
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2022

Effficient Graph-based Computation and Analytics Effficient Graph-based Computation and Analytics

Bingbing Rao
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Rao, Bingbing, "Effficient Graph-based Computation and Analytics" (2022). Electronic Theses and
Dissertations, 2020-. 1273.
https://stars.library.ucf.edu/etd2020/1273

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd2020%2F1273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1273?utm_source=stars.library.ucf.edu%2Fetd2020%2F1273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

EFFICIENT GRAPH-BASED COMPUTING AND ANALYTIC

by

BINGBING RAO
M.S. University of Central Florida, 2017

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2022

Major Professor: Liqiang Wang

© 2022 Bingbing Rao

ii

ABSTRACT

With data explosion in many domains, such as social media, big code repository, Internet of Things

(IoT), and inertial sensors, only 32% of data available to academic and industry is put to work, and

the remaining 68% goes unleveraged. Moreover, people are facing an increasing number of ob-

stacles concerning complex analytics on the sheer size of data, which include 1) how to perform

dynamic graph analytics in a parallel and robust manner within a reasonable time? 2) How to con-

duct performance optimizations on a property graph representing and consisting of the semantics

of code, data, and runtime systems for big data applications? 3) How to innovate neural graph

approaches (i.e., Transformer) to solve realistic research problems, such as automated program

repair and inertial navigation? To tackle these problems, I present two efforts along this road:

efficient graph-based computation and intelligent graph analytics. Specifically, I firstly propose

two theory-based dynamic graph models to characterize temporal trends in large social media

networks, then implement and optimize them atop Apache Spark GraphX to improve their perfor-

mances. In addition, I investigate a semantics-aware optimization framework consisting of offline

static analysis and online dynamic analysis on a property graph representing the skeleton of a data-

intensive application, to interactively and semi-automatically assist programmers to scrutinize the

performance problems camouflaged in the source code. In the design of intelligent graph-based

algorithms, I innovate novel neural graph-based approaches with multi-task learning techniques to

repair a broad range of programming bugs automatically, and also improve the accuracy of pedes-

trian navigation systems in only consideration of sensor data of Inertial Measurement Units (IMU,

i.e.accelerometer, gyroscope, and magnetometer). In this dissertation, I elaborate on the definitions

of these research problems and leverage the knowledge of graph computation, program analysis,

and deep learning techniques to seek solutions to them, followed by comprehensive comparisons

with the state-of-the-art baselines and discussions on future research.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Professor Liqiang

Wang, for providing significant support without which this research study would not have been

possible. He not only inspires me in research but also gives me valuable suggestions on life and

my future career.

I would also like to show gratitude to my committee, including Associate Professor Damian

Dechev, Dr. Paul Gazzillo, and Dr. Zhishan Guo. I am very grateful for their invaluable ad-

vice and patience with me. Genuine thanks to each of them for the extraordinary amount of time

and knowledge they were willing to provide to my dissertation. I am deeply grateful to my former

committee Professor Wingyan Chung at Western Carolina University. His enthusiasm and sugges-

tions for the topic made a strong impression on me and I have always carried positive memories of

the collaboration using dynamic graph techniques to detect users’ activities.

Getting through my dissertation required more than academic support, and I have many, many

people to thank for listening to and, at times, having to tolerate me over the past six years. I cannot

begin to express my gratitude and appreciation for their friendship. Zixia Liu, Ehsan Kazemy,

Yifan Ding, Dongdong Wang, Zihang Zou and Shengyang Liu have been unwavering in their

personal and professional support during the time I spent at the University of Central Florida. For

many memorable evenings out and in, I must thank everyone above as well as Dr.Devu M Shila

who provided me an internship opportunity at Unknot.id.

Most importantly, none of this could have happened without my family. I dedicate this thesis to

them: my parents Zuojiang Rao and Tianfeng Chen, as well as my wife Ruiyao Chen, for their

endless love, selfless care, and support. Thanks to my lovely daughter Sophia who inspires me to

keep going and brings me full of happiness every day.

