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Abstract

A matroid is a finite set E along with a collection of subsets of E, called independent

sets, that satisfy certain conditions. The most well-known matroids are linear

matroids, which come from a finite subset of a vector space over a field K. In

this case the independent sets are the subsets that are linearly independent over

K. Algebraic matroids come from a finite set of elements in an extension of a field

K. The independent sets are the subsets that are algebraically independent over K.

Any linear matroid has a representation as an algebraic matroid, but the converse

is not true [7]. One tool that helps us better understand algbraic matroids is the

Lindström valuation which is defined on basis sets of a matroid. This valuation is

explicitly defined in [3].

In Chapter 2, we will show that the Lindström valuated matroid can be further

refined to a DVR-matroid, or matroid over a discrete valuation ring as defined

in [5]. In Chapter 3, we focus on a class of examples of algebraic matroids that

come from homomorphisms of algebraic groups. We show that the d-vectors for the

corresponding DVR-matroid can be computed in two different ways.
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Chapter 1

Introduction

In this chapter, we will present background information on matroids, including two

of many equivalent definitions of a matroid, and discuss their connection to linear

algebra.

1.1 Basic Definitions

In this section, we will introduce essential definitions that will be used throughout

this thesis.

Definition 1.1.1. A matroid M is a pair (E, I) consisting of a finite set E and a

collection of subsets of E satisfying

(i) I is non-empty.

(ii) Every subset of every member of I is also in I.

(iii) If X and Y are in I and
∣∣X∣∣ = ∣∣Y ∣∣ + 1, then there is an element x in X \ Y

such that Y ∪ {x} is in I.

The set E is called the ground set and the members of I are called independent sets.

Maximal independent sets are called bases.
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As suggested by the terminology, matroids generalize the concept of linear

independence of vectors in vector spaces. Property (iii) is analogous to the Steinitz

Exchange Lemma, and it follows that for any A ⊆ E, all maximal independent subsets

of A have the same cardinality. So, all bases of a matroid have the same cardinality,

just like bases in a vector space.

Definition 1.1.2. Let M be a matroid on the ground set E. The rank function

r : 2E → Z≥0 on M is the function that maps A ⊆ E to the size of a maximal

independent subset of A.

We call the rank of the ground set E the rank of the matroid which is analogous

to the dimension of a vector space, and we can equivalently define a matroid in terms

of a rank function.

Proposition 1.1.3. [8, Theorem 1.3.2] Let M be a matroid on the ground set E,

and let r : 2E → Z≥0 be the rank function. Then the independent sets of M are the

subsets I ⊆ E for which r(I) =
∣∣I∣∣, and r satisfies the following:

(i) We have r(A) ≤
∣∣A∣∣ for every A ⊆ E.

(ii) If A ⊆ B ⊆ E, then r(A) ≤ r(B).

(iii) For any A,B ⊆ E, we have r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

Moreover, if E is a set and r : 2E → Z≥0 is a function satisfying the above conditions,

then r determines a matroid on E.

One class of matroids comes from linear independence of column vectors of a

matrix over some given field. We call matroids that can be represented this way

linear matroids. An example of a linear matroid is given below.

Example 1.1.4. [8, Example 1.1.2] Consider the following matrix over the field R.

ψ =

1 0 0 1 1

0 1 0 0 1


2



Let E = {1, 2, 3, 4, 5}, and let I ⊆ 2E be the collection of subsets A ⊆ E such

that the column vectors with indices in A are linearly independent over R. Then

I = {∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}, and (E, I) is a matroid.

Definition 1.1.5. Let M be a matroid with ground set E.

(i) For e ∈ E, the deletion of e is a matroid on the ground set E \ {e} where the

independent sets are the independent sets in M that do not contain e.

(ii) For e ∈ E, the contraction of M by e is a matroid on the ground set E \ {e}.

If {e} is independent in M , the independent sets are subsets I ⊆ E such that

I ∪ {e} is independent in M . If {e} is dependent in M , the independent sets

coincide with the independent sets of M .

In terms of linear algebra, deletion is analogous to removing one vector from a

finite list of vectors and restricting to the subspace spanned by the remaining vectors.

Contraction is analogous to quotienting out by the span of a vector.

1.2 Valuated Matroids

As discussed in the previous section, given an m × n matrix A over a field K, we

can obtain a linear matroid M on the ground set E = {1, . . . , n}. The independent

sets are the subsets of E for which the corresponding column vectors are linearly

independent over K. If K has valuation ν : K \ {0} → R, we can define a function

ν ′ that maps each basis B of M to ν(detAB), where AB is the submatrix of A that

contains only the columns corresponding to B.

If A′ is a matrix obtained from A by elementary row or column operations, the

linear matroid of A′ is equivalent to the matroid of A. The value of ν ′ on each basis is

shifted by a constant (equal to the valuation of the determinant of the invertible

matrix P for which PA = A′). First introduced in [4], the following definition

generalizes this idea.

3



Definition 1.2.1. For a matroid M on the ground set E, a matroid valuation on M

is a function ν from the set of bases of M into R such that for all pairs of bases B

and B′ with i ∈ B \ B′, there exists a j ∈ B′ \ B so that if B − i+ j and B′ + i− j

are bases and

ν(B) + ν(B′) ≥ ν(B − i+ j) + ν(B′ + i− j).

We consider matroid valuations ν and µ to be equivalent if there exists λ ∈ R such

that ν(B) = µ(B) + λ for every basis B. If ν is a matroid valuation on M , then we

call the pair (M, [ν]) a valuated matroid, where [ν] is the equivalence class of ν.

Since shifting a matroid valuation by a constant results in an equivalent matroid

valuation, the function described in the first paragraph does not depend on the matrix

representation of the vector configuration.

1.3 Algebraic Matroids

Definition 1.3.1. Let L/K be a finite extension of fields, and let x1, x2, . . . , xn ∈ L.

and, let E = {1, 2, . . . , n}. For A ⊆ E, define xA = {xi : i ∈ A}, and define I ⊆ 2E

as follows:

I = {A ⊆ E : xA is algebraically independent over K}

Then I satisfies the properties in Definition 1.1.1 so that (E, I) is a matroid, called

the algebraic matroid of L/K associated to x1, . . . , xn.

