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Abstract. The main aim of this research is to find the formula of the trace of adjacency matrix 𝑛 × 𝑛 from a cycle 

graph to the power of two to five. To obtain the general form, the first step is finding the general formula of the 

adjacency matrix from a cycle graph to the power of two to five. Furthermore, the formula of the trace of adjacency 

matrix which is mentioned above obtained and proven by direct proof. We also present an implementation of the 

formula which is given by an example.  
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1. INTRODUCTION 

Calculating the trace of matrix to the power is performed by multiplying the matrix or multiplying 

the matrix n times. After that, the trace matrix to the power will be obtained. This means that to calculate 

the trace of matrix to the power is quite complicated if the matrix raised to a large power. This is quite 

interesting to study, namely how to find the right general form to calculate the trace matrix to the power 

without calculating exponents or matrix multiplication. By simply substituting the matrix entries into the 

general form, the trace value of the power matrix will be obtained, without a long process of multiplying or 

matrix multiplication. 

Determining the trace matrix to the power has been done by many previous researchers. In 1976 [1] 

has obtained an algorithm for calculating a trace matrix to the power of 𝑇𝑟(𝐴𝑘), where k is an integer and 𝐴 

is a Hassenberg matrix with codiagonal units. Furthermore, in 1985 [2] discussed the symbolic calculation 

of the trace of tridiagonal matrix with powers. The discussion of traces is also found in several applications 

in matrix theory and numerical linear algebra. [3], in 1990, explained in his paper that he was able to 

determine the eigenvalues of a symmetric matrix, also provided a basic procedure for estimating traces 
(𝐴𝑛)and  (𝐴−𝑛) where n is an integer. 

According to [4] in 2008 on number theory and combinatorics, trace matrices to the power of 

integers are associated with Euler congruences as follow: 

𝑇𝑟(𝐴𝑝𝑟) = 𝑇𝑟(𝐴𝑝𝑟−1) 𝑚𝑜𝑑 (𝑝𝑟) 

for all integer matrices 𝐴, 𝑝 is a prime number and 𝑟 is an integer. The article also discusses the invariant in 

dynamic systems which is described as a trace matrix form to the power of integers. The example given in 

the article is the Lefschetz number. According to [5] in 2010, the most essential problem in network 

analysis, specifically triangle counting in a graph, is calculating the total number of triangles in a basic 

connected graph while analyzing a complex network. The number is equal to  𝑇𝑟(𝐴3) 6⁄ , where A is the 

adjacency matrix of the graph. According to [6] in 2012, traces of exponent matrices are often discussed in 

several mathematical fields, such as Network Analysis, Number Theory, System Dynamics, Matrix Theory 

and Differential Equations. 

The calculation of the power matrix trace has been discussed by [7] in 2015 with a matrix of order 

2 × 2 with positive integer powers. Two general types of trace matrices of the power of positive integers 

were derived in this article. First, the general form of a trace matrix to the power of positive integers for 

even 𝑛 is: 

𝑡𝑟(𝐴𝑛) = ∑
(−1)𝑟

𝑟!
𝑛[𝑛 − (𝑟 + 1)][𝑛 − (𝑟 + 2)]⋯ [𝑛 − (𝑟 + (𝑟 − 1))](𝑑𝑒𝑡(𝐴))

𝑟
(𝑡𝑟(𝐴))

𝑛−2𝑟𝑛 2⁄
𝑟=0    

Second, the general form of a trace matrix to the power of positive integers for odd 𝑛 is: 

𝑡𝑟(𝐴𝑛) = ∑
(−1)𝑟

𝑟!
𝑛[𝑛 − (𝑟 + 1)][𝑛 − (𝑟 + 2)]⋯ [𝑛 − (𝑟 + (𝑟 − 1))](𝑑𝑒𝑡(𝐴))

𝑟
(𝑡𝑟(𝐴))

𝑛−2𝑟

𝑛−1 2⁄

𝑟=0

 

In 2017, [9] discussed the trace matrix of the order of 2 × 2 to the power of negative integers. In this 

article, there are two general forms of exponent trace matrix, provided that the determinant of the matrix is 

not zero. First, the general form of a trace matrix to the power of negative integers for even 𝑛 is: 

𝑡𝑟(𝐴−𝑛) =
∑

(−1)𝑟

𝑟!
𝑛[𝑛−(𝑟+1)][𝑛−(𝑟+2)]⋯[𝑛−(𝑟+(𝑟−1))](𝑑𝑒𝑡(𝐴))

𝑟
(𝑡𝑟(𝐴))

𝑛−2𝑟𝑛 2⁄
𝑟=0

(𝑑𝑒𝑡(𝐴))
𝑛   

Second, the general form of a trace matrix to the power of negative integers for odd 𝑛 is: 

𝑡𝑟(𝐴−𝑛) =
∑

(−1)𝑟

𝑟!
𝑛[𝑛−(𝑟+1)][𝑛−(𝑟+2)]⋯[𝑛−(𝑟+(𝑟−1))](𝑑𝑒𝑡(𝐴))

𝑟
(𝑡𝑟(𝐴))

𝑛−2𝑟𝑛−1 2⁄
𝑟=0

(𝑑𝑒𝑡(𝐴))
𝑛    

Furthermore, [8] did study on the trace matrix with power once again. The matrix in this article, on 

the other hand, is the adjacency matrix of a complete graph. The general form of the trace of adjacency 

matrix 𝑛 × 𝑛 from a complete graph to the power of an even positive integer and an odd positive integer 

obtained in this study is as follows: 

𝑡𝑟(𝐴𝑛
𝑘) = ∑ 𝑆(𝑘, 𝑟)𝑛(𝑛 − 1)𝑟(𝑛 − 2)𝑘−2𝑟

𝑛/2
𝑟=1             , 𝑘 positive even number  
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𝑡𝑟(𝐴𝑛
𝑘) = ∑ 𝑆(𝑘, 𝑟)𝑛(𝑛 − 1)𝑟(𝑛 − 2)𝑘−2𝑟

(𝑛−1)/2
𝑟=1        , 𝑘 odd positive number  

𝑆(𝑘, 𝑟) is a number that depends on 𝑘 and 𝑟 defined by: 

𝑆(𝑘, 𝑟) = 1, 𝑆 (𝑘,
𝑘

2
) = 1, 𝑆 (𝑘, 𝑘 −

1

2
) =

𝑘−1

2
, 𝑆(𝑘, 𝑟) = 𝑆(𝑘 − 1, 𝑟) + 𝑆(𝑘 − 2, 𝑟 − 1). 

