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Abstract. A convolutional neural network (CNN) is one of the machine learning models that achieve excellent success 

in recognizing human facial expressions. Technological developments have given birth to many optimizers that can 

be used to train the CNN model. Therefore, this study focuses on implementing and comparing 14 gradient-based 

CNN optimizers to classify facial expressions in two datasets, namely the Advanced Computing Class 2022 (ACC22) 

and Extended Cohn-Kanade (CK+) datasets. The 14 optimizers are classical gradient descent, traditional momentum, 

Nesterov momentum, AdaGrad, AdaDelta, RMSProp, Adam, Radam, AdaMax, AMSGrad, Nadam, AdamW, OAdam, 

and AdaBelief. This study also provides a review of the mathematical formulas of each optimizer. Using the best 

default parameters of each optimizer, the CNN model is trained using the training data to minimize the cross-entropy 

value up to 100 epochs. The trained CNN model is measured for its accuracy performance using training and testing 

data. The results show that the Adam, Nadam, and AdamW optimizers provide the best performance in model training 

and testing in terms of minimizing cross-entropy and accuracy of the trained model. The three models produce a 

cross-entropy of around 0.1 at the 100th epoch with an accuracy of more than 90% on both training and testing data. 

Furthermore, the Adam optimizer provides the best accuracy on the testing data for the ACC22 and CK+ datasets, 

which are 100% and 98.64%, respectively. Therefore, the Adam optimizer is the most appropriate optimizer to be 

used to train the CNN model in the case of facial expression recognition. 

Keywords: AlexNet architecture, confusion matrix, convolutional neural network, deep learning, facial expression 

recognition, gradient-based optimizer. 
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1. INTRODUCTION 

Facial expression recognition is part of the classification problem and is still a challenging area of 

research [1]. Not only needed in human-to-human communication, but facial expression recognition also 

plays an essential role in human-computer communication, including human-robot interaction [2]. In an 

automated system, the system can provide services according to the emotions of each customer. In other 

applications, facial expression recognition can also be used in virtual reality [3], augmented reality [4], and 

mental disease diagnosis [5]. 

Many methods have been developed to recognize facial expressions. In general, an automatic facial 

expression recognition system usually consists of four stages: data pre-processing, feature extraction, feature 

selection, and classification [6]. One method that gives good results is the convolutional neural network 

(CNN) [7]. The advantage of CNN is that the feature extraction and selection stages are carried out 

automatically at the feature learning stage using convolutional and sub-sampling layers. After that, the 

outcome of the feature learning is flattened and then used as input for the classification using fully-connected 

layers. Although it gives good results, the main problem of classification using CNN is the large number of 

parameters, so the training process requires a long computational time [8]. 

Various optimizers that can be used to train CNN models have been developed by many experts. The 

earliest and most common optimization method is gradient descent [9]. The gradient descent method is easy 

to implement, but convergence speed is slower as it approaches the optimal solution. The speed of this 

convergence can be accelerated by considering both traditional and Nesterov momentum. Subsequently, an 

optimizer with an adaptive learning rate was developed, known as AdaGrad. AdaGrad performs more 

significant updates for infrequent and minor updates for frequent parameters. AdaGrad is extended into two 

methods, namely AdaDelta and RMSprop. Adaptive Moment Estimation (Adam) is another method that 

computes adaptive learning rates for each parameter, designed to combine the advantages of the two methods, 

namely AdaGrad and RMSProp. Moreover, Adam has many variations, such as rectified Adam, AdaMax, 

AMSGrad, NADAM, ADAMW, OADAM, and AdaBelief. 

With the development of many choices of optimizers that can be used to train CNN, this study aims to 

implement and compare 14 CNN optimizers for facial expression recognition problems. Facial expression 

data comes from Advance Computing Class 2022 (ACC22) and Extended Cohn-Kanade (CK+) datasets. The 

performance measured is the convergence speed of the optimizer to minimize the loss function used, namely 

cross-entropy. In addition, the accuracy of the CNN model on the training and testing data is also measured. 
The study results are expected to provide suggestions on an excellent optimizer that can be used to optimize 

CNN problems, especially in the case of facial expression recognition. 

