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Abstract. The provision of goods shuttle services sometimes faces several constraints, such as the limitation on the 

number of vehicles, vehicle capacity, and service time, or the vehicle used has single transport access. To avoid 

losses, a strategy is needed in determining the optimal route and policy for arranging goods in the vehicle especially 

if there are two types of goods involved. Traveling Salesman Problem and Pick-up and Delivery with Handling Costs 

and Time Windows (TSPPDHTW) is a model of an optimization problem that aims to minimize the total travel and 

goods handling costs in the goods pick-up and delivery with the constraints previously mentioned. Solving that model 

using the exact method requires a very long computation time so it’s not effective to be implemented in real-life. This 

study aims to develop a (meta)heuristic based on Ant Colony Optimization (ACO) and Tabu Search (TS) to be ACOTS 

to solve TSPPDHTW with reasonable computation time. The development is carried out by adding functions of 

clustering, evaluating constraints, cutting tours, arranging of goods, and evaluating moves on the TS, as well as 

modifying transition rules. The result has a deviation of about 22% and 99.99% less computational time than the 

exact method. 
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1. INTRODUCTION 

The provision of goods shuttle services is an alternative for companies to improve their service for 

customers. Although providing pick-up and delivery services can help companies to expand their market, in 

practice, the companies often face various constraints, such as time limits for each customer (time windows), 

limitations on vehicle capacity, and limitations on the type of vehicle used. If there is more than one type of 

good involved in the process, it is important to pay attention to the arrangement of goods in vehicles that have 

single transportation access because it can affect the time of the process of unloading goods during service at 

the customer's location. Single transport access for unloading and loading goods on vehicles may cause of 

additional time to handle goods that are blocked by other goods when being unloaded. Therefore, so that the 

delivery process can be carried out effectively, in addition to determining the best route, a strategy for 

preparing goods in the vehicle is needed so that is can minimize the total travel and handling time. In [1] this 

can be categorized as solving the Traveling Salesman Problem and Pick-up and Delivery with Handling Costs 

and Time Windows (TSPPDHTW). 

The TSPPDHTW case has been modeled by [1] and solved using the exact method. However, the 

search for solutions using exact methods has not succeeded in showing the efficiency model to be applied in 

real life. The exact method for this problem requires a very long computation time and increases 

exponentially, so that it cannot be used for big data. The  TSPPDHTW or generally TSP  is one of the classical 

NP-hard problems in combinatorial optimization, and it needs faster algorithms to solve so that it can be 

applied in the real-life [2]. In this study, the case of TSPPDHTW will be solved using the metaheuristic 

method. Metaheuristics are one method that can produce near-optimal results in a computationally efficient 

manner. This method is extensively used in a combination of two or more metaheuristics called hybrid 

algorithms [3].  

Ant Colony Optimization (ACO) and Tabu Search (TS) are metaheuristics that are quite often 

combined by researchers to solve combinatorial optimization problems. ACO is an algorithm that is inspired 

by the natural ability of ants to communicate with their fellow colonies by giving pheromones to the paths 

they travel when they find food [4]. While TS is an algorithm that performs searches starting from the initial 

solution and then explores the solution space through a move by paying attention to search history [5]. De La 

Cruz et al. [6] used ACO and TS for Heterogeneous Vehicle Routing Problems with Time Windows and 

Multiple Products (HVRPTWMP). Hanif [7] combined TS with ACO to solve the TSP case and succeeded 

with better efficiency than TS itself or the Genetic Algorithm. Dewantoro et al. [8] have also proven that the 

use of the hybrid of TS and ACO algorithms provides optimal solutions more effectively in terms of time and 

quantity. In a recent study, Diallo et al. [9] used ACO and TS to solve Virtual Network Embedding (VNE). 

In this paper, ACO and TS were used to solve the TSPPDHTW problem that had been modeled in previous 

studies. 

 

 

2. RESEARCH METHODS 

This study uses the model and data in [1]. There is a bicycle shuttle case involving 14 bicycle shops in 

Bogor as a sample of customers and 1 as a depot. In this case, the goods sent or goods of type I are new 

bicycles or bicycles that have been repaired, while the goods of type II, or goods that are picked up, are 

damaged bicycles that will be repaired. Travel time data between stores was obtained using the help of Google 

maps, which was taken in 2020. The data on the number of requests and time windows at each store used 

hypothetical data. The method used is a metaheuristic based on ACO and TS, hereinafter referred to as 

ACOTS. The development of ACOTS and obtaining the solution was carried out with the help of  OCTAVE 

software with device specifications  A-9 memory AMD Radeon VGA 4GB. 
 

