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Abstract. The antiadjacency matrix is one representation matrix of a digraph. In this paper, we find the determinant 

and the characteristic polynomial of the antiadjacency matrix of a digraph with directed digon(s). The digraph that 

we will discuss is a digraph obtained by adding arc(s) in an arborescence path digraph such that it contained 

directed digon(s), and a digraph obtained by deleting arc(s) in a complete star digraph. We found that the 

determinant and the coefficient of the characteristic polynomial of the antiadjacency matrix of a digraph obtained 

by adding arc(s) in an arborescence path digraph such that it contained directed digon(s) is different depending on 

the location of the directed digon. Meanwhile, the determinant of the antiadjacency matrix of a digraph obtained by 

deleting arc(s) in the complete star digraph is zero.  
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1. INTRODUCTION 

Nowadays, graph theory is one of mathematics’ branches of study developing expeditiously. Graph 

theory has many applications in other fields of study, such as data science, chemistry, biology, and 

economics. A graph is divided into an undirected graph and a directed graph (digraph).  

There are numerous applications of the directed path and directed arborescence graph in several 

studies. In [1], it is shown that the directed path can be used to find the shortest route from one location to 

another. Meanwhile, finding minimum travel time can be used from clustering strategies using an 

arborescence graph [2]. Thus, they are motivated us to investigate the directed arborescence path. 

Nonetheless, since [3], [4], and [5] have already discussed the antiadjacency matrix of the directed 

arborescence path, then in this paper, we discuss the determinant of the antiadjacency matrix of the directed 

arborescence path that added arc(s) such that it will have directed digon(s). 

A complete star digraph has some critical applications in biology [6]. Using a complete star digraph, 

people can find Birth-Death Models of Information Spread in Structured Populations [7].  Meanwhile, in 

[8], a complete star digraph is used to find information spreads in a population. Furthermore, in this paper, 

we are also motivated to find other complete star digraph properties. 

The coefficients of the characteristic polynomial of a matrix can be found by calculating the sum of 

the determinant of its submatrices [9]. Bapat [3] has found the value of the determinant of the antiadjaceny 

matrix of a directed graph. It is interesting to see what is happened if the directed graph has digons. Thus, in 

this paper, we are also motivated to find the determinant of the antiadjacency matrix of a digraph with 

directed digon(s). By using the determinant of the submatrix, we also discuss the characteristic polynomial 

of the digraph that has directed digon(s). The digraphs that will be addressed in this paper are arborescence 

paths and complete star digraph, that we add arc(s) such that there exists a directed digon(s).  

A directed graph (digraph) 𝐷 is an ordered pair (𝑉(𝐷), 𝐴(𝐷)) that consists of a set of vertices 𝑉 ≔
𝑉(𝐷) and a set of arcs (directed edges) 𝐴(𝐷) that is disjoint from 𝑉(𝐷), together with an incidence function 

𝜓𝐷 associated with each arc of 𝐷 as an ordered pair of vertices in 𝐷 [10].  

Let 𝑢, 𝑣 be the distinct vertices of a digraph 𝐷. If 𝐷 has either an arc (𝑢, 𝑣) or an arc (𝑣, 𝑢), then 𝐷 is 

called an oriented digraph. In a digraph 𝐷, we can make an underlying graph of 𝐷 by replacing each arc 

(𝑢, 𝑣) with an edge 𝑢𝑣, or both arcs (𝑢, 𝑣) and (𝑣, 𝑢) by an edge 𝑢𝑣. If the underlying graph of 𝐷 is 

connected, then 𝐷 is called weakly connected. Meanwhile, a digraph 𝐷 is called strongly connected if, for 

every pair of vertices 𝑢 and 𝑣, we have a 𝑢 − 𝑣 directed path and 𝑣 − 𝑢 directed path [11].  

Let the set of vertices of the digraph 𝐷 and 𝐻, respectively, be 𝑉(𝐷) and 𝑉(𝐻) where 𝑉(𝐻) ⊆ 𝑉(𝐷), 

and let the set of arcs of the digraph 𝐷 and 𝐻, respectively, be 𝐴(𝐷) and 𝐴(𝐻) where 𝐴(𝐻) ⊆ 𝐴(𝐷). Then, 

the digraph 𝐻 is a subdigraph of a digraph 𝐷. A subdigraph 𝐻 of a digraph 𝐷 is called induced subdigraph 

of 𝐷  if 𝑢 and 𝑣 are the vertices of 𝐻 and (𝑢, 𝑣) is the arc of 𝐷 then (𝑢, 𝑣) is also the arc of 𝐻 as well. [12].  

