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ABSTRACT 

 

Techniques such as classical molecular dynamics [MD] simulation provide ready access 

to the thermodynamic data of model material systems. However, the calculation of  the 

Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of 

extracting accurate values of the excess entropy from MD simulation data. 

Thermodynamic integration, a common technique for the calculation of entropy requires 

numerous simulations across a range of temperatures. Alternative approaches to the direct 

calculation of entropy based on functionals of pair correlation functions [PCF] have been 

developed over the years. This work builds upon the functional approach tradition by 

extending the recently developed entropy pair functional theory [EPFT] to three new 

material systems. Direct calculations of entropy for the BCC iron and FCC copper 

(modeled with the modified embedded atom method [MEAM] potential) and the 

Diamond Cubic silicon system (modeled with the Tersoff potential) are compared against 

a target entropy as determined by thermodynamic integration. The sources of and 

correction to the high temperature error in several proposed functional approaches is 

explored in depth. Finally, a working code is provided to the community via Github to 

implement the extended EFPT to compute entropy using trajectory files generated from a 

single simulation. 
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CHAPTER 1  

INTRODUCTION 

 

Motivation  

The calculation of entropy from classical molecular dynamics simulations is a time 

consuming and tedious process. The most common technique among practitioners, 

thermodynamic integration, requires a suite of simulations covering a range of 

temperatures sufficient to calculate entropy at a single temperature of interest. The 

entropy of a solid or liquid system consists of the contribution of entropy of the system as 

an ideal gas and what is referred to as the excess entropy. The entropy of the ideal gas of 

a system can be directly calculated from other easily obtainable thermodynamic values by 

way of the Sackur-Tetrode equation. It is the excess entropy the presents a challenge to 

the practitioner. The well-known equation for change in entropy is shown below. 

 
Δ𝑆 =  ∫

𝐶𝑉

𝑇
𝑑𝑇

𝑇1

𝑇0

 
(1.1) 

 

This equation only provides the difference in entropy between two temperatures. In order 

to obtain the absolute value of entropy at T1, a Δ𝑆 must be calculated and referenced 

from a known absolute value of entropy at T0. In a case where no absolute entropy value 

is available for a system one must be obtained for the ideal gas and the thermodynamic 

integration must be performed across a range of temperatures bounded by the temperature 

of interest and a temperature sufficiently high to ensure that the assumptions of the ideal 

gas hold. For practical materials this temperature range will be quite large, on the order of 

1 to 10 million K. For the modeler in classical molecular dynamics this will require a 

large set of time consuming simulations for a single entropy value.  
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Background 

 

Classical Molecular Dynamics Simulations 

Classical Molecular Dynamics (MD) simulation is a computer modeling technique based 

on classical mechanics that is useful for the modelling of materials at the atomic or 

molecular level. Classical MD simulations solve Newton’s equations of motion to 

determine the positional configuration of a system of atoms or molecules. These positions 

are found for a series of incremental time steps defined by the user. Classical MD 

simulations rely on an interaction potential to determine the forces present between the 

particles in the system. All MD simulations in this proposal refer to classical MD 

simulations. 

The advantage of classical MD simulation over quantum mechanical simulation 

techniques, such as ab initio MD (AIMD) lies in computational efficiency.  Where AIMD 

simulations are generally limited to on the order of 103 atoms, MD simulations are 

routinely performed for 106 atoms.  The disadvantage of classical MD is that the 

interaction potential is an input.  If the interaction potential is not well suited (or well 

parameterized) to a particular property of interest, then the result will be unreliable, per 

the garbage-in/garbage-out principle. 

In principle, the work presented here is equally applicable to either classical MD or 

AIMD simulation, since it relies on structural properties extracted from trajectories.  

However, in practice, we find that the characterization of structure required to reliably 

evaluate the entropy requires system sizes beyond that accessible to AIMD.  Thus in this 

work, the exploration of entropy from atomic simulation is limited to classical MD. 

The Interaction Potential 

One of the simplest interaction potentials is the Lennard-Jones interaction potential 

shown in Figure 1-1. This interaction potential is the combination of a repulsive  
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Figure 1-1. Lennard-Jones interaction potential. 
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component (~ 1 𝑟12⁄ ) and an attractive component, intended to capture the classically 

induced-dipole/induced dipole energy,   (1 𝑟6⁄ ) . When superimposed together these two 

components form the characteristic shape of the interaction potential seen in Figure 1-1. 

At small r the potential rises to infinity and at large r the potential approaches 0. The 

minimum potential energy forms an asymmetrical well that bounds the range of 

physically possible distances that could separate two interacting atoms. For later 

background discussions it is the infinite potential barrier at low r that is of particular 

interest. The manner in which the extremely repulsive component of the potential is 

modeled turns out to be of great importance to the calculation of entropy, though it is of 

little interest for many other thermodynamic and structural properties. 

Entropy Pair Functional Theory 

Boltzmann’s famous entropy equation provides and expression for entropy (S) that is 

only dependent upon the number of microstates (W) in the system. 

 𝑆 = 𝑘𝐵𝑙𝑛𝑊 (1.2) 

 

At the beginning of the twentieth century Gibbs restated Boltzmann’s equation in terms 

of the probability pi of a microstate appearing in the system. 

 𝑆 = −𝑘𝐵 ∑ 𝑝𝑖 𝑙𝑛 𝑝𝑖

𝑖

 
(1.3) 

 

In 1948 Shannon1, in the development of information theory, applied a more fundamental 

form (Boltzmann’s H theory) of the entropy equation to information. Here H is entropy, 

𝑃(𝑥𝑖)  is the probability mass density function of each state 𝑥𝑖. As will be seen shortly, 

the discrete nature of encoding information necessitates the probability mass function 

instead of the more familiar probability density function. 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖)

𝑖

 
(1.4) 
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It is helpful to mention Shannon’s work because his approach with information can be 

reduced to a very simple case that provides some intuition for the somewhat abstract 

concept of entropy in general. For a fair coin toss where there are two possible states 

(heads or tails) each 𝑃(𝑥𝑖) =
1

2
. For two possible states it makes sense to set b = 2 and so 

for the fair coin toss 𝐻(𝑋) evaluates to 1. 1 is the maximum value of H for the fair coin 

toss and it corresponds to the condition of the system when it is the least predictable. Any 

‘unfairness’ of the coin will make the outcome of a toss more predictable and lower the 

entropy of the system. It is ultimately the same for a physical system even though the 

rules that govern the sets of possible states are vastly different. 

Another tool at the disposal of the modern worker is the pair correlation function [PCF]. 

In general the PCF describes the correlation between two atoms. In three-dimensional 

space, the PCF is a function of six coordinates, the x, y and z positions of both atoms. In 

a homogeneous system, the position of the first particle is arbitrary, reducing the 

arguments of the PCF to 3, the difference in x, y and z positions.  If we choose to avoid 

the angular dependence, as would be rigorously justified in an isotropic system, in the 

correlation and instead look only at the radial separation between particles, then the PCF 

is a function of only one variable, 𝑟.  This limited PCF is referred to as the RDF [radial 

distribution function], 𝑔(𝑟). This RDF defined in Equation1.5 below provides the 

probability of finding an atom at a distance r from any atom in the system2. Where  

 𝜌(𝒓1, 𝒓2) = 𝜌𝑔(𝒓1, 𝒓2) (1.5) 

 

Equation 1.5 provides a valuable insight into the role of 𝑔(𝑟). Namely, when the atoms 

of a system are correlated, 𝑔(𝑟) provides a correction to the bulk density 𝜌 to provide the 

𝑟 dependent density 𝜌(𝑟). For large separation between atoms, when there is no 

correlation, 𝜌(𝑟) = 𝜌 (independent of 𝑟) and 𝑔(𝑟) = 1. 

 
∫ 𝜌𝑔(𝑟)4𝜋𝑟2𝑑𝑟 = 𝑁 − 1 ≈ 𝑁

∞

0

 
(1.6) 

This equation states that the integral of an RDF 𝑔(𝑟) time the number density 𝜌 (atoms 
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per unit volume) is equal to the number of atoms in the system minus 1. The minus 1 

resulting from the exclusion of the central atom from which the beforementioned 

distances are calculated. For large N it is common to approximate the integral as being 

equal to N. In addition to the obvious characteristics present in the definition above, the 

RDF is defined such that for large 𝑟 the value of 𝑔(𝑟) = 1. From the perspective of any 

atom chosen as the central atom in a system there is a certain distance after which the 

odds of encountering an atom at that distance are unity.  

In 1938 Kirkwood 3 developed an approximation for the calculation of the RDF that 

provided the ability to develop an expression of the probability density of a system from 

the RDF.  

 P(𝑟𝑁) =
𝜌𝑁

𝑁!
𝑔𝑁(𝑟𝑁) (1.7) 

 

In a more detailed form below the limit to pair interactions is explicit in the form of g and 

in the product 𝑁(𝑁 − 1)/2, the number of unique pairs in a system of N atoms. 

 P(𝑟𝑁) =
𝜌𝑁

𝑁!
Π𝑖,𝑗

𝑁(𝑁−1)/2
𝑔(𝑟𝑖, 𝑟𝑗) (1.8) 

 

This expression paves the way to calculate entropy via the Gibb’s equation directly from 

an RDF. Green and Wallace 4,5 proposed the following expression for excess entropy. 

 
𝑆𝐾

𝑥[𝑔] = −1 + lim
𝑅→∞

1

2
{ − 1 + 𝜌 ∫ 𝑑𝑟�̅�

∞

0

(𝑟)(𝑙𝑛�̅�(r) − (�̅�(𝑟) − 1)) 
(1.9) 

 

Equation (1.9) is a functional of the RDF we will refer to as the Kirkwood entropy. The 

Kirkwood entropy is only accurate for a range of temperatures contained inside the liquid 

region. There are two well defined weaknesses of this functional, it fails to produce the 

correct entropy at high temperatures and it approaches negative infinity as the 

temperature approaches the melt temperature. Nicholson et al. proposed the existence of a 

“universal functional” of unknown form that removes these inadequacies.  Preliminary 
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steps in addressing these shortcomings have been addressed by Nicholson et al. as the 

Entropy Pair Functional Theory6. 

For the high temperature correction it has been established that the error at high 

temperature approaches ½kB/atom as the temperature approaches infinity. Nicholson et 

al. have identified that for very high temperature the restriction to 𝑔(𝑟) = 1 at large 𝑟 is 

no longer valid. 

To understand the high temperature correction, it is informative to investigate the 

characteristics of the Johnson interaction potential that was used in the development of 

the Entropy Pair Functional Theory. Figure 1-2 shows a set of RDFs over a range of 

temperatures. These RDFs were generated from MD simulations that utilized the Johnson 

potential. In contrast to the Lennard-Jones potential discussed earlier, the Johnson 

potential has a finite potential barrier at low 𝑟. 

In Figure 2-2 it is seen that for the lower temperatures there is a region in low r where the 

probability of finding a neighboring atom is zero. This region, created by the potential 

barrier found at low r in the interaction potential, is referred to as the excluded region. 

However, the RDF for 106 K demonstrates non-zero probability even at very low values 

of r. This characteristic is a direct result of the finite barrier in the Johnson potential and 

serves as a helpful visualization for the subsequent discussion of the high temperature 

correction. 

We are now ready to return to the problem of the high temperature error in the Kirkwood 

entropy. Since the integral of the product of 𝜌 and 𝑔(𝑟)  must equal N-1 at any 

temperature, in order for there to be area under the RDF curve in the excluded region 

there must be a reduction of area under the remaining RDF curve to maintain the total 

area at N-1. This means that at large r the value of 𝑔(𝑟) must be something slightly less 

than 1. Baranyai7 first proposed that the amount less than 1 must be 1/N, so that at large r 

at very high temperature 𝑔(𝑟) = 1 − 1 𝑁⁄ . Physically, this can be thought of as a penalty 

to the unity probability at large r. That penalty is the 1/N chance that a non-central atom 

would be found inside the excluded region. Because this transition from 𝑔(𝑟) = 1 to 

𝑔(𝑟) = 1 − 1 𝑁⁄  is physical and potentially measurable from the RDF it forms the basis 
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for the high temperature correction. We reserve a detailed discussion of the high 

temperature correction for later chapters. At this time we simply point out that the EPFT 

utilizes an additive correction to the Kirkwood entropy as shown in Equation (1.9) below 

as 
1

2
�̃�[𝑔] 

 
𝑆𝐾

𝑥[𝑔] =
1

2
�̃�[𝑔] − 1 + lim

𝑅→∞

1

2
{ − 1 + 𝜌 ∫ 𝑑𝑟�̅�

∞

0

(𝑟)(𝑙𝑛�̅�(r) − (�̅�(𝑟) − 1)) 
(1.10) 

 

Nicholson et al. also provided a correction to the error as the liquid approaches the melt 

temperature. Starting from the knowledge that for a liquid and lower temperatures, at 

large r, 𝑔(𝑟) = 1, and considering that in the lower temperature RDFs in Figure 1-2 that 

as more defined peaks emerge, 𝑔(𝑟) deviates from 1 over an increasing range of r. 

