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Abstract

Dementia is a condition in which higher mental functions are

disrupted. It currently affects an estimated 57 million people throughout the

world. Dementia diagnosis is difficult since neither anatomical indicators

nor functional testing are currently sufficiently sensitive or specific. There

remains a long list of outstanding issues that must be addressed. First,

multimodal diagnosis has yet to be introduced into the early stages of

dementia screening. Second, there is no accurate instrument for predicting

the progression of pre-dementia. Third, non-invasive testing cannot be used

to provide differential diagnoses. By creating ML models of normal and

accelerated brain aging, we intend to better understand brain development.

The combined analysis of distinct imaging and functional modalities will

improve diagnostics of accelerated decline with advanced data science

techniques, which is the main objective of our study. Hypothetically, an

association between brain structural changes and cognitive performance

differs between normal and accelerated aging. We propose using brain MRI

scans to estimate the cognitive status of the cognitively preserved examinee

and develop a structure-function model with machine learning (ML).

Accelerated aging is suspected when a scanned individual’s findings do not

align with the usual paradigm. We calculate the deviation from the model of

normal aging (DMNA) as the error of cognitive score prediction. Then the

obtained data may be compared with the results of conducted cognitive

tests. The greater the difference between the expected and observed values,

the greater the risk of dementia. DMNA can discern between cognitively

normal and mild cognitive impairment (MCI) patients. The model was

proven to perform well in the MCI-versus-Alzheimer’s disease (AD)

categorization. DMNA is a potential diagnostic marker of dementia and its

types.

Keywords: Convolutional Neural Network, Structural-Functional

Association, Dementia, Neurodegeneration, Deviation from Model of

Normal Aging.
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Chapter 1: Introduction

Any society’s primary priority should be public health. A typical

public health strategy should aim to reduce the burden on medical staff and

equipment by screening the entire community. The screening programs

enable the early detection and diagnosis of those at risk of diseases. Risk

stratification can help determine the likelihood of a patient’s health

deteriorating. It aids in the planning and management of clinic resources,

among other things.

Risk stratification potentially determines a probability of worsening

of a patient’s health. It helps, among others, to improve the resources

planning and management in clinics. Elder risk assessment [1], dementia

risk score, cognitive testing, and chronic comorbidity count [2], to mention

a few, are some of the procedures used to identify high-risk patients. Those

strategies are solely based on comorbidity analysis. An optimal solution

should be able to precisely diagnose an illness and predict how the disease

will progress [3, 4, 5].

According to the World Health Organization guidelines, there are

three ways to assess the disease’s burden:

• the disability-adjusted life year (DALY).

• the number of years of life lost of dying early.

• the number of years of life lived with disability as the disease

consequence.

One DALY represents the loss of the equivalent of one year of full

health. In high-income countries, the number of DALYs (expressed per

100 000 population) for neurodegenerative disorders (NDs) is extremely
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high. In the UK, it was 1088.9 for Alzheimer’s disease (AD) and 123.0 for

Parkinson’s disease in 2019, whereas in the US, it was 3837.1 and 513.1.

Between 2000 and 2019, the number of DALYs for Alzheimer’s disease

roughly doubled.

Figure 1.1: Most common causes of dementia

NDs are incurable conditions that result in death of neurons and a

progressive deterioration, i.e. dementia. Higher mental functions, such as

reasoning, planning, judgment, and memorization, are disrupted in

dementia. AD is the most frequent cause of dementia (Figure 1.1).

Currently, 57 million people worldwide suffer from dementia. By 2050, this

figure is expected to triple, reaching 152 million instances [6].

Figure 1.2: The use of machine learning within clinical practice

The reason for such an exponential increment in dementia is societal
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aging, which leads to the rise of the incidence of NDs that manifest with

dementia. In the UAE for instance, the life expectancy has increased from

74.3 in 2000 to 78.32 in 2022 [7]. Brain atrophy (BA) is a morphological

basis of both aging and NDs. Therefore, it is important to identify markers of

specific types of brain atrophy, i.e. to segregate pathology versus age-related

conditions (Figure 1.2).

Dementia diagnosis is difficult due to the lack of a standardized test.

Several approaches may aid in the detection of dementia. Brain imaging

may act as a subtle biomarker of the disease, thanks to recent developments

in computing resources and technologies (Figure 1.3).

Figure 1.3: Different modalities of dementia’s biomarkers, including neuroimaging,
genomics, CSF, and peripheral systems

Unfortunately, there are no particular radiological indications of

NDs. However, deep learning (DL) algorithms show significant promise in

the processing of visual modalities. DL has made great progress in medical

image classification, detection, and segmentation problems. It outperformed

even the most expert picture readers. Non-linear patterns concealed in data
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can be extracted using advanced machine learning (ML) and DL techniques

such as convolutional neural networks (CNN). Learning adaptability is

stronger in CNN models than in models with hand-crafted features. As a

result, scientists use CNN models to classify a patient’s diagnosis based on

diagnostic photographs (e.g., brain MRI, CT, PET-CT).

Clinical datasets collect a large amount of data, such as structural

attributes (image modalities), functional data (cognitive test results),

laboratory findings, demographic features (age, gender, ethnicity, family

anamnesis), and so on. They could be a source of accurate diagnostic

models, if properly analyzed using ML. Application of ML and DL to

neurology, for example, could aid in the early diagnosis and prognostication

of NDs.

1.1 Problem Statement

The relationship between brain structural changes and man’s

functional performance is complicated. Neural plasticity accounts for this

phenomenon. Plasticity is a specific feature of biological systems to adjust

to pathology. However, the process of adjusting the system may cause

diminishing to the potential outcomes of the disease. As a result, clinical

appearance may not reflect a true structural impairment, and vice versa. In

AD and mild cognitive impairment (MCI), for example, there is no apparent

association between functional performance and structural abnormalities.

Furthermore, despite the progression of today’s neuroscience,

pathophysiological mechanisms are complex and so remain unstudied.

Future diagnostics should include a wide range of diagnostic modalities and

clinical data, such as structural and functional characteristics, risk factors,
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demographics, etc. These features can be used in conjunction with ML

algorithms to validate the diagnosis and forecast the development of the

disease (e.g., disease severity, outcomes, a response to therapy).

New findings may have valuable impact on earlier detection,

diagnosis and treatment of age-related degenerative diseases. Many

researchers have created methods to identify the diagnosis using structural

data as DL progressed. They employed both cognitively preserved and

demented patients to train their models. However, such models’ application

and therapeutic utility are restricted. To that purpose, we identified

outstanding concerns and questions that must be addressed to facilitate the

risk assessment of ND and its severity:

1. The normal aging of the brain is still poorly understood.

2. It is difficult to correctly pinpoint the onset of age-related deterioration

in intellectual performance.

3. Proportionality of changes in cognitive domains and sub-domains are

not yet studied.

4. Neurology lacks a tool for assessing the risk of early cognitive

retardation. The optimal tool should be non-invasive and reliable. A

multimodal approach based on functional and anatomical brain

properties can be used to develop such a tool.

5. Association between the brain structure, cognitive status and executive

functioning (EF) is an issue of ongoing studies. It is not yet clear how

the association evolves in pathology.

6. Physicians lack a viable computer-aided diagnostic (CAD) system for

ND screening.
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1.2 Objectives

We intend to get an insight into the normal and accelerated brain

aging by developing ML models. The AI approach to the analysis of

medical data allows us to apply multimodal diagnostics to clinical practice.

The combined analysis of distinct imaging and functional modalities

improves diagnostics of NDs with advanced data science techniques, which

is the main objective of our study.

Hypothetically, there are different types of age- and diseases-linked

changes in brain morphometry, cognitive performance and their association.

We will identify these patterns by comparing the diagnostic images and the

results of psychophysiological and cognitive assessment with ML and DL

techniques.

If there is no distinct patterns there should be a common mode of

structural deterioration and cognitive decline reflecting brain atrophy with

some threshold level indicative of the disease. ML can allow us to distinguish

normal aging from pathology with the help of a classification model.

We devised the tasks mentioned above for addressing the objective:

1. Develop ML models of age-related cognitive decline and study age-

related changes in cognitive subdomains:

(a) Create new indices that measure the ratio of cognitive

functioning activity during the completion of

psychophysiological tasks.

(b) Study results in psychophysiological tests (PTs) and split the

examined cohort into an ideal number of age groups. Search for

potential biomarkers of age-group identification by exploring
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the metrics of the unsupervised ML model.

(c) Examine any probable links between age and the newly

suggested scores, as well as the predictive power of PTs in

determining the values of the indices developed.

2. Create an accurate model describing brain morphologic changes

throughout life:

(a) Use ML to analyze structural changes in main brain

compartments and simulate neurofunctional performance at

different ages.

(b) Choose the mathematical model that best describes the

progression of anatomical and functional changes in the brain

throughout lifespan.

(c) Compare the dynamics in brain volumetry with

psychophysiological performance across the life.

3. Identify patterns of brain structure-function association (SFA)

indicative of MCI and dementia:

(a) Study the dynamics of the performance in cognitive and

neurophysiological tests in patients with MCI and dementia.

(b) Build models of brain SFAs in cognitively normal individuals

and patients with MCI or dementia.

(c) Create a method for categorizing the examinees into two groups

based on the pattern of SFAs: cognitively normal seniors and

patients with MCI or dementia.

4. Improve screening for MCI and dementia and prognosticate

progression of MCI:

(a) Conduct an exploratory analysis of structural and functional
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changes in cognitively preserved population and patients with

MCI or dementia.

(b) Propose a reliable marker of disease-related cognitive decline.

(c) Justify the proposed marker as a screening tool for MCI and

dementia.

(d) Assess the novel marker’s diagnostic capability in

distinguishing stable from progressing MCI and Alzheimer’s

amyloidopathy from other types of NDs.

1.3 Literature Review

Diagnosing dementia in its preliminary phase is hampered by the

shortcomings of reliable screening methods within neuroscience (see

Table 1.1). These persisting limitations can delay the accurate clinical

diagnosis by more than 12 months, inevitably eliminating the intended

benefit of early treatment, such as memory enhancement, reduced anxiety,

and social activity engagement [8, 9].

Diagnostics of NDs can be enhanced through:

• Identification of the dementia onset with a multi-modal approach.

• An informant-based assessment. This method is favoured by

scientists and medical professionals as it provides fundamental

insight into the patient’s personality, which is critical during initial

diagnostics. Panegyres et al. reported that this method is more

dependable than the mini-mental state examination (MMSE) [10].

• Evolution of the screening strategy to the point where it can be

incorporated into routine clinical diagnostics. Brain aging should be

the foundation of this novel test. The predominant solution consists
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of three steps: 1) researching the new potential origin of brain aging;

2) evaluating the reliability of the test in an unaffected population;

and 3) similarly evaluating the tests’ reliability in dementia patients.

The cognitive changes of the aging brain have been attracting

increasing interest from researchers, which has led to an accumulation of

data that present partial insights regarding changes in reaction time (RT),

working memory [11, 12], executive functions [13, 14], memory, linguistic

skills, and cognition [15, 16]. To delineate the procedure of cognitive

decline associated with advancing age, scientists have conceptualised brain

reserve and cognitive reserve. These concepts alleviate the repercussions of

head trauma, senescence and NDs [17]. Nevertheless, a comprehensive

theory for medical practitioners remains absent. Hence, this set of

unanswered questions remain:

• Cognitive and brain reserves are not exhaustively studied. Brain

reserve is predicted by anatomical quantification (cranial volume,

height, and length) [18]. However, [19] stated that the list of brain

reserve predictors should include the total number of neurons,

synapses, and dendrites. In addition to these structural discoveries,

the cognitive reserve consists of psychological factors and various

lifestyle activities during a lifespan [18]. Nevertheless, [20] suggested

that neural reserve and compensation constitute cognitive reserve.

• The brain’s resilience against cognitive decline is not entirely

understood. Research has suggested that the primary defence is the

brain reserve and that it defines the cognitive reserve’s potential [21].

Hence, the potential onset of dementia is delayed in patients with

more neurons, compared to patients with a lower brain reserve [22].
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On the other hand, neuroplasticity is determined by intelligence

preceding the onset of dementia, the level of education, and

individual lifestyle (cognitive reserve). Hence, patients cope better

with dementia if they have had a higher level of education and higher

intellect. Furthermore, symptoms of dementia are independently

moderated by cognitive and brain reserves [23]. The need for

additional research regarding the brain reserve and cognitive reserve

relationship persists.

• Presently, the widely used PTs in the assessment of cognitive

domains remain understudied and under-established regarding their

accuracy and association. A meta-analysis study reviewing cognitive

tests reported that the frequently used MMSE presented the lowest

sensitivity during MCI diagnostics [24]. This finding is further

supported by an additional review stating that the limited predictive

power associated with MMSE and Montreal Cognitive Assessment

(MoCA) exceeds that of recall tests [25].

1.3.1 The Relevance of Researching Cognitive Decline in a Healthy
Population

Novelty in research regarding age-related changes in cognitive

subdomains: Numerous studies focused on comparing NDs patients to a

cognitively normal population [26, 27], however, considering that the

normal aging process is understudied. Hence, such a comparison is of little

value [28, 29, 30]. These studies fail particularly to address the

pathophysiological changes associated with aging. Age-related cognitive

decline seems to be controlled by fundamental neurobiological changes, for

example vascular changes and buildup of neuropathology [31, 32, 33].
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Table 1.1: Reliability and shortcomings of dementia diagnostic methods

Method Diseases investigated ShortcomingsSens,% Spec,% Ref

MRI
Progression of MCI 87 66 [34]

It is crucial to avoid coming across
as over confident, since imaging
features are not pathognomonic
in most cases [34, 35, 26, 36, 37, 38]

Parkinson’s Disease 61 68 [26]
Multiple sclerosis 93 81 [36]

Tractography Amnestic MCI 96 94.2 [37]
Parkinson’s disease 40-86 41-94 [38]

fMRI mild AD 77.3 70 [39]

Altered BOLD signals found in AD/MCI
patients indicate potential impairments in
haemodynamic processes apart from
alterations in neuronal activity [39, 40]

PET

AD vs FTLD 69.4 93.2 [41] Irrespective of the auspicious reliability and accuracy,
the implementation of PET/MRI remains predominantly
research-based, due to its unique radiotracer requirements
[41, 42, 43, 44]

AD vs MCI 81.8 86 [43]
Amyotrophic lateral
sclerosis

94.8 80 [44]

Angiography Dementia with
Lewy bodies (DLB)

93 87 [45]
During this method patients are exposed to radiations, as
well as potential kidney function impairment and an allergic
reaction, associated with the iodinated contrast

Brain
perfusion

MRI AD vs FTLD 69 68 [46]
Assessing the damaged brain function in FTLD,
through ASL perfusion, can fluctuate
regionally despite extensive
atrophy [46, 47, 48, 49, 50]

SPECT
Dementia 61 70 [48]
DLB vs AD 87-100 90-96 [49]

SPECT
+ MMSE

DLB vs AD 81 85 [50]

Cognitive
tests

FBI FTLD 90 100 [51]
This method may present insensitivity
to elusive brain abnormalities.
Transferring the test outcome
between varying cognitive impairments
should be done attentively [51, 52, 53, 54, 53, 55]

Mini-Cog Cognitive Impairment 60 90 [54]
MoCA Vascular dementia 77 vs 85 97 vs 88 [53]
MMSE

MCI vs dementia
88 vs 84 70 vs 86 [55]

full vs short
MoCA

88 vs 79 74 vs 80 [55]

* AD - Alzheimer’s disease;
BOLD - blood-oxygen-level-dependent
DLB - Dementia with Lewy bodies;
FBI - Frontal Behavioral Inventory;

FTLD - fronto-temporal lobe dementia;
MCI - mild cognitive impairment;
MMSE - Mini Mental State Examination;
MoCA - Montreal Cognitive Assessment;
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The increasing support for an alternative purposing explanation

regarding the estimations of the cognitive change in the elderly might have

been unfavourably influenced by pathologies commonly associated with

older age, especially NDs such as AD [56]. Research regarding accelerated

brain aging is rendered of little value in the persisting absence of scientific

data describing what can be considered as regular cognitive changes [57].

These studies have recurrent restrictions and a disarranged bias.

Differentiating between pathological cognitive declines and normal

cognitive aging remains problematic in these studies, especially regarding

the age group above 65 years [58, 59, 60].

There are numerous NDs and classification models [61], for

example, a neuropathological based classification enumerates more than 10

groups with various nosologies associated with each group [62]. Scientists

experience difficulty when considering this substantial amount of diseases

within a consolidated system. Clinical impression, together with

non-invasive diagnostics, does not provide adequate details to discriminate

between these diseases. High number of invasive neuropathological

examination is required [62]. Granted, in this situation, comparative studies

can incorporate the entire scope of NDs. For this reason, scientists prefer

non-invasive methods, such as cognitive tests and MRI, to investigate the

normal process of aging [32, 58, 63, 64, 65, 66, 67, 68]. Brain aging

researchers have not investigated the comparison between healthy adults

and patients suffering from neurodegeneration. The point of focus is not on

identifying the specific disease. Instead, the researcher focuses on permitted

changes within a healthy population, leading to a conjecture regarding

accelerated brain aging in noticeable cases. In our earlier research, we

121212



mirrored this approach [69, 70, 71, 72]. The rate of information processing

speed and its change related to age is a subject of ongoing research

[73, 74, 75]. The vast interest in information processing speed is based on

its correlation to functional abilities in older adults [74, 76]. However, the

current formulated research questions regarding this field are inadequate.

The correlation of structural and biochemical changes to information

processing has been a recent research topic of interest. For instance, a

recent study on normal decline found an inverse correlation between the

interleukin-6 level and information processing speed. As well as an inverse

relationship between the fractional anisotropy of corpus and information

processing speed [77, 78]. Furthermore, an additional study underlined the

correlation between a substantial volume of corpus callosum, decreased

levels in insulin and the inflammatory markers, and intact older adults

self-reporting an increase in physical activity [79].

Research has ascribed the decline of white matter (WM) integrity

to the age-related decrease in cognitive speed [75, 80, 81]. However, the

main contributing factors to WM changes remain unclear. A sufficient

explanation for observing neurocognitive slowing associated with aging is

still absent. Continuing research aims to establish the cause of change in

information processing speed during normal aging. Patients with

neurodegeneration can be compared to a healthy population to underline

risk factors associated with neurodegeneration. Risk factors include

genetics [82] and changes in WM [83]. Studying aging in a healthy

population could benefit future identification and differentiation of the

preliminary signs associated with NDs.

Depending on the conducted assignments, inconsistent findings
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have been reported regarding changes in the information processing speed

related to age. For example, younger adults were more proficient in coding

and symbol searching assignments, while on the other hand, older adults

were more skilled in inspection time assignments [84]. A satisfactory

explanation has not been produced for this finding. A parallel study

reported that the slowing of performance speed occurs over the lifespan

[85]. However, research has reported that the decrease in sensory function

is linked to the decline in processing speed [86, 87]. Furthermore, studies

have also claimed that the general cognitive status in adults above 40 years

is predicted by the cognitive processing speed. However, this is not the case

in adults younger than 40 years. Additional research is required to verify

the findings [32].

1.3.2 Processes Behind Neutocognitive Slowing

A few processes contribute to neurocognitive slowing, such as

atrophy and neuroplasticity. However, these two processes have been

reported as direct theoretical opposition [88]. Brain atrophy has been linked

to numerous factors such as vascular factors [89], inflammation [90], diet

[91], metabolic disorders [92], and dysbiosis [90]. These factors provide

insight into dementia-related mechanisms and uphold the notion of

cognitive impairment management through manipulation of these factors.

Contradictory to this is the idea of neuroplasticity. According to the idea,

cognitive and low-intensity physical training can reduce noticeable brain

aging and delay the appearance of dementia [77, 88].

Concurrent changes in cognitive domains associated with aging:

Declines could vary according to cognitive domains. Numerous declines
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progressively worsen over time, while some remain stable, such as

language. Generally, the change in reaction speed related to age is linked to

numerous changes in the cognitive domains [67]. EF, the cognitive domain

accounting for individual goal-directed behaviour, is affected by decreased

information processing. Two explanations are offered for this finding.

Firstly, relevant operations cannot be performed within a predetermined

time interval. Secondly, slow processing reduces the amount of information

which is concurrently available. Hence, the delayed supply of information

leads to the collapsing of the higher-level processing [93]. Consequently,

EF deficit can potentially affect performance in numerous cognitive

variables, this inducing cognitive decline [67].

Research has proposed numerous interdependent cognitive aging

mechanisms. Irrespective of commonality among findings presented by

various speed-based tasks, the decline in abilities is not a general factor of

cognitive slowing [88, 94]. For instance, working memory is responsible for

task-recall, which is associated with reasoning. It is logical to conclude that

its impairment will have a significant impact on older adults’ cognitive

performance.

EF and cognitive control: Cognitive control is the capability to

arrange our thoughts and actions according to internal goals [77]. EF is an

umbrella term under which EF and cognitive control fall. Furthermore, it

also covers a set of higher-order (cognitive) processes associated with

arranging conscious behaviour during an unfamiliar situation [95]. EF

consist of three subdomains: inhibitory control, which includes the

prevention of insignificant information and prohibiting prepotent responses;

task switching, which is the capability to switch between mental sets
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effortlessly. Finally, it is updating, the continuous monitoring and

instantaneous addition/deletion of content to the working memory.

Age-related cognitive decline is associated with declining inhibitory control

[96]. Moving between different assignments requires working memory in

the absence of a cue, and a decrease in the memory domain over time might

impact this EF [97, 98].

Attention is commonly split into two comprehensive subdomains.

The first subdomain is selective attention, for example, concentration, while

the second subdomain is sustained attention or vigilance, for example,

divided attention [99]. A declining capability in paying attention to selected

stimuli is associated with the elderly. Age-related declines in selective

attention interact with other cognitive domains and other changes related to

age [77, 100].

There are additional attention subsystems. For example, it has been

proven that the relationship between goal-guided attention and habitual

spatial attention is affected by aging [101]. The authors of this study

interpret habitual spatial attention as the attention attracted regularly to a

target, such as a space with a heightened possibility of triggering stimuli.

Older adults experience difficulty with interrupted goal-guided attention,

yet they are relatively unhampered in utilising spatial attention through

coincidental habit-based learning. Therefore, the decrease in certain

attention subdomains can be counterbalanced through teaching searching

habits to older adults. Age-related decline influences attention since

attention skills have EF elements [99]. A deficiency in obstructing

insignificant information is associated with older adults, which could be

attributed to changes in the prefrontal cortex [100].
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Memory, as a cognitive domain, could be subjected to influence

from multiple processes such as working memory, executive control

operations, speed, and sensory declines. The loss of memory could

originate from an inadequate capability to pay attention and move between

functional brain networks. Change in older adults’ structural and functional

brains causes them to experience difficulty disregarding distractions, which

leads to significant and insignificant information being co-encoded.

Inevitably this causes an overload on the limited cognitive resources [100].

Irrespective of the well-known fact that with age, memory

performance decreases, it is interesting that all memory aspects are not

equally impaired [102]. The procedural memory is manifested

automatically without intentionally recalling past events, while on the other

hand the declarative memory depends on intentionally recalling past

experiences. It includes episodic memories of specific experiences and the

semantic memories, which mirror our common comprehension of facts and

the definitions of words. Generally, the older adults experience the most

severe memory loss in long-term episodic memory due to its significant

attention demand. Negligible age-related changes are generated in the

sensory, semantic, and procedural memory due to their small attention

demand [100, 102].

Memory is mediated with other cognitive domains. Semantic

memory can be seen as an arranged data storage of words or concepts -

“nodes”. These nodes are linked through associative pathways [77]. When

a node is activated by a person paying attention, it initiates an escalation

within the network, which ultimately activates various nodes and enables

processing [102].
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Working memory acts as a buffer. It stores data for cognitive

processing and is subjected to age-related changes such as the decline in

capacity and processing speed. A decrease in the processing speed and

disintegration of primary control processes is responsible for the change in

working memory. Primary control processes in this context refer to

resistance to unwanted influence, memory updating, binding, assignment

coordination, top-down control. This knowledge derived from

neuroimaging data. Furthermore, age-related changes in working memory

have a more significant influenced on spatial material than on the verbal

[11].

Perceptual and sensory deficiency worsens cognitive decline as

well as increases the difficulty of fulfilling cognitive assignments. Declines

in these domains are associated with a decreased capability to identify a

stimulus from the sensory modalities and limit the process and

incorporating the obtained information. Clinically, older adults can

experience various challenges when using their five sensory modalities. For

example agnosia is when experiencing difficulty in identifying formally

recognisable objects [99]. Other domains are impacted by the age-related

cognitive changes in the sensation and perception domains. For example,

auditory memory and language comprehension issues result from a hearing

deficit [88]. However, the intervention of decreasing perceptual processes is

also possible. Davis’s “posterior-to-anterior shift in aging” model proposes

intervening in the decrease of perceptual processes linked to the occipital

regions through increasing prefrontal activities. However, this assumes that

task performance in young and older adults can be compared, even though

the process depends on different neural mechanisms [100].
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Motor skills are defined as the primary components of motor

activity and construction is defined as the capability to duplicate or create

sketches of ordinary objects. Motor skills and construction could be

compromised in critical dementia cases, nondominant hemisphere trauma,

or by parietal cortex lesions [99]. It has been reported that cognitive

processes linked to language remain constant or even enhances up to the

age of mid-70s [88]. Language deficits could be linked to an EF deficit (for

example, the capability to retrieve semantic storage effectively) or to a

decreased processing speed [99]. A crucial element in comprehensive

impairment is a primary lag of the neurologic response. Furthermore,

change in attention and declined memory influence speech comprehension

[103]. Intercorrelation and inseparability of cognitive domains: One should

not consider the intercorrelation of cognitive domains as an insufficient

cogency. Compelling evidence has indicated that common domains of

cognitive dysfunction are inseparable in in a variety of patient groups,

including individuals with schizophrenia and bipolar illness [99].

1.3.3 Normal Brain Aging

Normal brain aging can be described in terms of the brain atrophy

and neurocognitive slowing. The first term covers the brain structural

changes across the life. The second term denotes the functional outcomes of

the process. Atrophy is a process by which the size or number of cells in

response to a stimulus [104] is decreased. Brain atrophy is a common

feature of brain aging and of numerous diseases that affect the brain.

Macroscopically, BA results in brain shrinkage, and compensatory

enlargement of cerebrospinal fluid spaces, the ventricles and the
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subarachnoid space. Ventricular volume trajectory shows a strong

association with age and pathologic measurement because it is a summary

marker of atrophy, both of gray matter and white matter (as a result of glial,

myelin, axonal and/or neuronal loss) [105]. But there is no simple, sensitive

quantitative marker which is well associated with the extent of cognitive

impairment or highly specific to any particular ND.