2.1 TSPPDHTW 

TSPPDHTW is the model of the pickup and delivery of goods that has to meet several constraints. here are 

limitations on vehicle capacity, on transport access of the vehicle, and on the time customers can be served, which is 

known as time windows. Some of the assumptions used in modeling this problem are: 

1) The vehicle route starts from the depot and returns to the depot. 

2) Each customer is only visited exactly once. 
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3) The number of vehicles used is one, and it has single transportation access. 

4) The vehicle has a limited capacity of Q, which is represented as a collection of partitions in the form of space 

with a capacity of one unit of goods and has a position number of 1,2,3,...,Q in each partition. Each position 

can only be occupied by one item. Position number 1 is the position at the rear of the vehicle, or the position 

closest to transportation access, which means that goods in this position will receive first handling. 

5) There are two types of goods involved in the process, namely goods that will be delivered to the customer 

(goods type I ) and goods that will be picked up from the customer (goods type II). 

6) The length of time for unloading or loading each unit of goods from or into the vehicle is the same. 

The purpose of this model is to minimize the total time required to carry out the process of pickup and delivery 

for all customers, which consists of the total travel time and handling time. Handling time is defined as the time required 

to unload goods that are blocking the process of unloading other goods or the time required to rearrange goods for easy 

unloading at the customer's next location. The following is the model of TSPPDHTW, which is written mathematically.  

Sets: 

𝑉 : the set of customer that will be visited including the depot, 

𝑉𝑐 : the set of customer that will be visited, 

𝐸 : the set of side or route from customer 𝑖 to customer 𝑗, ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗. 
Indices: 

𝑖, 𝑗 : the index for the depot (𝑖 = 1) and customers (1,2,3,… , |𝑉| ), 
𝑖, 𝑗 : the index for the customers (2,3,4,… , |𝑉𝑐|), 
𝑘 : the index for the position of the goods in the vehicle (1,2,3,… , 𝑄), 

   

Parameters: 

𝑐𝑖𝑗 : the travel time from customer location  𝑖 to  customer location 𝑗,  

𝛼𝑖 : the number of goods that must be delivered to customer 𝑖, or the demand of goods type I by 

customer 𝑖 
𝛽𝑖 : the number of goods that must be picked up from customer 𝑖 or the demand of goods type II 

by customer 𝑖 
𝑄 : the vehicle capacity 

ℎ𝑎 : the time it takes to unload each type I item from the vehicle, 

ℎ𝑏 : the time required to load each type II item into the vehicle, 

𝑙𝑖 : the earliest time service to customer 𝑖 can be done,  

𝑢𝑖 : the latest time for customer service 𝑖 may be done. 

 

Decision variables: 

𝑥𝑖𝑗 = {
1, if customer 𝑗 is visited after customer 𝑖               

0, others.                                                               
 

𝑎𝑖𝑗
𝑘  = {

1, if position 𝑘 is occupied by goods of type I when  the                        

 vehicle passes through the route (𝑖, 𝑗)                                                  
0, others.                                                                                                               

 

𝑏𝑖𝑗
𝑘  = {

1, if position 𝑘 is occupied by goods of type II when the                     

 vehicle passes through the route (𝑖, 𝑗)                                               
0, others.                                                                                                            

 

𝑟𝑖
𝑘 

 

= {
1, if position 𝑘 is involved in handling process                                               

 when the vehicle is at the costumer 𝑖′s location                                     
0, others.                                                                                                                    

 

𝑣𝑖
𝑘  : length of handling time for position 𝑘 at customer 𝑖 location, 

𝑠𝑖 : the time when  the service of customer 𝑖 is started.  

 

Objective Function 

The objective function of this problem is to minimize the total time of  travel and handling required to 

transport goods to all customers, written mathematically as follows. 

min 𝑍 = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 + 
(𝑖,𝑗)∈𝐸,𝑖≠𝑗

2 [∑∑𝑣𝑖
𝑘

𝑘∈𝑄𝑖∈𝑉𝑐

−∑ℎ𝛼𝛼𝑖
𝑖∈𝑉𝑐

 ] 

 

(1) 
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Constraints 

The following constraints must be met. 