Nicholson et al. propose as an indicator of the approach to crystalline structure a variance 

based measure constructed as follows 

 ℎ(𝑟) =  𝑔𝑠(|𝒓|)-1 (1.11) 

 

 𝐺 = 4𝜋𝑟ℎ(𝑟) (1.12) 

 

 
𝜅[�̅�] =

𝜌

4𝜋
∫ 𝑑𝑟𝐺2(𝑟) 

(1.13) 

 

 𝛾[𝑔] = 1 + 𝑞0𝜅[�̅�]4 (1.14) 

 

With this addition, the final form of the EPFT is stated as follows,  

 

 
𝑆𝐾

𝑥[𝑔] =
1

2
�̃�[𝑔] − 1 + lim

𝑅→∞

1

2
{ − 1 +

𝜌

𝛾
∫ 𝑑𝑟�̅�

∞

0

(𝑟)(𝑙𝑛�̅�(r) − (�̅�(𝑟) − 1)) 
(1.15) 

 

The correction functionals �̃�[𝑔], and γ are designed to act in two distinct regions of the 

liquid entropy as demonstrated in Figure 1-3. 
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Figure 1-2. RDF for BCC iron modeled with the Johnson potential. 

 

Figure 1-3. Liquid EPFT correction functionals regions of action. 
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For the entropy calculation of systems in the solid phase we are not limited to an 

approximation of the probability distribution based on the RDF. Instead, throughout the 

solid region the probability distribution of the atomic positions can be obtained directly 

from either the positional output of molecular dynamic simulations or through fitting 

techniques from the RDF. Nicholson explores a couple of different formulations which 

all share at a minimum the advantage that there are no fitting parameters used. 

The first form of the entropy functional for the solid that we will be concerned with 

involves the application of the same extended expression of the Kirkwood approximation 

used above for the liquid. Working from the assumption that in the solid phase the 

relevant probability density functions can be modeled as Gaussian a reference entropy is 

first determined based on the variance of an atom around its ideal lattice site. 

 
𝑆𝑥

𝑟[𝑔] = −1 +
3

2
+

3

2
𝑙𝑛

𝜆00
2

ℓ̅2
 

(1.16) 

Where 𝜆00
2 is the variance of an atom around its lattice position and  

ℓ =  
1

𝜌
,   ℓ̅ =  

ℓ

√𝜋
 

 

𝑆𝑥
𝑟is said to be the reference entropy and is then refined by the addition of increasingly 

higher order nearest neighbor distances 

 
𝑆𝑥

𝑒𝑥[𝑔(𝑟)] = 𝑆𝑥
𝑟 +

3

2
∑ 𝑙𝑛

𝜆0𝑖
2

𝜆∞
2

+  
3

2
(1 −

𝜆0𝑖
2

𝜆∞
2

)

𝑖

 
(1.17) 

 

Here the first subscript 0 of 𝜆0𝑖
2 indicates the atom from which a neighbor is determined 

and the second subscript 𝑖 is the order of nearest neighbor. 

Nicholson et al. develop the second form of the solid entropy equation that we will 

examine from the work of Morris and Ho8. This form suggests a connection between the 

entropy in solids as derived from the extended expression of the Kirkwood approximation 

above and the entropy in harmonic solids. Nicholson et al. present two cases which again 

include a reference entropy, we will restrict ourselves to Case 1 for now. 
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𝑆Ι ℎ

𝑟 [𝑔] = −1 +
3

2
+

3

2
𝑙𝑛

𝜆00
2

ℓ̅2
 

(1.18) 

 

This is easily recognizable as the reference entropy from the Kirkwood form above. The 

difference comes in with the addition of an off diagonal coupling term derived from the 

truncated correlation matrix. For Case 1 this term works out to be, 

 

𝜖1 =  −

𝜆01
2 [�̅�]

4 −
𝜆00

2 [�̅�]
2

𝜆00
2 [�̅�]

2

 

(1.19) 

 

And is included as a part of an additive term in the total entropy as shown below. 

 
�̃�Ι h−TT

𝑥 =  𝑆Ι ℎ
𝑟 [𝑔] +

3

2
𝑙𝑛 (1 +  

1

2
(√1 − 4|𝜖1|2 − 1)) 

(1.20) 

 

These equations for liquid and solid entropy calculation along with the supporting 

information in this section should provide a sufficient foundation for the work discussed 

in the remaining sections of this proposal. 

The Broader View 

EPFT has been developed from a classical view point and is intended to calculate entropy 

from correlations between atoms determined only by the classical model. For this reason 

it is important to briefly examine the relationship between entropy as determined from 

the classical molecular dynamics simulations and the entropy resulting from the Debye 

model where quantum effects are taken into consideration.  

To place the present work in the broader view we first preview the target entropy we will 

use to determine the quality of the EPFT results. Details of this target entropy will be 

provided in Chapter 2; here it is sufficient to note that, because EPFT calculates excess 

entropy and since thermodynamic integration provides a change in entropy Δ𝑆, measured 

from some reference, our target entropy is developed to be 0 at the perfect gas limit (as 
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temperature approaches infinity). Figure 1-4 presents a pictorial development of total 

entropy as the sum of ideal and excess entropy.  

We are now ready to compare the total entropy from the classical model to that obtained 

from the Debye model. Figure 1-5 provides this comparison. As expected the classical 

begins to break down as temperature approaches 0 K. The Debye model takes into 

account vibrations governed by quantum mechanics; the proper application of these 

quantum effects to a correction of the harmonic spectrum utilized in EPFT is a topic of 

ongoing interest. 

Purpose 

The purpose of this work is twofold. The first purpose is to implement the entropy pair 

functional as described above and then to extend and demonstrate its use for additional 

interaction potentials and crystal structures. This extension represents a first step toward a 

true universality of the EPFT. Because the high temperature correction is integral to 

achieving a universal EPFT, special attention is given to the development of this 

correction. The second purpose of this work is to provide a set of software tools that will 

allow other in the simulation community to accomplish similar work easily as a part of or 

in conjunction with simulations performed in LAMMPS. 

Structure of the Dissertation 

This dissertation is composed of three parts. The first part presents an exploration and 

extension of the Entropy Pair Functional Theory (EPFT) to three new material systems.  

This work is described in Chapter 2. The second part investigates the several proposed 

approaches for functionals to correct the high-temperature error present in the Kirkwood 

formulation. This work is described in Chapter 3. The third part is a working code to 

implement the EPFT to generate entropy from the trajectory files of a single simulation 

performed with the LAMMPS software. This code is available in a GitHub repository 

located at https://github.com/cliftonsluss/SFunk. 
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Figure 1-4. Total entropy from classical thermodynamic integration. 

 

 

Figure 1-5. Comparison of classical entropy with entropy from Debye model. 
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Abstract 

Evaluation of the entropy from molecular dynamics [MD] simulation remains an 

outstanding challenge. The standard approach requires thermodynamic integration across 

a series of simulations. Recent work by Nicholson et al. demonstrated the ability to 

construct a functional that returns excess entropy, based on the pair correlation function 

[PCF]; it was capable of providing, with acceptable accuracy, the absolute excess entropy 

of iron simulated with a pair potential in both fluid and crystalline states. In this work, the 

general applicability of the Entropy Pair Functional Theory [EPFT] approach is explored 

by applying it to three many-body interaction potentials. These potentials are state of the 

art for large scale models for the three materials in this study: Fe modelled with a 

modified embedded atom method [MEAM] potential, Cu modelled with an MEAM and 

Si modelled with a Tersoff potential. We demonstrate the robust nature of EPFT in 

determining excess entropy for diverse systems with many-body interactions. These are 

steps toward a universal Entropy Pair Functional, EPF, that can be applied with 
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confidence to determine the entropy associated with sophisticated optimized potentials 

and first principles simulations of liquids, crystals, engineered structures, and defects. 

Introduction  

In material science, simulation is the third pillar of research, providing a complementary 

tool to experiment and theory. An attractive feature of simulation is that unambiguous 

access to all atomic coordinates is available. Density Functional Theory (DFT) simulation 

is the tool of choice for small systems and short time scales. Simulation with optimized 

classical potentials is the tool of choice for larger systems and longer time scales. 

Molecular dynamics (MD) has become a routine computational tool for investigating the 

structural, thermodynamic and transport properties of materials. MD simulations using 

optimized classical potentials for systems up to 105–106 atoms can be performed on 

modest compute clusters, while larger simulations are possible with access to 

supercomputing facilities. In terms of time scale, MD simulations from 1 to 10 ns are 

routine, while longer simulations are again possible given more extensive simulation 

resources. Routine simulations with DFT Hamiltonians are limited to 100 s of atoms for 

100 s of ps. 

As interest grows in materials with engineered disorder at the atomic scale, the ability to 

simulate systems with a sufficient number of atoms to capture the disorder further 

motivates interest in large scale MD simulations, where the use of first principles forces 

remains infeasible.1,2 MD simulation of multicomponent materials with atomic-scale 

disorder, such as high entropy alloys (HEAs) or entropy stabilized oxides (ESOs) are 

limited by two issues. First, MD simulations require as input interaction potentials that 

describe how each type of atom interacts with each other type of atom. The robust and 

rapid determination of highly accurate interaction potentials for alloys or ceramics with 

arbitrary numbers of components is an area receiving great research interest. 

The second challenge, the one on which this paper is focused, centers on the routine 

determination of entropy via MD simulation. The industry standard for MD simulation is 

the open-source simulation software, LAMMPS.3 LAMMPS can generate instantaneous 
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values of many thermodynamic properties, including temperature, pressure, density, 

internal energy and enthalpy. Properties based on thermodynamic partial derivatives of 

the above properties, such as heat capacity or isothermal compressibility, can be obtained 

accurately with just a couple of simulations, using a centered finite difference approach. 

Mechanical properties, such as the elastic tensor or the bulk modulus, are also readily 

extracted. Structural properties, such as the radial distribution function (RDF) emerge 

from the straightforward post-processing of the trajectory file generated from an MD 

simulation. Algorithms for the determination of transport properties, such as diffusivities, 

shear viscosities or thermal conductivities, from both equilibrium and non-equilibrium 

MD simulations, abound. The reader is directed to the “examples” directory that 

accompanies the LAMMPS source code, which contains demonstration scripts for 

obtaining all of the properties listed above. The property that most resists straightforward 

determination in MD simulation is the entropy, and by extension the Helmholtz and 

Gibbs free energies. 

Certainly, it is possible to calculate relative entropy differences through thermodynamic 

integration. However, this approach requires that a series of simulations be performed 

across the integration path. Examples of entropy differences that can be evaluated in this 

way are the entropy change due to a change in temperature at constant volume 

 
Δ𝑆 = ∫

𝐶𝑣

𝑇

𝑇2

𝑇1

𝑑𝑇 (2.1) 

or the entropy change due to a change in volume at constant temperature 

 
Δ𝑆 = ∫ (

𝜕𝑝

𝜕𝑇
)

𝑉
𝑑𝑉

𝑉2

𝑉1

 (2.2) 

 

which follows from the Maxwell relation 

 
(

𝜕𝑆

𝜕𝑉
)

𝑇
= (

𝜕𝑝

𝜕𝑇
)

𝑉
 (2.3) 

 

The drawback to thermodynamic integration is the computational expense required to 
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perform the additional simulations. In some instances, there may also be a human-hour 

cost setting up addition configurations corresponding to each point along the integration 

path. 

There remains interest in the determination of absolute entropy from a single simulation. 

To date, work has focused on determining the entropy as a functional of the PCF, which 

can be generated from a single simulation. The Gibbs formulation of Boltzmann entropy 

assumes the probability density of the atoms of a system in real space is known.4 

 𝑆 = −𝑘𝐵 ∑ 𝑝𝑖𝑙𝑛 𝑝𝑖

𝑖

 (2.4) 

 

For the MD practitioner, computation of entropy from Equation (2.4) depends upon a 

method to calculate a probability distribution, 𝑝𝑖, from atomic position data obtained 

from simulations. Beginning with the Kirkwood approximation for the calculation of a 

discrete probability distribution, others have developed a probability density based on the 

RDF and a resulting functional for the direct calculation of entropy.5-7 Kirkwood (K) 

entropy, 𝑆𝐾
𝑥, provides a formulation of the absolute excess (x) entropy in the fluid state as 

a functional of the RDF. 