 

 

 

2. RESEARCH METHODS 

2.1 Data Collection 

This study uses two facial expression datasets, i.e., the dataset collected from applied mathematics 

master’s degree students taking the 2022 advanced computing class (ACC22) and the dataset from the 

extended Cohn-Kanade (CK+) dataset. The details of each dataset are as follows. 

 

2.1.1 Advance Computing Class 2022 (ACC22) Dataset 

The first data was collected from IPB University applied mathematics master’s students, who are taking 

advanced computing courses in 2022, called the Advance Computing Class 2022 (ACC22) Dataset. This data 

consists of seven students who express three types of expressions: neutral, smile, and grin [10]. The data has 

been augmented into 567 labelled data, then stored with grayscale and a pixel size of 48 so that in the WHCN 

(width, height, channel, batch size) order, the size of ACC22 data is 48×48×1×567. 

 

2.1.2 Extended Cohn-Kanade (CK+) Dataset 

The CK+ dataset is an extension of the CK dataset. This data was collected from a total of 123 subjects 

aged 18 to 50 years [11]. This study extracted the last three frames from each sequence in the CK+ dataset, 

resulting in 981 data labelled with seven different types of expressions, i.e., angry, disgust, fear, happy, sad, 
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surprise, and neutral. The CK+ data is also extracted at grayscale and a pixel size of 48 so that in the WHCN 

order, the size of CK+ data is 48×48×1×981. 

 

2.2 Convolutional Neural Network (CNN) 

A convolutional neural network (CNN) is a feedforward neural network that can extract features from 

image data automatically using convolution structures. CNN has many advantages compared to general 

artificial neural networks: 1) Local connection. Each neuron in the new layer is only connected to a small 

number of neurons in the previous layer, effectively reducing parameters and accelerating convergence; 2) 

Weight sharing. A group of connections can share the same weight, which reduces parameters even further. 

3) Sub-sampling dimensionality reduction [12]. In general, there are two stages in the CNN model, i.e., 

feature learning and classification. Feature learning usually consists of convolution and pooling layers, while 

the classification layer consists of fully connected layers. 

Convolution is essential for feature learning, producing outputs called feature maps. Four components 

must be defined in the convolution layer: padding, stride, kernel, and activation function. When setting the 

convolution kernel to a specific size, the information on the border will be lost. Therefore, padding was 

introduced to enlarge the input by zero on each edge, which can adjust the size indirectly. The number of 

additional borders depends on the needs and the size of the specified kernel. Once the padding is set, the 

convolution operation is performed according to the fixed kernel. In a two-dimensional CNN, the kernel is a 

matrix of size 𝑛 × 𝑛 containing a number of parameter values. Each sub-matrix on the input is multiplied 

point by point by the kernel then summed and operated with an activation function. The sub-matrix is shifted 

right and down so that each value in the input matrix is convoluted. The length of the shift step is called the 

stride. Stride is employed to control the density of convolving. The larger the stride, the lower the density. 

After convolution, feature maps consist of a large number of features that is prone to causing overfitting 

problem. As a result, sub-sampling (max-pooling and average pooling) is proposed to avoid redundancy. 

After all the convolution and sub-sampling processes have been carried out, the last feature maps are flattened 

and used as input to the fully-connected layer for the classification stage. Figure 1 illustrates the procedure 

of convolution layer with max-pooling on two-dimensional CNN. 

 

Figure 1. Procedure of convolution layer with max-pooling on two-dimensional CNN 

 

In the development of CNN, many architectures have been designed to solve classification problems. 

