the variable θ ∈ R|S| to

denote the values in Q. Recall that Es
[
Q(s)

]
=
∑

s∈S αsQ(s). The MP of the decomposed

MDP is thus written as follows,

MP := min
∑
s∈S

αsθs (3.1.10)

s.t. θs unrestricted, ∀ s ∈ S, (3.1.11)

with each SP defined for a state s ∈ S,

SP(s) = θs := min νs (3.1.12)

s.t. νs ≥ R(s, a) + γ
∑
s′∈S

T (s′|s, a)θs′ , ∀ a ∈ A; (3.1.13)

νs unrestricted. (3.1.14)

Typically, in stochastic programming, two types of cuts are derived from SP and added

to the MP, namely the feasibility and optimality cuts. The feasibility cuts ensure that the SP

constructed with the MP solution is always feasible and the optimality cuts guarantee that

the next solution is not worse than the previous one. By iteratively adding feasibility and

optimality cuts, the L-shaped algorithm eventually leads to the optimal solution (Birge and

Louveaux 2011). Note that for the decomposed MDP, since each SP(s) finds the tightest

lower bound of vs and vs is unrestricted, SP(s) has complete recourse, i.e., SP is always

feasible and an optimal solution to SP always exists. Thus, the following proposition holds.

30

Proposition 3.1. The SP (3.1.12) – (3.1.14) has complete recourse, i.e., for all solution θ̄

to the MP, there always exists a feasible solution νs.

Proof. The proposition holds since the optimal solution to the SP is νs = max
a∈A
{R(s, a) +

γ
∑

s′∈S T (s′|s, a)θ̄s′}.

Proposition 3.1 suggests that to solve the decomposed model of MDP, feasibility cuts are

unnecessary and only optimality cuts are required. To derive the optimality cuts, we first

consider the dual problem (DP) of the SP. Similar to SP, DP is constructed for every s ∈ S,

where each constraint in SP is associated with a dual variable. Let θ̄ be the incumbent

optimal solution of the MP. We define the dual variable µs ∈ R|A|+ for each SP(s), ∀ s ∈ S.

Then, DP can be written as

DP(s) := max
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θ̄s′
]
µs,a (3.1.15)

s.t.
∑
a∈A

µs,a = 1; (3.1.16)

µs,a ≥ 0, ∀ a ∈ A. (3.1.17)

In the dual problem, with constraints (3.1.16) and (3.1.17), the objective becomes a convex

combination of R(s, a) + γ
∑

s′∈S T (s′|s, a)θs′ with respect to µs, over the action set A.

Thus, for every DP(s), we can interpret the dual variable µs as a randomized policy, i.e., a

probability distribution over A. Let µ̄s be the incumbent optimal dual solution, using MP

variables θ, the optimality cuts can be formulated as follows,

θs ≥
∑
a∈A

µ̄s,a

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θs′
]
, ∀ s ∈ S. (3.1.18)

Note that the Benders decomposition of MDP adds multiple optimality cuts at the same

time, while many other stochastic programming problems add a single optimality cut at a

time. The “single-cut” optimality cut summarizes the information of all future scenarios

into one “θ” variable in the MP. However, for MDP, since information about the value of

31

each state is required in every SP, the MP must maintain a vector of θ to keep track of the

state values separately, making it difficult to formulate a single-cut decomposition model.

3.2 The MCLD Algorithm

Using the optimality cuts (3.1.18), we propose the MCLD algorithm to solve the Benders

decomposition of MDP. Initially, since the MP is an unconstrained optimization problem

with the variable θ unbounded, the objective value would be unbounded as well. Thus, we

impose a constraint

θs ≥ −M, ∀ s ∈ S, (3.2.1)

where M ∈ R+ is a sufficiently large number, such that θ can be considered unbounded but

their values are meaningful enough to avoid numerical issues in practical implementations.

Algorithm 1: The MCLD Algorithm

1 Initialize the MP variable θs with lower bounds θs ≥ −M , ∀ s ∈ S, where M is a
very sufficiently number;

2 repeat
3 Solve the MP and obtain solution θ̄s, ∀ s ∈ S;
4 Optimal← True;
5 for s ∈ S do
6 Construct DP(s) using θ̄s′ , ∀ s′ ∈ S;
7 Solve DP(s) and obtain the solution µ̄s,a, ∀ a ∈ A;

8 νs ←
∑

a∈A

[
R(s, a) + γ

∑
s′∈S T (s′|s, a)θ̄s′

]
µ̄s,a;

9 if νs > θ̄s then
10 Optimal← False;
11 Add a cut (3.1.18) to MP with respect to s;

12 else
13 continue;
14 end

15 end

16 until Optimal;

32

After solving MP, the algorithm goes through every state s ∈ S one by one. For a state s,

first, the MP solution θ̄ is used to construct DP(s). The optimality check is conducted after

DP(s) is optimized, using DP(s) solutions µ̄s. The current value of a state is calculated by

νs =
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θ̄s′
]
µ̄s,a, (3.2.2)

which is also the optimal dual objective value. If θs < νs, an optimality cut (3.1.18) is added

to MP for the state s. After going through all states, if no optimality cut is added, the

current solution θ̄ is optimal and the algorithm terminates. Otherwise, the MP is re-solved

and the process repeats. The convergence of the L-shaped algorithm has been proved (Birge

and Louveaux 2011), so the termination of the MCLD algorithm is guaranteed. The MCLD

algorithm is summarized in Algorithm 1.

Suppose that Algorithm 1 terminates after L iterations, L ∈ N+, the final MP would

have L sets of added optimality cuts, each consisting of at most |S| cuts. Thus, the number

of constraints in the MP is at most L|S|. Since multi-cut L-shaped algorithms typically

converge within a finite number of iterations (Birge and Louveaux 2011), we conjecture

L � |A| for problems with large action spaces. Thus, the decomposed MP can be a much

more compact model than the LP formulation.

The most computationally costly section in Algorithm 1 is to calculate the current value

νs and to construct the optimality cut, which requires |S|·|A| operations. Since the operations

are conducted for each state, the complexity for Algorithm 1 is at least |S|2 · |A|, without

accounting for solving MP and DP. Here we add a special note for practical implementation

of Algorithm 1. Observe that when calculating the current value v and constructing cuts, a

part of the calculation is identical, i.e., the constant
∑

a∈AR(s, a)µ̄s,a and the coefficient of

θ̄s′ and θs′ . Thus, such values only need to be calculated once. Let

es =
∑
a∈A

R(s, a)µ̄s,a, ∀ s ∈ S (3.2.3)

33

and

Es,s′ = γ
∑
a∈A

T (s′|s, a)µ̄s,a, ∀ s ∈ S, s′ ∈ S. (3.2.4)

The current value for state s becomes

νs = es +
∑
s′∈S

Es,s′ θ̄s′ (3.2.5)

and the optimality cut becomes

θs ≥ es +
∑
s′∈S

Es,s′θs′ , ∀ s ∈ S. (3.2.6)

This formulation is consistent with the multi-cut L-shaped algorithm proposed in the

literature (Birge and Louveaux 2011). It avoids repeated calculations and squeezes the

most computationally expensive operations into Equation (3.2.4), which we find especially

effective in enhancing the performance of Algorithm 1.

Although the convenient formulation cannot exempt Algorithm 1 from the curse of

dimensionality, the advantages of solving a series of smaller subproblems still strongly

outweigh the benefit of solving a large linear program. Thus, the MCLD algorithm is very

efficient in solving large instances of MDP. In addition, Algorithm 1 is highly modular, i.e.,

after solving the MP, the operations of solving DP and adding cuts can be conducted in

parallel. This opens the door for parallel computing (Almasi and Gottlieb 1994), which

often offers much higher computational performances than regular “serial” computing.

3.3 Mathematical Property

Now, we show mathematical properties of the decomposition method, especially its

relationship with the LP formulation. First, we introduce a few new notations. Let Π1

34

denote the feasible region of the LP formulation, i.e.,

Π1 :=
{
v ∈ R|S| : vs − γ

∑
s′∈S

T (s′|s, a)vs′ ≥ R(s, a),∀ s ∈ S, a ∈ A
}
, (3.3.1)

and Π`
2 the polyhedron defined by the optimality cuts added in the `th iteration of Algorithm

1, i.e.,

Π`
2 :=

{
θ ∈ R|S| : θs ≥

∑
a∈A

µ`s,a
[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θs′
]
,∀ s ∈ S

}
, (3.3.2)

where the MCLD algorithm runs for ` = 0, 1, ..., L iterations and µ`s, ∀ s ∈ S, are the optimal

dual variables of the `th iteration.

Theorem 3.1 provides a simple yet important result, which states that Π1 is always a

subset of Π`
2.

Theorem 3.1. Π1 ⊆ Π`
2, ∀ ` = 0, 1, . . . , L.

Proof. For any v ∈ Π1, according to the definition, we have

vs − γ
∑
s′∈S

T (s′|s, a)vs′ ≥ R(s, a), ∀ s ∈ S, a ∈ A. (3.3.3)

Now, since µ`s,a ≥ 0, we take the product of µ`s,a with both sides,

vsµ
`
s,a − γ

∑
s′∈S

T (s′|s, a)vs′µ
`
s,a ≥ R(s, a)µ`s,a, ∀ s ∈ S, a ∈ A. (3.3.4)

By summing up the inequalities with respect to a, we have

∑
a∈A

vsµ
`
s,a −

∑
a∈A

γ
∑
s′∈S

T (s′|s, a)vs′µ
`
s,a ≥

∑
a∈A

R(s, a)µ`s,a, ∀ s ∈ S. (3.3.5)

Since
∑

a∈A µ
`
s,a = 1, ∀s ∈ S, reorganizing the inequalities,

vs ≥
∑
a∈A

µ`s,a
[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)vs′
]
, ∀ s ∈ S, (3.3.6)

35

which states that v ∈ Π`
2. Because µ`s,a ≥ 0 and

∑
a∈A µ

`
s,a = 1 is true for all ` = 0, 1, . . . , L,

the result holds.

Corollary 3.1.1, 3.1.2 and 3.1.3 are extensions to Theorem 3.1. Corollary 3.1.1 states that

Π1 is a subset of the feasible region of the MP at the `th iteration, for every ` = 0, 1, . . . , L.

Corollary 3.1.1. Π1 ⊆
⋂`
j=0 Πj

2, ∀ ` = 0, 1, . . . , L.

Proof. Since Π1 ⊆ Π`
2, ∀ ` = 0, 1, . . . , L, it is natural that Π1 ⊆

⋂`
j=0 Πj

2.

Corollary 3.1.2 states the existence of the optimal solution to the decompose MDP. Since

it has been proven that the optimal solution to the infinite horizon MDP always exits (Howard

1960), Corollary 3.1.2 shows that the optimal solution to the decomposed MDP exists as

well.

Corollary 3.1.2. If Π1 is non-empty,
⋂`
j=0 Πj

2 is non-empty, ∀ ` = 0, 1, . . . , L.

Proof. This is a direct result of Corollary 3.1.1, that Π1 ⊆
⋂`
j=0 Πj

2, ∀ ` = 0, 1, . . . , L.

Corollary 3.1.3 shows that at each iteration, after optimality cuts are added, the MP

computes a lower bound to the optimal value V ∗. Moreover, the lower bound improves as

more cuts are added.

Corollary 3.1.3. Let

V ∗ = min α · v, v ∈ Π1, (3.3.7)

and

Ṽ ` = min α · θ, θ ∈
⋂̀
j=0

Πj
2, ∀ ` = 0, 1, . . . , L. (3.3.8)

Then, V ∗ ≥ Ṽ L ≥ Ṽ L−1 ≥ · · · ≥ Ṽ 0.

36

Proof. The relationship Ṽ L ≥ Ṽ L−1 ≥ · · · ≥ Ṽ 0 comes from the fact that
⋂`+1
j=0 Πj

2 ⊆
⋂`
j=0 Πj

2,

∀ ` = 0, 1, . . . , L, since each feasible region of MP contains all previous optimality cuts and

new cuts are added on top of those. Moreover, V ∗ ≥ Ṽ `, ∀ ` = 0, 1, ..., L because of Corollary

3.1.1, that Π1 ⊆
⋂`
j=0 Πj

2, ∀ ` = 0, 1, . . . , L.

Corollary 3.1.3 provides more insights regarding how Algorithm 1 operates. Through

continuously adding optimality cuts to the MP, Algorithm 1 finds better and better lower

bounds to the true optimal value V ∗, until algorithm termination. However, Corollary 3.1.3

does not necessarily indicate that after termination, the value of Ṽ L converges to V ∗. Note

that at the Lth (final) iteration, Ṽ L = Ṽ defined in Equation (3.1.2).

With the proof of convergence, we show that the equality is achieved in Equation (3.1.2),

and the decomposed MDP model is equivalent to the LP formulation. In Theorem 3.2, we

show that the termination condition of Algorithm 1 leads to the convergence of Ṽ ` towards

V ∗, proving that the MCLD algorithm solves MDP exactly.

Theorem 3.2. V ∗ = Ṽ L.

Proof. Let v∗ corresponds to the optimal solution to V ∗ and θ∗ the solution to Ṽ L. The

termination condition of Algorithm 1 states that

θLs ≥
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θLs′
]
µLs,a, ∀ s ∈ S. (3.3.9)

Since µLs,a are the dual variables representing a convex combination that maximizes the dual

objective
∑

a∈A

[
R(s, a) + γ

∑
s′∈S T (s′|s, a)θLs′

]
µLs,a, we have

θLs ≥
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θLs′
]
µLs,a

=max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θLs′
}
, ∀ s ∈ S, (3.3.10)

37

which suggests

θLs ≥R(s, a) + γ
∑
s′∈S

T (s′|s, a)θLs′ , ∀ s ∈ S, a ∈ A. (3.3.11)

Thus, θL is a feasible solution to the LP formulation, i.e., θL ∈ Π1. This means that

αT · v∗ ≤ αT · θL. However, from Corollary 3.1.3, we know αT · v∗ ≥ αT · θL. Therefore, we

conclude that V ∗ = αT · v∗ = αT · θL = Ṽ L.

Let v∗ be the optimal solution to the LP formulation. Corollary 3.2.1 shows a direct

results of Theorem 3.2, that v∗ and θL are equal.

Corollary 3.2.1. v∗ = θL.

Next, Theorem 3.3 shows the derivation of deterministic and randomized optimal policies

using the dual variable µLs , for each state s ∈ S.

Theorem 3.3. Let π∗ : S → A be an optimal policy. Then,

(a) π∗(s) = arg max
a∈A

µLs,a characterizes a deterministic optimal policy;

(b) Pr
{
π∗(s) = a

}
= µLs,a characterizes a randomized optimal policy, where Pr{·} is the

probability of choosing an action a under state s.

Proof. From Corollary 3.2.1, we have v∗ = θL. Thus, θLs = V ∗(s), ∀ s ∈ S. Since µLs � 0

and µLs · 1 = 1, at optimum, the objective of DP(s) becomes

∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V ∗(s′)
]
µLs,a

=max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V ∗(s′)
}

= V ∗(s), (3.3.12)

suggesting that µLs is a probability distribution over A that maximizes the optimality

equation. Part (b) follows naturally that µLs is the randomized optimal policy.

38

To prove part (a), suppose there exists a1, a2 ∈ A such that µLs,a1 ≤ µLs,a2 , but R(s, a1) +

γ
∑

s′∈S T (s′|s, a1)V ∗(s′) > R(s, a2) + γ
∑

s′∈S T (s′|s, a2)V ∗(s′). Then,

[
R(s, a1) + γ

∑
s′∈S

T (s′|s, a1)V ∗(s′)
]
· µLs,a2

>
[
R(s, a2) + γ

∑
s′∈S

T (s′|s, a2)V ∗(s′)
]
· µLs,a1 , (3.3.13)

such that the original objective
∑

a∈A

[
R(s, a) + γ

∑
s′∈S T (s′|s, a)V ∗(s′)

]
µLs,a is no longer

optimal, leading to a contradiction. Thus, ∀ a ∈ A, µLs,a1 ≤ µLs,a2 suggests R(s, a1) +

γ
∑

s′∈S T (s′|s, a1)V ∗(s′) ≤ R(s, a2) + γ
∑

s′∈S T (s′|s, a2)V ∗(s′) and

π∗(s) = arg max
a∈A

µLs,a = arg max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V ∗(s′)
}
. (3.3.14)

This completes the proof.

In Theorem 3.3, the dual variables µLs characterizes both the deterministic and

randomized optimal policy of the MDP. By defining µLs in DP(s) for each state s as binary

variables, we can compute the deterministic optimal policy. Similarly, by defining µLs as

continuous variables, we can compute the randomized optimal policy. The equivalence of

deterministic and randomized policy can be shown through a special property of DP(s).

Note that the left-hand-side parameter matrix of DP(s) is totally unimodular, i.e., the

square submatrices all have determinants 0, 1 or -1 (Conforti et al. 2014). The totally

unimodular property makes DP(s) a perfect formulation, where the integer program has

the same optimal solution as the relaxed linear program (Conforti et al. 2014). Thus, the

deterministic policy, where µLs are binary variables, is equivalent to the randomized policy,

where µLs are continuous variables.

39

3.4 Special MDP

In the following, we investigate the Benders decomposition approach for special MDPs. First,

we consider MDP with monotone optimal policy. Then, we consider MDP with additional

constraints. For both classes of MDP, we modify the MCLD algorithm by developing

specialized optimality cuts. In addition, we include the theoretical results of another special

type MDP in Appendix 3.4.1, where the transition probabilities are independent of actions.

3.4.1 Action-free Transition Probability

Here, we focus on a special MDP where the transition probability does not depend on the

actions, i.e., T (s′|s, a) = T (s′|s), ∀ a ∈ A. This indicates that the stochastic environment,

captured by the states, transitions independently at every decision epoch. Thus, the LP

formulation, MP, SP and DP for this special case can be written by simply substituting

T (s′|s, a) for T (s′|s). We define V̂ as the objective value of the following program:

V̂ := min
∑
s∈S

αsθs (3.4.1)

s.t. θs ≥
∑
a∈A

µ̄s,a

[
R(s, a) + γ

∑
s′∈S

T (s′|s)θs′
]
, ∀ s ∈ S, (3.4.2)

θs unrestricted, ∀ s ∈ S, (3.4.3)

where µ̄s are the solutions to DP(s) for all s ∈ S, using the θ̄ from the first iteration in the

MCLD algorithm. Next, in Theorem 3.4, we show that Ṽ is actually the optimal value of

the LP formulation and the formulation (3.4.1) – (3.4.3) is equivalent to the LP formulation.

Theorem 3.4. V̂ = V ∗.

Proof. First note that the objective functions are identical for V̂ and V ∗. To show the

equivalence, we only need to show that they share the same feasible region. In the LP

40

formulation, since the transition probability is independent of the actions, we have

vs − γ
∑
s′∈S

T (s′|s)vs′ ≥ R(s, a), ∀ s ∈ S, a ∈ A, (3.4.4)

which is equivalent to

vs − γ
∑
s′∈S

T (s′|s)vs′ ≥ max
a∈A

R(s, a), ∀ s ∈ S. (3.4.5)

Now consider the formulation (3.4.1) – (3.4.3). In the MCLD algorithm, since we impose the

constraints θs ≥ −M , ∀ s ∈ S, at k = 0, we have θ̄s = −M , ∀ s ∈ S. Thus, the objective of

DP(s) becomes

max
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θ̄s′
]
µs,a

= max
∑
a∈A

R(s, a)µs,a + γ
∑
a∈A

∑
s′∈S

T (s′|s)(−M)µs,a

=−M · γ + max
∑
a∈A

R(s, a)µs,a, (3.4.6)

where the last equal sign holds because
∑

s′∈S T (s′|s) = 1,
∑

a∈A µs,a = 1 and −M · γ is

independent of s and a. Since −M ·γ is a constant, the optimal µ̄s are those that maximizes

R(s, a), ∀ a ∈ A. As such, constraint (3.4.2) becomes

θs ≥
∑
a∈A

µ̄s,a

[
R(s, a) + γ

∑
s′∈S

T (s′|s)θs′
]

≥
∑
a∈A

µ̄s,aR(s, a) + γ
∑
a∈A

µ̄s,a
∑
s′∈S

T (s′|s)θs′

= max
a∈A

R(s, a) + γ
∑
s′∈S

T (s′|s)θs′ , ∀ s ∈ S (3.4.7)

⇔ θs − γ
∑
s′∈S

T (s′|s)θs′ ≥ max
a∈A

R(s, a), ∀ s ∈ S, (3.4.8)

41

which is equivalent to the constraint (3.4.5) of the LP formulation. Therefore, the program

(3.4.1) – (3.4.3) is equivalent to the LP formulation, hence V̂ = V ∗.