Let 𝑊 = (𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑘 = 𝑣) be a sequence of vertices of 𝐷 such that the vertex 𝑢𝑖 is adjacent to 

𝑢𝑖+1, where 𝑖 ∈ {0,1, … , 𝑘 − 1}. Then 𝑊 is called an 𝑢 − 𝑣 directed walk in 𝐷. The length of the directed 

walk 𝑊 is the number of visited arcs on 𝐷. If in the 𝑢 − 𝑣 directed walk we have 𝑢 = 𝑣, then the directed 

walk is called closed. On the other hand, if in an 𝑢 − 𝑣 directed walk we have 𝑢 ≠ 𝑣, then the directed walk 

is called open. If 𝑊 is not passing through the vertex more than once, then 𝑊 is a directed path. A directed 

cycle is a closed directed walk with a length at least two, where no vertex is repeated except for the initial 

and terminal vertices. If a digraph 𝐷 does not have a directed cycle subgraph, then 𝐷 is called acyclic 

digraph. Meanwhile, if a digraph 𝐷 is had a directed cycle, then 𝐷 is a cyclic digraph [13]. A Hamiltonian 

directed path in a digraph 𝐷 is a directed path that includes all vertices in 𝐷 [3].  

In this paper, we define a directed digon as a directed cycle with  length two. Furthermore, we denote a 

directed digon as {(𝑣𝑎, 𝑣𝑏); (𝑣𝑏 , 𝑣𝑎)|𝑣𝑎, 𝑣𝑏 ∈ 𝑉(𝐷)}. For simplicity, we use the term digon for directed 

digon in the rest of the paper. 

A rooted tree is a tree in that one vertex, defined as a root, is distinguished from others [14]. 

Therefore, if a digraph 𝐷 has a subdigraph which is a rooted directed tree, then 𝐷 is called rooted digraph. 

Let 𝐷 be a rooted digraph with a set of vertices 𝑉 ≔ 𝑉(𝐷) and a set of arcs 𝐴(𝐷). A rooted digraph 𝐷 is 

called an arborescence digraph if 𝑢 is a root vertex then there exists a unique directed path from 𝑢 to 𝑣 for 

every vertex 𝑣 in 𝐷 [15].  
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If a digraph 𝐷 has a single central vertex 𝑣, such that an arc exists from 𝑣 to the neighbour vertices 

and vice versa, then 𝐷 is called a complete star digraph. Formally, a complete star digraph (CSD), that has a 

size 𝑛, is denoted by 𝑆𝑛, and has a set of vertices 𝑉 ≔ 𝑉(𝑆𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and a set of arcs 𝐴 ≔
𝐴(𝑆𝑛) = {(𝑣1, 𝑣𝑗); (𝑣𝑗, 𝑣1) | 𝑗 = 2, 3, … , 𝑛} [6]. Note that we have digons {(𝑣1, 𝑣𝑗); (𝑣𝑗, 𝑣1)| 𝑗 ∈

{2, 3, … , 𝑛}} in the CSD. 

In this paper, we define a digraph 𝑆𝑛,𝑘 as a digraph obtained by deleting 𝑘-arcs (𝑣𝑗, 𝑣1) from a CSD, 

where 𝑗 ∈ {2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤ 𝑛 − 1. If 𝑘 = 𝑛 − 1, then 𝑆𝑛,𝑘 is an arborescence star digraph. 

Moreover, if 0 ≤ 𝑘 ≤ 𝑛 − 1, then 𝑆𝑛,𝑘 will contain digon(s). 

A digraph can be represented with a representation matrix. Examples of the representation matrices 

are adjacency and antiadjacency matrices. An adjacency matrix of a digraph 𝐷 (with a set of vertices 

{𝑣1, 𝑣2, … , 𝑣𝑛}) is an 𝑛 × 𝑛 matrix defined by 𝐴(𝐷) = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 is equal to 1 if there exists an arc 

from 𝑣𝑖 to 𝑣𝑗, and equal to 0 elsewhere. On the other hand, the antiadjacency matrix of a digraph 𝐷 (with a 

set of vertices {𝑣1, 𝑣2, … , 𝑣𝑛}) is an 𝑛 × 𝑛 matrix defined by 𝐵(𝐷) = 𝐽 − 𝐴(𝐷), where 𝐽 is an 𝑛 × 𝑛 matrix 

in which every entry is equal to 1 and 𝐴(𝐷) is an adjacency matrix of 𝐷 [3]. 

 

 

2. RESEARCH RESULTS 

This section discusses some known results that are related to the results in Section 3. The first 

theorem, Theorem 2.1 shows the results on the characteristic equation and the eigenvalues of an 𝑛 × 𝑛 

adjacency matrix. 

Theorem 2.1 [9]. If 𝜆𝑛 + 𝑐1𝜆𝑛−1 + 𝑐2𝜆𝑛−2 + ⋯ + 𝑐𝑛−1𝜆 + 𝑐𝑛 = 0 is the characteristic equation for 

𝐴𝑛×𝑛 and if 𝑠𝑘 is the 𝑘-th symmetric function of the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 of 𝐴𝑛×𝑛, then 𝑑𝑒𝑡(𝐴) =
𝜆1𝜆2 … 𝜆𝑛 

Theorem 2.1 shows the determinant of the antiadjacency matrix of a simple digraph with a hamiltonian 

path.  