In general, every linear matroid has an algebraic representation. Over fields of

characteristic 0, the converse also holds. That is, every algebraic matroid over a

field K of characteristic 0 has a linear representation over an algebraic closure of K.

However, over a field of characteristic p > 0, there are algebraic matroids that are

not linear [7].

In [2], a matroid flock is defined to be a collection of matroids for which all deletions

and contractions satisfy certain conditions. They define an associated matroid, called

4



the support matroid, and show that a valuated matroid is equivalent to a matroid

flock. They then define a specific flock of linear matroids, called the Frobenius

flock, for which the support matroid is the algebraic matroid of the field extension.

They call the equivalent valuated matroid the Lindström valuated matroid. A direct

construction of this valuated matroid is given in [3]. This definition is given below.

Definition 1.3.2. [3] Let K be an algebraically closed field of characteristic p > 0,

and let L be a finite extension of K(x1, . . . , xn). The Lindström valuation (up to

equivalence) of the algebraic matroid of this field extension is given by

ν(B) = logp[L : K(xB)
sep]

for every basis B, where K(xB)
sep denotes the elements of L which are separable over

K(xB).

5



Chapter 2

DVR-Matroids

In this chapter, given a finite field extension L of K(x1, . . . , xn), we construct a

matroid over a discrete valuation ring, as defined in [5]. In order to accomplish this,

we make use of an equivalence of matroids over a discrete valuation ring with functions

mapping subsets of the ground set E to sequences of integers satisfying set conditions

[5, Proposition 5.4]. We will now call a pair (E, d) of a ground set E and a function

satisfying these conditions a DVR-matroid, and we will show that a matroid with

valuation that arises from this construction is equal to the algebraic matroid of the

field extension, along with the Lindström valuation. For the entirety of this chapter,

we will assume that K is an algebraically closed field of characteristic p > 0, and L

is a finite extension of K(x1, . . . , xn).

2.1 Matroids Over a Ring

In [5], Fink and Moci introduced the concept of a matroid over a commutative ring

R. It is defined as follows:

Definition 2.1.1. Let R be a commutative ring and let Rmod be the set of finitely

generated R-modules. Let E be a finite set (called the ground set), and let

6



M : 2E → Rmod be a function. We call the pair (E,M) a matroid over R if for every

A ⊆ E and b, c ∈ E, there exist x, y ∈M(A) satisfying the following conditions:

(i) M(A ∪ {b}) ∼= M(A)/(x)

(ii) M(A ∪ {c}) ∼= M(A)/(y)

(iii) M(A ∪ {b, c}) ∼= M(A)/(x, y)

Two matroids over a ring, M1 and M2, are considered to be the same if M1(A) ∼=

M2(A) for every A ⊆ E. If R is a field and M(E) is trivial, then the function

A 7→
∣∣E∣∣− dimM(A) satisfies the conditions of a rank function. Hence, we obtain a

classical matroid in this case [5, Proposition 2.6].

If R is a discrete valuation ring, then finitely generated R-modules can be written

as a direct sum of cyclic R-modules, each isomorphic to either to R or R/mn for

some n ∈ N. Thus, we have a bijection between finitely generated R-modules (up

to isomorphism) and non-increasing sequences of nonnegative integers. The bijection

maps a finitely generated R-module N to the sequence
(
len(mi−1N/miN)

)∞
i=1

, where

len(mi−1N/miN) is the maximum length of a chain of submodules of mi−1N/miN

[5, Proposition 5.1]. The ith entry is equal to the number of summands in the

decomposition of N that are either free or isomorphic to R/mn with n ≥ i. The

conditions in Definition 2.1.1 are characterized by conditions on these sequences in

[5, Proposition 5.4], inspiring the following definition.

Definition 2.1.2. A DVR-matroid is a finite set E together with a function d

assigning to each A ⊆ E a non-increasing sequence of nonnegative integers d(A) =

(d1(A), d2(A), . . . ) satisfying the following properties:

(L1) For any A ⊆ E and b ∈ E \A, di(A)−di(A∪{b}) is either 0 or 1 for each i ≥ 1.

(L2) For any A ⊆ E and b, c ∈ E \ A, and n ≥ 1

d≤n(A)− d≤n(A ∪ {b})− d≤n(A ∪ {c}) + d≤n(A ∪ {b, c}) ≥ 0, (L2a)

7



where d≤n(A) =
n∑
i=1

di(A). In addition, for any n ≥ 1 such that dn(A ∪ {b}) ̸=

dn(A ∪ {c}), equality holds, meaning:

d≤n(A)− d≤n(A ∪ {b})− d≤n(A ∪ {c}) + d≤n(A ∪ {b, c}) = 0 (L2b)

The conditions a DVR-matroid satisfies are labeled to match Proposition 5.4 in

[5]. The reason for this is that this definition makes use of an equivalence of DVR-

matroids with certain matroids over a discrete valuation ring.

Proposition 2.1.3. [5, Proposition 5.4] Let E be a finite set. A DVR-matroid (E, d)

is equivalent to a matroid over a discrete valuation ring whose residue field has more

than 2 elements.

If (E, d) is a DVR-matroid with lim
i→∞

di(E) = 0, then we can obtain an ordinary

matroid M on E of rank r = lim
i→∞

di(∅) by defining the rank function r : 2E → Z≥0

to be r(A) = r − lim
i→∞

di(A). The bases of M are the subsets B of size r such that

di(B) = 0 for sufficiently large i. Furthermore, the function σ(B) =
∑
i

di(B) where

B is a basis defines a matroid valuation on M [5, Corollary 5.9].

2.2 The DVR-Matroid of an Algebraic Extension

Given a finite field extension L of K(x1, . . . , xn), where K is an algebraically closed

field of characteristic p > 0, we now define a function d that maps subsets of E =

{1, . . . , n} to non-increasing sequences of nonnegative integers. For A ⊆ {1, . . . , n},

we denote the extension of K generated by {xi : i ∈ A} by K(xA).