 
𝑆𝐾

𝑥[𝑔] = −1 + lim
𝑅→∞

1

2
{ − 1 + 𝜌 ∫ 𝑑𝑟𝑔

∞

0

(𝑟)(𝑙𝑛𝑔(r) − (𝑔(𝑟) − 1)) (2.5) 

 

where 𝑔(𝑟) is the RDF. It is important to note that Equation (2.5) excludes all 

dependence on correlations higher in order than pair correlations. Kirkwood is one 

approximation to 𝑝𝑖; note that every approximation to the entropy can be related back to 

at least one approximation to 𝑝𝑖. For example, recent work by Haung and Widom8 

utilizes a Gaussian ansatz for 𝑝𝑖 that is applicable to crystals. It is Gaussian in the sense 

that it is the exponential of a form quadratic in atomic displacements. Since each factor 

involves just two sites, they obtain entropy as a functional of the PCF. Their 𝑝𝑖 is an 

approximate 𝑝𝑖 that produces a harmonic oscillator entropy. Thus, entropy calculated in 
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quasi-harmonic approximation, based on first principles simulation of phonons9, can be 

thought of as evaluating Equation (2.4) with an approximate 𝑝𝑖. 

Contemporary approaches to the calculation of absolute excess entropy include 

improvements to Kirkwood entropy and the use of RDFs determined by first principles 

MD simulations10-12 and machine learning techniques.13 Recently, an approximation to 

the universal functional for the calculation of absolute excess entropy for pair potential 

Hamiltonians, from classical molecular dynamics simulations, has been developed.14 This 

entropy pair functional theory (EPFT) has been demonstrated to provide reasonable 

agreement with excess entropy values produced by thermodynamic integration of MD 

simulation results for the Johnson iron (BCC) pair potential15 across the entire 

temperature range, from crystalline solids at temperatures as low as 1 K up through the 

liquid state to a state approaching the perfect gas at 107 K. As it currently exists, the 

EPFT approach specifies a temperature independent functional of the PCF that returns the 

excess entropy. This single functional is constructed from subsidiary functionals that 

highlight specific traits of the PCF. The simplest of these functionals identifies the PCF 

as corresponding to a crystal or fluid. If the PCF corresponds to a crystal, the widths of 

the peaks of the PCF at lattice separation vectors can be quantified by the variance of 

separation vectors within each peak. If the PCF corresponds to a fluid, the PCF is 

isotropic and is equal to its spherical average RDF. We depend on several subsidiary 

functionals of the RDF, for example, 𝑆𝐾
𝑥[𝑔] and the coordination number. Evaluating the 

excess entropy requires various special integrals involving the PCF at each temperature 

of interest. However, unlike thermodynamic integration, the EPFT holds the promise that 

an accurate approximation can be found to the universal functional, which would make 

numerous simulations outside the points of interest unnecessary. 

Formally, the entropy of many-body potentials depends not just on the PCF, but also on 

the many-body correlations. However, it was proved that the error introduced by using 

the EPF is second order in many-body interactions.14 Modern simulations are often first 

principles, or use many-body interactions based on a mix of first principles results and 

measured properties. The extent to which an EPF effectively models the entropy of 
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systems, governed by non-pairwise potentials, remains an open question. We apply EPFT 

to three many-body systems in order to explore the accuracy and universality of EPFT. 

EPFT must meet this challenge if it is to be adopted as an alternative to thermodynamic 

integration. The goal of this work is to investigate the universality of the EPFT approach 

with the explicit target of generating the absolute entropy from the pair correlation 

function (PCF) of a single simulation. 

In this work we specifically explore the applicability of the EPFT to FCC copper and 

BCC iron systems simulated with the modified embedded atom method (MEAM) 

potential16 and diamond cubic silicon system utilizing the Tersoff potential.17 These 

systems and potentials were chosen out of a desire to take initial steps in demonstrating 

and expanding the universality of the EPFT. Copper and the MEAM potential provide the 

opportunity to test the EPFT with a new crystal structure (FCC), while iron provides a 

more direct comparison between MEAM and the Johnson potential of the original EPFT 

work. Silicon introduces a third crystal structure (diamond cubic) and the Tersoff 

potential tests the pair potential assumption of the underlying theory with the inclusion of 

large three--body angular terms. 

Theory 

Nicholson et al. have provided an extensive derivation of the EPFT approach and situated 

it within the historical framework of the Kirkwood superposition approximation for the 

fluid state and the harmonic oscillator approximation for the solid state.14 For a full 

accounting, the interested reader is directed to that work. Here, we provide a summary of 

important points necessary to make this document self-sufficient. 

The Entropy Pair Functional in14 builds upon the Kirkwood entropy in the fluid state by 

introducing two new functionals that correct for two problem areas of the Kirkwood 

entropy.5-7,18,19 First a corrective functional �̃�[𝑔] is introduced to ensure that excess 

entropy approaches zero as the system approaches a perfect gas at high temperature. This 

high temperature limit is a subject that has previously been investigated with great 

interest.5 The second functional 𝛾[𝑔] provides a correction as liquid approaches 
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crystallization, where the Kirkwood entropy diverges. With the incorporation of these 

two corrections, the modified Kirkwood entropy in the fluid state becomes 

 
�̃�𝐾

𝑥[𝑔] =
1

2
�̃�[𝑔] − 1 + lim

𝑅→∞

1

2
{ − 1 +

𝜌

𝛾[𝑔]
∫ 𝑑𝑟

∞

0

𝑔(𝑟)(𝑙𝑛𝑔(r) − (𝑔(𝑟) − 1)) (2.6) 

 

A further examination of the corrective functionals �̃�[𝑔] and 𝛾[𝑔] will be presented in 

the methods section of this paper. 

EPFT also extends the Kirkwood entropy into the crystalline phase down to arbitrarily 

low temperature. Several forms of the functional for the crystal have been proposed. In 

this work, we focus on three forms that utilize self and pair correlations only. The 

reference entropy of the crystalline state, 𝑆𝑟
𝑥[𝑔], depends only on the variance of an atom 

around its lattice position, 1/2𝜆00
2 , 

 
𝑆𝑟

𝑥[𝑔] = −1 +
3

2
+

3

2
𝑙𝑛

𝜆00
2

ℓ̅2
 (2.7) 

 

where ℓ =  1 𝜌⁄  and ℓ̅ =  ℓ √𝜋⁄ . 𝑆𝑥
𝑟 is said to be the reference entropy, which is then 

refined by the addition of terms that arise from neighboring atoms. The second form for 

solid entropy implemented here is also based on Equation (2.7), but utilizes the variance 

of first nearest neighbor distances, 1/2𝜆01
2 , instead of the variance of atoms around their 

ideal lattice positions, 1/2𝜆00
2 . Comparing Equation (2.8) to Equations (2.5) and (2.7) it 

can be seen that it represents a direct analog of the Kirkwood liquid excess entropy for 

solid excess entropy. 

 
𝑆𝐼𝐼 ℎ

𝑥 [𝑔] = −1 +
3

2
+

3

2
𝑙𝑛

𝜆01
2

ℓ̅2
 (2.8) 

 

The third form for solid entropy we calculate was presented by Nicholson et al. as a 

connection between the Kirkwood entropy and the harmonic solid technique of Morris 

and Ho.20 
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3

2
𝑙𝑛 (1 +  

1

2
(√1 − 4|𝜖1|2 − 1)) (2.9) 

 

where 𝑆𝑥
𝑟 is defined in (2.3) and 𝜖1 provides an off-diagonal coupling term derived from 

the truncated correlation matrix 

 

𝜖1 =  −

𝜆01
2 [�̅�]

4 −
𝜆00

2 [�̅�]
2

𝜆00
2 [�̅�]

2

 (2.10) 

 

These three forms of solid entropy represent upper bounds. Due to this, in practice, the 

lower of the values produced should be considered the best estimate of entropy. 

Finally, it must be noted that any calculation of excess entropy is impacted by the 

accounting of additional degrees of freedom. While our treatment here is limited to the 

degrees of freedom of the atoms in a system, additional sources of entropy may be of 

great interest to other workers. For example, electrons contribute to the entropy on their 

own in several ways and, through their impact, on the degrees of freedom that describe 

the nuclei. This is particularly true for iron; in addition to electron-hole entropy there is 

entropy resulting from the formation of local moments.21-23 For work such as this, it is 

important to note that EPFT applies with only minor changes when the scope of 

simulations is expanded to include other degrees of freedom, e.g., those associated with 

site occupation, as in alloys, or spin degrees of freedom, as in magnetic materials. EPFT 

is expanded by indexing 𝑔𝛼,𝛽(𝑟, 𝑟′) where 𝛼 and 𝛽 refer to the atomic number and local 

atomic moment orientation at each nucleus. 

Methods 

Molecular Dynamics Simulations 

A suite of classical MD simulations was performed for copper, iron and silicon. 

LAMMPS3 was used to perform simulations of the three materials. The MEAM potential 

for Fe and for FCC Cu16, and the Tersoff potential for Si17, were taken from the literature. 
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For a given material, the density remained constant at all temperatures. The densities are 

reported in Table 2-1. A summary of the simulation size is included in Table 2-1 below. 

As can be seen in the table, the length of the cubic simulation volume in any dimension 

was in the order of 102 Å. This size was necessary to be able to calculate the RDF up to a 

maximum value of 50 Å. 

For each material, a set of 40 simulations was performed for reduced temperatures in the 

range from 0.001 to 5000, where the temperatures were normalized by the melting 

temperature reported for each potential in the literature. (See Table 2-1) The Nose-

Hoover thermostat was used to maintain the target temperature in the canonical ensemble 

(NVT). The size of the time step in each simulation was determined based on energy 

conservation in simulations in the microcanonical (NVE) ensemble, performed explicitly 

for this purpose. The time steps used ranged from ~13 fs at the lowest temperatures, 

nominally 1 K, to ~1.6 × 10−2 fs at the highest temperatures, nominally 106 K. In general, 

the total duration of the simulations was determined in order to ensure convergence of 

thermodynamic values. Simulations were run for a duration to produce convergence of 

thermodynamic values and sufficient variability for configurational statistics calculations. 

All simulations were at least 4.57 ps in length. 

The thermodynamic data generated was used to determine the potential energy of the 

systems for each temperature. For each simulation, atomic coordinates were recorded 

every 100 timesteps and this trajectory data was used to calculate the pair correlation 

functions, and the statistical values used as input for the entropy functional. The system 

sizes were chosen to meet three criteria that we established. First, we wanted to 

demonstrate EPFT on systems sizes comparable to those typically used by MD  

simulators. Second, the system dimensions provide for RDF calculation out to 50 Å, 

which is commensurate with the range of correlations most often provided by 

experiment. Finally, by working with sufficiently large systems, complicating terms 

involving 1/N are avoided by operating at the thermodynamic limit. The simulations 

required an average of 20 h of wall time to complete when run on 2 nodes. This 

performance is very practical for the typical researcher compared to DFT-based  
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Table 2-1. Molecular Dynamics Simulations Parameters 

System Tmelt (K) Structure Potential N(Atoms) Box Size (Å3) 𝜌 (N/Å3) 

Cu 1347 FCC MEAM 87,808 1,041,357.395 8.432 × 10−2 

Fe 1812 BCC MEAM 93,312 1,081,182.881 8.631 × 10−2 

Si 1687 Diamond Cubic Tersoff 54,872 1,100,297.642 4.987 × 10−2 
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approaches, which require tens of thousands of memory-laden (>2 TB/core) nodes to 

simulate systems of comparable size.24 Note that the computer resources needed to 

evaluate the entropy with EPFT by post-processing of the trajectories of any simulation is 

negligible. For comparison, calculation of the entropy through direct calculation of 

phonon frequencies is computationally more intense for systems of this size. 

Target Entropy Development 

Thermodynamic Integration 

To validate the results from the EPFT, a target entropy was calculated across the whole 

temperature range of the simulations for each system to use as the standard. The standard 

entropy from thermodynamic integration and EPFT entropy are based on exactly the 

same Hamiltonian as rendered by LAMMPS. This is a better standard for comparison 

than are experimental entropies. The average potential energy was calculated for each 

temperature and an equation for 𝑈(𝑇) was fit to the data. See Appendix 2.A. The 

derivative 𝐶𝑉 = 𝑑𝑈 𝑑𝑇⁄  and integral Δ𝑆 =  ∫
𝐶𝑉

𝑇
𝑑𝑇

𝑇1

𝑇0
 were determined analytically and 

curves for each were generated. This process was repeated for each material for both 

liquid and solid phases. Since the volumes of the simulations are constant across 

temperatures, the heat capacity is the constant-volume heat capacity. As the energy term 

employed is the potential energy, the heat capacity that is generated is the excess heat 

capacity, which does not include the kinetic contribution of the perfect gas. Similarly, the 

entropy arising from the excess heat capacity is strictly the excess entropy. Due to the 

discontinuity in the potential energy and entropy at the melt temperature, the liquid and 

solid target entropy curves must be developed separately and then reconnected via the 

calculation of the entropy of fusion. 