iv

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xiv

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 6

2.1 Detecting Trends in Dynamic Social Networks 6

2.1.1 Theoretical Aspects of Social Network Analysis 7

2.1.2 Technical Aspects of Social Network Analysis 8

2.2 Semantics-aware Optimizations for Big Data Applications 11

2.3 Graph Transformer for Automated Programming Repair 14

2.4 Contextual Transformer For Inertial Navigation 15

CHAPTER 3: DETECTING TRENDS IN DYNAMIC SOCIAL MEDIA NETWORKS . . 18

3.1 Introduction and Motivation . 18

3.2 Interaction Models for Dynamic Trend Detection 19

3.2.1 Model Notation . 21

v

3.2.2 Benchmark Models . 22

3.2.3 Random Interaction Model . 25

3.2.4 Preferential Interaction Model . 25

3.2.5 Measurement of Agent Activity . 27

3.3 Experiment Design . 28

3.3.1 Data Description . 28

3.3.2 Datasets and Experimental Setup . 30

3.3.3 Experimental Setup . 30

3.3.4 Evaluation Metrics . 32

3.4 Experimental Finding . 34

3.4.0.1 Model Comparison Across Different Dates 34

3.4.0.2 Model Comparison Across Different Window Sizes 38

3.4.1 Model Comparison Using Frobenius Loss 40

3.4.2 Structural Analysis of Social Networks 42

3.4.3 Case Studies of User Interaction Patterns 43

3.4.4 Implications . 45

CHAPTER 4: SEMANTICS-AWARE OPTIMIZATIONS FOR BIG DATA APPLICATIONS

vi

48

4.1 Introduction and Motivation . 48

4.2 System Overview . 49

4.2.1 Architecture . 49

4.2.2 Performance Problems . 52

4.3 Semantics-Aware Data Model . 54

4.3.1 Attribute-Based Data Abstraction . 54

4.3.2 Primitive Operations . 55

4.3.3 Data Operational Graph . 56

4.4 Optimization Strategies . 58

4.4.1 Cache Management . 58

4.4.2 Operation Reordering . 64

4.4.3 Element Pruning . 67

4.5 Experiment and Evaluation . 69

4.5.1 Benchmarks . 69

4.5.2 Effectiveness Assessment . 70

4.5.3 Performance Behavior . 71

vii

4.5.4 System Overhead . 73

CHAPTER 5: GRAPH TRANSFORMER FOR AUTOMATED PROGRAM REPAIR . . . 75

5.1 Introduction and Motivation . 75

5.2 System Overview . 77

5.3 Pre-Processing: Context Abstraction . 79

5.3.1 Token Pair Encoding . 79

5.3.2 Taxonomy, Lexical Scope, and Idioms . 80

5.3.3 Semantics-preserved and Scope-oriented Rename 82

5.3.4 Context Path . 83

5.4 Code Translation and Context-aware Alignment 84

5.4.1 Token and Context Embedding . 84

5.4.2 Context-aware Attention . 85

5.4.3 Multi-task Learning: Code Translation and Context Alignment 86

5.4.4 Patch Generation via Beam Search . 88

5.5 Research Questions . 88

5.5.1 Quality of Context Abstraction . 88

5.5.2 Overall Model Performance . 91

viii

5.5.3 Semantic Bug Repair . 92

5.6 Experiment and Evaluation . 92

5.6.1 Dataset . 92

5.6.2 Model and Training Setting . 93

5.6.3 Results of RQ1 . 94

5.6.4 Results of RQ2 . 95

5.6.5 Results of RQ3 . 100

CHAPTER 6: CONTEXTUAL TRANSFORMER FOR INERTIAL NAVIGATION 101

6.1 Introduction and Motivation . 101

6.2 System Overall . 103

6.3 Attention In Inertial Navigation . 106

6.4 Jointly Learning Velocity and Covariance . 108

6.5 Experiment and Evaluation . 109

6.5.1 Dataset . 110

6.5.2 Baseline . 112

6.5.3 Evaluation Metrics . 113

6.5.4 Overall Performance . 115

ix

6.5.5 Ablation Study . 115

CHAPTER 7: CONCLUSION AND FUTURE WORK 129

7.1 Detecting Trends in Dynamic Social Networks 129

7.1.1 Summary of Findings . 129

7.1.2 Contributions and Limitations . 131

7.1.3 Future Directions . 132

7.2 Semantics-aware Optimizations for Big Data Applications 132

7.3 Graph Transformer for Automated Programming Repair 133

7.4 Contextual Transformer For Inertial Navigation 134

LIST OF REFERENCES . 135

x

LIST OF FIGURES

3.1 Data collection and experimental setup . 28

3.2 Model comparison across different dates for Dataset 2013 34

3.3 Model comparison across different dates for Dataset 2015 35

3.4 Model comparison across different window sizes for Dataset 2013 38

3.5 Model comparison across different window sizes for Dataset 2015 38

4.1 The full life cycle of Semantics-Aware Optimization Approach for Data-

Intensive Applications (SODA). 50

4.2 Data Operational Graph of Customer Reviews Analysis benchmark. 58

4.3 A simplified example of data dependency tree 68

4.4 The performance of individual optimization over the baseline. 72

5.1 Overview of the proposed Bug2Fix for APR tasks 77

5.2 The Context Abstraction of buggy (top panel) and fixed (bottom panel) code . 79

5.3 An AST example of Java program along with an example of one of the paths . 83

5.4 Statistics of actions performed to fix buggy code. 99

xi

6.1 Overall workflow of the proposed contextual transformer model for inertial

navigation. 104

6.2 Performance Comparison of CTIN and RoNIN variant models on CTIN dataset117

6.3 Performance Comparison of CTIN and RoNIN variant models on RIDI dataset117

6.4 Performance Comparison of CTIN and RoNIN variant models on OXIOD

dataset . 118

6.5 Performance Comparison of CTIN and RoNIN variant models on RoNIN

dataset . 118

6.6 Performance Comparison of CTIN and RoNIN variant models on IDOL dataset118

6.7 The effectiveness of proposed attention layers on CTIN dataset. 119

6.8 The effectiveness of proposed attention layers on RIDI dataset. 120

6.9 The effectiveness of proposed attention layers on OxIOD dataset. 120

6.10 The effectiveness of proposed attention layers on RoNIN dataset. 120