The first architecture that became the forerunner of CNN was LeNet-5, published in 1992 [13]. This was 

followed by several variations of LeNet-5, such as AlexNet and VGG, published in 2012 and 2014 [14]. This 

study uses an AlexNet-like architecture to classify facial expressions from both datasets, with a design as 

shown in Figure 2.  
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Figure 2. AlexNet-like architecture for 𝒏-classes facial expression recognition 

 

AlexNet comprises eight processing layers, including five convolution layers and three fully connected 

layers. The hallmark of AlexNet is three successive convolution layers, after two convolution and sub-

sampling layers. The sub-sampling uses max pooling, and the activation function used is rectified linear unit 

(ReLU), given by 𝑓 𝑥 = 𝑥+ = max 0, 𝑥 . In deep learning, if the estimation of parameters uses limited 

data, it can lead to high variance and overfitting. Therefore, dropout is employed on fully-connected layers 

to prevent overfitting and improve the generalization ability of the network [15]. 

 

2.3 Optimizer 

Before the CNN model is ready to be used, the model must be trained using training data to minimize 

the loss function 𝐿 𝜃 , which is a measure of the proximity of the model output to the actual label. This study 

uses cross-entropy as a loss function given by 

𝐿 𝜃 = −
1

𝑘
∑𝑦𝑖 ⋅ log 𝑓𝜃 𝑥𝑖 

𝑘

𝑖=1

 (1) 

where 𝑘 is the number of training samples, 𝑓𝜃 𝑥  is the CNN model to be learned, and 𝜃 is the parameter to 

be optimized [16]. This study uses 14 optimizers to train the CNN model, with the details of each optimizer 

as follows. 

 

2.3.1 Gradient Descent 

Gradient descent is one of the most popular algorithms for optimizing neural networks [17]. Gradient 

descent computes the gradient of the loss function w.r.t. the parameters for the training dataset, and the 

parameters are updated in the negative gradient direction to minimize the loss function given by 

𝜃∗ = 𝜃 − 𝜂 ⋅
𝜕𝐿 𝜃 

𝜕 𝜃 
 (2) 

where 𝜂 is the learning rate, which determines the step size in each iteration and thus influences the number 

of iterations to reach the optimal value [18]. 

 

2.3.2 Momentum Gradient Descent 

In classic gradient descent, the update speed is fixed and does not take into account updates in previous 

iterations (epochs), i.e. 

𝑣 = −𝜂 ⋅
𝜕𝐿 𝜃 

𝜕 𝜃 
 (3) 

By utilizing the information from the update in the previous epoch, the convergence speed of the 

gradient descent method can be accelerated. This method, called momentum, helps accelerate gradient 

descent in the relevant direction and dampens oscillations [19][20]. This method adds a fraction 𝛾 of the 

update vector in the previous epoch to the current update vector, i.e. 

𝑣𝑡 = 𝛾 ⋅ 𝑣𝑡−1 − 𝜂 ⋅
𝜕𝐿 𝜃 

𝜕 𝜃 
, 

𝜃∗ = 𝜃 + 𝑣𝑡 
(4) 

where 𝛾 is called the momentum factor and is usually set to 0.9 or similar. 
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2.3.3 Nesterov Accelerated Gradient Descent 

The Nesterov Accelerated Gradient Descent (NAG) is an improvement over the traditional momentum 

method [21]. In Nesterov momentum, the momentum 𝛾 ⋅ 𝑣𝑡−1 is also added to 𝜃, when calculating the 

gradient of the loss function. Therefore, the updating formula of Nesterov momentum is given by 

𝑣𝑡 = 𝛾 ⋅ 𝑣𝑡−1 − 𝜂 ⋅
𝜕𝐿 𝜃 + 𝛾 ⋅ 𝑣𝑡−1 

𝜕 𝜃 
, 

𝜃∗ = 𝜃 + 𝑣𝑡 
(5) 

The improvement of Nesterov momentum is reflected in updating the gradient of the future position 

instead of the current position. 

 

2.3.4 AdaGrad 

Adaptive gradient descent (AdaGrad) is a refinement of the gradient descent method that adjusts the 

learning rate dynamically based on the historical gradient in previous iterations [22]. The updating formula 

of AdaGrad is given by 

𝑔𝑡 =
𝜕𝐿 𝜃𝑡 

𝜕 𝜃 
, 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√∑  𝑔𝑖 2 + 𝜖𝑡
𝑖=1

⋅ 𝑔𝑡 
(6) 

where 𝜃𝑡 is the parameter of 𝜃 at iteration 𝑡, and 𝑔𝑡 is the gradient of parameter 𝜃𝑡. Since the learning rate 

changes with each iteration based on the accumulative gradient of the previous iterations, manual learning 

rate tuning are no longer necessary. 