Entropy of Fusion 

The Gibbs Phase Rule states that the number of Degrees of Freedom (DOF) required to 

fully define a thermodynamic state of system composed of C components and 𝜑 phases is 

given by 

 𝐷𝑂𝐹 = 𝐶 − 𝜑 + 2 (2.11) 
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In the case of a single component system and a two-phase, e.g., solid-liquid, equilibrium, 

there is only one degree of freedom. Often, this DOF is chosen as the temperature, 

though that is a choice made out of practical considerations, rather than a theoretical 

requirement. All other thermodynamic properties, including the pressure, chemical 

potential and density of the phases are defined once the temperature has been specified. 

Notably, the densities of the solid and liquid phases at equilibrium are not the same. As 

the target entropy developed for this work is along an isochor, the two phases present at 

the melt temperature are not in equilibrium. Thus, the discontinuity in entropy between 

the solid and liquid in this series of simulations does not correspond to the entropy of 

fusion of two phases at equilibrium. This motivated an approach to calculate the entropy 

difference between a liquid at a state defined by temperature and density (𝑇, 𝜌), and a 

solid at the same temperature and density. 

The entropy difference between a liquid at a thermodynamic state defined by arbitrary 

temperature, 𝑇1, and arbitrary density, 𝜌1. and a solid at the same temperature and density 

can be broken into three terms that describe a thermodynamic path. Since entropy is a 

state variable, this calculation is independent of path. 

 ∆𝑆𝑡𝑜𝑡 = ∆𝑆𝐿 + ∆𝑆𝐿→𝑆 + ∆𝑆𝑆 (2.12) 

 

The thermodynamic path we invoke is as follows. In step 1, a liquid at (𝑇1, 𝜌1) undergoes 

an isothermal compression (or expansion) to liquid at (𝑇1, 𝜌2), denoted Δ𝑆𝐿. In step 2, a 

liquid at (𝑇1, 𝜌2) undergoes a phase change to solid at (𝑇1, 𝜌3), with which it is in 

thermodynamic equilibrium, denoted Δ𝑆𝐿→𝑆. In step 3, a solid at (𝑇1, 𝜌3) undergoes an 

isothermal expansion (or compression) to solid at (𝑇1, 𝜌1), denoted Δ𝑆𝑆. 

We choose 𝑇1 to be a temperature where coexistence of the liquid and solid is possible. 

We choose 𝜌2 to correspond to the dependent liquid phase density at the equilibrium state 

uniquely defined by 𝑇1. We choose 𝜌3 to correspond to the dependent solid phase density 

at the equilibrium state uniquely defined by 𝑇1. This path provides the entropy difference 

between a liquid at a thermodynamic state defined by arbitrary temperature, 𝑇1, and 

arbitrary density, 𝜌1. and a solid at the same temperature and density. Practically 
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speaking, we chose the temperature to correspond to the melting temperature at one 

atmosphere reported in the literature and reported in Table 2-1. In this case, the density of 

the coexisting liquid and solid were known and the entropy of fusion was reported in the 

literature.25,26 The terms describing the entropy change due to a change in density were 

computed via thermodynamic integration using Equation (2.2). If the integral in Equation 

(2.2) is approximated with the trapezoidal rule, then, for the liquid and solid phases, 

Equation (2.12) becomes 

 
∆𝑆𝐿 =

1

2
(

1

𝜌2
−

1

𝜌1
) ((

𝜕𝑝

𝜕𝑇
)

𝜌2

𝐿@𝑇1

+ (
𝜕𝑝

𝜕𝑇
)

𝜌1

𝐿@𝑇1

) (2.13.a) 

 

 
∆𝑆𝑆 =

1

2
(

1

𝜌1
−

1

𝜌3
) ((

𝜕𝑝

𝜕𝑇
)

𝜌1

𝑆@𝑇1

+ (
𝜕𝑝

𝜕𝑇
)

𝜌3

𝑆@𝑇1

) (2.13.b) 

 

The thermodynamic partial derivative (
𝜕𝑝

𝜕𝑇
)

𝑉
 evaluated under four conditions, as specified 

in (2.13.a) and (2.13.b) was evaluated using the centered finite difference formula 

 
(

𝜕𝑝

𝜕𝑇
)

𝜌1

≈
𝑝(𝑇 + 𝛿𝑇, 𝜌1) − 𝑝(𝑇 − 𝛿𝑇, 𝜌1)

2𝛿𝑇
 (2.14) 

 

where 𝛿𝑇 is a temperature offset, chosen to be sufficiently large to provide a reliable 

gradient, given the noise present in the pressure calculation. Each derivative requires two 

simulations. 

Pair Correlation Functions 

For the liquid entropy, the entropy functional takes, as input, radial distribution functions 

of the type defined below.27 RDFs used as input to the entropy functional were calculated 

with bins of width 10−3 Å utilizing an in-house code. 

 
∫ 𝜌𝑔(𝑟)4𝜋𝑟2𝑑𝑟 = 𝑁 − 1 ≈ 𝑁

∞

0

 (2.15) 
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We return now to a more detailed discussion of the corrective functionals �̃� and 𝛾 

introduced in the theory section. We consider first the error introduced in the approach to 

the perfect gas and begin with some observations about the RDF in general. It is evident 

from Equation (2.15) that the integral of the RDF is a volume that contains all the atoms 

under consideration less the volume of the central atom, from which the nearest neighbor 

distances are measured. This volume, referred to as the excluded volume, is shown to 

decrease as the temperature of the system increases. Examination of Figure 2-1 reveals 

that as temperature increases, the region in r that corresponds to zero probability of 

finding a nearest neighbor decreases. The RDF is defined such that at large r 𝑔(𝑟)  ≈ 1. 

This means that at sufficiently long distance there is unity probability of finding an atom 

in the next increment of volume. 

High Temperature Liquid Correction 

We reintroduce a functional 𝑄[𝑔] that indicates the departure of the excluded volume 

from the origin; it is built upon the concept of the Wigner-Seitz cell. For the perfect 

crystal at 0 K each of the atomic cells in a system emerges as a Voronoi polyhedron (VP), 

centered on a single atom. The VP is defined to have faces that are perpendicular 

bisectors of the central atom and its neighbors. A corollary to this definition is that a 

point found inside the VP will have unity probability of being closer to the central atom 

than to any of the neighbors outside the VP. We adopt a probabilistic interpretation; at T 

= 0 (stationary atoms) P(r) = 1 for points inside the VP and 0 outside the VP; at finite 

temperature the VP changes over time but P(r) remains well defined. 

The instantaneous VPs of the crystal evolves with time as atoms move at finite 

temperature. Eventually, the probability that a point displaced from atom i by r will be 

closer to atom i than to any other particle becomes spherical at melting. For this reason, a 

spherical probability was chosen as an approximate boundary for the measurement of the 

encroachment on the excluded volume as the temperature of the system approaches 

infinity. 

At infinite temperature the probability that a point a distance r from an atom is closer to 

that atom than any other atom is 
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Figure 2-1. RDFs for MEAM copper (a), MEAM iron (b), and Tersoff silicon (c). 

Low temperature data has been scaled in order to highlight low r behavior at higher 

temperatures. 
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𝑃𝑖𝑑(𝑟) = lim

𝑇→∞
(1 − 𝑟3

𝑁𝑟𝑠
3⁄ )

(𝑁−1)

= 𝑒𝑥𝑝 (− (
𝑟

𝑅𝑠
)

3

) (2.16) 

 

where 𝑅𝑠 is the radius of a sphere of the atomic volume of the system, where the atomic 

volume is the inverse of the density. The derivation of this ideal gas probability is given 

in Appendix 2.B. The intrusion, at any temperature, of neighboring atoms into the infinite 

temperature VP is given by 

 
𝐼[𝑔] = ∫ 4𝜋𝑟2𝜌𝑃𝑖𝑑(𝑟)𝑔(𝑟)𝑑𝑟 (2.17) 

 

 
𝑄[𝑔] = max (0,

𝐼[𝑔] − 𝐼0[𝑔]

1 − 𝐼0[𝑔]
) (2.18) 

 

As 𝑇 is lowered toward 𝑇𝑚 the peaks in 𝑔(𝑟) become increasingly narrow. In the limit 

that the peaks have zero width, the intrusion of the nearest neighbors becomes 

 
𝐼0[𝑔] = 𝑛[𝑔]𝑒𝑥𝑝 (− (

𝑅𝑝[𝑔]

𝑅𝑠
)

3

) (2.19) 

 

where 𝑅𝑝 is the radius of the first peak in 𝑔(𝑟)𝑟2 and 

 
𝑛[𝑔] = 2 ∫ 4𝜋𝑟2𝜌𝑔(𝑟)𝑑𝑟

𝑅𝑝

0

 (2.20) 

 

𝐼0[𝑔] serves as a baseline for intrusion. Due to the fact that our results depended only 

weakly on 𝐼0[𝑔], we made the simplifying, but not essential, choice that 𝐼0[𝑔] is the 

minimum value of 𝐼[𝑔], 𝐼0[𝑔] = 𝐼𝑚𝑖𝑛. This means that, in this work, the entropy 

calculation for the liquid is a single additional calculation of 𝐼𝑚𝑖𝑛 at the melting 

temperature. However, this calculation is less intensive than a full exploration of 

temperature required for thermodynamic integration. Consequently, the functional that 

characterizes the escape of the excluded volume from the origin is 
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𝑄[𝑔] =

𝐼[𝑔] − 𝐼𝑚𝑖𝑛

1 − 𝐼𝑚𝑖𝑛
 (2.21) 

 

𝑄[𝑔] is used for the liquid phase only. It approaches zero at melting and 1 − 1 𝑁⁄  in the 

perfect gas limit. The high temperature correction �̃�[𝑔] appearing in (2.6) is a functional 

of the functional 𝑄[𝑔]. 

 �̃�[𝑔] = 𝑄 + 𝑞1𝑄(1 − 𝑄) +  𝑞2𝑄2(1 − 𝑄) (2.22) 

 

�̃�[𝑔] possesses the same limits as 𝑄[𝑔], namely zero, at the melting temperature, and 

approaching one (within 𝑂(1 𝑁⁄ )) at very high temperature. The parameters 𝑞1 and 𝑞2 fit 

the functional �̃�[𝑔]ϕ to the target entropy. These parameters, which are the same for all 

materials, allow the functional to match the behavior of the entropy at intermediate 

temperatures. 

Low Temperature Liquid Correction 

In Figure 2-2 one PCF for each system is shown multiplied by density, 𝜌𝑔(𝑟). This 

quantity is referred to as the neighbor density. The three materials are very different. 

They correspond to very different temperatures. However, their common attribute is that 

they correspond to essentially the same excess entropy. One of the challenges for the EPF 

is to take these very different functions and return the same value. Note that by plotting 

the neighbor density, we have emphasized that the density of Si is significantly different 

from that of Cu and Fe, and that the coordination number of Si is much smaller than those 

of Cu and Fe. Furthermore, the nearest neighbor peak positions almost line up even 

though the atomic radius in Si is much smaller. The three systems have different packing 

fractions, 𝑓𝑝. The packing fraction of Si is considerably smaller than that of Fe and Cu. 

Packing fraction, coordination number, intrusion, and 𝜆01 are descriptors of 𝑔(𝑟) that 

depend only on the nearest neighbor peak; 𝜆00 can also be considered very local. On the 

other hand, the integrals of 𝑔(𝑟)𝑙𝑛( 𝑔(𝑟)) and (𝑔(𝑟) − 1)2 have contributions from all 𝑟; 

they emphasize the peaks, valleys, and their long-range persistence. This handful of 

physically motivated quantities provides a reasonable model of the entropy of the three  
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Figure 2-2. Neighbor density of copper, iron, and silicon at small r and similar 

excess entropy. 
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systems studied here. Figure 2-2 shows that there are significant differences in the 

behavior in, for example, the first valley. These differences could be further exploited in 

the EPF. However, at this stage in the development of an EPF we prefer to show 

reasonable agreement with a small number of descriptors and parameters. These will 

naturally build up as we, and others, extend the range of universality by modeling 

additional systems. 