Features of brain atrophy: Normally, decreasing of brain size does

not automatically lead to cognitive impairment until the age of 65 years

[106]. MRI allows researchers to accurately quantify the atrophy of cortical

and subcortical gray matter regions (in terms of volume loss,

macro-morphological changes and cortical thinning), and to evaluate white

matter structural damage [106]. Ventricular volume trajectory is

significantly associated with age, the presence of infarcts, neurofibrillary

tangles and neuritic plaque scores, the presence of some gene alleles and

dementia diagnosis. The total brain volume trajectory is significantly

associated with age and mild cognitive impairment diagnosis. The

hippocampal volume trajectory is significantly associated with amyloid

angiopathy [105].

Brain atrophy is an authentic subject of relevant research due to the

tendencies of the world-wide civilization, such as the aging of population

accompanied with the increasingly high rate of NDs. Many publications state

the issue of either the structural changes or the functional impairment of the

nervous system (e.g., cognitive decline). Unfortunately, it is still unclear, to

what degree brain atrophy contributes to the malfunctioning of the nervous

system. Structural MRI studies have revealed that the extent of age-related

brain changes varies markedly across individuals [107]. Other studies of
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brain functioning bared inconsistencies in both onset and the rate of episodic

memory loss in the elderly cohort, which accounts for different inherited

and life-style factors [108]. However, there is no evidence of a direct link

between structural and functional impairment.

Brain atrophy is observed overall in (normal) brain aging and

neurodegeneration. Regarding normal brain aging, there were some

attempts to establish structural-functional association, but the evidence

provided us with inconsistent data. For example, the association was

significant for older participants (65–80 years) but not middle-aged (55–60

years) participants [106]. However, findings show that brain atrophy starts

almost after puberty. What may account for these discrepancies? Does a

compensation of functioning take place? If so, in what way? Therefore,

does the process last typically until the age of 60 years?

Some studies have demonstrated that brain atrophy in normal aging

participants is characterized by several trends. Firstly, in the volumetric

reduction within the human cortex. The second is the shrinking of the

neuronal networks suddenly, from a more distributed arrangement to a more

localized topology in the middle-aged group (30-58 years). Afterwards, it

maintains this localized topology in the older participant group. The

researchers concluded that there are variations in topological organization

of neuronal networks during normal ageing [109]. Therefore, they

specifically describe such components of brain atrophy as volume

reduction, structural and functional connectivity impairment. However, this

still fails to provide us with evidence of how the structural changes and the

disconnected state affect simple physiological reactions. To clarify these

issues, it is imperative that new research should be conducted and
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concluded.

1.3.4 AD Dementia

Alzheimer’s disease accounts for more than half cases of dementia

which can be defined as an acquired and persistent generalized disturbance

of higher mental functions, such as reasoning, planning, judgment, memory

and additional thought processes, in an otherwise alert person [104].

According to the age of onset and leading etiological factors, it can be

classified into several categories. The senile demetia’s typical onset is after

65 years of age. It is an age-related condition; however, it can hardly be

distinguished from the vascular dementia. The pre-senile cases of dementia

refer to such causes as NDs, cerebrovascular disease, infections, acute or

chronic traumatic brain damage, metabolic diseases, toxic and chronic

alcoholism, nutritional deficiency, myelin disorders, primary or secondary

brain tumours, occlusive hydrocephalus.

ND is a term surrounding a wide variety of disorders that are

characterized by the progressive dysfunction and/or death of glial / nerve

cells. This leads to a typically slow and progressive disease with variable,

gradual neurologic dysfunction. Numerous classifications have been

described in the past. However, the better NDs are understood, the more

classifications shift towards focusing on changes at the biochemical level

[35]. Tau proteins (or τ proteins) – proteins that stabilize microtubules (a

part of the cytoskeleton which provides structure and shape to the

cytoplasm of cells) [110]. In pathological conditions of tauopathy, tau is

hyperphosphorylated. Other modifications include acetylation, nitration,

glycation, conformational change and C-terminal truncation [111].
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Tauopathies are a class of ND characterized by neuronal and/or glial

inclusions composed of the microtubule-binding protein, tau [111]. These

NDs derive from the pathological pathway which leads from soluble and

monomeric to hyperphosphorylated, insoluble and filamentous tau protein.

They could be inherited (mutations of genes encoding tau protein), however

there are generally non-inherited forms. Apart from molecule structure

differences, tauopathies vary in the cell types (neurons or glia) and

anatomical regions (i.e. limbic/neocortex, basal ganglia and brainstem)

most vulnerable to tau-mediated neurodegeneration. Clinically, tauopathies

can present with a range of phenotypes that include both movement- and

cognitive/behavioral-disorders or non-specific amnestic symptoms in

advanced age [111]. The distribution of pathologic accumulations of tau

proteins in ND defines the clinical symptoms: e.g., Alzheimer’s disease is a

dementing illness and Parkinson’s disease is namely a movement disorder

[110]. A major limitation for pharmacologic prevention of pathological tau

transmission is the inability to readily detect tauopathies [111].

AD is the ND which accounts for approximately 70% of all cases of

dementia. For this reason, NDs are usually classified into AD and non-AD

forms [104, 106]. MRI-derived structural patterns of cortical atrophy have

been shown to accurately track disease progression and seem to be promising

in distinguishing AD subtypes. Disease progression has also been associated

with changes in white matter tracts. Recent studies have revealed two areas

often overlooked in AD, namely the striatum and basal forebrain with more

focal atrophy, although the impact of these changes regarding cognition is

still unclear [106].

Brain atrophy assessed on structural magnetic resonance imaging
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(MRI) has been demonstrated as a valid marker of AD-related

neurodegeneration at the late stages of the disease [106]. However, reliable

means of identifying cognitively-normal individuals at higher risk to

develop AD are more likely to derive from psychophysiological testing

(e.g., event-related potentials) [112]. So, the full understanding of the

pathophysiological mechanisms underlying AD- and MS-related functional

impairment of the brain and its structural bases remains incomplete [113].

1.3.5 Other Types of Dementia

Dementia with Lewy bodies (or Lewy body dementia) is the second

most common type of progressive dementia after Alzheimer’s disease

dementia. Protein deposits, called Lewy bodies, develop in nerve cells in

the brain regions involved in thinking, memory and movement (motor

control) [114].

Parkinson disease is a ND which mainly affects the motor system.

It is more common in men (1:3.5) and women have a lower rate of decline.

The official data by the department of measurement and health information

of the World Health Organization (WHO) allow us to compare the burden

which Parkinson’s disease (PD) and AD put on the society. For instance, in

the UAE, age-standardized disability-adjusted life year was 584 for AD and

61.1 for Parkinson’s Disease in 2016 [115]. From the 2016 annual report of

the GBD 2016 Dementia Collaborators, high-income countries such as the

United States of America (USA) and the United Kingdom (UK) had a higher

rate of AD per 100 000 population: 1278 in the UK; 1247 in the USA. In the

UAE, the rate of the disease was 110 per 100 000 people [116]. For PD, the

prevalence was just 26 in the UAE, 176 in the UK and 218 in the USA per

242424



per 100 000 population in the same year [117].

Life expectancy is constantly increasing in the UAE [118]. This

contributes to the rise of ND morbidity, but the summary death statistics do

not claim NDs as a common cause of death. Both dementia and PD are rated

to 0.7 cases of death per 100 000 population according to the Global Burden

of Disease study in 2016 [119]. The numbers for the UK are 46.7 and 9.09

respectively. However, even drug use disorders which are non-typical for

the population of the UAE are responsible for much more cases of mortality

according to the same source of the statistical data: 8 cases per 100 000

[119].

Frontotemporal dementia (FTD) is a class of disorders characterized

by the loss of nerve cells in the frontal and temporal lobes of the brain. These

lobes decrease in volume and as a result behavior, demeanor, language, and

mobility can all be affected by FTD [120]. Depending on whatever section of

the brain is affected, the signs and symptoms will differ. Some patients with

FTD have major personality changes, becoming socially inept, impetuous,

or emotionally apathetic, while others lose their capacity to communicate

effectively [120]. FTD is sometimes misdiagnosed as a mental illness or

AD. FTD, on the other hand, tends to strike at a younger age than AD. FTD

usually develops between the ages of 40 and 65, however it can sometimes

develop later in life. FTD is responsible for 10% to 20% of all dementia

cases [120]. There are common types of FTD, such as Frontal variant (affects

behavior and personality) and primary progressive aphasia (affects ability to

communicate or understand the language).

Myelin disorders (e.g., multiple sclerosis, leukodystrophy) are

myelin sheath abnormalities or a myelin breakdown (demyelination)
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resulting either from a primary attack on myelin sheath or the

oligodendrocyte or simultaneously [121]. Cognitive decline also occurs at

the late stages of the diseases.

Vascular dementia – is a general term describing dementia caused by

impaired blood flow to the brain, e.g., multi-infarct dementia, arteriosclerotic

dementia, global hypoxia/hypoperfusion, vasculitis [104].

Dementia Resulting From Traumatic Brain Injury is a long-term

consequence of traumatic brain injury. According to estimates, 2% of the

US population has long-term disability as a result of a previous traumatic

brain injury, with percentages significantly higher in underdeveloped

nations [122]. Multiple epidemiologic studies demonstrate that having a

traumatic brain injury in early or midlife is related with an elevated risk of

dementia in later life, making dementia one of the most feared long-term

outcomes of traumatic brain injuries [122].

1.3.6 Structure-Function Association

Studying the relationship between a system’s structure and actions

provides an understanding of the normal brain and body function, enabling

more effective diagnostics and treatment of abnormal or disease states. To

enhance the diagnostics one may use an innovative approach to data

analysis by incorporating newly developed ML methods into

computer-aided diagnosis systems. This may give an insight into the

importance of specific data features and calculate the weights of potential

predictors. The proposed solution should be based on state-of-the-art

methods, which will allow us to assess overall functioning at the level of

organ systems and the whole body. To become a popular tool for screening
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dementia, a test must comply with physiology of brain changes across the

life. The optimal solution consists of the following steps. The first one is

investigating possible new causes of aging. The second step is testing

reliability in a healthy population. And the third step is testing in patients

with emergent dementia [77].

Researchers have gathered diverse information, but have not yet

been able to develop a general theory. They have concentrated on diverse

aspects of cognitive aging that focus on changes in EF, memory, and

linguistic abilities and knowledge. However, all these processes cannot be

addressed in a single study. To date, no systematic analysis or review has

produced a well-defined theoretical approach that could be easily put into

practice. The diagnostics of NDs is challenging, since neither structural

signs nor functional tests are sensitive enough or specific. Thus, a long list

of unresolved issues remains to be covered. First, despite the well-known

advantages of multimodal diagnostics it has not yet been incorporated into

screening for early-stage dementia. Second, there is no reliable tool to

predict whether pre-dementia will progress. Third, it is impossible to

perform the differential diagnostics of exact ND with non-invasive tests.

For instance, the early differential diagnosis between MCI due to AD and

MCI due to other ND conditions is particularly challenging in clinical

settings. To improve the current situation, we propose a combined analysis

of structural findings and functional data. The best way to carry out such

analysis is to apply ML [123]. The strengths and limitations of brain

structural and functional assessment are briefly discussed below. As seen

from the references, there is no agreement between authors on which

non-invasive diagnostic modality is most promising for screening purposes.
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We chose to focus on multimodal diagnostics to benefit from both types of

data.

1.3.7 Functional Tests for Cognitive Assessment

Physicians can use functional tests to improve early diagnostics of

NDs, but such tests have multiple disadvantages. They are time-consuming;

they require a special testing environment to keep the subject focused; and

there is no understanding of the pathophysiological mechanisms underlying

cognitive decline whose structural bases are not studied well [124].

However, psychophysiological, and cognitive tests and evoked potential

studies can detect purely pre-symptomatic stages of dementia. Many

models of developing dementia include cognitive test scores as predictors

[125]. The most widely employed cognitive tests are the MMSE [126],

Alzheimer’s disease assessment scale cognitive subscale (ADAS-cog)

[127], Rey auditory-verbal learning test (RAVLT) [128], digit symbol

substitution test (DSST) [129], trail making test (TMT) [130], clinical

dementia rating (CDR) [131], logical memory tests, and immediate and

delayed recall test [132].

When combined with structural data to form a multimodal

diagnostic tool, cognitive tests identify NDs more reliably [133, 134]. Few

studies have focused on the prediction of cognitive status from brain

structural images (see Table 1.2). Some authors have predicted MMSE

scores from resting state functional MRI scans of patients with AD [135].

Others have calculated MMSE, ADAS-cog, and CDR scores from structural

MRI images [136]. Prediction of results in tests that reflect a lower number

of cognitive domains (e.g., RAVLT) was less accurate than in tests covering
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a larger set of domains (ADAS or MMSE). One research team predicted

MMSE and ADAS-cog scores with a model which integrated

spatial-temporal features of the brain received from MRI findings [137].

Recent studies have provided an insight into the neurophysiological and

morphological characteristics of the brain in patients with dementia

[133, 134, 135, 136, 137]. However, the clinical utility of the proposed

models remains limited.

1.3.8 Brain Morphology Studies with MRI

Structural MRI is a valid marker of the late stages of AD [138],

however, at an early stage, it is not particularly revealing of the difference in

the brain’s structural change in normal and accelerated aging. For this

reason, some authors believe that electrophysiological diagnostics (e.g.,

event-related potentials) can be used to reliably identify those at risk of AD

[125, 139]. Contrarily, there is evidence that neuropathological changes can

be detected through neuroimaging much earlier than cognitive decline

becomes apparent [140]. The level of age-related brain change differs

markedly between people, according to structural MRI studies [141].

Inconsistencies in the onset and rate of episodic memory loss in the elderly

have been discovered in studies on brain functioning. Inherited and lifestyle

factors may account for these discrepancies. There is no direct link between

structural and functional impairment. Researchers have attempted to

discover the structure-function relationship in the brain through advanced

methods of neuroimaging and have shown the importance of visual rating

scales, volumetric assessment, and structured reporting [124, 142].

A few brain regions are vulnerable to atrophy in NDs, namely the
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hippocampus, amygdala, entorhinal cortex, fusiform gyrus, putamen, and

medial temporal lobe. The aforementioned structures are neural centers

responsible for learning, memory, navigation, processing information,

emotions, behavior and time perception. Some authors have studied the

brain at the macrostructural level. With MRI, they have assessed the

enlargement of gray matter (GM), WM, ventricles, and accumulation of

WM lesions that show up as hyperintense areas in the T2-weighted

sequence [143, 144]. Other research has focused on the microstructural

effects of NDs, such as neuronal death and the accumulation of β -amyloid

and τ-protein in the hippocampus [145, 146]. The macrostructural

characteristics of the brain (tissue volumes) can be identified with MRI and

used for screening for NDs. Microstructural characteristics (tissue

organization) serve as the gold standards of diagnostics.

1.3.9 Machine Learning Methods

Processing biomedical images with ML techniques is a field of

ongoing study [147]. It has already been demonstrated that ML may be

used to investigate the link between morphological and functional changes

in the brain. [123]. Numerous conventional ML and DL methods have been

proposed to distinguish AD patients from cognitively preserved people

using structural MRI data [8]. For instance, Altaf et al. used a combination

of textures (i.e., a gray level co-occurrence matrix) and clinical features

(i.e., MMSE) to predict the final diagnosis [148]. Ahmed et al. resorted to

the bag-of-visual-words approach to generate a unique signature of an

individual brain from the hippocampus and posterior cingulate cortex [149].

Khedher et al. analyzed tissue-segmented MRI (i.e., WM and GM images)
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to diagnose AD at early stages [150]. Other authors have used slices or 2D

patches extracted from T1-weighted (T1w) MRI as predictors in designed

2DCNN models [151, 152, 153, 154]. Recently, 3D patches extracted from

MRI were used to segregate healthy individuals from patients with MCI or

AD [155]. The authors extracted voxels corresponding to the hippocampus

and used them as an input to a 3DCNN classification model [156]. 3D

images of the whole brain also served as an input to 3D subject-level CNNs

[152, 157, 158, 159, 160, 161, 162, 163]. Qiao et al. used a 3DCNN with

sharing weights to extract the features from MRI, followed by multiple

sub-networks which transformed the MMSE regression models into a series

of binary classification models[162]. We presume that new findings on the

brain SFA may foster further research on earlier detection and treatment of

NDs. The multimodal diagnostics that we are developing with ML brings

together the advantages of both morphological and functional findings.

All the methods discussed are summarized in Table 1.2. In contrast

to previous studies, we intend in the current research to find a difference

in the SFA of the brain of the healthy population and cognitively impaired

individuals. The finding may serve diagnostic purposes. The brain SFA may

have features that are specific either to cognitive deterioration in a disease or

to normal neurocognitive slowing in aging. We propose to predict a cognitive

status of the examinee from the brain MRI data and compare the prediction

with an actual result of cognitive testing. We hypothesize that the larger

the gap between the predicted and observed values, the higher the risk of

dementia. We name the difference “deviation from the model of normal

aging” (DMNA). It is supposed that this change in SFA patterns may serve

as an early sign of ND.
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Table 1.2: Recent papers about diagnostics of MCI and AD

Prediction Cognitive tests

Reference Year Dataset
Image

modality
Training
dataset

Diagnosis SFA

A
D

A
S

M
M

SE

R
AV

LT

C
D

R

D
SS

T

T
M

T

Stonnington et al. [136] 2010 ADNI + in-house MRI CN+AD ✓ ✓ ✓ ✓ ✓
Liu et al. [164] 2013 ADNI MRI CN+MCI+AD ✓
Gupta et al. [151] 2013 ADNI MRI CN+MCI+AD ✓
Payan and Montana [152] 2015 ADNI MRI CN+MCI+AD ✓
Ahmed et al. [149] 2015 ADNI MRI CN+MCI+AD ✓

Sorensen et al. [165] 2015
ADNI +

AIBL[166] +
Metropolit[167]

MRI CN+MCI+AD ✓ ✓ ✓

Li et al. [168] 2015 ADNI MRI CN+MCI+AD ✓ ✓ ✓
Khedher et al. [150] 2015 ADNI MRI CN+MCI+AD ✓
Hosseini-Asl et al. [169] 2016 ADNI MRI CN+MCI+AD ✓
Suk et al. [170] 2016 ADNI MRI CN+MCI+AD ✓

Gao et al. [171] 2017
Navy General

Hospital ( China)
CT CN+MCI+AD ✓

Zhang et al. [172] 2017 ADNI MRI CN+MCI+AD ✓
Korolev et al. [157] 2017 ADNI MRI CN+MCI+AD ✓
Cui and Liu [156] 2018 ADNI MRI CN+MCI+AD ✓
Billones et al. [160] 2017 ADNI MRI CN+MCI+AD ✓
Liu et al. [173] 2018 ADNI MRI + PET CN+MCI+AD ✓
Altaf et al. [148] 2018 ADNI MRI + PET CN+MCI+AD ✓
Lee et al. [153] 2019 ADNI MRI CN+MCI+AD ✓
Lahrimi and Shmuel [134] 2019 ADNI MRI + tests CN+AD ✓ ✓ ✓
Basaia et al. [158] 2019 ADNI + in-house MRI CN+MCI+AD ✓
Lei et al. [137] 2019 ADNI MRI CN+MCI+AD ✓ ✓ ✓
Fang et al. [174] 2019 ADNI MRI CN+MCI+AD ✓
Liu et al. [155] 2020 ADNI MRI CN+MCI+AD ✓
Wang et al. [159] 2020 ADNI MRI CN+MCI+AD ✓
Duc et al.[135] 2020 In-house rs-fMRI CN+AD ✓ ✓ ✓
Zhang et al. [175] 2021 ADNI MRI CN+MCI+AD ✓
Sathiyamoorthi et al. [176] 2021 ADNI MRI NC+MCI+AD ✓
Qiu et al. [177] 2022 ADNI+OASIS MRI CN+MCI+AD ✓
Soliman et al. [161] 2022 ADNI MRI CN+AD ✓
Qiao et al. [162] 2022 ADNI MRI CN+MCI+AD ✓ ✓
Gao et al. [163] 2022 ADNI MRI CN+AD ✓
Proposed ADNI MRI CN ✓ ✓ ✓ ✓ ✓ ✓ ✓
CDR - clinical dementia rating score [131]
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Chapter 2: Materials and Methods

2.1 Data Collection

2.1.1 Alzheimer’s Disease Neuroimaging Initiative Dataset

The data used in this study were obtained from the Alzheimer’s

disease neuroimaging initiative (ADNI) dataset [178]. ADNI1 covers 400

subjects diagnosed with MCI, 200 subjects with early AD and 200 elderly

control subjects with an age range of 55 to 90 years. For more information

about ADNI datasets, please visit the link https://adni.loni.usc.edu/ (see

inclusion and exclusion criteria at [179]). In this study, we acquired MRI

and clinical information on all the cases collected from the ADNI dataset in

a cross-sectional and longitudinal study design. This provided us with a

total of 1,421 study cases from 800 subjects (CN/MCI/AD:

28.56/25.97/45.67%; male/female: 59.47/40.53%). We collected the

following information:

• Clinical data on the final diagnosis.

• Demographic data (i.e., age, gender, ethnicity).

• Morphometric data (i.e., volumes of brain areas mostly affected by

ND).

• Results of cognitive assessment generated using the MMSE, RAVLT,

TMT (part B), DSST, and ADAS-cog tests.

• Pre-processed T1w MRI files.

ADNI data availability and ethical issues: The dataset can be

downloaded from adni.loni.usc.edu. The use agreement form was signed to

allow us access to the data.
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2.1.2 Psychophysiological Outcomes of Brain Atrophy Dataset

Psychophysiological outcomes of brain atrophy (POBA) repository

is a set of results in a battery of PTs. The battery was proposed by

Charykova et al. to screen maladjustment in athletes [180]. We examined

231 people with cerebral MRI and asked them to pass PTs. The age of the

study participant ranged from 4 to 84 years. Examinees with periodic

headaches and concern about having organic brain abnormalities were not

included in the study. Literacy was used as an inclusion criterion, which

meant that only adults who had completed at least one professional course

after graduating general education were considered. Organic brain

pathology, mental problems, head injuries, and radiological indicators of

NDs based on MRI findings were all considered exclusion criteria. The year

ranges within the age groups are described below. The number of full years

of life for the Adolescents class was less than 20 years. Young adults were

20-39 years old. The range of years of Midlife adults was from 40 to 60

years. Finally, the age of Older adults was 60 years and over. From the

comprehensive POBA dataset we acquired the following data:

• Demographic data (i.e., age, gender).

• EF testing ( simple (SVMR) and complex (CVMR) visual-motor

reaction; technique: "Reaction to a moving object").

• Wrist dynamometry and asymmetry coefficient (left and right hands

maximum muscular strength, asymmetry coefficient or a fraction of

the maximum muscular strength of the contralateral arms).

• Psychological testing (attention study technique (AST) and

interference resilience technique(IRT) with response time to visual
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interference).

• Raw T1w and FLAIR MRI scans.

POBA data availability and ethical issues: The UAEU Human

Research Ethics Committee granted ethical approval for the retrospective

analysis of data provided as standard of care (Notice Number: ERH_2019_

4006 19_11). No potentially identifiable personal information is presented

in the study. The POBA dataset is available on request from the link

https://bi-dac.com.

2.2 Research Design

Figure 2.1 offers an overview of the suggested methodology.

Research design developed for each objective is described in the following

sections.

2.2.1 Development of Machine Learning Models of Age-Related Cognitive
Decline, Study of Changes in Cognitive Subdomains

For the primary objective, we sought to improve the diagnostics of

age-related alterations in cognitive processes. The goal was to ascertain if

different executive functions deteriorate in proportion to age. By assessing

individuals without dementia, we created a series of experiments and

generated an open-access POBA dataset. The assessments and their

dependent output variables represent cognitive subdomain performance

(e.g., switching and inhibitory control, information processing speed, etc.).

Cognitive functions are hypothetically linked, and the rate of their

age-related decrease is assumed to be relatively similar. Furthermore, there

is a theory that links normal neurocognitive decline to slowed core or

computational processing, which is universal to all cognitive functions
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[181, 182]. Disproportional alterations, on the other hand, could suggest

faster brain aging.

Figure 2.1: Overview of the suggested methodology

The first sub-objective was to create new indices that measure the

ratio of functional cognitive processes during the completion of

psychophysiological tasks. We looked at the structure of the CVMR, also

known as the choice reaction, to come up with a suitable solution. The

choice reaction, like SVMR, has sensory acquisition (visual perception) and

motor responding elements. CVMR also includes the decision-making

aspect that is involved in processing an inhibitory condition that is provided
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in the task (see Figure 2.2). There is a time delay (DMT) as a result of this

procedure. In a recent study, we looked at the age-related heterogeneity of

DMT. We focused on the fraction between DMT (the switching and

inhibitory control estimate) and SVMR (the information processing speed

estimate) in this section of the investigation. The age-related dynamics of

the dependent variable of the reaction to a moving object (RMO) test,

which indicates the coordinated involvement of numerous cognitive

domains, were also examined.

Figure 2.2: Simple and complex visual-motor task estimates, and the cognitive
functions they describe during the lifespan

The second sub-objective was to determine the best number k of

separate nonoverlapping age divisions. To accomplish this, we used a

heuristic strategy based on the elbow method. The K-means algorithm used

the distortion score, or the sum of squared distances from each point to its

associated centroid, as an assessment metric for each chosen k. The
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minimal distortion score matched the ideal cutoff k value. After

determining the ideal k, we used the K-means clustering approach to

evaluate the separability measure by age group. Each cluster had a centroid,

and we calculated the number of relevant and irrelevant data points in each

group.

In the third sub-objective, we employed ML classification methods

to predict an individual’s age group based on their performance in PTs. The

40-year-old age limit was taken into account. This age is justified as a

cutoff value for the cognitive deterioration that may be detected by test

performance, according to our recent study [32]. In this case, we used

conventional ML (Gaussian NB, Gradient Boosting, Random Forest,

AdaBoost, linear and non-linear SVM, Ridge, Lasso) classification models

and trained them in the stratified 10-fold cross-validation technique.

The projected results in each fold were blended and subsequently

averaged to determine the models’ ultimate accuracy. We compared the

model performance with and without indices to predict age by evaluating

and comparing the model performance measures. We created an averaged

receiver operating characteristic (ROC) curve to assess the performance of

the predictive model. The mean area under the ROC curve (AUC),

specificity (Spec), sensitivity (Sens), and accuracy (Acc) values were also

computed. Because the sample was uniformly distributed across age

groups, these performance measures were deemed to be appropriate. For

each index used as a predictor we calculated Mean ± SD to average the

accuracy of the framework. Finally, we employed the Kruskal-Wallis test to

ascertain if the variation of accuracy for one index was significantly

different (p < 0.05) from that of other indices.
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In the fourth sub-objective, we examined if the proposed indices

could be utilized to produce a summary of the results of individual

psychophysiological testing. As a result, we employed ML regression

models to forecast the new indices’ values. We used all of the features in

the POBA dataset as predictors, excluding those that can be used to derive

the values of the indices. With the exception of the SVMR_IES variable, we

utilized the same predictors to estimate the value of the index of

performance in an SVMR and CVMR with account for accuracy (ISCA).