In 2019, Pahade and Jha's research was devoloped by [10] with examined at the powers of negative 

two, three, and four in the same matrix. The typical form of the 𝑛 × 𝑛 adjacency matrix trace from a 

complete graph to the power of negative two, negative three, and negative four obtained from this study is: 

𝑡𝑟(𝐴𝑛
−2) =

𝑛((𝑛−1)+(𝑛−2)2)

(𝑛−1)2
      , 𝑛 ≥ 2. 

 

The general form of the n ×n adjacency matrix trace of a complete graph to the negative power of 

three of a complete graph is: 

𝑡𝑟(𝐴𝑛
−3) =

𝑛−2(𝑛−1)(𝑛−2)−(𝑛−2)3

(𝑛−1)3
      , 𝑛 ≥ 2.  

and the general form of the n×n adjacency matrix trace to the negative power of four from a complete 

graph is: 

𝑡𝑟(𝐴𝑛
−4) =

𝑛((𝑛−1)2+3(𝑛−1)(𝑛−2)2+(𝑛−2)4)

(𝑛−1)4
      , 𝑛 ≥ 2. 

 

In addition to the complete graph, there is a cycle graph which can also be represented in the 

adjacency matrix. A cycle graph is a graph in which every vertex has degree two and a path that starts and 

ends at the same vertex  [8]. Thus, each cycle graph of 𝐶𝑛 has n vertices and can be represented as a 

adjacent matrix of 𝐶 of size 𝑛 × 𝑛. The general form of the adjacency matrix  𝑛 × 𝑛 of the cycle graph  𝐶𝑛 

is shown in Equation (1) as follows: 

𝐶𝑛 =

[
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 ⋯ 0 0 0 0 1
1 0 1 0 0 ⋯ 0 0 0 0 0
0 1 0 1 0 ⋯ 0 0 0 0 0
0 0 1 0 1 ⋯ 0 0 0 0 0
0 0 0 1 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 1 0 0 0
0 0 0 0 0 ⋯ 1 0 1 0 0
0 0 0 0 0 ⋯ 0 1 0 1 0
0 0 0 0 0 ⋯ 0 0 1 0 1
1 0 0 0 0 ⋯ 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 

(1) 

 

Based on the description of the results of previous studies regarding the trace of matrix to the power, 

this article will discuss trace of the adjacency matrix 𝑛 × 𝑛 from a cycle graph to the power of positive 

integers two to five. 

 

2. RESEARCH METHODS 

The method used in this research was a literature review. The following stages are mentioned in this 

research before providing any needed literature review: If given the adjacency matrix of the cycle graph 𝑪𝒏 

in Equation (1), then to get the trace matrix which has the power of positive integers from two to five, it 

will first be determined the power of the matrix from two to five. After that, the trace matrix form is 

obtained. In more detail, the research steps are given as follows:  

1. Given the adjacency matrix of the cycle graph of 𝐶𝑛. 

2. Prove the power of 𝐴𝑛
2  by 𝐶𝑛𝐶𝑛 = 𝐴𝑛

2 . 

3. Prove the power of 𝐴𝑛
3  by 𝐴𝑛

2𝐶𝑛 = 𝐴𝑛
3 . 

4. Prove the power of 𝐴𝑛
4  by 𝐴𝑛

3𝐶𝑛 = 𝐴𝑛
4 . 

5. Prove the power of 𝐴𝑛
5  by 𝐴𝑛

4𝐶𝑛 = 𝐴𝑛
5 . 

6. Prove 𝑡𝑟(𝐴𝑛
2), 𝑡𝑟(𝐴𝑛

3),  𝑡𝑟(𝐴𝑛
4) and 𝑡𝑟(𝐴𝑛

5) by using direct proof. 
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7. Apply the general forms of 𝑡𝑟(𝐴𝑛
2), 𝑡𝑟(𝐴𝑛

3), 𝑡𝑟(𝐴𝑛
4) and 𝑡𝑟(𝐴𝑛

5) with some related examples.  

Proof of the general form of the trace of the adjacency matrix 𝑛 × 𝑛 is carried out using direct proof, 

namely the definition of the trace matrix in [11]. The elaboration of definitions and theorems related to the 

rule of matrices power and trace matrices is provided in [12], [13], [14], [15], [16]. 

 

3. RESULTS AND DISCUSSION 

The results of the study were obtained after following the steps described in the research method 

above. There are two general forms obtained, first, the general form for the adjacency matrix 𝑛 × 𝑛 of the 

cycle graph in Equation (1) to the power of positive integers from two to five. Second, the general form of 

the trace of  the adjacency matrix 𝑛 × 𝑛 from cycle graph in Equation (1) has the power of positive integers 

from two to five. 

 

3.1. General Form of the Adjacency Matrix 𝑛 × 𝑛  of a Cycle Graph to the Power of Two  

 

Theorem 1 Given the adjacency matrix of the cycle graph in Equation (1), so it is obtained: 

𝐴𝑛
2 =

[
 
 
 
 
 
 
 
 
 
 
2 0 1 0 0 ⋯ 0 0 0 1 0
0 2 0 1 0 ⋯ 0 0 0 0 1
1 0 2 0 1 ⋯ 0 0 0 0 0
0 1 0 2 0 ⋯ 0 0 0 0 0
0 0 1 0 2 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 2 0 1 0 0
0 0 0 0 0 ⋯ 0 2 0 1 0
0 0 0 0 0 ⋯ 1 0 2 0 1
1 0 0 0 0 ⋯ 0 1 0 2 0
0 1 0 0 0 ⋯ 0 0 1 0 2]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 6. 

or it can be written as follows: 

𝐴𝑛
2 = [𝑎𝑖𝑗] =

{
 
 

 
 
        2,    𝑓𝑜𝑟 𝑖 = 𝑗                                                                   

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

Proof: 

Theorem 1 will be proved by direct proof. 