Theorem 3.4 suggests that when the transition probability is independent of the actions,

Algorithm 1 would converge at the second iteration, i.e., L = 1. Thus, in this special

case, Algorithm 1 offers a simple yet efficient way to obtain the optimal policy through

decomposing the MDP.

3.4.2 Monotone Optimal Policy

The monotone optimal policy is an important structural property existing in many MDP.

We consider an MDP in which n states and m actions can be ordered in such a way that

s1 ≤ s2 ≤ · · · ≤ sn and a1 ≤ a2 ≤ · · · ≤ am.

Then, a monotone optimal policy indicates an optimal policy π∗ non-decreasing in s, i.e., for

any si ≤ sj, π
∗(si) ≤ π∗(sj). In the literature, many have proved sufficient conditions to the

existence of a monotone policy (Puterman 2014; Krishnamurthy 2016). Let τ(s′|s, a) be the

tail-sum of the transition probability, i.e., τ(s′|s, a) =
∑sn

i=s′ T (i|s, a). If the following holds,

1. R(s, a) is non-decreasing in s, for all a ∈ A;

2. τ(s′|s, a) is non-decreasing in s, for all s′ ∈ S and a ∈ A;

3. R(s, a) is a superadditive (supermodular) function on S × A;

4. τ(s′|s, a) is a superadditive function on S × A, for all s′ ∈ S,

a monotone optimal policy is guaranteed to exist (Puterman 2014). Monotone optimal

policies have been observed in many applications of MDP (Alagoz et al. 2007; Shi et al.

2019; Asadi and Pinkley 2021). More importantly, they allow decision makers to derive

faster algorithms for finding the optimal policy and provide intuitive insights to interpret

the optimal policy (Zhuang and Li 2012; Mattila et al. 2017).

42

Recall that in Theorem 3.3, the optimal dual variables µLs characterize the optimal policy,

which allows the monotone optimal policy to be represented in terms of µLs , i.e., for all si ≤ sj,

arg max
a∈A

µLsi,a = π∗(si) ≤ π∗(sj) = arg max
a∈A

yLsj ,a. (3.4.9)

Let a∗i = arg max
a∈A

µLsi,a. Then, the above inequality suggests that for all sj ≥ si,

µLsj ,a ≤ µLsj ,a∗i , ∀ a ∈ A, a < a∗i . (3.4.10)

In the following, we show that the above relationship can be exploited in the MCLD

algorithms to eliminate suboptimal actions. Specifically, we impose a constraint that forces

some of the dual variables to be zero. Let āi−1 is the best action for a state si−1, i.e.,

āi−1 =

a1 i = 1,

arg max
a∈A

µsi−1,a, 2 ≤ i ≤ m.
(3.4.11)

Then, we define the dual of SP(si) for MDP with monotone optimal policy as follows:

DPmono(si) := max
∑
a≥āi−1

[
R(si, a) + γ

∑
s′∈S

T (s′|si, a)θ̄s′
]
µsi,a (3.4.12)

s.t.
∑
a≥āi−1

µs,a = 1; (3.4.13)

µs,a = 0, ∀ a ∈ A, a < āi−1; (3.4.14)

µs,a ≥ 0, ∀ a ∈ A, a ≥ āi−1. (3.4.15)

As such, at the `th iteration of the MCLD algorithm, we generate cuts of the following form:

θs ≥
∑
a≥ā`i−1

µ̄`si,a

[
R(si, a) + γ

∑
s′∈S

T (s′|si, a)θs′
]
, ∀ si ∈ S. (3.4.16)

43

Note that by adding cuts (3.4.16), the MCLD algorithm still converges to the true optimal

value. Since µLs defines a convex combination over the actions, letting some of the µLs,a =

0 in DPmono(s) shall not affect the optimum, as long as the maximum among R(si, a) +

γ
∑

s′∈S T (s′|si, a)θ̄s′ corresponds to a non-zero coefficient. This can be easily illustrated by

deriving a distribution µ′Ls for a “deterministic policy” from a randomized policy distribution

µLs , i.e.,

µ′
L
s,a =

1, a = arg max

a∈A
µLs,a,

0, otherwise.

(3.4.17)

Thus, the optimal policy π∗ produced by adding cuts (3.4.16) can be viewed as the

combination of a deterministic and a randomized policy, where Pr
{
π∗(s) = a

}
> 0 only

when a ≥ āLi−1. Asymptotically, π∗ will results in the same long-term rewards as the

deterministic or randomized policy calculated using the original MCLD algorithm.

3.4.3 CMDP

Now, we consider the decomposition of CMDP through its primal formulation. Let vs

denote the primal variable corresponding to constraint (2.3.2) and ρi the primal variable

corresponding to constraints (2.3.3). The primal form can be written as

min
∑
s∈S

αsvs +
∑
i∈D

Diρi (3.4.18)

s.t. vs − γ
∑
s′∈S

T (s′|s, a)vs′ +
∑
i∈D

d(s, a)ρi ≥ R(s, a), ∀ s ∈ S, a ∈ A; (3.4.19)

vs unrestricted, ∀ s ∈ S; (3.4.20)

ρi ≥ 0, ∀ i ∈ D. (3.4.21)

Based on the above primal formulation, we present the following decomposition of CMDP,

as an extension to the MP and SP in Section 3.1. Similarly, we let θ be the approximation

44

of state values. The master problem is

MPC := min
∑
s∈S

αsθs +
∑
i∈D

Diρi (3.4.22)

s.t. θs unrestricted, ∀ s ∈ S; (3.4.23)

ρi ≥ 0, ∀ i ∈ D, (3.4.24)

with the subproblems defined for each s ∈ S,

SPC(s) = θs := min νs (3.4.25)

s.t. νs ≥ R(s, a) + γ
∑
s′∈S

T (s′|s, a)θ̄s′

−
∑
i∈D

di(s, a)ρ̄i, ∀ a ∈ A; (3.4.26)

νs unrestricted, (3.4.27)

where νs is the variable for SPC(s) and θ̄, ρ̄ are the optimal values calculated by MPC . Note

that adding the variable ρ does not affect the optimality of the decomposition, since ρ is

treated as a master problem variable in an ordinary two-stage stochastic program (Birge and

Louveaux 2011).

Now, we define µs,a as the dual variable to SPC(s). Then the dual of SPC(s) is

DPC(s) := max
∑
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θ̄s′ −
∑
i∈D

di(s, a)ρ̄i

]
µs,a (3.4.28)

s.t.
∑
a∈A

µs,a = 1; (3.4.29)

µs,a ≥ 0, ∀ a ∈ A. (3.4.30)

Note that the dual problem still maintains complete recourse, since the new constraint

(3.4.26) in the primal problem imposes no impact on the constraints in the dual problem.

45

From DPC(s), we generate the following optimality cuts

θs ≥
∑
a∈A

µ̄s,a

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θs′ −
∑
i∈D

di(s, a)ρi

]
, ∀ s ∈ S, (3.4.31)

where µ̄s are optimal dual variables for each SP and θ, ρ are variables of the MP. Thus, we

can easily apply the MCLD algorithm to solve CMDP. In stead of adding cuts (3.1.18), we

add cuts (3.4.31) iteratively until the termination condition is met.

3.5 The TSBD Method

In this section, we apply the MCLD algorithm to solve the LSSD framework introduced in

Chapter 2. Specifically, we develop the TSBD method aiming to solve integer models, i.e.,

INT, INT-C, and INT-VB, where nonlinearity is reduced through the alternate formulations.

3.5.1 INT

In the INT model, K MDP models are solved and evaluated in order to determine the

optimal strategic decision and future operations. To apply the MCLD algorithm to the INT

model, we consider the method. In Step-I, we evaluate all K MDP models in the second

stage of the model using the decomposition method. In Step-II, we turn backwards to the

first stage and use the results obtained in Step-I to construct a mixed integer programming

(MIP) model to solve the optimal strategic decision in the first stage.

In Step-I, it would be computationally inefficient if we evaluate all K MDP models in a

sequential manner. Thus, we utilize the iterative behavior of Algorithm 1 and evaluates K

MDP models at the same time. We name the algorithm K-MCLD algorithm. Specifically,

at the beginning of the algorithm, we construct an MP consisting of the objectives of all K

MDP models.

min
K∑
k=1

∑
s∈S

αsθk,s (3.5.1)

46

s.t. θk,s unrestricted ∀ s ∈ S, k = 1, . . . , K. (3.5.2)

Then, at each iteration `, we formulate and solve the DP for each model k, state s using θ̄

from the MP.

max
∑
a∈A

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θ̄k,s′

]
µk,s,a (3.5.3)

s.t.
∑
a∈A

µk,s,a = 1; (3.5.4)

µk,s,a ≥ 0 ∀ a ∈ A. (3.5.5)

After obtaining the optimal solution µ̄, we check the convergence condition using the variable

νk,s, where

νk,s =
∑
a∈A

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θ̄k,s′

]
µ̄k,s,a. (3.5.6)

We stop solving the SP with respect to model k, state s, if νk,s ≤ θ̄k,s. Otherwise the

following optimality cut is added to the MP for model k, state s.

θk,s ≥
∑
a∈A

µ̄k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θk,s′

]
∀ s ∈ S, k = 1, . . . K. (3.5.7)

Note that in the above procedure, the variables θk,s and µk,s,a are expanded with an additional

dimension for the kth MDP model. The K-MCLD algorithm is shown in Algorithm 2 in

detail.

In Step-II, we use the results obtained in Step-I to solve the optimal strategic decision in

the first stage of the framework. To do so, first recall Corollary 3.1.3, where we show that

among all optimality cuts added to the MP throughout the iterations, only those added at

the Lth (final) iteration are the most binding ones. Thus, we are able to use the optimality

cuts at the Lth iteration as “linear approximators” to the state values of the MDP models

47

Algorithm 2: The K-MCLD algorithm in Step-I.

1 Initialize θk,s with lower bounds θk,s ≥ −M , ∀ s ∈ S, k = 1, . . . , K, where M is a
very large number;

2 Initialize Convergedk ← False, ∀ k = 1, . . . , K;
3 repeat
4 Solve the MP (3.5.1) – (3.5.2) and obtain solution θ̄k,s, ∀ s ∈ S, k = 1, . . . , K;
5 Optimal← True;
6 for k = 1, . . . , K do
7 if Convergedk then
8 continue;
9 end

10 Convergedk ← True;
11 for s ∈ S do
12 Construct DP(k, s) (3.5.3) – (3.5.5) using θ̄k,s′ , ∀ s′ ∈ S;
13 Solve DP(k, s) and obtain the solution µ̄k,s,a, ∀ a ∈ A;

14 νk,s ←
∑

a∈A

[
Rk(s, a) + γ

∑
s′∈S Tk(s

′|s, a)θ̄k,s′
]
µ̄k,s,a;

15 if νk,s > θ̄k,s then
16 Convergedk ← False, Optimal← False;
17 Add a cut (3.5.7) to MP with respect to k and s;

18 else
19 continue;
20 end

21 end

22 end
23 µ∗k,s,a ← µ̄k,s,a;

24 until Optimal;

(Birge and Louveaux 2011). It is guaranteed that the linear approximations compute the

optimal objective values to MDP models thanks to Theorem 3.2.

In order to formulate the optimality cuts, we record the optimal dual variables µ∗ from

Algorithm 2. Then, the following MIP can be formulated to calculate the optimal strategic

decisions in the first stage.

max
n∑
i=1

cixi + V (3.5.8)

s.t.
n∑
i=1

wj,ixi = bj ∀ j = 1, . . . ,m; (3.5.9)

48

F (x, z) = 0; (3.5.10)

V ≤
∑
s∈S

αsθk,s +M · (1− zk) ∀k = 1, . . . , K; (3.5.11)

θk,s ≤
∑
a∈A

µ∗k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θk,s′

]
∀ s ∈ S, k = 1, . . . , K; (3.5.12)

x � 0, z ∈ {0, 1}K ,θ, V unrestricted. (3.5.13)

Note that different from previous optimality cuts, Constraint (3.5.12) uses “≤” rather than

“≥”, because the overall objective of the MIP is maximizing.

Then, the TSBD method can be summarized as follows

• Step-I: Obtain µ∗ using Algorithm 2;

• Step-II: Solve the MIP model (3.5.8) – (3.5.13) for the optimal solution to x.

3.5.2 INT-C & INT-VB

Extending the TSBD method to solve INT-C (TSBD-C) is relatively straightforward. Since

the additional linear constraints of CMDP are incorporated into the second stage, Step-II of

the method mostly remains the same. Step-I of the method requires adjustment according

to the results established in Chapter 3.4.3, where the decomposition method for CMDP is

developed.

Specifically, we construct the following MP in Step-I.

min
K∑
k=1

∑
s∈S

αsθk,s +
K∑
k=1

∑
i∈D

ρk,iD̄i (3.5.14)

s.t. ρ � 0,θ unrestricted. (3.5.15)

At each iteration, we formulation the following DP for model k, state s using θ̄ and ρ̄

obtained from MP.

max
∑
a∈A

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θ̄k,s′ −

∑
i∈D

di(s, a)ρ̄k,i

]
µk,s,a (3.5.16)

49

s.t.
∑
a∈A

µk,s,a = 1; (3.5.17)

µk,s,a ≥ 0 ∀ a ∈ A. (3.5.18)

Then, using µ̄ from DP, the value of convergence is modified as

νk,s =
∑
a∈A

µ̄k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θ̄k,s′ −

∑
i∈D

di(s, a)ρ̄k,i

]
, (3.5.19)

and is still compared with θ̄k,s to determine the optimality. If necessary, optimality cuts of

the following form are added back to the MP.

θk,s ≥
∑
a∈A

µ̄k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θk,s′ −

∑
i∈D

di(s, a)ρk,i

]
∀ s ∈ S, k = 1, . . . K.

(3.5.20)

Finally, constraints (3.5.12) in the integer model in Step-II is modified as

θk,s ≤
∑
a∈A

µ∗k,s,a

[
Rk(s, a)+γ

∑
s′∈S

Tk(s
′|s, a)θk,s′

−
∑
i∈D

di(s, a)ρ∗k,i

]
∀ s ∈ S, k = 1, . . . , K, (3.5.21)

where µ∗ and ρ∗ are optimal values of variables from Step-I.

Similarly, we can extend the TSBD method to solve INT-VB (TSBD-VB). The model

with variable budgets takes a different form from CMDP. Thus, we derive its decomposition

by considering the following formulation, where the variable Dk,i and weight parameter η

are introduced into CMDP as the variable budgets.

max
∑
s∈S

∑
a∈A

Rk(s, a)yk,s,a − η
∑
i∈D

Dk,i (3.5.22)

s.t.
∑
a∈A

yk,s,a − γ
∑
a∈A

∑
s′∈S

Tk(s|s′, a)yk,s′,a = αs ∀ s ∈ S; (3.5.23)

50

∑
s∈S

∑
a∈A

di(s, a)yk,s,a ≤ Dk,i ∀ i ∈ D; (3.5.24)

Dk,i ≤ D̄i ∀ i ∈ D; (3.5.25)

y,D � 0. (3.5.26)

To decompose the model, we first take the primal form of the above formulation, where v,

ρ, and λ are the corresponding dual variables.

max
∑
s∈S

αsvk,s +
∑
i∈D

D̄iλk,i (3.5.27)

s.t. vk,s − γ
∑
s′∈S

Tk(s
′|s, a)vk,s′ +

∑
i∈D

di(s, a)ρk,i ≥ Rk(s, a) ∀ s ∈ S, a ∈ A (3.5.28)

− ρk,i + λk,i ≥ −η ∀ i ∈ D; (3.5.29)

ρ,λ � 0,v unrestricted. (3.5.30)

Next, in Step-I, we formulate the MP used in Algorithm 2 for INT-VB

min
K∑
k=1

∑
s∈S

αsθk,s +
K∑
k=1

∑
i∈D

D̄iλk,i (3.5.31)

s.t. − ρk,i + λk,i ≥ −η ∀ i ∈ D, k = 1, . . . , K (3.5.32)

ρ,λ � 0,θ unrestricted. (3.5.33)

Note that the variable ρ here is different from the previous one for INT-C, because of the

existence of λ in the MP, as a result from the additional budget variable. At each iteration,

we solve the following DP

max
∑
a∈A

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θk,s′ −

∑
i∈D

di(s, a)ρ̄k,i

]
µk,s,a (3.5.34)

s.t.
∑
a∈A

µk,s,a = 1; (3.5.35)

µk,s,a ≥ 0 ∀ a ∈ A. (3.5.36)

51

Then we check the optimality condition using value

νk,s =
∑
a∈A

µ̄k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θ̄k,s′ −

∑
i∈D

di(s, a)ρ̄k,i

]
. (3.5.37)

Optimality cuts to be added to the MP is formulated as

θk,s ≥
∑
a∈A

µ̄k,s,a

[
Rk(s, a) + γ

∑
s′∈S

Tk(s
′|s, a)θk,s′ −

∑
i∈D

di(s, a)ρk,i

]
∀ s ∈ S, k = 1, . . . K.

(3.5.38)

Finally, constraints (3.5.12) in the integer model in Step-II is further modified:

θk,s ≤
∑
a∈A

µ∗k,s,a

[
Rk(s, a)+γ

∑
s′∈S

Tk(s
′|s, a)θk,s′

−
∑
i∈D

di(s, a)ρ∗k,i

]
∀ s ∈ S, k = 1, . . . , K, (3.5.39)

where µ∗ and ρ∗ are optimal values of variables from Step-I.

52

Chapter 4

Computational Analysis

In this section, we conduct computational analyses to evaluate the performances of the

proposed algorithms. First, we conduct experiments on the MCLD algorithm and its variants

in Chapter 3.1. Then, we conduct experiments on the TSBD method and its variants in

Chapter 3.5.

We adopt four problems in the literature to test the performances of the algorithms,

including a queueing problem (de Farias and Van Roy 2003), an inventory management

problem (Puterman 2014; Lee et al. 2017), a machine maintenance problem (Puterman

2014), and a data transmission problem (Krishnamurthy 2016). The equipment replacement

problem and the data transmission problem are modified from their original forms to allow

arbitrary numbers of states and actions. For simplicity, in the following, we refer to the

above testing problems as “queue”, “inventory”, “maintain” and “transmit”, respectively.

Appendix A provides a detailed definition of four benchmarking problems.

4.1 Performance of The MCLD Algorithm

Although many fast MDP solution algorithms have been proposed in the literature, such

as reinforcement learning (Sutton and Barto 2018), approximate dynamic programming

(Warrington 2019; Braverman et al. 2020), or different MDP decomposition techniques

(Kushner and Chen 1974; Abbad and Boustique 2003; Bertsimas and Mǐsić 2016), they

53

either solve MDP approximately (Bertsimas and Mǐsić 2016; Warrington 2019; Braverman

et al. 2020), or require special structures in MDP (Kushner and Chen 1974). Considering

that the MCLD algorithm is developed as a generic way to solve MDP exactly regardless of

its structure, we choose exact benchmark algorithms widely employed in many applications

to solve MDP problems, e.g., the LP formulation of MDP, the dual of the LP formulation

and the MPI algorithm (Puterman and Shin 1978).

According to the MCLD algorithm and its variants in Section 3.4, we conduct three

experiments, on general MDP with no special properties, MDP with monotone optimal

policy and CMDP. In addition, we also include randomly generate MDP instances for the

MCLD algorithm, denoted by “random”. Since the existence of the monotone optimal

policy is not universal, three problems, “queue”, “maintain” and “transmit”, can be used

as benchmarks for MDP with monotone optimal policy. All five problems are included for

general MDP and CMDP. All experiments are conducted on a Linux server with 2.30GHz

Intel Xeon Gold CPU and 256 GB memory. The LP models are solved with Gurobi via the

Python interface. The MPI algorithm is implemented using the MDP Toolbox for Python

library (Chadès et al. 2014).

4.1.1 General MDP

First, we compare the performance of the MCLD algorithm with the benchmark algorithms

on general MDP problems without special structures. We consider all five problems discussed

above, where each problem generates two sets of testing instances. Among each set, 10 testing

instances are generated with the same number of states and actions. The testing problems

and their configurations are shown in Table 4.1.

As we have discussed in Chapter 1, this study aims to derive an algorithm that solves

MDP problems for which the LP formulation remains the sole solution method. Thus, we

compare algorithm performances between the LP formulation, the dual of the LP and the

MCLD algorithm in Table 4.2. We include two metrics to measure the CPU time, where trun

denotes the total run time of the algorithms, including the time for model construction and

54

Table 4.1: Configurations of benchmarking problems for general MDP.