These features were eliminated because ISCA can be obtained using

SVMR_IES. We used mean absolute error (MAE), root mean squared error

(RMSE), and a fraction of MAE to a range of values (max−min) to assess

the quality of the regressor outcome.

2.2.2 Patterns of Brain Structural Changes in Normal Aging

We started with the first sub-objective which was to use ML

approach (regression) for the assessment of the structural alterations of the

major brain regions and to find the patterns of neurofunctional performance

in different age groups. We looked at a pairwise distribution of voxel-based

brain morphometry (VBM) results (Subsection 2.3.1) over different age

groups to achieve this sub-objective. Formulae 2.1-2.5 were used to adapt

the data to the individual’s full skull volume. We investigated variables

related to attention, reaction speed, and task switching using pairwise

distributions of psychophysiological attributes across ages. For each age

cohort and gender we presented the VBM and PT results as IQR,

Mean ± SD, and conducted the Kruskal-Wallis test to compare the

distribution of the group data across the overall cohort.
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CSF% =CSF / T IV (2.1)

iCSF% = iCSF / T IV (2.2)

GM% = GM / T IV (2.3)

WM% =WM / T IV (2.4)

WMH% =WMH / T IV (2.5)

The Ridge Regression model with a linear least-squares

optimization function and L2-norm regularisation was used to examine the

association between anatomical brain features and functional performance

across time in different life periods. We evaluated the derived linear models

for significant age-related dynamics using the t-test (a zero slope value was

taken as the null hypothesis). If the p-value for the slope was less than 0.05,

the dynamics of a variable in a given age cohort were deemed to be

significant.

In the second sub-objective, we chose the mathematical model that

best reflects the progression of anatomical and functional changes in the

brain throughout time. Several tasks were included in this sub-objective.

We looked at the relationship between the VBM, the findings of the PT, and

age. The underlying assumption was that performance in some cognitive

domains would fall linearly with age, whereas performance in other

domains would exhibit a non-linear relationship with age.

In the first part of sub-objective two, we studied both linear and non-

linear (polynomial) relationships between age, VBM, and PTs.
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f eature = f (age) (2.6)

As an independent variable, we employed the age exponent:

f eature = A ·age+B (2.7)

f eature = A ·age2 +B ·age+C (2.8)

where the feature is a value of either the functional (DMT, SVMR_mean,

CVMR_mean, IRT_mean, AST_mean, TRVI, and RMO_mean) or the

structural (e.g., the volume of CSF, GM, WM) attribute; A,B,C ∈ IR.

A regression model given in Formula 2.8 is non-linear with respect

to age. Despite this, the model remains linear for the dataset-estimated

parameters A, B, and C. As a result, we could use a linear regression (LR)

approach to fit the data for both linear and non-linear functions (refer to

Formulae 2.7-2.8). We generated a new feature matrix using polynomial

features to determine the optimal parameters for the non-linear function.

The constructed matrix was then fed into the LR model. Despite the fact

that this technique allowed us to employ high-dimensional feature spaces,

we limited the analysis to first- and second-order relationships.

In the second part of sub-objective two, we looked at algorithm

performance indicators to ascertain which model best fit the data. To

communicate changes in VBM and PTs througout life, we employed linear

and non-linear (polynomial kernel) regression models. The 95% confidence

intervals (CIs) for both the parabolic and the linear trendline functions were
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determined using the bootstrap approach. We performed a comparison of

the linear and polynomial models for generalization purposes. We used

MAE, RMSE, and R2 metrics to evaluate the model’s performance.

The third sub-objective was to contrast the kinetics of functional

and structural changes in the brain across different age cohorts. We began by

looking at the relationship between cognitive performance and volumetric

brain data. We did this by calculating correlation coefficients across the full

study cohort’s data. Subsequently, using the t-test, we looked for statistical

difference between the slopes in age cohorts in the linear models of brain

anatomical and functional changes.

2.2.3 Patterns of Brain Structure-Function Association Indicative of Mild
Cognitive Impairment and Dementia

First sub-objective: We assessed changes in the cognitive and

neurophysiological test scores in normal and accelerated aging. We

explored the age-related variability of cognitive scores in the tests most

commonly used either to diagnose MCI and dementia or improve the

accuracy of multimodal diagnostics. The first group of tests included

MMSE and ADAS-cog which reflect global cognitive functioning. The

second group of tests covered a few cognitive domains, i.e., information

processing in DSST, memory in RAVLT, and information processing in

TMT (part B). To present the change in test scores with disease progression,

we built linear trendlines for the cognitively preserved group and patients

with MCI or dementia.

Second sub-objective: We built regression models predicting

functional performance in cognitive tests from brain radiomics. The

vulnerability of distinct neuronal cells to atrophy in accelerated aging

424242



differs among cell groups and brain regions. Reasonably, SFA are

considered to have pathology-specific features. Therefore, we trained the

regression models on each study cohort separately. The input to the model

was the data acquired from VBM and surface-based brain morphometry

(SBM). The VBM is a computational approach to neuroanatomy that

measures the differences in local concentrations of brain tissue through a

voxel-wise comparison of multiple brain images. The SBM is a

complementary structural imaging analysis for quantifying GM

abnormalities. The feature selection technique allowed us to identify the

most valuable structural neuroimaging measures. The models reflect SFA

patterns which are unique for each study cohort. We also looked for

significant correlations between cortical parcellation volumes and test

scores in the cohorts to investigate neuroanatomical differences in relation

to cognitive status.

The third sub-objective was to assess the diagnostic value of the

proposed models. We classified individual findings according to the model

which best described the case, i.e., the model with the minimal absolute error

in prediction in identifying the CN, MCI, or dementia group. In this case, the

ML model trained on the cases of CN, MCI or Dementia groups describes

a disease-specific SFA pattern. The pattern serves as a unique "stamp" of

the disease on which the model was trained. Therefore, one can find the

"stamp" which best fits the case. To boost the performance of the multigroup

classification, we employed the model blending technique. As an ensemble

algorithm, we chose the majority voting method. Since it required an odd

number of constituent classifiers, we selected the three most accurate models

which predict results in MMSE, ADAS and RAVLT.
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2.2.4 Improving Screening for MCI and Dementia

The first objective was to conduct a comparative analysis of the

brain structure and function in CN subjects, and MCI and AD groups. We

used non-parametric statistical methods to assess the separability of the

three groups, namely the Kruskal-Wallis test for continuous data and the

Chi-square test for quantitative features.

The second sub-objective was to propose a new marker of

accelerated cognitive decline. In line with the hypothesis of this objective,

we proposed to predict the cognitive status of a cognitively preserved

examinee from brain MRI data and used the SFA model. Then we applied

the SFA model to the findings of the study group. When the findings of a

scanned individual did not fit the standard SFA model, accelerated aging

was suspected. We calculated the deviation from the model of normal aging

(DMNA) as the error of cognitive score prediction (see Formula 2.9).

DMNA = ypredicted − yactual (2.9)

where y is a result of the cognitive test.

Modeling cognitive performance from MRI is a complex problem.

To reduce its computational complexity, we transformed MRI images into

two-dimensional data (see Subsection 2.3.2). Then we designed a CNN

model and trained it on images of CN individuals. To generalize the model

to a true rate error, we utilized the five-fold cross-validation technique. As

an input, we used the pre-processed MRI data, both 3D and 2D (D(CN)
axial ,

D(CN)
coronal ,D

(CN)
sagittal). The output variables were the results of the following
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cognitive tests: MMSE, RAVLT, TMT (part B), DSST, and ADAS-cog.

After the prediction of cognitive performance we calculated DMNA (see

Formula 2.9).

The third sub-objective was to justify the reliability of DMNA. It

was a three-fold task. First, we employed non-parametric statistical tests to

compare the DMNA values of the CN group with those of MCI and AD

patients. Second, we created ML models that distinguished the following

study cohorts by DMNA values: CN people from patients with MCI, and

the latter from those with AD. The models were trained with the ten-fold

cross-validation technique. Finally, we evaluated their performance. The

performance of the regression models was expressed as MAE. The accuracy

of the classification model was assessed with Sens, Spec, F-measure, ROC,

AUC, Acc and balanced accuracy (BAC).

The fourth sub-objective was two-fold. In the first part of

sub-objective four, we tested whether the proposed marker could

prognosticate the conversion of pre-dementia to dementia. To find the cases

of stable and progressive MCI, we carried out an exhaustive search of all

longitudinal studies: ADNI1, ADNI2, ADNI-GO, and ADNI3. Then, we

built the conventional ML model segregating the cases according to

stability/progression. We used DMNA in MMSE and ADAS-cog as more

reliable predictors because the tests covered the global cognition

functioning. To compare the distribution of DMNA in two groups, we

applied the non-parametric Kruskal-Wallis test. We also assessed the Sens

and Spec of the model, classifying MCI cases as stable or progressive. The

second part of sub-objective four was to check whether DMNA could

differentiate cognitive decline due to AD from other NDs. To address the
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research question, we used ATN criteria [183] and adopted a two-step

analysis. Firstly, we dichotomized each biomarker category as either

normal (-) or abnormal (+) with the following cutoff thresholds. A case was

considered as A- if the CSF concentration of β -amyloid was higher than

81/ml [184, 185], as T- if the level of τ-protein was less than 56 pg/ml

[184, 186], and as N- if the uptake of fluorine-18 deoxyglucose was larger

than 1.21 [187]. Secondly, we classified all the cases with MCI and

dementia into groups and calculated mean values of DMNA for them.

Finally, we identified the difference in DMNA between demented

individuals with Alzheimer’s continuum (A+) and those with either normal

AD biomarkers or non-AD pathologic change (A–). Figure 2.3 shows the

general idea of the proposed SFA model, and Figure 2.4 illustrates the

proposed framework.

Figure 2.3: Preparation and application of the proposed SFA model to clinical
practice
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Figure 2.4: Pipeline of proposed framework

2.3 Methods

2.3.1 MRI Acquisition and Brain Morphometry

In ADNI dataset brain images were obtained with 1.5 or 3 Tesla

scanners. The detailed information about MRI acquisition can be found from

the link http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition. In POBA

dataset brain images were acquired with a 1.5T MRI scanner. The structural

acquisition settings were as follows. 3D-T1w images had 1 mm voxel size.

The scanning matrix was 224 × 256. TE was 6.21 ms, and TR - 13 ms [188].

The FLAIR sequence had a 4mm slice thickness. The scanning grid was 260

× 320. TE was 104 ms, and TR - 9,130 ms. We used FLAIR for measuring
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WM hyperintensities (WMHs) (see Figure 2.5).

Figure 2.5: Brain MRI changes throughout 4 stages marked from A to D:
adolescence, early adulthood, middle, and old age. T1w sequence with isometric
(3D) vowel is used to reconstruct sagittal and coronal views; FLAIR sequence is
used to retrieve axial images

VBM was employed to quantify the brain structural changes. Then

we calculated volumes of WM hyperintensities and the following
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structures: interventricular CSF, hippocampus, putamen, caudate nucleus,

amygdala, WM, enthorinal cortex, fusiform gyrus, middle temporal lobe,

GM, cortical GM and total intracranial volume. The segmentation of the

brain into its major compartments (WM and GM, SCF) was done as below.

We applied the 12-th version of the computational anatomy toolbox

(http://www.neuro.uni-jena.de/cat/) for the statistical parametric mapping

software (http:// www.fil. ion.ucl.ac.uk/spm/) [188]. We resorted to the

lesion segmentation toolbox LST v2.0 to segment the changes in

FLAIR-hyperintense WM lesions [189, 190]. Subcortical, cortical and

parcellation volumes were computed with FreeSurfer 7.1.0 software [191].

We resorted to Desikan/Killiany atlas as a reference. All morphometric

features were expressed as percentage to the total intracranial volume and

used as an input to the ML model predicting the cognitive scores.

2.3.2 Data Pre-processing

All the retrieved images passed through grad-warping and intensity

correction and were scaled to gradient drift with the phantom data (for more

details, see [178]). The pre-processed T1w structural MRI images were

downloaded in NIFTI format. We also retrieved the corresponding clinical

data from the dataset. Then the images were registered to an MNI152 space

with FLIRT tool from FSL package [192]. As brains differ in size and

shape, each brain image was translated into a common reference space

(normalized) to ensure consistency of orientation. To correct low-frequency

intensity non-uniformity, we used N4 bias field correction algorithm [193].

Then we normalized the voxel intensities by scaling them to the standard

normal distribution parameters. To enhance the predictive performance, we
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extracted the brain parenchyma with Brain Extraction Tool from FSL

package [192]. Pre-processed 3D T1w images were downsampled to the

size of 64 by 64 by 64 pixels and used as an input to the 3DCNN models.

One of the major challenges of studies on MRI is a high dimensionality of

data [194]. We used the following approach to reduce the dimensionality.

An MRI image was defined as

I = {(vx,vy,vz) : x = 1,X ,y = 1,Y ,z = 1,Z}, (2.10)

where X ,Y ,Z were the dimensions of the MRI scan in axes x, y and z.

Then the jth sagittal, coronal or axial slice s of the I image could be

defined as:

s( j)
sagittal = ( j,vy,vz),s

( j)
coronal = (vx, j,vz),s

( j)
axial = (vx,vy, j) (2.11)

The corresponding averaged images were generated as follows:

Isagittal =
1
X

X

∑
i=1

s(i)sagittal

Icoronal =
1
Y

Y

∑
i=1

s(i)coronal

Iaxial =
1
Z

Z

∑
i=1

s(i)axial

In this way, we averaged voxel intensities along the sagittal,

coronal and axial axes and created two-dimensional datasets Daxial , Dsagittal ,
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and Dcoronal:

Daxial = {I1
axial, I

2
axial, ..., I

N
axial}

Dsagittal = {I1
sagittal, I

2
sagittal, ..., I

N
sagittal}

Dcoronal = {I1
coronal, I

2
coronal, ..., I

N
coronal}

Then, we removed the background by cropping the image to the

size of the brain mask. We downsampled brain images with

nearest-neighbor interpolation to 150 by 150 pixels, normalized them to the

values between 0 and 1, and saved in JPEG format as shown in Figure 2.6.

To unify the pre-processing workflow, we used Nipype which is an

open-source community-developed initiative under the umbrella of NiPy

[195]. To automate the deployment of the applications within the software

containers, we installed Neurodocker which wraps up the aforementioned

software in a complete file system.

Figure 2.6: Skull-stripped images averaged along axial (a), coronal (b), and sagittal
(c) axes

2.3.3 Psychophysiological Tests

To assess individual psychophysiological status, we used a battery

of neurophysiological tests [180]. The battery included a variety of tasks

that tested cognitive areas such as attention and EF, with an emphasis on the
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inhibitory control and task switching and subdomains. The tests facilitated

an evaluation of information processing speed. We modelled changes in the

dependent variables listed below throughout the course of a lifetime [188]:

• Simple visual-motor reaction (SVMR) is a test in which the only way

to respond is to look at a single form of visual stimulus. The

information processing speed is reflected by the mean reaction time.

SVMR_mean is calculated in a group of successive attempts.

• Complex visual-motor reaction (CVMR) is a “go/no-go” test. In this

test the participant must choose between two different types of

triggering stimuli. The mean reaction time is typically longer than in

the previous test (CVMR_mean > SVMR_mean). One can calculate

the decision-making time (DMT) by subtracting the SVMR_mean

from the CVMR_mean (see Formula 2.12). Task switching and

inhibitory control is reflected by DMT.

• Attention study technique (AST) is a variant of SVMR that includes

the attention domain. In AST, however, the participant must maintain

a constant gaze on the display screen because triggering stimuli are

delivered at various times. The average reaction time (AST mean) is

recorded by the tester.

• Interference resilience technique (IRT). The participant is instructed

to reply to targeted stimuli while ignoring interfering stimuli. The

last ones overlay and obscure the target. The average reaction time

is recorded by the tester - IRT_mean – of a set of attempts. Formula

2.13 determines time delay because of visual interference value. Its

acronym is TRVI. TRVI reflects inhibitory control and task switching.
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• Reaction to a moving object (RMO) is a method for determining a

balance of inhibition and excitation in the central nervous system. The

test’s mean reaction time (RMO_mean) reveals whether the excitatory

or inhibitory processes are dominant. We also looked at the variance

in reaction time across attempts (RMO_variance).

• To determine the maximum muscular strength of the hands we

employed wrist dynamometry. Asymmetry coefficient (AC) was

computed as the ratio of the maximum muscular strength of the right

wrist (WDR_MMS) and the left (WDL_MMS) wrist (see

Formula 2.14).

DMT =CV MR_mean−SV MR_mean (2.12)

T RV I = IRT _mean−AST _mean (2.13)

AC =
WDR_MMS
WDL_MMS

(2.14)

2.3.4 Cognitive Tests

The purely pre-symptomatic and early stages of dementia are likely

to be identified by PT. The existing dementia risk models mainly comprise

demographics, subjective cognitive complaints, lifestyle factors, health state

estimates, and other variables [125]. Cognitive test scores or

neuropsychological test batteries are incorporated as predictors into many

models of developing dementia.

Alzheimer’s disease assessment scale, cognitive subscale (ADAS-

cog). ADAS-cog is an informative tool for monitoring the progression of
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ND in clinical routine practice [196]. The test distinguishes between MCI

and mild AD with a sensitivity of 0.86 and a specificity – 0.89 [197]. It

can also identify “questionable dementia,” as its results in immediate recall

and object naming tasks correlate with performance in the Category Verbal

Fluency Test [198]).

The Mini-mental state examination (MMSE) is the most common

method of diagnosing cognitive impairment in a single domain or multiple

domains [199]. Although it detects various types of dementia with a high

sensitivity and specificity (over 90%), the test should be accompanied by a

full and detailed assessment of the patients [200]. For this, clinicians use

neurophysiological tests (e.g., TMT, DSST) [201].

Trial making test (TMT). The primary purpose of the TMT is to

provide information about neurophysiological conditions; therefore, it is

used to diagnose NDs in combination with other tests and diagnostic

modalities [201, 202, 203]. Its clinical implication is multifold. First, TMT

helps to define the impaired cognitive domain and improves the assessment

made with MMSE or MoCA [201]. Second, there is evidence that the

inclusion of TMT (part B) boosts the performance of the models

discriminating AD from non-AD MCI based on CSF and structural

biomarkers [204]. Third, the test can sensitively distinguish a case of mild

AD from amnestic MCI and healthy aging [205].

The Rey auditory verbal learning test (RAVLT) examines verbal

learning and memory. It is capable of detecting cognitive impairment in

multiple sclerosis [206]. The test differentiates between AD dementia and

behavioral variants of fronto-temporal dementia [207] with a high

sensitivity and specificity (over 81%). It also helps physicians to distinguish
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AD from Lewy body dementia [208].

The Digit symbol substitution test (DSST) identifies early stages

of dementia [209] and MCI by detecting working memory impairment and

multimodal amnesia [210]. It also shows significantly impaired performance

in early Lewy body dementia [211].

2.3.5 Machine Learning

Objective 1: To determine the best number k of separate

nonoverlapping age divisions we used a heuristic strategy based on the

elbow method. The K-means algorithm used the distortion score, or the sum

of squared distances from each point to its associated centroid, as an

assessment metric for each chosen k. The minimal distortion score matched

the ideal cutoff k value. After determining the ideal k, we used the K-means

clustering approach to evaluate the separability measure by age group. Each

cluster had a centroid, and we calculated the number of relevant and

irrelevant data points in each group. To predict an individual’s age group

based on their performance in PTs we used several classification

algorithms, such as support vector machines [212] with linear and nonlinear

(radial basis function) kernels, Gaussian Naive Bayes [213], Bagging

meta-estimator [214], an extra-trees classifier [215], a random forest

classifier [216], Gradient Boosting [217], AdaBoost [218]. Classification

models were trained with the stratified 10-fold cross-validation technique.

Objective 2: The Ridge Regression model with a linear least-squares

optimization function and L2-norm regularisation was used to examine the

association between anatomical brain features and functional performance

across time in different life periods. A regression model given in Formula 2.8
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is non-linear with respect to age. Despite this, the model remains linear for

the dataset-estimated parameters A, B, and C. As a result, we could use a

linear regression (LR) approach to fit the data for both linear and non-linear

functions (refer to Formulae 2.7-2.8). We generated a new feature matrix

using polynomial features to determine the optimal parameters for the non-

linear function.

Objective 3: We employ conventional ML regression models

predicting functional performance in cognitive tests from brain radiomics.

We trained the regression models on the three study cohorts separately (CN,

MCI, dementia). The predictors of the model were the data acquired from

voxel- and surface-based brain morphometry. The models reflect SFA

patterns specific for each study cohort. We also looked for significant

correlations between cortical parcellation volumes and test scores in the

cohorts to investigate neuroanatomical differences in relation to cognitive

status. Finally, to assess the diagnostic value of the proposed models

classified individual findings according to the model which describes the

case best. The idea was that the ML model, when trained on the cases of

this of that group, describes a disease-specific SFA pattern. The pattern

serves as a "stamp" of the disease on which the model was trained.

Therefore, one can find the "stamp" which fits the case best. We employed

the majority voting technique to assess the performance of the multigroup

classification.

Objective 4: To predict cognitive scores from structural data, we

developed 2D CNN and 3D CNN regression models. 2D CNN: In the

proposed CNN regression model, six convolution layers were followed by

two fully connected dense layers. L2 regularization technique with penalty
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and α = 0.0001 was employed. Network was trained for 200 epochs or

until convergence with RMSProp optimizer. To optimize a learning rate

hyperparameter we monitored the validation loss during the training

process. When the metric stopped improving for 10 continuous epochs, we

reduced the learning rate value by a factor of 0.2. To optimize the training

time, we also monitored the validation loss. If it did not decrease for 20

continuous epochs, we terminated the training process. In this case, 20% of

the training data were used for validation purposes. The model was trained

on the CN cohort in the five-fold cross-validation technique. There were

several arguments in favor of the necessity to train the models of SFA on

non-demented cases exceptionally. As the model reflected the brain SFA of

the healthy controls, it could be used as a reference norm. If trained on a

mixed cohort of healthy individuals and patients, the model would fail to

identify patients out of the reference range and would lose its diagnostic

value. The trained model from the last fold was tested on MCI and AD

groups.

For each case we obtained 2D images by averaging brain MRI in

three planes: axial (A), coronal (B), and sagittal (C). We could use these

either separately or in combination. For the combined approach we used

both options: data and model blending. The first was fusing predictions,

which was an ensemble estimator or voting regressor that averaged model

outcomes. The second was model blending. We trained the LR model on

the outcomes of three CNN models trained on axial, coronal, and sagittal

averaged images. As an input, we used the pre-processed MRI data (D(CN)
axial ,

D(CN)
coronal ,D

(CN)
sagittal). The output variables were the results of the following

cognitive tests: MMSE, RAVLT, TMT (part B), DSST, ADAS-cog.
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3D CNN: We also developed a 3D CNN model and trained it on

images of CN individuals from the ADNI dataset. Pre-processed 3D T1w

images were downsampled to the size of 64 by 64 by 64 pixels and fed to

the regression model. The model consisted of four convolutional layers

followed by max pooling. Then, global average pooling was applied,

followed by a fully connected layer. We used an Adam optimizer and

trained the network for 100 epochs or until convergence. To optimize the

learning rate hyperparameter we monitored the validation loss during the

training process. When the metric stopped improving for 10 continuous

epochs, we reduced the learning rate value by a factor 0.2. To optimize the

training time, we also monitored the validation loss. If it did not decrease

for 20 continuous epochs, we terminated the training process. The data

were randomly split into training (80%) and testing (20%) subsets. Hence,

20% of the training data were used for validation purposes. To increase the

number of training samples, we applied the rotation augmentation

technique with the following angles: -25,-20, -10, -5, 5, 10, 20,25. The

outcomes of the predictive algorithms were the results of mental status tests

such as MMSE, RAVLT, DSST, ADAS-cog, and TMT (Part B). We

compared the distribution of the DMNA absolute values in the healthy

population and patients with MCI and Dementia. Moreover, we calculated

95% confidence intervals (CIs) for DMNA values using the t-test. To

control the familywise error rate related to multiple comparisons we

employed the Bonferroni correction. All statistical tests were performed in

Python v. 3.6.9 with SciPy v. 1.16.4 library [219].

To determine a diagnosis from DMNA values, we employed nine

conventional ML classifiers (SVM linear and non-linear, Gaussian NB,
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Extra Trees, Bagging, Random Forest, Logistic Regression, Ridge

Regression, Neural Network). DMNA values were obtained from (i)

skull-stripped brain images averaged along the axial, coronal, and sagittal

axes; (ii) skull-stripped 3D brain images. The ML models were evaluated

with the ROC AUC metric.

The experimental work was performed on a Linux Ubuntu 18.04

Nvidia DGX-1 deep learning server with 40 CPU cores and 8x NVIDIA

Tesla V100 GPU with 32 GB memory each, accessed with a web-based

multi-user concurrent job scheduling system [220]. The tensorflow-gpu

v.2.3.1 library was utilized to implement the proposed solution.
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Chapter 3: Results and Discussions

3.1 ML Models of Age-Related Cognitive Decline

3.1.1 Estimates of the Proportional and Disproportional Changes in
Cognitive Domains

We introduce the index of simple reaction time to decision-making

time (ISD), which is derived from the analysis described in section 2.2.1

[77]. The index represented the proportion of processing speed to decision-

making time (see Formula 3.1). The time estimates were susceptible to age-

related neurocognitive loss; nevertheless, there is no convincing evidence

that the rate of decrease is equal across cognitive areas. As a result, the

derivative variable might be used to track any disproportional deterioration.

ISD =
SV MR_mean

DMT
(3.1)

The ISD index takes into account two markers that make up the

visual-motor task’s reaction time under the switching situation. It is

inherently flawed in that it fails to take performance accuracy into account.

As a result, we presented a supplemental derivate variable, the index of

simple reaction time to decision-making time with accuracy performance

(ISDA) [77]. The proposed index, in comparison to the previous one,

includes the fraction of accurate responses in the denominator (see

Formula 3.2).

ISDA =
SV MR_mean

DMT × (1−CV MR_mistakes,%)
(3.2)
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Calculating the inverse efficiency score (IES) for each of the tests

independently and then computing the ratio between these tests represents a

further technique to integrate the speed and accuracy estimations of SVMR

and CVMR. As a result of this solution, we determine the index of

performance in simple and complex visual-motor reactions with account for

accuracy (ISCA) per Formula 3.3 [77].

ISCA =
IESSV MR

IESCV MR
=

SV MR_mean× (1−CV MR_mistakes,%)

CV MR_mean× (1−SV MR_mistakes,%)
(3.3)

Index of Simple Reaction Time to Decision-Making Time: We did

not plan to evaluate all potential ratios of performance indicators in distinct

cognitive tasks in this current research. Our objective was to demonstrate

the approach’s efficacy when testing multiple domains and estimating their

correlated divergent changes.