Definition 2.2.1. Let L be a finite field extension of K(x1, . . . , xn), with K

algebraically closed. For each i ∈ N and A ⊆ {1, . . . , n}, define

di(A) = logp

[
Lp

i−1

K(xA) : L
piK(xA)

]
.

8



Define d(A) to be the sequence (d1(A), d2(A), . . . ).

We have di(A) <∞ for everyA ⊆ E since the field extensions Lpi−1
K(xA)/L

piK(xA)

are algebraic and finitely generated. Since these field extensions are also purely

inseparable, it follows that di(A) is an integer for every i ∈ N. We will now show

that the function d satisfies the conditions in Definition 2.1.2 so that (E, d) is a

DVR-matroid. We will prove each of the properties in the following lemmas.

Lemma 2.2.2. Let D and F be finite extensions of a field K contained in a common

field L. Then [D : K] ≥ [DF : KF ].

Proof. Let v1, . . . , vn be a basis for D as a K-vector space. Let α ∈ DF . Then

α = e1f1 + · · · + emfm for some ei ∈ D and fi ∈ F . Now, for each i = 1, . . . ,m, we

have ei =
n∑
j=1

βijvj for some βij ∈ K. So,

α =
m∑
i=1

(
n∑
j=1

βijvj

)
fi =

m∑
i=1

n∑
j=1

βijvjfi =
n∑
j=1

(
m∑
i=1

βijfi

)
vj.

Since α was arbitrary, we have that DF is spanned by v1, . . . , vn as a KF -vector

space. Hence, [D : K] ≥ [DF : KF ].

Lemma 2.2.3. For each A ⊆ 1, . . . , n and i ∈ N, the sequence d(A) is a non-

increasing sequence of nonnegative integers.

Proof. Since Lp
i−1
K(xA)/L

piK(xA) is a finitely generated algebraic extension, we

have that
[
Lp

i−1
K(xA) : L

piK(xA)
]

is finite. Since for every α ∈ Lp
i−1
K(xA), we

have αp ∈ Lp
i
K(xA), Lp

i−1
K(xA)/L

piK(xA) is a purely inseparable extension. Hence,[
Lp

i−1
K(xA) : L

piK(xA)
]

is a power of p and so di(A) is a nonnegative integer.

To see that d(A) is non-increasing, consider the following diagram:

9



Lp
i+1
K(xA)

p

Lp
i+1
K(xA)

L

Lp
i
K(xA)

p

Applying the Frobenius endomorphism, we have
[
Lp

i−1
K(xA) : L

piK(xA)
]

=[
Lp

i
K(xA)

p : Lp
i+1
K(xA)

p
]

since K is algebraically closed. By Lemma 2.2.2, we

have
[
Lp

i
K(xA)

p : Lp
i+1
K(xA)

p
]
≥
[
Lp

i
K(xA) : L

pi+1
K(xA)

]
. Thus, d(A) is a non-

increasing sequence of nonnegative integers.

Lemma 2.2.4. The function d defined in Definition 2.2.1 satisfies L1 from Defini-

tion 2.1.2.

Proof. Let A ⊆ {1, . . . , n}, let b ̸∈ A, and let i ∈ N. We will show that

logp

[
Lp

i−1

K(xA) : L
piK(xA)

]
− logp

[
Lp

i−1

K(xA∪{b}) : L
piK(xA∪{b})

]
= 0 or 1

Consider the following diagram of purely inseparable field extensions.

Lp
i
K(xA)

Lp
i
K
(
xA∪{b}

)
Lp

i−1
K
(
xA∪{b}

)

Lp
i−1
K(xA)

pkps

pℓpt

From multiplicativity of field extensions, we have t+ s = ℓ+ k. By Lemma 2.2.2,

we have t ≤ k. Now, LpiK
(
xA∪{b}

)
/Lp

i
K(xA) is a simple extension generated by xb.

10



Let f be the minimal polynomial of xb over Lpi−1
K(xA) so that deg(f) = pt. Then xb

is also a root of fp which is a polynomial in LpiK(xA)[x]. Hence, pk ≤ deg(fp) = pt+1

and so k ≤ t+ 1.

Thus, we have t ≤ k ≤ t+1 which implies k = t or k = t+1. If k = t, then s = ℓ

and so di(A) = di(A∪{b}). If k = t+1, then s = ℓ+1, and so di(A) = di(A∪{b})+1.

Therefore, di(A)− di (A ∪ {b}) is either 0 or 1.

Lemma 2.2.5. The function d defined in Definition 2.2.1 satisfies L2a from

Definition 2.1.2.

Proof. Observe that for any n ∈ N and A ⊆ E, d≤n(A) = logp
[
L : Lp

n
K(xA)

]
. So,

for any a, b ∈ E, A ⊆ E, and n ∈ N, we have

d≤n(A)− d≤n(A ∪ {b})− d≤n(A ∪ {c}) + d≤n(A ∪ {b, c})

= logp
[
L : Lp

n

K(xA)
]
− logp

[
L : Lp

n

K(xA∪{b})
]

− logp
[
L : Lp

n

K(xA∪{c})
]
+ logp

[
L : Lp

n

K(xA∪{b,c})
]

= logp

[
L : Lp

n
K(xA)

] [
L : Lp

n
K(xA∪{b,c})

][
L : LpnK(xA∪{b})

] [
L : LpnK(xA∪{c})

]
= logp

[
Lp

n
K(xA∪{b}) : L

pnK(xA)
][

LpnK(xA∪{b,c}) : Lp
nK(xA∪{c})

]
Now, by Lemma 2.2.2, we have that

[
Lp

n

K(xA∪{b}) : L
pnK(xA)

]
≥
[
Lp

n

K(xA∪{b,c}) : L
pnK(xA∪{c})

]
.

Thus,

logp

[
Lp

n
K(xA∪{b}) : L

pnK(xA)
][

LpnK(xA∪{b,c}) : Lp
nK(xA∪{c})

] ≥ 0,

and so

d≤n(A)− d≤n(A ∪ {b})− d≤n(A ∪ {c}) + d≤n(A ∪ {b, c}) ≥ 0.

