United Arab Emirates University Scholarworks@UAEU

Theses

**Electronic Theses and Dissertations** 

6-2022

# PROPERTIES OF CERTAIN CONNECTED GRAPHS RELATED TO THEIR EDGE METRIC DIMENSION

Sanabel Mahmoud Y. Bisharat

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all\_theses

Part of the Mathematics Commons



جامعة الإمارات العربيـة المتحدة United Arab Emirates University



# MASTER THESIS NO. 2022: 43 College of Science Department of Mathematical Sciences

# **PROPERTIES OF CERTAIN CONNECTED GRAPHS RELATED TO THEIR EDGE METRIC DIMENSION**

# Sanabel Mahmoud Y. Bisharat



June 2022

United Arab Emirates University

# College of Science

Department of Mathematical Sciences

# PROPERTIES OF CERTAIN CONNECTED GRAPHS RELATED TO THEIR EDGE METRIC DIMENSION

Sanabel Mahmoud Y. Bisharat

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Mathematics

Under the supervision of Dr. Muhammad Imran

June 2022

#### **Declaration of Original Work**

I, Sanabel Mahmoud Y. Bisharat, the undersigned, a graduate student at the United Arab Emirates University (UAEU), and the author of this thesis entitled "Properties of Certain Connected Graphs Related to their Edge Metric Dimension", hereby, solemnly declare that this thesis is my own original research work that has been done and prepared by me under the supervision of Dr. Muhammad Imran, in the College of Science at UAEU. This work has not previously been presented or published, or formed the basis for the award of any academic degree, diploma or a similar title at this or any other university. Any materials borrowed from other sources (whether published or unpublished) and relied upon or included in my thesis have been properly cited and acknowledged in accordance with appropriate academic conventions. I further declare that there is no potential conflict of interest with respect to the research, data collection, authorship, presentation and/or publication of this thesis.

Student's Signature \_\_\_\_\_\_ Sarabel Date 14-07-2022 Copyright © 2022 Sanabel Mahmoud Y. Bisharat All Rights Reserved

#### **Advisory Committee**

Advisor: Muhammad Imran
Title: Associate Professor
Department of Mathematical Sciences
College of Science

2) Co-advisor: Adama DieneTitle: Associate ProfessorDepartment of Mathematical SciencesCollege of Science

#### **Approval of the Master Thesis**

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Muhammad Imran

Title: Associate Professor

Department of Mathematical Sciences

College of Science

M· Signature \_\_\_\_\_

\_\_\_\_\_ Date <u>14-07-2022</u>

2) Member: Adama Diene

Title: Associate Professor

Department of Mathematical Sciences

College of Science

| Signature | Adonnes Dune |
|-----------|--------------|
| 0         |              |

Date \_\_\_\_\_

3) Member (External Examiner): Zahid Raza

Title: Associate Professor

Department of Mathematics

Institution: University of Sharjah, UAE

Signature \_\_\_\_\_\_ Zahid Ray 7 \_\_\_\_\_ Date 21-07-2022

This Master Thesis is accepted by:

Dean of the College of Science: Professor Maamar Benkraouda

Signature <u>Maamar Benkraouda</u> Date <u>August 8, 2022</u>

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature Ali Hassan Date August 11, 2022

#### Abstract

Metric dimension, resolving sets and edge metric dimension are very important invariants for the resolvability of graphs that have been studied and investigated intensively in the literature the last decades. Their immense utilization is network topology, master mind games, robot navigation and representation of chemical compounds make their study very attractive. This thesis is concerned with the graph theoretic properties of certain families of connected graphs related to their edge metric dimension. The main objective of this thesis is to study the comparison of metric dimension ver-sus edge metric dimension of certain families of graphs. The study investigates the relationship between the metric and edges metric dimension of flower snarks graphs, hexagonal Möbius graphs, and octagonal Möbius graphs. The study shows different inequalities results based on the structure of graphs. The comparison between metric and edge metric dimension of the graph will give a better understanding of the proper-ties of these investigated families of graphs.

**Keywords**: Metric dimension, edge metric dimension, flower snarks, hexagonal Möbius, octagonal Möbius.

### **Title and Abstract (in Arabic)**

### خصائص بعض الرسوم البيانية المتصلة ذات الصلة بأبعادها المترية للحافة

#### الملخص

يعد البعد المتري ومجموعات الحل والأبعاد المترية للحافة ثوابت مهمة للغاية، وهي قابلية حل الرسوم البيانية التي تمت دراستها والتحقيق فيها بشكل مكثف في تصميم الأدبيات في العقود الماضية بسبب استخدامها الهائل في طوبولوجيا الشبكة، وألعاب العقل الرئيسية، والتنقل الآلي، وتمثيل المواد الكيميائية. تهتم هذه الأطروحة بالخصائص النظرية للرسم البياني لعائلات معينة من الرسوم البيانية المتصلة المرتبطة بأبعادها المترية. الهدف الرئيسي من هذه الأطروحة هو دراسة مقارنة الأبعاد المترية مقابل الأبعاد المترية للحافة لعائلات معينة من الرسوم البيانية. تبحث الدراسة في العلاقة بين الأبعاد المترية والأبعاد المترية للحافة لعائلات معينة من الرسوم البيانية. تبحث السداسية موبيوس، والرسوم البيانية والأبعاد المترية للحواف في الرسوم البيانية لمساواة بناءً على بنية الرسوم البيانية الثماني الأضلاع موبيوس. أظهرت الدراسة نتائج مختلفة لعدم المساواة بناءً على بنية الرسوم البيانية. ستعطي المقارنة بين الأبعاد المترية والأبعاد المترية للرسم البيانية مختلفة لعدم المساواة بناءً على بنية الرسوم البيانية. من الرسوم البيانية المتحد موبيوس. أظهرت الدراسة نتائج مختلفة لعدم المساواة بناءً

**مفاهيم البحث الرئيسية**: الأبعاد المترية، البعد المتري للحافة، الشخير الزهري، موبيوس السداسي، موبيوس الثماني.

#### Acknowledgements

I would like to express my gratitude to my supervisor – Dr. Muhammad Imran for his invaluable supervision and support during my master's study and research. My gratitude extends to all the faculty members of the Department of Mathematical Sciences, College of Graduate Studies (CGS) at UAEU, for their support and cooperation during my study. My appreciation also goes out to my family and friends for their encouragement and support throughout my studies. Dedication