From the encoding of a provided stimulus to the execution of a

response, reaction time covers a sequence of linked processing activities.

Regrettably, response time does not display each of these transactions

individually; instead, it is limited to a total time length. Some researchers

have proposed that the transactions can be measured sequentially utilizing

the time latency of evoked potentials [221]. Our strategy was to employ a

battery of tasks with the following characteristics. We created a range of

tests in which the testing modalities (SVMR and CVMR) contain the

identical perceptual and motor response components, but the central

processing differs. We adopted this approach as opposed to assessing

reaction time in a single task or utilizing divergent tasks (DMT). This

allowed us to investigate Birren et al.’s complexity hypothesis, which states
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that neurocognitive degradation is limited to central nervous system

processing. The extent of deterioration increases as the task complexity

increases [181, 182]. However, this is true for non-lexical activities, but not

for word processing tasks, where slowing is unrelated to complexity

[77, 221].

The strong form of the complexity theory is supported by the

findings of the current study. According to the strong version, all aspects of

information processing (such as reasoning, perception, and response)

diminish in the same pace. The ISD index remains steady as the amount of

time spent thinking in CVMR decreases over time at the same rate as the

total of the receiving, encoding, and reacting elements. On a population

basis, this keeps the the proportion of DMT and SVMR_mean steady

throughout lifespan on a population scale.

The strong form of the complexity theory offers several advantages.

It backs up the theory that age-related impairment is linked to a general

slowing of processing speed rather than specific information processing

components aspects. It also makes it much easier for neuroscientists to

identify brain structure-functional correlations as individuals age [221].

This is consistent with prior research [221] that used reaction time as an

aggregate measure of processing speed.

The complexity hypothesis’s weak version asserts that the severity

of the deterioration in perceptual, motor, decision-making, or attentional

processes might vary. Some researchers have found that "age-related

slowing in simple repetitive tasks is mainly related to slowing at the stage of

perceptuomotor processes, and after 60 years, to additional decline in

attention" [222]. The length of the transactions linked to acquisition of
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stimulus and processing of response should be measured using an

event-related potentials approach in future studies.

Supplying ISD with Performance Accuracy (ISDA): In the CVMR

test, DMT stands for the time it takes to inhibit an automatized activity and

transition between tasks. The percentage of choosing and perceptive motor

elements of choice RT is indicated by the SVMR to DMT ratio. The

cognitive demands of the decision and perceptive-motor components of

CVMR are distinct. We can ascertain whether age-related neurocognitive

impairment begins with cognitively demanding behaviours (task switching)

or includes both intellectual and nonintellectual processes (generalized

slowing) by comparing them.

We provided the ISD index with the accuracy metric to acquire the

total efficiency of the examinee in the test (see Figure 3.2). The index’s goal

is to look at the ratio of cognitively demanding to non-demanding tasks’

processing speed while also taking performance accuracy into account.

Ratio of IES for Simple and Choice Reactions (ISCA): The IES

ratio between SVMR and CVMR reflexes is shown in the final index. The

entire efficiency of decision-making is summarised by the IES score. IES

takes into consideration several cognitive subdomains and may represent

their disproportional changes over time [77]. Some researchers have found

disparities in SVMR and CVMR evolve over time [223], but none have

found the same is the case with IES scores. The process for generating the

IES score could be one of the reasons why this has yet been done.

Neuroscientists primarily employ choice errors produced while doing

"go/no-go" tests (e.g., CVMR_false_reaction) to determine performance

accuracy. Two more types of errors were recorded by the equipment we
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used: (i) missing the desired events (e.g., SVMR_passes) and (ii) reacting

prematurely (e.g., SVMR_falstart). By adopting this approach, we were

able to compute IES for the basic vosial-motor reaction and contrast it with

the equivalent data for the complex reaction.

We believe that examining the link of IES for strongly correlated

simple and choice reactions is more informative than researching the

association of reaction time. Simple reaction time is responsible for 45% of

the variance in choice reaction time [223].

3.1.2 Optimal Number of Age Cohorts

We employed used two dependent variables (age and a novel index)

in the cluster analysis and the K-means approach to divide the data points

into groups. To identify the optimal number of homogenous clusters, we

adopted the K-means method. We discovered the most acceptable number

of groups using the elbow approach, and it was further validated by a

distortion score (the separability measure). The sum of squared distances

between each location and its allocated centroid determines the score.

Iteratively, all cluster centers (centroids) are found by optimizing

intracluster proximity while increasing the distance between data points

from different clusters. The elbow approach was applied to data points

made up of the participants’ ages and related index values (ISD, ISDA, or

ISCA).

For each proposed index, the knee point detection method [224]

returns the ideal value of clusters equal to four. The optimal number is

marked with a black dashed line in Figure 3.1, which was created for two

attributes (age and ISCA). The line in blue on the graph represents the
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distortion score values as a function of cluster number, whilst the dashed

line in green represents the time required to train the unsupervised model

per k.

Figure 3.1: Elbow approach with the knee point detection algorithm to select the
best number of clusters for the ISCA index

The age distribution of the participants in our sample was not

uniform; nevertheless, with the appropriate selection of bin width, the age

histogram can come very near to being uniform. Another source of concern

is the comparatively small number of patients above the age of 75 compared

to the number of participants under 15. To ensure that each group had a

roughly similar number of participants, we opted to count the 20-year

intervals from birth as opposed to the youngest examinee’s age.

We evaluated how accurate the clustering method is by observing

the values of the indices (ISD, ISDA, ISCA) as age-group determinants. We

investigated the age values of the points obtained by the clustering approach

by plotting them with their centroids. On the age axis, the centroids were
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relatively equally spread, with a step of around 20 years (see Table 3.1).

Because the cluster center coordinates were determined as the average value

of all the points in the particular cluster, we used the resulting age granulation

to create our groupings.

Table 3.1: Clusters based on distribution of samples over age and proposed indices

Group
Capacity

(females:males)

ISD Index ISDA Index ISCA Index

Centroid In Out Centroid In Out Centroid In Out

Adolescent 48 (19-29) 11.853 48 0 12.047 48 0 11.661 48 0
Young adults 64 (36-28) 31.302 62 2 31.600 60 4 30.075 64 0
Midlife adults 64 (39-25) 53.089 57 7 53.529 56 8 49.908 59 5
Older adults 55 (40-15) 70.647 46 9 71.018 46 9 68.274 55 0

As a result, we divided our sample into four groups: Adolescents

(below 20 years), Young adults (from 20 to 40), Midlife adults (from 40 to

60), and Older adults (above 60 years). We reported the number of points

properly identified by the clustering approach (classified column) vs.

misclassified points in Table 3.1. The best results were achieved on the

ISCA. Only five examples of adults in their forties and fifties were

misclassified as teenagers. In the POBA dataset that we collected, the ISCA

index accurately captures age-related psycho-physiological shifts [77].

We used a heuristic technique and clustering approach to choose

and justify the age cohort ranges. We subsequently ran a review to see what

biological alterations might be at play in the selection of such subcohorts.

The time intervals between the end of neurodevelopment and the

appearance and the acceleration of cognitive decline are represented by the

group boundaries.

Healthy educated adults begin to experience age-related cognitive
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changes during their 20s-30s [225]. Before the age of 20, there is a period

of rapid neurodevelopment, during which people exhibit skill acquisition,

knowledge development, and a growth in intellect. Cognitive functions

exhibit conflicting developments during the next 20 years of life. Early in

life, basic physiological cognitive functions deteriorate. As a result, early

lowering of fluid intelligence, memory, and processing speed may appear in

young adults. Simultaneously, crystallized intelligence rises [226]. The

authors of a study on simple reaction time found that consistency of

response increases with age from 8 to around 30, after which it begins to

diminish. The fastest response was recorded in people over the age of 20,

but the most consistent response in terms of time variance was observed in

people over the age of 30 [227]. Another study found a roughly similar

chronology of changes: the shortest reaction time occurs in the mid-20s of

the participants [228].

The total volume of the brain WM increases until early middle

adulthood (age 35 years or more) [229, 230]. Then there is a subsequent

period when WM volume and cognitive performance are plateaued

[229, 230]. Midlife adults’ cognitive capacities may be harmed by

neurocognitive slowdown throughout this stage of life. Neuroplasticity

induced by physical and mental exercise has been shown to reduce

alterations and improve cognitive function [231, 232]. Nevertheless, in the

middle-aged population, cognitive deterioration is already discernible

[233]. However, the precise timing of its commencement remains a point of

contention [233]. After late middle age (55–60 years), accelerated cognitive

decline commences [229, 230]. It is characterized by a significant decrease

in WM volume, while the GM volume decreases at a consistent rate
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throughout life.

3.1.3 Proportional Changes in the Cognitive Domains with Age

Figures 3.2-3.4 show a pairwise distribution of age with each

proposed index. The linear horizontal trendlines for the linear regression

model estimates with a 95% confidence interval reflect inclinations toward

maintaining a balance between cognitive functions pertaining to several

connected domains.

Figure 3.2: Distribution of ISD values throughout life

We used statistical significance tests to examine the indices’

distribution across age groups. We resorted to nonparametric statistics

because none of the indices data per the Gaussian distribution exhibited in

the Shapiro-Wilk test (p < 0.05). The Kruskal-Wallis test, which revealed

significant changes in the distribution of the four age cohorts (p < 0.05),

was used to test the null hypothesis that the cluster medians were equal.

We followed the step-down procedure to run a post hoc Dunn test

to ascertain which groups had different medians. To control the familywise
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error rate, we employed Bonferroni corrections (Holm’s step-down

approach). The median of the Adolescents group differed from the other

three cohorts’ indices values. The distribution patterns of the three

remaining groups were similar (p > 0.01). The indices maintained nearly

constant values during a period of neurodevelopmental alterations and

maturation, with a modest trend toward functional deterioration.

Figure 3.3: Distribution of ISDA values throughout life

However, the RMO test revealed a further tendency. Pairwise

comparisons of RMO_mean data revealed that the median of Midlife

adults’ group differed significantly from the remaining three age cohorts

(p < 0.01). There was no discernible trend in this dependent variable’s

age-related variations (see Figure 3.5).

Finally, the variances of the proposed indices were explored, as

well as selected psychophysiological characteristic values for various

groups. For the abovementioned values, Levene’s test demonstrated no

significant difference (p > 0.05) in the variances across age ranges.
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Homoscedasticity also backed up our theory of a steady linear relationship

between observed traits and age.

Figure 3.4: Distribution of ISCA values throughout life

Figure 3.5: Pairwise distribution of reaction time and age in RMO test

Trends in Cognitive Subdomains with Age and Proportionality of

their Changes: Table 3.2 shows the statistically significant differences in PT

performance across age groups. The study aimed to assess the possible
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association between ISD, ISDA, and ISCA; the participant’s general

psychophysiological condition; and his or her age. Furthermore, we used a

machine learning approach to estimate the examinee’s age group, i.e.,

whether he or she was under or over 40 years old. We aimed to ascertain

how well the variables produced from the test results could reflect the

individual’s whole psychophysiological state. As an individual’s

psychophysiological status changes with age, one may anticipate the

derivative indices to reflect this change as well. Our recent study [32] has

previously justified the cutoff level utilized. We investigated the latter’s

information value for such a forecast by feeding the models with values of

the novel indices. The models’ performance measures are listed on the left

side of Table 3.3.

Table 3.2: Comparative analysis of results in PTs

Total Adolescent Young adults Midlife adults Older adults
p1−4n=231 n1=48(20.78%) n2=64(27.71%) n3=64(27.71%) n4=55(23.81%)

Psychophysiological tests (performance)

SVMR_mean 260.51[219.63-285.83] 282.03 ± 70.91* 221.03 ± 28.92* 259.76 ± 55.48 288.52 ± 53.75* 1.61005e-14
SVMR_variance 69.88[41.09-80.82] 89.01 ± 73.36 49.41 ± 22.39* 67.69 ± 36.54 79.54 ± 42.92* 7.05157e-06
SVMR_mistakes 1.32[0.0-2.0] 2.69 ± 3.83* 0.83 ± 1.32* 0.62 ± 1.11* 1.49 ± 1.54* 2.8462e-06
SVMR_IES 280.06[224.94-304.73] 339.43 ± 236.3* 227.9 ± 32.9* 265.77 ± 59.02 305.56 ± 64.35* 7.00503e-15
CVMR_mean 360.77[307.45-395.57] 360.8 ± 107.74 324.89 ± 56.55* 362.64 ± 65.15 400.32 ± 71.9* 9.41694e-08
CVMR_variance 108.91[70.7-118.64] 121.55 ± 94.58 91.82 ± 80.43* 92.65 ± 30.46 136.69 ± 74.86* 2.0683e-07
CVMR_mistakes 2.87[1.0-4.0] 3.65 ± 2.45* 2.58 ± 2.81* 2.14 ± 1.75* 3.4 ± 2.26* 0.000253234
CVMR_IES 402.91[336.52-448.65] 416.17 ± 143.57 359.93 ± 81.36* 390.66 ± 66.29 455.62 ± 95.44* 5.88309e-09
DMT 100.26[63.6-122.43] 78.76 ± 52.97* 103.86 ± 48.64 102.88 ± 51.65 111.79 ± 57.81 0.00056484
RMO_mean 0.32[-18.5-31.35] -8.99 ± 69.28 -2.14 ± 54.25 12.73 ± 104.22* -3.12 ± 75.59 0.00646979
RMO_variance 167.86[84.7-224.35] 168.85 ± 103.5 111.84 ± 67.33* 158.75 ± 93.83 242.81 ± 105.18* 5.6846e-12
RMO_errors 20.95[18.0-24.0] 19.96 ± 5.22 18.14 ± 4.14* 22.22 ± 3.82* 23.62 ± 3.34* 5.24218e-11

Proportionality of changes in cognitive subdomains

ISD 3.82[1.97-4.13] 4.53 ± 2.29* 3.02 ± 2.98* 4.14 ± 4.9 3.76 ± 3.59 5.53179e-06
ISDA 4.35[2.15-4.87] 5.22 ± 2.75* 3.57 ± 4.48* 4.55 ± 5.65 4.26 ± 3.99 8.10003e-07
ISCA 0.7[0.61-0.77] 0.81 ± 0.37* 0.65 ± 0.1* 0.68 ± 0.11 0.68 ± 0.12 1.82596e-05

*Data for various age groups are provided as Mean±SD. If the distribution of performance metrics differs conciderably (p < 0.05)
from the other instances combined, its Mean±SD is denoted with an asterisk.

Identification of the proposed indices values and their predictive

potential: In this case, we intended to ascertain if the variables derived from

the test results could accurately describe the individual’s overall
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psychophysiological state. We constructed a regression model to forecast

the values of the suggested indices based on the array of PTs which

illustrates the individual psychophysiological status. The performance

metrics are shown in Table 3.3 (see on the right side). Figure 3.6 shows the

accuracy of the forecast with regard to the ratio of MAE divided by the

range of the index values in different age groups in the form of a notched

boxplot.

Table 3.3: Outcomes of the classification and regression models on POBA dataset

Binary classification models
two age groups (cutoff value set to 40 years)

Regression models

Index
predictor

Sens. Spec. ROCAUC ACC
Predicted

feature
MAE RMSE MAE

range ,%

ISD 0.7 ± 0.056 0.73 ± 0.03 0.78 ± 0.04 0.715 ± 0.29 ISD 2.15 ± 0.14 3.56 ± 0.31 7.62 ± 0.5
ISDA 0.72 ± 0.06 0.73 ± 0.04 0.8 ± 0.03 0.727 ± 0.28 ISDA 2.58 ± 0.19 4.34 ± 0.44 7.56 ± 0.55
ISCA 0.73 ± 0.04 0.73 ± 0.03 0.8 ± 0.02 0.73 ± 0.024 ISCA 0.102 ± 0.004* 0.18 ± 0.013* 3.49 ± 0.14*

*The model outcomes are represented as Mean±SD values among the following classifiers and regressors: Gradient Boosting, Random
Forest, AdaBoost, Gaussian NB, Ridge, Lasso, LR, SVM linear and non-linear. If the distribution of metrics differs significantly (p < 0.05)
from the other instances combined, its Mean±SD is denoted with an asterisk.

The distribution of the indices across age cohorts supports the

premise that ISCA more accurately reflects psychophysiological status than

ISDA or ISD. According to Table 3.3, the proportion of MAE to a range of

values in ISCA is significantly smaller (7.57 ± 0.55% in ISDA and

3.49± 0.14% vs 7.62± 0.5% in ISD; p < 0.05). In Figure 3.6, the CI and

IQR are considerably lower in all age group for ISCA compared to ISD or

ISDA.

We anticipated that one index (e.g., ISDA) might replace the PT

battery’s dependent variables. In this case, the proposed index may reflect

the psychophysiological status and serve as its marker. If this is the case,

ML algorithms can calculate its value from other PT outcomes. In Table 3.3,

the ability of PTs to predict ISCA values is demonstrated. The quality of
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models’ outcomes are excellent; the MAE to a range of values proportion

is modest (3.49± 0.14%). From our analysis, all of the ML models that

were constructed are reliable. In this example, the Random Forest regressor

performed the best (3.36%). The suggested model’s accuracy was higher

than that of a previously developed model for predicting IES scores from PT

features (3.36 – 3.77% vs 3.37 – 5.15%) [77].

Figure 3.6: Distribution of MAE to range of index values in different age cohorts

All of the age groups analyzed exhibited relatively similar

prediction accuracy. In contrast, the accuracy of forecasting IES varied with

age, with the maximum accuracy for Adolescents and a somewhat reduced

accuracy for Older adults [77]. This diminishes the IES’s dependability,

making ISCA the best index for evaluating performance in PTs and

comparing results regardless of the examinees’ age. Because it is difficult to

distinguish between normal versus accelerated aging, the index which is not

susceptible to aging may enhance current screening tools fro dementia.

Strengths and limitations of ML models of age-related cognitive

decline: The study’s known disadvantage - a relatively low number of

participants - is very usual in this type of investigation. In general, there is a

trade-off seen between the quantity of examinees in an aging study and the
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precision with which participants are chosen. The study cohort will be

smaller if the inclusion criteria are more stringent. As a result, studies on

normal aging exhibit limitations in terms of cohort size and evidence. No

providers can cover the costs of MRI, which is the gold standard of

non-invasive dementia screening in population-scale research. Some

neuroscientists use low-strength magnetic field MRI to save money on

research [234]. We presented a balanced approach based on the use of a

high-field MRI and a careful selection of research participants in this

investigation (see exclusion criteria in subsection 3.2). The study cohort

was kept small due to the need to carefully select participants who met the

inclusion criteria. At the same time, its analysis produced a degree of proof

that a population-scale survey with less stringent inclusion criteria could

never achieve [223]. Most of the existing work are done based on low

number of participants [235, 236, 237, 238, 239, 240, 241, 242] or similar

to the number of participants we considered in our experimental work

[227, 243].

In our study, we were fortunate in that each age group had a similar

number of individuals. This enabled us to construct plots that spanned the

whole population without the need for years of approximation. Previous

longitudinal studies have exhibited certain drawbacks, such as focusing on

the onset of cognitive decline and omitting people younger than middle age

[233]. People of all ages are rarely included in equal proportion in studies

with a higher number of participants [244, 245, 246].

In this circumstance, we did not evaluate the participants’

educational level beyond ensuring they met the inclusion requirements (e.g.,

literate). In the literature, there is no consensus on the subject. While some
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researchers looked at the length of time spent in school, others argued that

education, rather than other cognitive capacities, slowed the decline of

crystallized intelligence. This is why, in tests, a lower educational level

does not indicate a decrease in cognitive speed, memory, or reaction time

[247]. As a result, the lack of control over years of education cannot be seen

as a drawback in the current study, which is concerned with reaction time

and accuracy.

3.2 Patterns of Structural Changes in Normal Aging

3.2.1 Age Related Brain Morphometry Changes

Figures 3.7-3.8 show a distribution of the major brain

compartments across time using regression trendlines of ordinary least

squares (OLS). Figures 3.8E-3.8H, and 3.9 demonstrate the brain

anatomical changes for each age cohort using linear regression trendlines.

The total intracranial volume (TIV) decreases steadily from adolescents to

young and middle-aged adults to older individuals (p = 0.0068). Growth in

the size of the head and body across generations is thought to be the cause.

The significant difference warrants adjusting individual brain volume to

TIV. We were able to compare the age groupings as a result of this.

Table 3.4 shows the average data and Kruskal-Wallis test findings

for four age groups. Asterisks indicate group data with a distribution that

appears to deviate from the overall cohort. The P-values in the table’s right

column indicate whether there is a significant variation between all of the age

groups studied. The rate of the CSF (CSF%) steadily increases over time,

and its accumulation implies brain parenchyma atrophy. The pace of growth

of the cerebral subarachnoid space is faster than that of the brain ventricles

757575



during all life stages [188].

Figure 3.7: Voxel-based brain morphometry results throughout lifespan. Linear
trends with 95% CI highlighted in red, second-order trends are drawn in green
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Throughout life, there is a decline in the ratio of GM (GM%) to

TIV. A reversed slope for GM% loss throughout lifespan in adolescents is

significantly steeper than an incline for CSF% buildup. A buildup of WM

during active neurodevelopment and myelination may be able to compensate

for the GM loss. A slope for CSF% buildup in older persons is substantially

shallower than a reversed incline for GM% loss. This can be attributed to the

rapid accumulation of WM in minors which slows down as they get older.

With aging, the proportion of cGM (cGM%) in TIV decreases. In contrast

to GM percent, the percentage of total WM (WM%) follows an age-related

pattern of change. It increases throughout time; however, the pace of change

varies depending on the age group. Adolescents exhibit a significant rise in

WM. There is a little increase in WM% from 20 years to the end of life. After

the age of 60–65 years, the non-linear model of the WM volume distribution

across time shows a modest decline in volume.

The major predictor of life-long structural alterations in the brain is

not WM vascular lesions. We can consider them as a symptom of brain

illness rather than a normal part of the aging process. The percentage of the

TIV occupied by CSF% increases throughout life and peaks in Older adults,

but the percentage of the TIV occupied by WMHs (WMH%) remains

nearly stable in normal brain aging. The linear trendlines for WMH% are

shallower than CSF% in all age categories. The relative sizes of the brain

compartments (e.g., CSF%, WM%, GM%, etc.) do not differ significantly

between sexes in Adolescents and Young adults when corrected for skull

volume. After the age of 40, the tendency shifts. The sex-related

discrepancies can be explained by variations in the rate or start of atrophic

alterations in GM. In men, it begins sooner or moves more quickly. A
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significant difference in the proportions of iCSF and total CSF demonstrates

that elderly males are predisposed to age-related brain shrinkage [188].

Figure 3.8: Changes is indices of brain morphometry througout lifespan (A-D) and
in four age groups (E-H). Linear trends with 95% CI highlighted in red, second-
order trends are drawn in green

Various studies dedicated to neuroimages of degenerative disease

are far higher than those focused on normal brain development.

Neurobiologists and neurophysiologists use alterations in the structure or

function of the brain to describe clinical groups. The lack of data about the

baseline morphology and physiology of the "normal" brain during aging
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makes clinical data explanation much more difficult [248]. To fill this

knowledge gap, we sought to draw conclusions about the natural patterns of

brain structure and function in a healthy population.

Figures 3.10A-3.10D, 3.11A-3.11D show how the dependent

variables that measure speed of information processing in PTs using

different task paradigms develop with age. The parabolic trendline shown in

green shows a better fit to the distribution of test results across time than the

linear trendline indicated in red. Figures 3.10E and 3.11E present the

distribution of the derivative variables that reflect the time spent on task

switching and inhibitory control (i.e., inhibiting an automatic response,

making a decision, selecting the proper respond, etc.) [188]. The data on

these scatterplots have almost linear distribution that is close to the linear

trendline in red.

The findings support the existence of unique patterns of cognitive

function variations related to age. The explanation for this is that cognitive

domains in the brain lack a common structural representation, and structural

correlates change at different rates as people age. The majority of studies

that have been performed to date have focused on the rate at which cognitive

function improves or declines; however, the pattern of age-related changes

is unique to the cognitive domain and is in need of further investigation.