𝐴𝑛
2 = 𝐶𝑛 ∙ 𝐶𝑛 =

[
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 ⋯ 0 0 0 0 1
1 0 1 0 0 ⋯ 0 0 0 0 0
0 1 0 1 0 ⋯ 0 0 0 0 0
0 0 1 0 1 ⋯ 0 0 0 0 0
0 0 0 1 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 1 0 0 0
0 0 0 0 0 ⋯ 1 0 1 0 0
0 0 0 0 0 ⋯ 0 1 0 1 0
0 0 0 0 0 ⋯ 0 0 1 0 1
1 0 0 0 0 ⋯ 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 ⋯ 0 0 0 0 1
1 0 1 0 0 ⋯ 0 0 0 0 0
0 1 0 1 0 ⋯ 0 0 0 0 0
0 0 1 0 1 ⋯ 0 0 0 0 0
0 0 0 1 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 1 0 0 0
0 0 0 0 0 ⋯ 1 0 1 0 0
0 0 0 0 0 ⋯ 0 1 0 1 0
0 0 0 0 0 ⋯ 0 0 1 0 1
1 0 0 0 0 ⋯ 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 

 

The result of multiplying the matrix entries from 𝐶𝑛 ∙ 𝐶𝑛 can be analyzed as follows:  

1. Entries with a value of 2, 𝑓𝑜𝑟 𝑖 = 𝑗. 

If we notice, the value of the entries along the i-th row in the first matrix is the same as the value of 

the j-th column entries in the second matrix where there are two numbers 1 and (n-2) numbers 0 . Thus, the 

result of multiplying the i-th row in the first matrix with the j-th column in the second matrix is: 
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𝑎𝑖𝑗 = 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−3) 𝑓𝑎𝑘𝑡𝑜𝑟

+ 1 ∙ 1 = 2 with 𝑖 = 𝑗 = 1,2,⋯ , 𝑛. 

2. Entries with a value of 1. 

a. Entries in 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 2) 

 𝑎3,1 = 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 = 1   

       𝑎4,2 = 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

= 1  

       𝑎5,3 = 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 1 + 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        
(𝑛−6) 𝑓𝑎𝑐𝑡𝑜𝑟

= 1  

⋮ 

𝑎𝑛,𝑛−2 = 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  

b. Entries in 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5,… , 𝑛 

𝑎1,3 = 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 + 0 +⋯+ 0⏟        
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 = 1  

𝑎2,4 = 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 + 0 +⋯+ 0⏟        
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

= 1  

𝑎3,5 = 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 + 0 +⋯+ 0⏟        
(𝑛−6) 𝑓𝑎𝑐𝑡𝑜𝑟

= 1  

⋮ 
𝑎𝑛−2,𝑛 = 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  

c. Entries in 𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2  
𝑎1,𝑛−1 = 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 = 1  

𝑎2,𝑛 = 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 = 1   

d. Entries in  𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛 

𝑎𝑛−1,1 = 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 = 1  

𝑎𝑛,2 = 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 = 1    

3. For other entries are 0 namely: 

One of entries in 𝑖 = 𝑗 + 3 with 𝑖 = 1,2,⋯ , (𝑛 − 3) 
𝑎4,1 = 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−6) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 = 0  

𝑎5,2 = 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−6) 𝑓𝑎𝑐𝑡𝑜𝑟

= 0  

𝑎6,3 = 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

= 0  

⋮ 

𝑎𝑛,𝑛−3 = 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−6) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 = 0  

And so on, for entries that have a value other than 1 and 2, the value is zero. 

Thus it can be concluded from the results that the values in the 𝐶𝑛 ∙ 𝐶𝑛 are 0, 1 and 2 which can be 

presented in matrix form as follows: 
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𝐴𝑛
2 =

[
 
 
 
 
 
 
 
 
 
 
2 0 1 0 0 ⋯ 0 0 0 1 0
0 2 0 1 0 ⋯ 0 0 0 0 1
1 0 2 0 1 ⋯ 0 0 0 0 0
0 1 0 2 0 ⋯ 0 0 0 0 0
0 0 1 0 2 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 2 0 1 0 0
0 0 0 0 0 ⋯ 0 2 0 1 0
0 0 0 0 0 ⋯ 1 0 2 0 1
1 0 0 0 0 ⋯ 0 1 0 2 0
0 1 0 0 0 ⋯ 0 0 1 0 2]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 6, or could be written in form: 

𝐴𝑛
2 = [𝑎𝑖𝑗] =

{
 
 

 
 
          2,    𝑓𝑜𝑟  𝑖 = 𝑗                                                                   

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑎𝑛𝑑 𝑗 = 1,2,3, … , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

Based on the proof above, then Theorem 1 is proven. 

 

 

 

 

 

 

 

3.2 General Form of the Adjacency Matrix 𝑛 × 𝑛 of a Cycle Graph to the Power of Three  
 

Theorem 2 Given the adjacency matrix of the cycle graph in Equation (1), so it is obtained: 

𝐴𝑛
3 =

[
 
 
 
 
 
 
 
 
 
 
0 3 0 1 0 ⋯ 0 0 1 0 3
3 0 3 0 1 ⋯ 0 0 0 1 0
0 3 0 3 0 ⋯ 0 0 0 0 1
1 0 3 0 3 ⋯ 0 0 0 0 0
0 1 0 3 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 3 0 1 0
0 0 0 0 0 ⋯ 3 0 3 0 1
1 0 0 0 0 ⋯ 0 3 0 3 0
0 1 0 0 0 ⋯ 1 0 3 0 3
3 0 1 0 0 ⋯ 0 1 0 3 0]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 8 , or could be written as follows: 

𝐴𝑛
3 = [𝑎𝑖𝑗] =

{
 
 
 
 

 
 
 
 

3,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 1)

              𝑜𝑟  𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4, … , 𝑛
𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1  𝑤𝑖𝑡ℎ 𝑗 = 1
𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1  𝑤𝑖𝑡ℎ 𝑗 = 𝑛    

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2 ,3              

         𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = (𝑛 − 2), (𝑛 − 1), 𝑛

0, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

Proof: 

Theorem 2 will be proved by direct proof. 