Name |S| |A| γ Name |S| |A| γ
random-1 100 100 0.999 inventory-2 502 501 0.999
random-2 500 500 0.999 maintain-1 100 101 0.999
queue-1 100 100 0.999 maintain-2 500 501 0.999
queue-2 500 500 0.999 transmit-1 110 101 0.999

inventory-1 102 101 0.999 transmit-2 520 501 0.999

Table 4.2: Performance comparison on general MDP problems.

Name
Best among LP and its dual MCLD Improvement
trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)

random-1 26.63 (± 0.19) 0.30 (±0.03) 4.30 (± 0.89) 0.04 (±0.01) 83.84 (±3.36) 88.25 (± 2.12)
random-2 3746.49 (±411.51) 66.27 (±6.85) 482.69 (±10.06) 3.34 (±0.14) 87.07 (±1.07) 94.94 (± 0.62)
queue-1 27.71 (± 0.42) 0.10 (±0.01) 7.72 (± 0.34) 0.04 (±0.01) 72.13 (±1.26) 60.85 (± 2.56)
queue-2 3308.82 (±406.16) 0.36 (±0.02) 719.75 (±20.09) 0.45 (±0.04) 78.15 (±1.80) -25.36 (± 5.66)
inventory-1 26.88 (± 0.09) 0.11 (±0.03) 4.78 (± 1.35) 0.04 (±0.01) 82.20 (±5.06) 62.47 (± 19.87)
inventory-2 3578.38 (±506.20) 9.72 (±1.19) 421.74 (±90.82) 0.92 (±0.76) 88.12 (±3.04) 90.51 (± 7.76)
maintain-1 26.50 (± 0.21) 0.15 (±0.05) 2.83 (± 0.87) 0.02 (±0.01) 89.34 (±3.19) 86.85 (± 6.26)
maintain-2 3338.31 (±115.93) 20.19 (±1.66) 239.04 (± 6.74) 0.32 (±0.02) 92.84 (±0.32) 98.41 (± 0.20)
transmit-1 31.45 (± 0.40) 0.05 (±0.01) 7.17 (± 1.01) 0.04 (±0.01) 77.20 (±3.21) 23.25 (± 22.18)
transmit-2 3553.75 (±211.91) 2.96 (±0.38) 633.25 (±83.47) 0.54 (±0.05) 82.18 (±2.22) 81.63 (± 3.04)
In the heading, “trun” is the total run time of the algorithms, including both model construction and model solving; “tsol”
is the time taken to solve the model; “Improvement” shows the improvement of the MCLD algorithm against the best
between the LP formulation and its dual. The metrics are shown in seconds (s).

55

the time for model solving, and tsol includes only the time for Gurobi to solve the model.

The table shows the average metrics over 10 instances for every problem, as well as the

95% confidence interval (CI). The performance improvements of the MCLD algorithm are

calculated using the best among LP formulation and its dual as the benchmark.

In Table 4.2, all instances are solved to optimality. The MCLD algorithm outperforms

the LP formulation of MDP and its dual in the total algorithm run time trun for all problems.

The results show over 75% improvements in trun for most problems, and an up to 92.84%

improvement for the maintain-2 problem. Moreover, the MCLD algorithm requires less

model solving time tsol for most problems, compared with the LP formulation and its

dual. The improvements of tsol ranges from 11.28% to 98.41%, depending on different

problems. Note that for some problems, e.g., queue-2, the improvements of tsol become

negative for the MCLD algorithm, because it requires solving multiple linear programs

iteratively until convergence, whereas conventional methods solve a single linear program

with great efficiency. However, accounting for the time to build large-scale linear programs,

improvements in the total algorithm run time trun still show that the MCLD algorithm

significantly outperforms the conventional methods.

4.1.2 Microscopic Analysis

Since the performance of the MPI algorithm depends heavily on the discount factor of the

problem, we compare the performance of the MCLD algorithm with the MPI algorithm

under different discount factors. Figure 4.1 shows the results of the comparison. We report

the run time of the algorithms on two queue problems with 100 states, 100 actions and 500

states, 500 actions. Each problem generates 10 instances. The average run times are plotted

for different discount factors. The figure suggests that the CPU time of the MPI algorithm

increases exponentially when the discount factor becomes larger. For discount factors closer

to 1, the MCLD algorithm shows a clear advantage over the MPI algorithm. Moreover, the

performance of the MCLD algorithm remains stable across all discount factors.

56

(a) 100 states and 100 actions (b) 500 states and 500 actions

Figure 4.1: Performance comparison between MPI and MCLD.

57

In order to show in detail how the MCLD algorithm optimizes MDP problems, we plot

the values and policies for a queue problem with 20 states and binary actions (A = {0, 1}).

Figure 4.2 shows the intermediate values calculated by the MCLD algorithm at each iteration.

The optimal value is calculated by the LP formulation. Consistent with Corollary 3.1.3, by

adding optimality cuts consecutively, the algorithm gradually improves the objective value

of the MP, until it reaches optimality. In addition, in Figure 4.3, we plot the probabilities

of taking action a = 1 as a representation of the intermediate policies learned by the MCLD

algorithm. At iteration 0, immediately after initialization, the probabilities of taking action

1 are 0 for all states. Then, after several iterations, the MCLD algorithm gradually finds

the optimal policy for each state. The policy improves over iterations and finally converges

to the optimal policy at iteration 11.

In addition, we investigate the improvements of the MCLD algorithm over the LP

formulation and the dual formulation under different combinations of states and actions.

Specifically, we compare the algorithm performances using the random problem with 10,

20, 50, 100, 200, 500 states, and 10, 20, 50, 100, 200, 500 actions. We randomly generate

10 testing instances for each state-action combination. We plot the corresponding average

improvements as heat maps in Figure 4.4, where darker colors suggest larger improvements.

As the figure clearly indicates, the MCLD algorithm outperforms conventional methods

more significantly when the problem scale becomes larger. Particularly, the figure shows

improvements of up to 93% and 99% for trun and tsol respectively, on instances with 500

states and 500 actions. Note that for small-scale problems, e.g., with 10 states and 10

actions, the MCLD algorithm tends to spend more time (tsol) solving linear programs, since

the LP formulation or its dual only have to solve one program, and the MCLD algorithm

solve linear programs iteratively until convergence.

4.1.3 Comparing With VI

As shown in Section 4.1.1, the MCLD algorithm operates in a similar way as VI. Both

algorithms take multiple iterations to improve the value of the each state. Although the

58

Figure 4.2: The convergence of values generated by MCLD.

Figure 4.3: The convergence of policies generated by MCLD.

59

(a) trun (b) tsol

Figure 4.4: Heat maps of MCLD improvements.

60

value updates in Algorithm 1 resembles the value updates in VI, the MCLD algorithm still

differs from VI in a significant way. In VI, the values are updated using the equation

vs = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′, s, a)vs′
}
, (4.1.1)

where vs is the value of state s. Thus, vs′ is a fixed number for each possible future state s′.

However, in the MCLD algorithm, the values θs are updated using the cut

θs ≥
∑
a∈A

ȳs,a

[
R(s, a) + γ

∑
s′∈S

T (s′|s, a)θs′
]
, ∀ s ∈ S, (4.1.2)

where θs and θs′ are both variables whose values may change. In this case, even though the

objective of the MP is to minimize the value of θs, it is not trivially updated as Equation

(4.1.1), but in a more complex way, calculated as a multi-dimensional polyhedron by a linear

program.

Figure 4.5 shows experiment results from comparing MCLD with VI. The algorithms

start at the same values for all states. The convergence threshold for VI is set to be 0.01.

The figure shows significant differences in algorithm behaviors. The VI algorithm improves

the value gradually, by small increments, resulting in a longer convergence time. In contrast,

the MCLD algorithm converges much faster, with large leaps between iterations. Thus, by

solving linear programs, the MCLD algorithm is able to achieve larger improvements at each

value update, leading to a faster convergence rate than VI.

4.1.4 Special MDP

In this section, we test the performance of the MCLD algorithm on some of the special

MDP problems introduced in Section 3.4. First, we consider MDPs with monotone optimal

policies. Since the existence of the monotone optimal policy is guaranteed by the sufficient

conditions, as introduced in Section 3.4.2, we choose three classes of testing problems, queue,

maintain and transmit, for which the existence of monotone optimal policies have been proved

(Puterman 2014; Krishnamurthy 2016). In total, we include six problems as shown in Table

4.3. For each problem, 10 testing instances are randomly generated.

61

(a) A queue instance (b) A inventory instance

Figure 4.5: Comparing the convergence between MCLD and VI.

Table 4.3: Configurations of testing problems with monotone optimal policies.

Name |S| |A| γ

queue-1 100 100 0.999

queue-2 500 500 0.999

maintain-1 100 101 0.999

maintain-2 500 501 0.999

transmit-3 2000 2 0.999

transmit-4 4000 2 0.999

62

In Section 4.1.1, we have shown the superior performance of the MCLD algorithm

compared with conventional methods as such the LP formulation and its dual. Thus, here, we

use the MCLD algorithm as the benchmark and compare the performance with its extension,

i.e., the MCLD algorithm adding cuts (3.4.16) specifically designed for MDP with monotone

optimal policy. In the following, we refer to the MCLD algorithm that adds cuts (3.4.16)

as the MCLD algorithm with monotone optimal policy (MCLD-MOP). Similar to previous

experiments, we focus on two metrics, trun and tsol, representing the CUP time to run the

entire algorithm, and the CPU time to solve linear programs by Gurobi.

Table 4.4 shows the results of the comparison. All instances are solved to optimality.

Overall, MCLD-MOP solves the testing problems 50.40%–88.77% faster than the general

MCLD algorithm. By adding cuts (3.4.16), MCLD-MOP is able to prune suboptimal actions

thus reducing the number of variables in the linear programs. As a result, MCLD-MOP

spends up to 94.56% less time in solving linear programs.

Next, we conduct experiments on CMDP problems. Due to the additional constraints of

CMDP, we reduce the testing problem size so that the run time of larger instances remains

tractable. The problem configurations are shown in Table 4.5. For all CMDP problems, the

costs of additional constraints, i.e., di(s, a) and Di, for all i ∈ D, are randomly generated.

In addition, we let |D| = |S|, meaning that the number of additional constraints matches

the number of states. Similar to the above experiments, we generate 10 instances for each

problem and collect the average metrics with 95% CI. In the following, we use MCLD-CMDP

to refer to the MCLD algorithm with cuts (3.4.31).

Results of the algorithm performances are summarized in Table 4.6. All instances are

solved to optimality. Consistent with previous results, by decomposing the MDP, the MCLD-

CMDP algorithm shows significant advantages over conventional methods. Specifically, the

MCLD-CMDP algorithm saves the total run time trun and the model solving time tsol by up

to 92.06% and 99.38%, respectively. Note that although the MCLD-CMDP algorithm solves

several problems with large CI for trun, such as queue-3, the improvements in trun consistently

show smaller CI, indicating that the variations in trun are caused by the differences in the

63

Table 4.4: Performance comparison on problems with monotone optimal policies.

Name
MCLD MCLD-MOP Improvement

trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)
queue-1 9.09 (± 0.05) 0.05 (±0.01) 1.18 (±0.01) 0.01 (±0.01) 86.98 (± 0.10) 77.40 (± 5.16)
queue-2 881.45 (± 9.81) 0.60 (±0.05) 123.89 (±1.76) 0.17 (±0.03) 85.94 (± 0.18) 72.11 (± 3.95)
maintain-1 2.91 (± 0.90) 0.02 (±0.01) 1.21 (±0.01) 0.01 (±0.01) 57.10 (±10.19) 47.48 (±32.06)
maintain-2 257.03 (± 1.96) 0.42 (±0.02) 127.48 (±1.00) 0.14 (±0.02) 50.40 (± 0.23) 67.32 (± 4.06)
transmit-3 66.84 (± 18.72) 0.33 (±0.16) 7.20 (±0.03) 0.08 (±0.01) 88.77 (± 3.80) 72.13 (±17.76)
transmit-4 1336.57 (±115.84) 8.45 (±1.37) 174.00 (±0.80) 0.45 (±0.04) 86.93 (± 1.29) 94.56 (± 1.12)
In the heading, “trun” is the total run time of the algorithms, including both model construction and model solving; “tsol”
is the time taken to solve the model; “Improvement” shows the improvement of MCLD-MOP against the general MCLD
algorithm. The metrics are shown in seconds (s).

Table 4.5: Configurations of testing problems for CMDP.

Name |S| |A| γ Name |S| |A| γ
random-1 100 100 0.999 inventory-3 402 401 0.999
random-3 400 400 0.999 maintain-1 100 101 0.999
queue-1 100 100 0.999 maintain-3 400 401 0.999
queue-3 400 400 0.999 transmit-1 110 101 0.999

inventory-1 102 101 0.999 transmit-5 420 401 0.999

Table 4.6: Performance comparison on CMDP problems.

Name
Best among LP and its dual MCLD-CMDP Improvement
trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)

random-1 54.10 (± 0.76) 0.62 (±0.10) 8.79 (± 2.80) 0.04 (±0.01) 83.75 (±5.22) 93.01 (±2.48)
random-3 3661.83 (± 52.88) 83.82 (±3.50) 563.47 (± 14.69) 1.85 (±0.07) 84.61 (±0.50) 97.79 (±0.14)
queue-1 51.65 (± 0.62) 0.24 (±0.01) 16.80 (± 0.05) 0.06 (±0.00) 67.46 (±0.41) 76.18 (±0.72)
queue-3 3439.00 (±122.72) 33.97 (±4.70) 1034.41 (±161.26) 0.72 (±0.09) 69.89 (±4.98) 97.86 (±0.38)
inventory-1 56.46 (± 0.40) 0.34 (±0.04) 8.78 (± 1.93) 0.04 (±0.01) 84.46 (±3.41) 87.69 (±3.65)
inventory-3 3493.91 (± 79.20) 29.98 (±2.41) 466.35 (±102.13) 0.62 (±0.36) 86.64 (±3.03) 97.94 (±1.10)
maintain-1 52.76 (± 0.54) 0.41 (±0.04) 6.03 (± 1.88) 0.02 (±0.01) 88.58 (±3.53) 94.27 (±2.74)
maintain-3 3612.09 (± 65.55) 33.30 (±2.97) 286.76 (± 37.15) 0.21 (±0.02) 92.06 (±1.03) 99.38 (±0.08)
transmit-1 64.51 (± 0.46) 0.39 (±0.04) 14.64 (± 0.55) 0.05 (±0.00) 77.31 (±0.95) 87.78 (±1.85)
transmit-5 3897.06 (±165.33) 32.46 (±9.11) 790.12 (±113.69) 0.66 (±0.08) 79.69 (±3.38) 97.93 (±0.39)
In the heading, “trun” is the total run time of the algorithms, including both model construction and model solving; “tsol”
is the time taken to solve the model; “Improvement” shows the improvement of MCLD-CMDP against the best between
the LP formulation and its dual. The metrics are shown in seconds (s).

64

random instances, and the improvements of the MCLD-CMDP algorithm remain stable

across different instances for the same problem.

4.2 Performance of The TSBD Method

In this section, we evaluate the algorithm performances for the LSSD framework. Since

there is no available algorithm in the literature that solves the LSSD framework exactly, we

compare the performances of the NLP formulation, the alternate INT formulation, and the

TSBD method.

Here, we utilize two benchmarking problems from previous experiments, namely queue

and inventory, for which the extension to include strategic decisions comes naturally. For

queue, the strategic decision is to decide on the optimal maximum queue length, before

making operational decisions about service rates. For inventory, the strategic decision is to

choose the optimal inventory capacity, and the operational decision is to choose the order

timing and quantity to fill in the inventory. Detailed extension and formulation of the

benchmarking problems are presented in Appendix B.

For each benchmarking problem, we include three configurations, which can be discretized

into 10, 50, and 100 MDP models, respectively, representing small, medium, and large-

scale problems. Table 4.7 summarizes the configurations for al benchmarking problems. In

addition, 10 testing instances are generated with randomized parameters to avoid outliers.

All experiments are conducted on a Linux server with 2.30GHz Intel Xeon Gold CPU and

256 GB memory. The linear and nonlinear models are solved with Gurobi via the Python

interface. The average value over 10 instances and the 95% CI are reported in the results.

Table 4.8 shows the results of comparing NLP, INT, and TSBD for the LSSD framework

on general MDP problems. The table is arranged in such a way that instance sizes increase

from top to bottom. In general, the discretized INT formulation solves LSSD faster than

NLP, and the TSBD algorithm outperforms the NLP and INT formulation, with overall

improvements of up to over 80% in the total algorithm runtime (trun), and up to over 91% in

the time to solve LP models (tsol). Importantly, the improvements increase as the instance

65

Table 4.7: Configurations of testing problems for the framework with regular MDP.

Name K |S| |A| γ Name K |S| |A| γ
queue-4 10 10 10 0.999 inventory-4 10 12 11 0.999
queue-5 50 50 50 0.999 inventory-5 50 52 51 0.999
queue-6 100 100 100 0.999 inventory-6 100 102 101 0.999
In the table, |S| and |A| represents the number of states and actions of one MDP model.

Table 4.8: Performance comparison between NLP, INT, and TSBD.

Name
NLP INT TSBD Improvement

trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)

queue-4 0.21 (±0.03) 0.13 (±0.03) 0.02 (±0.00) 0.02 (±0.00) 0.07 (±0.00) 0.02 (±0.00) -193.48 (±35.19) -3.45 (±20.78)

inventory-4 3.67 (±1.52) 2.91 (±1.51) 0.02 (±0.00) 0.02 (±0.00) 0.04 (±0.00) 0.01 (±0.00) -76.53 (±19.87) 43.76 (±5.74)

inventory-5 1179.10 (±325.11) 889.69 (±48.53) 7.54 (±1.31) 4.02 (±1.06) 3.35 (±0.29) 0.77 (±0.16) 54.99 (±8.25) 80.62 (±3.11)

queue-5 214.02 (±24.29) 193.16 (±23.76) 8.08 (±1.14) 2.72 (±0.95) 6.70 (±0.53) 0.96 (±0.06) 16.33 (±12.65) 61.45 (±21.64)

queue-6 3915.13 (±8.02) 3600.00† (±0.00) 228.63 (±70.38) 98.23 (±55.77) 58.16 (±1.05) 8.60 (±0.16) 72.92 (±12.37) 87.54 (±15.28)

inventory-6 4075.34 (±251.71) 3600.00† (±0.00) 192.40 (±39.50) 119.01 (±41.98) 37.64 (±7.31) 10.45 (±3.07) 80.38 (±1.51) 91.10 (±1.51)

†: The optimal solutions to some instances are not found within the time limit.

66

size grows, showing that the proposed TSBD method is more specialized in solving larger

instances than the NLP and INT formulation. Note that for smaller instances, the INT

model has the computational advantage since it avoids nonlinear constraints in NLP and

multiple SPs in TSBD, but the excessive integer variables make it less efficient for larger

instances.

Table 4.9 shows the results of comparing NLP-C, INT-C, and TSBD-C for the LSSD

framework on CMDP problems. The instances are arranged with increased sizes from top to

bottom. In this case, due to the extra linear constraints, all models become more difficult to

solve than previous experiment. As a result, even in small instances, the TSBD-C algorithm

shows advantages compared with NLP-C and INT-C. The NLP formulation shows the worse

performance, and cannot solve medium instances with around 50 states and actions in the

MDP. The INT-C formulation still outperforms NLP-C because of the reduced nonlinear

constraints, but it is not able to solve a few of the larger instances. Compared with the

conventional methods, TSBD-C not only solves all instances to the true optimum, but also

does so in an efficient way, with up to over 78% improvements in trun, and up to over 96%

improvements in tsol.

Table 4.10 shows the results of comparing NLP-VB, INT-VB, and TSBD-VB for the

LSSD framework on CMDP problems with variable budgets. The instances are arranged

with increased sizes from top to bottom. Similar to CMDP, improvements of the TSBD-VB

algorithm can be observed in small instances due to the complexity of the problem. The

overall performance of the TSBD-VB algorithm improves by up to 76% in trun, and over 93%

in tsol, compared with those of NLP-VB and INT-VB.

67

Table 4.9: Performance comparison between NLP-C, INT-C, and TSBD-C.