To my beloved parents and teachers

#### **Table of Contents**

| Title                                                              | i    |
|--------------------------------------------------------------------|------|
| Declaration of Original Work                                       | iii  |
| Copyright                                                          | iv   |
| Advisory Committee                                                 | v    |
| Approval of the Master Thesis                                      | vi   |
| Abstract                                                           | viii |
| Title and Abstract (in Arabic)                                     | ix   |
| Acknowledgments                                                    | X    |
| Dedication                                                         | xi   |
| Table of Contents                                                  | xii  |
| List of Tables                                                     | xiv  |
| List of Figures                                                    | XV   |
| Chapter 1: Preliminaries and Basic Concepts                        | 1    |
| 1.1 Basic Terminology and Concepts                                 | 1    |
| 1.2 Some Well-Known Graph Classes                                  | 6    |
| 1.3 Distance in Graphs                                             | 12   |
| Chapter 2: Metric Dimension and Edge Metric Dimension of Graphs    | 15   |
| 2.1 Metric Dimension and Edge Metric Dimensions of Common Graphs . | 15   |
| 2.2 Metric Dimension of Flower Snarks                              | 16   |
| 2.3 Edge Metric Dimension of Family of Circulant Graphs            | 17   |
| Chapter 3: New Results                                             | 20   |

| 3.1 Edge Metric Dimension of Flower Snarks $J_n$            | 20 |
|-------------------------------------------------------------|----|
| 3.2 Metric Dimension and Edge Metric Dimension of Hexagonal |    |
| Möbius Graphs $HM_n$                                        | 22 |
| 3.3 Metric Dimension of Möbius Octogonal Chain $M_n$        | 25 |
| Chapter 4: Comparative Analysis and Conclusion              | 27 |
| References                                                  | 28 |

#### List of Tables

| Table 3.1: | Codes for the outer vertices of $HM_n$                                     | 23 |
|------------|----------------------------------------------------------------------------|----|
| Table 3.2: | Representations of each vertex of $V(M_n)$                                 | 26 |
| Table 4.1: | Metric dimension and edge metric dimension of $J_n$ , $HM_n$ , and $M_n$ . | 27 |

### List of Figures

| Figure | 1.1:  | A graph Z                                                                             | 2  |
|--------|-------|---------------------------------------------------------------------------------------|----|
| Figure | 1.2:  | Graphs Z, induced subgraph of Z, spanning                                             |    |
|        |       | subgraph of $Z, Z-e, Z-u, Z \setminus e$                                              | 4  |
| Figure | 1.3:  | Connected and disconnected Graphs                                                     | 5  |
| Figure | 1.4:  | Complete graphs $K_1, K_2, K_3, K_4 \ldots \ldots \ldots \ldots \ldots \ldots$        | 6  |
| Figure | 1.5:  | Paths, cycles, and wheels                                                             | 6  |
| Figure | 1.6:  | The cubes $Q_1, Q_2, Q_3$                                                             | 7  |
| Figure | 1.7:  | Complete bipartite graphs                                                             | 7  |
| Figure | 1.8:  | Tree and forest                                                                       | 8  |
| Figure | 1.9:  | A graph Z and its spanning tree                                                       | 8  |
| Figure | 1.10: | The graph $C_4$ and its complement $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 9  |
| Figure | 1.11: | Cartesian product of $P_5$ and $K_2$                                                  | 9  |
| Figure | 1.12: | The flower snarks $J_5$                                                               | 10 |
| Figure | 1.13: | The hexagonal Möbius graph $HM_n$                                                     | 10 |
| Figure | 1.14: | The linear octagonal chain $L_n$                                                      | 10 |
| Figure | 1.15: | The Möbius octogonal chain $M_n$                                                      | 11 |
| Figure | 1.16: | Circulant graph $C_8(1,2)$                                                            | 11 |
| Figure | 1.17: | A connected graph $Z$                                                                 | 13 |
| Figure | 1.18: | A connected graph $G$                                                                 | 14 |
| Figure | 2.1:  | The flower snarks $J_5$ and $J_7$                                                     | 17 |
| Figure | 2.2:  | Circulant graph $C_8(1,2)$                                                            | 18 |
| Figure | 3.1:  | The flower snarks $J_5$ and $J_7$                                                     | 20 |
| Figure | 3.2:  | Hexagonal Möbius Graph                                                                | 23 |
| Figure | 3.3:  | Möbius octogonal chain                                                                | 25 |

#### **Chapter 1: Preliminaries and Basic Concepts**

This chapter provides a brief introduction to the basic concepts and terminologies of graphs. It consists of different graph-theoretical terms and their illustration supported with examples. The concepts about connectivity and planarity are discussed. Some common classes of graphs will be recalled.

#### **1.1 Basic Terminology and Concepts**

How can x jobs be filled by x employees with maximum total utility? How can we design the fastest route structure from the national capital to each state capital? What is the minimum number of layers does a computer chip need so that wires in the same layer don't cross? Can we use four colors to color different regions of the map so that neighboring regions receive different colors? These and many other real-world problems involve graph theory.

**Definition 1.1.1** A graph Z is made up of a collection of non-empty vertices V(Z) and a set of edges E(Z). Symbolically, it is represented as Z = (V(Z); E(Z)), where e = uv is an edge with endpoints u and v.

A graph is commonly represented by a diagram in the plane where the vertices are points and edges are indicated by the lines or curves that link any two points in the plane, as shown in Figure 1.1. Two graphs Z and H are equal if V(Z) = V(H) and E(Z)= E(H), in such case we write Z = H.



Figure 1.1: A graph Z

**Definition 1.1.2** If e = uv be an edge of Z, then u and v are said to be *adjacent* in Z and we say that u and v are joined by the edge e. In this case, the endpoints u and v are also said to be *incident* with the edge e. Distinct edges incident with a common vertex are *adjacent edges*. The set of all vertices that are adjacent to v in Z is called the *neighborhood* of v and is denoted by  $N_Z(v)$ .

**Definition 1.1.3** The number of vertices in a graph Z is called *the order of* Z and is denoted by |Z|, while the number of edges is its *size*.

For instance, the graph *Z* in Figure 1.1 has order 6 and size 7.

Knowing that the vertex set of every graph is nonempty, the order of graph is at least 1. A graph with exactly one vertex is called a *trivial graph*, so the order of a *nontrivial graph* is at least 2.

**Definition 1 .1.4** A *loop* is an edge whose endpoints are e qual. *Multiple edges* are edges having the same pair of endpoints. A graph Z with no loops and multiple edges is called a *simple graph*.

**Definition 1 .1.5** The degree of a vertex v is the number of e dges incident with v, denoted as  $d_Z(v)$ . So we can say that  $d_Z(v)$  is the cardinality of  $N_Z(v)$ .