The findings of the psychophysiological tests show a "U-shaped"

trend of changes in information processing speed. Polynomial kernel ML

models adequately describe the variability in RT in SVMR, CVMR, IRT,

and AST tests throughout lifespan.
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Figure 3.9: Trendlines displaying differences in voxel-based brain morphometry
across four age groups
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Table 3.4: Brain morphometry with regard to the age group and sex

All Adolescents Young adults
mean CI Mean ± SD female male p Mean ± SD female male p

TIV 1614.42 [1515.99-1724.63] 1653.39 ± 151.51 1555.01 ± 130.92 1724.22 ± 123.11 0.0002 1649.87 ± 211.35* 1561.71 ± 192.26 1784.03 ± 162.99 <0.001
CSF 304.51 [249.28-343.44] 229.93 ± 36.1* 217.33 ± 39.12 239.0 ± 30.71 0.0298 282.31 ± 52.47* 266.68 ± 48.91 306.08 ± 48.64 0.0012

iCSF 21.54 [12.51-24.56] 14.07 ± 7.59* 12.99 ± 6.41 14.84 ± 8.25 0.178 16.74 ± 6.62* 15.39 ± 5.77 18.78 ± 7.28 0.0173
GM 533.15 [462.62-603.28] 640.98 ± 47.03* 616.3 ± 35.47 658.74 ± 46.31 0.0012 551.91 ± 76.92* 529.66 ± 69.12 585.76 ± 75.84 0.0028

cGM 366.93 [306.94-426.57] 463.22 ± 37.73* 446.42 ± 28.16 475.31 ± 39.1 0.0077 377.75 ± 66.71 362.6 ± 65.1 400.81 ± 62.38 0.0086
WM 652.5 [566.76-719.3] 595.06 ± 83.52* 551.51 ± 63.94 626.41 ± 81.89 0.0022 662.41 ± 122.08 627.54 ± 107.18 715.46 ± 124.25 0.0034

WMH 19.26 [11.81-23.28] 17.8 ± 4.67 15.6 ± 4.1 19.39 ± 4.41 0.0047 19.01 ± 10.69 17.87 ± 11.08 20.74 ± 9.82 0.0492
CSF,% 18.88 [15.54-21.25] 13.87 ± 1.53* 13.91 ± 1.8 13.84 ± 1.3 0.4171 17.15 ± 2.44* 17.15 ± 2.68 17.14 ± 2.04 0.3753

iCSF,% 1.33 [0.79-1.51] 0.84 ± 0.42* 0.83 ± 0.38 0.85 ± 0.45 0.4559 1.02 ± 0.42* 1.01 ± 0.46 1.04 ± 0.35 0.1508
GM,% 33.15 [29.18-36.46] 38.97 ± 3.24* 39.82 ± 2.87 38.36 ± 3.36 0.0715 33.66 ± 4.0 34.19 ± 4.25 32.86 ± 3.44 0.0935

cGM,% 22.8 [19.26-25.86] 28.18 ± 2.7* 28.87 ± 2.53 27.68 ± 2.71 0.0981 23.0 ± 3.55 23.35 ± 3.79 22.48 ± 3.09 0.1046
WM,% 40.52 [35.98-43.85] 35.93 ± 3.18* 35.46 ± 2.85 36.26 ± 3.35 0.1211 42.21 ± 5.89* 41.91 ± 6.29 43.01 ± 4.56 0.1847

WMH,% 1.19 [0.75-1.39] 1.08 ± 0.26 1.01 ± 0.27 1.12 ± 0.24 0.1366 1.16 ± 0.66 1.15 ± 0.71 1.17 ± 0.58 0.2422
iCSF/CSF 6.73 [4.94-7.53] 5.95 ± 2.39* 5.77 ± 1.87 6.09 ± 2.69 0.3885 5.92 ± 2.07* 5.85 ± 2.39 6.02 ± 1.45 0.1075
cGM/GM 68.66 [66.48-71.58] 72.61 ± 1.97* 72.76 ± 1.81 72.51 ± 2.08 0.2415 68.34 ± 4.01 68.26 ± 4.63 68.47 ± 2.82 0.2227
GM/WM 84.61 [66.5-100.54] 109.53 ± 15.05* 113.29 ± 14.76 106.82 ± 14.67 0.0785 86.12 ± 19.05 86.91 ± 17.98 84.92 ± 20.52 0.2323

WMH/WM 2.83 [2.0-3.41] 2.98 ± 0.64* 2.82 ± 0.65 3.1 ± 0.6 0.0785 2.74 ± 1.16 2.7 ± 1.26 2.8 ± 0.98 0.2134

All Midlife adults Older adults
mean CI Mean ± SD female male p Mean ± SD female male p p-value

TIV 1614.42 [1515.99-1724.63] 1597.45 ± 160.86 1528.18 ± 131.34 1722.78 ± 130.75 <0.001 1564.78 ± 167.75* 1506.75 ± 137.35 1719.54 ± 141.23 <0.001 0.0068
CSF 304.51 [249.28-343.44] 314.81 ± 60.94* 296.61 ± 49.8 347.76 ± 65.29 0.0011 375.2 ± 90.53* 343.44 ± 66.61 459.88 ± 91.43 0.001 0.001

iCSF 21.54 [12.51-24.56] 22.4 ± 12.47 20.04 ± 10.44 26.68 ± 14.54 0.0444 31.53 ± 17.25* 26.77 ± 13.5 44.2 ± 19.6 0.0005 <0.001
GM 533.15 [462.62-603.28] 493.04 ± 60.99* 485.2 ± 61.04 507.24 ± 58.28 0.0806 472.1 ± 48.94* 463.46 ± 47.55 495.12 ± 45.0 0.0176 <0.001

cGM 366.93 [306.94-426.57] 332.26 ± 56.52* 329.67 ± 56.0 336.93 ± 57.14 0.3432 317.43 ± 43.51* 311.19 ± 44.78 334.06 ± 34.82 0.0491 <0.001
WM 652.5 [566.76-719.3] 676.91 ± 100.46* 642.04 ± 86.79 740.01 ± 92.41 0.0001 660.78 ± 116.99 631.51 ± 111.24 738.82 ± 93.84 0.0011 0.0019

WMH 19.26 [11.81-23.28] 20.82 ± 12.16 18.69 ± 12.07 24.67 ± 11.33 0.0102 18.99 ± 12.45 17.45 ± 12.77 23.08 ± 10.49 0.0138 0.6672
CSF,% 18.88 [15.54-21.25] 19.65 ± 2.86* 19.37 ± 2.49 20.17 ± 3.38 0.2029 23.8 ± 4.25* 22.68 ± 3.33 26.79 ± 4.94 0.0036 <0.001

iCSF,% 1.33 [0.79-1.51] 1.38 ± 0.7 1.3 ± 0.63 1.53 ± 0.77 0.2406 1.97 ± 0.93* 1.75 ± 0.79 2.54 ± 1.02 0.0033 <0.001
GM,% 33.15 [29.18-36.46] 31.0 ± 3.79* 31.85 ± 3.96 29.46 ± 2.86 0.009 30.37 ± 3.48* 30.94 ± 3.65 28.87 ± 2.38 0.0145 <0.001

cGM,% 22.8 [19.26-25.86] 20.89 ± 3.57* 21.64 ± 3.68 19.54 ± 2.91 0.0142 20.43 ± 3.03* 20.78 ± 3.26 19.49 ± 2.01 0.101 <0.001
WM,% 40.52 [35.98-43.85] 42.49 ± 5.65* 42.17 ± 5.71 43.08 ± 5.49 0.1985 42.21 ± 5.89* 41.91 ± 6.29 43.01 ± 4.56 0.1847 <0.001

WMH,% 1.19 [0.75-1.39] 1.31 ± 0.78 1.23 ± 0.81 1.45 ± 0.71 0.0737 1.2 ± 0.77 1.15 ± 0.82 1.34 ± 0.59 0.0883 0.6518
iCSF/CSF 6.73 [4.94-7.53] 6.86 ± 2.87 6.61 ± 2.81 7.32 ± 2.92 0.2659 8.04 ± 2.81* 7.59 ± 2.72 9.25 ± 2.7 0.0076 <0.001
cGM/GM 68.66 [66.48-71.58] 67.31 ± 4.03* 67.84 ± 3.8 66.36 ± 4.27 0.116 67.35 ± 3.32* 67.19 ± 3.63 67.78 ± 2.24 0.4736 <0.001
GM/WM 84.61 [66.5-100.54] 74.84 ± 15.8* 77.43 ± 15.81 70.17 ± 14.65 0.0375 74.01 ± 16.8* 76.18 ± 17.77 68.22 ± 12.14 0.0741 <0.001

WMH/WM 2.83 [2.0-3.41] 2.92 ± 1.33 2.76 ± 1.37 3.22 ± 1.19 0.0595 2.71 ± 1.43 2.58 ± 1.51 3.04 ± 1.1 0.0511 0.0602
Structural features are expressed as Mean±SD in cm3 or % of TIV. The variables with the distribution significantly different (p < 0.05) in the age group compared to the overall study cohort are marked
with an asterisk. Data expressed as Mean±SD.
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Figure 3.10: Distribution of DMT and RT with its variance in SVMR and CVMR
tasks

As the first power of age increases, so too does the

psychophysiological measurements that reflect task switching and

inhibitory control (e.g., DMT, the temporal delay due to visual

interference). Linear machine learning models fit the age dependency of

these test outcomes. The linear distribution of the RMO test results

throughout lifespan is depicted in scatter plot 3.12A. After the age of 20,

age has no effect on reaction time in the RMO test. One possible

explanation for this stems from the fact that RMO is tested using a

completely different paradigm than the other activities. During the RMO

test, the individual is instructed to reply to stimuli which come at specified

intervals. Tester asks the participant to await for an unexpected event (e.g.,

an presentation of a targeted stimulus in IRT and AST or a light flash in
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SVMR and CVMR tests) before taking the remaining tests. However, the

RMO test’s accuracy varies with age. As a result, in Figure 3.12B, the

variation of response time (RMO_variance) fits a parabola trendline in

green.Participants between the ages of 35 and 40 have the best performance.

Figures 3.12C and 3.13 show linear regression trendlines that

reflect changes in psychophysiological performance across lifespan. The

findings in PTs follow a consistent age-related trend. After the age of 20,

the participants’ performance begins to deteriorate.

Skull morphometry: TIV variations with age have been the subject

of research in the past, and they are still being debated. The study findings

may differ due to inconsistency in the following settings: (i) population

selection, (ii) the study design (e.g., longitudinal or cross-sectional), and

(iii) methodology. For instance, TIV did not change between generations in

another cross-sectional investigation of persons aged 24 to 80 years. The

results of the studies are allegedly incongruent due to social-economic

aspects that could explain the inconsistencies [249, 250]. A cross-sectional

survey of individuals born within a 40-year period demonstrated that

younger participants had bigger mean TIV. The size of the individual’s skull

was also directly related to their height [251].

Our research was conducted in a cross-sectional manner. We were

able to identify the highest mean value of TIV among members of the

adolescent population. This explains why growth in volume of skull is in

line with the natural trend of human body enlargement in the following

generations.

Subarachnoid space: A rise in the proportion of the CSF

compartment to the brain parenchyma has been associated with cerebral

838383



atrophy in older people [244]. The increase in CSF volume has resulted in a

reduction in liquor turnover to three times per day from four to five times

per day [252]. The time it takes to replace the expanded volume is longer

[253].

Figure 3.11: Studies of attention with (B, D) and without interference (A,C).
Distribution of mean reaction time with its variance and time delay because of
distraction

CSF turnover decreases in the elderly for a variety of causes. The

first explanation is, as previously stated, an increase in subarachnoid space

volume. Another reason is that the choroid plexus produces a smaller

amount of CSF [188]. The amount produced drops by nearly twice in

animals and humans [254]. The final explanation is in a reduction in the

capacity of lymphatic outflow channels to filter both small and large

molecules in elderly [255]. In a study of brain morphology changes from
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birth to late adulthood, volume of sulcal CSF remained steady until the age

of 20 years, and increased curvilinearly throughout maturity. After 50

years, the acceleration was higher [256]. It’s possible that the rise in CSF

volume as people get older is due to atrophic processes such as cell

shrinking. Another investigation found that the proportion of volume of

sulcal CSF to intracranial volume was shown to be higher in seniors (above

55 years) than in younger adults [241]. Other authors [236] found a linear

decrease in brain volume and a rise in CSF [236].

Figure 3.12: Distribution of RT and its variance in responding to moving object
test (A-B). Linear trendlines of performance in responding to moving object in age
groups (C)

An earlier study looked at the global and regional effects of age on

CSF volume in people aged 18 to 79. The researchers found that the volume

of CSF gradually increased (R2 = 0.377). The CSF components distributed

between sulci and inside ventricles were the same. Researchers discovered

a relatively small increase of the CSF volume in the pontine cistern,

including its caudal reach around the medulla, in regional effects of age.
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The supracerebellar and chiasmatic cisterns, cisterna magna, Sylvian, third

ventricle, and interhemispheric fissures all showed the greatest symmetrical

increase in the CSF space. The regional effects tended to follow a linear

pattern. When they employed the second and third-order polynomial

expansion of age, the data fit showed no improvement. They found no

evidence of a relationship between CSF volume and gender, either generally

or in localized effects [245]. A nonplanimetric approach for assessing

intracranial CSF volume in senior volunteers aged 60–84 found a

substantial association between age and CSF but a modest correlation

between TIV and CSF. This finding demonstrated that the normal brain

volume shrinks over time [238].

Brain ventricles: Researchers have gained fresh insight into the

neurobiological underpinning for cognitive changes related to age and their

impact on cognitive function by studying the brains of healthy people. The

bulk of prior studies has found that as people age, their brain volume

decreases and their ventricle volume increases, implying that brain

shrinkage in humans is linked to aging. The shrinkage of periventricular

brain tissue is thought to cause age-related ventricular hypertrophy [257].

With the help of a CT scan, other researchers were able to validate this

finding by tracking the ventricles of healthy people aged 60 to 99 [258].

Between the ages of 80 and 99, a more noticeable growth was observed.

This backs up other researchers’ results that the expansion of the lateral

ventricles peaks in the ninth decade. According to their findings, the

volume climbed steadily from the adolescence to the seventh decade but

rose more rapidly after the age of 70 [259]. This outcome helps to explain

why a ventricular volume abnormality is easier to detect in younger people.
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Figure 3.13: Linear dependencies of performance in PTs across lifespan
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Subjects in two age groups (16–40 and beyond 60 years) exhibited

varying diameters of ventricles and sulci, according to data from prior

studies. The ventricles were larger in the elderly [260]. The earlier CT

findings were validated by an MRI-based analysis of the lifetime dynamics

of the lateral ventricles and CSF volume. The ventricular capacity rose in a

linear fashion until the age of 40, then skyrocketed after 60 [242].

The authors concurred that the pace of change in ventricular size

observed across longitudinal studies may be of great relevance. For instance,

the mean rate of ventricular enlargement was 650 mm3/y in a longitudinal

study of participants between the ages of 31 and 84. After 60 years of age,

the enlargement of the ventricles regularly accelerated. Over time, some

investigations found a significant increase in ventricular, and frontal lobe

measurements [237].

In healthy adult men between the ages of 19 and 92, the right

temporal lobe was larger than the left one. This rise in volume of the

temporal horn of the lateral ventricle supports the notion of a smaller

volume of the hippocampus in the older group [256]. A previous study

found that ventricular CSF volume grew significantly, with substantial

linear and quadratic increases in the left and right lateral ventricle. It also

found pronounced linear trends in the third ventricle and left temporal horn,

with a 17 percent variance in volume. Investigators discovered a significant

rise in the steepness of the lateral ventricle curve in the elderly population

[261].

Several researchers established normal age-related values for brain

morphometrics in healthy males between ages of 21 and 80 [262]. They

discovered a positive relationship between CSF volume and age, as well as
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an increase in the volumes of the third and lateral ventricles in the senior

people [262]. These findings corroborate data from postmortem material, in

which linear measures in pneumoencephalograms and CT scans revealed a

rise in volume of ventricles and an overall increase in volume of CSF in the

elderly [259].

Gray matter: Past research has produced findings that confirm our

conclusions about a progressive reduction in the volume of GM throughout

lifespan.

Total gray matter: The volume of GM begins to decrease at a very

young age and proceed changing throughout maturity. Within 2.5 years of

birth, there is evidence of a rise in GM volume [263]. From early childhood

through the age of 6–9 years, the GM volume expands by 13%. After first

decade of life, there is a steady decrease in the volume of GM by

approximately 5% per 10 years [263]. Another research study involving

healthy, well-developed children between ages of 5 and 18 years (IQ-score

> 80) verified this. GM levels grew until 9 years old, both in absolute and

normalized terms. After that, there was a fall until the age of 15 and then a

minor gain [264]. In conflict, a study of children aged 4.5 to 18 years found

that the GM volume decreased by 6.56 cm3 every year [265].

The normalized GM volume decreases at a rate of 0.183 percent per

year after age 55, compared to 2.37 cm3 for the absolute volume of GM

[266]. Another study found a 0.40 cm3 annual reduction in GM volume

in persons aged 59–89 years [240]. To our knowledge, there is no strong

agreement on the pace of the changes. Such disparities in findings could be

explained by differences in study methods. A study that used both a cross-

sectional and longitudinal design yielded mixed results. In participants over
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35, a longitudinal phase of the study found that an insignificant proportion

of change in volume of GM (p > 0.05) remained steady over 3.5 years. A

cross-sectional research study, on the other hand, found a substantial link

between advancing age and a loss in all brain sizes, including GM [267].

Cortical gray matter: Absolute cGM increases and peaks throughout

early childhood, much like total GM. The volume of GM then falls in the

second decade before stabilizing in the third [268]. A research of cortical

regions showed that GM atrophy begins in the dorsal parietal cortex and

progresses in the temporal and frontal cortex [269].

The current study generated evidence of GM volumetric changes as

people age. cGM atrophy has been studied extensively as a cause of NDs and

mental illnesses. In chronic schizophrenia, for example, there is evidence of

a rapid decrease in cGM [270]. Researchers have focused on the thickness

of cGM rather than the volume while studying this phenomenon [271, 272,

273, 274].

White matter: The pattern of WM volume change with age differs

from that of GM volume change. This is supported by our findings and

previous research. However, there is no clear agreement on whether WM

lesions are due to normal aging or are caused by age-related disease.

Total WM: The quantities of WM and GM increase during

childhood and during puberty, albeit at distinct rates. Before 12–15 years,

the volume of GM rises by 13%, whereas the volume of WM changes by

74%. The WM volume increases less dramatically in adolescence than it

does in childhood, peaking in the fourth decade of life. The average annual

rate of WM volume expansion from 4 to 20 years is 0.77% [275]. The WM

volume is steady between 40 and nearly 50. Some scholars claim that the
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volume of the WM begins to decline at the age of 50 [276], while others

claim that it begins at the age of 60 [245]. According to our findings, after

60–65 years, the volume of the WM decreases slightly (see Figure 3.7E, the

green curve). Over time, the detrimental effects of aging on the WM

volume accumulate. Between the ages of 40 and 70, the volume of the WM

diminishes by 13% [263]. A postmortem study found a 15% decline in WM

volume in the cohort between ages of 62 and 90 vs. 18 and 57,

corroborating in vivo findings [277]. In adulthood, the volume drop for

WM is less than that observed for GM [278].

A comparative analysis of different age cohorts revealed a

significant difference in volume of WM between group of young (from 22

to 40 years) and middle-aged (from 41 to 59 years) subjects. Furthermore,

the volume of WM in most brain regions was lower in the young group than

in the middle-aged cohort. In comparison to middle-aged adults, the volume

of WM was decreased in the older generation (60–78 years). In this study, a

linear regression analysis revealed a progressive rise in volume of WM

before the age of 40, a peak around the age of 50, and a rapid fall beyond

the age of 60 [279].

WMHs are among the most typical findings in the brain of elderly.

In older persons, the severity of WM lesions differ greatly. WMHs can be

evaluated using a volumetric approach or visually using the Fazekas rating

scale. When WMHs progressions were evaluated using a volumetric

technique, the connection with age was two times higher [280]. Some

research has found a link between the distribution of WMHs and the

findings of electrophysiologic testing and several frontal lobe functional

measurements [281]. However, we cannot verify this based on the current
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study’s findings. The PTs we used are representative of EF, which includes

representations of the frontal lobe. However, there were no significant

relationships between psychophysiological performance and age or

functional performance in the assessments.

The relationship between the occurrence of lesions and ageing in a

healthy population is still being debated. Because the lesions usually

represent ischemia insult, the creation of WMHs may represent an indirect

signal of pathogenic alterations [281]. Gliosis, myelin pallor, subclinical

ischemia, neuropil atrophy, and other variables have been linked to WMHs

[282].

WMHs are more commonly found in older people. In one study,

100% of people from 71 to 80 years had WMHs, whereas only 20 percent

of young persons from 21 to 30 years had them. Furthermore, there was a

positive correlation between the size of lesions and age [283]. WMHs have

been found in 92 percent of patients over 60 years old and 22 percent of

those aged 0 to 20 years old [284]. A study of healthy adults found that

WM lesions were not common in individuals under the age of 55, but after

that age, lesions appeared 10-fold more frequently. WMHs were found to be

present in 5.3% of the population. WMHs in the periventricular region were

detected in 3.7% of the participants, while WMHs in the centrum semiovale

were found in 3.7% cases. The participants between the ages of 16 and 25

had the fewest WMHs, while those between the ages of 56 and 65 had the

highest prevalence of the lesions [285]. It took a long time for a new WMH

to emerge [286].

In addition to assessing the severity (size) of the lesions,

radiologists also record the location and evolution of WMHs in follow-up
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examinations. The goal of one study was to determine the number and

magnitude of lesions in three geriatric age cohorts. The WMHs in all of the

cohorts were predominantly tiny (1 - 3 mm). Notably, the number of lesions

rose dramatically between the 6th and 7th decades of life, but only

marginally between the 7th and 8th. In each age subgroup, 1–2 large

(> 10 mm) and 2–5 medium (3 - 10 mm) lesions were found on average

[286].

Additional studies looked at periventricular WMH (PVWMH) and

deep WMH (DWMH) injuries independently. The results revealed that

PVWMH accounts for 2/3 of overall WMH. In adults over 60, both DWMH

and PVWMH are related with a drop in GM. The relationship between

volume of GM and WMH load is regionally unique; for example, DWMH

corresponds with a lower cGM level to a larger extent than PVWMH [287].

WMHs were found to have a weaker correlation with superficial

atrophy than with global deep brain atrophy in a study of 73 ± 1 year old.

The size of the lesions had a negative relationship with total brain volume

but a positive relationship with intraventricular volume. WMHs increase at

the same time as WM and GM volumes decrease [288].

Different methods of selecting the study cohorts can account for

the disparities between the results of prior studies. Some of the studies may

have been limited to clinical population with a history of vascular

pathology, according to reports. We followed the inclusion criteria

mentioned in subsection 2.1.2 and analyzed subjects representative of the

healthy community. We analyzed the influence of age on structure of the

brain while minimising an additive effect of confounders (cardiovascular

pathology, etc.).
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3.2.2 Mathematical Models of Age-Related Changes

As previously noted, we were able to construct two approximation

functions for different qualities. We applied ridge regression model to the

linear and non-linear functions of age (see Formulae 2.7-2.8). A straight line

and a parabola (second-order line) are two of these forms. Figures 3.7, 3.8-

3.12 show scatter plots with trendlines for linear and second degree non-

linear models, as well as their 95 percent confidence intervals. This resulted

in a more accurate visual selection of the model which fits best.

From Figures 3.7, 3.8A-3.8D, the data for psychophysiological

variables are scattered less than the voxel-based morphometry data over

lifespan. As a result, selecting a good mathematical model based on a visual

trajectory of changes throughout lifespan is difficult.

The scatter plots for the PTs can be divided into two categories, as

shown by the scatter plots (Figures 3.10-3.12). The first category includes

RT variables in SVMR, CVMR, IRT, and AST tests, as well as time

variability in all tests, including RMO. The polynomial kernel regression

model matches this category better because it exhibits a U-shaped

distribution across time. The features which indicate task switching (DMT,

TRVI) and the equilibrium of processes in the central nervous system

(RMO_mean) fall into the second category. The first-order models

accurately capture variations in these variables.

Performance of the linear and non-linear models: We analyzed the

models’ ability to predict anatomical and functional changes in the brain to

explain our choice of preferred mathematical models. We used performance

measurements to achieve this objective (see Table 3.5). The number of years
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can be employed as an independent variable in regression models because the

relationship between the aforementioned components and age is statistically

relevant (p < 0.05).

Table 3.5: Prediction quality of the first-order and second-order ML regression
models for predicting results of psychophysiological tests out of age

First-order regression model Second-order regression model

Distance
MAE RMSE R2 MAE

range ,% MAE RMSE R2 MAE
range ,%

Voxel-based morphometry
GM, % 2.78 13.82 0.41 11.19 2.72 12.89 0.45 10.95 0.24
cGM / GM 2.81 13.58 0.18 12.2 2.68 12.5 0.24 11.64 0.56
WM, % 4.2 31.24 0.14 11.74 4.19 30.22 0.17 11.74 0.00
WMH / WM 0.92 1.46 0.003 13.3 0.91 1.45 0.005 13.2 0.10
CSF, % 2.06 7.56 0.64 7.8 1.99 7.2 0.66 7.54 0.26
intraventricular

1.78 6.58 0.1 10.6 1.75 6.44 0.12 10.39 0.21
CSF / total CSF
Psychophysiological tests
SVMR_mean 43.65 3466.29 0.02 12.11 39.53 2890.73 0.18 10.97 1.14
CVMR_mean 55.39 6068.92 0.06 7.87 53.03 5585.68 0.13 7.54 0.33
DMT 38.32 2786.15 0.04 10.80 38.14 2782.11 0.04 10.75 0.05
AST_mean 49.67 3745.09 0.14 13.66 45.90 3382.66 0.22 12.63 1.03
IRT_mean 58.21 5414.28 0.13 14.53 54.53 4697.82 0.25 13.61 0.92
TRVI 40.92 3089.75 0.01 9.15 40.15 3030.01 0.03 8.98 0.17
RMO_mean 45.26 6237.70 0.00 4.73 45.22 6236.17 0.00 4.73 0.00

The prediction models’ low R-squared (R2) values imply that there

is a lot of variability around the regression line. The nature of our data

explains this: psychophysiological performance is unstable, and it reflects

an individual’s adjustment to their living environment [32, 68, 289].

Nonetheless, the reproducibility of the PTs and their informative value

allows us to consider the tests as a tool for screening psychological

misadjustment and cognitive decline [180].

The variables with the trendlines (SVMR_mean, CVMR_mean,

IRT_mean, AST_mean) show rise in the quality of forecast obtained with

the second-order regression model. The parabola curvature increases as the

gap in accuracy between the linear and non-linear models grows. The
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percentage of MAE to the range of the examined data (MAE/range) was

used to compare the performance of different models with the underlying

objective of ranking the models’ performance (refer to Table 3.6).

Table 3.6: Importance of psychophysiological and morphological variables based
on performance of the linear and quadratic models

Psychophysiological performance Morphological variables

Distance Variable Distance Variable

1.14 SVMR_mean 0.56 cGM / GM
1.03 AST_mean 0.26 CSF%
0.92 IRT_mean 0.24 GM%
0.33 CVMR_mean 0.21 iCSF / CSF
0.17 TRVI 0.1 WMH / WM
0.05 DMT 0 WM%
0 RMO_mean

We listed the following psychophysiological variables in the left

column of Table 3.6, ranked according to the difference in performance

between the first-degree and second-degree functions: SVMR, AST, IRT,

CVMR, TRVI, DMT, and RMO. The top factors in the list indicate a

cognitive domain known as informative processing speed. Polynomial

trendlines considerably better suit the life-long changes in the tests than

linear trendlines. The factors in the end of the list (DMT, TRVI) represent

task switching and inhibitory control performance, which is another

cognitive subdomain. The linear model almost fits their age-related

distribution. For RMO_mean values, both the linear and non-linear

polynomial function models have similar performance, since the RMO

test’s results are not affected by age.

We ordered morphological factors in the left column of Table 3.6
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according to the distance between model performance: cGM/GM, CSF%,

GM%, iCSF/CSF, WMH/WM, and WM%. The overall GM (GM%) and its

cortical component (cGM/GM) show a quadratic retardation trend as people

become older. The same can be said for the total CSF (CSF percent) and the

intraventricular portion of it (iCSF/CSF). Because a second-order function

does not show advanced performance, linear models can be used to represent

the spread of total WM (WM%) and its lesions (WMH/WM) over time.

The comparative analysis of Figures 3.10 and 3.11 reveals two

distinct trends of age-related variation in PT performance. There is a clear

"U-shaped" tendency in the findings of PTs that measure information

processing speed. In comparison to a first-order function, a second-degree

function of age enhances data fit. Figures 3.10E, 3.11E demonstrate the

dependent features for task switching and inhibitory control. The change

trend is linear. Furthermore, using a second-order function of age does not

improve the data fit. To clarify this, we contrasted aging’s functional

consequences to volumetric changes in the brain’s primary regions.

Linear dependency: The linear equations can be employed to

estimate the regional effects of age on volume of CSF (e.g., the growth of

the Sylvian and interhemispheric fissures) [245]. According to our findings,

the volume of WM and the rate of WMHs in total WM fluctuate virtually

linearly across time (refer to Table 3.6). As the first power of age increases,

so do psychophysiological measurements that represent task switching and

inhibitory control (DMT, TRVI). The cortical GM and the overall GM have

different age-related alterations.