The result of multiplying the matrix entries of 𝐴𝑛
2 ∙ 𝐶𝑛 can be analyzed as follows:  

1. For entries with a value of 3. 
a. Entries in  𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 1) 

𝑎1,2 = 2 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 = 3 

𝑎2,3 = 0 ∙ 0 + 2 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 = 3 

𝑎3,4 = 1 ∙ 0 + 0 ∙ 0 + 2 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

= 3 

⋮ 
𝑎𝑛−1,𝑛 = 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 + 2 ∙ 1 + 0 ∙ 0 = 3  

b. Entries in 𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4, … , 𝑛 
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𝑎2,1 = 1 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 = 3 

𝑎3,2 = 0 ∙ 0 + 1 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 = 3 

𝑎4,3 = 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

= 3 

⋮ 
𝑎𝑛,𝑛−1 = 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 1 ∙ 0 + 1 ∙ 2 + 0 ∙ 0 = 3   

c. Entries in 𝑖 = 𝑗 − 𝑛 + 1  𝑤𝑖𝑡ℎ 𝑗 = 𝑛 

𝑎1,𝑛 = 2 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 3   

d.  Entries in 𝑖 = 𝑗 + 𝑛 − 1  𝑤𝑖𝑡ℎ 𝑗 = 1 

𝑎𝑛,1 = 1 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 3   

2. For entries valued 1 

a. Entries in 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,… , 𝑛 
𝑎1,4 = 2 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 1 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 = 1  

⋮ 
𝑎𝑛−3,𝑛 = 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 2 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  
 

b. Entries in 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 3) 
𝑎4,1 = 0 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 = 1  

⋮ 
𝑎𝑛,𝑛−3 = 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 2 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1 
 

c. Entries in 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = (𝑛 − 2), (𝑛 − 1), 𝑛 

𝑎1,𝑛−2 = 2 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  

𝑎2,𝑛−1 = 0 ∙ 0 + 2 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 = 1   

𝑎3,𝑛 = 1 ∙ 1 + 0 ∙ 0 + 2 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 1 = 1  

d. Entries in 𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2 ,3 
𝑎𝑛−2,1 = 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  

𝑎𝑛−1,2 = 0 ∙ 0 + 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 = 1  

𝑎𝑛,3 = 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 = 1   

3. For the other entries, it is 0. The value of 0 is the many values in the matrix, so that in this proof only a 

few entries are taken, namely: 

a. Entries in 𝑖 = 𝑗 
𝑎1,1 = 2 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 = 0  

𝑎2,2 = 0 ∙ 1 + 2 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 = 0  

𝑎3,3 = 1 ∙ 0 + 0 ∙ 1 + 2 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

= 0  

⋮ 
𝑎𝑛,𝑛 = 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 + 2 ∙ 0 = 0.  

b. Entries in 𝑖 = 𝑗 + 4 with𝑗 = 1,2,⋯ , (𝑛 − 4) 

𝑎5,1 = 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−8) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 = 0 
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𝑎6,2 = 0 ∙ 0 + 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−8) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 = 0 

⋮ 
𝑎𝑛,𝑛−4 = 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−8) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 2 + 0 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 = 0  

Therefore, it can be concluded from the results obtained that the values in the matrix multiplication 

entries  of 𝐴𝑛
2 ∙ 𝐶𝑛 are 0, 1 and 3, which can be presented in the matrix as follows: 

𝐴𝑛
3 =

[
 
 
 
 
 
 
 
 
 
 
0 3 0 1 0 ⋯ 0 0 1 0 3
3 0 3 0 1 ⋯ 0 0 0 1 0
0 3 0 3 0 ⋯ 0 0 0 0 1
1 0 3 0 3 ⋯ 0 0 0 0 0
0 1 0 3 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 3 0 1 0
0 0 0 0 0 ⋯ 3 0 3 0 1
1 0 0 0 0 ⋯ 0 3 0 3 0
0 1 0 0 0 ⋯ 1 0 3 0 3
3 0 1 0 0 ⋯ 0 1 0 3 0]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 8 or could be written as follows: 

𝐴𝑛
3 = [𝑎𝑖𝑗] =

{
 
 
 
 

 
 
 
 

3,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 1)

              𝑜𝑟  𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4, … , 𝑛
𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1  𝑤𝑖𝑡ℎ 𝑗 = 1
𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1  𝑤𝑖𝑡ℎ 𝑗 = 𝑛    

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2 ,3              

         𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = (𝑛 − 2), (𝑛 − 1), 𝑛

0, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

Based on the proof above, Theorem 2 is proven. ∎ 

 

. 

 

3.3.  General Form of the Adjacency Matrix 𝑛 × 𝑛 of a Cycle Graph to the Power of Four  

Theorem 3 Given the adjacency matrix of the cycle graph in Equation (1), so it is obtained: 

𝐴𝑛
4 =

[
 
 
 
 
 
 
 
 
 
 
6 0 4 0 1 ⋯ 0 1 0 4 0
0 6 0 4 0 ⋯ 0 0 1 0 4
4 0 6 0 4 ⋯ 0 0 0 1 0
0 4 0 6 0 ⋯ 0 0 0 0 1
1 0 4 0 6 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 6 0 4 0 1
1 0 0 0 0 ⋯ 0 6 0 4 0
0 1 0 0 0 ⋯ 4 0 6 0 4
4 0 1 0 0 ⋯ 0 4 0 6 0
0 4 0 1 0 ⋯ 1 0 4 0 6]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 10, or could be written in form: 

𝐴𝑛
4 = [𝑎𝑖𝑗] =

{
 
 
 
 
 

 
 
 
 
 

6,    𝑓𝑜𝑟 𝑖 = 𝑗                                                                   

4,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 4  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 4)

 𝑜𝑟 𝑖 = 𝑗 − 4  𝑤𝑖𝑡ℎ 𝑗 = 5,6,7, … , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 4 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4

                             𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 4 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

 Proof: 

 Theorem 4 will be proved by direct proof. 

  The result of multiplying the matrix entries of 𝐴𝑛
3 ∙ 𝐶𝑛 can be analyzed as follows:  
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1. For entries that valued 6. 