Theorem 2.2 [3]. Let 𝐷 be an acyclic digraph with the set of verrtices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐵(𝐷) 

be the antiadjacency matrix of 𝐷. Then 𝑑𝑒𝑡(𝐵(𝐷)) = 1 if 𝐷 has a Hamiltonian path, and 𝑑𝑒𝑡(𝐵(𝐷)) = 0 

otherwise. 

Theorem 2.2 shows the determinant of the antiadjacency matrix of a simple digraph with a hamiltonian 

path. In the next section, we show the determinant of the antiadjacency matrix of a digraph obtained by 

adding arc(s) in the arborescence path digraph such that it has digon(s). 

 

 

3. RESULTS AND DISCUSSION 

3.1. Determinant of the antiadjacency matrix 

We present our results concerning the determinant of the antiadjacency matrix of an arborescence 

path digraph with digon(s). We also determine the determinant of the antiadjacency matrix of a digraph that 

is obtained by deleting arcs in a complete star digraph. Proposition 3.1 shows the determinant of the 

antiadjacency matrix of an arborescence path digraph with digon(s). 

Proposition 3.1. Let 𝐷 be an arborescence path digraph with the set of vertices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} 

where 𝑛 ≥ 2, and 𝐵(𝐷) be its antiadjacency matrix.  

(i) If 𝐷1 is a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, … , 𝑛 − 2} and 𝑛 ≥ 4, 

then 𝑑𝑒𝑡(𝐵(𝐷1)) = 1. 

(ii) If 𝐷2 is a digraph obtained by adding either an arc (𝑣2, 𝑣1) or an arc (𝑣𝑛, 𝑣𝑛−1) in 𝐷, where 𝑛 ≥

3, then 𝑑𝑒𝑡(𝐵(𝐷2)) = 0. Moreover, if 𝐷3 is a digraph obtained by adding arcs (𝑣2, 𝑣1) and 

(𝑣𝑛, 𝑣𝑛−1) in 𝐷, where 𝑛 ∈ {3, 5, 6, … }, then 𝑑𝑒𝑡(𝐵(𝐷3)) = 0. On the other hand, if 𝐷3 is a 
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digraph that has  order 𝑓𝑜𝑢𝑟 and is obtained by adding arcs (𝑣2, 𝑣1) and (𝑣4, 𝑣3), then 

𝑑𝑒𝑡(𝐵(𝐷3)) = −2.  

(iii) Let 𝑛 ≥ 4. If 𝐷4 is a digraph obtainedby adding an arc (𝑣2, 𝑣1) and arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈
{2, 3, 5, … , 𝑛 − 1}, then 𝑑𝑒𝑡(𝐵(𝐷4)) = 0. If 𝐷5 is added an arc (𝑣2, 𝑣1) and an arc (𝑣4, 𝑣3), then 

𝑑𝑒𝑡(𝐵(𝐷5)) = 1.  

(iv) Let 𝑛 ≥ 4. If 𝐷6 is a digraph obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) and arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈
{1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}, then 𝑑𝑒𝑡(𝐵(𝐷6)) = 0. If 𝐷7 is a digraph obtained by adding arcs 

(𝑣𝑛, 𝑣𝑛−1) and (𝑣𝑛−2, 𝑣𝑛−3), then 𝑑𝑒𝑡(𝐵(𝐷7)) = 1. 

Proof: 

Let 𝐷 be an arborescence directed path graph with the set vertices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} where 𝑛 ≥  2; 

and 𝐵(𝐷)  =  [𝑏𝑖,𝑗] where 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛}; be its antiadjacency matrix. 

(i) Let 𝐷1 be a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, … , 𝑛 − 2} and 𝑛 ≥ 4. 

Moreover, 𝐷1 has digon(s) {(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)}. Then, in its antiadjacency matrix 𝐵(𝐷1), we can 

subtract the 𝑘-th row from the first row where 𝑘 ∈  {2, 3, . . . , 𝑛}, use the cofactor expansion along the 

𝑛-th row, and subtract the 𝑖-th row from (𝑖 −  2)-th row where 𝑖 ∈  {3, 4, . . . , 𝑛 −  1}. The result show 

that det(𝐵(𝐷1)) =  1.  

(ii) To prove this, we need to dissect this into three cases: 𝐷2 is a digraph obtained by adding an arc 
(𝑣2, 𝑣1); 𝐷3 is a digraph obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1); and 𝐷4 is a digraph obtained by adding 

arcs (𝑣2, 𝑣1) and (𝑣𝑛, 𝑣𝑛−1). 

a) Let 𝐷2 be a digraph obtained by adding an arc (𝑣2, 𝑣1) where 𝑛 ≥ 3. Moreover, 𝐷2 has a digon 

{(𝑣1, 𝑣2); (𝑣2, 𝑣1)}. Then, in its antiadjacency matrix 𝐵(𝐷2), we can subtract the 𝑘-th row from the 

first row where 𝑘 ∈  {3, 4, . . . , 𝑛} and use the cofactor expansion along the 𝑛-th row to obtain 

det(𝐵(𝐷2)) = 0.  

b) Let 𝐷2 be a digraph obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) where 𝑛 ∈ {3, 5, 6, … }. Moreover, 𝐷3 has a 

digon {(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)}. Since in its antiadjacency matrix 𝐵(𝐷3), the 𝑛-th row is the same as 

the (𝑛 −  2)-th row, then we have 𝑑𝑒𝑡(𝐵(𝐷3))  =  0. 

c) For this case, we must differ the value of 𝑛 into 𝑛 =  3, 𝑛 =  4, and 𝑛 ≥  5. 