The linear slowing of DMT throughout the lifespan can be

explained by the interhemispheric fissure’s tendency to grow. Task
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switching and inhibitory control may be morphologic correlates of the

enlargement. This cognitive subdomain’s neuronal centre is located in the

medial wall of the frontal cortex, specifically in the supplementary motor

region. The results of the "go/no-go" test imply that the premotor areas of

the frontal lobe’s medial wall play a critical role in delaying response [290].

As a result, the expansion of the interhemispheric fissure is due to the

atrophy of these brain centres. Researchers warn, however, that approaches

based on the assumption of linearity or even monotonicity of the compared

age functions should be utilized with appropriate caution [188, 291].

Second-degree equation: Researchers have assessed how the

volume of brain structures changes as people get older [291]. After plotting

the dependency between volume and age as a parabola, the effects can be

seen as a U-shaped or inverted U-shape line.

The inverted parabola is indicative of the WM bundles’ age-related

alterations. As a result, cellular piles and WM fibres are characteristic of the

WM and hippocampus [143]. WM buildup exceeds its concealed atrophic

alterations till around the age of 60–65 years. The interval is followed by

WM loss due to myelin breakdown and gradual WM fibre degeneration.

Myelin breakdown has been reported to be linked to processing speed in

previous studies [292]. Demyelination and other WM alterations are at the

root of age-related slowdown [229].

The U-shaped line represents age-related variations in GM volume

and structures with patches of neuronal cells. The current research found

a link between the GM cortex and overall GM volume. An earlier study

found that deep GM structures, such as the thalamus, accumbens, lenticular,

and caudate nuclei, were justified in this way [143]. The formations are
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dense with cell bodies that cannot grow as large as neural fibres. The loss

of neuronal cells is permanent. As a result, interpreting an increase in a

polynomial second-degree trendline in advanced age as GM atrophy leading

to cell disintegration is impossible. This implies that quadratic functions do

not accurately describe GM atrophy.

Third-degree equation: The cubic function of GM nuclei volume as

age-related function describes the data better than the second-order curve in

[143]. In senior age, no expansion of the GM structures was seen.

3.2.3 Comparison of Dynamics of Psychophysiological Performance with
Brain Structural Changes

The correlation coefficients between volumetric brain data and the

RT in the array of PTs are shown in Figure 3.14. The CSF volume and the

reaction delay in SVMR, CVMR, AST, and IRT tests exhibited a strong

positive relationship, as shown in this diagram. In the experiments, the

volume of brain ventricles and reaction time revealed a favourable

relationship. CSF percentage and iCSF percentage both have a positive

relationship with age (r = 0.8 for CSF% and r = 0.56 for iCSF%). As a

result, the indices can be used as indicators of brain atrophy across lifespan.

Because the highest association (maximal r-value) exists between CSF

percent and age, the latter can be regarded the most sensitive measure of

atrophy related to aging.

Surprisingly, the total CSF percent and average RT in the IRT

exhibited the strongest link between brain anatomical data and functional

outcomes (r = 0.36). Switching and inhibitory control, information

processing, and attention were among the cognitive domains and

subdomains used in the test.
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Figure 3.14: Coefficients of correlation between PTs results and volumes of major
brain compartments

We also discovered that the SVMR test’s variance of RT

(SVMR_variance feature) showed no relation to age; however, it did exhibit

a negative relationship with the portion of WM in TIV (WM%; r =−0.11).

The relative volume of GM (r = 0.21), specifically the GM cortical

component (cGM%; r = 0.23), revealed a moderate positive relationship

with SVMR variance.

SVMR test was the most basic within our battery of tests since it

focused solely on information processing while putting little strain on other

cognitive functions. The relative volumes of the GM (r = 0.16 for GM%;

r = 0.19 for cGM%) and CSF (r = 0.14 for CSF%; r = 0.18 for iCSF%)
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have moderate relationship with the mean reaction time (SVMR_mean) in

SVMR test. Furthermore, SVMR_mean shows a moderately negative

statistical connection (r = −0.14) with the proportion of WM%. The faster

reaction could be due to improved brain connections in people with a large

relative volume of WM. Because the SVMR test does not need DMT like

the "go/no-go" test and does not demand attention like the AST and IRT

tests, the link is clear. As a result, the link between brain connection and

this test is straightforward.

The relative volumes of CSF are positively associated with

decision-making time (r = 0.16 for CSF%; r = 0.14 for iCSF%) and

negatively associated with the rate of GM in TIV (r = −0.13 for GM%;

r = −0.13 for cGM%). Because judgments are made in the GM cortex,

these findings demonstrate the dependability of the PTs utilized. Despite

the tests’ validity, DMT’s utility as a biomarker of brain atrophy alterations

is limited by its modest relationships (r ≤ 0.16).

There is no link between psychophysiological performance and the

number of WM lesions (WMH%). Nor is there a link between age and

WMH%. The RMO test’s average RT (RMO_mean) has no relation to age

or the major brain compartments’ volumes.

Strengths and limitations of descriptive model of brain structural

changes in normal aging: Instead of investigating all of the probable

regional consequences of brain aging, we focused on the major brain

compartments. Before engaging in a more extensive investigation, the goal

was to link psychophysiological performance with brain atrophy

parameters. The reason we chose this method was due to the fact that

segmentation of brain can yield a large amount of data. Dealing with
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regional effects could be difficult because no one knows which brain areas

are involved in the psychophysiological tasks that were performed in this

study. The structural correlates of cognitive performance are not

empirically supported in today’s neuroscience. In our investigations, we

integrated findings from MRI and PTs on the neurobiology of aging to solve

the outstanding problem. On the plus side, we used statistical tests to

determine that the effects of age vary among cognitive subdomains and

brain compartments. We considered the non-negative compositional

character of brain volumes, which add up to the TIV. Because the loss in

absolute volume was less severe in a small structure than in a large one, we

utilized a uniform percent loss each year as a measure to compare the pace

of change. Other researchers agree that ratios are valuable for describing

compositional data, especially while comparing structures with various

scales of volume [291]. The PTs we used addressed several cognitive

functions. The methodology that underpinned our study was built to

identify changes in EF and brain morphology. We were able to support the

outcomes with the entire collection of solutions.

3.3 Patterns of Brain Structure-Function Association Indicative of
MCI and Dementia

3.3.1 Dynamics of Performance in Cognitive and Neurophysiological Tests
in Patients with MCI and Dementia

We explored the age-related variability of cognitive scores in the

tests that are most commonly used either to diagnose MCI and dementia or

to improve the accuracy of multimodal diagnostics. We started with the

tests of global cognitive functioning: MMSE and ADAS-cog. The
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distribution of the test results over age is shown in Figures 3.15-3.16. As

ADNI dataset contains follow-up studies of healthy people and patients

with cognitive impairment, one can judge on the disease progression by

looking at the diagrams. The trends are horizontal for the performance in

MMSE and ADAS-cog in all study groups. This means that the global

cognitive functioning changes slightly with age in the cognitively normal

population. It also remains stable across the disease course. Though there

are patients with reversible or progressive MCI, the number of such cases is

quite low.

Figure 3.15: MMSE scores in the group of cognitively normal adults and patients
with MCI or dementia

ADAS-cog is a very informative tool for monitoring the

progression of ND in clinical routine practice [196]. According to recent

findings, the test distinguishes between MCI and mild AD with sensitivity

of 0.86 and specificity – 0.89 [197]. It can also identify “questionable

dementia” because its results in immediate recall and object naming tasks

correlate with performance in Category Verbal Fluency Test [198]. MMSE

is the most common method for diagnosing cognitive impairment in a
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single or multiple domains [199]. Although it detects various types of

dementia with a high sensitivity and specificity of over 90%, the test should

be accompanied by a full and detailed assessment of the patients [200]. For

this, clinicians use neurophysiological tests (e.g., TMT, DSST) [201].

Figure 3.16: ADAS13 in the group of cognitively normal adults and patients with
MCI or dementia

The second group of tests covers a few cognitive domains, i.e.,

information processing in DSST, memory in RAVLT, information

processing in TMT. Scores in RAVLT test are quite stable throughout life in

normal aging and across the disease course with a slight trend towards

lowering in all the study groups (see Figures 3.17). The pace of

neurocognitive slowing is moderately higher in the CN group and MCI

patients. Thus, the average result for all the groups would reach a common

value if the observation lasted several more decades. RAVLT examines

verbal learning and memory. It is capable of detecting cognitive impairment

in multiple sclerosis [206]. The test differentiates between AD dementia

and behavioral variant of fronto-temporal dementia [207] with high

sensitivity and specificity of over 81%. It also helps physicians to
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distinguish AD from Lewy bodies dementia [208].

Figure 3.17: Results in RAVLT test in the group of cognitively normal adults and
patients with MCI or dementia

The tredlines on Figures 3.18-3.19 show clear signs of

malfunctioning in several cognitive domains assessed with DSST and TMT

tests. The performance worsens with time. For this reason, the trendlines of

CN, MCI and AD groups converge at the approximated point of 100 years

of age. DSST identifies early stages of dementia [209] and MCI by

detecting working memory impairment and multimodal amnesia [210]. It

also shows significantly impaired performance in early Lewy Bodies

dementia [211]. TMT provides information on neurophysiological

conditions; therefore it is used for diagnosing NDs in combination with

other diagnostic modalities [202, 203, 201]. Its clinical implication is

multifold. First, TMT helps to define the impaired cognitive domain and

improves the assessment with MMSE or MoCA [201]. Second, there is

evidence that the inclusion of TMT (part B) boosts the performance of the

models that use CSF and structural biomarkers to discriminate between AD

and non-AD MCI [204]. Third, the test can sensitively distinguish a case of
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mild AD from amnestic MCI and healthy aging [205].

Figure 3.18: Performance in DSST in the group of cognitively normal adults and
patients with MCI or dementia

Figure 3.19: Executive functioning assessed with TMT test in the group of
cognitively normal adults and patients with MCI or dementia

As seen from the diagrams 3.18-3.19 the trendlines of the

performance in neurophysiological tests (TMT and DSST) and the

degeneration of the GM show the same dynamics in the correspondent

cohorts (see Figure 3.20). But the slopes for the GM volume adjusted to the

TIV are steeper than the trendlines for the results in DSST or TMT.

Presumably, brain plasticity helps an individual to adjust to aging and
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disease and compensates for the loss of the GM volume.

Figure 3.20: Gray matter volume in the group of cognitively normal adults and
patients with MCI or dementia

3.3.2 Models of Brain Structure-Function Associations in Cognitively
Normal Individuals, Patients with MCI or Dementia

Examining the feasibility of employing brain morphometry for

predicting neurofunctional performance in CN, MCI, and dementia cohorts,

we designed an ML regression model. The performance of these algorithms

is presented in Table 3.7. As the test scales differ in size, we adjusted MAE

to the range of results in each test. This allowed us to compare the accuracy

of the algorithms trained on MMSE, ADAS-cog, RAVLT, TMT and DSST.

The test results in MMSE can be predicted much more accurately than in

other tests (MAE/range = 4.5± 0.23 in the CN group). Despite a markedly

higher mistake of the model for the ADAS-cog score (p = 1.84e− 95), its

prediction also has credible performance (MAE/range = 5.04 ± 0.22% in

the CN group). The error of the RAVLT, TMT and DSST score prediction is

significantly higher (10.62 ± 0.5, 10.57 ± 0.68 and 10.81 ± 0.51%). The

dissimilarity in the accuracy of the model goes in line with the trends
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described in the previous subsection. In MMSE and ADAS-cog the

trendlines are parallel and do not intersect. The same trends for RAVLT,

TMT and DSST merge if approximated to future life.

Table 3.7: Performance of models trained on cognitively preserved population,
subjects diagnosed with MCI or dementia with adjustment to the maximal score
of the scales (MAE/range, %)

DX Data MMSE ADAS p-value RAVLT TMT DSST p-value

CN
VBM 4.5 ± 0.23 5.04 ± 0.22 1.84e-95 10.62 ± 0.5 10.57 ± 0.68 10.81 ± 0.51 2.99e-142
SBM 4.61 ± 0.23 4.96 ± 0.22 1.84e-95 10.38 ± 0.49 10.75 ± 0.67 10.24 ± 0.53 4.15e-131

VBM+SBM 4.61 ± 0.23 4.94 ± 0.22 1.84e-95 10.07 ± 0.48 10.62 ± 0.66 10.23 ± 0.51 1.92e-129

MCI
VBM 9.28 ± 0.29 7.62 ± 0.22 3.63e-211 9.52 ± 0.3 20.13 ± 0.65 10.95 ± 0.33 1.43e-212
SBM 9.0 ± 0.28 7.48 ± 0.21 2.46e-206 9.59 ± 0.31 18.8 ± 0.59 10.12 ± 0.33 9.38e-210

VBM+SBM 9.06 ± 0.28 7.41 ± 0.21 1.65e-206 9.46 ± 0.3 18.81 ± 0.59 10.03 ± 0.32 1.01e-209

Dementia
VBM 13.22 ± 0.54 10.3 ± 0.42 6.98e-121 8.65 ± 0.33 26.97 ± 0.75 12.67 ± 0.46 2.14e-187
SBM 12.67 ± 0.54 9.09 ± 0.42 3.27e-99 7.97 ± 0.34 25.75 ± 0.76 11.03 ± 0.42 3.43e-172

VBM+SBM 12.78 ± 0.55 9.11 ± 0.41 1.75e-92 7.9 ± 0.33 25.9 ± 0.77 10.85 ± 0.42 1.94e-171

VBM - voxel-based morphometry; SBM - surface-based morphometry.

We ranked the structural predictors according to the information

gain value. The top valuable predictors of MMSE score are the volumes of

the total brain, cerebral cortex, accumbens, cerebral WM, inferior lateral

ventricles, and hippocampus. However, the results in TMT have a weaker

association with the brain structures listed above.

In each study cohort we found clusters of cortical parcellations

closely associated with performance in cognitive tests. The volume, surface

area of the clusters and their number differ evidently among the studied

cohorts. This is because each of the SBM metrics provides unique

information regarding cortical anatomy and possibly different SFA patterns

[293].

From Table 3.8 one can observe the variations in the capacity of

projecting cognitive scores among CN, MCI and dementia groups. The

majority dementia cases arise from protein aggregation disorders (e.g., the
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accumulation of β -amyloid, τ-protein, etc.). Genetic variability in the

expression level of the deposited protein is important in pathogenesis of

neuronal diseases [294]. It accounts for different solubility of the

aggregation-prone protein and the efficiency of clearance mechanisms that

keep misfolded proteins in check. Besides this, the clinical appearance of

dementia varies because of selective neuronal and regional vulnerability

that differs among misfolding diseases [294].

In all the tests, the informative value of brain structures in the

prediction of cognitive scores differs by the study group (CN, MCI,

dementia). This justifies the presence of different SFA patterns in the

healthy cohort and patients with a pathology. We analyzed the SFA patterns

in the demented patients of ADNI dataset and discussed the findings. As

AD accounts for the majority of dementia cases, we pointed out the

structures vulnerable for change in β -amyloidopathy. Other NDs selectively

damage different groups of neuronal cells and brain regions, which would

result in another SFA patterns.

Table 3.8: Metrics of models trained on cognitively preserved population, subjects
diagnosed with MCI or dementia (MAE)

CN MCI Dementia
Test Data Mean±Std CI Mean±Std CI Mean±Std CI p-value

MMSE
VBM 0.81 ± 0.04 [0.73 - 0.89] 1.67 ± 0.05 [1.57 - 1.77] 2.38 ± 0.1 [2.19 - 2.57] 3.97e-239
SBM 0.83 ± 0.04 [0.75 - 0.92] 1.62 ± 0.05 [1.52 - 1.72] 2.28 ± 0.1 [2.09 - 2.47] 1.34e-234
VBM+SBM 0.83 ± 0.04 [0.75 - 0.91] 1.63 ± 0.05 [1.53 - 1.73] 2.3 ± 0.1 [2.11 - 2.49] 8.23e-232

ADAS-cog
VBM 3.24 ± 0.14 [2.96 - 3.51] 4.9 ± 0.14 [4.62 - 5.17] 6.63 ± 0.27 [6.09 - 7.16] 6.53e-239
SBM 3.19 ± 0.14 [2.91 - 3.46] 4.81 ± 0.14 [4.53 - 5.08] 5.85 ± 0.27 [5.32 - 6.38] 5.12e-230
VBM+SBM 3.18 ± 0.14 [2.9 - 3.45] 4.77 ± 0.14 [4.5 - 5.03] 5.86 ± 0.26 [5.35 - 6.38] 1.44e-227

RAVLT
VBM 7.33 ± 0.35 [6.65 - 8.01] 6.57 ± 0.21 [6.16 - 6.98] 5.97 ± 0.23 [5.52 - 6.42] 2.86e-231
SBM 7.16 ± 0.34 [6.5 - 7.82] 6.62 ± 0.21 [6.2 - 7.04] 5.5 ± 0.23 [5.04 - 5.96] 4.14e-220
VBM+SBM 6.95 ± 0.33 [6.31 - 7.6] 6.53 ± 0.21 [6.12 - 6.93] 5.45 ± 0.23 [5.0 - 5.9] 2.48e-213

TMT(part B)
VBM 28.32 ± 1.83 [24.73 - 31.9] 53.94 ± 1.73 [50.55 - 57.33] 72.28 ± 2.02 [68.32 - 76.24] 2.26e-229
SBM 28.81 ± 1.81 [25.26 - 32.35] 50.38 ± 1.57 [47.29 - 53.46] 69.0 ± 2.03 [65.01 - 72.99] 5.56e-184
VBM+SBM 28.47 ± 1.77 [25.0 - 31.95] 50.4 ± 1.58 [47.3 - 53.49] 69.41 ± 2.07 [65.36 - 73.47] 1.38e-180

DSST
VBM 8.43 ± 0.4 [7.65 - 9.21] 8.54 ± 0.26 [8.03 - 9.04] 9.88 ± 0.36 [9.18 - 10.57] 4.88e-230
SBM 7.99 ± 0.41 [7.19 - 8.79] 7.89 ± 0.25 [7.4 - 8.39] 8.6 ± 0.33 [7.95 - 9.24] 3.28e-192
VBM+SBM 7.98 ± 0.4 [7.19 - 8.77] 7.82 ± 0.25 [7.32 - 8.31] 8.46 ± 0.33 [7.81 - 9.1] 6.89e-187

VBM - voxel-based morphometry; SBM - surface-based morphometry.
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3.3.2.1 MMSE

The test is one of the most frequent tools for screening cognitive

impairment in older adults. It is also used to evaluate cognitive impairment

progression in follow-up visits. MMSE examines various cognitive

domains: temporo-spatial orientation, memory recall, concentration,

language, visuospatial function, and working memory. The top valuable

structural predictors of MMSE results are listed in Figure 3.21 and

described below.

Precuneus volume is the most informative predictor. It is a cortical

region located in the posterior portion of the medial parietal cortex. Recent

functional imaging findings in healthy subjects suggest its involvement in a

wide spectrum of highly complex functions, including visuo-spatial

imagery, episodic memory retrieval, working memory, and orientation

[295, 296]. Consequently, its integrity determines successful achievement

of several MMSE tasks, such as the intersecting pentagon copying test,

short-term memory recall, and orientation to time and place. The relative

volume of intracranial arteries is the second in the list of structural

parameters with the greatest prognostic gain. The lumen of the vessels

decreases in atherosclerosis which is associated with impaired cognitive

function due to reduced cerebral blood flow and ischemic damage. Recent

studies reported that intracranial stenosis of arteries and increased plaque

number correlate with more lacunes, larger volume of WM lesions and

memory decline [297, 298]. Hence, the decreased total volume of

intracranial arteries is implicated in the performance deficiency in the word

registration-repetition task and short-term memory recall of MMSE test.
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The pars triangularis relative volume is the third index that

produces the most informative input. The structure refers to the triangular

shaped cortical region of the inferior frontal gyrus in the frontal lobe. It is a

segment of Broca’s area which takes part in expressive aspects of the

spoken and written language. More characteristically, the pars triangularis

is involved in the semantic processing of language and syntax. The

relatively high predictive value of the pars triangularis in MMSE can be

explained by its essential participation in the language tasks: sentence

repetition, instructions comprehension, reading sentences and doing as they

say, writing short sentences, recognition and naming of two common

objects.

MMSE in patients with MCI: In the MCI cohort, the hippocampus

contributes the most to the information gain. Its involvement in working

memory, memory recall and language processing and production might

affect the successful fulfillment of the following tasks: repetition,

instruction comprehension, recognition and naming of objects, spelling

“WORLD” backward, and short term memory recall. The superior parietal

lobule is the next best estimator for MMSE test scores. It is topographically

close to the occipital lobe and is employed in some aspects of concentration

and visuospatial perception. Its participation in the tasks of copying

pentagons and spelling “WORLD” backward might explain the high

informative value.

MMSE in patients with dementia: MMSE test scores in the

dementia patients are best forecasted from the volumes of the brain parts

different from those observed in the CN and MCI cohorts. The fusiform

gyrus has the greatest informative potential in the dementia group. Its
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function mainly comprises visual processing, i.e., word and object

recognition, visuospatial perception. Hence, it’s a key partaker in the tasks

of copying of intersecting pentagons, reading a sentence, recognising and

naming common objects. Next, the transverse temporal gyrus, caudal

middle frontal cortex, and cGM have the highest information gain value.

The transverse temporal gyrus is the first cortical region to process

incoming auditory information. Thus, its impairment could be associated

with less efficient processing of speech-related stimuli, which could, in turn,

impede learning and perceiving speech sounds thus affecting the

performance in sentence repetition and instruction comprehension tasks of

MMSE. The caudal portion of the middle frontal gyrus contains the frontal

eye fields which control saccadic eye movements. It is these movements

which make it possible to scan numerous details within a scene. The role of

the structure in visual attention might be relevant to the visuospatial and

language tasks including recognition of common objects, reading a

sentence and doing as it says, copying intersecting pentagons. Finally, the

GM of the cerebral cortex also has a relatively high information gain value.

Since it comprises the four lobes, i.e., frontal, parietal, temporal, and

occipital, it is involved in a wide range of cognitive processes. cGM

participates in memory and learning, sensory perception such as seeing,

hearing, speech, language comprehension, concentration, visuospatial

processing, orientation, spatial attention and mapping. Hence, its integrity

is required for the successful completion of all MMSE tasks.
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Figure 3.21: Brain structures ranked according to information gain value for MMSE score prediction. Inflated cortical representations showing
significant correlations between cortical volumes and test score
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Figure 3.22: Brain structures ranked according to information gain value for ADAS13 score prediction. Inflated cortical representations
showing significant correlations between cortical volumes and test score
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Figure 3.23: Brain structures ranked according to information gain value for RAVLT score prediction. Inflated cortical representations
showing significant correlations between cortical volumes and test score
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Figure 3.24: Brain structures ranked according to information gain value for DSST score prediction. Inflated cortical representations showing
significant correlations between cortical volumes and test score
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Figure 3.25: Brain structures ranked according to information gain value for TMT score prediction. Inflated cortical representations showing
significant correlations between cortical volumes and test score.
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3.3.2.2 ADAS

ADAS is a brief cognitive test battery that evaluates learning and

memory, language production, language comprehension, constructional and

ideational praxis, etc. In this study we resorted to average values of ADAS -

ADAS13. The reason for the choice of this dependent variable is explained

in Subsection 3.4.1. The information gain value of the brain volumes in

predicting ADAS13 in the CN, MCI and dementia cohorts is illustrated in

Figure 3.22. For the CN subjects, the middle temporal volume provides

the highest information gain value. The hippocampus, amygdala and other

structures constitute the medial temporal lobe which is essential for episodic

memory. Encoding, consolidation, and retrieval are the processes composing

the memory function of the lobe while word recall and remembering test

instructions are among the tasks assessing memory in the ADAS-cog test.

Intraventricular CSF is the second top-informative predictor of

performance in ADAS-cog in the CN cohort. The rise in the volume

suggests larger ventricles and indicates brain atrophy which hampers

cognitive abilities. Larger ventricles are strongly correlated with lower WM

integrity due to the small vessel disease [299]. Increasing intraventricular

CSF volume is significantly associated with increasing severity of cognitive

impairment and reaction time in the tests.

WM hypointensities and the inner CSF are predictors of roughly

the same informative value. The hypointensities are areas of attenuated

signal on T1-weighted MRI scans. Pathological lesions in these regions

include myelin pallor, tissue rarefaction associated with a loss of myelin

and axons, and mild gliosis [300]. They are also associated with a faster
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deterioration in global cognitive performance as well as in memory,

learning, praxis, and language [188]. These functions are believed to

depend on some brain structures including subcortical neural networks and

cortical-subcortical circuits. The latter can be damaged while passing

through WM. Reasonably, the WM integrity is the key index to predict

ADAS13.

Inferior horns of the lateral ventricles have the information gain

value almost identical to that of the inner CSF and WM hypointensities.

Inferior lateral ventriculomegaly is caused by passive enlargement of the

inferior (temporal) horns of the lateral ventricles. Typically, the

enlargement follows neuronal loss and brain parenchymal atrophy in the

temporal lobe. Therefore the temporal horns have been repeatedly used as

the index for middle temporal lobe atrophy [301] which is the top

informative biomarker in our study. They may also reflect the level of

cognitive impairment. Accordingly, subjects who suffer from cognitive

decline exhibit greater temporal horn enlargement compared to their

cognitively stable counterparts. Notably, the information gain of the inferior

horns is twice as high as that of the total lateral ventricles. This can be

explained by the fact that the temporal horn volume is a measurement of the

middle temporal lobe atrophy while the size of lateral ventricles is

indicative of the global cerebral atrophy. Consequently, it is less specific for

neuropsychological decline compared to the temporal horns and has lower

significance in projecting ADAS.

The fifth most informative predictor is the ratio of the brain segment

to the TIV. The brain segment includes voxels of all intracranial structures

with the exception of the brain stem and background. It also includes vessels,
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the optic chiasm and CSF.

The information gain of the cuneus is approximately 75% bigger

than that of the lateral ventricles. The cuneus is a wedge-shaped area on the

medial surface of the occipital lobe. It is most known for its role in primary

visual processing (receipt, segmentation, and integration of visual input)

and secondary visual processing (analysis and discrimination of visual

information in terms of motion, shape, and position). These functions are

necessary for the accurate and prompt completion of ADAS tasks such as

naming and word recognition. The cuneus is also involved in reward

response, anticipation, attention, and working memory manipulations.

Thus, it contributes to higher cognitive functions involving visual

information.

The information value of the hippocampus is two times lower than

that of the total middle temporal lobe. The hippocampus is a complex brain

region crucial to semantic, episodic, and spatial memory, learning, and

language comprehension and production. A decrease in hippocampal

volumes is strongly associated with worse ADAS scores. To accomplish

pattern recognition and memory encoding tasks of ADAS-cog, the

hippocampus acquires an input from the entorhinal cortex. It is better to

combine the volumetric analysis of these substructures that comprise the

middle temporal lobe than to explore each of them individually.