As the liquid approaches 𝑇𝑚, the atoms in the system begin to be distributed near 

separations found in their ideal lattice. This can be seen in the ‘T melt l’ data series in 

Figure 2-1. Turning our attention now to the error in 𝑆𝐾
𝑥 for the liquid in the region 

nearing crystallization, we observe, that as 𝑔(𝑟) takes on the characteristics of a set of 

more and more discrete distributions around the ideal lattice separations, the natural log 

term in Equation (2.5) produces larger and larger negative values of excess entropy. This 

results in a gross under-estimation of excess entropy as the liquid cools toward 

crystallization. Any corrective functional must be constructed with this trend of 𝑔(𝑟) in 

mind. In this case, Nicholson et al. proposed an indicator of the approach to crystalline 

structure and consequent correction measure constructed as follows 

 ℎ(𝑟) = 𝑔(|𝑟|) − 1 (2.23) 

 

 𝐺 = 4𝜋𝑟ℎ(𝑟) (2.24) 

 

 
𝜅[𝑔] =

𝜌

4𝜋
∫ 𝑑𝑟𝐺2(𝑟) (2.25) 

 

 𝛾[𝑔] = 1 + 𝑞0𝜅[𝑔] (2.26) 

 

In liquid Fe near melting, a typical atom is surrounded by about 14 neighbors (6 BCC 

nearest neighbors and 8 BCC next-nearest neighbors) with very strict specifications of the 

distance to each of these neighbors. In liquid Si there are only four. Restrictions reduce 

the phase space available to the system and reduce its entropy. To ascertain an 



35 

 

appropriate level of restriction imposed by the neighbors, we can be guided by the basic 

fact that each atom is specified by only three coordinates, often {x, y, z}. If the structural 

environment of an atom is described by coordinates shared with neighbors the number of 

shared coordinates needed to maintain the correct total number of coordinates, 3 N, is 6 

shared coordinates at each atom. For example, crystal entropy is well represented by 

harmonic models based on a linear chain where the three components of the two vectors 

to neighbors along the chain comprise the six shared coordinates. In fluids, the RDF gives 

information only about scalar separations. For a fluid with a coordination of six, the 

distances to the six neighbors provides a good accounting of restricting coordinates; in 

such a liquid we expect the corrections to Kirkwood to be small. For fluids, e.g., Fe, with 

coordination greater than six too many constraints are imposed by Kirkwood and for 

coordination less than 6, such as Si, it is anticipated to under-restrict the structure. Here 

we propose a form of 𝛾[𝑔] 1that reflects our understanding of the trends with respect to 

coordination that need to be incorporated when the peaks of 𝑔(𝑟) are narrow. For the 

differences in coordination number (C.N.) between different systems: 

 1

𝛾[𝑔]
= 1 +

𝑐1𝑒−(𝑐2𝜌 𝜅⁄ )2

(𝐶𝑁 − 6)3𝑓𝑝
 (2.27) 

 

The correction 𝛾[𝑔] was fit to the target entropy with the parameters 𝑐1 and 𝑐2 and then 

applied to the functional (2.5). As was the case for the parameters 𝑞1 and 𝑞2, 𝑐1 and 𝑐2 

are optimized to the target entropy. It should be noted that while 𝑞1, 𝑞2, 𝑐1, and 𝑐2 all fit 

to the entropy obtained from thermodynamic integration, the three materials were fitted 

 

 

 

 

1 In practice , for systems of 5 < 𝐶𝑁 < 7, 𝛾 = 1. For all other systems the form of 𝛾 in equation 2.27 

should be used. 
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simultaneously with the goal of finding a universal set of these parameters that might 

serve a wide range of systems. 

 

Results 

Low and High Temperature Liquid Corrective Functionals 

The high and low temperature liquid correction functionals �̃� (Equation (2.22)) and 𝛾 

(Equation (2.27)) were developed from their constituent functionals 𝑄 (Equation (2.20)) 

and 𝜅 (Equation (2.25)) respectively. The results are shown in Figures 2-3, 2-4, 2-5, and 

2–6. In Figure 2-3, the functional 𝑄[𝑔] is plotted for Cu, Fe and Si as a function of 

reduced temperature. In each case the functional approaches zero near the melting 

temperature (reduced temperature of unity) and approaches one as the temperature 

increases. The fact that 𝑄[𝑔] does not reach one, even at the highest temperatures 

simulated, indicates that 106 K is not sufficient to force these materials (as governed by 

the MEAM and Tersoff interaction potentials) to behave as a perfect gas. Certainly 𝑄[𝑔] 

shares a similar qualitative shape for all three materials as a function of reduced 

temperature. To be clear, there are no fitting parameters in the functional 𝑄[𝑔]. 

In Figure 2-4, the functional �̃�[𝑔] is plotted for Cu, Fe and Si as a function of reduced 

temperature. In each case the functional approaches zero near the melting temperature 

(reduced temperature of unity) and approaches one as the temperature increases. We 

observe that the functionals for Cu and Si exceed unity at intermediate temperatures. 

Again, the parameters, 𝑞1 and 𝑞2, were optimized to fit the excess entropy functional 

(Equation (2.5)) to the target entropy obtained via thermodynamic integration. The 

behavior of �̃�[𝑔] is therefore a consequence of this optimization procedure. 

The fitting constants 𝑞1, 𝑞2, 𝑐1, and 𝑐2 given in Table 2-2 are universal to the three 

systems examined here. It is evident from Table 2-2 that the EPFT provides a fivefold 

improvement over results based on Kirkwood entropy alone. For the two MEAM systems 

the maximum error in Kirkwood entropy is predicably at the PG limit where it 

approaches ~0.5 kB/atom. However, the maximum EPFT errors for these systems occur at  
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Figure 2-3. High temperature corrective functional Q vs. reduced temperature for 

MEAM copper and iron, and Tersoff silicon. 
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Figure 2-4. The fit high temperature corrective functional �̃� vs. reduced 

temperature for MEAM copper and iron, and Tersoff silicon. 
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Figure 2-5. Low temperature corrective functional κ vs. reduced temperature for 

MEAM copper and iron, and Tersoff silicon. 
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Figure 2-6. The fit low temperature corrective functional γ vs. reduced temperature 

for MEAM copper and iron, and Tersoff silicon. 
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Table 2-2. Summary of fit parameters and errors of EPFT and Kirkwood entropy 

functionals. Error is reported as the difference between the target entropy and the 

functional entropy. The fit parameters are unitless. 

System q1 q2 c1 c2 
Kirk. Avg. 

Err (kB/Atom) 

EPFT Avg. 

Err (kB/Atom) 

Cu     0.32 0.06 

Fe 3.24834 −2.406550 −320.1305 1.02966 0.41 0.08 

Si     0.61 0.05 

 

  



42 

 

intermediate temperatures. At the PG limit the error in the EPFT for the MEAM systems 

approaches 0 kB/atom. 

In Figure 2-5, the functional 𝜅[𝑔] is plotted for Cu, Fe and Si as a function of reduced 

temperature. This functional characterizes pre-melting structure in the liquid at 

temperatures close to the melt temperature, so it should deviate from zero as the 

temperature decreases. In each case the functional approaches zero at high temperature 

and becomes positive as the temperature approaches the melt temperature (reduced 

temperature of unity). Again, this functional, with no fitting parameter, is qualitatively 

similar for all three materials, when plotted with respect to reduced temperature. 

In Figure 2-6, the functional 𝛾[𝑔] is plotted for Cu, Fe and Si as a function of reduced 

temperature. The purpose of this functional is to influence the calculated entropy near the 

melting temperature, so it should deviate from unity only where there is pre-melting 

structure in the liquid at temperatures close to the melt temperature. In each case the 

functional approaches unity at high temperature. However, the functional increases for Si 

while decreasing to differing extents for Fe and Cu. Again, the parameters 𝑐1and 𝑐2 were 

optimized to fit the excess entropy functional (Equation (2.5)) to the target entropy 

obtained via thermodynamic integration. The values of 𝑐1 and 𝑐2 are reported in Table 2-

2. As with the parameters for the high temperature corrections, 𝑐1 and 𝑐2 are universal for 

the systems examined here. 

Target Entropy 

Figures 2-7, 2-8, and 2–9 show the solid and liquid target entropy developed as described 

in section III for each of the three systems we have investigated. For each composite 

figure, the left column describes the solid and the right column the liquid. The x axis is 

reported in absolute temperature from 1 K to the melting temperature (solid) and from the 

melting temperature to nearly ten million K (liquid). Each column contains three figures, 

the potential energy (top), the excess constant volume heat capacity (middle) and the 

excess entropy (bottom). 

Collectively we observe several features of these thermodynamic properties, which 

qualitatively validate the simulations. The potential energies for all materials 
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Figure 2-7. Thermodynamic integration development of solid and liquid entropy for 

copper. 
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Figure 2-8. Thermodynamic integration development of solid and liquid entropy for 

iron. 
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Figure 2-9. Thermodynamic integration development of solid and liquid entropy for 

silicon. 
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monotonically increase with increasing temperature. The excess heat capacities are 

always positive and thus the excess entropy monotonically increases with increasing 

temperature. The excess heat capacities further demonstrate three qualities deemed to 

represent the physical system accurately. First, the solid heat capacity approaches 3/2 kB 

on the approach to 0 Kelvin. Second, there is a sharp rise in heat capacity on the approach 

to the melt temperature in both the solid and liquid. Finally, the excess heat capacity 

approaches 0 as the temperature approaches infinity. These features provide confidence 

in the quality of the target entropies obtained through further thermodynamic integration. 

The only anomalous behavior from these target thermodynamic properties is that we 

observe, for some cases, unexpected fluctuations in the slope of the heat capacity 

immediately before (Cu) and after the melting temperature (Cu, Fe). When the scale of 

the y-axis is taken into account, these fluctuations are deemed to be minor. They are 

artifacts of fitting discrete points of the potential energy to an integrable function. 

In this work, the reference point for excess entropy is that it be zero at infinite 

temperature. To put the solid phase entropy on this same scale, the solid entropy must be 

shifted by a constant related to the entropy of fusion, as defined in Equation (2.13). It is 

important to remember that this constant is required only for the target entropy. It is not 

required by the entropy functional, which delivers an absolute excess entropy. These shift 

factors are reported in Table 2-3. The decomposition of the entropy shift into the three 

terms on the right-hand side of Equation (2.13) is also reported as fractions of the total. 

 

Entropy Functionals 

Excess entropy from the functionals has been plotted with the target entropy. These 

results for copper, iron, and silicon are included in Figures 2-10, 2-11, and 2-12 

respectively. Comparable plots for Johnson Fe appear in in Figures 1–3 of Nicholson.14 

Collectively, in each plot, the reference entropy approaches zero in the high temperature 

limit. The excess entropy monotonically increases with increasing temperature. As a 

consequence of these two facts, the excess entropy is always negative. 
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Table 2-3. Excess entropy shift between solid and liquid phases and its 

decomposition. 

System 
∆𝑺𝒕𝒐𝒕 

(J/mol/K) 

∆𝑺𝑳 

(Fraction) 

∆𝑺𝒔 

(Fraction) 

∆𝑺𝑳→𝑺 

(Fraction) 

Cu −7.03 −0.930 0.540 1.390 

Fe −4.27 −1.177 0.743 1.434 

Si −13.82 −0.016 −0.009 1.025 
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Figure 2-10. Thermodynamic integration development of solid Excess entropy of 

copper, comparing target entropy from thermodynamic integration with values 

from solid and liquid functionals. 
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Figure 2-11. Thermodynamic integration development of solid Excess entropy of 

iron, comparing target entropy from thermodynamic integration with values from 

solid and liquid functionals. 
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Figure 2-12. Thermodynamic integration development of solid Excess entropy of 

silicon, comparing target entropy from thermodynamic integration with values from 

solid and liquid functionals.  
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On the liquid side, both the unmodified Kirkwood entropy (Equation (2.5)) and the 

modified Kirkwood entropy (Equation (2.6)), are plotted. In each case, the incorrect high 

temperature limit of the unmodified Kirkwood entropy is corrected by being shifted up a 

factor of ½ kB. At intermediate temperatures, the presence of the �̃�[𝑔] in the modified 

Kirkwood formulation significantly improves the ability of the functional to describe the 

simulated entropy. Near the melt temperature, the presence of the 𝜅[𝑔], in the modified 

Kirkwood formulation, significantly improves the ability of the functional to describe the 

accelerated decrease in the simulated entropy. 

In Figure 2-12 it can be seen that in general the Kirkwood entropy for Si varies from the 

target entropy differently than is the case for the Kirkwood entropy for Cu and Fe. For 

temperatures approaching 𝑇𝑚 the Kirkwood entropy for Cu and Fe tend to undershoot the 

target while for Si it overshoots target entropy. There is also a subtle change in slope of 

the entropy for Si at intermediate temperatures in modified Kirkwood entropy, that is not 

evident in the Cu and Fe entropies. 