Name
NLP-C INT-C TSBD-C Improvement

trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)

queue-4 0.42 (±0.09) 0.34 (±0.08) 0.44 (±0.07) 0.07 (±0.02) 0.36 (±0.04) 0.05 (±0.01) 11.23 (±21.27) 32.01 (±24.21)

inventory-4 35.85 (±29.64) 35.42 (±29.65) 0.41 (±0.02) 0.05 (±0.01) 0.26 (±0.03) 0.02 (±0.00) 36.16 (±8.61) 50.32 (±10.68)

queue-5 237.76 (±134.09) 198.76 (±134.29) 239.52 (±53.35) 46.08 (±31.71) 67.76 (±2.00) 5.79 (±0.34) 61.76 (±21.40) 85.77 (±3.79)

inventory-5 3696.23 (±82.36) 3600.00† (±0.00) 291.17 (±56.20) 98.00 (±50.19) 60.66 (±0.95) 4.32 (±0.41) 78.85 (±3.79) 95.24 (±1.68)

queue-6 3664.49 (±8.36) 3600.00† (±0.00) 4967.31 (±846.24) 1430.72 (±539.15) 970.93 (±27.21) 97.01 (±5.09) 73.50 (±0.01) 92.78 (±0.03)

inventory-6 4168.08 (±11.48) 3600.00† (±4.70) 6678.86 (±167.05) 3563.57† (±154.93) 976.45 (±47.67) 109.01 (±26.32) 76.57 (±0.01) 96.94 (±0.01)

†: The optimal solutions to some instances are not found within the time limit.

Table 4.10: Performance comparison between NLP-VB, INT-VB, and TSBD-VB.

Name
NLP-VB INT-VB TSBD-VB Improvement

trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(s) tsol(±CI)(s) trun(±CI)(%) tsol(±CI)(%)

queue-4 0.43 (±0.05) 0.35 (±0.05) 0.41 (±0.03) 0.09 (±0.04) 0.30 (±0.02) 0.05 (±0.00) 25.38 (±5.25) 43.65 (±16.76)

inventory-4 38.62 (±23.08) 38.16 (±23.07) 0.50 (±0.07) 0.10 (±0.05) 0.26 (±0.02) 0.03 (±0.00) 46.56 (±9.67) 72.71 (±12.36)

queue-5 154.45 (±49.25) 147.52 (±49.26) 251.05 (±26.79) 62.90 (±25.47) 72.80 (±2.46) 12.75 (±1.30) 50.46 (±17.61) 78.76 (±5.49)

inventory-5 3132.69 (±1648.45) 3078.08 (±1648.27) 275.68 (±29.62) 89.10 (±29.13) 65.89 (±2.62) 9.13 (±1.67) 76.00 (±2.24) 89.32 (±3.46)

queue-6 3662.91 (±8.94) 3600.00† (±0.17) 6642.40 (±1466.72) 2922.98 (±1297.26) 1221.49 (±55.64) 348.78 (±33.71) 66.65 (±1.55) 86.58 (±7.77)

inventory-6 4200.15 (±101.86) 3600.00† (±0.00) 6674.53 (±603.93) 3539.62† (±276.00) 1140.66 (±259.58) 242.58 (±83.40) 72.87 (±5.81) 93.13 (±2.20)

†: The optimal solutions to some instances are not found within the time limit.

68

Chapter 5

Defending Interdependent CIS

In this chapter, we apply the LSSD framework to a real-world critical infrastructure

protection problem. Critical infrastructure systems (CISs) are major arteries of modern

society. Economic prosperity, social welfare, and public security all heavily depend on CISs.

According to the U.S. Department of Homeland Security (DHS), CISs are “vital physical and

cyber systems whose incapacity or destruction would have a debilitating impact” on national

security. DHS has characterized 16 CIS sectors, including but not limited to energy, water,

transportation, commercial facility, communication, food and agriculture, healthcare, etc

(The Cybersecurity and Infrastructure Security Agency 2021).

Often, CISs are not isolated, but highly interconnected and interdependent (Ouyang

2014). For example, water systems support the daily operations of the healthcare systems

by providing safe and clean water. Commercial and financial sectors rely on information

technologies to secure transactions. Nearly all systems require electricity generated by the

power grid or nuclear facilities. The incapability of any CIS not only causes a shortage of

service from that particular system, but also reduces service qualities of other interconnected

systems. Thus, a cascading effect could appear following the failure of one CIS.

The interconnectivity of CIS has made them vulnerable when facing attacks. In the

last two decades, the disastrous consequences of CIS cascading failures have been tested

by incidents occurring all over the globe, such as the 2001 World Trade Center attack,

69

the 2003 Northeast blackout, the 2016 Brussels bombings, and the 2017 hurricane Harvey.

For instance, according to the U.S. Department of Energy, the 2003 blackout inflicted 6

billion dollars worth of damage, with collateral impacts on water supply, transportation,

communication, and hospitals (U.S. Department of Energy 2021).

Facing potential attacks from natural disasters or terrorist groups, governments and

international organizations are facilitating legislation to protect CIS facilities. In 2006, the

European Union (EU) has launched the European Programme for Critical Infrastructure

Protection (EPCIP), with the aim to reinforce and protect CIS facilities in all EU nations.

Likewise, the U.S. government has issued Presidential Policy Directive 21 (PPD-21), which

makes CIS security a national policy to ensure the resilience of CIS sectors. China has also

legislated CIS protection, especially in the areas of internet and information infrastructures.

5.1 Current Literature

In the literature, several review papers have been published, summarizing hundreds of studies

that analyze CIS resilience from various perspectives (Yusta et al. 2011; Ouyang 2014).

Recent mainstream analytical approaches of CIS resilience can be categorized into six types

(Ouyang 2014): data-focused empirical analysis, agent-based simulation, system dynamics,

economic perspective, network-based method, and others. Especially, the network-based

method is one of the most widely adopted approaches due to its capability of modeling

physical connections and commodity flows between CISs (Ouyang 2017; Ghorbani-Renani

et al. 2020; Galbusera et al. 2020). The network-based method models the CIS topology

with networks (graphs), which use nodes to represent individual infrastructure facilities

and edges to represent the connections or transmissions between facilities. With already-

established theoretical results, the network models of CISs usually produce mathematical

properties that are helpful in deriving solution algorithms (Ouyang and Fang 2017; Fang

and Zio 2019). Network-based methods can also be easily applied when game theory is

involved (Brown et al. 2006; Baykal-Güersoy et al. 2014; Ferdowsi et al. 2017). In that case,

a rational attacker is introduced to plan attacks against the CIS so that maximum damage is

70

inflicted. Then, the defender makes decisions to best protect the CIS or to optimally restore

its service.

Despite its wide applications, network-based models often suffer from high computational

cost (Ma et al. 2013b). As a network grows larger, the scale of the model grows exponentially.

Thus, commonly, network-based models only consider two-step (attack–defend) or three-step

(defend–attack–defend) problems (Ouyang 2017; Brown et al. 2006). However, in the real

world, attacks against the CISs often come in batches. For example, in 2015, six coordinated

attacks occurred in Paris within four hours, targeting stadiums, restaurants, and theaters.

Similarly, in 2019, seven populated areas (churches and hotels) in Sri Lanka were attacked

within a six-hour window. These coordinated attacks demand resources be re-distributed

repeatedly between attack intervals, so that CISs can be best protected.

In the current literature, only a few have considered sequential attacks under the context

of CISs protection (Jones et al. 2006; Ma et al. 2013a), but many have proposed innovative

models from game theory perspectives (Kaplan et al. 2010; Zhuang et al. 2010; Hausken

and Zhuang 2011; Shan and Zhuang 2013; Jose and Zhuang 2013; Chang et al. 2015; Rass

and Zhu 2016; Shan and Zhuang 2018). Especially, Markov game is one of the widely used

modeling approaches (Zhuang et al. 2010; Ma et al. 2013a; Chang et al. 2015), due to its

capability of modeling long-term interactions between the attacker and the defender.

However, many of the above models are based on assumptions that are not realistic

enough. Specifically, in many studies, defenders are able to assign defense resources at

each period in multi-period games (Zhuang et al. 2010; Hausken and Zhuang 2011; Shan

and Zhuang 2018), neglecting the cost of preparing the defense resources in advance, or

the cost of constructing infrastructures such as warehouses or operation bases that support

resource distribution. Although budget constraints are applied to the allocation of defense

resources (Hausken and Zhuang 2011; Shan and Zhuang 2018), the budgets are often fixed

parameters chosen prior to the defenders’ moves. In consequence, as one of the important

aspects of the model, the resources available for a defender to use against the attacks, are

not optimized. Moreover, to model with game theory, it is assumed that the attacker, who

causes infrastructural failure, either myopic or not, is at least rational (Zhuang et al. 2010;

71

Hausken and Zhuang 2011; Chang et al. 2015; Shan and Zhuang 2018), whereas in the real

world, failures come from both terrorist attacks and natural disasters, among which the later

cannot be rationalized.

Thus, in this study, we consider a CIS protection problem from the defender’s view. We

assume that the defender only has partial, stochastic information on the attacker’s intention.

The attacker engages the targeted CIS facilities in a sequential manner, with an unknown

number of attacks. Using the LSSD framework from previous chapters, we propose an

optimization method that jointly makes network design and resource allocation decisions

in strategic planning, and devises defense policies in response to each of the attacks with

limited resources.

Figure 5.1 provides a demonstration of the problem considered. Initially, the defender

makes strategic decisions to establish interconnectivity between facilities, and allocate

defense resources to every facility. When the attacks occur, the defender chooses defense

strategies according to the current situation and protects all facilities within the CIS network,

in order to best protect the facilities from dysfunction. To model the problem, we adopt

the LSSD framework established in previous chapters, where the first stage makes strategic

decisions on the CIS network design, and the second stage makes sequential operational

decisions at attack intervals on the defense strategies.

5.2 Formulation of the CIS Model

We use a graph G := (V,E) to model the CIS network. The set of nodes V considers two

types of facilities, i.e., V := V I ∪ V D, where V I denotes independent CIS facilities, and V D

denotes dependent CIS facilities. We assume that the facility i ∈ V D must be connected

to another facility j ∈ V I to generate output. The edges E denotes possible connections

between CIS facilities. The connection can be further modeled with an adjacency matrix A,

where Ai,j = 1 if (i, j) ∈ E.

As discussed, the first stage makes two types of decisions, network design, and resource

allocation. We use ui,j ∈ {0, 1}, ∀ i ∈ V D, j ∈ V I to denote the service between independent

72

Figure 5.1: An demonstration of the CIS defense problem.

73

and dependent systems. When ui,j = 1, facility at location j serves the facility at location

i. We use xi, ∀ i ∈ V to denote the defense resource allocated to the location i. The

allocated defense resource xi represents the maximum amount of defense resources that can

be consumed when planning the defense strategies in the second stage. In addition, we let

csi,j, i ∈ V D, j ∈ V I be the cost of establishing service between i and j, and cr the cost of

unit defense resource. The first stage model can be written as the following integer program.

max −
∑
i∈V

crxi −
∑
j∈V I

∑
i∈V D

csi,jui,j (5.2.1)

s.t.
∑
j∈V I

ui,j ≥ 1 ∀ i ∈ V D; (5.2.2)

ui,j ≤ Ai,j ∀ i ∈ V D, j ∈ V I ; (5.2.3)

xi ∈ N+ ∀ i ∈ V ; (5.2.4)

ui,j ∈ {0, 1} ∀ i ∈ V D, j ∈ V I . (5.2.5)

The second stage is modeled using a discounted, infinite-horizon MDP. The infinite-

horizon represents the lack of information about the attacker’s intentions, including the

number of attacks. Modeling with infinite-horizon also allows the model to produce

stationary policies, i.e., no matter the number of attacks, the optimal strategy would remain

the same. As such, the decision making epochs are defined as t = 1, 2, . . . ,∞.

States of the MDP represent the status of the all CIS facilities in the network. We let

s := (s1, s2, . . . , s|V |) ∈ S, where the facility at i ∈ V is functional if si = 1, and disabled if

si = 0. For example, s = (0, 1, 1) denotes functional CIS facilities at i = 2 and i = 3, and

disabled facility at i = 1.

Actions a := (a1, a2, . . . , a|V |) ∈ A represent the defense intensity at each i ∈ V . We

let ai ∈ {0, 1, 2, . . . ,M}, ∀ i ∈ V , suggesting that ai amount of defense resources will be

consumed if location i is attacked. For example, a = (0, 2, 3) denotes that if i = 1, i = 2, or

i = 3 is attacked, 0, 2, or 3 defense resources will be consumed, respectively.

The transition probability accounts for the probability of attack, as well as the contest

between the defender and the attacker. We assume that the defender knows the attacker’s

intension up to a probability distribution, where Ps(i) ∈ [0, 1] denotes the probability that

74

i ∈ V is attacked under state s. We let Ps(i) = 0 for all i ∈ V, si = 0, suggesting that

the defender do not consider attacks on disabled facilities. When all facilities are disabled,

i.e., s = (0, 0, . . . , 0), we let Ps(i) = Ps(j), ∀ i, j ∈ V , since at this state, none of the

defense strategies would increase the defender’s reward. We also consider the possible attack

intensities β = 1, 2, . . . ,M at locations i ∈ V , and use Pi(β) ∈ [0, 1] to denote the probability

that intensity β is chosen at location i. Then, the probability of attacking i with intensity

β at state s, Ps(i, β), can be calculated as

Ps(i, β) = Ps(i) · Pi(β). (5.2.6)

To model the contest between the attacker and the defender with resources, we use the following

contest function, producing the success probability of an attack (Tullock 2001; Skaperdas 1996):

P (success) =
β

β + a
, (5.2.7)

where β and a denote attack and defense intensities, respectively. At a state s, the probability of

attacking i and succeeding is

Ps(i) ·
M∑
β=1

Pi(β) ·
β

β + a
. (5.2.8)

The transition probabilities can be represented as follows.

T (s′|s, a) :=

1, if s′ = s = (0, 0, . . . , 0);∑
i∈V Ps(i) ·

∑M
β=1 Pi(β) ·

ai
β+ai

, if s 6= (0, 0, . . . , 0), s′ = s;

Ps(i) ·
∑M

β=1 Pi(β) ·
β

β+ai
, if ∃ i ∈ V, s′i = 0, sj = 1, s′j = sj ,∀ j ∈ V, j 6= i

0, otherwise.

(5.2.9)

The reward of the MDP accounts for the output of different CIS facilities. We use

rIi ∈ R+, ∀ i ∈ V I to denote the outputs from independent CIS facilities and rDi ∈ R+,

∀ i ∈ V D the outputs from dependent CIS facilities. We let δi ∈ [0, 1] be the proportion of

75

output for a CIS facility i ∈ V D that is dependent on other facilities in V I . We further define

a binary variable σs,i, ∀ s ∈ S, i ∈ V D to represent that under state s, whether facility i is

connected to at least one functional facility that provides service. Thus, the reward R(s, a)

can be calculated using the following constraints:

R(s, a) =
∑
i∈V I

si · rIi +
∑
i∈V D

[
(1− δi) · si · rDi + δi · σs,i · si · rDi

]
=
∑
i∈V I

si · rIi +
∑
i∈V D

[
1 + (σs,i − 1) · δi

]
· si · rDi ∀ s ∈ S, a ∈ A; (5.2.10)

M · σs,i ≥
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D; (5.2.11)

σs,i ≤
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D, (5.2.12)

where M is a large number, such as M = |V I |.

The capacity of defense resources is limited by the strategic decisions made at the first

stage. To model the scarcity of resources, we add additional linear constraints to the MDP.

The decision variable ys,a for the second stage represents the number of times that the defense

plan a is executed under CIS state s, and ai represents the resource consumed at i under the

defense strategy a. Thus, we use the following linear constraints to ensure that the expected

defense resources consumed at i ∈ V are within the initially allocated capacity.

∑
s∈S

∑
a∈A

ai · ys,a ≤ xi ∀ i ∈ V. (5.2.13)

Then, the second stage CMDP model can be formulated as follows.

max
∑
s∈S

∑
a∈A

R(s, a)ys,a (5.2.14)

s.t.
∑
a∈A

ys,a − γ
∑
s′∈S

∑
a∈A

T (s|s′, a)ys′,a = α(s) ∀ s ∈ S; (5.2.15)

∑
s∈S

∑
a∈A

ai · ys,a ≤ xi ∀ i ∈ V ; (5.2.16)

ys,a ≥ 0 ∀ s ∈ S, a ∈ A. (5.2.17)

76

Since the transition probability in the model is not dependent on first-stage decisions,

the variables x and z only lead to different reward structures. Thus, we use the variable

rs,a to denote the reward under state s and action a, subject to the influence of first-stage

strategic decisions. The NLP formulation of the two-stage model is shown as follows.

max −
∑
i∈V

crxi −
∑
j∈V I

∑
i∈V D

csi,jui,j +
∑
s∈S

∑
a∈A

Rs,ays,a (5.2.18)

s.t.
∑
j∈V I

ui,j ≥ 1 ∀ i ∈ V D; (5.2.19)

ui,j ≤ Ai,j ∀ i ∈ V D, j ∈ V I ; (5.2.20)

R(s, a) =
∑
i∈V I

si · rIi +
∑
i∈V D

[
1 + (σs,i − 1) · δi

]
· si · rDi ∀ s ∈ S, a ∈ A; (5.2.21)

M · σs,i ≥
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D; (5.2.22)

σs,i ≤
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D; (5.2.23)

∑
a∈A

ys,a − γ
∑
s′∈S

∑
a∈A

T (s|s′, a)ys′,a = α(s) ∀ s ∈ S; (5.2.24)

∑
s∈S

∑
a∈A

ai · ys,a ≤ xi ∀ i ∈ V ; (5.2.25)

xi ∈ N+ ∀ i ∈ V ; (5.2.26)

ui,j ∈ {0, 1} ∀ i ∈ V D, j ∈ V I ; (5.2.27)

ys,a ≥ 0 ∀ s ∈ S, a ∈ A. (5.2.28)

5.3 Case Study: Knoxville, Tennessee

In this section, we first present the data used in the case study, as well as methods for

estimating model parameters. Then, we provide an alternated NLP model specifically

formulated for the case study. The model features additional constraints that depict realistic

connections between the considered CIS facilities. Finally, we apply the previously develop

decomposition method to the formulation as a more efficient solution algorithm.

77

5.3.1 Data & Parameter Estimation

We collect real-world CIS data from the city of Knoxville, Tennessee, according to the

Homeland Infrastructure Foundation-Level Data (HIFLD) (U.S. Department of Homeland

Security 2022). Specifically, geographic information system (GIS) coordinates and service

capacities of 59 CIS facilities from five categories are acquired from HIFLD, including 22

electric substations, 7 cellular towers, 4 hospitals, 9 police stations, and 17 fire stations.

Figure 5.2 shows the GIS locations of all facilities. Among the CIS facilities, cellular

towers, hospitals, police stations, fire stations, and manufacturing companies all require

electricity. We consider electricity substations as independent CIS facilities and others as

dependent CIS facilities. The cost of constructing overhead electricity transmission lines

is reported to be $285,000 per mile (Public Service Commission of Wisconsin 2021). The

distance between CIS facilities is calculated using real-word street distances from the Google

Maps API (Google 2022). The cost of unit defense resources is estimated using the daily

salary ($190) of security guards in Tennessee (CareerExplorer 2022).

Outputs of all types of CIS facilities are estimated using real-world data, or data from

the literature. The electric substations are considered to serve the total population, 190,740,

in Knoxville as customers (U.S. Census Bureau 2020). Customers are divided and assigned

to each substation according to their capacity. Economic values of substations are estimated

using the $2.70 cost of loss of electricity service per customer per hour (Salman and Li 2018).

In the following, all economic costs are calculated as daily costs. The output of an electric

substation is calculated by

Output = Customer served×Daily cost of loss of service. (5.3.1)

Outputs from cellular towers are estimated using a similar method. The total population

in Knoxville is evenly divided by each tower. The daily cost of loss of service is calculated

from the literature to be $5.04 (Conrad et al. 2006). Output of a cellular tower is calculated

by Equation (5.3.1).

78

Figure 5.2: GIS locations of 59 CIS facilities in Knoxville, Tennessee.

79

To estimate the outputs of hospitals, we first identify the hourly increase in mortality rate

during power outage to be 0.43 (Apenteng et al. 2018). The value of the quality-adjusted life-

year (QALY) is estimated to be $ 265,345 per year (Hirth et al. 2000). The average lifespan in

the U.S. is 77 years (Murphy et al. 2021), and the average age of hospital patients is 62 years

(Sun et al. 2018). Value of patient life is then calculated as (77−62)×265, 345 = $3, 980, 175.