An isolated vertex and an end vertex (or a leaf ) in G are the vertices of degree 0 and 1 respectively. Each loop counts as two edges, so if e is a loop at v then  $d_Z(v)$ 

= 2. The maximal and minimal degree is denoted by  $\Delta(Z)$  and  $\delta(Z)$  respectively and defined as:

$$\Delta(Z) = max\{d_Z(v) : v \in V(Z)\};$$
  
$$\delta(Z) = min\{d_Z(v) : v \in V(Z)\};$$

If |Z| = n and  $v \in V(Z)$ , then

$$0 \le \delta(Z) \le d_Z(v) \le \Delta(Z) \le n-1$$

The next important lemma also known as fundamental theorem of graph theory describes the relationship between the degree of vertices and size of a graph.

#### Lemma 1.1.1 Handshaking lemma

If Z is a graph, then  $\sum_{v \in V(Z)} d_Z(v) = 2m$ , where m is the size of Z.

**Definition 1.1.6** A graph *Z* is *finite* if its vertex set and edge set are finite. Otherwise, *Z* is *infinite*.

**Definition 1.1.7** The graph with *n* vertices and having an empty edge set is called *the null graph* and is denoted by  $N_n$ .

**Example 1.1.1** Consider the graph Z in Figure 1.1, here Z is a multiple graph where  $v_1$  is an isolated vertex,  $e_7$  is a loop while  $e_2$  and  $e_3$  are multiple edges. The maximum degree  $\Delta(Z)$  and minimum degree  $\delta(Z)$  of Z are 4 and 0 respectively.

**Definition 1.1.8** A *subgraph H* of a graph *Z* is a graph such that  $V(H) \subset V(Z)$ , and  $E(H) \subset E(Z)$ .

**Definition 1.1.9** A subgraph *H* of *Z* with V(H) = V(Z) is called a *spanning subgraph* of *Z*.

**Definition 1.1.10** A subgraph B of a graph Z is called an *induced subgraph* of Z if whenever a and b are vertices of B and ab is an edge of Z, then ab is an edge of B as well.

If *e* is an edge of the graph denoted by *Z*, we define Z - e as the graph obtained

from Z by removing the edge e. In general, if F is any set of edges in Z, we denote by Z - F the graph obtained by removing the edges in F. Similarly, if u is a vertex of Z, we define Z - u as the graph obtained from Z by deleting u and all edges incident with u. More generally, if R is any set of vertices in Z, we denote by Z - R the graph obtained by deleting the vertices in R and all edges incident with any of them. We also define  $Z \setminus e$  as the graph obtained from Z by removing e and contracting its two ends.



Figure 1.2: Graphs Z, induced subgraph of Z, spanning subgraph of Z, Z - e, Z - u,  $Z \setminus e$ 

**Definition 1.1.11** Given a graph Z, a *walk* W in Z from vertex  $v_0$  to vertex  $v_m$  is a finite alternating sequence of vertices and edges,

$$W: v_0, e_1, v_1, e_2, \dots, v_{m-1}, e_m, v_m,$$

where  $e_i = v_{i-1}v_i$ ,  $1 \le i \le m$ , and  $v_0$  and  $v_m$  are the initial and the terminal vertices of *W*, respectively. If  $v_0 = v_m$ , then *W* is closed otherwise it is open. The *length* of a walk *W* is the number of edges in the walk.

If all the edges of a walk *W* are distinct, then *W* is called a *trail*. A *trail* in which all the vertices are distinct is called a *path*. A closed path with at least one edge is a *cycle*.

**Definition 1.1.12** A graph Z is connected if between any two vertices of Z there is a path, otherwise Z is disconnected.



Figure 1.3 gives an example for connected and disconnected graphs.

Figure 1.3: Connected and disconnected Graphs

**Definition 1.1.13** A *disconnecting set* of a connected graph Z is a set of edges of Z whose removal disconnects Z.

**Definition 1.1.14** A *cut set* of *Z* is a minimal disconnecting set. A cut set made of only one edge is a *bridge*.

**Definition 1.1.15** An *Edge connectivity* of *Z* is the size of the smallest cut set, denoted  $\lambda(Z)$ .

**Definition 1.1.16** A *separating set* of *Z* is a set of vertices whose removal disconnects *Z*.

**Definition 1.1.17** A *cut vertex* of *Z* is a vertex whose deleting disconnects *Z*.

**Definition 1.1.18** A *vertex connectivity of Z* is the size of the smallest seperating set, denoted by  $\kappa(Z)$ .

**Definition 1.1.19** If x is any real number, the *floor* of x is the greatest integer less than or equal to x, and is denoted by  $\lfloor x \rfloor$ .

**Definition 1.1.20** If x is any real number, the *ceiling* of x is the least integer greater than or equal to x, and is denoted by  $\lceil x \rceil$ .

#### 1.2 Some Well-Known Graph Classes

This section contains some common graph classes, namely complete graphs, cycle graphs, bipartite graphs, and trees.

**Definition 1.2.1** A simple graph in which every two distinct vertices are joined by exactly one edge is a *complete graph*. We denote the complete graph on *n* vertices by  $K_n$ .

Figure 1.4 gives examples of complete graph.



Figure 1.4: Complete graphs  $K_1$ ,  $K_2$ ,  $K_3$ ,  $K_4$ 

**Definition 1.2.2** A *cycle graph* is a simple connected graph in which each vertex has degree 2. We denote the cycle graph on *n* vertices by  $C_n$ . The graph obtained from  $C_n$  by removing one edge is the *path graph*, denoted by  $P_n$ . The graph obtained from  $C_{n-1}$  by adding a new vertex *v* and connect it to all other vertices is the *wheel graph*, denoted by  $W_n$ .



Figure 1.5: Paths, cycles, and wheels

**Definition 1.2.3** A graph *Z* is *k*-regular if all vertices have degree *k*. If k = 3, the graph is called *cubic*.

**Definition 1.2.4** The *cube*  $Q_k$  is the *k*-regular graph on  $2^k$  vertices corresponding to the sequences  $(a_1, a_2, ..., a_k)$  where  $a_i$  is either 0 or 1, and whose edges join those sequences that differ in just one place. Note that  $Q_1 \cong P_2$  and  $Q_2 \cong C_4$ .



Figure 1.6: The cubes  $Q_1, Q_2, Q_3$ 

**Definition 1.2.5** A graph *Z* is *bipartite* if V(G) splits into two subsets *A* and *B* such that every edge has one end in *A* and other in *B*. A *complete bipartite graph* is a bipartite graph in which each vertex of *A* is joined to each vertex in *B* by just one edge. It is denoted by  $K_{r,s}$  where *r* is the cardinality of a set *A* and *s* is the cardinality of a set *B*.

It can be seen that a *star* denoted by  $k_{1,n}$  is a complete bipartite graph if the cardinality of a set *A* or *B* is 1.

Now, we will use the concept of a cycle to present a characterization of bipartite graphs.