• Let 𝐷3 be a digraph that has an order 𝑛 = 3, which obtained by adding arcs (𝑣2, 𝑣1) and (𝑣3, 𝑣2) in 

𝐷.Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣2, 𝑣3); (𝑣3, 𝑣2)}. Since in its antiadjacency 

matrix 𝐵(𝐷3), the third row is the same as the first row, then we have det(𝐵(𝐷3)) = 0. 

• Let 𝐷3 be a digraph that has an order 𝑛 = 4, which obtained by adding arcs (𝑣2, 𝑣1) and (𝑣4, 𝑣3) in 

𝐷. Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣4, 𝑣3); (𝑣3, 𝑣4)}. Then, in its antiadjacency 

matrix 𝐵(𝐷5), we can subtract the third row from the first and the second row and use cofactor 

expansion along the third row to obtain det(𝐵(𝐷3)) = −2. 

• Let 𝐷3 be a digraph that has an order 𝑛 ≥ 5, which obtained by adding arcs (𝑣2, 𝑣1) and (𝑣𝑛, 𝑣𝑛−1) 

in 𝐷. Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣𝑛, 𝑣𝑛−1); (𝑣𝑛−1, 𝑣𝑛)}. Since in its 

antiadjacency matrix 𝐵(𝐷3), the 𝑛-th row is the same as the (𝑛 − 2)-th row, then we have 

det(𝐵(𝐷6)) = 0.  

(iii) To prove this, we need to dissect it into two cases: the following. 

a) Let 𝐷4 be a digraph that has an order 𝑛 ≥  4, which obtained by adding an arc (𝑣2, 𝑣1) and arc(s) 

(𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, 5, … , 𝑛 − 1}. Moreover, 𝐷4 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and 
{(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)} where 𝑖 ∈ {3, 5, … , 𝑛 − 2}. Then, the transpose of its antiadjacency matrix 

𝐵(𝐷7)𝑇 will have at least two same rows: first and third rows. Consequently, we have det(𝐵(𝐷4)) =

0.  

b) Let 𝐷5 be a digraph that has order 𝑛 ≥  4, which obtained by adding an arc (𝑣2, 𝑣1) and an arc 

(𝑣4, 𝑣3) in 𝐷. Moreover, 𝐷5 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣3, 𝑣4); (𝑣4, 𝑣3)}. Then, in its 
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antiadjacency matrix 𝐵(𝐷5), we can subtract the 𝑘-th row from the first row where 𝑘 ∈ {3, 4, 5, … , 𝑛}, 

use cofactor expansion along the 𝑛-th row, sum the fourth row from the second row, sum the second 

row from the third row, interchange the second row with the fourth row, to obtain det(𝐵(𝐷5)) = 1.   

(iv) To prove this, we need to dissect it into two cases: the following. 

a) Let 𝐷6 be a digraph that has an order 𝑛 ≥  4, which obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) and arc(s) 

(𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}. Moreover, 𝐷6 has digons 
{(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)} and {(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)} where 𝑖 ∈ {1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}. Then, either 

its antiadjacency matrix  𝐵(𝐷6) will have two same rows, that is, the 𝑛-th row and the (𝑛 − 2)-th row. 

Therefore, we have det(𝐵(𝐷6)) = 0.    

b) Let 𝐷7 be a digraph that has an order 𝑛 ≥  4, which obtained by adding arcs (𝑣𝑛, 𝑣𝑛−1) and 

(𝑣𝑛−2, 𝑣𝑛−3) in 𝐷. Moreover, 𝐷7 has digons {(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)} and {(𝑣𝑛−3, 𝑣𝑛−2); (𝑣𝑛−2, 𝑣𝑛−3)}. 

Then, we can use the similar method as in (iii) to obtain det(𝐵(𝐷7)) = 1. ∎ 

 

Figure 1. The digraphs 𝑫𝟏, 𝑫𝟐, 𝑫𝟑, 𝑫𝟒, 𝑫𝟓, 𝑫𝟔, 𝑫𝟕 

From Theorem 2.1 and Proposition 3.1, we have the following Corollary 3.2. Corollary 3.2 shows 

that the multiplication of all the eigenvalues of the antiadjacency matrix of an arborescence path digraph 

with digon(s). 

 

Corollary 3.2. Let 𝐷 be an arborescence path digraph with the set of vertices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} 

where 𝑛 ≥ 2, and 𝐵(𝐷) be its antiadjacency matrix. Let 𝜆1, 𝜆2, … , 𝜆𝑛 be the eigenvalues of 𝐵(𝐷). 