On the solid side of the curve, we compare the target entropy with the three versions of 

the solid entropy functional explored in this work (Equations (2.7)–(2.9)). All models 

produce quantitatively similar results to the target entropy obtained from thermodynamic 

integration. The slope is well captured. The degree to which the intercept is captured 

varies. For Cu (Figure 2-10), Fe (Figure 2-11), and Si (Figure 2-12), Equation (2.9) gives 

the best fit. It is further observed that the trend in relative entropies from Equations (2.7)–

(2.9) is not the same for all three materials. 

 

Discussion 

Table 2-2 shows that EPFT provides a significant reduction in error over the unmodified 

Kirkwood entropy. The error for the entropy of the EPFT compared to thermodynamic 

integration is reported in Table 2-2 and is below 0.1 kB/atom for all three systems. In the 

case of silicon this represents an order of magnitude improvement over Kirkwood 

entropy. 
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The lower performance of Kirkwood entropy for the Tersoff silicon system most likely 

originates from the construction of the Tersoff potential, which takes into account 

multibody interactions through angle-dependent terms. As discussed, the Kirkwood 

entropy is ultimately a sub-functional of the EPFT and assumes pair potentials only. This, 

in fact, is the reason the multibody Tersoff potential was chosen, to test the compatibility 

of functionals accounting for only pair correlations with a multibody interaction potential. 

The new forms of �̃�[𝑔] and 𝛾[𝑔] presented take into account the effects of coordination 

number and density. These forms bring us closer to an accurate pair entropy functional 

and, therefore, overcome some of the limitations of Kirkwood entropy when applied to 

multibody potential systems. 

It is well known that entropy should approach zero as temperature approaches absolute 

zero. The reader is reminded of two important restrictions we have imposed on this work. 

First, we are only addressing excess configurational entropy. We have developed the 

target entropy for this purpose from only the potential energy of the systems. This can be 

seen in the fact that the solid heat capacity approaches 3 2⁄ 𝑘𝐵 as temperature approaches 

0 Kelvin. By way of the equipartition theorem, this represents half of the 3 𝑘𝐵 dictated by 

the law of Dulong Petit. Second, this work is based on classical MD simulations that do 

not take into account any quantum effects that begin to dominate as temperature 

approaches 0 K. A similar examination of the high temperature limit can be used to 

confirm the expected result of excess entropy approaching zero as the system approaches 

a configuration equivalent to that of a perfect gas. 

 

Conclusions 

The goal of this work was to explore the universality of a recently published Entropy Pair 

Functional Theory (EPFT) and its applicability to many-body interactions. The EPFT 

demonstrated that it could accurately describe materials obeying classical many-body 

(non-pairwise) potentials (MEAM and Tersoff) and we can expect that it would apply 

equally well to evaluation of the entropy to other many-body potentials, including first 

principles simulations. The practical value of EPFT is its potential to deliver excess 
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entropy from a single simulation. A suite of classical molecular dynamics simulations 

was performed for Cu (FCC, MEAM), Fe (BCC, MEAM) and Si (diamond cubic, 

Tersoff) over a temperature range from 1 K to over 106 K. Using thermodynamic 

integration, the excess entropy was calculated across this temperature range. The 

universality of EPFT was investigated by comparing the excess entropies of these 

materials from EPFT with the standard obtained from thermodynamic integration over 

the entire temperature range. The EPFT approach provides a significant improvement 

over Kirkwood entropy, yielding average errors of 0.06, 0.08, and 0.05 kB/atom for Cu, 

Fe and Si, respectively. 

As presented here, the EPFT approach to computing liquid phase excess entropies 

contains four parameters that are fit to simulation data obtained across a temperature 

range. These parameters are universal and can be made more robust as simulation data 

from additional systems is added to the data pool. Of note, the EPFT formalism for the 

solid phase contains no adjustable parameters and is universal to within the accuracy 

reported above. Utilization of EPFT to explore entropies of defective crystals and high 

entropy alloys is underway. 
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APPENDICES 

Appendix 2.A 

Equations of the form A1 were used to fit potential energy where the order i is in-creased 

as necessary to obtain properly behaved heat capacity functions but not to exceed the 

number of potential energy data points. 

 𝑈 = ∑ 𝑎𝑖𝑙𝑛(𝑇)𝑖

𝑖

 (2.A1) 

The constant volume heat capacity was determined as follows. 

 
𝐶𝑣 ≡ (

𝜕𝑈

𝜕𝑇
)

𝑣
 (2.A2) 

 

 
𝐶𝑣 = ∑

𝑖𝑎𝑖𝑙𝑛(𝑇)𝑖−1

𝑇
𝑖

 (2.A3) 

The target excess entropy, by which the EPFT was validated, was determined as follows. 

 
𝑆 ≡ ∫

𝐶𝑣

𝑇′

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇′ (2.A4) 

 

 
𝑆 = ∑ ∫

𝑖𝑎𝑖𝑙𝑛(𝑇′)𝑖−1

𝑇′2

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇′

𝑖

= ∑ 𝑖𝑎𝑖 ∫
𝑙𝑛(𝑇′)𝑖−1

𝑇′2

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇′

𝑖

 (2.A5) 
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Appendix 2.B 

To determine the likelihood that a trial volume contains only one atom we determine the 

probability that 𝑁 − 1 atoms in the system are outside of the trial volume. For a system of 

N atoms and trial volume 𝑉 = 4/3𝜋𝑟3 and a total system volume 𝑉𝑠 = 4/3𝜋𝑅𝑠
3 the 

probability that any one of the N atoms is outside the trial volume is 

 
𝑝𝑜1(𝑟) = 1 −

4/3𝜋𝑟3

𝑁4/3𝜋𝑅𝑠
3 (2.B1) 

The joint probability that all but one of the atoms in the system are outside the trial 

volume then becomes 

 
𝑝𝑜(𝑟) = (1 −

𝑟3

𝑁𝑅𝑠
3)

𝑁−1

 (2.B2) 

The binomial theorem can be used to expand equations of this form. Setting 𝑎 =  𝑟3 𝑅𝑠
3⁄  

 
𝑝𝑜(𝑟) =  lim

𝑁→∞
(1 −

𝑎

𝑁
)

𝑁−1

=  1 −
𝑎

1!
+

𝑎

2!
−

𝑎

3!
 (2.B3) 

This series is recognizable as the expansion of 𝑒𝑎 and forms the basis for the high 

temperature correction 𝑄[𝑟]. 

 𝑝𝑜(𝑟) = exp(−𝑎) = exp (− 𝑟3

𝑅𝑠
3⁄ ) (2.B4) 
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CHAPTER 3  

HIGH TEMPERATURE ERROR – SOURCES AND SOLUTIONS 
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Abstract 

Direct entropy calculation for liquids are known to underestimate the excess entropy in 

the perfect gas [PG] limit. From a combinatorial perspective this error has been shown to 

originate from the absence of higher order correlation terms in the Kirkwood entropy. 

This work explores the connection between the combinatorial physical and configuration 

perspectives, ultimately providing a means to extract the higher order correlation 

information from the pair correlation function [PCF]. 

Introduction 

Kirkwood Entropy 

A functional of g(r) based on the Kirkwood approximation has been demonstrated as a 

means of direct calculation of the excess entropy for liquids1-5. The Kirkwood entropy 

functional is constructed as follows. 

 
�̃�𝐾

𝑥[𝑔] = lim
𝑅→∞

1

2
{ − 1 + 𝜌 ∫ 𝑑𝑟

∞

0

𝑔(𝑟)(𝑙𝑛𝑔(r) − (𝑔(𝑟) − 1)) 
(3.1) 

 

Where 𝑔(𝑟) is a pair correlation function defined as 

 
∫ 𝜌𝑔(𝑟)4𝜋𝑟2𝑑𝑟 = 𝑁 − 1 ≈ 𝑁

∞

0

 (3.2) 

 

However, the so called Kirkwood entropy functional is known to possess a 
1

2
𝑘𝐵/𝑎𝑡𝑜𝑚1 

error at high temperatures and to decrease without bound upon approach to the melting 

temperature. This is evident in Figure 3-1 where the high temperature error can be seen to 

range from 0 at an intermediate temperature up to 1/2𝑘𝐵 at the perfect gas (PG) limit. 

Recently, Nicholson et al have presented the entropy pair functional theory (EPFT) 

demonstrating the direct calculation of entropy for 𝑇 = 0 𝐾 to the PG limit3. In addition 

to extending the Kirkwood functional to solids, EPFT provides a functional form for 

liquid entropy that corrects the shortcomings of the Kirkwood entropy. 
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Figure 3-1. Excess entropy of MEAM iron from thermodynamic integration 

compared to calculation from the Kirkwood entropy. 
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The high temperature correction proposed by EPFT is in the form of a sub-functional 

𝑄[𝑔] that is fit with two parameters and included as �̃�[𝑔]. 

 
�̃�𝐾

𝑥[𝑔] =
1

2
�̃�[𝑔] − 1 + lim

𝑅→∞

1

2
{ − 1 + 𝜌 ∫ 𝑑𝑟

∞

0

𝑔(𝑟)(𝑙𝑛𝑔(r) − (𝑔(𝑟) − 1)) 
(3.3) 

 

Where �̃�[𝑔] is defined as 

 �̃�[𝑔] = 𝑄 + 𝑞1𝑄(1 − 𝑄) + 𝑞2𝑄2(1 − 𝑄) (3.4) 

 

Parameters 𝑞1and 𝑞2 in Equation 3.4 are fit to a target entropy developed by 

thermodynamic integration across the full range of temperature. In this work we examine 

the particularities of the functional 𝑄[𝑔] specifically the form utilized by Sluss et al in 

their extension of the EPFT6. 

 

Background 

Origins of the error in the PG limit 

For systems of size N and correlations up to n = N, the Kirkwood entropy is defined as 

 

 
�̃�𝐾

𝑥[𝑔] =
1

2
 {−1 + 𝜌 ∫ 𝑑𝑟

∞

0

𝑔(𝑟)(2) (𝑙𝑛𝑔(r)(2) − (𝑔(𝑟)(2) − 1))} 

+ 
1

6
 {−1 + 𝜌2 ∫ 𝑑𝑟

∞

0

𝑔(𝑟)(3) (𝑙𝑛𝛿𝑔(r)(3)

− (𝑔(𝑟)(3) + 3𝑔(𝑟)(2)𝑔(𝑟)(2) + 3𝑔(𝑟)(2) − 1))} …  

(3.5) 

 

The three terms in Equation (3.5) are referred to as the one, two, and three particle 

entropies. 𝛿𝑔(r)(𝑛) is the factor used to regain the complete n order correlation from the 

results of the superposition approximation based on pair correlations only1,5,7. 

Computation of the higher order terms is impractical and it is common to truncate the 
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terms higher than pair correlation. In this simplified case of n=2 Equation (3.5) reduces to 

Equation (3.2).  

 

Baranyai et al provided a connection between the 1/2𝑘𝐵 error at the PG limit and the 

absence of higher order correlation terms in the Kirkwood entropy. As a review, 𝑔(𝑟)(𝑛) 

at the PG limit and at large 𝑟 is 

 
𝑔(𝑟)(𝑛) =  

𝑁(𝑁 − 1) … (𝑁 − 𝑛 − 1)

𝑁𝑛
 (3.6) 

 

For pair correlations only, 𝑛 = 2 and at large r 

 
𝑔(𝑟)(2) =  

𝑁(𝑁 − 1)

𝑁2
= 1 − 

1

𝑁
 (3.7) 

 

Equation (3.5) can be extended to include all n-particle terms up to 𝑛 = 𝑁. By calculating 

these higher order contributions at the PG limit, Baranyai simply points out that at the PG 

limit the pair correlation terms in Equation (3.5) are equal to 1/2𝑘𝐵 and the sum of all 

higher order correlation terms account for an additional 1/2𝑘𝐵. It is clear then that the 

source of the 1/2𝑘𝐵 error in the Kirkwood entropy results from the omission of the 

contributions of the higher order 𝛿𝑔(r)(𝑛). 

One possible conclusion from the results above may be that 𝑔(𝑟)(2) does not contain 

sufficient information for the calculation of entropy. In fact, for any system governed by 

pair interactions alone, all higher order correlations are wholly dependent upon the pair 

correlations. Nicholson et al have provided an ad absurdum proof of statement, 

demonstrating that for systems described by pair potential Hamiltonians pair correlations 

determine all higher order correlations. This means that the pair correlation 𝑔(𝑟)(2) 

contains all of the configurational information needed for the calculation of the entropy 

and that the source of the 1/2𝑘𝐵 error at the PG limit is not attributable to a deficiency in 

the pair correlation 𝑔(𝑟)(2) but only to the truncation of the higher order terms in the 

Kirkwood entropy. The remainder of the theory we will discuss here will deal specifically 
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with the pair correlation functions and as such we will refer to 𝑔(𝑟) without the order of 

correlation designator. 