Figure 1.7: Complete bipartite graphs

**Theorem 1.2.1** (Bolloás [3]) A graph Z is bipartite if and only if it has no odd cycle.

**Definition 1.2.6** (Chartrand [4]) A *tree* is a connected graph which contains no cycle. A disjoint union of trees is called a *forest*.



Figure 1.8: Tree and forest

**Theorem 1.2.2** *Let K be a graph on m vertices. The following statements are equivalent.* 

- 1. K is a tree.
- 2. *K* has no cycle and has m 1 edges.
- 3. K is connected and each edge is a bridge.
- 4. Any two vertices of K are connected by only one path.

**Definition 1.2.7** A *spanning tree* of a connected graph *Z* is a tree which contains all the vertices of *Z*.



Figure 1.9: A graph Z and its spanning tree

**Definition 1.2.8** Let Z be a simple graph on *n* vertices. The *complement* of Z is the graph  $\overline{Z}$  such that  $V(Z) = V(\overline{Z})$ , and two vertices are adjacent in  $\overline{Z}$  if they are not adjacent in Z.



Figure 1.10: The graph  $C_4$  and its complement

**Definition 1.2.9** The Cartesian product of Z and H is a graph, denoted as  $Z \square H$ , whose vertex set is  $V(Z) \times V(H)$ . Two vertices (z, h) and (z', h') are adjacent precisely if z = z' and  $hh' \in (H)$ , or  $zz' \in E(G)$  and h = h'. Thus,

$$V(Z \Box H) = \{(z,h) | z \in V(Z) \text{ and } h \in V(H) \},\$$
$$E(Z \Box H) = \{(z,h)(z',h') | z = z', hh' \in E(H), or \, zz' \in E(Z), h = h' \}.$$

The graphs *Z* and *H* are called factors of the product  $Z \square H$ .



Figure 1.11: Cartesian product of  $P_5$  and  $K_2$ 

**Definition 1.2.10** *The flower snarks*  $J_n$  is a connected cubic graph with 6n edges and 4n vertices that consists of three cycles that are induced by the vertices  $\{a_i: 1 \le i \le n\}$ ,  $\{b_1, b_2, ..., b_n\}$ , and  $\{c_i: 1 \le i \le n\} \cup \{d_i: 1 \le i \le n\}$ .



Figure 1.12: The flower snarks  $J_5$ 

**Definition 1.2.11** A *hexagonal Möbius*  $HM_n$  is defined as the graph obtained from  $P_2 \square P_{2n}$  by removing the edges  $v_{2i+1}v_{2n+2i+1}$  with  $0 \le i \le n-1$  and adding two new edges  $v_0v_{4n-1}$  and  $v_{2n}v_{2n-1}$ , as shown in Figure 1.13.



Figure 1.13: The hexagonal Möbius graph HM<sub>n</sub>

**Definition 1.2.12** A *linear octagonal chain*  $L_n$ , is a connected graph consists of *n* octagons, as shown in Figure 1.14.



Figure 1.14: The linear octagonal chain  $L_n$ 

**Definition 1.2.13** A *Möbius octagonal chain*  $M_n$  is a connected graph obtained from  $L_n$  by identifying the opposite lateral edges in reversed way.



Figure 1.15: The Möbius octogonal chain  $M_n$ 

**Definition 1.2.14** The *circulant graph*  $C_n(1,m)$  is a simple connected graph that has the following vertex set  $V(C_n(1,m)) = \{v_1, v_2, ..., v_n\}$  and the edge set  $E(C_n(1,m)) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_n v_1\} \cup \{v_i v_{i+m} : 1 \le i \le n-m\} \cup \{v_{n-m+i} v_i : 1 \le i \le m\}$ [7].

So, any vertex  $v_i$  is adjacent to the 2 vertices that follow  $v_i$  and 2 vertices that precedes  $v_i$ , i.e.,  $v_i$  will join  $v_{i+1}, v_{i+2}$  and  $v_{i-1}, v_{i-2}$  [8], as depicted in Figure 1.16.



Figure 1.16: Circulant graph  $C_8(1,2)$ 

#### **1.3 Distance in Graphs**

Over the past few decades, metric dimension has been used in robot navigation, optimization, and pharmaceutical chemistry. Our discussion in this section will focus on some graph-related parameters such as radius, diameter, eccentricity, etc, and defines some main concepts as the resolving set and metric dimension for a connected graph.

**Definition 1.3.1** The *distance* between any two vertices u and v in a connected graph Z is the lenght of a shortest u - v path in Z and is denoted by d(u, v). Such a u - v path of length d(u, v) is called a u - v geodesic.

**Definition 1.3.2** Let Z be a simple connected graph. The distance function d is a metric on vertices of Z, if it satisfies the following conditions.

- $d(u,v) \ge 0$  for all  $u, v \in V(Z)$ .
- d(u, v) = 0 if and only if u = v.
- d(u,v) = d(v,u) for all  $u, v \in V(Z)$ .
- $d(u,z) \le d(u,v) + d(v,z)$  for all  $u, v, z \in V(Z)$ .

The pair (V(Z), d) is called a *metric space*.

**Definition 1.3.3** The *diameter* of a connected graph Z is the greatest distance between any two vertices u and v in Z, and is denoted by diam(Z).

**Definition 1.3.4** Let *Z* be a connected graph and  $v \in V(Z)$ . The *eccentricity* of *v*, e(v) is the distance between *v* and a vertex farthest from *v* in *Z*, and is defined as,

$$e(v) = max\{d(v,x) : x \in V(Z)\}.$$

**Definition 1.3.5** The *radius* rad(Z) of a connected graph Z is defined as follows  $rad(Z)=min\{e(v): v \in V(Z)\}$ . In other words, the minimum eccentricity among the vertices of Z.

Moreover, the maximum eccentricity among all vertices of Z is the *diameter*.

#### **Example 1.3.1** Consider the connected graph *Z* in the Figure 1.16.



Figure 1.17: A connected graph Z

The distance between any two vertices in *Z* is  $d(v_1, v_2)=1$ ,  $d(v_1, v_5)=1$ ,  $d(v_1, v_3)=2$ ,  $d(v_1, v_4)=2$ ,  $d(v_2, v_3)=1$ ,  $d(v_2, v_5)=1$ ,  $d(v_2, v_4)=2$ ,  $d(v_3, v_4)=1$ ,  $d(v_3, v_5)=1$ ,  $d(v_4, v_5)=1$ . So, diam(G) = 2. Since that  $e(v_1)=2$ ,  $e(v_2)=2$ ,  $e(v_3)=2$ ,  $e(v_4)=2$ ,  $e(v_5)=1$ , then rad(Z)=1.