(i) If 𝐷1 is a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, … , 𝑛 − 2} and 𝑛 ≥ 4, 

then 𝜆1𝜆2 … 𝜆𝑛 = 1. 

(ii) If 𝐷2 is a digraph obtained by adding either an arc (𝑣2, 𝑣1) or an arc (𝑣𝑛, 𝑣𝑛−1) in 𝐷, where 𝑛 ≥
3, then 𝜆1𝜆2 … 𝜆𝑛 = 0. Moreover, if 𝐷3 is a digraph obtained by adding arcs (𝑣2, 𝑣1) and 

(𝑣𝑛, 𝑣𝑛−1) in 𝐷, where 𝑛 ∈ {3, 5, 6, … }, then 𝜆1𝜆2 … 𝜆𝑛 = 0. On the other hand, if 𝐷3 is a digraph 

that has an order 𝑓𝑜𝑢𝑟 and is obtained by adding arcs (𝑣2, 𝑣1) and (𝑣4, 𝑣3), then 𝜆1𝜆2 … 𝜆𝑛 = −2.  

(iii) Let 𝑛 ≥ 4. If 𝐷4 is a digraph obtained by adding an arc (𝑣2, 𝑣1) and arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈
{2, 3, 5, … , 𝑛 − 1}, then 𝜆1𝜆2 … 𝜆𝑛 = 0. If 𝐷5 is added an arc (𝑣2, 𝑣1) and an arc (𝑣4, 𝑣3), then 

𝜆1𝜆2 … 𝜆𝑛 = 1.  

(iv) Let 𝑛 ≥ 4. If 𝐷6 is a digraph obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) and arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈
{1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}, then 𝜆1𝜆2 … 𝜆𝑛 = 0. If 𝐷7 is a digraph obtained by adding arcs 

(𝑣𝑛, 𝑣𝑛−1) and (𝑣𝑛−2, 𝑣𝑛−3), then 𝜆1𝜆2 … 𝜆𝑛 = 1. 

Proof: 

Let 𝐷 be an arborescence directed path graph with the set vertices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} where 𝑛 ≥  2; 

and 𝐵(𝐷)  =  [𝑏𝑖,𝑗] where 𝑖, 𝑗 ∈  {1, 2, . . . , 𝑛}; be its antiadjacency matrix. Let λ1, λ2, … , λ𝑛 be the 

eigenvalues of 𝐵(𝐷). 

(i) Let 𝐷1 be a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, … , 𝑛 − 2} and 𝑛 ≥ 4. 

Moreover, 𝐷1 has digon(s) {(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)}. Then, from Theorem 2.1 and Proposition 3.1, we 

have λ1λ2 … λ𝑛 = 1. 

(ii) To prove this, we need to dissect this into three cases: 𝐷 is added an arc (𝑣2, 𝑣1); 𝐷 is added an arc 

(𝑣𝑛, 𝑣𝑛−1); and 𝐷 is added arcs (𝑣2, 𝑣1) and (𝑣𝑛, 𝑣𝑛−1). 

a) Let 𝐷2 be a digraph obtained by adding an arc (𝑣2, 𝑣1) where 𝑛 ≥ 3. Moreover, 𝐷2 has a digon 



502  Prayitno, et. al.     On Antiadjacency Matrix of A Diagraph …..…  

{(𝑣1, 𝑣2); (𝑣2, 𝑣1)}. Then, from Theorem 2.1 and Proposition 3.1, we have λ1λ2 … λ𝑛 = 0. 

b) Let 𝐷2 be a digraph obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) where 𝑛 ∈ {3, 5, 6, … }. Moreover, 𝐷3 

has a digon {(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)}. Then from Theorem 2.1 and Proposition 3.1, we have 

λ1λ2 … λ𝑛 = 0. 

c) For this case, we must differ the value of 𝑛 into 𝑛 =  3, 𝑛 =  4, and 𝑛 ≥  5. 

• Let 𝐷3 be a digraph that has an order 𝑛 = 3, which obtained by adding arcs (𝑣2, 𝑣1) and 

(𝑣3, 𝑣2) in 𝐷.Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣2, 𝑣3); (𝑣3, 𝑣2)}. Then, 

from Theorem 2.1 and Proposition 3.1, we have λ1λ2 … λ𝑛 = 0. 

• Let 𝐷3 be a digraph that has an order 𝑛 = 4, which obtained by adding arcs (𝑣2, 𝑣1) and 

(𝑣4, 𝑣3) in 𝐷. Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣4, 𝑣3); (𝑣3, 𝑣4)}. Then, 

from Theorem 2.1 and Proposition 3.1, we have λ1λ2 … λ𝑛 = −2. 

• Let 𝐷3 be a digraph that has an order 𝑛 ≥ 5, which obtained by adding arcs (𝑣2, 𝑣1) and 

(𝑣𝑛, 𝑣𝑛−1) in 𝐷. Moreover, 𝐷3 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣𝑛, 𝑣𝑛−1); (𝑣𝑛−1, 𝑣𝑛)}. 