Entries in 𝑎𝑖,𝑗 with 𝑖 = 𝑗 = 1,2,⋯ , 𝑛 
𝑎1,1 = 0 ∙ 0 + 3 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 1 = 6  

⋮ 
𝑎𝑛,𝑛 = 3 ∙ 1 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 1 + 0 ∙ 0 = 6  

2. For entries that valued 4. 

a. Entries in 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5,… , 𝑛 
𝑎1,3 = 0 ∙ 0 + 3 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 + 0 +⋯+0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 = 4  

⋮ 

𝑎𝑛−2,𝑛 = 1 ∙ 1 + 0 + 0 + ⋯+ 0⏟        
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 3 ∙ 1 + 0 ∙ 0 = 4  
 

b. Entries in  𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 2) 
𝑎3,1 = 0 ∙ 0 + 1 ∙ 3 + 0 ∙ 0 + 1 ∙ 1 + 0 + 0 +⋯+0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 3 = 4  

⋮ 

𝑎𝑛−2,𝑛 = 1 ∙ 1 + 0 + 0 + ⋯+ 0⏟        
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 1 ∙ 3 + 0 ∙ 0 = 4    

c. Entries in 𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2 

𝑎𝑛−1,1 = 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 1 + 0 ∙ 0 + 3 ∙ 1 = 4  

𝑎2,𝑛 = 1 ∙ 3 + 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 4  
 

d. Entries in 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛 
𝑎1,𝑛−1 = 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 + 3 ∙ 1 = 4  

𝑎2,𝑛 = 3 ∙ 1 + 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 4  
 

3. For entries that valued 1. 

a. Entries in 𝑖 = 𝑗 − 4  𝑤𝑖𝑡ℎ 𝑗 = 5,6,7,… , 𝑛 
𝑎1,5 = 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 = 1  

⋮ 
𝑎𝑛−4,𝑛 = 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 3 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  
 

b. Entries in  𝑖 = 𝑗 + 4  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 4) 
𝑎5,1 = 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 3 = 1  

⋮ 
𝑎𝑛,𝑛−4 = 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 3 ∙ 0 + 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 = 1  
 

c. Entries in  𝑖 = 𝑗 − 𝑛 + 4 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛 
𝑎1,𝑛−3 = 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 3 ∙ 0 = 1  

⋮ 

𝑎4,𝑛 = 1 ∙ 1 + 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 1 ∙ 0 = 1  
 

d. Entries in 𝑖 = 𝑗 + 𝑛 − 4 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4 
𝑎𝑛−3,1 = 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 3 = 1  

⋮ 

𝑎𝑛,4 = 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + 0 ∙ 3 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 = 1  
 

4. For other entries are 0 namely: 

a. Entries in 𝑖 = 𝑗 − 1 with 𝑗 = 2,3,⋯ , (𝑛 − 1) 
𝑎1,2 = 0 ∙ 1 + 3 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 = 0  

⋮ 

𝑎𝑛−1,𝑛 = 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 + 3 ∙ 0 + 0 ∙ 0 + 3 ∙ 0 = 0   
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Thus, it can be concluded that the values in the matrix multiplication entries of 𝐴𝑛
4 ∙ 𝐶𝑛 are 0, 1, 4 

and 6, can be presented in the matrix as follows: 

𝐴𝑛
4 =

[
 
 
 
 
 
 
 
 
 
 
6 0 4 0 1 ⋯ 0 1 0 4 0
0 6 0 4 0 ⋯ 0 0 1 0 4
4 0 6 0 4 ⋯ 0 0 0 1 0
0 4 0 6 0 ⋯ 0 0 0 0 1
1 0 4 0 6 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 6 0 4 0 1
1 0 0 0 0 ⋯ 0 6 0 4 0
0 1 0 0 0 ⋯ 4 0 6 0 4
4 0 1 0 0 ⋯ 0 4 0 6 0
0 4 0 1 0 ⋯ 1 0 4 0 6]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 10,  or in form: 

𝐴𝑛
4 = [𝑎𝑖𝑗] =

{
 
 
 
 
 

 
 
 
 
 

6,    𝑓𝑜𝑟 𝑖 = 𝑗                                                                   

4,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 4  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 4)

 𝑜𝑟 𝑖 = 𝑗 − 4  𝑤𝑖𝑡ℎ 𝑗 = 5,6,7, … , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 4 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4

                       𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 4 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 

Based on the proof above, then Theorem 4 is proven. ∎  

 
3.4 General Form of the Adjacency Matrix 𝑛 × 𝑛  of a Cycle Graph to the Power of Five 

Theorem 4 Given the adjacency matrix of the cycle graph in Equation (1) then: 

𝐴𝑛
5 =

[
 
 
 
 
 
 
 
 
 
 
0 10 0 5 0 ⋯ 1 0 5 0 10
10 0 10 0 5 ⋯ 0 1 0 5 0
0 10 0 10 0 ⋯ 0 0 1 0 5
5 0 10 0 10 ⋯ 0 0 0 1 0
0 5 0 10 0 ⋯ 0 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 ⋯ 0 10 0 5 0
0 1 0 0 0 ⋯ 10 0 10 0 5
5 0 1 0 0 ⋯ 0 10 0 10 0
0 5 0 1 0 ⋯ 5 0 10 0 10
10 0 5 0 1 ⋯ 0 5 0 10 0 ]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 12, or in another form as follows 

𝐴𝑛
5 = [𝑎𝑖𝑗] =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

10,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 1)

 𝑜𝑟 𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4,5,… , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1 𝑤𝑖𝑡ℎ 𝑗 = 1               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1 𝑤𝑖𝑡ℎ 𝑗 = 𝑛

5,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,7,… , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3

                    𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 2, 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 5  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 5)

𝑜𝑟 𝑖 = 𝑗 − 5  𝑤𝑖𝑡ℎ 𝑗 = 6,7,8,… , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 5 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4,5

                                 𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 5 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 4, 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟                                               

 

Proof: 

Theorem 4 will be proved by direct proof. 

The result of multiplying the matrix entries of 𝐴𝑛
4 ∙ 𝐶𝑛 can be analyzed as follows:  

1. For entries with a value of 10. 

a. Entries in 𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4,5,… , 𝑛 



BAREKENG: J. Il. Mat.&Ter., vol.16(2), pp. 393- 408, June, 2022.  403 

 

𝑎1,2 = 6 ∙ 1 + 0 ∙ 0 + 4 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 = 10  

⋮ 
𝑎𝑛−1,𝑛 = 4 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 4 ∙ 0 + 0 ∙ 1 + 6 ∙ 1 + 0 ∙ 0 = 10  
 

b. Entries in 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 1) 
𝑎2,1 = 1 ∙ 6 + 0 ∙ 0 + 1 ∙ 4 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 = 10  

⋮ 
𝑎𝑛,𝑛−1 = 1 ∙ 4 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 4 + 1 ∙ 0 + 1 ∙ 6 + 0 ∙ 0 = 10  
 

c. Entries in 𝑖 = 𝑗 − 𝑛 + 1 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 