**Definition 1.3.6** Given a connected graph Z. Let  $W = \{w_1, w_2, ..., w_k\}$  be an ordered set of vertices of Z and let v be a vertex of Z. The *representation* r(v|W) of v with respect to W is the k - tuple  $(d(v, w_1), d(v, w_2), ..., d(v, w_k))$ . If distinct vertices of Z have distinct representations with respect to W, then W is called a *resolving set or locating set* for Z.

**Definition 1.3.7** A resolving set of minimum carddinality is called a *basis* for Z and this cardinality is the *metric dimension* of Z, denoted by dim(Z).

**Example 1.3.2** For the graph Z of Figure 1.17, let  $W_1 = \{v_1, v_2, v_3\}$ . The representations of the vertices of Z with respect to  $W_1$  are  $r(v_1|W_1) = (0, 1, 2)$ ,  $r(v_2|W_1) = (1, 0, 1)$ ,  $r(v_3|W_1) = (2, 1, 0)$ ,  $r(v_4|W_1) = (2, 2, 1)$ ,  $r(v_5|W_1) = (1, 1, 1)$ . Since the vertices of Z have distinct representations with respect to  $W_1$ , it is a resolving set. For  $W_2 = \{v_1, v_5\}$ ,  $r(v_3|W_2) = r(v_4|W_2) = (2, 1)$ ; so  $W_2$  is not a resolving set. However,  $W_3 = \{v_2, v_3\}$  is a resolving set and a basis for G and its metric dimension is 2.

**Definition 1.3.8** Let *Z* be a connected graph; the *distance* between the vertex  $u \in V(Z)$ and the edge  $e = vw \in E(Z)$  is given by  $d_E(u, e) = \min\{d_E(u, v), d_E(u, w)\}$ . We say that a vertex  $v \in V(Z)$  distinguishes two edges  $e_1, e_2 \in E$  if  $d_E(v, e_1) \neq d_E(v, e_2)$ .

**Definition 1.3.9** Let  $W = \{w_1, w_2, ..., w_k\}$  be an ordered set of vertices in a connected graph *Z*, then *W* is called an *edge metric generator* for *Z* if every two edges of *Z* are distinguished by some vertices of *W*.

**Definition 1.3.10** The *edge metric dimension* is the smallest cardinality of an edge metric generator for Z and is denoted by edim(Z).

**Definition 1.3.11** An edge metric generator for *Z* of cardinality edim(Z) is called an *edge metric basis* for *Z*.

**Example 1.3.3** For the following graph *G*, let  $W_1 = \{v_1, v_2\}$ . Since  $d_E(v_1, e_2) = d_E(v_1, e_4)$  and  $d_E(v_2, e_2) = d_E(v_2, e_4)$ , then  $W_1$  is not an edge metric generator. However,  $W_2 = \{v_1, v_3\}$  is an edge metric generator and an edge metric basis for *G* and its edge metric dimension is 2.



Figure 1.18: A connected graph G

## Chapter 2: Metric Dimension and Edge Metric Dimension of Graphs

In this chapter, we discuss the metric dimension and edge metric dimension of some known class of graphs as complete graphs, cycle graphs, path graphs, complete bipartite graphs, and wheel graphs. We also study the metric dimension of some classes of regular graphs, namely the flower snarks, and the edge metric dimension of the family of circulant graphs  $C_n(1,3)$ .

#### 2.1 Metric Dimension and Edge Metric Dimensions of Common Graphs

This section presents the different cases of equality and inequality of the metric and edge metric dimensions for some known graphs.

**Theorem 2.1.1** (8) For  $n \ge 2$ ,  $dim(P_n) = edim(P_n) = 1$ ,  $dim(C_n) = edim(C_n) = 2$  and  $dim(K_n) = edim(K_n) = n - 1.[4]$ 

Generally, G is a path graph  $P_n$  if and only if edim(G) = 1.

**Theorem 2.1.2** (8) Let  $K_{r,t}$  a complete bipartite graph such that  $r,t \neq 1$ ,  $dim(K_{r,t}) = edim(K_{r,t}) = r + t - 2.[4]$ 

**Theorem 2.1.3** (8) *Let T* be a tree.  $dim(T) = edim(T) = \sum_{v \in V, I_v > 1} (I_v - 1)$ .

In the preceding remarks, we notices that graphs that have dim(G) = edim(G). But, there are graphs with dim(G) < edim(G), as the following wheel graph.

For the wheel graph  $W_n$ ,  $dim(W_n) < edim(W_n)$ . The metric dimension of  $W_n$  as computed in [8] is

$$dim(W_n) = \begin{cases} 3, & n = 3, 6, \\ 2, & n = 4, 5, \\ \lfloor \frac{2n+2}{5} \rfloor, & n \ge 6, \end{cases}$$

**Theorem 2.1.4** (8) *Given a wheel graph*  $W_n$ ,

$$edim(W_n) = \begin{cases} n, & n = 3, 4, \\ n-1, & n \ge 5, \end{cases}$$

The proof of this theorem is shown in [8].

Now, we give an example for the third case where the dim(G) > edim(G).

For some particular cases of the tours graphs( the cartesian product of two cycles)  $C_i \square C_j$ , the metric dimension was obtained and proved in[5], that

$$dim(C_i \Box C_j) = \begin{cases} 4, & \text{if i , j are even,} \\ 3, & \text{otherwise,} \end{cases}$$

**Theorem 2.1.5** (8) For any positive integers *i*, *j*, we have  $edim(C_{4i} \Box C_{4j}) = 3$ .

The proof of the theorem was established in[8].

So, it is clear from above discussion that we have families of graphs for which we have dim(G) = edim(G), dim(G) > edim(G) and dim(G) < edim(G). The problems of determining whether  $dim(G) \le k$  or  $edim(G) \le k$  are NP-complete problems. Therefore, we study certain families of graphs where dim(G) = edim(G) or dim(G) < edim(G).

#### 2.2 Metric Dimension of Flower Snarks

In this section, we present the study of the metric dimension of the flower snarks  $J_n$  that are regular graph with constant metric dimension. Flower snarks have been widely studied as 3-regular graphs in optimization, identifying the shortest, cheapest round trips, and routing internet data packets.



Figure 2.1: The flower snarks  $J_5$  and  $J_7$ 

The flower snark  $J_n$  is a connected cubic graph with 4n vertices and 6n edges. The flower snarks  $J_5$  and  $J_7$  are sketched in Figure 2.1[7].

The flower snarks consist of an inner cycle that is induced by the vertices  $\{a_i: 1 \le i \le n\}$ , the set of central vertices  $\{b_1, b_2, ..., b_n\}$ , and the outer cycle  $\{c_i: 1 \le i \le n\} \cup \{d_i: 1 \le i \le n\}$ .

The following theorem shows that the flower snarks  $J_n$  form a class of cubic graphs with constant metric dimension 3.