Then, from Theorem 2.1 and Proposition 3.1, we have                λ1λ2 … λ𝑛 = 0. 

(iii) To prove this, we need to dissect it into two cases, the following. 

a) Let 𝐷4 be a digraph that has an order 𝑛 ≥  4, which obtained by adding an arc (𝑣2, 𝑣1) and 

arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {2, 3, 5, … , 𝑛 − 1}. Moreover, 𝐷4 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} 

and {(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)} where 𝑖 ∈ {3, 5, … , 𝑛 − 2}. Then, from Theorem 2.1 and Proposition 

3.1, we have λ1λ2 … λ𝑛 = 0. 

b) Let 𝐷5 be a digraph that has order 𝑛 ≥  4, which obtained by adding an arc (𝑣2, 𝑣1) and an arc 

(𝑣4, 𝑣3) in 𝐷. Moreover, 𝐷5 has digons {(𝑣1, 𝑣2); (𝑣2, 𝑣1)} and {(𝑣3, 𝑣4); (𝑣4, 𝑣3)}. Then, from 

Theorem 2.1 and Proposition 3.1, we have λ1λ2 … λ𝑛 = 1. 

(iv) To prove this, we need to dissect it into two cases, the following. 

a) Let 𝐷6 be a digraph that has an order 𝑛 ≥  4, which obtained by adding an arc (𝑣𝑛, 𝑣𝑛−1) and 

arc(s) (𝑣𝑖+1, 𝑣𝑖) in 𝐷, where 𝑖 ∈ {1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}. Moreover, 𝐷6 has digons 
{(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)} and {(𝑣𝑖, 𝑣𝑖+1); (𝑣𝑖+1, 𝑣𝑖)} where 𝑖 ∈ {1, 2, … , 𝑛 − 5, 𝑛 − 4, 𝑛 − 2}. 

Then, from Theorem 2.1 and Proposition 3.1, we have λ1λ2 … λ𝑛 = 0.  

b) Let 𝐷10 be a digraph that has an order 𝑛 ≥  4, which obtained by adding arcs (𝑣𝑛, 𝑣𝑛−1) and 

(𝑣𝑛−2, 𝑣𝑛−3) in 𝐷. Moreover, 𝐷10 has digons {(𝑣𝑛−1, 𝑣𝑛); (𝑣𝑛, 𝑣𝑛−1)} and 
{(𝑣𝑛−3, 𝑣𝑛−2); (𝑣𝑛−2, 𝑣𝑛−3)}. Then, from Theorem 2.1 and Proposition 3.1, we have 

λ1λ2 … λ𝑛 = 1. ∎ 

We will show the result on the determinant of the antiadjacency matrix of a complete star digraph that 

deleted several arcs such that at least contained one digon. 

 

Proposition 3.3. Let 𝑆𝑛,𝑘 be a digraph which obtained by deleting 𝑘-arcs (𝑣𝑗 , 𝑣1) in a complete star 

digraph where 𝑗 ∈ {2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤ 𝑛 − 1. Moreover, let 𝐵(𝑆𝑛,𝑘) be the antiadjacency matrix of 

𝑆𝑛,𝑘. Then, 𝑑𝑒𝑡(𝐵(𝑆𝑛,𝑘)) = 0. 

Proof: 

Let 𝑆𝑛,𝑘 be a digraph which obtained by deleting 𝑘-arcs (𝑣𝑗, 𝑣1) in a complete star digraph where 𝑗 ∈

{2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤ 𝑛 − 1. Moreover, let 𝐵(𝑆𝑛,𝑘) be the antiadjacency matrix of 𝑆𝑛,𝑘. To prove this, 

we need to dissect it into two cases. Those are the following. 

i. If 𝑘 = 0, then there will be (𝑛 − 1)-vertices that have the same out-neighborhood vertices. Therefore, 

𝐵(𝑆𝑛,𝑘) will have the (𝑛 − 1) same rows, which will imply det (𝐵(𝑆𝑛,𝑘)) = 0. 

ii. If 1 ≤ 𝑘 ≤ 𝑛 − 1, then there will be at least one vertex that has an empty out-neighborhood vertices. 

Consequently, 𝐵(𝑆𝑛,𝑘) will have a zero-row, which will imply det(𝐵(𝑆𝑛,𝑘)) = 0.∎ 
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Figure 2. The Digraph 𝑺𝟓 and 𝑺𝟓,𝟐 

3.2. The characteristic polynomial of the antiadjacency matrix 

We present our results concerning the characteristic polynomial of the antiadjacency matrix of the 

arborescence path digraph with digon(s), in Proposition 3.4. 