Thus, d satisfies L2a.
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Lemma 2.2.6. The function d defined in Definition 2.2.1 satisfies L2b from

Definition 2.1.2.

Proof. Let A ⊆ E and b, c ∈ E. Suppose that dn(A ∪ {b}) ̸= dn(A ∪ {c}). Since d

satisfies L2a, we can assume that dn(A ∪ {b}) = dn(A) and dn(A ∪ {c}) + 1 = dn(A).

So, we have the following diagram.

Lp
n
K(xA)

Lp
n
K
(
xA∪{b}

)
Lp

n
K
(
xA∪{b,c}

)

Lp
n
K(xA∪{c})

ptpℓ

pkps
Lp

n−1
K(xA∪{c})

Lp
n−1
K(xA)

Lp
n−1
K(xA∪{b})

Lp
n−1
K(xA)

pℓ−1 pu

pupu

pu−1
pt

We claim that k = ℓ. To see this, suppose to the contrary that k ̸= ℓ.

Since by Lemma 2.2.2, k ≤ ℓ, this means k < ℓ. Thus, k ≤ ℓ − 1. Since[
Lp

n−1
K(xA)(xc) : L

pn−1
K(xA)

]
= pℓ−1, we have xpℓ−1

c ∈ Lp
n−1
K(xA). Since k ≤ ℓ−1

and
[
Lp

n
K(xA)(xc, xb) : L

pnK(xA)(xb)
]
= pk, we have xpℓ−1

c ∈ Lp
n
K(xA)(xb). So,

xp
ℓ−1

c ∈ Lp
n−1
K(xA)∩Lp

n
K(xA)(xb). Since Lpn−1

K(xA) and LpnK(xA)(xb) are linearly

disjoint over LpnK(xA), we have Lpn−1
K(xA) ∩ Lp

n
K(xA)(xb) = Lp

n
K(xA). Thus,

xp
ℓ−1

c ∈ Lp
n
K(xA), a contradiction since

[
Lp

n
K(xA)(xc) : L

pnK(xA)
]
= pℓ. Therefore,

k = ℓ.

Thus, we have

d≤n(A)− d≤n(A ∪ {b})− d≤n(A ∪ {c}) + d≤n(A ∪ {b, c})

= logp

[
Lp

n
K(xA∪{c}) : L

pnK(xA)
][

LpnK(xA∪{b,c}) : Lp
nK(xA∪{b})

]
= logp

pℓ

pk

= logp(1)

= 0

12



Hence, we have equality in L2a.

Theorem 2.2.7. Let L be a finite field extension of K(x1, . . . , xn), and assume K

is algebraically closed. Let E = {1, . . . , n}. Then (E, d) is a matroid over a DVR,

where d is the function defined in Definition 2.2.1.

Proof. The result follows from Lemma 2.2.3, Lemma 2.2.4, Lemma 2.2.5, and

Lemma 2.2.6.

2.3 Compatibility with Algebraic Matroid

Let (E, d) be the DVR-matroid from Theorem 2.2.7, and let M be the classical

matroid obtained as described in Section 2.1. In this section, we will show that

this matroid is the same as the algebraic matroid of L/K associated to x1, . . . , xn.

Furthermore, the valuation σ on M is equal to the Lindström valuation.

Theorem 2.3.1. Let K be an algebraically closed field of characteristic p > 0, and let

L be a finite extension of K(x1, . . . , xn). Let M be the matroid described in Theorem

2.2.7. That is, the bases of M are the subsets B of E of size r = lim
i→∞

di(∅) such that

di(B) = 0 for sufficiently large i. Then M is equal to the algebraic matroid of L/K

associated to x1, . . . , xn, and σ =
∑
i

di equals the Lindström valuation on M .

Proof. Let M ′ be the algebraic matroid of L/K associated to x1, . . . , xn. It is enough

to show that the bases of M and M ′ are the same. Let B ⊆ E be a basis in

M ′ with
∣∣B∣∣ = m. Then L/K(xB) is algebraic and hence finite, since L/K(xB) is

finitely generated. Observe that for every i ∈ N, we have K(xB) ⊆ Lp
i
K(xB) ⊆ L.

So, there must exist ℓ ∈ N such that Lpi−1
K(xB) = Lp

i
K(xB) for i ≥ ℓ. Hence,

di(B) = logp

[
Lp

i−1
K(xB) : L

piK(xB)
]

must be 0 for sufficiently large i. Now, we will

show that m = r. We must have [K(xB) : K(xpB)] = pm since the xB are algebraically

independent over K. Consider the following diagram of field extensions:
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K(xpB)

K(xB)

L

Lp

pm

finitepr

We have [L : K(xB)] = [Lp : K(xpB)] via the Frobenius endomorphism. Thus, we

must have m = r, and so B is also a basis in M . Hence, the bases of M ′ are also

bases of M . It follows that M and M ′ have the same rank.

Now, to show that bases of M are also bases in M ′, we will proceed by

contrapositive. Suppose that D ⊆ E is not a basis in M ′. If
∣∣D∣∣ ̸= r, then D is

not a basis in M . So, assume that
∣∣D∣∣ = r. Since D is not a basis in M ′, we have

thatD must be dependent inM ′. Let I ⊆ D be a maximal independent (inM ′) subset

of D so that I ⊊ B for some basis B. Then [L : K(xB)] < ∞. Put s = [L : K(xB)]

and m =
∣∣B∣∣ − ∣∣I∣∣. Observe that for n ∈ N, we have

[
K(xB) : K(xI , x

pn

B )
]
= pmn

since xB is algebraically independent over K(xI). Consider the following diagram of

field extensions:

K(xI , x
pn

B )

K(xB)

L

Lp
n
K(xD)

pmn

s
pd≤n(D)

We claim that lim
n→∞

[Lp
n

K(xD) : K(xI , x
pn

B )] <∞. To see this, first observe that

[Lp
n

K(xD) : K(xI , x
pn

B )] = [Lp
n

K(xD) : K(xD, x
pn

B )][K(xD, x
pn

B ) : K(xI , x
pn

B )]