𝑎1,𝑛 = 6 ∙ 1 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 4 ∙ 1 + 0 ∙ 0 = 10  
 

d. Entries in 𝑖 = 𝑗 + 𝑛 − 1 𝑤𝑖𝑡ℎ 𝑗 = 1 
𝑎𝑛,1 = 1 ∙ 6 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 1 ∙ 4 + 0 ∙ 0 = 10 

 

 

 

2. For entries that valued 5 

a. Entries in 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,7,… , 𝑛 
𝑎1,4 = 6 ∙ 0 + 0 ∙ 0 + 4 ∙ 1 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 = 5  

⋮ 
𝑎𝑛−3,𝑛 = 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 6 ∙ 0 + 0 ∙ 1 + 4 ∙ 1 + 0 ∙ 0 = 5  
 

b. Entries in  𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 3) 
𝑎4,1 = 0 ∙ 6 + 0 ∙ 0 + 1 ∙ 4 + 0 ∙ 0 + 1 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 = 5  

⋮ 
𝑎𝑛,𝑛−3 = 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 6 + 1 ∙ 0 + 1 ∙ 4 + 0 ∙ 0 = 5  
 

 

c. Entries in 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 2, 𝑛 − 1, 𝑛 

𝑎1,𝑛−2 = 6 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 + 4 ∙ 1 + 0 ∙ 0 = 5  

⋮ 

𝑎3,𝑛 = 4 ∙ 1 + 0 ∙ 0 + 6 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 5  
 

d. Entries in 𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3 

𝑎𝑛−2,1 = 0 ∙ 6 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 + 1 ∙ 4 + 0 ∙ 0 = 5  

⋮ 
𝑎𝑛,3 = 1 ∙ 4 + 0 ∙ 0 + 0 ∙ 6 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 = 5  
 

3. For entries that valued 1  

a. Entries 𝑖 = 𝑗 − 𝑛 + 5 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 4, 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛 
𝑎1,𝑛−4 = 6 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 = 1  

⋮ 
𝑎5,𝑛 = 1 ∙ 1 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 + 6 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 0 ∙ 1 + 0 ∙ 0 = 1  
 

b. Entries in = 𝑗 + 𝑛 − 5 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4,5 

𝑎𝑛−4,1 = 0 ∙ 6 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 + 0 ∙ 1 + 0 ∙ 0 +⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 = 1  

⋮ 
𝑎𝑛,5 = 1 ∙ 1 + 0 ∙ 0 + 0 ∙ 4 + 0 ∙ 0 + 0 ∙ 6 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 = 1  
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4. For other entries are 0, namely: 

 Entries in 𝑎𝑖,𝑖+2 with 𝑖 = 1,2,⋯ , (𝑛 − 2) 
𝑎1,3 = 6 ∙ 0 + 0 ∙ 1 + 4 ∙ 0 + 0 ∙ 1 + 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        

(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 0 = 0  

⋮ 
𝑎𝑛−2,𝑛 = 0 ∙ 1 + 1 ∙ 0 + 0 + 0 +⋯+ 0⏟        

(𝑛−7) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 4 ∙ 0 + 0 ∙ 0 + 6 ∙ 0 + 0 ∙ 1 + 4 ∙ 0 = 0  
 

Entries in 𝑎𝑖,𝑗 with 𝑖 = 𝑗 = 1,2,⋯ , 𝑛 

𝑎1,1 = 6 ∙ 0 + 0 ∙ 1 + 4 ∙ 0 + 0 ∙ 0 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          
(𝑛−9) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 0 + 4 ∙ 0 + 0 ∙ 1 = 0  

⋮ 
𝑎𝑛,𝑛 = 0 ∙ 1 + 1 ∙ 0 + 0 ∙ 0 + ⋯+ 0 ∙ 0⏟          

(𝑛−5) 𝑓𝑎𝑐𝑡𝑜𝑟

+ 1 ∙ 0 + 0 ∙ 1 + 2 ∙ 0 = 0  

 

 

Thus, it can be concluded that the values in the matrix multiplication entries of 𝐴𝑛
4 ∙ 𝐶𝑛 are 0, 1, 5 

and 10, which can be written in the matrix as follows: 

𝐴𝑛
5 =

[
 
 
 
 
 
 
 
 
 
 
0 10 0 5 0 ⋯ 1 0 5 0 10
10 0 10 0 5 ⋯ 0 1 0 5 0
0 10 0 10 0 ⋯ 0 0 1 0 5
5 0 10 0 10 ⋯ 0 0 0 1 0
0 5 0 10 0 ⋯ 0 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 ⋯ 0 10 0 5 0
0 1 0 0 0 ⋯ 10 0 10 0 5
5 0 1 0 0 ⋯ 0 10 0 10 0
0 5 0 1 0 ⋯ 5 0 10 0 10
10 0 5 0 1 ⋯ 0 5 0 10 0 ]

 
 
 
 
 
 
 
 
 
 

, 𝑛 ≥ 12 or could be written in another form, 

namely 

𝐴𝑛
5 = [𝑎𝑖𝑗] =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

10,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 1)

 𝑜𝑟 𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4,5,… , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1 𝑤𝑖𝑡ℎ 𝑗 = 1               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1 𝑤𝑖𝑡ℎ 𝑗 = 𝑛

5,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,7,… , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3

                    𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 2, 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 5  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 5)

𝑜𝑟 𝑖 = 𝑗 − 5  𝑤𝑖𝑡ℎ 𝑗 = 6,7,8, … , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 5 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4,5

                                 𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 5 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 4, 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟                                               

 

Based on the proof above, then Theorem 4 is proven.  ∎ 

 

 

3.5 General Form of Trace of the Adjacency Matrix 𝑛 × 𝑛 of Cycle Graph 

The next result of this research is that by using the results from Theorem 2 to Theorem 5, then the 

trace of the adjacency matrix 𝑛 × 𝑛 of the cycle graph can be obtained and presented in Corollary 1 to 

Corollary 4.  