Proposition 3.4. Let 𝐷 be an arborescence path digraph with the set of vertices 𝑉(𝐷) =
{𝑣1, 𝑣2, … , 𝑣𝑛} where 𝑛 ≥ 3, and 𝐵(𝐷) be its antiadjacency matrix. Let 𝐷1, 𝐷2, and 𝐷3 respectively be a 

digraph which obtained by adding arc(s) (𝑣2, 𝑣1), (𝑣𝑖+1, 𝑣𝑖), and (𝑣𝑛, 𝑣𝑛−1)  in 𝐷, where 𝑖 ∈ {2, 3, … , 𝑛 −
2};  and 𝑛 ≥ 3. Let 𝑃(𝜆; 𝐵(𝐷1)) = 𝜆𝑛 + ∑ 𝑎𝑗𝜆𝑛−𝑗𝑛

𝑗=1 , 𝑃(𝜆; 𝐵(𝐷2)) = 𝜆𝑛 + ∑ 𝑏𝑗𝜆𝑛−𝑗𝑛
𝑗=1 , and 

𝑃(𝜆; 𝐵(𝐷3)) = 𝜆𝑛 + ∑ 𝑐𝑗𝜆𝑛−𝑗𝑛
𝑗=1 , respectively, be the characteristic polynomial of 𝐵(𝐷1), 𝐵(𝐷2), and 

𝐵(𝐷3). Then, we have the following properties. 

(i)  Let 𝑗 ∈ {1, 2, … , 𝑛}. Then |𝑎𝑗| is equal to the number of directed arborescence paths involving 𝑗-

vertices.  

(ii)  Let 𝑗 ∈ {1, 2, … , 𝑛}. Then |𝑏𝑗| is equal to the number of directed arborescence paths involving 𝑗-

vertices and digraphs that are obtained by adding arcs such that they contain digons involving 𝑗-

vertices.  

(iii)  Let 𝑗 ∈ {1, 2, … , 𝑛}. Then |𝑐𝑗| is equal to the number of directed arborescence paths involving 𝑗-

vertices.  

Proof: 

Let 𝐷 be an arborescence path digraph with the set of vertices 𝑉(𝐷) = {𝑣1, 𝑣2, … , 𝑣𝑛} where 𝑛 ≥ 2.  

(i) Let 𝐷1 be a digraph obtained by adding arc(s) (𝑣2, 𝑣1) in 𝐷, 𝐵(𝐷1) be its antiadjacency matrix. and 

𝑃(𝜆; 𝐵(𝐷1)) = 𝜆𝑛 + ∑ 𝑎𝑗𝜆𝑛−𝑗𝑛
𝑗=1  be the characteristic polynomial of 𝐵(𝐷1). Using elementary methods 

of finding the principal minor, we have |𝑎𝑗| = ∑( all 𝑗 × 𝑗 principal minors of 𝐵(𝐷1) ), where 𝑗 ∈

{1,  2,  … ,  𝑛}. We know that all the 𝑖 × 𝑖 principal minors of 𝐵(𝐷1) are the determinant of the 

antiadjacency matrix of the induced subdigraphs of 𝐷1. Since 𝐷1 is a digraph obtained by adding arc(s) 

(𝑣2, 𝑣1) in 𝐷, then the induced subdigraphs of 𝐷1 can be oriented and unoriented. The oriented 

subdigraphs of 𝐷1 can be weakly connected or unconnected. The unconnected oriented or unoriented 

induced-subdigraphs of 𝐷1 may have at least one isolated vertex, which implies its antiadjacency matrix 

has zero rows, and the determinant of its antiadjacency matrix is equal to zero. The weakly connected 

induced-subdigraphs of 𝐷1 are arborescence path digraphs. Then, according to Theorem 2.2, we have the 

determinant of the  For oriented induced-subdigraphs of 𝐷1. According to Theorem 2.2, we have all  

determinants of the antiadjacency matrices of those induced-subdigraphs are equal to 1. Meanwhile, 

according to Proposition 3.1, we have all determinants of the weakly connected and unoriented induced-

subdigraphs of 𝐷1 are equal to zero. Therefore, we have |𝑎𝑗| is equal to the number of directed 

arborescence paths involving 𝑗-vertices, where 𝑗 ∈ {1, 2, … , 𝑛}.  
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(ii) Let 𝐷2 be a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈ {2, 3, … , 𝑛 − 2}  in 𝐷, 𝐵(𝐷2) be its 

antiadjacency matrix. and 𝑃(𝜆; 𝐵(𝐷2)) = 𝜆𝑛 + ∑ 𝑏𝑗𝜆𝑛−𝑗𝑛
𝑗=1  be the characteristic polynomial of 𝐵(𝐷2). 