 

2.3.5 AdaDelta 

The main problem with AdaGrad is that the learning rate will go to zero as iterations increase, causing 

parameter updates to become ineffective. AdaDelta only focuses on the gradients in a window over a period 

and uses the exponential moving average to calculate the second-order cumulative momentum [23]. The 

updating formula of AdaDelta is given by 

𝐸[𝑔2]𝑡 = 𝛽 ⋅ 𝐸[𝑔2]𝑡−1 +  1 − 𝛽 ⋅ 𝑔𝑡
2, 

𝐸[Δ𝜃2]𝑡−1 = 𝛽 ⋅ 𝐸[Δ𝜃2]𝑡−2 +  1 − 𝛽 ⋅ Δ𝜃𝑡−1
2 , 

Δ𝜃𝑡 = −
√𝐸[Δ𝜃2]𝑡−1 + 𝜖

√𝐸[𝑔2]𝑡 + 𝜖
⋅ 𝑔𝑡 

𝜃𝑡+1 = 𝜃𝑡 + Δ𝜃𝑡 

(7) 

where 𝛽 is the exponential decay parameter. With AdaDelta, there is no need to set the learning rate 𝜂, as it 

has been removed from the update rule.  

 

2.3.6 RMSProp 

RMSProp and AdaDelta have been developed independently around about the same time. Both were 

designed to cope with the learning rate of AdaGrad, which is radically going to zero. With a learning 

procedure that is almost similar to AdaDelta, the updating formula of RMSProp is given by 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 + 𝜖
⋅ 𝑔𝑡 (8) 

where 𝛽 is the exponential decay parameter and is usually set to 0.9 at a learning rate of 0.001 [24]. The 

difference between RMSProp and AdaDelta is that RMSProp still requires settings for the learning rate. 

 

2.3.7 Adam 

Adaptive moment estimation (Adam) is another advanced gradient descent method which combines 

the adaptive learning rate and momentum methods [25]. In addition to storing an exponentially decaying 

average of past squared gradients, like AdaDelta and RMSProp, Adam also keeps an exponentially decaying 

average of past gradients, similar to the momentum method. The updating formula of Adam is given by 
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𝑚𝑡 = 𝛽1𝑚𝑡−1 +  1 − 𝛽1 𝑔𝑡 , �̂�𝑡 =
𝑚𝑡

 1 − 𝛽1
𝑡 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 +  1 − 𝛽2 𝑔𝑡
2, 𝑣𝑡 =

𝑣𝑡

 1 − 𝛽2
𝑡 

 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
⋅ �̂�𝑡 

(9) 

where 𝛽1 and 𝛽2 are exponential decay rates. The default values of 𝛽1, 𝛽2, and 𝜖 are suggested to be set to 

0.9, 0.999, and 10− , respectively. 

 

2.3.8 Radam 

Due to the limited number of samples in the early stage of model training, the adaptive learning rate 

has an undesirably large variance. It can cause the model to converge to suspicious or bad local optima. 

Rectified Adam (Radam) is a variation of Adam that overcomes this issue [26]. Radam considers the existence 

of high variance by estimating the degrees of freedom in each iteration, i.e., 

𝜌∞ =
2

1 − 𝛽2
− 1, 𝜌𝑡 = 𝜌∞ −

2𝑡𝛽2
𝑡

1 − 𝛽2
𝑡 (10) 

If the variance is tractable, i.e., 𝜌𝑡 > 𝑡, then the updating formula of Radam is given by 

𝑙𝑡 = √
1 − 𝛽2

𝑡

𝑣𝑡
, 𝑟𝑡 = √

 𝜌𝑡 − 4  𝜌𝑡 − 2 𝜌∞

 𝜌∞ − 4  𝜌∞ − 2 𝜌𝑡
 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
⋅ �̂�𝑡 ⋅ 𝑟𝑡 ⋅ 𝑙𝑡 

 

(11) 

Otherwise, Radam will calculate the regular Adam optimizer. 