14



By Lemma 2.2.2, [K(xD, x
pn

B ) : K(xI , x
pn

B )] ≤ [K(xD) : K(xI)] which is equal to

some c < ∞ since I is a maximal independent subset of D. Now, the extension

Lp
n
K(xD)/K(xD, x

pn

B ) is generated by elements yp
n

1 , . . . , y
pn

ℓ where {y1, . . . , yℓ} is a

subset of the generators of L/K(xB). Now, if fi(t) ∈ K(xB)[t] is the minimal

polynomial of yi over K(xB), let fp
n

i (t) be the polynomial obtained by raising the

coefficients of fi(t) to the power pn. Then fp
n

i (yp
n

i ) = 0 and fp
n

i (t) ∈ K(xp
n

B )[t] has

the same degree as fi. Thus, we must have [Lp
n
K(xD) : K(xD, x

pn

B )] ≤ s. Hence,

[Lp
n
K(xD) : K(xI , x

pn

B )] ≤ sc for every n ∈ N, and so lim
n→∞

[Lp
n

K(xD) : K(xI , x
pn

B )] <

∞. Since lim
n→∞

[L : K(xI , x
pn

B )] = ∞, it follows that d≤n(D) = ∞. Thus, there is no

sufficiently large i for which di(D) = 0, and so D is not a basis of M .

We have shown that the bases of M and the bases of M ′ coincide. Now, we will

show that σ agrees with the Lindström valuation on the bases. Let B be a basis so

that L/K(xB) is algebraic and let N be the largest integer such that di(B) ̸= 0. Then

σ(B) =
N∑
i=1

di(B)

=
N∑
i=1

logp[L
pi−1

K(xB) : L
piK(xB)]

= logp

N∏
i=1

[Lp
i−1

K(xB) : L
piK(xB)]

= logp[L : Lp
N

K(xB)]

Now, since L/K(xB) is finitely generated, there exists a nonnegative integer ℓ such

that LpℓK(xB) is separable over K(xB) [6, Proposition 6.1]. Assume that is the

smallest such integer. Then Lp
ℓ
K(xB) ⊆ K(xB)

sep. Since L/Lp
ℓ
K(xB) is purely

inseparable, we must have K(xB)
sep = Lp

ℓ
K(xB). Now, di(B) = 0 for i > ℓ because

Lp
i−1
K(xB)/L

piK(xB) is both separable and purely inseparable. Thus, N ≤ ℓ. By

definition of N , we have LpNK(xB) = Lp
ℓ
K(xB) which implies LpNK(xB) is separable
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over K(xB). Thus, ℓ ≤ N , and so ℓ = N . Therefore, we have

σ(B) = logp[L : Lp
N

K(xB)]

= logp[L : K(xB)
sep]

= ν(B)

where ν is the Lindström valuation onM . So, σ agrees with ν on bases of the algebraic

matroid of L/K associated to x1, . . . , xn.
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Chapter 3

One-dimensional Algebraic Groups

A class of examples of algebraic matroids come from homomorphisms Gd → Gn where

G is a connected one-dimensional algebraic group over an algebraically closed field

K. In this chapter, we discuss how to obtain the d-vectors of the DVR-matroid of

these algebraic matroids. Just as for the other chapters, we will assume that K is an

algebraically closed field of characteristic p > 0.

3.1 Algebraic Matroids from Algebraic Groups

Given a homomorphism Gd → Gn of algebraic groups over a field K, we can construct

an algebraic matroid of a field extension over K. These homomorphisms can be

represented by n× d matrices with entries in the endomorphism ring of a connected

one-dimensional algebraic group G over K. In this section, we will go through the

construction of these matroids, as shown in [1].

Definition 3.1.1. An algebraic group over K is an algebraic variety G over K along

with maps µ : G×G→ G and i : G→ G, and an element e ∈ G satisfying

(i) µ(a, e) = a for all a ∈ G,

(ii) µ(a, i(a)) = e for all a ∈ G,
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(iii) µ(a, µ(b, c)) = µ(µ(a, b), c) for every a, b, c ∈ G

Since connected one-dimensional algebraic groups are always commutative, we

will denote the group operation additively. The set of endomorphisms of a fixed

G forms a ring End(G) which we denote E. Addition in this ring is defined by

(α + β)(g) = α(g) + β(g) for α, β ∈ E and g ∈ G, and multiplication is function

composition. Before we show how to construct algebraic matroids from algebraic

groups, we will first give some key facts about these groups and their corresponding

endomorphism rings.

There are three possibilities for connected one-dimensional groups G over K. The

first possible group is the group Ga = (K,+). The endomorphism ring in this case is

K[F ], the ring of skew polynomials in F with coefficients in K, where Fa = apF for

every a ∈ K. The second possibility is the group Gm = (K∗, ·) whose endomorphism

ring is isomorphic to Z. The last possibility is for G to be an elliptic curve over

K, whose endomorphism ring is isomorphic to either Z, an order in an imaginary

quadratic number field, or an order in a quaternion algebra.

Given a connected one-dimensional algebraic group G, its endomorphism ring

E satisfies certain conditions called the Ore conditions [9, Chapter 1]. Thus, E is

contained in a division ring Q that is generated by E, called the Ore division ring

of E. This ring is given by Q = {ab−1 : a, b ∈ E}. We also have a valuation

ν : E → Z≥0 ∪ {∞} that extends uniquely to the Ore division ring Q [1, Proposition

16].

Now, we will explain how to construct an algebraic matroid from a matrix

representation of Gd → Gn. Let G be a connected one-dimensional algebraic group

over K, and let ψ be an n× d matrix with entries in E, the endomorphism ring of G.

Let K(G) be the function field of G, meaning a finitely generated field extension of

K, with transcendence degree 1. Then any α ∈ E gives in injective homomorphism

α∗ : K(G) → K(G).
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Let L = K(Gd) which is isomorphic to the field of fractions of K(G)⊗KK(G)⊗K

· · ·⊗KK(G). Then L is generated by subfields E1, . . . , Ed, each isomorphic to K(G).