∑ 𝑥𝑖𝑗 = 1, 𝑖

𝑗∈𝑉,𝑗≠𝑖 

∈ 𝑉. (2) 

∑ 𝑥𝑖𝑗 = 1, 𝑗

𝑖∈𝑉,𝑗≠𝑖

∈ 𝑉. (3) 

∑∑(𝑎𝑗𝑖
𝑘 − 𝑎𝑖𝑗

𝑘 )

𝑄

𝑘=1𝑗∈𝑉

= 𝛼𝑖, 𝑖 ∈ 𝑉. 

 

(4) 

∑∑(𝑏𝑖𝑗
𝑘 − 𝑏𝑗𝑖

𝑘)

𝑄

𝑘=1𝑗∈𝑉

= 𝛽𝑖 , 𝑖 ∈ 𝑉. 

 

(5) 

𝑟𝑖
𝑘 ≤ 𝑟𝑖

𝑘−1, 𝑖 ∈ 𝑉𝑐, 𝑘 ∈ {2,… , 𝑄}. (6) 

𝑎𝑖𝑗
𝑘 + 𝑏𝑖𝑗

𝑘 ≤ 𝑥𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸,  𝑘 ∈ {1,… , 𝑄}. (7) 

𝑎𝑖𝑗
𝑘−1 + 𝑏𝑖𝑗

𝑘−1 ≤ 𝑎𝑖𝑗
𝑘 + 𝑏𝑖𝑗

𝑘 , (𝑖, 𝑗) ∈ 𝐸,  𝑘 ∈ {1,… , 𝑄} (8) 

∑ 𝑎𝑖𝑗
𝑘  − ∑ 𝑎𝑗𝑖

𝑘 ≤ 𝑟𝑖
𝑘

𝑗∈𝑉,𝑗≠𝑖

, 𝑖 ∈ 𝑉𝑐 ,

𝑗∈𝑉,𝑗≠𝑖

𝑘 ∈ {1,… , 𝑄}. (9) 

∑ 𝑎𝑗𝑖
𝑘  − ∑ 𝑎𝑖𝑗

𝑘

𝑗∈𝑉,𝑗≠𝑖

≤ 𝑟𝑖
𝑘

𝑗∈𝑉,𝑗≠𝑖

, 𝑖 ∈ 𝑉𝑐 , 𝑘 ∈ {1,… , 𝑄}. (10) 

∑ 𝑏𝑖𝑗
𝑘  − ∑ 𝑏𝑗𝑖

𝑘 ≤ 𝑟𝑖
𝑘

𝑗∈𝑉,𝑗≠𝑖

, 𝑖 ∈ 𝑉𝑐 ,

𝑗∈𝑉,𝑗≠𝑖

𝑘 ∈ {1,… , 𝑄}. (11) 

∑ 𝑏𝑗𝑖
𝑘  − ∑ 𝑏𝑖𝑗

𝑘

𝑗∈𝑉,𝑗≠𝑖

≤ 𝑟𝑖
𝑘

𝑗∈𝑉,𝑗≠𝑖

, 𝑖 ∈ 𝑉𝑐 , 𝑘 ∈ {1,… , 𝑄}. (12) 

𝑣𝑖
𝑘 = ∑ (ℎ𝑎𝑎𝑗𝑖

𝑘 + ℎ𝑏𝑏𝑗𝑖
𝑘)𝑟𝑖

𝑘
𝑗∈𝑉,𝑗≠𝑖 , 𝑖 ∈ 𝑉𝑐 , 𝑖 ≠ 𝑗, 𝑘 ∈ {1,… , 𝑄}. (13) 

𝑙𝑖 ≤ 𝑠𝑖 ≤ 𝑢𝑖, 𝑖 ∈ 𝑉𝑐 . (14) 

𝑠𝑖 + ∑ 𝑣𝑖
𝑘𝑄

𝑘=1 ≤ 𝑢𝑖, 𝑖 ∈ 𝑉𝑐. (15) 

𝑠𝑖 ≥ 𝑙𝑖 , 𝑖 ∈ 𝑉𝑐 . (16) 