 

2.3.9 AdaMax 

The 𝑣𝑡 factor in Adam scales the gradient inversely proportionally to the 𝑙2 norm of the past gradients 

and the current gradient. AdaMax is a variant of Adam which considers 𝑙∞ rather than 𝑙2 [25]. In AdaMax, 

the value of 𝑣𝑡 is replaced with 𝑢𝑡, so that the updating formula of AdaMax is given by 

𝑢𝑡 = 𝛽2
∞𝑣𝑡−1 +  1 − 𝛽2

∞ |𝑔𝑡|
∞ = max 𝛽2𝑣𝑡−1, |𝑔𝑡|  

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝑢𝑡
⋅ �̂�𝑡 

(12) 

Bias correction for 𝑢𝑡 is not necessary because 𝑢𝑡 depends on the max operation, and bias towards zero is not 

as recommended as 𝑚𝑡 and 𝑣𝑡 in Adam. 

 

2.3.10 AMSGrad 

AMSGrad slightly modifies the Adam optimizer to provide the algorithm with long-term memory of 

past gradients [27][28]. AMSGrad slightly changes the bias correction of 𝑣𝑡, denoted by �̃�𝑡 to avoid confusion 

with Adam. Thus, the updating formula of AMSGrad is given by 
�̃�𝑡 = max �̃�𝑡−1, 𝑣𝑡 , �̃�𝑡 = diag �̃�𝑡  

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√�̃�𝑡

⋅ 𝑚𝑡 (13) 

Note that AMSGrad does not use the correction bias of 𝑚𝑡, but uses 𝑚𝑡 itself. 

 

2.3.11 Nadam 

Nesterov-accelerated adaptive moment estimation (Nadam) is a combination optimizer of the Nesterov 

momentum and Adam. The updating formula of Nadam is given by 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜖
⋅ (𝛽1 ⋅ �̂�𝑡 +

1 − 𝛽1

1 − 𝛽1
𝑡 ⋅ 𝑔𝑡) (14) 

The formula derivation from Nadam can be studied further in [29][18]. 

 

2.3.12 AdamW 

Adam with decoupled weight decay (AdamW) is a variant of ADAM fixing (as in repairing) its 

weight decay regularization. The updating formula of AdamW is given by 
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𝜃𝑡+1 = 𝜃𝑡 − 𝜁𝑡 (
𝜂

√𝑣𝑡 + 𝜖
⋅ �̂�𝑡 + 𝜆 ⋅ 𝜃𝑡) (15) 

where 𝜆 is the weight decay value. Note that AdamW uses the 𝑙2 regularization to calculate the gradient of 

the parameter 𝜃𝑡, i.e., 𝑔𝑡 = 𝜕𝐿 𝜃𝑡 /𝜕 𝜃 + 𝜆𝜃𝑡. To account for possible scheduling of 𝜂 and 𝜆, AdamW 

introduce a scaling factor 𝜁𝑡 delivered by a user-defined procedure SetScheduleMultiplier(t) [30]. Within the 

𝑖-th run, the value of 𝜁𝑡 decays according to a cosine annealing learning rate for each batch [31].  

 

2.3.13 OAdam 

Optimistic Adam (OAdam) is a variant of Adam adding an “optimistic” term suitable for adversarial 

training. The updating formula of OAdam is given by 

𝜃𝑡+1 = 𝜃𝑡 −
2𝜂

√𝑣𝑡 + 𝜖
⋅ �̂�𝑡 +

𝜂

√𝑣𝑡−1 + 𝜖
⋅ �̂�𝑡−1 (16) 

Optimistic Adam is claimed to be able to achieve high numbers of inception scores after very few epochs of 

training [32].  