For j = 1, . . . , n, define Cj = ψ∗
j1(E1)⊗K ψ

∗
j2(E2)⊗K · · · ⊗K ψ

∗
jd(Ed). Let tj generate

Ej over K(G) for each j, and assume that K(G) is separable over K(tj). Put xi =

ψ∗
j1(t1)ψ

∗
j2(t2) · · ·ψ∗

jd(td) for each i = 1, . . . , n. Then let M be the algebraic matroid

of the field extension L/K associated to x1, . . . , xn.

Example 3.1.2. Let K be a field of characteristic p > 0, and let G = Gm =

(K \ {0}, ·) so that E ∼= Z. Let ψ be an n × d matrix with entries in Z. Then L is

a finite extension of K(t1, . . . , td), and M is the algebraic matroid of L/K associated

to x1, . . . , xn, where xj = t
ψj1

1 · · · tψjd

d for j = 1, . . . , n.

3.2 Approximate Smith Normal Form

Let G be a connected one-dimensional algebraic group over K, and let ψ be a matrix

with entries in E = End(G). Let Q be the Ore division ring of E and put R =

{q ∈ Q : v(q) ≥ 0}. Then R is a discrete valuation ring with unique maximal ideal

m, and E ⊆ R. For A ⊆ [n], define MA = Rd/⟨vi : i ∈ A⟩ where vi is the ith

column of ψ. If R is commutative, this defines a matroid over R with d-vectors given

by di(A) = dimR/m(m
i−1MA/m

iMA). We claim that these d-vectors are the same

as the d-vectors of the DVR-matroid of the algebraic extension, regardless of the

commutativity of R. We leave the proof of this claim for Section 3.3.

If a matrix over End(G) for some G has a Smith normal form, computing the

d-vectors described above is more straight-forward. To see this, consider the case

where G = Gm. We then have E = Z, R is the localization Z(p), and ν is the p-adic

valuation. If ψ is an E-matrix, then ψA, the submatrix of ψ consisting of the columns

in A ⊆ [n], has a Smith normal form. That is, ψA = PDS where P and S are

invertible Z-matrices and D is a diagonal Z-matrix. So, taking p∞Z(p) to be {0}, we
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have

MA
∼= Z(p)/b1Z(p) ⊕ Z(p)/b2Z(p) ⊕ · · · ⊕ Z(p)/bdZ(p)

∼= Z(p)/p
ν(b1)Z(p) ⊕ Z(p)/p

ν(b2)Z(p) ⊕ · · · ⊕ Z(p)/p
ν(bd)Z(p)

where b1, . . . , bd are the diagonal entries of D. So, for i ∈ N,

pi−1MA/p
iMA

∼= ⊕d
j=1

(
pi−1Z(p)/p

kjZ(p)

)
/
(
piZ(p)/p

kjZ(p)

) ∼= ⊕d
j=1Nij

where Nij = 0 if i− 1 ≥ ν(bj) and Nij
∼= pi−1Z(p)/p

iZ(p) if i− 1 < ν(bj). We can now

easily compute the dimension over Z(p).

For a general connected one-dimensional algebraic group G, a matrix ψ over

End(G) does not necessarily have a Smith normal form. However, if ψ = PDS

where P and S are invertible and the off-diagonal entries of D have sufficiently large

valuation, we can still compute the d-vectors like above.

Definition 3.2.1. Let V be a ring with valuation ν : V → Z ∪ {∞}, and let A be

an n× d matrix with entries in V . We say that A has an approximate Smith normal

form if for every H > 0, there exist invertible matrices P and S over V such that the

non-diagonal entries of the matrix PAS have valuation larger than H.

We will show that every matrix with entries in E, for some connected one-

dimensional algebraic group G, has an approximate Smith normal form, but first

we need the following lemma. Since the proof relies only on algebraic properties of

E, we will work with an arbitrary valuation ring V with such properties.

Lemma 3.2.2. Let V be a ring with valuation v such that V is contained in a division

ring Q = {ab−1 : a, b ∈ V }. Let R = {q ∈ Q : v(q) ≥ 0}, and let m be the unique

maximal ideal of R. Suppose that there exists π ∈ V such that v(π) = 1 and that the

natural map V → R/m is surjective. Let H > 0, and let a, b ∈ V with v(a) ≤ v(b).

Then there exists c ∈ V such that v(b− ca) > H.
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Proof. Fix H > 0, and let a, b ∈ V . Then there exist r, s ∈ R \ m such that

a = rπv(a) and b = sπv(b). Since V → R/m is surjective, there exists α ∈ V such that

α +m = sr−1 +m. So, sr−1 − α ∈ m. Thus, v(sr−1 − α) ≥ 1. Let c1 = απv(b)−v(a).

Then c1 ∈ V and

v(b− c1a) = v
(
sπv(b) − απv(b)−v(a)rπv(a)

)
= v

(
sπv(b) − αrπv(b)

)
= v

(
(s− αr)πv(b)

)
= v

(
r(sr−1 − α)πv(b)

)
> v(b).

Now, replacing b with b − c1a, we have by the same argument that there exists

c2 ∈ V such that v(b− c1a− c2a) > v(b− c1a). Continuing this process, we can find

c1, . . . , cn ∈ V such that v(b− (c1 + · · ·+ cn)a) > H. Put c = c1 + · · ·+ cn ∈ V , and

the result follows.

For every endomorphism ring E of a connected one-dimensional algebraic group,

there exists an element in E with valuation 1 [1, Lemma 4.4]. Now, we will show that

the natural map E → R/m is surjective.

Lemma 3.2.3. Let G be a connected one-dimensional algebraic group. Let E be the

endomorphism ring of G, Q the Ore division ring of E, and R = {q ∈ Q : v(q) ≥ 0}.

Then the natural map E → R/m, where m is the unique maximal ideal of R, is

surjective.