𝑠𝑖 +  2∑ 𝑣𝑖
𝑘 + ℎ𝑏𝛽𝑖 − ℎ𝑎𝛼𝑖 + 𝑐𝑖𝑗

𝑄
𝑘=1 −𝑀(1 − 𝑥𝑖𝑗) ≤ 𝑠𝑗,  

𝑖 ∈ 𝑉𝑐 , 𝑗 ∈ 𝑉𝑐,  𝑖 ≠ 𝑗, 

(17) 

𝑢𝑖 ≥ 1 + (|𝑉| − 2)𝑥𝑖1, ∀𝑖 ∈ 𝑉, 𝑖 > 1. (18) 

𝑢𝑗 ≥ |𝑉| − 1 − (|𝑉| − 2)𝑥1𝑗, ∀𝑗 ∈ 𝑉, 𝑗 > 1. (19) 

𝑢𝑗 ≥ 𝑢𝑖 + 𝑥𝑖𝑗 − (|𝑉| − 2)(1 − 𝑥𝑖𝑗) + (|𝑉| − 3)𝑥𝑗𝑖, 

 ∀𝑖, 𝑗 ∈ 𝑉, 𝑗 ≠ 1. 

(20) 

𝑥𝑖𝑗 , 𝑎𝑖𝑗
𝑘 , 𝑏𝑖𝑗

𝑘  ∈ {0,1}, 𝑘 ∈ {1,… , 𝑄}. (21) 

𝑟𝑖
𝑘 ∈ {0,1}, 𝑖 ∈ 𝑉𝑐  , 𝑘 ∈ {1,… , 𝑄}. (22) 

𝑣𝑖
𝑘 ≥ 0, 𝑖 ∈ 𝑉𝑐  , 𝑘 ∈ {1,… , 𝑄}. (23) 

𝑠𝑖 ≥ 0, 𝑖 ∈ 𝑉𝑐  , 𝑘 ∈ {1,… , 𝑄}. (24) 

 

Equations (2) and (3) guarantee that each customer only visits once. Equations (4) and (5) are the flow 

of goods constraints. Equation (6) – (8) guarantee regularity in the position of goods in the vehicle. Equations 

(9) – (12) guarantee that any goods that are not involved in handling will not experience a change in position. 

Equation (13) calculates the handling time at each customer location at position. Equations (14) – (17) 

guarantee that the time window constraint is met. Equation (18) – (20) are the sub-tour elimination constraints 

that guarantee the formation of a complete route. Equations (21) through (24) state the characteristics of each 

of the variables involved [1]. 

2.1 Ant Colony Optimization 

Artificial ants or ant agents at ACO will find solutions to the problems based on stochastic procedures according 

to pheromone concentration and heuristic information. 𝑘𝑡ℎ ant will choose the next node from the set of nodes that 

hasn’t been chosen yet at time 𝑡 by calculating states transition probability, 𝑝𝑖𝑗
𝑘 (𝑡) [10]. 
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𝑝𝑖𝑗
𝑘 (𝑡) =

{
  
 

  
 (𝜏𝑖𝑗(𝑡))

𝛼
. (𝜂𝑖𝑗(𝑡))

𝛽

∑ ((𝜏𝑖𝑗(𝑡))
𝛼
. (𝜂𝑖𝑗(𝑡))

𝛽
)𝑗∉𝑡𝑎𝑏𝑢𝜖

,
if the 𝑘 𝑎𝑛𝑡 is allowed to road on (i, j)  

           
  

0                       ,            otherwise                  
                       

 

 

(25) 

 
𝜏𝑖𝑗(𝑡 ) denotes the amount of pheromones at (𝑖, 𝑗) at time 𝑡, 𝜂𝑖𝑗 denotes the inverse of edge weight (𝑖, 𝑗), 𝛼 is 

the heuristic factor,  𝛽 is the visibility heuristic factor, and 𝑡𝑎𝑏𝑢𝜖 is the tabu list that records the nodes that 

𝑘𝑡ℎ ant  has visited. The ants will use the Roulette Wheel Selection (RW) algorithm by considering that 
transition probability value to choose the next step in building the route [11]. After all the ants have 
successfully established the route, the pheromone value is updated using the following equation [12]. 
 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) +∑∆𝜏𝑖𝑗
𝑘 (𝑡)

𝑚

𝑘=1

 
(26) 

𝜏𝑖𝑗(𝑡) denotes the amount of pheromone on the road (𝑖, 𝑗) at t time 𝑡,  𝜌 shows the rate of evaporation of 

pheromone, and 𝑚 is the number of ants.  Each ant gives the amount of pheromone on the road which has 
been passed at time 𝑡 following this equation. 
 