 

2.3.14 AdaBelief 

The AdaBelief optimizer is another variant of the well-known ADAM optimizer. No extra parameters 

are introduced in AdaBelief. Specifically, in Adam, the update direction is 𝑚𝑡/√𝑣𝑡, where 𝑣𝑡 is the EMA of 

𝑔𝑡
2; in AdaBelief, the update direction is 𝑚𝑡/√𝑠𝑡, where 𝑠𝑡 is the EMA of  𝑔𝑡 − 𝑚𝑡 

2 [33]. Thus, the updating 

formula of AdaBelief is given by 

𝑠𝑡 = 𝛽2𝑠𝑡−1 +  1 − 𝛽2  𝑔𝑡 − 𝑚𝑡 
2 + 𝜖, �̂�𝑡 =

𝑠𝑡
 1 − 𝛽2

𝑡 
 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√�̂�𝑡 + 𝜖
⋅ �̂�𝑡 

(17) 

AdaBelief adaptively scales the step size by the difference between the predicted and observed gradients. 

AdaBelief is the first optimizer to achieve three goals simultaneously: fast convergence as in adaptive 

methods, good generalization as in SGD, and training stability in complex settings such as GANs. 

The CNN model in Figure 2 was trained using the 14 optimizers mentioned above to classify facial 

expressions in the ACC22 and CK+ datasets. The training process uses 80% of the data, and the other 20% 

is used for testing. The hyperparameter values of each optimizer use their respective best default settings, as 

in Table 1. Moreover, the value of 𝜖 is set to 10−8 for the optimizer that requires it. 

Table 1. Best default setting of each optimizer's hyperparameter value 

Optimizer Hyper-parameter(s) Optimizer Hyper-parameter(s) 

Gradient descent 𝜂 = 0.1 Radam 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

Momentum 𝜂 = 0.01, 𝛾 = 0.9 AdaMax 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

Nesterov 𝜂 = 0.001, 𝛾 = 0.9 AMSGrad 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

AdaGrad 𝜂 = 0.1 Nadam 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

AdaDelta 𝛽 = 0.9 AdamW 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜆 = 0 

RMSProp 𝜂 = 0.001, 𝛽 = 0.9 OAdam 𝜂 = 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.9 

Adam 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 AdaBelief 𝜂 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 

 

2.4 Performance Metrics 

After the model is trained, the      ’              is assessed using a confusion matrix based on 

training and testing data. For the case of 𝑛-class classification, the confusion matrix obtained can be seen in 

Figure 3. The value of 𝐶1,1 indicates the amount of data that is actually class-1 predicted by the model in 

class-1 as well, while 𝐶1,2 shows the actual data is class-1 but is predicted to be class-2 by the model. The 

same interpretation applies to values 𝐶1,3, 𝐶2,1, to 𝐶3,3. Th                  ’         y     b             

using the resulting confusion matrix. For the case of classification with n classes, the accuracy is determined 

by 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐶𝑖,𝑖

𝑛
𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑛
𝑖=1

𝑛
𝑖=1

 (18) 



934  Nurdiati, et. al.     Performance Comparison of Gradient-Based Convolutional Neural Network …..  

The accuracy value is the ratio between the number of main diagonals (trace) and the number of all 

elements in the confusion matrix.  

 

Figure 3. Confusion matrix for 𝒏-classes classification problems. 
 

2.5 Device Requirement 

The entire computing process in this study was carried out using a Lenovo Ideapad 330-14AST with 

an AMD A4-9125 Radeon R3 processor, 4 Core (2C+2G) 2.30 GHz and 8 GB RAM. This study uses the 

Julia programming language version 1.6.5, which has fast performance, dynamic language, and is open 

source. The pre-processing stage was carried out using the Images.jl package. Meanwhile, the CNN model 

construction and training process used the Flux.jl package available on Julia. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Pre-processing 

The datasets are partitioned into two parts for training and testing, randomly by setting the 

seed of the random generator to 1. With a ratio of 80:20%, the training and testing data obtained are 

454 and 113 images for ACC22, while as many as 785 and 196 images for CK+, respectively. 