Proof. We consider each of the cases in Proposition 25 of [1]. Suppose that G ∼= Ga

so that E = K[F ] and v is the F -adic valuation. First we claim that every r ∈ R can

be written as r = F ngh−1 where g, h ∈ E \m and n ≥ 0. To see this, let r ∈ R so

that r = ab−1 with a, b ∈ E and v(a) ≥ v(b). Let m = v(b). Then b−1 = (b′Fm)−1

where b′ = bF−m ∈ E and v(b′) = 0. Since v(a) ≥ m, we have a = a′Fm where
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a′ = aF−m ∈ E and v(a′) ≥ 0. So,

r = ab−1 = a′Fm(b′Fm)−1 = a′FmF−m(b′)−1 = a′(b′)−1

with a′, b′ ∈ E and v(a′) ≥ 0, v(b′) = 0. Now, applying F v(a′) to the coefficients of a′

to obtain a′′ ∈ E, we have r = a′(b′)−1 = F v(a′)a′′(b′)−1 with v(a′′) = v(b′) = 0. Since

m is generated by F , we have a′′, b′ /∈ m. Putting n = v(a′) ≥ 0, g = a′′, and h = b′,

the claim follows.

Now, we’ll show that E → R/m is surjective for this case. Let r ∈ R so that

r = F ngh−1 for some g, h ∈ E \m and n ≥ 0. Let g = a0 + a1F + · · · + amF
m and

let h = b0 + b1F + · · ·+ bℓF
ℓ. Since h /∈ m, we have b0 ∈ K \ {0}. Observe that

r − F na0b
−1
0 = F n(a0 + a1F + · · ·+ amF

m)h−1 − F na0b
−1
0 hh−1

= F n(a0 + a1F + · · ·+ amF
m)h−1 − F na0b

−1
0 (b0 + b1F + · · ·+ bℓF

ℓ)h−1

= F n((a0 + a1F + · · ·+ amF
m)− a0b

−1
0 (b0 + b1F + · · ·+ bℓF

ℓ))h−1 ∈ m

Thus, r + m = F na0b
−1
0 + m, and so F na0b

−1
0 ∈ E such that F na0b

−1
0 7→ r + m.

Therefore, if G ∼= Ga, then E → R/m is surjective.

Now, suppose that either G ∼= Gm or G is isomorphic to an elliptic curve with

j-invariant not in Fp, so that E ∼= Z and v is the p-adic valuation. Since R/m ∼= Z/pZ

which has no nontrivial subfields, the image of E → R/m is R/m. Thus, E → R/m

is surjective in this case.

Now, if G is isomorphic to a non-supersingular elliptic curve with j-invariant in

Fp, then by [1, Proposition 25], we have R/m ∼= Z/p. Thus, E → R/m must be

surjective.

Now, suppose that G is isomorphic to a supersingular elliptic curve. By [10,

Paragraph 42.4.6], E/(E ∩m) ∼= Fp2 . Also, by [1, Proposition 25], we have that E is

an order in a quaternion algebra. Since E is noncommutative, every element of R has

degree at most 2 over Q. Thus, we must have that R/m has p2 elements. Thus, the
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map φ : E/(E ∩m) → R/m given by φ(x+ (E ∩m)) = x+m is an isomorphism. It

follows that E → R/m is onto since the map E → E/(E ∩m) is.

We can now show that any n×d matrix representing a homomorphism of algebraic

groups has an approximate Smith normal form.

Theorem 3.2.4. Let G be a connected one-dimensional algebraic group with

endomorphism ring E, and let ψ be an n × d matrix with entries in E. Then ψ

has an approximate Smith normal form.

Proof. Fix H > 0. First observe that all elementary row/column operations are

invertible, with the exception of multiplying a row/column by a scalar. Let

ψ =


a11 a12 · · · a1d

a21
. . .

... . . .

an1 and


Let ai∗ denote the ith row of ψ and a∗j the jth column of ψ. We can switch rows and

columns in order to move an entry with least valuation to the top left. So, assume

that a11 has the least valuation. So, for each 2 ≤ j ≤ d, we have v(a11) ≤ v(a1j). By

the lemma, there exists cj ∈ E such that v(a1j − a11cj) ≥ H. Thus, by replacing the

column a∗j with a∗j − a∗1cj, we obtain a matrix ψ′ so that the elements in the first

row (excluding a11) have valuation at least H, and ψ′ is equivalent to ψ.

Similarly, since for each 2 ≤ i ≤ n we have v(a11) ≤ v(ai1), there exists c′i ∈ E

such that v(ai1 − c′ia11) ≥ H. Thus, by replacing ai∗ (row i) with ai∗ − c′ia1∗, we

can then obtain a matrix ψ′′ so that the elements in the first row and first column

(excluding a11) have valuation at least H, and ψ′′ is equivalent to ψ.
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Now, let B be the submatrix of ψ′′ shown below.

ψ′′ =


a′11 a′12 · · · a′1d

a′21
... B

a′n1


By the same reasoning as above (on the submatrix B), we have that ψ′′ is equivalent

to a matrix ψ′′′ such that for 3 ≤ j ≤ d, v(b2j) ≥ H and for 3 ≤ i ≤ n, v(bi2) ≥ H.

Now, observe that for any i, j = 2, . . . , n (with i ̸= j) and for any e ∈ E, we have

v(ai1 − eaj1) ≥ min{v(ai1), v(eaj1)} ≥ H, and v(a1i − a1je) ≥ min{v(a1i), v(a1je)} ≥

H. Thus, the entries in the first row and first column of ψ′′′ (excluding the upper left

entry) must also have valuation at least H.

By continuing this process, we obtain a matrix D such that D is equivalent to

ψ and the non-diagonal entries of D have valuation at least H. Since H > 0 was

arbitrary, the result follows.

3.3 Equality of DVR-Matroids

We have shown that every matrix representing a homomorphism of algebraic groups

has an approximate Smith normal form. In this section, we will prove that the d-

vectors described in Section 3.2 are the same as the d-vectors of the DVR-matroid of

the algebraic matroid of this matrix.