∆𝜏𝑖𝑗
𝑘 (𝑡) = {

𝑄

𝐿𝑘
,  if   𝑘𝑡ℎant roads on   (i,j)                                           

0     , otherwise                                                                     
 

(27) 

While 𝑄 shows the concentration of the enhancement of pheromone, in [13]  it equals 1. 
 

2.2 Tabu Search 

Tabu Search (TS) was first introduced by Glover and McMillan in 1986 [14]. TS works on the principle 

of local search. In each iteration, TS will look for a neighborhood solution to find the best solution. TS uses 

memory to prevent getting stuck or cycling during the solution search process. The neighborhood of a solution 

is the set of all solutions resulting from a move. The move is a method used by TS to move from one solution 

to another based on certain rules. Some types of moves that can be carried out in TS are: 

(1) Insert vertex forward: takes a certain node from the route that has been formed and then inserts it 

in front of other nodes. 

(2) Insert vertex backward: takes a certain node from the route that has been formed and then inserts 

it behind another node. 

(3) Exchange the vertex: swap the position of the node to 𝑖 and node to j. 

(4) 2-opt: rearrangement between nodes 𝑖 and 𝑗 by reversing the order of their positions 

 

A move is considered tabu if it is selected to be applied to the current solution. Moves that are members 

of the tabu list are maintained for a number of iterations (tenure). For local search-based metaheuristics such 

as TS, the initial solution plays an important role in determining the quality of the solution  [15–17]. A simple 

heuristic algorithm can be used to generate an initial solution for TS. Then, in each iteration, the neighborhood 

solution that gives the best solution is chosen. This step was repeated until the termination criteria were met 

[18]. 

 

 

3. RESULTS AND DISCUSSION 

The ACOTS algorithm was developed based on the main principles of two algorithms, namely ACO 

and TS. In this case, ACO and TS synergize to find a better approximation solution than when each of these 

algorithms worked alone. ACO will provide a good initial solution for TS, while TS will conduct deeper 

exploration to find a better solution than the solution obtained by ACO. 

TSPPDHTW is a problem that has several constraints, such as limitations on vehicle capacity and 

transportation access, and time windows of customers. In addition to considering the travel time in 
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determining the route, TSPPDHTW also considers the policy of arranging goods in the vehicle. The goods 

arrangement policy will affect the service time, which is limited by the customer's time window. Thus, the 

complexity of the problem increases so that it is necessary to modify the ACO and TS algorithms to properly 

solve the case of TSPPDHTW.  

 

3.1. Modification of ACO and TS to Resolve the TSPPDHTW 

The main working principle of ACO includes determining the next node by calculating the transition 

probability and generating random values, as well as updating pheromone values in the ant trails. 

Modifications are made by adding clustering functions, evaluating constraints, cutting tours, and arranging 

goods in the vehicle. The following is an explanation of the performance of each function on the ACO. 

3.1.1 Clustering 

This function aims to group all customers who will be visited based on the proximity of their time 

windows into several clusters (only one cluster may be formed). One customer with another is said to have 

close time windows if the time windows of the two customers coincide. Thus, each cluster will have several 

customers, each of which has time windows that intersect with each other. This function can avoid the 

formation of infeasible tours due to errors in prioritizing customers based on the time window. Thus, the 

feasible solution will be easier to find.  

3.1.2. Evaluation Constraints  

The constraints that must be met in the case of TSPPDHTW are vehicle capacity and the time window 

of customers. When ACO wants to choose the next customer, each customer who has not been selected will 

be evaluated by considering the number of requests for goods of type I (𝑑_𝑎𝑗) and II (𝑑_𝑏𝑗). A customer 

meets the capacity constraint if the number of requests for type II goods (goods to be picked up or loaded 

into the vehicle) from the customer does not exceed the space in the vehicle when the vehicle arrives at its 

location. This condition can be represented as the following equation. 