Corollary 1 Given the adjacency matrix 𝑛 × 𝑛 of the cycle graph expressed in Equation (1.6), so it is 

obtained:  

𝑡𝑟(𝐴𝑛
2) = 2𝑛 , 𝑛 ≥ 6 

Proof: 

By using the definition of the trace matrix and the results of the research in Theorem 2, it is obtained: 
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𝑡𝑟(𝐴𝑛
2) = 𝑡𝑟

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
2 0 1 0 0 ⋯ 0 0 0 1 0
0 2 0 1 0 ⋯ 0 0 0 0 1
1 0 2 0 1 ⋯ 0 0 0 0 0
0 1 0 2 0 ⋯ 0 0 0 0 0
0 0 1 0 2 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 2 0 1 0 0
0 0 0 0 0 ⋯ 0 2 0 1 0
0 0 0 0 0 ⋯ 1 0 2 0 1
1 0 0 0 0 ⋯ 0 1 0 2 0
0 1 0 0 0 ⋯ 0 0 1 0 2]

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

  

= 2 + 2 + ⋯+ 2⏟        
𝑛

  

= 2𝑛  

Based on the proof above, Corollary 6 is proven. ∎ 

Corollary Given the adjacency matrix 𝑛 × 𝑛 of the cycle graph expressed in Equation (1.9) then it is 

obtained:  

𝑡𝑟(𝐴𝑛
3) = 0 , 𝑛 ≥ 8 

Proof: 

By using the definition of the trace matrix and Theorem 3, it is obtained: 

𝑡𝑟(𝐴𝑛
3) = 𝑡𝑟

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
0 3 0 1 0 ⋯ 0 0 1 0 3
3 0 3 0 1 ⋯ 0 0 0 1 0
0 3 0 3 0 ⋯ 0 0 0 0 1
1 0 3 0 3 ⋯ 0 0 0 0 0
0 1 0 3 0 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 3 0 1 0
0 0 0 0 0 ⋯ 3 0 3 0 1
1 0 0 0 0 ⋯ 0 3 0 3 0
0 1 0 0 0 ⋯ 1 0 3 0 3
3 0 1 0 0 ⋯ 0 1 0 3 0]

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

  

= 0 + 0 +⋯+ 0⏟        
𝑛

  

= 0𝑛  

= 0  

Based on the proof above, then Corollary 2 is proven. ∎ 

 

Corollary 3 Given the adjacency matrix 𝑛 × 𝑛 of the cycle graph stated in Equation (1.6) then:  

𝑡𝑟(𝐴𝑛
4) = 6𝑛 , 𝑛 ≥ 10 

Proof: 

By using the definition of the trace matrix and Theorem 3, then it is obtained: 𝑡𝑟(𝐴𝑛
4) =

𝑡𝑟

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
6 0 4 0 1 ⋯ 0 1 0 4 0
0 6 0 4 0 ⋯ 0 0 1 0 4
4 0 6 0 4 ⋯ 0 0 0 1 0
0 4 0 6 0 ⋯ 0 0 0 0 1
1 0 4 0 6 ⋯ 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 6 0 4 0 1
1 0 0 0 0 ⋯ 0 6 0 4 0
0 1 0 0 0 ⋯ 4 0 6 0 4
4 0 1 0 0 ⋯ 0 4 0 6 0
0 4 0 1 0 ⋯ 1 0 4 0 6]

 
 
 
 
 
 
 
 
 
 

)
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= 6 + 6 + ⋯+ 6⏟        
𝑛

  

= 6𝑛  

Based on the proof above, Corollary 3 is proven.  ∎ 

Corollary 4 Let the adjacency matrix 𝑛 × 𝑛 of the cycle graph stated in Equation (1.6), then: 

𝑡𝑟(𝐴𝑛
5) = 0 , 𝑛 ≥ 8 

Proof: 

By using the definition of the trace matrix and Theorem 4, then the following is obtained:  

𝑡𝑟(𝐴𝑛
5) = 𝑡𝑟

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
0 10 0 5 0 ⋯ 1 0 5 0 10
10 0 10 0 5 ⋯ 0 1 0 5 0
0 10 0 10 0 ⋯ 0 0 1 0 5
5 0 10 0 10 ⋯ 0 0 0 1 0
0 5 0 10 0 ⋯ 0 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 0 ⋯ 0 10 0 5 0
0 1 0 0 0 ⋯ 10 0 10 0 5
5 0 1 0 0 ⋯ 0 10 0 10 0
0 5 0 1 0 ⋯ 5 0 10 0 10
10 0 5 0 1 ⋯ 0 5 0 10 0 ]

 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 

  

= 0 + 0 + ⋯+ 0⏟        
𝑛

  

= 0  

Based on the proof above, Corollary 4 is proven. ∎ 

 
3.6 Application to the Power and Trace of an Adjacency Matrix 𝑛 × 𝑛 of a Circle Graph to the Power 

of a Positive Integer 
 

The following is an example which uses the effects trace of the adjacency matrix 𝑛 × 𝑛 of a cycle 

graph to the power of positive integers. 

Example : Let a circle graph  of 𝐶15 as follows: 

                                             

    Figure 1. Graph of Cyle 𝑪𝟏𝟓 

 

Determine the adjacency matrix of the circle graph and the power of the adjacency matrix with 

powers of 2,3,4 and 5 and determine  𝑡𝑟(𝐴15
2 ), 𝑡𝑟(𝐴15

3 ), 𝑡𝑟(𝐴15
4 ) and 𝑡𝑟(𝐴15

5 ) by using the existing 

theorems! 
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Answers: 

a. Based on the Figure 1 above, then the adjacency matrix of the cycle graph above is as follows: 

𝐴 𝐵 𝐶 𝐷 𝐸  𝐹 𝐺 𝐻  𝐼  𝐽 𝐾 𝐿 𝑀 𝑁 𝑂 

𝐶15 =

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻
𝐼
𝐽
𝐾
𝐿
𝑀
𝑁
𝑂 [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

b. Based on the adjacency matrix in (a), it is known that n=15, so by using Corollary 1, 2, 3 and 4, the 

following is obtained: 

1. 𝑡𝑟(𝐴15
2 ) = 2(15) = 30  

2. 𝑡𝑟(𝐴15
3 ) = 0 

3. 𝑡𝑟(𝐴15
4 ) = 6(15) = 90 

4. 𝑡𝑟(𝐴15
5 ) = 0 

 

 

4. CONCLUSIONS 

Based on the discussion described above, regarding the trace of the adjacency matrix 𝑛 × 𝑛 to the 

power of positive integers from a cycle graph with the matrix form in Equation (1), the following 

conclusions are obtained: 

1. The general forms of the adjacency matrix 𝑛 × 𝑛 of a cycle graph to the power of positive integers two 

to five are:  