We then consider the number of beds in each hospital, as well as the average 0.65 occupation

rate of hospital beds in the U.S. (Centers for Disease Control and Prevention 2017). The

hourly output is finally converted to daily output. The output of a hospital is calculated by

Output = Hourly increase in mortality rate× Value of patient life

×Occupation rate× Number of beds× 24. (5.3.2)

Outputs of the police stations are calculated using crime data from Knoxville (Tennessee

Bureau of Investigation 2022). We obtained the yearly crime rates of 13 types of crimes,

including murder, rape/sexual assault, assault, robbery, arson, larceny/theft, motor vehicle

theft, household burglary, embezzlement, fraud, stolen property, forgery/counterfeiting, and

vandalism. Yearly crime rates are then converted into daily crime rates. The cost of each

crime is estimated from the literature (McCollister et al. 2010). The population of Knoxville

is evenly divided among all police stations. The output of a police station is calculated by

Output = Population served×
∑

All crimes

(
Cost of crime×Daily rate of crime

)
. (5.3.3)

Output of fire stations considers the occurrence rate of fire per person, which is estimated

to be 0.004149 per year (Haynes and Stein 2017). The number is estimated to increase by

300% during power outage (Federal Emergency Management Agency 2020). Population of

Knoxville is evenly divided among all fire stations. The cost of a fire is calculated by adding

the property cost per fire, $ 16,610 (Ericson and Lisell 2020), and the casualty cost per fire.

The casualty cost per fire is further calculated by multiplying the casualty rate, 0.0256 (U.S.

Fire Administration 2022), with the cost of human life, $ 7,500,000 (Federal Emergency

80

Management Agency 2020). The output of a fire station is calculated using

Output = 300%×Daily occurrence rate× Served population× Cost per fire. (5.3.4)

Results of the parameter estimation are shown in Table 5.1. The data from five types of

CIS facilities are summarized. Averaged output values are provided. The intuitive results

suggest that the hospitals are the most valuable CIS facilities, since their failure could cause

losses of human life. Electric substations are also essential, because the output of each

substation also takes into account the economic cost to residential and commercial users.

Fire stations are estimated to have the lowest output due to their superior number and

coverage, where the failure of each station only impacts a small neighborhood.

5.3.2 Modified Model Formulation

The case study features the connections between electricity distribution substations and

different utilities, which are not fully captured in the original formulation (5.2.18)–(5.2.28).

The variables u in the formulation demand that all connections must originate from an

independent CIS facility, but electricity can be distributed from any facility, as long as the

demand node is connected to the grid. Figure 5.3 demonstrates the differences between the

two types of connections.

In order to model the grid connections in more detail, we modify the formulation (5.2.18)–

(5.2.28). Note that the original formulation still provides a more generic modeling guideline

that can be extended to applications other than this specific case study. We redefine the

variable ui,j, ∀ i ∈ V, j ∈ V I , j 6= i to represent that substation j provides power for facility i,

but i and j are not necessarily connected. In the case where i is also a substation, the variable

ui,j = 1 means that electricity is distributed through i, rather than providing electricity to

i. We further define variable ψi,j, ∀ (i, j) ∈ E to represent the physical connection from j to

i. Note that we distinguish ψi,j and ψj,i to be different variables in order to avoid subtours

81

Table 5.1: Estimated output from five types of CIS facilities.

CIS facility Number Dependency Average Output ($/day)

Electric substation 22 Independent 341,496

Cellular tower 7 Dependent 138,480

Hospital 4 Dependent 1,386,744

Police station 9 Dependent 146,304

Fire station 17 Dependent 79,800

(a) Direct connections from independent CIS. (b) Power grid connections from other facilities.

Figure 5.3: A comparison between two types of CIS interconnectivity.

82

in the connections. Then, the following constraints are added to the model:

ui,j ≤ ψj,i +
∑

h∈N (i),h6=j

uh,jψh,i ∀ i ∈ V, j ∈ V I , j 6= i;

M ′ · ui,j ≥ ψj,i +
∑

h∈N (i),h6=j

uh,jψh,i ∀ i ∈ V D, j ∈ V I , j 6= i;

∑
i∈S

∑
j∈S,j 6=i

ψi,j ≤ |S| − 1 ∀ S ⊂ V,

where N (i) represent the set of neighbors of i ∈ V , M ′ is a large number and S are all

subsets in V . The first two constraints guarantee that there exists a physical connection for

each pair of interconnected CIS facilities. The third constraints eliminate subtours.

Further changes are made in the objective and the constraints to reflect the realistic grid

connections. The modified NLP formulation is show as follows.

NLPCIS := max −
∑
i∈V

crxi −
∑

(i,j)∈E

csi,jψi,j +
∑
s∈S

∑
a∈A

Rs,ays,a (5.3.5)

s.t.
∑
j∈V I

ui,j ≥ 1 ∀ i ∈ V D; (5.3.6)

ui,j ≤ ψj,i +
∑

h∈N (i),h6=j

uh,jψh,i ∀ i ∈ V, j ∈ V I , j 6= i; (5.3.7)

M ′ · ui,j ≥ ψj,i +
∑

h∈N (i),h6=j

uh,jψh,i ∀ i ∈ V, j ∈ V I , j 6= i; (5.3.8)

∑
i∈S

∑
j∈S,j 6=i

ψi,j ≤ |S| − 1 ∀ S ⊂ V ; (5.3.9)

R(s, a) =
∑
i∈V I

si · rIi +
∑
i∈V D

[
1 + (σs,i − 1) · δi

]
· si · rDi ∀ s ∈ S, a ∈ A;

(5.3.10)

M ′ · σs,i ≥
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D; (5.3.11)

σs,i ≤
∑
j∈V I

sj · ui,j ∀ s ∈ S, i ∈ V D; (5.3.12)

83

∑
a∈A

ys,a − γ
∑
s′∈S

∑
a∈A

T (s|s′, a)ys′,a = α(s) ∀ s ∈ S; (5.3.13)

∑
s∈S

∑
a∈A

ai · ys,a ≤ xi ∀ i ∈ V ; (5.3.14)

xi ∈ N+ ∀ i ∈ V ; (5.3.15)

ui,j ∈ {0, 1} ∀ i ∈ V D, j ∈ V I ; (5.3.16)

ψi,j ∈ {0, 1} ∀ (i, j) ∈ E; (5.3.17)

ys,a ≥ 0 ∀ s ∈ S, a ∈ A. (5.3.18)

Note that the number M ′ and M are two different larger numbers where M ′ < M , since

constraints with M ′ only require M ′ ≥ max{|N (i)| : i ∈ V } ∪ {|V I |}.

5.3.3 Applying The Decomposition Method

Although NLPCIS does not contain nonlinear terms in the MDP constraints, it is still a

difficult model to solve, considering the integer variables and the large state and action

spaces from the MDP. Here, we apply the methods developed in the previous chapters and

solve NLPCIS exactly using discretization and decomposition.

Note that in NLPCIS, the MDP variable y is constrained by another variable x, which

denotes the initial defense resource allocation as one of the strategic decisions. Thus, by

considering x as the variable budgets, we apply the TSBD-VB method as an alternate

solution algorithm. In this case, only u remains as the first-stage variables, which denotes

the service options between dependent and independent CIS facilities. When discretizing

the strategic decisions, each resulting MDP model k = 1, . . . , K represents a possible service

scenario with uk,i,j ∈ {0, 1}, ∀ i ∈ V, j ∈ V I , j 6= i, such that

∑
j∈V I

uk,i,j ≥ 1 ∀ i ∈ V D, k = 1 . . . , K. (5.3.19)

As such, uk,i,j become parameters to the model rather than variables. Accordingly, we can

calculate each Rk,s,a using u, so that Rk,s,a no longer cause nonlinearity in the objective. We

84

let zk ∈ {0, 1}, k = 1, . . . , K denote which CIS connectivity decision to choose, and V the

objective of the MDP. The integer model can be written in the following form.

INTCIS := max −
∑
i∈V

crxi −
∑

(i,j)∈E

csi,jψi,j + V (5.3.20)

s.t. uk,i,j ≤ ψj,i +
∑

h∈N (i),h6=j

uk,h,jψh,i

+M ′(1− zk) ∀ i ∈ V, j ∈ V I , j 6= i, k = 1 . . . , K; (5.3.21)

M ′(1− zk) +M ′ · uk,i,j ≥ ψj,i

+
∑

h∈N (i),h 6=j

uk,h,jψh,i ∀ i ∈ V, j ∈ V I , j 6= i, k = 1 . . . , K; (5.3.22)

∑
i∈S

∑
j∈S,j 6=i

ψi,j ≤ |S| − 1 ∀ S ⊂ V ; (5.3.23)

V ≤
∑
s∈S

∑
a∈A

Rk,s,ayk,s,a +M(1− zk) ∀ k = 1 . . . , K; (5.3.24)

∑
a∈A

yk,s,a − γ
∑
s′∈S

∑
a∈A

T (s|s′, a)yk,s′,a = α(s)zk ∀ s ∈ S, k = 1 . . . , K;

(5.3.25)∑
s∈S

∑
a∈A

ai · yk,s,a ≤ xi +M(1− zk) ∀ i ∈ V, k = 1 . . . , K; (5.3.26)

xi ∈ N+ ∀ i ∈ V ; (5.3.27)

ui,j ∈ {0, 1} ∀ i ∈ V D, j ∈ V I ; (5.3.28)

ψi,j ∈ {0, 1} ∀ (i, j) ∈ E; (5.3.29)

ys,a ≥ 0 ∀ s ∈ S, a ∈ A. (5.3.30)

In the formulation, yk,s,a are given an extra dimension to include all K MDP models.

Next, we decompose INTCIS and derive the necessary elements for the TSBD-VB method.

In Step-I, according to the generic model in Chapter 3.5.2, we formulate the following MP:

min
K∑
k=1

∑
s∈S

α(s)θk,s (5.3.31)

85

s.t. − ρk,i ≥ −cr ∀ i ∈ V, k = 1, . . . , K; (5.3.32)

θk,s unrestricted ∀ s ∈ S, k = 1, . . . , K; (5.3.33)

ρk,i ≥ 0 ∀ i ∈ V, k = 1, . . . , K. (5.3.34)

In the MP, θ represents the value of states for each MDP, and ρ is the dual variable

corresponding to the resource constraints. Given the solution (θ̄, ρ̄) to the MP, the dual

of SP for state s and model k can be written as

max
∑
a∈A

[
Rk,s,a + γ

∑
s′∈S

T (s′|s, a)θ̄k,s′ −
∑
i∈V

ai ¯ρk,i

]
· µk,s,a (5.3.35)

s.t.
∑
a∈A

µk,s,a = 1; (5.3.36)

µk,s,a ≥ 0 ∀ a ∈ A. (5.3.37)

From the dual problem, the optimality cuts and the convergence values can be easily

formulated using previously established results. Then, the K-MCLD algorithm applies to

obtain the optimal variables µ∗ and ρ∗.

Note that since xi ∈ N+ are integer variables, the decomposition in the second stage

does not calculate the value of x directly, since models with integer variables do not always

satisfy strong duality. Thus, in Step-II, we derive an alternate approach to calculating

resource usages. Since x is constrained by the original MDP variable y, we first derive the

value of the occupation measure y from the decomposition model. Let Yk,s =
∑

a yk,s,a,

∀ s ∈ S, k = 1, . . . , K. We have

µ∗k,s,a =
yk,s,a
Yk,s

⇒ yk,s,a = µ∗k,s,a · Yk,s. (5.3.38)

Using the feasibility of y, the following system of equations can be derived w.r.t Y :

Yk,s − γ
∑
s′

(
T (s|s′, a)µ∗k,s′,a

)
· Yk,s = α(s) ∀ s ∈ S, k = 1, . . . , K,

86

where µ∗ is the optimal dual variables for the decomposition model. In the above system,

|S|·K equations corresponds to |S|·K variables. Trivially, solving the above system provides

the values of Y , and thus y.

Utilizing the optimal variables µ∗ and ρ∗ from Step-I, the integer model in Step-II can

be formulated as follows.

max −
∑
i∈V

crxi −
∑

(i,j)∈E

csi,jψi,j + V (5.3.39)

s.t. uk,i,j ≤ ψj,i +
∑

h∈N (i),h6=j

uk,h,jψh,i

+M ′(1− zk) ∀ i ∈ V, j ∈ V I , j 6= i, k = 1 . . . , K; (5.3.40)

M ′(1− zk) +M ′ · uk,i,j ≥ ψj,i

+
∑

h∈N (i),h6=j

uk,h,jψh,i ∀ i ∈ V, j ∈ V I , j 6= i, k = 1 . . . , K; (5.3.41)

∑
i∈S

∑
j∈S,j 6=i

ψi,j ≤ |S| − 1 ∀ S ⊂ V ; (5.3.42)

V ≤
∑
s∈S

α(s)θk,s +M(1− zk) ∀ s ∈ S, a ∈ A, k = 1 . . . , K; (5.3.43)

θk,s ≤
∑
a∈A

µ∗k,s,a ·
[
Rk,s,a + γ

∑
s′

T (s′|s, a)θk,s′

−
∑
i∈V

aiρ
∗
k,i

]
∀ s ∈ S, k = 1 . . . , K; (5.3.44)

Yk,s − γ
∑
s′

(
T (s|s′, a)µ∗k,s′,a

)
· Yk,s = α(s) ∀ s ∈ S, k = 1, . . . , K; (5.3.45)

∑
s∈S

∑
a∈A

ai · µ∗k,s′,a · Yk,s ≤ xi +M(1− zk) ∀ i ∈ V, k = 1 . . . , K; (5.3.46)

xi ∈ N+ ∀ i ∈ V ; (5.3.47)

ui,j ∈ {0, 1} ∀ i ∈ V D, j ∈ V I ; (5.3.48)

ψi,j ∈ {0, 1} ∀ (i, j) ∈ E; (5.3.49)

θk,s, Yk,s ≥ 0 ∀ s ∈ S, k = 1, . . . , K. (5.3.50)

87

5.4 Case Study: Experiments & Results

In this section, we conduct numerical experiments to validate the proposed models and

algorithms. According to preliminary results, NLPCIS becomes intractable to solve for large

instances. Thus, we first consider a small instance of six CIS facilities (CIS-6), sampled from

the collected data. We further conduct sensitivity analysis on CIS-6 to show that the model

is applicable to different scenarios. Then, we compare algorithm performances by varying the

instance size, not only to show that the TSBD-VB method produces true optimal solutions,

but using the decomposition algorithm is also an efficient way of solving the problem.

5.4.1 Baseline Model

The CIS-6 instance consists of six CIS facilities, including two electric substations, a cellular

tower, a hospital, a police station, and a fire station. Figure 5.4 shows the geographic

configuration of CIS-6. The instance features closely adjacent CIS facilities near the campus

of the University of Tennessee. Outputs of CIS facilities are consistent with the estimations

from Chapter 5.3.1. In the following, we show the results of CIS-6, calculated from NLPCIS,

as a baseline model.

Specifically, we consider two attack/defense intensities, i.e., ai, βi ∈ {1, 2}, ∀ i ∈ V . We

let δi = 0.8, ∀ i ∈ V D, suggesting that 80% of the output from dependent CIS facilities

requires connection to an independent CIS facility. We use γ = 0.7 to model the situation

where the attacks stop after around 10 attacks, since 0.710 = 0.028 heavily discounts the state

values. Attack probability is proportional to CIS facility output, representing that deliberate

terrorist attacks are more likely to concentrate on high-value targets. The NLPCIS model is

solved using Gurobi, which still takes around 20 seconds to find the optimal solution, with

negligible gaps (< 1× 10−5).

The results of the model are summarized in Table 5.2. The total objective of the model

is around $8.34 million, representing the total economic benefit of the CIS facilities to the

society subject to the intentional attacks. The objective is calculated by subtracting the

construction cost of electricity distribution lines, $2.23 million, and the cost of defense

88

Figure 5.4: A small instance of six CIS facilities in Knoxville, Tennessee.

Table 5.2: Monetary values for CIS-6.

Total objective ($) Electricity line cost ($) Resource cost ($) Total output ($)

8,338,656 -2,225,499 -7,031 10,571,187

89

resources, $7,031, from the total facility output during the attack period, $10.57 million.

Overall, although strategic planning introduces high costs for the decision maker, it also

guarantees approximately 85% of CIS output remains undisturbed during prolonged attacks.

To clearly convey the results, we illustrate the constructed electricity distribution

lines and CIS facility services (dependencies) in Figure 5.5. The model connects all

facilities through a parsimonious solution. Instead of connecting all dependent facilities

to independent facilities, the model uses the cellular tower, the hospital, and substation 2 as

media to connect the fire station, the police station, and substation 1 into the grid. Since

all facilities are connected, both substations 1 and 2 serve all four utilities, so that when one

of them is disabled, the utilities still generate outputs through the other.

In addition, Figure 5.6 shows the number of allocated resources at each facility, and the

corresponding facility output. The figure demonstrates that our model makes rational and

intuitive decisions. The most defense resources are allocated to the hospital and substation 2,

since they generate the most output. A relatively large amount of resources is also allocated

to substation 1, even though its output is not significantly higher than the others, because

the model understands that once substation 1 is disabled, all the dependent facilities could

face dysfunction.

To illustrate the policy of the MDP, we plot the average defense intensity for each CIS

facility in Figure 5.7. The figure represents the average amount of defense resources used

to protect a facility against an attack. Similar to previous results, the model emphasizes

on protecting substation 2 and the hospital, by using more resources compared with the

other facilities. Although the hospital generates more output than substation 1, the model

still uses more resources to defend substation 1, since it is connected to all dependent CIS

facilities.

5.4.2 Sensitivity Analysis

In this section, we conduct sensitivity analysis by evaluating the results under different

parameters. The analysis not only shows the degree of model sensitivity to parameters, but

90

Figure 5.5: Electricity line constructions and CIS dependencies for CIS-6.

Figure 5.6: Resource allocation decisions for CIS-6.

91

Figure 5.7: Average defense intensity from the optimal policy.

92

also represents the defender’s perception of the attacks, where different model configurations

represent different attack scenarios. By analyzing the model’s behavior, we provide

managerial insights to the decision maker regarding the optimal strategic and operational

defense measures.

Discount factor First, we modify the discount factor γ. In the baseline model, γ = 0.7

discounts facility rewards heavily after around 10 attacks, suggesting the decision maker’s

belief about the total number of attacks. We extend the current results by considering four

more alternatives, with γ = 0.4, 0.7, 0.9, 0.99 and 0.999, where γ = 0.4 features short attack

periods, and γ = 0.999 features prolonged attacks with nearly “infinite” attacks.

Table 5.3 shows the results of CIS-6 under different discount factors. As expected, longer

planning periods correspond to larger economic values, since the CIS facilities continue to

generate outputs. The electricity line construction costs remain the same across all discount

factors, suggesting the model provides robust strategic decisions about CIS network design,

no matter the planning horizon. Intuitively, defense resource costs increase as the discount

factor grows larger, because more resources are required to counter the attacks on longer

horizon. We have also calculated the output in ideal situations, i.e., what the facility output

should have been if there were no attacks. As the table suggests, with a longer period of

planning, heavier losses are imposed on the CIS facilities.

Contest function In Table 5.3, γ = 0.99 and 0.999 show similar results, suggesting that

the model demonstrates a “converged” state, where increasing the planning period does

not significantly increase the total output. This can be explained by the contest function

(5.2.7), using which the defender at best has 67% chance to win the contest under the current

model setting with ai, βi ∈ {1, 2}. To consider the scenario that defense resources are more

efficient in protecting high-value CIS facilities, we modify the contest function and include

an efficiency multiplier λ for the defender:

P (attack success) =
β

β + λa
. (5.4.1)

93

Table 5.3: Monetary values for CIS-6 under different discount factors.

γ Total objective ($M) Electricity line cost ($M) Resource cost ($) Total output ($M) Ideal output∗ ($M) Loss due to attacks† (%)

0.4 4.67 -2.23 -3,421 6.55 7.58 13.59

0.7 8.34 -2.23 -7,031 10.57 15.17 30.32

0.9 14.02 -2.23 -12,352 16.26 45.49 64.26

0.99 18.82 -2.23 -18,624 21.06 454.96 95.37

0.999 19.44 -2.23 -19,574 21.69 4549.68 99.52

∗: CIS facility output without any attacks. †: calculated as (ideal output - total output) / ideal output.

94

We further conduct experiments by selecting λ from the list [1, 2, 5, 10], representing that

the defender considers the resources with increased efficiency in protecting CIS facilities. We

choose λ to be as large as 10 so that the best defense probability is as high as around 80%.

To compare with previous results, we consider discount factors γ = 0.9, 0.99 and 0.999.