 

𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑_2 + 𝑑_𝑏𝑗 ≤ 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑_1 + 𝑑_𝑎𝑗 (28) 

The 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑛𝑑_1 represents the accumulated number of type I goods that have been unloaded 

from the vehicle (have been delivered) before customer 𝑗 is visited, while 𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑚𝑎𝑛𝑑_2 represents the 

accumulated number of type II goods loaded into the vehicle before customer 𝑗 is visited. 

Customers who meet the capacity constraints will be evaluated for the second time based on their time 

windows. A customer meets the time window constraint if the vehicle arrives before the upper time of the 

customer’s time window and the remaining time is still sufficient to serve the customer. This condition can 

be represented as the following equation 

 

𝑠𝑖 + 𝑠𝑡𝑖 + ℎ𝑡𝑖 + 𝑐𝑖𝑗 + 𝑠𝑡𝑗 + ℎ𝑡𝑗 ≤ 𝑢𝑗 (29) 

The 𝑠 variable represents the start time of service, 𝑠𝑡 represents the length of service time, ℎ𝑡 represents 

the additional time required for handling, 𝑢 represents the upper limit of the time windows of the customer, 

and 𝑐𝑖𝑗 represents the travel time from 𝑖 to 𝑗 where 𝑖 is the last customer visited and 𝑗 as a candidate customers 

to be visited next.  Customers who meet both constraints will be calculated to have the transition probability 

so that it can be determined which customers will be visited next.  

3.1.3. Next Customer Determination  

After calculating the cumulative probability value of customers who meet the constraints and 

generating random values, the customer who will be selected as the next customer is the first customer who 

has a cumulative probability value greater than the random value (Roulette Wheel Selection Algorithm). To 

solve the case of TSPPSDHTW, which has time window constraints, to facilitate the search for a feasible 

route, this step is modified so that the customer who will be selected as the next customer is the customer 

who has a cumulative probability value that is greater than the random value and the smallest initial time 

window limit. This aims to avoid the customer whose large initial time window limit is chosen early so that 

the other customers can not be visited because the time has passed the other time window deadline (can not 

be served).  
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3.1.4. Cutting Tour  

Cutting Tour is a function that helps ants find a route, especially when the ants are stuck at a node. An 

ant is trapped at a certain node if at that node the ant has no customers that can be visited next because there 

are no customers who meet the two constraints so that the route formation cannot be continued. When that 

happens, the Cutting Tour function will cut the tour that has been formed. Each cut causes the ant to have to 

take one step back to the previous node or customer, so that the customer where the ant was trapped returns 

to the set of customers that have not been selected. This will help the ants in finding a feasible route so that 

all customers can be visited. 

3.1.5  Item arrangement  

Another thing that is important in the TSPPDHTW case is the policy on the arrangement of goods in 

the vehicle. The right policy will increase the effectiveness of customer service. The policy of arranging 

goods used in this study is to arrange type I goods of the next customer in the rearmost position of the vehicle, 

followed by type II goods that have been taken, then type I goods that have not been delivered are in the front 

position. So that, when the vehicle arrives at the customer's location, a number of type I goods can be 

immediately unloaded, so there is no additional handling time needed because there are no items that are 

blocking the handling operation. This policy only requires the additional handling time for moving the type 

I goods of the next customer to the rearmost position of the vehicle. 

3.1.6 Local Search of TS 

The main working principle of TS is seeking a better solution based on an initial solution by doing the 

move. There are three types of moves carried out in this study, namely swap, reversion, and insertion, which 

are the result of modification move in [16]. These moves are described in Figure 1.  

 

 

 

 

 

In general, TS will directly choose the move that results in a better solution. In solving the 

TSPPSDHTW case, TS was modified by adding a function that can evaluate the move to be made based on 

capacity constraints and time windows. The route formed after the move will be evaluated to see if the route 

is still feasible or not. In the end, this function will determine if a move is allowed on the route that was 

formed at that time. 

The flowchart of the ACOTS Algorithm can be seen in Figure 2. The chart marked with the red box 

shows the processes added as a result of the modifications made to the basic algorithm. 