In addition to the mathematical origins above it is also necessary to develop some 

physical explanation for the high temperature error. There are two qualities of the 𝑔(𝑟) 

expression in Equation (3.2) that are important to remember at this time. First, 𝑔(𝑟) 

provides the probability of finding an atom at a distance 𝑟 from a central atom. For this 

reason 𝑔(𝑟) is normalized to be equal to 1 at large 𝑟 meaning that for any incremental 

increase in r at long distances from the central atom there is unity probability of finding 

another atom. In other words, at sufficiently large separation there is no correlation 

between two atoms in the system. Second, the right hand side of Equation (3.1) 

represents the total number of atoms in the volume 
3

4
𝜋𝑅3 less the central atom from 

which the separation distance r is measured. This is equivalent to observing that 𝑔(𝑟) =

0 for 𝑟 in the region around the central atom. The small 𝑟 region where 𝑔(𝑟) = 0  is 

referred to as the excluded volume and is ultimately defined by the governing interaction 

potential of the system. 

Figure 3-2 provides an insight into the evolution of 𝑔(𝑟) over the temperature range in 

question. As temperature increases two phenomena are readily observable. First, as 

expected correlation between atoms decreases with temperature. Second, the excluded 

volume decreases with temperature. The first observation is directly in line with the 

definition of a perfect gas which assumes no interaction between particle and 

consequently there is no correlation. The second observation is a result of the energy of 

the system overcoming the repulsive component of the interaction potential as the 

temperature increases. Imperceptible in Figure 3-2, but of note, is that the value of 𝑔(𝑟) 

at large r has also been lowered at the PG limit (106 𝐾) by 
1

𝑁
 as indicated in Equation 

(3.7). 
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Figure 3-2. Radial distribution functions for MEAM iron across a full range of 

liquid temperatures. 
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High Temperature Correction 

 

Direct Calculation from g(r) 

Because the pair correlation 𝑔(𝑟) contains all of the configurational information needed 

to calculate entropy, The central challenge in the development of 𝑄[𝑔]  is to craft the 

functional in such a way as to utilize the relevant information present in 𝑔(𝑟). We know 

that a proper 𝑄[𝑔] will increase monotonically from 0 at some intermediate temperature 

to 1 at the PG limit. We also require that 𝑄[𝑔] is dependent only on 𝑔(𝑟) and that it is 

computationally accessible (is not of a form prone to errors related to machine precision). 

With all that in mind we begin the construction of the high temperature correction 

functional 𝑄[𝑔] by ensuring the proper output at the low and high temperature limits. 

Namely, for the liquid just above Tmelt, 𝑄[𝑔] = 0 and at TPG, 𝑄[𝑔] = 1. We know from 

Equation (3.2) that for the liquid, 4𝜋𝜌 ∫ 𝑟2𝑔(𝑟)𝑑𝑟 = 𝑁 − 1
∞

0
. So we can say that  

 
𝑄[𝑔] = 4π𝜌 ∫ 𝑟2𝑔(𝑟)𝑑𝑟 + 𝑥 = 0

𝑅

0

 (3.8) 

 

Clearly,𝑥 = 1 − 𝑁. Because 4𝜋𝜌 ∫ 𝑟2𝑑𝑟 = 𝑁
∞

0
, we can write 𝑄[𝑔] as, 

 
𝑄[𝑔] = 1 −  4π𝜌 ∫ 𝑟2(1 − 𝑔(𝑟))𝑑𝑟

𝑅

0

 (3.9) 

 

Next we insert Equation (3.7) into (3.9)  

 
𝑄[𝑔] = 1 −  4π𝜌 ∫ 𝑟2 (1 − (1 −

1

𝑁𝑠𝑖𝑚
) 𝑑𝑟

𝑅

0

= 1 −
𝑁𝑠𝑝ℎ

𝑁𝑠𝑖𝑚
 (3.10) 

 

To ensure 𝑄[𝑔]𝑃𝐺 = 1 we then normalize 𝑄[𝑔] with the right hand side of Equation 

(3.9). 
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𝑄[𝑔] =

1 − 4π𝜌 ∫ 𝑟2(1 − 𝑔(𝑟))𝑑𝑟
𝑅

0

1 −
𝑁𝑠𝑝ℎ

𝑁𝑠𝑖𝑚
 

 (3.11) 

𝑁𝑠𝑝ℎ is the number of atoms in the volume 𝑉𝑔 =
4

3
πR3 (the volume over which 𝑔(𝑟) is 

calculated). 𝑁𝑠𝑖𝑚 is the total number of atoms in the simulation cube. For this reason the 

denominator of equation 11 can be rewritten as 𝑓𝑜𝑢𝑡, the fraction of atoms in the 

simulation that are found outside the 𝑔(𝑟) sphere. A similar change of variable in the 

numerator of Equation (3.11) results in the exact form of 𝑄[𝑔] presented by Nicholson et 

al. 

 
𝑄[𝑔] =

1 − N𝑑𝑖𝑓𝑓

𝑓𝑜𝑢𝑡
 (3.12) 

Here N𝑑𝑖𝑓𝑓 represents the difference between the number of atoms inside 𝑉𝑔 for an evenly 

distributed density and the number of atoms in 𝑉𝑔 as determined by the distribution 𝑔(𝑟). 

This change of variables exposes the 𝑄[𝑔] as a additional entropy functional. Ultimately, 

𝑔(𝑟) is the correlation function that modifies the trivial distribution 𝜌 (bulk density) to 

provide the 𝑟 dependent density 7. At the PG limit there is no correlation and 𝑔(𝑟) 

provides a unity modification of the bulk density. For this reason it would be expected 

that N𝑑𝑖𝑓𝑓 would approach 0 at the PG limit. Here we have made the case that at the PG 

limit N𝑑𝑖𝑓𝑓 = 𝑓𝑖𝑛 and that this is a direct result of the deficiencies of 𝑔(𝑟) that only 

include pair correlations. In this way 𝑄[𝑔] accounts for the missing information described 

by Baranyai 1. Furthermore, as 𝑄[𝑔]is measuring the shift from 𝑟 dependent density 

(order) to evenly distributed density (disorder), it is an entropy functional in its own right. 

 

Unfortunately, Equation (3.12) demonstrates two key shortcomings. First, for lower 

temperatures 𝑄[𝑔] is a function of the cutoff distance Rcut used in the calculation of 

N𝑑𝑖𝑓𝑓. This is not particularly surprising when it is considered that the lower 

temperatures have densities of higher 𝑟 dependence. The second issue with 𝑄[𝑔] arises 

due to the assumption implicit in the inclusion of Equation (3.7). By saying that in the PG 
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limit that 𝑔(𝑟) = 1 −
1

𝑁
 we are assuming that the large 𝑟 behavior of 𝑔(𝑟) is sufficient to 

describe the entire range of 𝑔(𝑟). For certain interaction potentials that have a finite 

repulsion energy at small 𝑟, this assumption is valid. However, for many common 

interaction potentials this assumption does not hold and consequently 𝑄[𝑔] is not able to 

measure the system changes on the approach to the PG limit.  

It is important to highlight the origin of the applicability of Equation (3.7) to finite 

interaction potentials and consequently why it fails for potentials that approach infinity at 

zero separation. In Figure 3-3 it can be seen that at the PG limit the Johnson potential 

provides for a non-zero chance for neighbors to be found at zero r. In contrast, the 

modified embedded atom method (MEAM) potential has a clearly defined region around 

the central atom where the chance of finding a neighbor atom is zero. We refer to this 

region as the excluded volume. For the Johnson potential we observe that the lack of a 

real excluded volume is advantageous to the applicability of Equation (3.7). We know 

that ∫ 𝑔(𝑟)𝑑𝑟
𝑟

0
 is a volume fixed by the limits of integration. For this reason, any volume 

that is accounted for in the small r region must be absent at larger r. This provides a 

physical interpretation for the shift from 𝑔(𝑟) = 1 to 𝑔(𝑟) = 1 −
1

𝑁
 for large 𝑟 at the PG 

limit. Specifically, in this interpretation, the volume that would be reserved for the central 

atom is now being shared or distributed by all of the atoms in the system. From a 

computational perspective, because Equation (3.7) assumes a singular value for 𝑔(𝑟) 

across all 𝑟, the small 𝑟 characteristic of the Johnson potential introduces less error that 

MEAM.  

An Idealized Model of Ndiff 

It can be seen from the temperature evolution of 𝑔(𝑟) in Figure 3-2 that systems 

governed by the MEAM potential demonstrate some reduction in the size of the excluded 

region on the approach to the PG limit. This provides motivation to improve the method 

of calculation of N𝑑𝑖𝑓𝑓 for MEAM and similar systems. As a first step however, we direct 

our attention to eliminating the 𝑟 dependence of 𝑄[𝑔]. This is accomplished by  
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Figure 3-3. Comparison of small 𝒓 behavior of systems governed by finite (Johnson) 

and infinite (MEAM) repulsive potentials. 
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calculating 𝑔(𝑟) over the entire simulation cube, for 𝑅 in range (0,
√3

2
𝛼) where 𝛼 is the 

length of a simulation box side. 𝑔(𝑟) calculated in this manner will be referred to as the 

cumulative RDF or CRDF.  

𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟] is the difference between the average number of atoms in a sphere and the 

observed number of atoms based on integration of the RDF. The sphere used in the 

definition of 𝑁𝑑𝑖𝑓𝑓 and 𝑄[𝑔] is allowed to become larger than half the box size, which 

means the appropriate volume is no longer a sphere but the cube-sphere intersection (csi) 

volume, 𝑉𝑐𝑠𝑖. Figure 3-4 provides a visual progression for the csi volume as the RDF 

sphere radius increases from half the box length up to half the box length times √3 2⁄ . 

For RDFs calculated over the csi volume, we redefine 𝑁𝑑𝑖𝑓𝑓 and [𝑔] ,  

 
𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟] =  𝜌 ∫ 1 − 𝑔(𝑟′)𝑑𝑟′

𝑉𝑐𝑠𝑖(𝑟)

 (3.13) 

 

𝑄[𝑔] is a functional of the RDF defined as  

 
𝑄𝑐𝑠𝑖[𝑔] =

1 − 𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟]

1 −
𝑉𝑐𝑠𝑖

𝑉𝑐𝑢𝑏𝑒

 
(3.14) 

 

It turns out that 𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟] is a strong function of 𝑟, the upper limit of integration, 

making 𝑄[𝑔]  a function of 𝑟, which is undesirable from both practical and theoretical 

grounds.  In Equation (3.14), we observe that when 𝑟 𝛼⁄ ≥ √3 2⁄ , 𝑉𝑐𝑠𝑖(𝑟) = 𝑉𝑐𝑢𝑏𝑒 so that 

𝑄(√3 2⁄ ) is formally undefined, 0 0⁄ .  However, in practice, we have observed that the 

𝑄(√3 2⁄ ) converges to a finite number bounded between 0 and 1. Furthermore, the 

definition in Equation (3.14) yields 𝑄[𝑔, 𝑟] as a function of 𝑟 with substantial statistical 

noise. Figure 3-5 exemplifies the 𝑟 dependance present in 𝑄[𝑔]. 

To obtain 𝑄[𝑔] independent of 𝑟 and subject to less noise, we fit 𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟] to a model. 

The model RDF of the liquid phase can be described in terms of two regions.  In the first 

region, there is some excluded volume.  In this region, 
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Figure 3-4. Evolution of the cube sphere intersection (csi) volume 𝑽𝒄𝒔𝒊. For sphere 

radius 𝒓 and half box length 𝜶, 𝑽𝒄𝒔𝒊 increases a. to f. for 𝒓 = 𝜶 (a.) to 𝒓 ≥ 𝜶
√𝟑

𝟐
 (f.). 
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Figure 3-5. 𝑸[𝒈] for MEAM Fe developed from the CRDF demonstrating strong 𝒓 

dependance. 
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 𝑔𝑟𝑒𝑔𝑖𝑜𝑛_1(𝑟) = 0  for 0 ≤ 𝑟 ≤ 𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒 (3.15) 

 

where the upper limit of region 1, is given by 𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒, which defines the excluded 

volume of the central atom,  

 
𝑉𝑒𝑥𝑐𝑙𝑢𝑑𝑒 =

4𝜋

3
𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒

3  (3.16) 

where the excluded volume can be related to the fraction of an excluded atom at the core, 

 
𝑉𝑒𝑥𝑐𝑙𝑢𝑑𝑒 =

𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒

𝜌
 (3.17) 

 

where 0 ≤ 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒 ≤ 1.  𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒 or equivalently 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒 is the only adjustable 

parameter in this model.  Importantly, it will be shown below that for this model RDF, 

𝑄[𝑔] uniquely defined as  

 
 𝑄𝑐𝑠𝑖[𝑔] = 1 − 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒 = 1 − 𝜌𝑉𝑒𝑥𝑐𝑙𝑢𝑑𝑒 = 1 − 𝜌

4𝜋

3
𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒

3  (3.18) 

 

which has the desired property of being independent of 𝑟 beyond the initial excluded 

volume.  If we optimize the parameter, 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒, in this model to fit simulation data it will 

necessarily output Q. 