Using elementary methods of finding the principal minor, we have                                                                                                 

|𝑏𝑗| = ∑( all 𝑗 × 𝑗 principal minors of 𝐵(𝐷1) ) where 𝑗 ∈ {1,  2,  … ,  𝑛}. We know that all the 𝑖 ×

𝑖 principal minors of 𝐵(𝐷2) are the determinant of the antiadjacency matrix of the induced subdigraphs 

of 𝐷2. Since 𝐷2 is a digraph obtained by adding arc(s) (𝑣𝑖+1, 𝑣𝑖) where 𝑖 ∈ {2, 3, … , 𝑛 − 2} in 𝐷, then 

the induced subdigraphs of 𝐷1 can be oriented and unoriented. The oriented subdigraphs of 𝐷1 can be 

weakly connected or unconnected. The unconnected oriented or unoriented induced-subdigraphs of 𝐷1 

may have at least one isolated vertex, which implies its antiadjacency matrix has zero rows, and the 

determinant of its antiadjacency matrix is equal to zero. The weakly connected induced-subdigraphs of 

𝐷1 are arborescence path digraphs. Then, according to Theorem 2.2, we have the determinant of the  For 

oriented induced-subdigraphs of 𝐷1. According to Theorem 2.2, we have all determinants of 

antiadjacency matrices of those induced-subdigraphs are equal to 1. Meanwhile, according to 

Proposition 3.1, we have all determinants of the weakly connected and unoriented induced-subdigraphs 

of 𝐷1 are equal to 1. Therefore, we have Then |𝑏𝑗| is equal to the number of directed arborescence paths 

involving 𝑗-vertices and digraphs obtained by adding arcs such that they contain digons involving 𝑗-

vertices, where  𝑗 ∈ {1, 2, … , 𝑛}. 

(iii) Let 𝐷3 be a digraph obtained by adding arc(s) (𝑣𝑛 , 𝑣𝑛−1) in 𝐷, 𝐵(𝐷3) be its antiadjacency matrix. and 

𝑃(𝜆; 𝐵(𝐷3)) = 𝜆𝑛 + ∑ 𝑐𝑗𝜆𝑛−𝑗𝑛
𝑗=1  be the characteristic polynomial of 𝐵(𝐷3). Using elementary methods 

of finding the principal minor, we have |𝑐𝑗| = ∑( all 𝑗 × 𝑗 principal minors of 𝐵(𝐷3) ) where 𝑗 ∈

{1,  2,  … ,  𝑛}. We know that all the 𝑖 × 𝑖 principal minors of 𝐵(𝐷3) are the determinant of the 

antiadjacency matrix of the induced subdigraphs of 𝐷3. Since 𝐷3 is a digraph obtained by adding arc(s) 

(𝑣𝑛, 𝑣𝑛−1) in 𝐷, then the induced subdigraphs of 𝐷3 can be oriented and unoriented. The oriented 

subdigraphs of 𝐷3 can be weakly connected or unconnected. The unconnected oriented or unoriented 

induced-subdigraphs of 𝐷3 may have at least one isolated vertex, which implies its antiadjacency matrix 

has zero rows, and the determinant of its antiadjacency matrix is equal to zero. The weakly connected 

induced-subdigraphs of 𝐷3 are arborescence path digraphs. Then, according to Theorem 2.2, we have 

the determinant of the  For oriented induced-subdigraphs of 𝐷3According to Theorem 2.2, we have all 

determinants of antiadjacency matrices of those induced-subdigraphs are equal to 1. Meanwhile, 

according to Proposition 3.1, we have all determinants of the weakly connected and unoriented induced-

subdigraphs of 𝐷3 are equal to zero. Therefore, we have |𝑐𝑗| is equal to the number of directed 

arborescence paths involving 𝑗-vertices, where 𝑗 ∈ {1, 2, … , 𝑛}. ∎ 

Let 𝑆𝑛,𝑘 be a digraph which obtained by deleting 𝑘-arcs (𝑣𝑗 , 𝑣1) in a complete star digraph where 𝑗 ∈

{2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤ 𝑛 − 1. Let 𝐵(𝑆𝑛,𝑘) be the antiadjacency matrix of 𝑆𝑛,𝑘. We put the characteristic 

polynomial of 𝐵(𝑆𝑛,𝑘) in Problem 3.5. 

Problem 3.5. Let 𝑆𝑛,𝑘 be a digraph that is obtained by deleting 𝑘-arcs (𝑣𝑗, 𝑣1)of a complete star digraph 

where 𝑗 ∈ {2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤ 𝑛 − 1. Moreover, let 𝐵(𝑆𝑛,𝑘) be the antiadjacency matrix of 𝑆𝑛,𝑘. Is 

there any specific properties of coefficients of the characteristic polynomial of 𝐵(𝑆𝑛,𝑘)? 

 

 

4. CONCLUSIONS 

In this paper, we have found several results on the determinant and the characteristic polynomial of 

the antiadjacency matrix of a digraph obtained by adding arc(s) in the arborescence path digraph. Table 1 

shows the determinant matrix of the antiadjacency of each digraph that added arc(s) in arborescence path 

digraph such that it has digon(s). We also have found the determinant of the antiadjacency matrix of a 

digraph obtained by deleting 𝑘-arcs (𝑣𝑗, 𝑣1) in a complete star digraph where 𝑗 ∈ {2, 3, … , 𝑛} and 0 ≤ 𝑘 ≤

𝑛 − 1. is equal to zero. Meanwhile,  the coefficient of that digraph's characteristic polynomial, we leave it 

as Problem 3.5. 
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