The next information valuable structure is the putamen - a deep

brain nucleus and a component of the basal ganglia. Through the

cortico-striato-thalamocortical neural pathways, the putamen is involved in

language learning functions and motor execution, including speech

articulation. Its impairment leads to hindered fluency, dysarthria with

120120120



clumsy hands and other clinical manifestations. ADAS requires intact

motor responses, language and cognition to successfully fulfil different

tasks including constructional praxis and spoken language ability.

Therefore, the putamen is related to the ADAS-cog score.

The volumes of the frontal lobe, ventral diencephalon, entorhinal

and temporal lobe also provide information for the prediction of ADAS13,

since they contain neuro-centres for language, voluntary movement, object

and language recognition. Although the parahippocampal gyrus volume

correlates significantly with language and praxis subscale scores, it has a

relatively low information gain value in our models predicting ADAS13.

ADAS-cog in patients with MCI: The middle temporal lobe

volume is not high informative in the MCI group. Instead, each of its three

main components - the amygdala, the entorhinal cortex and the

hippocampus - achieves the highest values of the parameter. The middle

temporal lobe is composed of several structures that can disproportionately

contribute to the forecast of ADAS results. In our study, the amygdala is the

strongest predictor of ADAS13 in the MCI group. It is known for the key

role in regulating emotions and encoding memory of them. The predictive

value of the amygdala volume can be justified by the fact that emotions

impact several cognitive processes, including memory and learning. The

entorhinal cortex has the second greatest predictive gain in the performance

of the model. Working memory, spatial learning and memory are among the

functions of the entorhinal cortex. Injury to it can impact efficiency in such

ADAS-cog tasks as word recall, remembering test instructions and

orientation. The hippocampus ranks third among the best estimators in the

MCI cohort. Its contribution to learning; language comprehension and
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production; semantic, working and spatial memory makes it crucial for

fulfilling multiple ADAS tasks.

ADAS-cog in patients with dementia: In demented patients, the

volume of the middle temporal lobe and the inferior lateral ventricles are

the top predictors of ADAS13 in our models.

3.3.2.3 RAVLT

RAVLT is a powerful neuropsychological instrument for assessing

episodic memory and attention. It evaluates the ability to learn 15 words in

five immediate trials, to remember the words after an intervening

interference list, then to recall and recognize the words after a 30-minute

latency interval. RAVLT is commonly used to test cognitive abilities in

dementia and pre-dementia patients. Figure 3.23 exhibits the rank of

different brain regions in predicting RAVLT values.

In the cognitively preserved subjects, the best predictor is WM

hypointensities. According to previous neuroimaging studies, WM damage

increases with aging and cerebrovascular disease, and is linked to episodic

memory impairment in CN older individuals [302, 303]. Age-related

episodic memory deficits are caused by network disruption because injury

to various pathways leads to the disconnection between the frontal and

temporal cortex and frontal-subcortical WM tracts. Next, the volume of the

insula is the second best estimator of the RAVLT score. The insular cortex

is a slender band of GM that is located just beneath the lateral brain surface,

connecting the temporal lobe to the inferior parietal cortex. The structure is

linked to verbal episodic memory tasks, which justifies our findings. The

putamen is the ensuing strongest predictor in CN cohorts. Although our
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understanding of the putamen’s role in cognitive functioning is still limited,

recent discoveries suggest that its damage results in poorer attention [304].

The assumed reason for this is its involvement in the

cortico-striatal-thalamo-cortical pathway that consists of connections

between the basal ganglia, thalamus and multiple brain regions involved in

cognitive control in the prefrontal, parietal and temporal lobes. Therefore,

alterations to this region can be accountable for the impeded execution of

the three tasks in RAVLT neurofunctional test.

RAVLT in patients with MCI: The inferior lateral ventricles exceed

all analyzed brain structures in estimating RAVLT scores in the MCI cohort.

Since they reflect the temporal lobe volume, the ventricles can be used as

indicators of episodic memory and attention.

RAVLT in patients with dementia: The middle temporal lobe

outperforms all other brain areas in calculating RAVLT scores. The inferior

parietal lobe and its part - the posterior cingulate cortex - take second place

in the list of predictors. The involvement of the aforementioned structures

in episodic memory and attention helps us to explain the findings.

3.3.2.4 DSST

This is a psychomotor test that requires the participant to match

symbols to numbers according to the key at the top of the page. The DSST

is short and valid, that is why it is widely used in neuropsychology. It

assesses a variety of cognitive functions. Motor speed, working memory,

associative learning, and visuoperceptual functions are required for good

DSST performance.

The structural parameter with the most pronounced information
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gain is WM hypointensities. Lower scores in the pencil and paper DSST are

substantially correlated with a greater volume of WM lesions [305]. A

study showed a notable interaction between WM lesion and accuracy,

working memory, associative learning, psychomotor speed, attention, and

visuospatial functioning [305, 306]. The middle temporal lobe and

hippocampus have the next highest ranking. They play a crucial role in

learning coordination, working memory, attention, and spatial perception

which are essential for satisfactory performance in the DSST [307].

The next informative predictor is the fusiform gyrus - a vast

structure in the inferior temporal cortex. Its role is higher-level processing

of visual information, including identification and differentiation of objects,

word recognition, and perception. Therefore, the successful completion of

the DSST partially depends on the fusiform gyrus integrity.

The pars triangularis receives a rank equal to that of the middle

temporal lobe and hippocampus. It is challenging to justify this result since

the pars triangularis is involved in the language functions irrelevant to the

DSST. The caudate nucleus ranks lower than the pars triangularis. This is

supported by multiple studies that revealed correlations between the

decreased volumes of the caudate nucleus, reduced attention and motor

speed [211].

DSST in patients with MCI: In the MCI cohort, the choroid plexus

is the metric that provides most information for anticipating DSST scores.

It is involved in producing the CSF and certain proteins as well as

transporting solutes to the brain. The choroid plexus volume has been

reported to increase with advancing age. The supposed reasons for this are,

first, modifications in the choroid plexus microstructure or function and,
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second, ventriculomegaly [308]. These lead to dysfunction in CSF

synthesis and clearance as well as reduce the levels of anti-inflammatory

proteins. The disruption of the neuroimmune axis eventually hampers brain

homeostasis and leads to cognitive deterioration [309, 310]. Due to scarcity

of research in this topic, it is challenging to pinpoint which cognitive

domains are impaired with structural alterations to the choroid plexus.

Therefore, it is difficult to identify the DSST tasks that are affected by

change in the volume of the structure.

The brain structures that receive the next rank are the cGM and

inferior parietal lobe. The cGM is critical for all the cognitive domains

assessed by DSST. The inferior parietal cortex plays a crucial role in

auditory-spatial working memory, motor speed, attention, and visuospatial

processing. The rostral middle frontal gyrus - the fourth most informative

region - is associated with working memory and visual attention.

DSST in patients with dementia: The inferior parietal gyrus is the

highest ranking predictor in the model of DSST scores in the demented

patients.

3.3.2.5 TMT

TMT is a neuropsychological test that reflects visuospatial abilities,

information processing speed, sustained attention, motor speed, working

and rote memory. The dependent variable of the TMT shows the time spent

on taking the test. Choroid plexus volume ranks first in forecasting TMT

scores in the cognitively preserved population. Since the role of this

structure in cognition has not been fully described, it’s challenging to

identify the tasks that are affected by structural alterations to the choroid
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plexus. The volume of WM hypointensities takes second place as a TMT

performance predictor. Since the WM lesions reduce motor and processing

speed, impair memory, visuospatial function and attention, it’s plausible

that they rank high in prognosing the test scores. The middle temporal lobe

is the next valuable structure in the list. It is involved in working memory,

attention and visuospatial perception. The lateral occipital cortex is a neural

center for visual recognition. It also has a high predictive value for the TMT

scores.

TMT in patients with MCI: In the MCI group, the inferior parietal

cortex is the strongest predictor because of its role in working memory,

attention, visuospatial processing, and motor speed. The second best

predictor for TMT scores is the superior marginal cortex which is involved

in information processing.

TMT in patients with dementia: Finally, the inferior parietal cortex

and the GM outperform all other analysed brain regions in detecting TMT

scores among the demented patients.

3.3.3 Classification of Examinees Into Cohorts According to the Pattern of
SFA Association

We tried to classify individual findings according to the model

which describes the case best. The idea was that the ML model, when

trained on the cases of this of that group, describes a disease-specific SFA

pattern. The pattern serves as a "stamp" of the disease on which the model

was trained. Therefore, one can find the "stamp" which fits the case best.

We used Random Forest model as a regression algorithm to predict results

of cognitive tests. Then we employed the majority voting technique to

assess the performance of the multigroup classification by looking at the
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smallest absolute error in prediction between three regression models.

The highest classification accuracy is achieved with the model

trained to predict MMSE from VBM (see Figure 3.26). In the cognitively

normal cohort, the model identifies 83.91% of individuals as healthy

subjects, and a relatively small portion (14.94%) is misclassified as patients

with MCI. The true prediction rate reaches 86.96% in the MCI group. The

least accurate classification is observed in the group of the demented

patients: it misclassifies over 26% of them. This is the major limitation of

the constructed classification system.

Figure 3.26: Confusion matrix of multigroup classification based on MMSE
prediction from VBM data

The diagnostic algorithm based on ML prediction of MMSE from

SBM is almost as accurate as the previous classification (see Figure 3.27).

The percentage of misclassified cases in the normal cohort is slightly

higher. Still, none of the cognitively preserved individuals are misclassified

as demented. When VBM and SBM predictors are used in combination, the

performance does not increase (see Figure 3.28). Unexpectedly, the true

predictive rate drops to 79.31% and 72.07% for the cognitively normal and
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demented population respectively. The inclusion of SBM predictors to the

model does not boost the accuracy.

Figure 3.27: Confusion matrix of multigroup classification based on MMSE
prediction from SBM data

Figure 3.28: Confusion matrix of multigroup classification based on MMSE
prediction from SBM and VBM data

Classification based on the model trained to predict ADAS13 from

VBM detects the demented patients more accurately than the other

considered models at the level of 78.38% true prediction rate. The

performance for the CN class is weaker in all the models predicting

ADAS13.

128128128



Figure 3.29: Confusion matrix of multigroup classification based on MMSE, ADAS
and RAVLT prediction from VBM data

Figure 3.30: Confusion matrix of multigroup classification based on MMSE, ADAS
and RAVLT prediction from SBM data

The application of the majority voting technique to models

predicting results in MMSE, ADAS and RAVLT improved the classification

performance (see Figures 3.29-3.31). We observed the highest classification

performance of the algorithm trained on SBM data for the CN group

(TPR=91.95%, see Figure 3.30). The accuracy of identifying MCI was

83.33%. The model trained on VBM data showed the best performance for

dementia cases (TPR=80.18%, see Figure 3.29).
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Figure 3.31: Confusion matrix of multigroup classification based on MMSE, ADAS
and RAVLT prediction from SBM and VBM data

3.4 Deviation From Model of Normal Aging: Application of Deep
Learning to Structural MRI and Cognitive Scores

3.4.1 Association of Cognitive Tests and Structural Data

The structural data are presented in terms of percentage of the

volume of a specific brain area to the total intracranial volume. There are

significant differences among the studied cohorts in the structures most

vulnerable to change in ND (see Table 3.9). The data reveal shrinkage of

the brain parts (the hippocampus, entorhinal cortex, fusiform gyrus, medial

temporal lobe) and enlargement of the ventricles in accelerated aging. No

significant differences in age among CN, MCI and AD groups was detected

(p = 0.1109).

In the MCI cohort, the ADAS-cog score is negatively associated

with the major part of the analyzed relative volumes. The exception is the

relative volume of WM and its lesions, CSF and caudate nucleus. The

association of performance in ADAS-cog with the relative volume of

caudate nucleus is almost significant (p = 0.061). The portion of TIV
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occupied by WM lesions does not correlate with ADAS-cog scores in this

group (r = 0.03; p = 0.38). WM lesions are a typical sign of brain aging.

They result from chronic small vessel disease and can be seen well as foci

or areas hypointensive on T1-weighted images and hyperintensive on

T2-weighted images including FLAIR. There are different patterns of the

emergence of the WM lesions in MCI and AD groups.

Table 3.9: Demographics, cognitive performance and volumes of brain parts in
studied groups

Total CN MCI Dementia p-value
N= 1302 287(22.04%) 646(49.62%) 369(28.34%)

Age 75.74[71.7-80.7] 76.62 ± 5.62 75.25 ± 7.16 75.93 ± 7.37 0.0933785
Gender 4.19707e-06

Female 522(40.09%) 134(46.69%) 215(33.28%) 173(46.88%)
Male 780(59.91%) 153(53.31%) 431(66.72%) 196(53.12%)

Education, years 15.58[13.0-18.0] 16.13 ± 2.91 15.76 ± 2.99 14.85 ± 3.21* 9.08991e-08
Ethnicity 0.198438

White 1210(92.93%) 261(90.94%) 603(93.34%) 346(93.77%)
Black 60(4.61%) 21(7.32%) 22(3.41%) 17(4.61%)
Asian 30(2.3%) 5(1.74%) 19(2.94%) 6(1.63%)

Indian/Alaskan 1(0.08%) 0(0.0%) 1(0.15%) 0(0.0%)
More than one 1(0.08%) 0(0.0%) 1(0.15%) 0(0.0%)

Marital status 4.1773e-08
Married 1035(79.49%) 196(68.29%) 532(82.35%) 307(83.2%)

Never married 31(2.38%) 13(4.53%) 6(0.93%) 12(3.25%)
Divorced 79(6.07%) 21(7.32%) 42(6.5%) 16(4.34%)
Widowed 154(11.83%) 54(18.82%) 66(10.22%) 34(9.21%)
Unknown 3(0.23%) 3(1.05%) 0(0.0%) 0(0.0%)

Cognitive tests
ADAS-cog 19.87[11.67-26.33] 8.73 ± 4.14 18.82 ± 6.6 30.37 ± 8.97 2.2404e-165

MMSE 26.18[24.0-29.0] 29.06 ± 1.09 26.91 ± 2.2 22.66 ± 3.03 2.1560e-155
RAVLT 30.44[23.0-37.0] 43.2 ± 9.76 29.79 ± 8.86 21.67 ± 7.77 3.7071e-120

DSST 36.24[27.0-45.0] 46.77 ± 11.06 37.37 ± 11.1 26.05 ± 12.41 2.72808e-83
TMT(part B) 138.13[75.0-187.0] 85.03 ± 43.18 128.48 ± 72.56 200.96 ± 88.57 2.20487e-73

Morphometry
Ventricles 2.93[1.82-3.67] 2.52 ± 3.73 2.86 ± 1.35 3.37 ± 1.46 1.13635e-23

Hippocampus 0.41[0.35-0.46] 0.47 ± 0.06 0.4 ± 0.07 0.36 ± 0.07 1.93988e-65
Putamen 0.53[0.48-0.57] 0.55 ± 0.06 0.52 ± 0.06 0.51 ± 0.08 1.54782e-17

Amygdala 0.15[0.13-0.17] 0.18 ± 0.02 0.15 ± 0.03 0.14 ± 0.03 8.82095e-64
WM lesions 0.41[0.17-0.47] 0.32 ± 0.31 0.38 ± 0.38 0.54 ± 0.5 2.23640e-17

Entorhinal cortex 0.21[0.17-0.25] 0.25 ± 0.04 0.21 ± 0.05 0.18 ± 0.05 2.14294e-58
Fusiform gyrus 1.03[0.93-1.13] 1.1 ± 0.13 1.04 ± 0.14 0.95 ± 0.14 2.06811e-30

Middle temporal lobe 1.18[1.06-1.29] 1.28 ± 0.13 1.18 ± 0.16 1.07 ± 0.15 8.55332e-48
Whole brain 63.19[60.16-65.83] 65.51 ± 4.54 63.29 ± 3.92 61.21 ± 3.89 1.84928e-36

P-value is marked in bold if difference among groups is statistically significant (p < 0.05).
Structural features are reported in % to TIV. Statistical data are expressed as IQR, Mean±SD, or the absolute
number of cases and their percentage in studied cohort.
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The functional data in ADNI1 are obtained with cognitive tests

such as MMSE, ADAS-cog (ADASQ4, ADAS11, ADAS13), DSST, TMT (part

B), and RAVLT (RAV LTimmediate, RAV LTlearning, RAV LTf orgetting) [178]. The

association between the major marker of brain atrophy - CSF% - and

performance in ADAS-cog tests is stronger for ADAS13 (r = 0.18;

p < 0.05) than for ADASQ4 (r = 0.15; p < 0.05) and ADAS11 (r = 0.15;

p < 0.05). This goes in line with a research which evidenced a more

pronounced annual decline in ADAS13 than in ADAS11 in AD patients [311].

Similarly, the association of CSF% score with RAV LTimmediate is stronger

than with RAV LTlearning and RAV LTf orgetting scores (r = −0.19 vs −0.10

and 0.12; p < 0.05). Other authors also showed that the accuracy of the

model predicting RAVLT scores from GM density is higher for

RAV LTimmediate score than for RAV LTf orgetting [312]. Therefore, we used

ADAS13 and RAV LTimmediate in this study. Figure 3.32 shows the

associations of the test results with age and structural data.

SFA: ADAS-cog and MMSE are primary cognitive tests required

in all recent Food and Drug Administration clinical drug trials for AD in

the USA [313]. From our data, the results in ADAS-cog and RAVLT have

the strongest association with the structural markers of brain atrophy in the

CN group. For instance, the coefficient of correlation between hippocampal

volume and ADAS13 score is −0.18 in the CN cohort, −0.34 in patients with

MCI, and −0.20 in the AD group. The same coefficient in RAV LTimmediate is

0.13, 0.24, and 0.18 in the correspondent cohorts (see Figure 3.32).

In our study the structural markers of brain aging demonstrate a

stronger correlation with the results in ADAS-cog than in the other tests.

Other authors also justified the informative value of ADAS-cog by
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predicting its score with a regression model from morphometric features

[314, 137]. We found an obvious correlation of the MMSE score with the

hippocampal volume (r = 0.44; p = 7.25e − 86). This goes in line with

another study that showed their close association (r = 0.51; p < 0.001)

[165].

Figure 3.32: Associations of results in cognitive tests with age, functional and
structural features in healthy cohort (a), patients with MCI (b) and AD (c).
Association is reported in terms of Pearson’s correlation coefficient. Cross-mark
overlays non-significant relationships between features (p > 0.05).

The results we received suggest the presence of different SFA in

healthy aging and ND. For instance, the proportion of WM lesions to TIV

does not show a linear association with ADAS-cog score in subjects
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diagnosed with MCI. In contrast to this, the relationship is strong in AD

patients (r = 0.22; p = 2.61e−05). Other authors showed that WM lesions

enlarged with age and with the development of dementia [315, 146]. It

remains unclear why the emergence of WM lesions has a common pattern

in the CN adults and patients with AD.

We reported a prominent relationship between cognitive

functioning and the volumes of the hippocampus, amygdala, entorhinal

cortex, and middle temporal lobe. Other studies also justified the

importance of the hippocampal area, amygdala and the middle temporal

lobe for intellectual activities [316, 317, 318, 319, 320, 321, 322, 323, 324].

3.4.2 Proposed Marker of Disease-Related Cognitive Decline

When applied to distinct cognitive test scores, the proposed 3D

CNN model shows the best prediction performance in the CN cohort. The

worst performance is monitored in the AD group. Data-blending does not

boost the performance considerably, i.e., there is no evident advantage in

using several image reconstructions. In contrast to this, the model-blending

approach shows the top accuracy. It allows us to retrieve maximum data for

assessing SFA (see Figure 3.33). The variability of the results in the studied

cohorts is most apparent in ADAS-cog and MMSE tests and less evident in

RAVLT, DSST, and TMT. The distribution of MAE differs significantly

among the cohorts (see Table 3.10). This justifies that cognitively-normal

people and patients with NDs have different SFA patterns, which can aid to

diagnostics of MCI and AD.

Some authors found marked correlations between the predicted and

actual scores in MMSE (r = 0.44; p < 0.0001) and ADAS-cog tests
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(r = 0.57; p < 0.0001) [136, 137]. We also observed a significant linear

association between the predicted and actual values in the combined group

of the CN subjects, MCI, and AD patients (MMSE r = 0.09, p = 2.28e−4;

ADAS r = 0.05, p = 2.87e − 2; RAVLT r = 0.11, p = 2.24e − 05; TMT

r = 0.22, p = 2.34e − 18). We recorded conflicting findings (a

non-correlation) in the CN group due to distinct study design. Stonington

et. al [136] trained the model on three cohorts (CN, MCI, and AD), while

we fed the predictive model exceptionally with the CN cases. Other

researchers managed to predict MMSE results from fMRI data accurately

[135].

Table 3.10: Mean absolute error of voting regression ensemble model trained on
structural brain images averaged along axial, coronal and sagittal axes

CN group MCI group AD group
Mean ± SD 95%CI Mean ± SD 95%CI Mean ± SD 95%CI p-value

MMSE 0.84 ± 0.73 [0.75 - 0.92] 2.38 ± 2.08 [2.23 - 2.54] 6.46 ± 3.04 [6.15 - 6.77] 4.8422e-142
ADAS-cog 3.44 ± 2.42 [3.16 - 3.72] 10.29 ± 6.15 [9.82 - 10.77] 21.56 ± 8.94 [20.64 - 22.47] 4.3343e-150
RAVLT 7.94 ± 5.86 [7.26 - 8.62] 14.63 ± 7.21 [14.07 - 15.18] 21.78 ± 7.84 [20.98 - 22.58] 1.08195e-91
TMT(part B) 29.67 ± 31.42 [26.03 - 33.31] 55.74 ± 62.73 [50.9 - 60.58] 120.08 ± 79.28 [111.98 - 128.18 8.91918e-53
DSST 8.67 ± 7.0 [7.86 - 9.48] 11.93 ± 8.51 [11.27 - 12.58] 21.26 ± 11.73 [20.06 - 22.45] 3.51058e-54

Table 3.11: Performance of models trained on cognitively preserved population and
tested on three different cohorts (MAE)

MMSE ADAS-cog RAVLT TMT(part B) DSST
Data Method CN MCI AD CN MCI AD CN MCI AD CN MCI AD CN MCI AD

Axial(A) CNN 1.12 2.54 6.54 5.74 10.54 21.95 8.74 14.41 21.4 44.39 109.44 183.62 9.5 12.39 20.8
Coronal (C) CNN 1.09 2.5 6.08 3.69 12.51 24.19 8.4 12.84 19.42 47.09 114.97 189.33 9.06 11.34 18.3
Sagittal (S) CNN 1.17 2.46 6.37 3.56 10.89 22.15 9.9 14.31 21.18 47.6 58.08 123.65 9.51 11.84 20.24
3D 3DCNN 0.95 2.25 4.09 3.52 10.96 22.33 7.24 11.25 17.4 25.06 65.14 136.02 8.21 9.56 16.65
VR(C+S) ensemble 1.13 2.48 6.23 3.63 11.7 23.17 9.15 13.58 20.3 47.34 86.52 156.49 9.28 11.59 19.27
VR(A+C) ensemble 1.11 2.52 6.31 4.72 11.53 23.07 8.57 13.63 20.41 45.74 112.21 186.47 9.28 11.86 19.55
VR(A+S) ensemble 1.15 2.5 6.45 4.65 10.72 22.05 9.32 14.36 21.29 46.0 83.76 153.64 9.51 12.11 20.52
VR(A+C+S) ensemble 1.13 2.5 6.33 4.33 11.32 22.76 9.02 13.85 20.67 46.36 94.16 165.54 9.36 11.85 19.78
MB(A+C+S) CNN+LR 0.84 2.38 6.46 3.44 10.29 21.56 7.94 14.63 21.78 29.67 55.74 120.08 8.67 11.93 21.26

A, S and C correspond to skull stripped images averaged along appropriate axis; VR - Voting Regression meta-estimator;
MB - Model Blending; LR - Linear Regression; RR - Ridge Regression.

The calculation of cognitive scores is more precise from the

radiomics data than from the images (see Table 3.11). The first reason for
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this is the noise of the 2D images averaged along axes. The second reason is

the relatively low number of cases used for training the deep learning

model. The high-dimensional computational model needs a larger number

of training samples because of the dimensionally cursed phenomena [325].

The idea of using the deviation between the model and actual

values is not new for diagnostics. There is a large body of evidence that the

difference between the computed and actual age - biological age gap - is a

reliable marker of dementia [326, 327, 328]. A study suggested an

association between the gap and cognitive performance. It also reported that

BAG is related to worsening in performance on the DSST and TMT tests

[329]. We applied the same idea to prediction of cognitive performance.

Figure 3.33: Distribution of deviation from model of normal aging among study
cohorts

3.4.3 Justification of DMNA as Marker of Dementia

Diagnosing from DMNA values is most accurate with Random

Forest classifier jointly trained on DMNA MMSE and DMNA ADAS-cog

(see Table 3.10, Figures 3.34 and 3.35). The performance of the

CN-versus-AD classification model (AUC = 1.0) is comparable to the

accuracy of state-of-the-art models trained on ADNI dataset (see

Table 3.12). From the table, DMNA can accurately distinguish CN subjects

from MCI patients (AUC = 0.9957). We also achieved creditable
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performance in the MCI-versus-AD classification (AUC = 0.9793).

Therefore, DMNA can be potentially used as a marker of dementia and can

help to identify the disease.