Figure 5.8 shows the results of the model for λ = 1, 2, 5, and 10. Results are shown from

three fronts, the total objective values, the losses in facility output due to attacks, and the

costs for defense resources. The total objective values of three models with γ = 0.9, 0.99, and

0.999 are shown in Figure 5.8a. With increased defense resource efficiency, objective values

increase, since the long-term output from CIS facilities can be well protected. As a result,

the facility output losses due to attacks reduce with the efficiency. Figure 5.8b shows the

percentage losses compared with the situations without attacks. Note that for γ = 0.999, the

reduction is not significant, because the planning horizon is too long to prevent facility failure

from intentional attacks. Finally, Figure 5.8c shows resource costs in the strategic planning

phase. The increased resource costs partly contribute to the increased total objective values

and the decreased losses, allowing the MDP policy to provide better defense strategies for

the CIS facilities.

Output dependency Next, we change the coefficient δi, ∀ i ∈ V D, representing the

proportion of output for a CIS facility that depends on other facilities. We let δi =

0.2, 0.4, 0.6, 0.8, and 1.0, ∀ i ∈ V D. Other parameters are consistent with the baseline

model. Figure 5.9 shows the facility output and resource costs under different δ. The facility

output shows interesting trends. When dependency reduces from high to medium, facility

output increases, since it is impacted less by the attacks. However, when the dependency

reduces from medium to low, the output also reduces. This is because the dependent facilities

are protected with fewer resources, and assigned with lower resource usage in the defense

strategy. Thus, when attacks happen, dependent facilities are more likely to lose their entire

output under low dependency. Figure 5.9 also shows the resource costs under different δ. All

strategies remain the same except for when δ = 1.0, in which case there is no need to defend

95

(a) Objective value (b) Output loss (c) Resource cost

Figure 5.8: Results for CIS-6 under different efficiency multipliers.

Figure 5.9: Facility output and resource costs for CIS-6 under different δ.

96

a dependent CIS facility, if the independent facilities fail, since all of its output depends on

other facilities.

We further plot the average resource usage in the optimal policy for δ = 0.8 and 1.0,

in Figure 5.10. The results are intuitive and confirm our previous argument, where when

δ = 1.0, less attention is paid to dependent facilities, but more is paid to independent

facilities. Note that although independent facilities are more secured under δ = 1.0, the

model purchases less defense resourced in total compared with δ = 0.8, and produced less

output facing attacks, as Figure 5.9 suggested.

Thus, when designing CIS facilities, decision makers should not only consider network

design or resource allocation, but also ways to reduce the dependency of each CIS facility,

such as preparing backup generators, or storing additional emergency resources. As such,

even when independent CIS facilities are disabled, other connected utilities still function on

their own, increasing the overall robustness of the CIS network.

Resource cost In real applications, defense resources are not limited to security guard

salary. Sometimes, the unit cost of defense resources can be expensive, such as state-of-

the-art surveillance and sensory systems, or specialized machinery and equipment. Here, we

vary the cost of defense resources cr. From our parameter estimation, cr = 190. We further

extend the estimation by considering cr = 190, 2, 000, 5, 000, and 10,000. Other parameters

are consistent with the baseline model.

Figure 5.11 shows the results under different resource costs. The figure suggests that the

model is not sensitive to the resource cost. Even though the total objective reduces when

the resource becomes more expensive, the MDP policy still manages to maintain the facility

output during the attacks. The maximum reduction in facility output is from $10.57 to $

10.51, i.e., around 0.57% decrease, under 50-fold changes in the resource price. Thus, our

model provides stable solutions with respect to the defense resource cost.

Attack probability Finally, we extend our results to include different attack patterns. We

show that our model not only makes decisions for intentional attacks, but also for natural

97

Figure 5.10: Resource usage in the optimal policy for CIS-6 under different δ.

Figure 5.11: Total objective and facility output for CIS-6 under different resource costs.

98

disasters, in which case the “attack” probability for each CIS facility is unknown to the

defender. We use a uniform distribution to model the random attacks. Other parameters

are consistent with the baseline model.

Results are shown in Figure 5.12. Results for the random attacks are compared with

those from intentional attacks. The figure shows the resource distribution among all facilities.

Compared with intentional attacks, for the random attacks, the model places resources more

evenly across all facilities, but still emphasizes more on high-valued targets, such as the

substations and the hospital.

5.4.3 Algorithm Comparison

The previous experiments are conducted using an instance with only 6 CIS facilities, not

only for illustrative purposes, but also because larger instances are too complex to solve in a

reasonable time. The complexity of NLPCIS mainly comes from two fronts, the nonlinearity

of constraints, and the curse of dimensionality of MDP. For example, in CIS-6, there are

26 = 64 states, and 36 = 729 actions, resulting in 2,985,984 transition probabilities. The

CIS-6 instance takes as long as one minute to solve. In the following, we evaluate the

performance of the algorithms proposed in Chapter 5.3.3, where the decomposition technique

offers a more efficient way of finding optimal solutions.

Specifically, we compare the performance between NLPCIS, INTCIS, and TSBD-VB. The

algorithms are tested on three instances, where 5, 6, 7, and 8 CIS facilities are sampled

from the datasets. Note that although the number of facilities only increases by one, the

resulting state and action dimensions still differ dramatically. Table 5.4 summarizes the

configurations for the four instances. To reduce the scales of the instances, we only allow

CIS interdependency within a radius. The radius is set to be half of the longest distance

between facilities in an instance. Instance parameters mostly follow the CIS-6 model, with

the exception that γ = 0.999, representing the solution to a long-term stationary policy. All

experiments are conducted on a Linux server with 2.30GHz Intel Xeon Gold CPU and 256

99

Figure 5.12: Resource allocation for CIS-6 under intentional and random attacks.

Table 5.4: Summary of four CIS instances.

CIS |S| |A| |S| × |A|

5 32 243 7,776

6 64 729 46,656

7 128 2,187 279,936

8 256 6,561 1,679,616

100

GB memory. The LP models are solved with Gurobi via the Python interface. Time limits

of 3600 seconds are imposed when solving LP models.

Results of the algorithm comparison are shown in Table 5.5. Consistent with previous

results in Chapter 4.2, in general, the TSBD-VB method shows advantages in finding optimal

solutions more efficiently than solving the nonlinear and integer models. For the larger

instance with 7 CIS facilities, the TSBD-VB method solves the problem 67.87% faster than

NLPCIS. In the case of 8 CIS facilities where both NLPCIS and INTCIS cannot find feasible

solutions within one hour, the TSBD-VB method is still able to solve the problem to the

true optimum. The TSBD-VB method underperforms on smaller instances compared with

NLPCIS, where the cost of additional operations outweighs the benefit of decomposition.

Note that different from previous results, the integer model, INTCIS, performs the worst,

due to the large number of variables and constraints. However, the integer model still serves

as a basis for the decomposition method, which outperforms conventional methods with a

“divide-and-conquer” strategy.

5.5 Discussion

In this chapter, we consider a real-world application for the LSSD framework, protecting

interconnected CIS facilities from sequential and stochastic attacks. Different from the

literature, we model the problem from the defender’s perspective, with only partial

information about the attacker’s intentions. In addition, the defender protects the facilities

from sequential attacks with an unknown number of attacks. By modeling the problem using

the LSSD framework, we make strategic decisions about the connectivity of the CIS network,

and the allocation of defense resources. The infinite-horizon MDP in the second stage allows

us to calculate a stationary policy optimal policy, according to which the defender devises

defense strategies independent of the number of attacks.

To model the CIS defense problem, we collect real-world data in a middle-size city in the

U.S., and conduct thorough parameter estimations. Using previously established theoretical

results, we propose a nonlinear model, NLPCIS and an integer model, INTCIS. We further

101

Table 5.5: Algorithm comparison on four CIS instances.

CIS
NLPCIS INTCIS TSBD-VB

Impr.† (%)
Objective ($M) Gap (%) Runtime (s) Objective ($M) Gap (%) Runtime (s) Objective ($M) Gap (%) Runtime (s)

5 18.21 0.00 0.14 18.21 0.00 3.42 18.21 0.00 0.68 < −100.00

6 30.28 0.00 22.70 30.28 30.28 2870.36 30.28 0.00 12.30 45.81

7 35.20 0.00 675.58 – 100.00 3600.00 35.20 0.00 217.06 67.87

8 – 100.00 3600.00 – 100.00 3600.00 39.14 0.00 3110.18 –

†: improvement is calculated by comparing TSBD-VB with the best between NLPCIS and INTCIS.

102

apply the decomposition method TSBD-VB to solve the integer formulation. Algorithms are

compared using CIS instances of different sizes. Results show that the TSBD-VB method

consistently produces the best performance. The improvements are less significant compared

with previous results, due to the differences in problem structures, where states and actions

in the CIS problem outnumber those in the testing instances in Chapter 4.2.

The proposed approach for the CIS defense problem is also validated using a smaller

instance with 6 CIS facilities. We first show the results of a baseline model, including

the CIS interconnectivity and defense resource allocation. The model produces intuitive

results, including a parsimonious plan for an electricity distribution grid that connects all

dependent facilities with independent ones, and a resource allocation strategy proportional to

the magnitude of CIS facility outputs. The generated MDP policy also intelligently focuses

more on high-value facilities, such as the hospital, or electricity substations on which other

facilities depend.

We have also conducted a sensitivity analysis on five model parameters on top of the

baseline model, including the discount factor, contest function, output dependency, resource

cost, and attack probability. By varying the discount factor, we show the model’s behavior

on different planning horizons, from short terms with around 5–10 attacks, to long terms

where the model shows a “converged” state, demonstrating the LSSD framework’s capability

of long-term decision making. The contest function is modified to include an additional

parameter that describes the efficiency of the defense resources. Results suggest that with

higher efficiency, CIS facilities can be better protected, with increased facility output during

the attacks. Another aspect of CIS network design is analyzed by changing the output

dependency for all dependent CIS facilities. The results demonstrate the importance of

reducing dependency on other facilities, leading to increased robustness of the CIS network.

In addition, we have also analyzed the model’s sensitivity to the resource cost, since defense

resources are not always cheap in practical situations. Results show that the model is not

sensitive to the resource cost, i.e., facility outputs are well-protected even when the resource

price is increased by 50 folds. Finally, we demonstrate that the model is extensible to

many real-world applications by considering choosing targets intentionally, such as terrorist

103

attacks, or randomly, such as natural disasters. Under both scenarios, the model generates

meaningful and intuitive strategic plans for allocating resources to protect CIS facilities.

All in all, through this study, we have demonstrated the LSSD framework’s capability of

solving real-world problems, where strategic and operational decisions for the CIS defense

problem are optimized at the same time. In addition, we have shown that the proposed

solution methods solve the framework more efficiently compared with conventional methods.

Moreover, we have modeled and solved a CIS defense problem that is deemed difficult

in the literature, and is of critical importance to social welfare and national security.

Further analyses on model parameters have provided insights to practitioners for strategically

planning CIS networks and operational management in response to potential failure.

104

Chapter 6

Conclusion

This dissertation proposes the LSSD framework, which fills the research gap by formulating

a generic two-stage mathematical model that jointly optimizes strategic decisions and

stochastic operational decisions in the long term. The framework models the strategic

decision using LP and the operational decisions using MDP. The decisions of the framework

are combined together through the dual of the LP formulation of MDP, resulting in the NLP

formulation, an optimization model with nonlinear objectives and constraints. We further

analyze the nonlinear model with generalized Benders decomposition, based on which we

discretize the first-stage strategic decisions and propose the alternate INT formulation, an

optimization model with integer variables.

The LSSD framework is also extended to CMDP and CMDP with variable budgets,

to model situations where resources required for taking actions are limited, or multiple

objectives need to be satisfied. The extensions are first formulated as nonlinear models,

namely NLP-C and NLP-VB, and then discretized into integer models INT-C and INT-VB.

The computational complexity of the LSSD framework and the extensions are briefly

discussed, where the integer variables and the curse of dimensionality from MDP prevent

the nonlinear and the integer models to be solved in efficient ways. This motivates us to

develop novel algorithms that reduce the computational difficulties for the model. First, we

apply Benders decomposition to MDP. The LP formulation of MDP is decomposed as an

105

MP and several SP, each corresponding to a state. The decomposition model is solved using

the MCLD algorithm. We further prove mathematical properties of the algorithm to show

that it finds the true optimal policy for MDP. The decomposed model is extended to three

types of special MDP problems, including MDP with action-free transition probabilities,

MDP with the monotone optimal policy, and CMDP.

Applying the developed decomposition algorithm to the LSSD framework, we further

propose the TSBD method to solve the integer formulation of the framework to optimality. In

Step-I of the TSBD methods, we use the K-MCLD algorithm to find the optimal multipliers

for second-stage MDP problems. In Step-II, we construct another integer model and solve it

to obtain the optimal strategic decision in the first stage. The TSBD algorithm is extended

to CMDP and CMDP with variable budgets.

Computational experiments are conducted to evaluate the performance of the MCLD

algorithm and the TSBD method. We adopt four MDP benchmarking problems from the

literature and extend them for the LSSD framework. Experiment results show that the

MCLD algorithm solved MDP problems up to over 90% faster that the LP formulation

and its dual. The MCLD algorithm also outperforms the state-of-the-art exact solution

algorithms such as MPI, in long-term decision making with large discount factors. Further

analyses suggest that the MCLD algorithm behaves in a collective way of both VI and PI,

where the primal problem iterates to find better state values, and the dual problem iterates to

find better policies. Further experiments on the LSSD framework show similar improvements

by using the decomposition approaches. The TSBD method is compared with the NLP and

INT models, with up to over 80% improvements in the computation time.

Finally, we utilize the LSSD framework to solve a real-world CIS protection problem

under stochastic and sequential attacks. The problem features network design and resource

allocation as the strategic decisions, and different levels of defense intensities as the

operational decision to counter the attacks. We model the problem from the defender’s

perspective, who does not have full knowledge of the attacker’s intentions. We have

also considered the interconnectivity between different CIS facilities, resulting in complex

nonlinear constraints with integer variables in the model. Previously established algorithms

106

are applied to the model. The nonlinear formulation is first discretized into an integer

formulation. We then apply decomposition algorithms to the integer model as an alternative

solution algorithm.

To validate the model, we collect real-world data from a middle-sized city in the U.S.,

and estimate model parameters either from real data or from the literature. Algorithms

are compared using four different model configurations. The proposed algorithms using

the TSBD method outperform conventional nonlinear and integer models by approximately

68%. In addition, sensitivity analysis is conducted on five of the model variables. Model

behaviors under different parameters are thoroughly investigated. Discussions and insights

are provided for practitioners.

107

Bibliography

108

Kizito, Rodney, Zeyu Liu, Xueping Li, and Kai Sun (2021). “Multi-stage Stochastic

Optimization of Islanded Utility-Microgrids After Natural Disasters”, pp. 1–41. doi:

10.13140/RG.2.2.27872.61445.

Torres-Rincón, Samuel, Mauricio Sánchez-Silva, and Emilio Bastidas-Arteaga (2021). “A

multistage stochastic program for the design and management of flexible infrastructure

networks”. Reliability Engineering & System Safety 210, p. 107549.

Li, Qi and Guiping Hu (2020). “Multistage stochastic programming modeling for farmland

irrigation management under uncertainty”. Plos one 15.6, e0233723.

Puterman, Martin L (2014). Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons.

Bertsimas, Dimitris and John N Tsitsiklis (1997). Introduction to linear optimization. Vol. 6.

Athena Scientific Belmont, MA.

Kazemi Zanjani, Masoumeh, Mustapha Nourelfath, and Daoud Ait-Kadi (2010). “A multi-

stage stochastic programming approach for production planning with uncertainty in the

quality of raw materials and demand”. International Journal of Production Research

48.16, pp. 4701–4723.

Mulvey, John M and Bala Shetty (2004). “Financial planning via multi-stage stochastic

optimization”. Computers & Operations Research 31.1, pp. 1–20.

Delgado, Felipe, Ricardo Trincado, and Bernardo K Pagnoncelli (2019). “A multistage

stochastic programming model for the network air cargo allocation under capacity

uncertainty”. Transportation Research Part E: Logistics and Transportation Review 131,

pp. 292–307.

Ayer, Turgay, Oguzhan Alagoz, and Natasha K Stout (2012). “OR Forum—A POMDP

approach to personalize mammography screening decisions”. Operations Research 60.5,

pp. 1019–1034.

Ruszczyński, Andrzej (2010). “Risk-averse dynamic programming for Markov decision

processes”. Mathematical programming 125.2, pp. 235–261.

Fan, Jingnan and Andrzej Ruszczyński (2018). “Process-based risk measures and risk-averse

control of discrete-time systems”. Mathematical Programming, pp. 1–28.

109

https://doi.org/10.13140/RG.2.2.27872.61445

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

(2015). “Human-level control through deep reinforcement learning”. nature 518.7540,

pp. 529–533.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. (2017).

“Mastering the game of go without human knowledge”. nature 550.7676, pp. 354–359.

Birge, John R and François Louveaux (2011). Introduction to stochastic programming.

Springer Science & Business Media.

Kıbış, Eyyüb Y, İ Esra Büyüktahtakın, Robert G Haight, Najmaddin Akhundov, Kathleen

Knight, and Charles E Flower (2020). “A Multistage Stochastic Programming Approach

to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities”. INFORMS

Journal on Computing.

Kuhn, Daniel (2008). “Aggregation and discretization in multistage stochastic program-

ming”. Mathematical Programming 113.1, pp. 61–94.

Yin, Xuecheng and İ Esra Büyüktahtakın (2021). “A multi-stage stochastic programming

approach to epidemic resource allocation with equity considerations”. Health Care

Management Science, pp. 1–26.

Howard, Ronald A. (1960). Dynamic programming and Markov processes. Cambridge:

Technology Press of Massachusetts Institute of Technology.

Bellman, Richard (1957). “A Markovian Decision Process”. Journal of mathematics and

mechanics 6.5, pp. 679–684.

Archibald, Thomas W, CS Buchanan, KIM McKinnon, and Lyn C Thomas (1999). “Nested

Benders decomposition and dynamic programming for reservoir optimisation”. Journal

of the Operational Research Society 50.5, pp. 468–479.

Jones, Dean A, Chad E Davis, Mark A Turnquist, and Linda K Nozick (2006). “Physical

security and vulnerability modeling for infrastructure facilities”. Proceedings of the 39th

Annual Hawaii International Conference on System Sciences (HICSS’06). Vol. 4. IEEE,

pp. 79c–79c.

110

Cooper, William L and Tito Homem-de Mello (2007). “Some decomposition methods for

revenue management”. Transportation Science 41.3, pp. 332–353.

Keerthisinghe, Chanaka, Gregor Verbič, and Archie C Chapman (2014). “Evaluation of a

multi-stage stochastic optimisation framework for energy management of residential PV-

storage systems”. 2014 australasian universities power engineering conference (AUPEC).

IEEE, pp. 1–6.

Manne, Alan S (1960). “Linear Programming and Sequential Decisions”. Management

science. Management Science 6.3, pp. 259–267.

d’Epenoux, F (1960). “Sur un probleme de production et de stockage dans l’aléatoire”. Revue

Française de Recherche Opérationelle 14, pp. 3–16.

Oliver, RM (1960). “A linear programming formulation of some Markov decision processes”.

a meeting of the Institute of Management Sciences and Operations Research Society of

America, Monterey, California.

Derman, Cyrus and Morton Klein (1965). “Some remarks on finite horizon Markovian

decision models”. Operations research 13.2, pp. 272–278.

de Farias, D. P and B Van Roy (2003). “The Linear Programming Approach to Approximate

Dynamic Programming”. Operations research 51.6, pp. 850–865.

Altman, Eitan (1999). Constrained Markov decision processes. Vol. 7. CRC Press.

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). “Constrained policy

optimization”. International conference on machine learning. PMLR, pp. 22–31.

Vieillard, Nino, Olivier Pietquin, and Matthieu Geist (2019). “On connections between

constrained optimization and reinforcement learning”. arXiv preprint arXiv:1910.08476.

Benders, J. F (1962). “Partitioning procedures for solving mixed-variables programming

problems”. Numerische Mathematik 4.1, pp. 238–252.

Dolgov, Dmitri A and Edmund H Durfee (2005). “Stationary deterministic policies for

constrained MDPs with multiple rewards, costs, and discount factors”. IJCAI. Citeseer,

pp. 1326–1331.

Satia, Jay K and Roy E Lave Jr (1973). “Markovian decision processes with uncertain

transition probabilities”. Operations Research 21.3, pp. 728–740.

111

Mannor, Shie, Duncan Simester, Peng Sun, and John N Tsitsiklis (2007). “Bias and variance

approximation in value function estimates”. Management Science 53.2, pp. 308–322.

Bäuerle, Nicole and Ulrich Rieder (2019). “Markov decision processes under ambiguity”.

arXiv preprint arXiv:1907.02347.

Steimle, Lauren N, David L Kaufman, and Brian T Denton (2021b). “Multi-model Markov

decision processes”. IISE Transactions, pp. 1–39.