 

3.2. Simulation on ACO Parameters 

ACO has several parameters that affect ACO's ability to find optimal solutions and its convergence 

speed [10, 13]. Determination of the value of this parameter depends on the problem at hand. Therefore, 

before the ACOTS Algorithm is applied to solve the TSPPDHTW case, a parameter simulation is carried out 

first to find out the suitable parameters which are expected to provide a good solution. The ACO parameters 

that are simulated in this study include 𝛼, 𝛽 𝑚, and the number of iterations. In each scenario, the simulation 

was carried out 10 times. The simulation was conducted by observing the effect of changes in parameter 

values on the value of the objective function, which is the sum of total travel costs (times) and handling costs 

(times), as well as the influence on the computing time required. 

 

1 2 3 4 5 

1 5 3 4 2 
 

1 2 3 4 5 

1 5 4 3 2 
 

1 2 3 4 5 

1 3 4 5 2 
 

1 2 3 4 5 

1 5 2 3 4 
 

(a) (b) (c) (d) 

Figure 1.  Swap (a), reversion (b), insert backward (c), and insert forward (d) 
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Simulation on parameter 𝛼 does not show a significant pattern or trend either towards the value of the 

objective function or computation time. In contrast to the parameter 𝛽, in this parameter simulation, the larger 

the value of  𝛽 causes the total costs to be greater and then tends to be constant while the computation time 

is quite fluctuating with a decreasing pattern. This can be seen in Figure 3.  

  

(a) (b) 
 

Figure 2. Flow Chart of ACOTS (a) and TS (b) 
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However, if it is plotted against travel costs, an increase 𝛽 causes the value of travel costs to decrease 

but handling costs to increase. This simulation shows that 𝛽 as a distance control factor, it is quite influential 

in determining the minimum route. But, considering that the arrangement of goods is not regulated by ACO's 

performance, ACO's desire to choose the minimum route gives the implication of the increased handling 

costs. This can be seen in Figure 4.  

 

 

Tabel 1 shows that in this simulation,  the best value for total costs at 𝜌=0.5, 𝑚 = 15, and 5 iterations, 

is obtained by 𝛼=3, and 𝛽=1. But in Table 2, it can be seen that with 𝑚 = 5, 𝛼=5, and 𝛽=1 the total costs are 

smaller. This shows that the number of ants does not have a significant effect on the resulting solution in this 

case. Table 3 shows that ACOTS provides a better solution than ACO working alone without TS, although 

the computation time is slightly longer. In this case, the total cost is in minutes and the computation time is 

in seconds. 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 3. The effect of 𝜷 on the objective function (a) and computational time (b) 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 4.  The effect of 𝛃 on travel costs (a) and handling costs (b) 
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Table 1.  The result of parameter simulation on 𝜶 dan 𝜷 

𝜶 𝜷 𝝆 𝒎 
ACO 

Iteration  

TS 

Iteration 

Total 

Costs 

Computation 

Time 

1 1 0,50 15 5 5 417,7 71,7 

1 2 0,50 15 5 5 424,6 60,1 

1 3 0,50 15 5 5 426,00 62,1 

1 4 0,50 15 5 5 426,00 50,5 

1 5 0,50 15 5 5 426,20 56,2 

2 1 0,50 15 5 5 417 75,4 

3 1 0,50 15 5 5 415,6 68,8 

4 1 0,50 15 5 5 419,2 56,9 

5 1 0,50 15 5 5 418,8 63,9 
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3.3. Completing the Case Study of TSPPDHTW  using the ACOTS Algorithm   

The ACOTS algorithm was then applied to the TSPPDHTW case as a continuation of [1] to solve the 

TSPPDHTW using the exact method with a computation time of about 134 hours with device specification 

Core I3 memory and 8GB VGA Intel Grafis. In this study, the case was solved using the heuristic method 

through the ACOTS Algorithm to accelerate the acquisition of a solution. Based on the simulations, the 

TSPPDHTW case is quite well solved using the ACOTS Algorithm with parameters 𝛼 = 5, 𝛽 =
1, 𝜌=0,5,𝑚 = 5 with 5 iterations each for ACO and TS. The best solution generated from the ACOTS 

Algorithm with a computation time of 61 seconds is presented in Table 4.  