**Theorem 2.2.1** (Imran [7]) Let  $J_n$  be the flower snark. For every odd positive integer  $n \ge 5$ ,  $dim(J_n)=3$ .

The proof of this theorem was illustrated in [7].

#### 2.3 Edge Metric Dimension of Family of Circulant Graphs

Circulant graphs have important applications in computer sciences manely in designing of network topologies and local area networks. In this section, we will study the edge metric dimension of family of circulant graphs  $C_n(1,2)$ .

The circulant graph  $C_n(1,m)$  is a simple connected graph that has the following

vertex set  $V(C_n(1,m)) = \{v_1, v_2, ..., v_n\}$  and the edge set  $E(C_n(1,m)) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_n v_1\} \cup \{v_i v_{i+m} : 1 \le i \le n-m\} \cup \{v_{n-m+i} v_i : 1 \le i \le m\}$  [7]. So, any vertex  $v_i$  is adjacent to the 2 vertices that follow  $v_i$  and 2 vertices that precedes  $v_i$ , i.e.,  $v_i$  will join  $v_{i+1}, v_{i+2}$  and  $v_{i-1}, v_{i-2}$  [8], as depicted in Figure 2.2.



Figure 2.2: Circulant graph  $C_8(1,2)$ 

The following theorem gives the metric dimension of  $C_n(1,2)$ .

**Theorem 2.3.1** [7,16] Let  $C_n(1,2)$  be a circulant graph with  $n \ge 5$ , then

$$dim(C_n(1,2)) = \begin{cases} 3, & if \ n = 0, 2, 3 \ (mod \ 4), \\ \ge 4, & otherwise. \end{cases}$$

Now, we will discuss the edge metric dimension of  $C_n(1,2)$ .

**Theorem 2.3.2** *Let*  $C_n(1,2)$  *be a circulant graph with*  $n \ge 5$ *, then* 

$$edim(C_n(1,2)) = \begin{cases} 5, & if n = 1, 2 \pmod{4}, \\ 4, & otherwise. \end{cases}$$

Note that the proof of this theorem was done in [1].

#### **Chapter 3: New Results**

#### 3.1 Edge Metric Dimension of Flower Snarks J<sub>n</sub>

In this section, we will study the edge metric dimension of the flower snarks graphs  $J_n$ . The flower snarks  $J_n$  is a connected cubic graph that has 6n edges and 4n vertices that consists of three cycles that are induced by the vertices  $\{a_i: 1 \le i \le n\}$ ,  $\{b_1, b_2, ..., b_n\}$ , and  $\{c_i: 1 \le i \le n\} \cup \{d_i: 1 \le i \le n\}$ , as mentioned in Chapter 1 and 2.

Studies of flower snark graphs have been extensively conducted in optimization, routing internet data packets, and identifying shortest path.



Figure 3.1: The flower snarks  $J_5$  and  $J_7$ 

**Theorem 3.1.1** Let  $J_n$  be the flower snark. For every odd positive integer  $n \ge 5$ ,  $edim(J_n) \le 4$ .

*Proof.* We will prove the above inequality  $edim(J_n) \le 4$ . Let  $l = i - \lceil \frac{n}{2} \rceil$ ,  $k=i-(\lceil \frac{n}{2} \rceil + 1)$ , and j = i+1, for  $n \ge 5$ . Let  $W = \{a_2, c_1, d_2, d_1\}$ . We must show that W is an edge metric generator for  $J_n$ . For this we give representations of the edges of  $E(J_n)$ .

$$r(a_i a_j | W) = \begin{cases} (0, 2, 2, 2), & i = 1, \\ (i - 2, i + 1, i, i + 1), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i - 2l, i - (2k + 1), i - 2l, i - (2k + 1)), & i > \lceil \frac{n}{2} \rceil. \end{cases}$$

and,

$$r(a_i b_i | W) = \begin{cases} (1, 1, 2, 1), & i = 1, \\ (i - 2, i, i - 1, i), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i - (2k + 1), i - (2k + 1), i - 2k, i - (2k + 1)), & i > \lceil \frac{n}{2} \rceil + 1. \\ (i - 2, i - 1, i - 1, i - 1), & i = \lceil \frac{n}{2} \rceil + 1. \end{cases}$$

and,

$$r(b_i c_i | W) = \begin{cases} (2,0,2,1), & \text{i} = 1, \\ (i-1,i-1,i-1,i), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i-1,i-1,i-1,i-2), & i = \lceil \frac{n}{2} \rceil + 1, \\ (i-2k,i-(2k+1),i-(2k+1),i-2l), & i > \lceil \frac{n}{2} \rceil. \end{cases}$$

and,

$$r(b_i d_i | W) = \begin{cases} (2, 1, 1, 0), & i = 1, \\ (i - 1, i, i - 2, i - 1), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i - 1, i - 2, i - 2, i - 1), & i = \lceil \frac{n}{2} \rceil + 1, \\ (i - 2k, i - 2l, i - 2k, i - (2k + 1)), & i > \lceil \frac{n}{2} \rceil + 1. \end{cases}$$

and,

$$r(d_i d_j | W) = \begin{cases} (2, 2, 0, 0), & i = 1, \\ (i, i + 1, i - 2, i - 1), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i, i - 1, i - 2, i - 1), & i = \lceil \frac{n}{2} \rceil, \\ (j - (2k + 1), i - (2l + 1), i - 2, i - (2k + 1)), & i > \lceil \frac{n}{2} \rceil. \end{cases}$$

and,  $r(d_n c_1 | W) = (3, 0, 3, 2)$ , and,

$$r(c_i c_j | W) = \begin{cases} (2, 0, 2, 2), & i = 1, \\ (i, i - 1, i, i + 1), & 2 \le i \le \lceil \frac{n}{2} \rceil, \\ (i, i - 1, i, i - 1), & i = \lceil \frac{n}{2} \rceil, \\ (j - (2k + 1), i - (2k + 1), i - 2l, i - (2l + 1)), & i > \lceil \frac{n}{2} \rceil. \end{cases}$$

and,  $r(c_n d_1 | W) = (3, 2, 1, 0)$ .

It is clearly seen that there are no two edges having the same representations. This implies that  $edim(J_n) \le 4$ .

# **3.2 Metric Dimension and Edge Metric Dimension of Hexagonal Möbius Graphs** *HM<sub>n</sub>*

In this section, we will study the metric dimension and edge metric dimension of the hexagonal Möbius graphs  $HM_n$ . A hexagonal Möbius  $HM_n$  is defined as the graph obtained from  $P_2 \square P_{2n}$  by removing the edges  $v_{2i+1}v_{2n+2i+1}$  with  $0 \le i \le n-1$ and adding two new edges  $v_0v_{4n-1}$  and  $v_{2n}v_{2n-1}$ , as shown in Figure 3.2.