𝐴𝑛
2 = [𝑎𝑖𝑗] =

{
 
 

 
 
2,    𝑓𝑜𝑟 𝑖 = 𝑗                                                                   

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠                                               

 , and 

                𝐴𝑛
3 = [𝑎𝑖𝑗] =

{
 
 
 
 

 
 
 
 

3,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 1)

              𝑜𝑟  𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4,… , 𝑛
𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1  𝑤𝑖𝑡ℎ 𝑗 = 1
𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1  𝑤𝑖𝑡ℎ 𝑗 = 𝑛    

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,… , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2 ,3              

         𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = (𝑛 − 2), (𝑛 − 1), 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠                                               

,  and  
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𝐴𝑛
4 = [𝑎𝑖𝑗] =

{
 
 
 
 
 

 
 
 
 
 
6,    𝑓𝑜𝑟 𝑖 = 𝑗                                                                   

4,    𝑓𝑜𝑟 𝑖 = 𝑗 + 2  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 2)

 𝑜𝑟 𝑖 = 𝑗 − 2  𝑤𝑖𝑡ℎ 𝑗 = 3,4,5, … , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 2 𝑤𝑖𝑡ℎ 𝑗 = 1,2               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 2 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 4  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 4)

 𝑜𝑟 𝑖 = 𝑗 − 4  𝑤𝑖𝑡ℎ 𝑗 = 5,6,7, … , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 4 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 4 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟                                               

, and the last 

𝐴𝑛
5 = [𝑎𝑖𝑗] =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

10,    𝑓𝑜𝑟 𝑖 = 𝑗 + 1  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,… , (𝑛 − 1)

 𝑜𝑟 𝑖 = 𝑗 − 1  𝑤𝑖𝑡ℎ 𝑗 = 2,3,4,5,… , 𝑛
       𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 1 𝑤𝑖𝑡ℎ 𝑗 = 1               

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 1 𝑤𝑖𝑡ℎ 𝑗 = 𝑛

5,    𝑓𝑜𝑟 𝑖 = 𝑗 + 3  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 3)

 𝑜𝑟 𝑖 = 𝑗 − 3  𝑤𝑖𝑡ℎ 𝑗 = 4,5,6,7,… , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 3 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 3 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 2, 𝑛 − 1, 𝑛

1,    𝑓𝑜𝑟 𝑖 = 𝑗 + 5  𝑤𝑖𝑡ℎ 𝑗 = 1,2,3, … , (𝑛 − 5)

𝑜𝑟 𝑖 = 𝑗 − 5  𝑤𝑖𝑡ℎ 𝑗 = 6,7,8,… , 𝑛
 𝑜𝑟  𝑖 = 𝑗 + 𝑛 − 5 𝑤𝑖𝑡ℎ 𝑗 = 1,2,3,4,5

𝑜𝑟 𝑖 = 𝑗 − 𝑛 + 5 𝑤𝑖𝑡ℎ 𝑗 = 𝑛 − 4, 𝑛 − 3, 𝑛 − 2, 𝑛 − 1, 𝑛
0, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟𝑠                                               

  

2. The general forms trace of the  adjacency matrix 𝑛 × 𝑛 of a cycle graph to the power of positive integers 

two to five are: 

a.  𝑡𝑟(𝐴𝑛
2) = 2𝑛 , 𝑛 ≥ 6 

b.  𝑡𝑟(𝐴𝑛
3) = 0𝑛 , 𝑛 ≥ 8 

c.  𝑡𝑟(𝐴𝑛
4) = 6𝑛 , 𝑛 ≥ 10 

d.  𝑡𝑟(𝐴𝑛
5) = 0𝑛 , 𝑛 ≥ 12 

 

REFERENCES 

 

[1]  Data, B.N, dan Datta, K. An Algorithm for Computing Power of a Hessenberg Matrix and its Applictions, Linear Algebra 

and its Application, 14, 273-284. 1976. 

[2]  Chu, M.T, and Raleigh. Symbolic Calculation of the Trace of the Power of a Tridiagonal Matrix, Computing, 35, 257-

268. 1985. 

[3]  Pan, V. Estimating the Extremal Eigenvalues of a Symetric Matrix, Computers & Mathematics with Applications, 20, 17-

22. 1990.  

[4]  Zarelua, A.V. “On Congruences for the Trace of Power of Some Matrices”. Proceedings of the Steklov Institute of 

Mathematics, 263, 78-98, 2008. 

[5] Avron, H., Counting Triangles in Large Graphs Using Randomized Matrix Trace Estimation. Proceeding of Kdd-

Ldmta’10, 2010. 

[6] Brezinski, C, P.Fika dan M.Mitrouli, Estimations of the Trace of Power of Positive by Extrapolation of the Moment, 

Electronic Transactions on Numerical Analysis, 39, 144-155, 2012. 

[7]  Pahade, J., and M. Jha, Trace of Positive Integer Power of Real 2 × 2 matrices, Advancesin Linear Algebra & Matrix 

Theory, 5, 150-155, 2015. 

[8]   Pahade, J., and M. Jha, Trace of  Positive Integer Power of Adjacency Matrix, Global  Journal of Pure and Applied 

Mathematics, Vol 13 (6), 2017 

[9]   Aryani, F, dan Solihin, M. Trace Matriks Real Berpangkat Bilangan Bula Negatif, Jurnal Sains Matematika dan 

Statistika, Vol.3 (2), 2017. 

[10]  F. Aryani, dkk, "Trace Matriks Ketetanggan n x n Berpangkat -2, -3, -4" Proceding SNTIKI 12, hal 543-553,    

  1 Desember 2020.  

[11]  K. H. Rosen, Discrete Mathematics and Its Applications. New York: Mc Graw Hill, 2007 

[12]  R. Munir, Matematika Disktrit Edisi Ketiga. Bandung: Informatika, 2005. 

[13]  M. dan Marjono, AljabarLinear. Malang: UB Press, 2012. 

[14]  H. A. dan C. Rorres, Elementary Linear Algebra. Wiley: United States of Amerika, 2013. 

[15]  R. Rifa’i, Aljabar Matriks Dasar. Yogyaka: Budi Utama, 2016. 

[16]  H. A. dan C. Rorres, Aljabar Linear Elementer Versi Aplikasi Edisi Kedelapan. Jakarta: Erlangga, 2004 