Table 4. The result of TSPPDHTW by ACOTS 

 

The route recommendation as a result of a heuristic solution is Semeru Bike Shop as a depot (1) – 

Oeyand (customer 13) – Koto Jambak (customer 5) - Harapan Kencana (customer 10) - Focus (customer 2) 

– Infinite Bike (customer 4) - Bike Kiki ( customer 14) – Central Sepeda (Customer 8) – Bike Colony 

Terasutra (customer 7) – Rodalink Bogor (customer 3) – Family (customer 6) - Berkah (customer 12) - United 

Bike (customer 9) - Sinar Harapan (customer 15) – Bogor Mountain Biking (customer 11) and back to the 

depot. The total travel time for this route is 286 minutes. This value has a difference of 6 minutes from the 

total travel time on the optimal route. The illustration of the policy on the arrangement of goods in the vehicle 

Customer (𝒊) Name of Shop Route 
Travel Time 

(minutes) 
Service Time Time Windows 

13 Oeyand 1-13 28 08.00 08.00-12.00 

5 Koto Jambak 13-5 1 08.02 07.00-12.00 

10 Harapan Kencana 5-10 31 08.35 08.00-09.00 

2 Focus 10-2 14 08.56 06.00-10.00 

4 Infinite Bike 2-4 23 09.29 08.00-10.00 

14 Kiki Jaya 4-14 29 12.00 12.00-14.00 

8 Central Sepeda 14-8 38 13.00 13.00-16.00 

7 Bike Colony Terasutra 8-7 10 13.29 09.00-14.00 

3 Rodalink Bogor 7-3 3 13.49 11.00-15.00 

6 Family 3-6 26 14.34 12.00-16.00 

12 Berkah 6-12 23 15.20 13.00-17.00 

9 Unitide Bike 12-9 26 16.00 16.00-17.00 

15 Sinar Harapan 9-15 17 19.00 19.00-22.00 

11 Bogor Mountain Biking 15-11 8 19.10 06.00-22.00 

1 Semeru Bike Shop 

(depot) 

11-1 9 -  

Table 3. The result differences between ACO and ACOTS solutions 

Iteration 
Total Costs Computation Time 

ACO ACOTS ACO ACOTS 

5 425 412,30 6,93 55,1 

10 426,6 417,90 12,4 205,9 

15 424,8 420,90 17,6 354,5 

20 424,3 417,00 26,8 836,2 

 

Tabel 2. The result of parameter simulation on  𝜶 and the number of ants  

𝜶 𝜷 𝝆 𝒎 
ACO 

Iteration 

TS 

Iteration 

Total 

Costs 

Computation 

Time 

1 1 0,50 5 5 5 419,6 50,8 

1 1 0,50 25 5 5 415,20 65,2 

5 1 0,50 5 5 5 412,30 55,1 

5 1 0,50 25 5 5 414,90 75,6 

10 1 0,50 5 5 5 414,50 51,5 

10 1 0,50 25 5 5 416,40 81,4 
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according to the route formed can be seen in Table 5. The blue box shows type I goods, while the black box 

shows type II goods. The total handling time required with this policy is 122 minutes, which has a difference 

of 66 minutes from the total handling time required with the optimal policy. The total time needed to pick up 

and deliver the goods to all customers with this route and goods arrangement policy is 408 minutes. This 

value has a deviation of about 22% with the exact method, which has an objective function value of 334 

minutes. However, the ACOTS algorithm in solving this case has a much faster computation time than using 

the exact method. The ACOTS algorithm can save up to 99.99% of the time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The illustration of goods arrangement in the vehicle 

 

 

 

4. CONCLUSIONS 

The ACO and TS algorithms can be developed into a new algorithm (called ACOTS) which can solve 

combinatorial cases such as TSPPDHTW. Based on the simulation, the suitable parameters for this case are 

𝛼 = 5, 𝛽 = 1, 𝜌 = 0,5 with 5 ants and 5 iterations. In this study, the TSPPDHTW case study in the previous 

research can be completed using the ACOTS Algorithm with an objective function value of 408 minutes and 

a computation time of 61 seconds. Although the objective value has a fairly large deviation from the exact 

method, which is about 22%, the ACOTS algorithm can save up to 99.99% of the time in finding a solution. 

This shows that ACOTS can be an alternative method for completing the TSPPDHTW model in a 

computationally efficient manner so that it can be implemented in real life.  
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