Armony, Mor and Amy R Ward (2010). “Fair dynamic routing in large-scale heterogeneous-

server systems”. Operations Research 58.3, pp. 624–637.

Boussard, Matthieu and Jun Miura (2011). “Objects search: a constrained mdp approach”.

Workshop Active Percept. Object Search Real World, San Francisco, CA, USA.

Bhandari, Atul, Alan Scheller-Wolf, and Mor Harchol-Balter (2008). “An exact and efficient

algorithm for the constrained dynamic operator staffing problem for call centers”.

Management Science 54.2, pp. 339–353.

Chen, Qiushi, Turgay Ayer, and Jagpreet Chhatwal (2018). “Optimal m-switch surveillance

policies for liver cancer in a hepatitis c–infected population”. Operations Research 66.3,

pp. 673–696.

Heyman, Daniel P and Matthew J Sobel (2004). Stochastic models in operations research:

stochastic optimization. Vol. 2. Courier Corporation.

Blumentritt, Tim (2006). “Integrating strategic management and budgeting”. Journal of

business strategy.

Samuelson, William (1986). “Bidding for contracts”. Management Science 32.12, pp. 1533–

1550.

Geoffrion, Arthur M (1972). “Generalized benders decomposition”. Journal of optimization

theory and applications 10.4, pp. 237–260.

Conforti, Michele, Gérard Cornuéjols, Giacomo Zambelli, et al. (2014). Integer programming.

Vol. 271. Springer.

Buchholz, Peter and Dimitri Scheftelowitsch (2019). “Computation of weighted sums of

rewards for concurrent MDPs”. Mathematical Methods of Operations Research 89.1,

pp. 1–42.

112

Daoui, Cherki, Mohamed Abbad, and Mohamed Tkiouat (2010). “Exact decomposition

approaches for Markov decision processes: A survey”. Advances in Operations Research

2010.

Ross, Keith W and Ravi Varadarajan (1991). “Multichain Markov decision processes with a

sample path constraint: A decomposition approach”. Mathematics of Operations Research

16.1, pp. 195–207.

Abbad, Mohammed and Hatim Boustique (2003). “A decomposition algorithm for limiting

average Markov decision problems”. Operations Research Letters 31.6, pp. 473–476.

Larach, Abdelhadi, S Chafik, and C Daoui (2017). “Accelerated decomposition techniques

for large discounted Markov decision processes”. Journal of Industrial Engineering

International 13.4, pp. 417–426.

Bai, Aijun, Feng Wu, and Xiaoping Chen (2015). “Online planning for large markov decision

processes with hierarchical decomposition”. ACM Transactions on Intelligent Systems

and Technology (TIST) 6.4, pp. 1–28.

Fu, Jie, Shuo Han, and Ufuk Topcu (2015). “Optimal control in Markov decision processes via

distributed optimization”. 2015 54th IEEE Conference on Decision and Control (CDC).

IEEE, pp. 7462–7469.

Chen, Peng and Lu Lu (2013). “Markov decision process parallel value iteration algorithm

on GPU”. 2013 International Conference on Information Science and Computer Appli-

cations (ISCA 2013). Atlantis Press, pp. 299–304.

Chafik, Sanaa and Cherki Daoui (2015). “A Modified Value Iteration Algorithm for Dis-

counted Markov Decision Processes”. Journal of Electronic Commerce in Organizations

(JECO) 13.3, pp. 47–57.

Bertsimas, Dimitris and Velibor V Mǐsić (2016). “Decomposable markov decision processes:

A fluid optimization approach”. Operations Research 64.6, pp. 1537–1555.

Kushner, H and Ching-Hui Chen (1974). “Decomposition of systems governed by Markov

chains”. IEEE transactions on Automatic Control 19.5, pp. 501–507.

Dean, Thomas and Shieu-Hong Lin (1995). “Decomposition techniques for planning in

stochastic domains”. IJCAI. Vol. 2. Citeseer, p. 3.

113

Dantzig, George B and Philip Wolfe (1960). “Decomposition principle for linear programs”.

Operations research 8.1, pp. 101–111.

Rebennack, Steffen (2016). “Combining sampling-based and scenario-based nested Benders

decomposition methods: application to stochastic dual dynamic programming”. Mathe-

matical Programming 156.1-2, pp. 343–389.

Dimitrov, Nedialko B and David P Morton (2009). “Combinatorial design of a stochastic

Markov decision process”. Operations Research and Cyber-Infrastructure. Springer,

pp. 167–193.

Regan, Kevin and Craig Boutilier (2012). “Regret-based reward elicitation for Markov

decision processes”. arXiv preprint arXiv:1205.2619.

Vickson, Raymond G, Elkafi Hassini, and Nader Azad (2020). “A Benders decomposition

approach to product location in carousel storage systems”. Annals of Operations Research

284.2, pp. 623–643.

Rokhforoz, Pegah and Olga Fink (2021). “Distributed joint dynamic maintenance and

production scheduling in manufacturing systems: Framework based on model predictive

control and Benders decomposition”. Journal of Manufacturing Systems 59, pp. 596–606.

Steimle, Lauren N, Vinayak S Ahluwalia, Charmee Kamdar, and Brian T Denton (2021a).

“Decomposition methods for solving Markov decision processes with multiple models of

the parameters”. IISE Transactions, pp. 1–58.

Warrington, Joseph, Paul N Beuchat, and John Lygeros (2019). “Generalized dual dynamic

programming for infinite horizon problems in continuous state and action spaces”. IEEE

Transactions on Automatic Control 64.12, pp. 5012–5023.

Warrington, Joseph (2019). “Learning continuous Q-functions using generalized Benders

cuts”. 2019 18th European Control Conference (ECC). IEEE, pp. 530–535.

Puterman, Martin L and Moon Chirl Shin (1978). “Modified policy iteration algorithms for

discounted Markov decision problems”. Management Science 24.11, pp. 1127–1137.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction.

MIT press.

114

Almasi, George S and Allan Gottlieb (1994). Highly parallel computing. Benjamin-Cummings

Publishing Co., Inc.

Krishnamurthy, Vikram (2016). Partially observed Markov decision processes. Cambridge

university press.

Alagoz, Oguzhan, Lisa M Maillart, Andrew J Schaefer, and Mark S Roberts (2007).

“Determining the acceptance of cadaveric livers using an implicit model of the waiting

list”. Operations Research 55.1, pp. 24–36.

Shi, Yue, Yisha Xiang, and Mingyang Li (2019). “Optimal maintenance policies for multi-

level preventive maintenance with complex effects”. IISE Transactions 51.9, pp. 999–

1011.

Asadi, Amin and Sarah Nurre Pinkley (2021). “A Monotone Approximate Dynamic Program-

ming Approach for the Stochastic Scheduling, Allocation, and Inventory Replenishment

Problem: Applications to Drone and Electric Vehicle Battery Swap Stations”. arXiv

preprint arXiv:2105.07026.

Zhuang, Weifen and Michael ZF Li (2012). “Monotone optimal control for a class of Markov

decision processes”. European journal of operational research 217.2, pp. 342–350.

Mattila, Robert, Cristian R Rojas, Vikram Krishnamurthy, and Bo Wahlberg (2017).

“Computing monotone policies for Markov decision processes: a nearly-isotonic penalty

approach”. IFAC-PapersOnLine 50.1, pp. 8429–8434.

Lee, Ilbin, Marina A Epelman, H Edwin Romeijn, and Robert L Smith (2017). “Simplex al-

gorithm for countable-state discounted Markov decision processes”. Operations Research

65.4, pp. 1029–1042.

Braverman, Anton, Itai Gurvich, and Junfei Huang (2020). “On the Taylor expansion of

value functions”. Operations Research 68.2, pp. 631–654.

Chadès, Iadine, Guillaume Chapron, Marie-Josée Cros, Frédérick Garcia, and Régis Sabbadin

(2014). “MDPtoolbox: a multi-platform toolbox to solve stochastic dynamic programming

problems”. Ecography 37.9, pp. 916–920.

The Cybersecurity and Infrastructure Security Agency (2021). Critical Infrastructure

Sectors. url: https://www.cisa.gov/critical-infrastructure-sectors.

115

https://www.cisa.gov/critical-infrastructure-sectors

Ouyang, Min (2014). “Review on modeling and simulation of interdependent critical

infrastructure systems”. Reliability Engineering and System Safety 121, pp. 43–60.

U.S. Department of Energy (2021). August 2003 Blackout. url: https://www.energy.gov/

oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout.

Yusta, Jose M., Gabriel J. Correa, and Roberto Lacal-Arántegui (2011). “Methodologies

and applications for critical infrastructure protection: State-of-the-art”. Energy Policy

39, pp. 6100–6119.

Ouyang, Min (2017). “A mathematical framework to optimize resilience of interdependent

critical infrastructure systems under spatially localized attacks”. European Journal of

Operational Research 262, pp. 1072–1084.

Ghorbani-Renani, Nafiseh, Andrés D González, Kash Barker, and Nazanin Morshedlou

(2020). “Protection-interdiction-restoration: Tri-level optimization for enhancing inter-

dependent network resilience”. Reliability Engineering & System Safety 199, p. 106907.

Galbusera, Luca, Paolo Trucco, and Georgios Giannopoulos (2020). “Modeling interdepen-

dencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach”.

Reliability Engineering & System Safety 203, p. 107072.

Ouyang, Min and Yiping Fang (2017). “A mathematical framework to optimize critical infras-

tructure resilience against intentional attacks”. Computer-Aided Civil and Infrastructure

Engineering 32.11, pp. 909–929.

Fang, Yi-Ping and Enrico Zio (2019). “An adaptive robust framework for the optimization of

the resilience of interdependent infrastructures under natural hazards”. European Journal

of Operational Research 276.3, pp. 1119–1136.

Brown, Gerald, Matthew Carlyle, Javier Salmerón, and Kevin Wood (2006). “Defending

Critical Infrastructure”. INFORMS Journal on Applied Analytics 36.6, pp. 530–544.

Baykal-Güersoy, Melike, Zhe Duan, H Vincent Poor, and Andrey Garnaev (2014). “Infras-

tructure security games”. European Journal of Operational Research 239.2, pp. 469–478.

Ferdowsi, Aidin, Anibal Sanjab, Walid Saad, and Narayan B Mandayam (2017). “Game

theory for secure critical interdependent gas-power-water infrastructure”. 2017 Resilience

Week (RWS). IEEE, pp. 184–190.

116

https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout
https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout

Ma, Chris YT, David KY Yau, and Nageswara SV Rao (2013b). “Scalable solutions of

Markov games for smart-grid infrastructure protection”. IEEE Transactions on Smart

Grid 4.1, pp. 47–55.

Ma, Chris Y. T., David K. Y. Yau, Xin Lou, and Nageswara S. V. Rao (2013a). “Markov

Game Analysis for Attack-Defense of Power Networks Under Possible Misinformation”.

IEEE Transactions on Power Systems 28.2, pp. 1676–1686.

Kaplan, Edward H, Moshe Kress, and Roberto Szechtman (2010). “Confronting entrenched

insurgents”. Operations Research 58.2, pp. 329–341.

Zhuang, Jun, Vicki M Bier, and Oguzhan Alagoz (2010). “Modeling secrecy and deception

in a multiple-period attacker–defender signaling game”. European Journal of Operational

Research 203.2, pp. 409–418.

Hausken, Kjell and Jun Zhuang (2011). “Governments’ and terrorists’ defense and attack in

a T-period game”. Decision Analysis 8.1, pp. 46–70.

Shan, Xiaojun and Jun Zhuang (2013). “Hybrid defensive resource allocations in the face of

partially strategic attackers in a sequential defender–attacker game”. European Journal

of Operational Research 228.1, pp. 262–272.

Jose, Victor Richmond R and Jun Zhuang (2013). “Technology adoption, accumulation, and

competition in multiperiod attacker-defender games”. Military Operations Research 18.2,

pp. 33–47.

Chang, Yanling, Alan L Erera, and Chelsea C White (2015). “A leader–follower partially

observed, multiobjective Markov game”. Annals of Operations Research 235.1, pp. 103–

128.

Rass, Stefan and Quanyan Zhu (2016). “GADAPT: a sequential game-theoretic framework

for designing defense-in-depth strategies against advanced persistent threats”. Interna-

tional conference on decision and game theory for security. Springer, pp. 314–326.

Shan, Xiaojun and Jun Zhuang (2018). “Modeling cumulative defensive resource allocation

against a strategic attacker in a multi-period multi-target sequential game”. Reliability

Engineering & System Safety 179, pp. 12–26.

Tullock, Gordon (2001). “Efficient rent seeking”. Efficient rent-seeking. Springer, pp. 3–16.

117

Skaperdas, Stergios (1996). “Contest success functions”. Economic theory 7.2, pp. 283–290.

U.S. Department of Homeland Security (2022). Homeland Infrastructure Foundation-Level

Data. url: https://hifld-geoplatform.opendata.arcgis.com/.

Public Service Commission of Wisconsin (2021). Underground Electric Transmission Lines.

Tech. rep. https : / / psc . wi . gov / Documents / Brochures / Under % 20Ground %

20Transmission.pdf.

Google (2022). Google Maps Platform Distance Matrix API. url: https://developers.google.

com/maps/documentation/distance-matrix/overview.

CareerExplorer (2022). Security guard salary in Tennessee. url: https://www.careerexplorer.

com/careers/security-guard/salary/tennessee/.

U.S. Census Bureau (2020). Demographic Profile from 2020 Census, Knoxville city, Ten-

nessee. Tech. rep. https://data.census.gov/cedsci/profile?g=1600000US4740000.

Salman, Abdullahi M and Yue Li (2018). “A probabilistic framework for multi-hazard risk

mitigation for electric power transmission systems subjected to seismic and hurricane

hazards”. Structure and Infrastructure Engineering 14.11, pp. 1499–1519.

Conrad, Stephen H, Rene J LeClaire, Gerard P O’Reilly, and Huseyin Uzunalioglu (2006).

“Critical national infrastructure reliability modeling and analysis”. Bell Labs Technical

Journal 11.3, pp. 57–71.

Apenteng, Bettye A, Samuel T Opoku, Daniel Ansong, Emmanuel A Akowuah, and Evans

Afriyie-Gyawu (2018). “The effect of power outages on in-facility mortality in healthcare

facilities: evidence from Ghana”. Global Public Health 13.5, pp. 545–555.

Hirth, Richard A, Michael E Chernew, Edward Miller, A Mark Fendrick, and William G

Weissert (2000). “Willingness to pay for a quality-adjusted life year: in search of a

standard”. Medical decision making 20.3, pp. 332–342.

Murphy, Sherry L, Kenneth D Kochanek, Jiaquan Xu, and Elizabeth Arias (2021). “Mortality

in the United States, 2020”. NCHS Data Brief 427. url: https://www.cdc.gov/nchs/

products/databriefs/db427.htm.

118

https://hifld-geoplatform.opendata.arcgis.com/
https://psc.wi.gov/Documents/Brochures/Under%20Ground%20Transmission.pdf
https://psc.wi.gov/Documents/Brochures/Under%20Ground%20Transmission.pdf
https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
https://www.careerexplorer.com/careers/security-guard/salary/tennessee/
https://www.careerexplorer.com/careers/security-guard/salary/tennessee/
https://data.census.gov/cedsci/profile?g=1600000US4740000
https://www.cdc.gov/nchs/products/databriefs/db427.htm
https://www.cdc.gov/nchs/products/databriefs/db427.htm

Sun, Ruirui, Zeynal Karaca, and Herbert S Wong (2018). Trends in hospital inpatient stays

by age and payer, 2000–2015: statistical brief# 235. url: https://www.hcup-us.ahrq.

gov/reports/statbriefs/sb235-Inpatient-Stays-Age-Payer-Trends.jsp.

Centers for Disease Control and Prevention (2017). Hospitals, beds, and occupancy rates,

by type of ownership and size of hospital: United States, selected years 1975–2015. url:

https://www.cdc.gov/nchs/data/hus/2017/089.pdf.

Tennessee Bureau of Investigation (2022). CrimeInsight. url: https://www.tn.gov/tbi/

divisions/cjis-division/tncrimeonline.html.

McCollister, Kathryn E, Michael T French, and Hai Fang (2010). “The cost of crime to

society: New crime-specific estimates for policy and program evaluation”. Drug and

alcohol dependence 108.1-2, pp. 98–109.

Haynes, Hylton JG and Gary P Stein (2017). US fire department profile 2015. National Fire

Protection Association Quincy, MA.

Federal Emergency Management Agency (2020). FEMA benefit-cost analysis re-engineering

(BCAR): Development of standard economic values version 6.0. Tech. rep. https://www.

fema.gov/sites/default/files/2020-08/fema bca toolkit release-notes-july-2020.pdf.

Ericson, Sean and Lars Lisell (2020). “A flexible framework for modeling customer damage

functions for power outages”. Energy Systems 11.1, pp. 95–111.

U.S. Fire Administration (2022). Tennessee Fire Loss and Fire Department Profile. url:

https://www.usfa.fema.gov/data/statistics/states/tennessee.html#fatalities.

119

https://www.hcup-us.ahrq.gov/reports/statbriefs/sb235-Inpatient-Stays-Age-Payer-Trends.jsp
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb235-Inpatient-Stays-Age-Payer-Trends.jsp
https://www.cdc.gov/nchs/data/hus/2017/089.pdf
https://www.tn.gov/tbi/divisions/cjis-division/tncrimeonline.html
https://www.tn.gov/tbi/divisions/cjis-division/tncrimeonline.html
https://www.fema.gov/sites/default/files/2020-08/fema_bca_toolkit_release-notes-july-2020.pdf
https://www.fema.gov/sites/default/files/2020-08/fema_bca_toolkit_release-notes-july-2020.pdf
https://www.usfa.fema.gov/data/statistics/states/tennessee.html#fatalities

Appendix

120

Appendix A

MDP Benchmarking Problems

In the following, we introduce the four benchmarking problems from the literature.

Specifically, we consider a queueing problem (de Farias and Van Roy 2003), an inventory

management problem (Puterman 2014; Lee et al. 2017), a machine maintenance problem

(Puterman 2014), and a data transmission problem (Krishnamurthy 2016). The equipment

replacement problem and the data transmission problem are modified from their original

form to allow arbitrary numbers of states and actions. For simplicity, key notation defined

in each of the following problems, such as states, actions or certain parameters, may be

repeatedly used.

A.1 The Queueing Problem

Consider a queue with N vacancies. Identical jobs are arriving in the queue at a rate

p. Each job can be served using one of M services, with a probability q ∈ {q1, · · · , qM} of

completing the job. At each decision epoch t = 0, 1, · · · ,∞, the state of the system st ∈ S :=

{0, 1, · · · , N} is the number of jobs left in the queue, and the action at ∈ A := {1, 2, · · · ,M}

denotes which service to choose. The transition probability T (s′|s, a) is defined based on the

121

current state s. When s = 0,

T (s′|0, a) =

1− p if s′ = 0,

p if s′ = 1,

0 otherwise.

(A.1.1)

When s = N ,

T (s′|N, a) =

qa if s′ = N − 1,

1− qa if s′ = N,

0 otherwise.

(A.1.2)

Finally, when 2 ≤ s ≤ N − 1,

T (s′|s, a) =

(1− p) · qa if s′ = s− 1,

(1− p) · (1− qa) + p · qa if s′ = s,

p · (1− qa) if s′ = s+ 1,

0 otherwise.

(A.1.3)

The reward functions R(s, a) is increasing in both s and a.

The problem is calibrated using parameters from the literature (de Farias and Van Roy

2003). The number of states and actions are specified by the experiments. We let p = 0.2

and draw the distribution of q uniformly from [0, 1], ensuring that q1 ≤ q2 ≤ · · · ≤ qM . We

use the reward function R(s, a) = s+ 60 · a3.

A.2 The Inventory Management Problem

Consider an inventory of size N . At the beginning of the decision epoch t, the decision maker

decides how many products to purchase and store in the inventory. Then, products in the

122

inventory are used to satisfy customer demands at the end of the decision epoch. The state

of the system st ∈ S := {0, 1, · · · , N} denotes the number of products in the inventory and

the action at ∈ A := {0, 1, · · · , N} denotes the number of products to purchase. Note that

at each decision epoch, at must satisfy st + at ≤ N . Let p(k), k ∈ {0, 1, · · · , N} denotes

the probability of a demand of k products and q(k) =
∑N

j=k p(j) is thus the probability

of a demand of at least k products. Then, the transition probability T (s′|s, a) can be

characterized as

T (s′|s, a) =

0 if s+ a− s′ < 0,

p(s+ a− s′) if s+ a− s′ ≥ 0 and s′ > 0,

q(s+ a) otherwise.