Figure 3.34: Performance of Random Forest model classifying cases into healthy
and AD groups. DMNA values are input to the model

Figure 3.35: Performance of Random Forest model classifying cases into CN and
MCI cohorts (a); patients with MCI and AD (b). DMNA values are input to model
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Table 3.12: Classification model performance reported in recent studies

CN vs AD MCI vs AD CN vs MCI
Reference, Year Dataset Sens Spec BAC AUC Acc Sens Spec BAC AUC Acc Sens Spec BAC AUC Acc

(CN+MCI+AD)

Gupta [151],2013 232+411+200 0.9524 0.9426 0.9475 - 0.9474 0.8407 0.9211 0.8809 - 0.881 0.9223 0.8145 0.8684 - 0.8635
Payan [152],2015 755 +755+755 - - - - 0.9547 - - - - 0.8684 - - - - 0.9211
Ahmed [149], 2015 251+299+347 0.804 0.882 0.843 - 0.8377 0.4902 0.7515 0.62085 - 0.6208 0.6252 0.748 0.6866 - 0.6945
Khedher [150], 2015 229+401+188 0.9127 0.8511 0.8819 - 0.8849 0.8865 0.8541 0.8703 - 0.8703 0.8216 0.8162 0.8189 - 0.8189
Suk [170], 2016 52+99+51 0.92 0.98 0.95 - 0.9509 0.505 0.9267 0.7159 - 0.7415 0.9389 0.5367 0.7378 - 0.8011
Korolev [157], 2017 61+120+50 - - - 0.8 0.89 - - 0.66 0.64 - - - 0.67 0.63
Cui [156], 2018 223+396+192 0.9063 0.9372 0.92175 0.9695 0.9229 - - - - - 0.7727 0.6996 0.73615 0.777 0.7464
Billones [160], 2017 300+300+300 0.9889 0.9778 0.9834 - 0.9833 0.9 0.9778 0.9389 - 0.9389 0.9111 0.9222 0.9167 - 0.9167
Altaf [148], 2018 90+105+92 1.0 0.9565 0.97825 - 0.978 0.75 0.9429 0.84645 - 0.853 0.9 0.9333 0.9167 - 0.918
Lee [153], 2019 229+398+192 0.9632 0.9778 0.9705 - 0.9874 - - - - - - - - - -
Basaia [158], 2019 352+763+294 0.989 0.995 0.992 - 0.992 0.836 0.883 0.8595 - 0.859 0.873 0.865 0.869 - 0.871
Fang [174], 2019 101+204+93 0.9826 0.983 0.9828 - 0.9858 0.8922 0.9067 0.89945 - 0.8998 0.8633 0.9188 0.89105 - 0.8893
Liu [155], 2020 119+233+97 0.866 0.908 0.887 0.925 0.889 - - - - 0.795 0.698 0.7465 0.775 0.762
Wang [159], 2020 315+297+221 0.987 - - - 0.9883 0.9245 - - - 0.9361 0.9834 - - - 0.9842
Proposed 287+646+369 1.0 1.0 1.0 1.0 1.0 0.8969 0.9428 0.9199 0.9793 0.9261 0.9756 0.9876 0.9816 0.9957 0.9839

To use the proposed approach in clinics we assessed the possible

threshold values of DMNA markers. We undertake sequential values of

DMNA and calculated the accuracy of binary classification tasks (CN vs

MCI, MCI vs AD). Table 3.13 lists the thresholds of DMNA markers in the

binary classification models. The optimal performance is noted on

ADAS-cog scores. It allowed us to distinguish normal aging from MCI and

the latter from AD with a high-level accuracy (above 90%).

Table 3.13: Threshold values of the DMNA markers in binary classification

CN vs MCI MCI vs AD
Cognitive test Threshold Accuracy Threshold Accuracy

MMSE 1.0298 0.7889 4.2011 0.9153
ADAS-cog 5.0856 0.9068 18.1063 0.9172
RAVLT 6.2389 0.7921 18.1036 0.7862
TMT(part B) 37.8308 0.8435 146.1889 0.8079
DSST 1.8726 0.7085 15.747 0.802
*Threshold values are expressed as absolute values of DMNA

Many papers reported a high accuracy of the models that classify

healthy and demented subjects [148, 149, 151, 152, 155, 156, 158, 159]. All

the deep learning models were trained on pre-processed MRI images of the

cognitively preserved and those with cognitive deterioration. In contrast to
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the studies, we trained the model exclusively on CN people.

From our data, the predictive power of an SFA model depends on

the complexity of the cognitive test used for its training. The accuracy is

higher for the tests covering several cognitive domains (MMSE, ADAS,

TMT vs information processing in DSST, memory in RAVLT). This

supports the results of a study by Stonnington et al. [136]. We report that

the model classifying MCI and AD patients has the lowest accuracy (Acc =

0.9261). Recently different authors received the same results

[148, 151, 170, 174].

A limitation of the current research is that we did not study

convertible and non-convertible to AD MCI cases separately, although some

researchers suggest this [158]. Advances in DL technology allowed

neuroscientists to improve the classification accuracy of CN-versus-MCI

and MCI-versus-AD models [159]. However, the models were biased

because of the data leakage related to the late split [330]. Thus, substantial

work is required to use such algorithms as a diagnostic tool.

3.4.4 Prediction of Progressive MCI. Differentiation Between Alzheimer’s
Disease and Other Neurodegenerative Diseases

Table 3.14 shows the sensitivity and specificity of the conventional

model that classifies MCI cases into stable and progressive ones. As seen

from the table, there is no considerable difference in DMNA values

between the groups (p=0.16÷0.21). Though the balanced accuracy of

binary classification is above 80%, low specificity can be considered as a

strong limitation of the models. We also identified the difference in DMNA

between demented individuals with A+ and A– subjects (see Table 3.15).

Only in the MMSE test the distinction in DMNA is considerable
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(6.27 ± 1.82 vs 5.32 ± 1.9; p < 0.05). At the same time, there is no

difference between A+ and A– patients with MCI (p = 0.75−0.98).

Table 3.14: Performance of binary classification model to distinguish between stable
and progressive MCI

DMNA stable vs progressive MCI
stable MCI progressive MCI

p Sens Spec BAC AUC Acc
(N = 114) (N = 518)

MMSE 2.19[1.15-2.94] 2.21 ± 1.41 2.09 ± 1.3 0.21 0.95 0.71 0.83 0.8547 0.82
ADAS 11.1[8.32-13.63] 11.16 ± 4.02 10.82 ± 3.79 0.16 0.96 0.75 0.855 0.8605 0.85
MMSE + ADAS 0.96 0.67 0.815 0.9475 0.81

Table 3.15: Absolute values of DMNA according to A/T/N classification system

Test A-T-N- A-T-N+ A-T+N- A-T+N+ A+T-N- A+T-N+ A+T+N- A+T+N+ p-value

MCI
MCI due to other pathology (N = 95) MCI due to accumulation of β amyloid (N = 26)

MMSE 2.29 ±.141 2.23 ± 1.12 0.98
ADAS 11.22 ± 3.85 11.47 ± 3.45 0.75

Dementia
Non-Alzheimer’s disease dementia (N = 43) Dementia due to Alzheimer’s disease (N = 17)

MMSE 6.27 ± 1.82 5.32 ± 1.9 p<0.05
ADAS 23.87 ± 5.42 21.17 ± 4.81 0.1

From our data, DMNA cannot be recommended as a tool for

predicting the conversion of MCI to dementia because of its low specificity

(up to 75%). Other existing CSF markers of progressive MCI also do not

ensure the necessary level of prediction: mean diffusivity (average accuracy

of 77%), τ-protein concentration (74%), volumetry data retrieved from the

brain MRI (66%) [331]. There is a considerable difference in DMNA

between demented individuals with Alzheimer’s continuum (A+) and those

with either normal AD biomarkers or non-AD pathologic change (A–).

Hence, the proposed marker can be potentially used for distinguishing

between dementia due to AD and non-AD. To find and justify a reliable

threshold level, further research is required. We failed to identify a strong

distinction between MCI due to the accumulation of β -amyloid and because

of other pathologies (p > 0.05). From our data, the biomarker is not
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applicable for discriminating MCI cases by underlying pathology (AD vs

non-AD).

Strengths and limitations of DMNA: There is no agreement between

researchers on which non-invasive diagnostic modality is more promising for

screening purposes. The strength of our study is that we chose to focus on

multimodal diagnostics to benefit from both types of data. A limitation of

the current research is that we did not study convertible and non-convertible

to AD MCI cases separately, although some researchers suggest this [158].

DMNA as a prognostic criterium of progressive MCI has strong limitation.

Both the proposed and the existing markers of progressive MCI do not ensure

the necessary level of prediction.
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Chapter 4: Conclusion

1.a. We propose estimates of disproportional changes in cognitive

functions to extend the applicability of ML classification in cognitive

studies (ISD, ISDA, and ISCA). The distribution of the indices and RMO

test values over time shows that different cognitive functions degrade at the

same rate throughout life. The RT variable of the battery of PTs we utilized

was less stable than the major dependent variable of the ISD, ISDA, and

ISCA values throughout lifespan. The indicators preserve fairly constant

values after neurodevelopment and maturation, with a modest trend toward

functional deterioration. Further research is required to determine the

ratios’ value in distinguishing between normal and accelerated brain aging.

1.b. The optimal number of homogenous age groups, according to

unsupervised ML clustering, is four. Starting at birth, we divided the

research participants into 20-year age groups: Adolescents aged below 20,

Young adults aged 20 to 40, Midlife adults aged 40 to 60, and Older adults

aged above 60.

1.c. The ISCA index for PT reflects the overall status of an

examinee. We forecasted ISCA values from the results of PTs with high

performance metrics (MAE to range of index values is 3.49 ± 0.14% vs

7.57 ± 0.55% for ISDA and 7.62 ± 0.5% for ISD; p < 0.05). Proportional

age-related developments can be observed in temporal estimates of

information processing speed and inhibitory control in task switching in

normal brain aging.

2.a. WM changes almost linearly throughout life, as does the

percentage of WMHs to total WM. Total GM and its cortical part exhibit
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varied age-related alteration patterns. The linear slowdown in

decision-making across the lifespan could be explained by a widening of

the interhemispheric fissure. Response inhibition is largely controlled by

the premotor areas of the frontal lobe’s medial wall. The expansion of the

interhemispheric fissure is due to the atrophy of these brain regions.

2.b. Following the presentation of WM brain volume as a

second-degree function of age, the effects can be seen as a U-shaped or

inverted parabola curve. The inverted parabola indicates that the WM

bundles are changing. The U-shaped line represents GM volume variation

and the structures that penetrate into patches of neuronal cells. It is not

possible to interpret a climb in the second-order curve as irreversible GM

atrophy in advanced age. As a result, the third-order function of age

matches the data better than the second-order function in terms of GM

nuclei volume.

2.c. There is a strong association of total CSF volume (CSF%) and

RT in the IRT (IRT _mean), which is the most cognitively demanding activity

in our battery (r = 0.36, p < 0.05). It represents the best link between brain

anatomical data and functional outcomes. Switching and inhibitory control,

information processing, and attention are among the cognitive domains and

subdomains tested in this study. The relative volumes of the CSF and GM are

strongly positively correlated with decision-making time, which represents

switching and inhibitory control. The accuracy of the PTs we utilized is

supported by these findings.

3.a. In the healthy population, global cognitive functioning changes

slightly with age. It also remains stable across the disease course. Though

there are patients with reversible or progressive MCI, the real number of
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such cases is quite low. RAVLT scores test are quite stable throughout life

in normal aging and across the disease course with a slight trend towards

lowering in all the study groups. The pace of neurocognitive slowing was

moderately higher in the CN group and MCI patients. Thus, the average

result for all the groups would reach a common value if the observation

lasted several more decades. There are clear signs of malfunctioning in

several cognitive domains assessed with DSST and TMT and the

performance worsens within time. For this reason, the trendlines of test

performance among the CN, MCI, and AD groups converge at the

approximated point of 100 years of age.

3.b. We constructed regression models predicting functional

performance in cognitive tests from brain radiomics. The vulnerability of

distinct neuronal cells to atrophy in accelerated aging differs among distinct

cell groups and brain regions. Logically, the SFA has features specific to the

pathology. The feature selection technique allows us to identify the most

informative structural neuroimaging measures. The models reflect SFA

patterns unique for each study cohort. We analyzed the SFA patterns in the

demented patients of ADNI dataset. As AD accounts for the majority of

dementia cases, we pointed out the structures vulnerable for change in

β -amyloidopathy. Other NDs selectively damage certain neuronal cells and

brain regions, which results in another SFA pattern.

3.c. We classified examinees with the majority voting technique.

According to the pattern of SFA association we distinguished three cohorts:

the cognitively normal elderly, patients with MCI and dementia patients.

The highest accuracy was achieved with the model trained to predict

MMSE from voxel-based morphometry data. In the cognitively normal
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cohort, the model identified 85.06% of individuals as healthy subjects, and

a relatively small portion (14.94%) is misclassified as patients with MCI.

The true prediction rate reached 81.30% in the MCI group. The major

limitation of the constructed classification system was the least accurate

classification of the demented patients (73% accuracy). The classification

based on the model trained to predict ADAS13 from VBM detected

demented patients more accurately than the other considered models

(78.38% true prediction rate).

4.a. There is a strong association between the brain structure of a

subject and their performance in cognitive tests. However, the patterns of

the SFA differ among cognitively preserved people, patients with MCI and

dementia patients. For instance, the coefficient of correlation between the

hippocampal volume and ADAS13 score is −0.18 in the CN cohort, −0.34

in patients with MCI, and −0.20 in the AD group. The same coefficient in

RAV LTimmediate is 0.13, 0.24, and 0.18 in the correspondent cohorts.

4.b. To work out a new marker of neurodegeneration, we predict the

cognitive status of the cognitively preserved examinees from the brain MRI

data. This is an SFA model of normal aging. A big deviation from the model

of normal aging suggests a high risk of accelerated cognitive decline, i.e., a

high level of the error of cognitive score prediction should rise awareness of

a ND.

4.c. The results in the tests reflecting global cognitive functioning -

ADAS-cog and RAVLT - had the strongest association with the structural

markers of brain atrophy. In line with this, the variability of the deviation

from the model of normal aging in the cognitively preserved subjects, and

patients with MCI and dementia was most apparent in the ADAS-cog and
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MMSE tests and less evident in the tests covering several cognitive

subdomains, namely RAVLT, DSST, and TMT. Diagnosing dementia from

DMNA values is most accurate with a Random Forest classifier jointly

trained on DMNA MMSE and DMNA ADAS-cog. DMNA can accurately

distinguish CN subjects from MCI patients (AUC = 0.9957). We also

achieved a creditable performance in the MCI-versus-AD classification

(AUC = 0.9793). Therefore, DMNA has potential for use as a marker of

dementia and can help to identify the disease.

4.d. There is no marked difference in DMNA values between stable

and progressive MCI cases. DMNA as a prognostic criterium of progressive

MCI has strong limitations. Both the proposed and the existing markers

of progressive MCI do not ensure the necessary level of prediction. The

proposed marker has potential for use in differentiating dementia due to AD

from that not due to AD. We identified a considerable difference in DMNA in

the MMSE test between demented individuals with (A+) and (A–) according

to the ATN-classification (6.27 ± 1.82 vs 5.32 ± 1.9; p < 0.05). To find

and justify a reliable threshold level, further research is required.
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Appendices

Appendix A: Definitions

Cognition is the mental processes involved in gaining knowledge

and comprehension. These cognitive processes include thinking, knowing,

remembering, judging, perceiving, recognizing, conceiving, reasoning and

problem-solving.

Cognitive domains are the domains of cognitive function. They are

hierarchical. The bottom of the cognitive construct is responsible for

information input and refers to basic sensory and perceptual processes. The

top of the construct is higher-order cognitive functioning. It maintains

information processing that involves synthesis, accumulation, and retrieval

from memory storage. The functions enable goal-driven behavior in an

individual. The top-level elements are executive functioning (EF) and

cognitive control. The domains are cross-dependent with the prevalence of

top-down versus bottom-up regulation. Broadly speaking, EF also

encompasses cognitive control and exerts control over the use of more basic

cognitive processes. Cognitive domains can be classified into memory,

attention, language, and EF (e.g., reasoning and problem solving). EF is

further classified into inhibition, task switching, working memory updating,

and information speed processing, which are EF domains, or alternatively,

cognitive subdomains.

Neuropathology is the study of disease of nervous system tissue,

usually in the form of either small surgical biopsies or whole-body autopsies.

Gray matter (GM) is a major component of the central nervous

system. It contains most of the brain’s neuronal cell bodies, specifically
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unmyelinated neurons. It is present in the brain, brainstem and cerebellum,

and present throughout the spinal cord. GM includes regions of the brain

involved in muscle control, and sensory perception such as seeing and

hearing, memory, emotions, speech, decision making, and self-control.

White matter (WM) is an part of the central nervous system. It

mainly made up of myelinated axons. White matter is composed of

bundles, which connect various GM regions of the brain to each other. WM

is responsible for the transmission of the nerve impulses between neurons.

Brain atrophy refers to a loss of brain cells or a loss in the number

of connections between brain cells. Brain atrophy is a morphological basis

of both aging and Neurodegenerative disorders.

Neurodegenerative disorder is incurable condition that result in

death of neurons and a progressive deterioration, i.e. dementia.

Dementia is a syndrome in which there is a disturbance of higher

mental function, such as reasoning, planning, judgment, and memorization.

Dementia is one of the major causes of disability and dependency among

older people worldwide.

Alzheimer’s disease is the most common form of dementia and it

may contribute to 60–70% of cases.

Mild cognitive impairment causes a slight but noticeable and

measurable decline in cognitive abilities, including memory and thinking

skills. It can be defined as the transition period from normal aging process

to AD or another type of dementia.
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Appendix B: Evaluation measures

The set of methods we proposed in this research work (e.g. deep

machine learning, computer vision, etc.) are known to be effective

techniques for improving the current diagnostic approaches. In this case, we

will consider the performance of the proposed models are satisfactory if the

specificity and sensitivity of the classification models are higher than 85%

and the fraction of the MAE over the range of the predicted feature is less

than 10% based on the regression models.

Mean Absolute Error is used to assess the quality of the regression

model. It is a measure of absolute difference between two continuous

variables, which gives a clear understanding of the error between actual and

predicted values for medical decision making community. Considering this

evaluation metric, the MAE is calculated as follow:

MAE(y, ŷ) =
1
N

N

∑
i=1

|yi − ŷi|

where yi, ŷi are actual and predicted values of dependent variable

respectively, i = 1,N, N - number of samples.

To assess the quality of the classification models we use sensitivity,

specificity, ROC AUC, accuracy and balanced accuracy metrics. The

confusion or error matrix is built for each predictive model to show how it

can distinguish between classes.

Receiver Operating Characteristic (ROC) curve and its Area Under

the Curve (AUC) are used for performance evaluation of the classifiers and

memorization of the trade-off between true positive rate (TPR) and false
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positive rate (FPR) using different probability thresholds.

Sensitivity is true positive rate. It refers to an ability of a model to

identify an individual with disease as positive.

Specificity is true negative rate. It refers to an ability of a model to

identify a subject who does not have a disease as negative.

T PR(sensitivity) =
T P

T P+FN
(4.1)

T NR(speci f icity) =
T N

T N +FP
(4.2)

BAC(Balanced Accuracy) =
Sensitivity+Speci f icity

2
(4.3)

The overall accuracy of the model is defined as:

Accuracy =
T P+T N

T P+T N +FP+FN
(4.4)

where T P,T N,FP,FN are the true positive, true negative, false positive and

false negative values representing the confusion matrix of classification

model respectively.

All models are trained using k-fold cross-validation technique. The

metrics are calculated for each fold separately and then averaged values are

used as final measure.
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Appendix C: Development of a CAD System for NDs Diagnosis

The automatic assessment and interpretation of the results of the 

brain MRI findings may help doctors to provide a  better diagnosis of NDs. 

Such tools may serve as an objective quantitative measurement of ND. 

CAD may accurately predict the state of the disease and its outcomes. 

There are plenty of algorithms available to analyze neuroimaging, however, 

they require a heterogeneous collection of specialized applications. There is 

no transparent way to incorporate results into one pipeline. The majority of 

the existing tools use and assess morphometry features extracted from MRI 

such as subcortical volume measurements. Morphometry features may be 

extracted from the structural MRI images utilising e.g., the Computational 

Anatomy Toolbox CAT12 for SPM [332], FreeSurfer[191], lesion 

prediction algorithm (LPA) [333] just to name a few. There are also a few 

proprietary solutions [334, 335, 336, 337] related to the assessment of the 

MRI images. All the mentioned solutions may help physicians to evaluate 

the level of cognitive impairments and memory loss indirectly. However, 

NDs are diagnosed with the help of cognitive assessments and this aspect 

should be taken in consideration. The incorporation of such tests into the 

pipeline of diagnosis may significantly i mprove t he v alue o f s uch CAD 

systems. The literature search for existing CAD systems that allow using 

cognitive tests results in their pipeline, revealed only one tool [335]. The 

cNeuro combines findings from brain MRI T1w and FLAIR modalities with 

results of cognitive tests. Its use is limited to the subscribed users only.

The availability of a tool that provides multi-modal analysis of 

findings is desired. The overall diagnosis process may be improved if online
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cognitive tests and quantitative and qualitative analysis of the MRI findings

can be incorporated in one pipeline. A comprehensive view of the patients’

data will reduce the burden on the doctors. Such a data blending approach

implemented in the CAD system will lead to more powerful solutions for

healthcare professionals. The strengths and limitations of the available

CAD systems are summarized in Table A1.

The development of the proposed CAD consists of three tasks:

• Design and implement of algorithms to visualize the areas of the brain

which is affected by ND.

• Compose and deploy online version of psychophisiological and

cognitive tests.

• Develop a predictive model to prognosticate the potential diagnosis of

the ND.

The high-level pipeline of the proposed tool is described in

Figure A1 and Figure A2. To solve the first task we will segment brain

areas and highlight the structure with different color similar to Figure A3.

Then we will look at the deviation of the brain structures volumes from

normal aging assessed on our in-house dataset. These deviations may

indicate an accelerated ageing.

To assess the separability measures between two groups and predict

the final diagnosis we will conduct few steps. We propose to use a similarity

measure by conducting the t-test and finding if there is significant differences

between groups. This will allow us to show the potential of the reviewed

attribute to be used as marker of the disease.
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Table A1: Strengths and limitations of CAD systems to assist doctors in diagnosis of NDs

Product
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Strengths Limitations

FAST, FSL[338] ✓ ✓

+ Segments a 3D image of the brain into
different tissue types (GM, WM, CSF, etc.)
+ It is robust and reliable
+ Compared to most finite mixture
model-based methods + Tissue volume quantification

- Limited number of tissues segmented
- Is not specifically developed for the NDs diagnosis
- Sensitive to noise

CAT12, SPM [332] ✓ ✓

+ Voxel-wise estimation of the local amount or
volume of a specific tissue compartment
+ Applied to investigate the local distribution of grey matter
+ Permits to use gyrification indices that measure surface
complexity in 3D
+Allows to estimate the cortical thickness

- Worse in matching of homologous cortical regions
comparing methods that use geometry
- Limited number of tissues segmented
- No white matter hyperintensities evaluation
- Is not specifically developed for the NDs diagnosis

recon-all, FreeSurfer[191] ✓ ✓

+ Segmentation and parcelation of brain regions
+ FS uses geometry to do inter-subject registration
+ Much better matching of homologous cortical regions
than VBM techniques
+ FS allows you to look at thickness and surface area

- Soft and hard-failure segmentation errors
- Sensitive to artifacts due to intensity in
homogeneity, head motion, reduced signal to noise
ratio, and partial volume effects
- Artifacts can all lead to reduced image quality,
alterations in intensity values and,
ultimately, errors in image segmentation

LST, SPM [333] ✓ ✓
+ Segments T2 hyperintense lesions in FLAIR images
+ Proven to be useful for the segmentation of brain lesions
in the context of Alzheimer’s disease

- FLAIR image has to be provided
- Limited number of tissues segmented
- The choice of the initial threshold lead to
different segmentation results

Diadem, Brainminer [334] ✓ ✓ ✓ ✓

+ Developed to aid in diagnosis of dementia
+ Can be embedded in the clinical workflow
(Connects directly to the hospital PACS)
+ Automatically detects new MR scans that are suitable
for processing

- The ML learning methods the tool is based on are not
properly documented
- All reports are based on in-house dataset
- Proprietary tool, it is not publicly available
- High price of the tool

cNeuro,Combinostics [335] ✓ ✓ ✓ ✓ ✓

+ Helps in early diagnosis of neurodegenerative diseases
+Quantitative assessment of brain images for providing
clinical decision support in neurological disorders
+ Cognitive assessment is incorporated into the tool
+ Statistical comparison with a large reference database
cognitively normal subjects

- Proprietary tool, it is not publicly available
- High price of the tool

Neuroreader, Brainreader[339] ✓ ✓ ✓ ✓

+ Fast processing time
+ Fits into clinical workflows with full PACS integration
+ Includes list of all the structures showing
abnormal volumes

- Is not specifically developed for the NDs diagnosis
- Proprietary tool, it is not publicly available
- Cognitive assessment is incorporated into the tool
- High price of the tool

NeuroQuant[337] ✓ ✓ ✓ ✓

+ Automatic image segmentation from radiographic images
+ Fits into clinical workflows with full PACS integration
+ Allows monitoring structure volumes and visually evaluate changes
+ Accuracy Across All Ages (3-100 y.o)

- The tool is not publicly available
- Cognitive tests are not incorporated into the tool
- High price of the tool

Proposed ✓ ✓ ✓ ✓

+ Automatic image segmentation from radiographic images
+ Cognitive assessment is incorporated into the tool
+ Publicly available
+ Diversified normative dataset

- No integration into clinical workflows with PACS
- No standalone application available
- No approval for clinical use
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Figure A1: High-level pipeline of the proposed web-based CAD system
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Figure A2: Entity relation diagram of the database of the proposed CAD system
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Figure A3: Sample of expected visualization of the brain structures segmented by
the proposed CAD tool using T1w images

Next, we will build the probability density functions fcohort(x) for

each group from our dataset as it is shown in Figure A4. The studied

subject’s value e will be visualized with the vertical line. We will also

calculate the similarity coefficient s as follows:

s =
PC

PC +PD
, (4.5)

where PC, and PD of are the probabilities that are calculated by formula 4.6

if expected value µC for group C is smaller than µD and with formula 4.7

otherwise. Here C corresponds to Control normal, and D to Dementia cohort.

PC = PC(x ≤ e) =
∫ e

−∞

fC(x)dx

PD = PD(x ≥ e) =
∫

∞

e
fD(x)dx

(4.6)

PC = PC(x ≥ e) =
∫

∞

e
fC(x)dx

PD = PD(x ≤ e) =
∫ e

−∞

fD(x)dx
(4.7)

The similarity coefficient s can obtain values between 0 and 1. If s
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is zero it means that there is no similarity between control normal group C

and our examinee. Meanwhile, when s is one the subject is most probably

belongs to the control normal group. The smaller the value of s(s < 0.5) the

higher the probability of disease state.

Figure A4: Sample of the expected output from proposed web-based CAD tool for
relative hippocampus volume to show the separability measure between cognitively
normal group and cohort diagnosed with dementia

The second task is related to design and implementation of web-

based tool composed from cognitive tests for early detection of NDs.

To solve the third task the deep learning model will be developed to

predict the cognitive status from structural data and prognosticate the

diagnosis. As an input, the model may consist of images and numerical

features, we will utilize ensemble modeling approach to enhance the

model’s performance and accuracy. Specifically, we will design the

feedforward deep learning model. The feedforward regression algorithm

will map an structural images x to a cognitive tests results y as follows:

y = f (x,w) (4.8)
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where w correspond to the parameters, that need to be optimized in order to

reach the best approximation of function f (x,w). We may present equation

4.8 in a form of:

y = f (n)( f (n−1)(...( f (1)(x,w))))

where f (i) represents the ith layer out of n layers in NN.
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UAE UNIVERSITY DOCTORATE DISSERTATION NO. 2022: 9 
Psychophysiological and cognitive tests as well as other functional studies 
can detect pre-symptomatic stages of dementia. When assembled with 
structural data, cognitive tests diagnose neurodegenerative disorders 
more reliably thus becoming a multimodal diagnostic tool. Screening for 
dementia can be improved by studying an association between the brain structure 
and its function.
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