This hexagonal Möbius graph has been used in many fields, including chemistry since it is embedded into the Möbius strip in hexagonal form, and physics, as mentioned in [11].



Figure 3.2: Hexagonal Möbius Graph

**Theorem 3.2.1** Let  $HM_n$  be the hexagonal Möbius graph. Then,  $dim(HM_n) = 3$ , where  $V(HM_n) = \{ v_i : 0 \le i \le 4n - 1 \}$ .

*Proof.* Suppose that  $dim(HM_n) \leq 3$ . The set  $W = \{v_i, v_{i+1}, v_{i+2n+3}\}$  for a chosen index  $i \ (0 \leq i \leq 4n-1)$  is the resolving set. The codes of the vertices  $V(HM_n) \setminus W$  with respect to W are  $r(v_2|W) = (2,1,2), r(v_3|W) = (3,2,3), r(v_{i+n+1}|W) = (n,n,n-1), r(v_{i+n+2}|W) = (n-1,n,n), r(v_{i+2n+1}|W) = (2,3,2), r(v_{i+2n+2}|W) = (3,2,1), r(v_{i+3n}|W) = (n,n,n-3)$  and in the given Table 3.1.

Table 3.1: Codes for the outer vertices of  $HM_n$ 

| <b>d</b> (,.)                   | vi          | $v_{i+1}$ | v <sub>i+2n+3</sub> |
|---------------------------------|-------------|-----------|---------------------|
| $v_{i-j+n}: 0 \le j \le n-4$    | n-j         | n-j-1     | n-j-2               |
| $v_{i+j+n+3}: 0 \le j \le n-3$  | n-j-2       | n-j-1     | n-j                 |
| $v_{i+j+2n+4}: 0 \le j \le n-5$ | <i>j</i> +5 | j+4       | j+1                 |
| $v_{i+j+3n+1}: 0 \le j \le 2$   | n-j-1       | n-j       | n+j-2               |
| $v_{i+j+3n+4}: 0 \le j \le n-5$ | n-j-4       | n-j-3     | n-j                 |

Conversely, suppose that  $dim(HM_n) \ge 3$ . Without loss of generality, we can suppose that  $W = \{v_i, v_{i+j}\}$  is a resolving set where  $1 \le j \le 4n - 1$ . But then we get:

- If  $1 \le j \le n-1$ , then  $r(v_{i+2n}|W) = r(v_{i+4n-1}|W) = (1, j+1)$ .
- If  $n \le j \le 2n-2$ , then  $r(v_{i+2n}|W) = r(v_{i+4n-1}|W) = (1, 2n-j)$ .
- If  $2n-1 \le j \le 2n$ , then  $r(v_{i+1}|W) = r(v_{i+4n-1}|W) = (1, 2n-j+2)$ .
- If j = 2n + 1, then  $r(v_{i+1}|W) = r(v_{i+4n-1}|W) = (1,3)$ .

- If  $2n+2 \le j \le 3n$ , then  $r(v_{i+1}|W) = r(v_{i+2n}|W) = (1, j-2n)$ .
- If  $3n + 1 \le j \le 4n 1$ , then  $r(v_{i+1}|W) = r(v_{i+2n}|W) = (1, 4n j + 1)$ .

A contradiction. Hence  $dim(HM_n) = 3$ .

**Theorem 3.2.2** Let  $HM_n$  be the hexagonal Möbius graph. Then,  $edim(HM_n) \leq 3$ , where  $V(HM_n) = \{ v_i : 0 \le i \le 4n - 1 \}.$ 

*Proof.* We will prove the above inequality  $edim(HM_n) \leq 3$ .

Let  $W = \{v_{n-1}, v_{2n-1}, v_{3n}\}$ , we need to show that W is an edge metric generator for  $HM_n$ . For this we give representations of each edge of  $HM_n$ :

- 1.  $r(v_k v_m | W) = (n 1 m, m + 1, n k), 1 \le m \le n 1 \text{ and } 0 \le k \le n 2.$
- 2.  $r(v_0v_{4n-1}|W) = (n-1, 2, n-1).$
- 3.  $r(v_k v_m | W) = (|n 1 k|, 2n 1 m, 2)$ , when either k or m = n.
- 4.  $r(v_k v_m | W) = (|n-1-k|, |m-2n+1|, |n-k|), k = \{2r | r = 0, 1, 2, ..., \frac{n-1}{2}\}, m$  $= \{2n+k\}.$
- 5.  $r(v_k v_m | W) = (|n-1-k|, |k-2n+1|, |n-k|), k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 0, 1, 2, ..., k = \{n + (2r+1) | r = 1, ..., k = \{n + (2r+1) | r = 1, ..., k = \{n + (2r+1) | r = 1, ...$  $\left(\frac{n-1}{2}-1\right)$ ,  $m = \{2n+k\}$ .
- 6.  $r(v_{n+k}v_{n+k+1}|W) = (k+1, n-k-2, k+1), 1 \le k \le n-2.$
- 7.  $r(v_{2n-1+k}v_{2n+k}|W) = (n-k,k,n-k), 0 \le k \le n-1.$
- 8.  $r(v_{3n-1}v_{3n}|W) = (1, n, 0).$
- 9.  $r(v_{4n-2}v_{4n-1}|W) = (n, 2, n-2).$
- 10.  $r(v_{3n+k}v_{3n+k+1}|W) = (k+2, n-k-1, k), 0 \le k \le n-3.$

It is clearly that there are no two edges having the same representations. Therefore  $edim(HM_n) \leq 3$ . 

| _ |  |   |
|---|--|---|
| Г |  | Т |
| н |  | L |
| н |  | н |

#### 3.3 Metric Dimension of Möbius Octogonal Chain M<sub>n</sub>

In this section, we will study the metric dimension of the Möbius octogonal chain  $M_n$ . A Möbius octagonal chain  $M_n$  is a connected graph obtained from the linear octagonal chain  $L_n$  by identifying the opposite lateral edges in reversed way, as mentioned in Chapter 1. Chemists and physicists use the Möbius octagonal graph in many ways as stated in [9].



Figure 3.3: Möbius octogonal chain

**Theorem 3.3.1** Let  $M_n$  be the Möbius octogonal chain. For  $n \ge 3$ , and  $V(M_n) = \{v_i : 1 \le i \le 6n\}$ , then  $dim(M_n) \le 3$ .

*Proof.* We will prove that  $dim(M_n) \leq 3$ .