(A.2.1)

The reward is composed of several parts. Let b be the unit selling price of the product; K

the fixed cost of ordering; c the unit cost of the product and h the unit holding cost of the

product. The total reward is the selling revenue minus the ordering costs and the holding

costs, i.e.,

R(s, a) = F (s+ a)−O(a)− h · (s+ a), (A.2.2)

where F (s+ a) is the expected revenue from selling the products,

F (s+ a) =
s+a−1∑
j=0

b · j · p(j) + b · (s+ a) · q(s+ a), (A.2.3)

O(a) is the ordering cost,

O(a) =

0 if a=0,

K + c · a otherwise,

(A.2.4)

and h · (s+ a) is the holding cost.

123

The problem is calibrated using parameters from the literature (Lee et al. 2017). The

selling price b is uniformly sampled between 10 and 15; the fixed cost K is uniformly sampled

between 3 and 5; the unit cost c is uniformly sampled between 5 and 7; the holding cost h

is uniformly sampled between 0.1 and 0.2. The demand follows a Poisson distribution with

expectation 1
2
N .

A.3 The Machine Maintenance Problem

Consider a machine with N + 1 states. At each decision epoch t, the decision maker has

the option to maintain the machine with M maintenance methods. Different maintenance

methods show different effectiveness on the machine’s operational condition, but also cost

differently. The state of the system is st ∈ S := {0, 1, · · · , N}, where 0 represents the

best condition and N the worse condition. The action at ∈ A := {0, 1, · · · ,M} represents

which maintenance methods to use, where 0 suggests no maintenance. The cost and the

effectiveness of maintenance increase with the action. At each epoch, the machine degrades

from state s to s′ with probability p(s′, s). Then, by taking an action at, the machine can be

restored to condition 0 with probability q(a). Thus, when at = 0, the transition probability

T (s′|s, 0) = p(s′, s). When at = 1, 2, ·,M , the transition probability

T (s′|s, a) =

q(a) · p(s′, 0) if s′ < s,

q(a) · p(s′, 0) + (1− q(a)) · p(s′, s) otherwise.

(A.3.1)

The reward is calculated as the machine’s fixed reward Cr minus the operational cost Co(s)

and the maintenance cost Cm(a), i.e., R(s, a) = Cr − Co(s) − Cm(a). The operational cost

Co(s) is increasing in s and the maintenance cost Cm(a) is increasing in a.

The problem is calibrated as follows. The degradation probability p(s′, s) is uniformly

sampled with the increasing failure rate property. The restoration probability q(a) is

uniformly sampled with q(0) = 0 and the ordering q(1) ≤ q(2) ≤ · · · q(M). We let the

124

fixed reward Cr = 1
2
N . The operational cost Co(s) is uniformly drawn between 0 and 3

4
N ,

with ordering that Co(0) ≤ Co(1) ≤ · · ·Co(N). The maintenance cost Cm(a) = 1
10
N · a.

A.4 The Data Transmission Problem

Consider a transmission channels with N conditions and M packages to transmit. The

decision maker has the option to choose from K transmission options, or does not transmit

at all. The transmission success rate is positively correlated to the channel condition and

transmission option. Condition of the channel chances independent of the transmission

actions. The goal is to transmit all packages as soon as possible. The state of the system

st := (a, b) is the combination of channel condition a = 1, 2, · · · , N and the number of

packages b = 0, 1, · · · ,M . Thus, there are in total N · (M + 1) states. The action at ∈ A :=

{0, 1, · · · , K} represents which transmission option to use, where 0 represents not to transmit

the package. Each transmission option corresponds to a success rate p(s(0), a) under the state

s, where p(s(0), a) is increasing in both s(0) and a. The channel condition transitions from

s(0) to s′(0) independent of the transmission options, with probability q(s′(0), s(0)). Thus,

when a = 0, the transition probability

T (s′|s, 0) =

q(s
′(0), s(0)) if s(1) = s′(1),

0 otherwise.

(A.4.1)

When a ≥ 1, the transition probability

T (s′|s, a) =

q(s′(0), s(0)) if s(1) = s′(1) = 0,

(1− p(s(0), a)) · q(s′(0), s(0)) if s(1) = s′(1) 6= 0,

p(s(0), a) · q(s′(0), s(0)) if s(1)− 1 = s′(1),

0 otherwise.

(A.4.2)

125

The reward function consists of two parts: the package holding cost Ch(s(1)) ≥ 0 and the

transmission cost Ct(a) ≥ 0, where Ch(s(1)) is increasing in s(1) and Ct(a) is increasing in

a. The reward R(s, a) = −Ch(s(1)) if a = 0 and R(s, a) = −Ch(s(1))− Ct(a) otherwise.

The problem is calibrated as follows. The transmission success rate p(s(0), a) is uniformly

drawn with a constraint to be increasing in both s(0) and a. The channel condition transition

q(s′(0), s(0)) is uniformly drawn. We let Ch(s(1)) = ch · s(1), where ch is uniformly sampled

between 0 and 5. We let Ct(0) = 0 and uniformly sample Ct(a) between 5 and 15, with an

ordering Ct(1) ≤ C(2) ≤ · · · ≤ Ct(K).

126

Appendix B

LSSD Benchmarking Problems

In the following, we extend the four benchmarking problems described in Appendix A for

the SSSD framework.

B.1 The Queueing Problem

As discussed, in queue, we consider a single server, with m types of service rates. Customers

arrive at the rate p. Here, the strategic decision is to establish a “waiting area” before the

service begins, i.e., decide on the capacity of the queue. A larger queue capacity means that

more customers can be served, but is associated with higher costs. A shorter queue reduces

the cost, but also faces potential losses of demand when there is no vacancy in the queue.

In the following formulation, we let x, 0 ≤ x ≤ n be the queue capacity, where n is the

maximum queue capacity, representing an upper bound on x. The operational decisions in

the second stage are the service rate at each time t = 0, 1, . . . ,∞. The second stage variable

ys,a ≥ 0 denotes how many times a service a is used under the state (queue length) s. The

objective of the model is to minimize the total cost. For consistency, we still use a max

objective:

max − c · x+
∑
s∈S

∑
a∈A

rs,ays,a (B.1.1)

127

(B.1.2)

In order to define the transition probability and the reward, we require binary auxiliary

variables to decide the relationship between x and s. We let ζs = 1 if s < x, and 0 otherwise;

δs = 1 if s = x, and 0 otherwise; σs = 1 if s > x, and 0 otherwise. The constraints between

x and the auxiliary variables can be defined as follows

M · ζs ≥ (x− 1

2
)− s ∀ s ∈ S; (B.1.3)

M · (ζs − 1) ≤ (x− 1

2
)− s ∀ s ∈ S; (B.1.4)

M · σs ≥ s− (x+
1

2
) ∀ s ∈ S; (B.1.5)

M · (σs − 1) ≤ s− (x+
1

2
) ∀ s ∈ S; (B.1.6)

M · (δs − 1) ≤ s− (x− 1

2
) ∀ s ∈ S; (B.1.7)

M · (δs − 1) ≤ (x+
1

2
) ∀ s ∈ S; (B.1.8)∑

s∈S

δs = 1. (B.1.9)

To model the loss of demand due to small queue capacity, we define a parameter ψ =

2000, representing the economic loss of losing a customer. Using the auxiliary variables, the

constraints regarding τ and r can be modeled as follows

τs′,s,a = 1− p ∀ s = 0, s′ = 0, s, s′ ∈ S, a ∈ A; (B.1.10)

τs′,s,a = p ∀ s = 0, s′ = 1, s, s′ ∈ S, a ∈ A; (B.1.11)

τs′,s,a = δs · qa + ζs(1− p)qa ∀ s ≥ 1, s′ = s− 1, s, s′ ∈ S, a ∈ A; (B.1.12)

τs′,s,a = δs · (1− qa) + ζs[(1− p)(1− qa) + pqa] + σs ∀ s ≥ 1, s′ = s, s, s′ ∈ S, a ∈ A;

(B.1.13)

τs′,s,a = ζs · p · (1− qa) ∀ s ≥ 1, s′ = s+ 1, s, s′ ∈ S, a ∈ A; (B.1.14)

rs,a = (1− σs)[−(s+ 60 · q3
a)− ψ · δs] ∀ s = 0, s ∈ S, a ∈ A; (B.1.15)

128

rs,a = (1− σs)[−(s+ 60 · q3
a)− ψ · (1− qa) · p · δs] ∀ s 6= 0, s ∈ S, a ∈ A. (B.1.16)

Lastly, the operational decisions are solved using the MDP constraint

∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs′,s,ays,a = αs ∀ s ∈ S. (B.1.17)

B.2 The Inventory Management Problem

In inventory, the strategic decision is to decide the optimal inventory capacity, so that

future customer demand can be satisfied. We use x ∈ N+, 0 ≤ x ≤ N to denote the

inventory capacity, where N is the maximum inventory capacity. Other parameters of the

model follow what was shown in Appendix A.2. We let β be the cost of unit inventory space.

The objective of the problem can be written as

max −βx+
∑
s∈S

∑
a∈A

rs,ays,a. (B.2.1)

To formulate the constraints for the inventory problem, we first introduce the following

auxiliary variables:

• δs,a ∈ {0, 1}, ∀ s ∈ S, a ∈ A: whether s+ a > x;

• σs ∈ {0, 1}, ∀ s ∈ S: whether s > x;

• ζs,s′ ∈ {0, 1}, ∀ s, s′ ∈ S: whether s′ = x− s;

• ωs ∈ {0, 1}, ∀ s ∈ S: whether s = x.

Due to the complexity of the transition probability and the reward of inventory, we further

define λis′,s,a ∈ {0, 1}, ∀ i = 1, . . . , 7, s, s′ ∈ S, a ∈ A and µjs,a,s′ ∈ {0, 1}, ∀ j = 1, 2, 3, s, s′ ∈

S, a ∈ A to help distinguish different scenarios. For the transition probability, λ describes

seven scenarios. Note that non-negative customer demand ensures that s+ a < s′, on which

the following scenarios are based:

129

1. λ1
s′,s,a = 1 if s > x, s′ = s;

2. λ2
s′,s,a = 1 if s > x, s′ 6= s;

3. λ3
s′,s,a = 1 if s ≤ x, s′ > x;

4. λ4
s′,s,a = 1 if s ≤ x, 0 < s′ ≤ x, s+ a ≤ x;

5. λ5
s′,s,a = 1 if s ≤ x, 0 < s′ ≤ x, s+ a > x;

6. λ6
s′,s,a = 1 if s ≤ x, s′ = 0, s+ a ≤ x;

7. λ7
s′,s,a = 1 if s ≤ x, s′ = 0, s+ a > x.

For the rewards, the following three conditions are distinguished using the variable µ:

1. µ1
s,a,s′ = 1, if s′ ≤ x;

2. µ2
s,a,s′ = 1, if s′ > x, s+ a > x;

3. µ3
s,a,s′ = 1, if s′ > x, s+ a ≤ x.

Now, we present all the constraints of inventory. First, we show constraints associated

with variables δ, σ, ζ, and ω:

Mδs,a ≥ s+ a− (x+
1

2
) ∀ s ∈ S, a ∈ A; (B.2.2)

M(δs,a − 1) ≤ s+ a− (x+
1

2
) ∀ s ∈ S, a ∈ A; (B.2.3)

Mσs ≥ s− (x+
1

2
) ∀ s ∈ S; (B.2.4)

M(σs − 1) ≤ s− (x+
1

2
) ∀ s ∈ S; (B.2.5)

σs +
∑
s′

ζs,s′ ≥ 1 ∀ s ∈ S; (B.2.6)

M(ζs,s′ − 1) ≤ (x+
1

2
)− (s+ s′) ∀ s ∈ S; (B.2.7)

M(ζs,s′ − 1) ≤ (s+ s′)− (x− 1

2
) ∀ s ∈ S; (B.2.8)∑

s∈S

ωs = 1; (B.2.9)

130

M(ωs − 1) ≤ s− (x− 1

2
) ∀ s ∈ S; (B.2.10)

M(ωs − 1) ≤ (x+
1

2
)− s ∀ s ∈ S. (B.2.11)

Next, we show constraints used to calculate λ:

λ1
s′,s,a = σs ∀ s, s′ ∈ S, s′ = s, a ∈ A; (B.2.12)

λ1
s′,s,a = 0 ∀ s, s′ ∈ S, s′ 6= s, a ∈ A; (B.2.13)

λ2
s′,s,a = 0 ∀ s, s′ ∈ S, s′ = s, a ∈ A; (B.2.14)

λ2
s′,s,a = σs ∀ s, s′ ∈ S, s′ 6= s, a ∈ A; (B.2.15)

λ3
s′,s,a ≥ (σs′ + (1− σs))−

3

2
∀ s, s′ ∈ S, a ∈ A; (B.2.16)

λ3
s′,s,a ≤

1

2
· (σs′ + (1− σs)) ∀ s, s′ ∈ S, a ∈ A; (B.2.17)

λ4
s′,s,a = 0 ∀ s,∈ S, s′ = 0, a ∈ A; (B.2.18)

λ4
s′,s,a ≥ [(1− σs′) + (1− σs) + (1− δs,a)]−

5

2
∀ s, s′ ∈ S, s′ 6= 0, a ∈ A; (B.2.19)

λ4
s′,s,a ≤

1

3
· [(1− σs′) + (1− σs) + (1− δs,a)] ∀ s, s′ ∈ S, s′ 6= 0, a ∈ A; (B.2.20)

λ5
s′,s,a = 0 ∀ s,∈ S, s′ = 0, a ∈ A; (B.2.21)

λ5
s′,s,a ≥ [(1− σs′) + (1− σs) + δs,a]−

5

2
∀ s, s′ ∈ S, s′ 6= 0, a ∈ A; (B.2.22)

λ5
s′,s,a ≤

1

3
· [(1− σs′) + (1− σs) + δs,a] ∀ s, s′ ∈ S, s′ 6= 0, a ∈ A; (B.2.23)

λ6
s′,s,a = 0 ∀ s,∈ S, s′ 6= 0, a ∈ A; (B.2.24)

λ6
s′,s,a ≥ [(1− σs′) + (1− σs) + (1− δs,a)]−

5

2
∀ s, s′ ∈ S, s′ = 0, a ∈ A; (B.2.25)

λ6
s′,s,a ≤

1

3
· [(1− σs′) + (1− σs) + (1− δs,a)] ∀ s, s′ ∈ S, s′ = 0, a ∈ A; (B.2.26)

λ7
s′,s,a = 0 ∀ s,∈ S, s′ 6= 0, a ∈ A; (B.2.27)

λ7
s′,s,a ≥ [(1− σs′) + (1− σs) + δs,a]−

5

2
∀ s, s′ ∈ S, s′ = 0, a ∈ A; (B.2.28)

λ7
s′,s,a ≤

1

3
· [(1− σs′) + (1− σs) + δs,a] ∀ s, s′ ∈ S, s′ = 0, a ∈ A. (B.2.29)

131

The transition probability can then be calculated using the following constraints:

τs′,s,a = 0 ∀ s, s′ ∈ S, a ∈ A, s+ a− s′ < 0; (B.2.30)

τs′,s,a = λ1
s′,s,a · 1 + λ2

s′,s,a · 0 + λ3
s′,s,a · 0 + λ4

s′,s,a · p(s+ a− s′) + λ5
s′,s,a ·

∑
s̄∈S

ζs′,s̄ · p(s̄)

+ λ6
s′,s,a · q(s+ a) + λ7

s′,s,a ·
∑
s̄∈S

ωs̄ · q(s̄) ∀ s, s′ ∈ S, a ∈ A, s+ a− s′ ≥ 0; (B.2.31)

∑
s′

τs′,s,a = 1 ∀ s ∈ S, a ∈ A. (B.2.32)

Similarly, the following constraints calculate the values of µ and r:

µ1
s,a,s′ = 1− σs′ ∀ s, s′ ∈ S, a ∈ A; (B.2.33)

µ2
s,a,s′ ≥ (σs′ + δs,a)−

3

2
∀ s, s′ ∈ S, a ∈ A; (B.2.34)

µ2
s,a,s′ ≥

1

2
· (σs′ + δs,a) ∀ s, s′ ∈ S, a ∈ A; (B.2.35)

µ3
s,a,s′ ≥ [σs′ + (1− δs,a)]−

3

2
∀ s, s′ ∈ S, a ∈ A; (B.2.36)

µ3
s,a,s′ ≥

1

2
· [σs′ + (1− δs,a)] ∀ s, s′ ∈ S, a ∈ A; (B.2.37)

rs,a =
∑
s′∈S

[
µ1
s,a,s′ · b · s′ · p(s′) + µ2

s,a,s′ · b · x · p(s′) + µ3
s,a,s′ · b · (s+ a) · p(s+ a)

]

−

K + c · a a 6= 0

0 a = 0

− h(s+ a)(1− δs,a)− h · x · δs,a ∀ s ∈ S, a ∈ A. (B.2.38)

Finally, the operational decisions are solved using the MDP constraints

∑
a∈A

ys,a − γ
∑
a∈A

∑
s′∈S

τs′,s,ays,a = αs ∀ s ∈ S. (B.2.39)

132

Vita

Zeyu Liu was born on February 27, 1996, in Nanjing, China. He attended Chaha’er Road

Elementary School from six to twelve, where he played on the school’s baseball team and

won first place in a city-wide competition with his team. Zeyu was later admitted to Nanjing

No.9 Middle school and participated in many student service and administration programs.

After three years of study, Zeyu entered Nanjing No. 13 High School, located by the side

of the glamorous Xuanwu Lake, at the foot of the ancient city walls and the emerald Zijin

Mountain. High school life was stressful yet versatile. To everyone’s surprise, including

himself, Zeyu performed extraordinarily in the National College Entrance Examination in

2014. He received and accepted the offer from the School of Economics and Management,

at Southeast University, descendent of one of the oldest, and most renowned universities

in China. In college, Zeyu studied and had fun, served student communities and joined

hobby clubs, fell in love and formed bonds with friends. He also learned the basics of

scientific research from Dr. Jia Shu, who provided valuable counseling for his future path.

After graduation from college, Zeyu was admitted to the University of Tennessee, Knoxville

in 2018 as a Ph.D. student, under the advisement of Dr. Xueping Li and Dr. Anahita

Khojandi. Thanks to the guidance from his advisors, Zeyu published his first conference

paper in 2019, and his first journal paper in 2020. Besides research, Zeyu is also an active

gamer who enjoys a variety of video games and board games, a model builder who assembles

and paints models including military warships and Warhammer miniatures, a guitarist, a

movie-lover, and an inline skater. In 2022, Zeyu was hired by the Department of Industrial

133

and Management Systems Engineering, at West Virginia University to become a member of

the faculty. His parents are proud of him.

134

	Optimizing Strategic Planning With Long-term Sequential Decision Making Under Uncertainty: A Decomposition Approach
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	2 Model Formulation
	2.1 MDP
	2.2 Formulation of The LSSD Framework
	2.3 Extension to CMDP
	2.4 Extension to CMDP With Variable Budgets
	2.5 Decomposing The LSSD Framework
	2.6 Discretizing First-stage Decisions

	3 Solution Algorithm
	3.1 The Decomposition of MDP
	3.2 The MCLD Algorithm
	3.3 Mathematical Property
	3.4 Special MDP
	3.4.1 Action-free Transition Probability
	3.4.2 Monotone Optimal Policy
	3.4.3 CMDP

	3.5 The TSBD Method
	3.5.1 INT
	3.5.2 INT-C & INT-VB

	4 Computational Analysis
	4.1 Performance of The MCLD Algorithm
	4.1.1 General MDP
	4.1.2 Microscopic Analysis
	4.1.3 Comparing With VI
	4.1.4 Special MDP

	4.2 Performance of The TSBD Method

	5 Defending Interdependent CIS
	5.1 Current Literature
	5.2 Formulation of the CIS Model
	5.3 Case Study: Knoxville, Tennessee
	5.3.1 Data & Parameter Estimation
	5.3.2 Modified Model Formulation
	5.3.3 Applying The Decomposition Method

	5.4 Case Study: Experiments & Results
	5.4.1 Baseline Model
	5.4.2 Sensitivity Analysis
	5.4.3 Algorithm Comparison

	5.5 Discussion

	6 Conclusion
	Bibliography
	Appendix
	A MDP Benchmarking Problems
	A.1 The Queueing Problem
	A.2 The Inventory Management Problem
	A.3 The Machine Maintenance Problem
	A.4 The Data Transmission Problem

	B LSSD Benchmarking Problems
	B.1 The Queueing Problem
	B.2 The Inventory Management Problem

	Vita