 
3.2 Performance Loss Function 

Using the training data, each optimizer is used to train the CNN model to minimize the cross-entropy 
value. The training process is carried out up to 100 epochs. The same procedure was run 10 times to avoid 
computational bias. The following are the results of the cross-entropy (loss function) propagation and the 
computational time required for the ACC22 and CK+ datasets. 

Figure 4 compares all optimizers that minimize the cross-entropy value in the first and second running 

processes. Both figures (4A and 4B) show that Adam, AdamW, and Nadam are the three fastest optimizers 

in training the CNN model for facial expression recognition on the ACC22 dataset. In only 100 epochs, the 

three optimizers obtained a cross-entropy of less than 0.1, although the fastest optimizer differed in the first 

and second runs. Adam is the fastest optimizer on the first run, but Adam is slower than Nadam and AdamW 

on the second run. Furthermore, several optimizers can train models at moderate convergence speeds, 

including AMSGrad, AdaMax, RMSProp, OAdam, Radam, and AdaDelta. There are behavioural differences 

in using the AdaBelief optimizer, which provides low convergence speed on the first run and moderate speed 

on the second run. Classic optimizers such as gradient descent, momentum, Nesterov, and AdaGrad provide 

very slow convergence speeds. Even worse, AdaGrad could not train the CNN model, which was indicated 

by an increase in the cross-entropy and stuck around the value of 10. 

          

                             

 
 
  
 
 

        1,1  1,2  1,   1, 

        2,1  2,2  2,   2, 

         ,1   ,2   ,    , 

      

         ,1   ,2   ,    , 
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Figure 4. Comparison of cross-entropy propagation for each optimizer for facial expression recognition on the 

ACC22 dataset: (A) the first and (B) the second running processes. 
 

 

Figure 5. Comparison of cross-entropy propagation for each optimizer for facial expression recognition on the 

CK+ dataset: (A) the first and (B) the second running processes. 

The same pattern is also seen in Figure 5, which shows the epoch-to-epoch cross-entropy propagation 

in the CK+ dataset. Adam, Nadam, and AdamW optimizers still hold the fastest optimizer. The behaviour of 

the AdaBelief optimizer also looks unstable in this dataset. In the first run, the AdaBelief optimizer belongs 

to the slow optimizer group, but it has a fast convergence speed in the second run. Even better, the cross-

entropy value obtained at the 100th epoch is smaller than the Adam, Nadam, and AdamW optimizers.  

Furthermore, differences are also seen in the AMSGrad optimizer. On the ACC22 dataset, AMSGrad 

can train the CNN model at a moderate speed, but AMSGrad is very slow on the CK+ dataset, where the 

cross-entropy value is stuck at 1.8. To further generalize the results obtained, the cross-entropy value at the 

100th epoch of each optimizer for 10 runs is visualized in a boxplot, as shown in Figure 6. 

      

Figure 6. Boxplot of cross-entropy values after the 100th epoch for each optimizer of 10 runs to classify (A) 

ACC22 and (B) CK+ datasets; and (C) the minimum computation time required for each optimizer on the 

ACC22 (blue) and CK+ (yellow) datasets. 

Figures 6A and 6B re-emphasize that the most consistently fast optimizers for training CNN models in 

facial expression recognition are the Adam, Nadam, and AdamW optimizers. Although it once had good 
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results, the AdaBelief optimizer worked slowly. The same results were also shown for AMSGrad, where 

AMSGrad had a moderate convergence speed for training models on the ACC22 dataset but very slowly on 

the CK+ dataset. Moreover, Figure 6C shows the minimum computational time required for each optimizer 

to train the CNN model. The minimum (fastest) time is taken rather than the entire time because the slow 

computation time can be caused by other factors, such as interference on the device. Based on Figure 6c, the 

computation time of each optimizer to reach the 100th epoch is not significantly different. In the ACC22 

dataset, the minimum computation time is around 500s, while the CK+ dataset requires a minimum 

computational time of around 900s. 

 

3.3 Performance Accuracy 

After comparing the resulting loss function after 100 epochs, the accuracy of each optimizer is 

calculated using Equation 18. The accuracy results from 10 runs are shown in the boxplot in Figure 7 for both 

training and testing data.  