Proposition 3.3.1. Let G be a connected one-dimensional algebraic group with

endomorphism ring E, and let ψ be an n × d matrix with entries in E. Let L =

K(Gd) and let E1, . . . , Ed be subfields of L that generate L, each isomorphic to

K(G). Put Cj = ψj1(E1) · · ·ψjd(Ed) for each j = 1, . . . , n. For A ⊆ [n], let di(A) =

logp

[
Lp

i−1
K(CA) : L

piK(CA)
]

where CA is the compositum of all Cj with j ∈ A,
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and let fi(A) = dimR/m(m
i−1MA/m

iMA) where vj is the jth row of ψ and MA =

Rd/⟨vi : i ∈ A⟩. Then di(A) = fi(A) for every A ⊆ [n].

Proof. By Theorem 3.2.4, ψA has an approximate Smith normal form ψA = PBS

over E where B has diagonal entries b1, . . . , bd. Since all off diagonal entries of B have

high valuation, we have

MA
∼= R/b1R⊕R/b2R⊕ · · · ⊕R/bdR ∼= R/mk1R⊕R/mk2R⊕ · · · ⊕R/mkdR

where kj = v(bj) and we take m∞R to be {0}. So,

mi−1MA/m
iMA

∼= ⊕d
j=1

(
mi−1R/mkjR

)
/
(
miR/mkjR

) ∼= ⊕d
j=1Nij

where Nij = 0 if i− 1 ≥ kj and Nij
∼= mi−1R/miR if i− 1 < kj. Let

ℓij = dimR/m(Nij) =

0 if kj ≤ i− 1

1 if kj > i− 1

Then fi(A) =
d∑
j=1

ℓij.

Now, we’ll show that di(A) = fi(A) for each i. Since P and S are isomorphisms,

there exist subfields F1, . . . , Fd of L such that L is generated by F1, . . . , Fd and

K(CA) = K(b1(F1), . . . , bd(Fd)) for every A ⊆ [n]. For each i, if k ̸= j, then v(bkj) > i
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so that bkj(Fk) ⊆ Lp
i . So, we have

di(A) = logp

[
Lp

i−1

CA : Lp
i

CA

]
= logp

[
Lp

i−1

b1∗(F1), . . . , bd∗(Fd) : L
pib1∗(F1), . . . , bd∗(Fd)

]
= logp

[
Lp

i−1

b1(F1), . . . , bd(Fd) : L
pib1(F1), . . . , bd(Fd)

]
= logp

[
F pi−1

1 · · ·F pi−1

d (b1(F1), . . . , bd(Fd)) : F
pi

1 · · ·F pi

d (b1(F1), . . . , bd(Fd))
]

= logp

[
(F pi−1

1 b1(F1)) · · · (F pi−1

d bd(Fd)) : (F
pi

1 b1(F1)) · · · (F pi

d bd(Fd))
]

= logp

[
F pmin {i−1,k1}

1 · · ·F pmin {i−1,kd}

d : F pmin {i,k1}

1 · · ·F pmin {i,kd}

d

]
= logp

d∏
j=1

[Dj : Dj−1]

where Dj = F pmin {i−1,k1}

1 · · ·F pmin {i−1,kj}

j F pmin {i,kj+1}

j+1 · · ·F pmin {i,kd}

d for j = 0, . . . , d.

Observe that [Dj : Dj−1] = pℓij . Thus,

logp

d∏
j=1

[Dj : Dj−1] = logp

d∏
j=1

pℓij

=
d∑
j=1

logp
(
pℓij
)

=
d∑
j=1

ℓij

= fi(A)

Proposition 3.3.2. Let G be a connected one-dimensional algebraic group, L =

K(Gd), and ψ an n×d matrix with entries in E = End(G). Let E1, . . . , Ed be subfields

of L that generate L, each isomorphic to K(G). Assume that for each i = 1, . . . , d,

we have ti ∈ Ei such that Ei/K(ti) is separable. Put Cj = ψj1(E1) · · ·ψjd(Ed) and

xj = ψj1(t1) · · ·ψjd(td) for each j. Let CA be the compositum of all Cj with j ∈ A
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for a subset A ⊆ [n]. Then
[
Lp

i−1
K(CA) : L

piK(CA)
]
=
[
Lp

i−1
K(xA) : L

piK(xA)
]

for every i ∈ N.

Proof. First observe that since Ei is separable over K(ti), we have that each of

ψj1(E1), . . . , ψjd(Ed) is separable over K(ψj1(t1)), . . . , K(ψjd(td)) respectively. Thus,

Cj is separable over xj for each j, and CA is separable over K(xA) for any A ⊆ [n].

Fix ℓ ∈ Z≥0, and A ⊆ [n]. We claim that LpℓK(CA) = Lp
ℓ
K(xA). To see this, first

observe that since CA is separable over K(xA), we have LpℓK(CA) is separable over

Lp
ℓ
K(xA). Since for every y ∈ Lp

ℓ
K(CA), we have ypℓ ∈ Lp

ℓ
K(xA), the extension

Lp
ℓ
K(CA)/L

pℓK(xA) is also purely inseparable. Thus, LpℓK(CA) = Lp
ℓ
K(xA). It

follows that for any A ⊆ [n] and i ∈ N, we have
[
Lp

i−1
K(CA) : L

piK(CA)
]

=[
Lp

i−1
K(xA) : L

piK(xA)
]
.

We can now prove the main result of the chapter.

Theorem 3.3.3. Let G be a connected one-dimensional algebraic group with

endomorphism ring E, and let ψ be an n × d matrix with entries in E. Let

L = K(Gd) and let E1, . . . , Ed be subfields of L that generate L, each isomorphic

to K(G). Assume that for each i = 1, . . . , d, we have ti ∈ Ei such that Ei/K(ti)

is separable, and put xj = ψj1(t1) · · ·ψjd(td) for each j = 1, . . . , n. For A ⊆ [n],

let di(A) = logp

[
Lp

i−1
K(xA) : L

piK(xA)
]
, and let fi(A) = dimR/m(m

i−1MA/m
iMA)

where vj is the jth row of ψ and MA = Rd/⟨vi : i ∈ A⟩. Then ([n], d) and ([n], f) are

equal DVR-matroids.

Proof. The proof follows from Proposition 3.3.1 and Proposition 3.3.2.
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