Let  $W = \{v_1, v_{\lceil \frac{3n}{2} \rceil}, v_{\lfloor \frac{3n}{2} \rfloor + 3n + 3}\}$ , we need to show that *W* is a resolving set for  $M_n$ . For this, we give representations of any vertex of  $V(M_n)$ . Consider the following one in the Table 3.2 :

| $\mathbf{r}(\mathbf{v_i} \mathbf{W})$                                        | Conditions on i                                                                         |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $(i-1, \lceil \frac{3n}{2} \rceil - i, \lceil \frac{3n}{2} \rceil - 3 + i)$  | $1 \le i \le 2$                                                                         |
| $(i-1, \lceil \frac{3n}{2} \rceil - i, \lceil \frac{3n}{2} \rceil - i + 3)$  | $3 \le i \le 2n - \left\lceil \frac{n}{2} \right\rceil + 1$                             |
| $(\lceil \frac{3n}{2} \rceil, 1, 2)$                                         | $i = \left\lceil \frac{3n}{2} \right\rceil + 1$ ,                                       |
| $(3n-i+2,i-\lceil \frac{3n}{2} \rceil,i-\lceil \frac{3n}{2} \rceil-1)$       | $\lceil \frac{3n}{2} \rceil + 2 \le i \le 3n + 1$                                       |
| $(i-3n,6n-i-3\lfloor\frac{n}{2}\rfloor,\lfloor\frac{3n}{2}\rfloor+3n+3-i)$   | $3n+2 \le i \le 3n+\lfloor \frac{3n}{2} \rfloor$                                        |
| $(6n-i+1,i-\lceil\frac{3n}{2}\rceil+3-3n,\lfloor\frac{3n}{2}\rfloor+3n+3-i)$ | $3n + \lfloor \frac{3n}{2} \rfloor + 1 \le i \le 3n + \lfloor \frac{3n}{2} \rfloor + 2$ |
| $(6n-i+1,i-\lceil\frac{3n}{2}\rceil-3n+1,i-\lfloor\frac{3n}{2}\rfloor-3n-3)$ | $3n + \lfloor \frac{3n}{2} \rfloor + 3 \le i \le 6n$                                    |

Table 3.2: Representations of each vertex of  $V(M_n)$ 

Since there are no two vertices having the same representations,

$$dim(M_n) \leq 3.$$

#### **Chapter 4: Comparative Analysis and Conclusion**

In this chapter, we will compare metric dimension with edge metric dimension of flower snarks graph, hexagonal Möbius graph and Möbius octogonal chain.

GraphMetric dimensionEdge Metric dimensionFlower snarks  $J_n, n \ge 5$  $dim(J_n)=3$  $edim(J_n) \le 4$ Hexagonal Möbius  $HM_n$  $dim(HM_n)=3$  $edim(HM_n) \le 3$ Möbius octogonal chain  $M_n$  $dim(M_n) \le 3$ 

Table 4.1: Metric dimension and edge metric dimension of  $J_n$ ,  $HM_n$ , and  $M_n$ 

The above table compares the metric dimension and edge metric dimension of flower snarks graph, hexagonal Möbius graph and Möbius octogonal chain. In this study we noticed that the metric dimension of this class of graphs is constant. The inequality of edge metric dimension  $edim(G) \leq K$  has been proved . For the flower snarks graph, we found that  $edim(J_n) \leq 4$ , so the edge metric dimension will be either 4 or same as the dimension 3, or less. So,  $edim(J_n) \geq dim(J_n)$ . However for the hexagonal Möbius graph  $edim(HM_n) \leq dim(HM_n)$ , since we proved that the edge metric dimension is equal or less than 3. In addition, we proved one inequality for the metric dimension of Möbius octogonal chain which is  $dim(M_n) \leq 3$ , and we are expecting to have similar result for edge metric dimension as for hexagonal Möbius graph.

In conclusion, we notice that the edge metric dimension for both hexagonal Möbius graph and Möbius octogonal chain is at the most as the metric dimension.

#### References

- M. Ahsan, Z. Zahid and S. Zafar, "Edge metric dimension of some classes of circulant graphs," *Analele Universitatii "Ovidius" Constanta - Seria Matematica*, vol. 28, no. 3, pp. 15-37, 2020.
- [2] P. S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, "On k-dimensional graphs and their bases," *Periodica Mathematica Hungarica*, vol. 46, no. 1, pp. 9-15, 2003.
- [3] B. Bolloás, Modern graph theory. New York: Springer, 1998.
- [4] G. Chartrand and P. Zhang, A First Course in Graph Theory. Mineola, NY: Dover Publications, Inc., 2012.
- [5] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and D. R. Wood, "On the metric dimension of cartesian products of graphs," *SIAM Journal on Discrete Mathematics*, vol. 21, no. 2, pp. 423-441, 2007.
- [6] C. Huo, H. Bashir, Z. Zahid, and Y. M. Chu, "On the 2-metric resolvability of graphs," *AIMS Mathematics*, vol. 5, no. 6, pp. 6609-6619, 2020.
- [7] M. Imran, S. A. ul H Bokhary, A. Ahmad, and A. Semaničová-feňovčíková, "On classes of regular graphs with constant metric dimension," *Acta Mathematica Scientia*, vol. 33, no. 1, pp. 187-206, 2013.
- [8] A. Kelenc, N. Tratnik, and I. G. Yero, "Uniquely identifying the edges of a graph: The edge metric dimension," *Discrete Applied Mathematics*, vol. 251, pp. 204-220, 2018.
- [9] J. -B. Liu, T. Zhang, Y. Wang, and W. Lin, "The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain," *Discrete Applied Mathematics*, vol. 307, pp. 22-31, 2022.

- [10] J.-B. Liu, Z. Zahid, R. Nasir, and W. Nazeer, "Edge version of metric dimension and doubly resolving sets of the necklace graph," *Mathematics*, vol. 6, no. 11, pp. 243, 2018.
- [11] X. Ma, and H. Bian, "The normalized Laplacians, degree-Kirchhoff index and the spanning trees of hexagonal Möbius graphs," *Applied Mathematics and Computation*, vol. 355, pp. 33-46, 2019.
- [12] D. B. West, Introduction to graph theory. New York, NY: Pearson, 2018.



#### UAE UNIVERSITY MASTER THESIS NO. 2022: 43

This thesis is concerned with the graph- theoretic properties of certain families of connected graphs related to their edge metric dimension. The main objective of this thesis is to study the comparison of metric dimension versus edge metric dimension of certain families of graphs. The study investigates the relationship between the metric and edges metric dimension of flower snarks graphs, hexagonal Möbius graphs, and octagonal Möbius graphs.

#### www.uaeu.ac.ae

**Sanabel Bisharat** received her Master of Science in Mathematics from the Department of Mathematical Sciences, College of Science and her Bachelor of Science in Mathematics from the College of Science, UAE University, UAE.