   

Figure 7. Boxplot of accuracy after 100th epoch for each optimizer of 10 runs to classify ACC22 dataset for (A) 

training and (B) testing data; and CK+ dataset for (C) training and (D) testing data. 

The accuracy value strongly correlates with the loss function (cross-entropy), which is used as a target 

in model training. The lower the cross-entropy value, the better the accuracy of the model. The best accuracy 

value after 100 epochs is obtained using the Adam, Nadam, and AdamW optimizers. These optimizers 

provide accuracy values above 90% for both training and testing data for the ACC22 and CK+ datasets. 
Furthermore, optimizers with moderate convergence speed yield accuracy of around 80%, such as RMSProp, 

AdaMax, and Radam; and an additional AMSGrad optimizer for the ACC22 dataset. The best accuracy of 

each optimizer on the testing data can be seen in Table 2, both for the ACC22 and CK+ datasets. 

Table 2. Best accuracy of each optimizer on the ACC22 and CK+ datasets testing data. 

Optimizer 
ACC22 Dataset CK+ Dataset 

Accuracy (%) Run Accuracy (%) Run 

Gradient descent 53.98 3 64.28 2 

Momentum 51.32 1 52.55 5 

Nesterov 45.13 4 22.95 1 

AdaGrad 35.39 5 22.95 1 

AdaDelta 59.29 1 77.55 4 

RMSProp 92.03 2 86.73 2 

Adam 100 3 98.46 3 

Radam 70.79 2 69.89 2 

AdaMax 96.46 5 87.75 3 

AMSGrad 98.23 7 61.73 4 

Nadam 100 2 96.93 1 

AdamW 100 4 97.95 1 

OAdam 92.92 3 82.14 2 

AdaBelief 96.46 4 98.46 2 

Referring to Table 2, the three optimizers, Adam, Nadam, and AdamW, were able to classify facial 

expressions in the ACC22 dataset with 100% accuracy for the testing data on the 3rd, 2nd and 4th run, 

respectively. Meanwhile, the Adam and AdaBelief optimizers provide the highest accuracy on the CK+ 

dataset, 98.46%, on the 3rd and 2nd run, respectively. However, even though they give good results, 

AdaBelief does not always consistently provide them. Thus, the Adam optimizer is more reliable for training 

CNN models. In the ACC22 dataset, the best optimizer can produce an accuracy of 100%, so the confusion 
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matrix is a diagonal matrix, indicating that each facial expression can be predicted accurately. Meanwhile, 

the confusion matrix of the best results in the CK+ dataset is shown in Table 3, which uses the Adam 

optimizer. According to Table 3, misclassification occurs when predicting angry facial expressions. Three of 

the 25 test data expressed anger, but the CNN model predicted it would be sad. 

Table 3. Confusion matrix of the best CNN model for the CK+ dataset. 

 Prediction 

angry disgust fear happy sad surprise neutral 
A

ct
u

a
l 

angry 22 0 0 0 3 0 0 

disgust 0 34 0 0 0 0 0 

fear 0 0 21 0 0 0 0 

happy 0 0 0 44 0 0 0 

sad 0 0 0 0 18 0 0 

surprise 0 0 0 0 0 45 0 

neutral 0 0 0 0 0 0 9 

 

 

 

4. CONCLUSIONS 

This study focuses on implementing and comparing the performance of gradient-based CNN model 

optimizers for facial expression recognition. Using the ACC22 and CK+ datasets, the Adam, Nadam, and 

AdamW optimizers provide the best performance in model training and testing in terms of minimizing cross-

entropy and accuracy of the trained model. The three models produce a cross-entropy of around 0.1 at the 

100th epoch with an accuracy of more than 90% on both training and testing data. Furthermore, the Adam 

optimizer provides the best accuracy on the testing data for the ACC22 and CK+ datasets, which are 100% 

and 98.64%, respectively. Therefore, the Adam optimizer is the most appropriate optimizer to be used to train 

the CNN model in the case of facial expression recognition. 
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