In the second region, there is a plateau in the RDF, but the value of this plateau is set so 

that the finite size of the simulation box is realized. This manifests in the fact that Ndiff. 

must go to unity at values of r which enclose the entire simulation box,  𝑟 𝛼⁄ ≥ √3 2⁄ .  

This constraint dictates the value of the RDF to be 

 
𝑔𝑟𝑒𝑔𝑖𝑜𝑛_2(𝑟) =

𝑁𝑐𝑢𝑏𝑒 − 1 − 𝑁𝑟𝑒𝑔𝑖𝑜𝑛_1

𝜌𝑉𝑟𝑒𝑔𝑖𝑜𝑛_2
  for 𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒  ≤ 𝑟 (3.19) 

 

where 𝑁𝑐𝑢𝑏𝑒 is the number of atoms in the cubic simulation box, 𝑁𝑟𝑒𝑔𝑖𝑜𝑛𝑠_1 is the total 

number of atoms in region 1, as given by the cumulative RDF, r is the average density 

and 𝑉𝑟𝑒𝑔𝑖𝑜𝑛_2 is the volume of region 2, that portion of the cubic simulation volume that 

extends beyond region 1. 
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 𝑉𝑟𝑒𝑔𝑖𝑜𝑛_2 = 𝑉𝑐𝑢𝑏𝑒 − 𝑉𝑟𝑒𝑔𝑖𝑜𝑛_1 (3.20) 

Also, the number of atoms in region 1, 𝑁𝑟𝑒𝑔𝑖𝑜𝑛_1 is zero, since 𝑔𝑟𝑒𝑔𝑖𝑜𝑛_1(𝑟) = 0.  In this 

model,  

 
𝑔𝑟𝑒𝑔𝑖𝑜𝑛_2(𝑟) =

𝑁𝑐𝑢𝑏𝑒 − 1

𝜌𝑉𝑟𝑒𝑔𝑖𝑜𝑛_2
  for 𝑟𝑒𝑥𝑐𝑙𝑢𝑑𝑒  ≤ 𝑟 (3.21) 

 

There are no adjustable parameters in region 2. 

From an analysis of a simulation, we have the RDF and cumulative RDF (CRDF). Both 

functions extend to the corner of the cubic unit cell, using the formula for the cube-

sphere-intersection. We perform a single-variable non-linear optimization in the only 

parameter of our model RDF, namely, 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒, or equivalently 𝑄 = 1 − 𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒, to 

match the simulation data. We tried both the Nelder and Mead’s Downhill Simplex 

Method (the amoeba method) and the Polak-Ribiere Conjugate Gradient method, without 

alteration from Numerical Recipes.8 In general, this is a very robust one-dimensional 

optimization. It turns out that 𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟] has much less noise than 𝑄[𝑔, 𝑟] (as determined 

in Equation (3.14)), as a  so we optimize to 𝑁𝑑𝑖𝑓𝑓[𝑔, 𝑟]. Since Q is essentially a parameter 

in the RDF, the optimization returns Q. Figure 3-6 shows 𝑁𝑑𝑖𝑓𝑓 along with the single 

parameter (𝑓𝑒𝑥𝑐𝑙𝑢𝑑𝑒) model used to produce stable values of Q for the high temperature 

correction. 

Rethinking the Excluded Volume 

In the first version of 𝑄[𝑔] (Equation (3.12)) we developed a measurement of the 𝑟 

dependence of density from high dependence around Tmelt to zero dependence at the PG 

limit. We also provided a tentative relationship between this transition and the shrinking 

of the excluded volume at high temperatures. The key insight provided by the model of 

𝑁𝑑𝑖𝑓𝑓 and 𝑄𝑐𝑠𝑖[𝑔] (Equation (3.18)) is that the essential information for the high 

temperature correction is contained within the small 𝑟 regions of 𝑔(𝑟) and its dependent 

functionals. We now turn out attention to finding more direct access to the excluded 

volume information contained in 𝑔(𝑟). 
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Figure 3-6. 𝑵𝒅𝒊𝒇𝒇 for MEAM Fe with single parameter model. 
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Interaction potentials by definition provide the relationship between energy and the 

atomic separation. It is clear that as the temperature of the system increases the repulsive 

energy barrier is overcome to some degree and atoms can be found closer together. This 

is one mechanism causing the shrinking of the excluded volume at high temperature. It is 

important to remember two things at this time. First, an important precept of EPFT is a 

functional of 𝑔(𝑟) not temperature. Second, the observation that 𝑄[𝑔] is measuring the 

extent to which density is dependent upon 𝑟 remains true. For these reasons we take the 

view that while the interaction potential provides a governing Hamiltonian for the 

system, it is the resulting configurational information that determines the entropy.  

What is needed then is a model of the excluded volume robust enough to account for a 

variety of atomic configurations found in nature yet measurable in 𝑔(𝑟). For this model 

we choose the polyhedron defined by the Voronoi tessellation of the entire simulation 

space. Voronoi polyhedra, VP, are commonly used in the study of material systems and 

when applied to a crystal lattice are known as Wigner-Seitz cell 9-14. In the crystal, VP 

have faces equal in number to the coordination number of the system and defined by 

planes perpendicularly bisecting the distance between neighboring atoms. Because the 

model excluded volume must be measurable from 𝑔(𝑟) we translate the VP to a sphere 

with equal volume. Observing that the sum of the volume of every VP in a system is 

equal to the total volume of a the system, we consider the inverse of the bulk density, 
1

𝜌
, 

to be equivalent to the volume of the VP and define the radius, 𝑅𝑠, of the model excluded 

volume below. 

 

𝑅𝑠 = (
3

4𝜋𝜌
)

1
3
 (3.22) 

 

The probability of finding any of the 𝑁 atoms in a system outside of the model excluded 

volume is then,  

 
𝑝𝑜1(𝑟) = 1 −

4/3𝜋𝑟3

𝑁4/3𝜋𝑅𝑠
3 (3.23) 
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Here 𝑟 is the separation between an atom and the centroid of the model excluded volume. 

The probability of finding all but one of the atoms outside of the trial volume is, 

 
𝑝𝑜(𝑟) = (1 −

𝑟3

𝑁𝑅𝑠
3)

𝑁−1

 (3.24) 

 

Applying the binomial theorem to Equation (3.23) results in a more simplified form. 

 
𝑝𝑜(𝑟) = exp (− (

𝑟

𝑅𝑠
)

3

) (3.25) 

 

We can then define the intrusion into the trial volume for any 𝑔(𝑟) as, 

 
𝐼[𝑔] = ∫ 4𝜋𝑟2𝜌𝑃𝑖𝑑(𝑟)𝑔(𝑟)𝑑𝑟 (3.26) 

 

We define 𝑄[𝑔] as, 

 
𝑄[𝑔] =

𝐼[𝑔] − 𝐼𝑚𝑖𝑛

1 − 𝐼𝑚𝑖𝑛
 (3.27) 

 

𝐼𝑚𝑖𝑛, is the minimum intrusion into the excluded volume and provides a reference for the 

full scale measurement 𝑄[𝑔]. 

Results 

Using MEAM iron as a test case, a comparison of the three forms of 𝑄[𝑔] discussed was 

performed. The three forms of 𝑄[𝑔] discussed here are presented across the liquid 

temperature range for MEAM iron in Figure 3-7. Equation (3.18) shows a vast 

improvement over the untenable results of Equation (3.12). The VP based approach, 

Equation (3.27), provides the least noise of the three techniques. 

Discussion and Conclusions 

We have provided an explanation for the high temperature error found in the Kirkwood 

entropy functional. This explanation connects the known combinatorial deficiencies at  
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Figure 3-7. Comparison of three methods to calculate Q[g] for liquid MEAM iron 

across a full range of liquid temperatures. 
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the PG limit when only pair correlations are considered to the evolution of the 𝑟 

independence of density. Furthermore, we have demonstrated that a high temperature 

correction functional based on this explanation is a first class measure of disorder as well 

as providing a state of the art correction to PCF entropy functionals. 
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CHAPTER 4  

SUMMARY 

 

Exploration of EPFT 

We explored the general applicability of the Entropy Pair Functional Theory [EPFT] 

approach by applying it to three many-body interaction potentials. These potentials are 

state of the art for large scale models for the three materials in this study: Fe modelled 

with a modified embedded atom method [MEAM] potential, Cu modelled with an 

MEAM and Si modelled with a Tersoff potential. We demonstrated the robust nature of 

EPFT in determining excess entropy for diverse systems with many-body interactions. 

Finally, these steps toward a universal Entropy Pair Functional, EPF, can be applied with 

confidence to determine the entropy associated with sophisticated optimized potentials 

and first principles simulations of liquids, crystals, engineered structures, and defects. 

High temperature correction 

By exploring the origin of the high temperature error in the Kirkwood entropy we 

demonstrated a means to correct the error. Specifically, by connecting the combinatorial 

and physical configuration perspectives of the error a first class functional was 

developed, providing a means to extract the higher order correlation information from the 

pair correlation function [PCF]. 

Broader impact 

Many of the problems facing the human race in the coming years depend upon materials 

that do not yet exist or those that must be obtains from the reuse of the constituents of the 

built environment. To expedite the development of these materials we must rely on the 

computational tools that have emerged over the past half century. Free energy and 

consequently entropy calculations are essential in any material discovery or engineering 



81 

 

processes. A direct, efficient means to calculate entropy will play an import role in this 

work. 

Entropy Codes 

The complete set of codes utilized in this work are provided by way of a GitHub 

repository located at https://github.com/cliftonsluss/SFunk. This code base includes C++ 

source code for the calculation of absolute liquid and solid entropy based on the EPFT 

methods used and described in this work. The program to calculate liquid entropy takes 

as input the radial distribution function for the modeled system, the system number 

density, and the four parameters 𝑝1, 𝑝2, 𝑐1, and 𝑐2 (default values for the four parameters 

are the four ‘universal’ parameters we have presented). The solid entropy code takes as 

input a trajectory file containing a set of frames of atomic positions and returns the three 

upper bounds to solid entropy we presented here. Some additional Python scripts are 

provided to the community to assist those who wish to develop a target entropy following 

the thermodynamic integration method we have used. 

Future Work 

Next steps with the EPFT should include the extension to additional interaction potentials 

and systems of higher complexity. The ubiquitous Lennard-Jones potential is an obvious 

next choice for EPFT extension. Logical examples of higher complexity systems, include 

the calculation of the entropy of defect formation (vacancy or interstitial) as well as 

multicomponent systems. As motivation we briefly present the current state of results for 

the Lennard-Jones argon system. We have developed the target entropy for a liquid argon 

system modeled with the Lennard-Jones potential. Utilizing the four parameters 

developed from the Cu, Fe, and Si systems we compare the EPFT and Kirkwood results 

for Lennard-Jones argon to target entropy. Figure 4-1 shows good qualitative agreement 

between the EPFT and target entropy. Of note is the error for Kirkwood entropy 

(Equation (2.5)) is larger in magnitude than the typical 
1

2
𝑘𝐵 at the PG limit. A summary 

of the absolute error is reported in Table 4-1. Error from the Cu, Fe, and Si systems is 



82 

 

repeated here for comparison. Lennard-Jones argon demonstrates marginally larger error 

but still provides a large improvement over the base Kirkwood functional. Future work 

with the Lennard-Jones systems should be used to further refine the universal parameters.  
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Figure 4-1. Liquid Lennard-Jones argon entropy. 

 

System q1 q2 c1 c2 
Kirk. Avg. 

Err (kB/Atom) 

EPFT Avg. 

Err (kB/Atom) 

Cu 

3.24834 −2.406550 −320.1305 1.02966 

0.32 0.06 

Fe 0.41 0.08 

Si 0.61 0.05 

Ar 0.30 0.09 

Table 4-1. EPFT error for liquid systems utilizing universal parameters. 
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