6.11 The effectiveness of proposed attention layers on IDOL dataset. 121

6.12 The performance of CTIN network with different loss functions evaluated on

CTIN dataset. 121

6.13 The performance of CTIN network with different loss functions evaluated on

RIDI dataset. 122

xii

6.14 The performance of CTIN network with different loss functions evaluated on

OxIOD dataset. 122

6.15 The performance of CTIN network with different loss functions evaluated on

RoNIN dataset. 123

6.16 The performance of CTIN network with different loss functions evaluated on

IDOL dataset. 123

6.17 Selected visualizations of trajectories from CTIN and RoNIN variants models

on the RIDI dataset. 124

6.18 Selected visualizations of trajectories from CTIN and RoNIN variants models

on OxIOD dataset. 125

6.19 Selected visualizations of trajectories from CTIN and RoNIN variants models

on the RoNIN dataset. 126

6.20 Selected visualizations of trajectories from CTIN and RoNIN variants models

on the IDOL dataset. 127

6.21 Selected visualizations of trajectories from CTIN and RoNIN variants models

on CTIN seen dataset. 128

xiii

LIST OF TABLES

2.1 Theoretical and Technical Aspects of Social Media Network Trend Detection 6

3.1 Notation and Its Meaning of Terms Used in Algorithms 1 and 2 20

3.2 Performance and P-values of Model Comparison by Date 36

3.3 Performance and P-values of Model Comparison by w 39

3.4 Performance and P-values of Model Comparison by Frobenius Loss 41

3.5 Pearson Correlations (and P-values) between Structural Properties and Model

Performances for Datasets 2013 and 2015 42

3.6 Percentage of Overlap between ACTUAL Users and Users Predicted by Model 44

3.7 Interaction Patterns of Users Predicted by All Four Models to be among Top20 45

3.8 Interaction Patterns of Users Predicted by Only PIM and RIM to be among

Top20 . 46

3.9 Structural Information of Social Media Networks on Selected Dates 46

4.1 The Definition of Primitive Operations . 55

4.2 The statistics information and corresponding notations needed by SODA . . . 57

4.3 The cache allocation policy based on Execution Distance for the workload in

Figure 4.2 . 63

xiv

4.4 The results of running SODA on Spark Applications 70

4.5 System speed up of individual optimization over the baseline implementation

in RDD. 72

4.6 Overall comparison about System Overheads incurred by SODA 73

5.1 Three datasets and their statistical information in Plaintext, BFP, and Bug2Fix,

receptively. 93

5.2 Success Ratio achieved by models on small dataset. 95

5.3 Performance metrics on small dataset. 96

5.4 Success Ratio achieved by models on median dataset. 96

5.5 Performance metrics on median dataset. 97

5.6 Success Ratio achieved by models on big dataset. 97

5.7 Performance metrics on big dataset. 98

5.8 The top-5 targets of each action in each dataset 99

6.1 Description of public datasets used for evaluation of navigation models. . . . 110

6.2 Overall Trajectory Prediction Accuracy. The best result is shown in bold font. 114

6.3 Models’ Evaluation Performance on CTIN dataset 116

xv

CHAPTER 1: INTRODUCTION

With data explosion in many domains, such as Internet of Things (IoT) [1], scientific experiments

[2, 3, 4], e-commerce, social media [5, 6] and inertial navigation, people are facing an increasing

number of obstacles concerning data processing and analytics on the sheer size of these data. In this

dissertation, I mainly focus on tackling the following three challenging problems using techniques

of graph computation, program analysis, and deep learning:

• How to perform dynamic graph analytics in a parallel and robust manner within a reason-

able time (cf. Chapter 3)?

• How to conduct performance optimizations on a property graph representing and consisting

the semantics of code, data, and runtime systems for big data applications (cf. Chapter 4)?

• How to innovate neural graph approaches (i.e., Transformer [7]) to solve realistic research

problems, such as automated program repair(cf. Chapter 5) and contextual inertial naviga-

tion (cf. Chapter 6)?

To address the above issues, I first present two theory-based interaction models for detecting tem-

poral activities in dynamic social networks in Chapter 3. Detecting nodal activities in dynamic so-

cial networks has strategic importance in many applications, such as online marketing campaigns

and homeland security surveillance. How peer-to-peer exchanges in social media can facilitate

nodal activity detection is not well explored. Existing models assume network nodes to be static

in time and do not adequately consider features from social theories. This research developed and

validated two theory-based models, Random Interaction Model (RIM) and Preferential Interaction

Model (PIM), to characterize temporal nodal activities in social media networks of human agents.

The models capture the network characteristics of randomness and preferential interaction due to

1

community size, human bias, declining connection cost, and rising reachability. The models were

compared against three benchmark models (abbreviated as EAM [8], TAM, and DBMM [9]) us-

ing a social media community consisting of 790,462 users who posted over 3,286,473 tweets and

formed more than 3,055,797 links during 2013–2015. The experimental results show that both

RIM and PIM outperformed EAM and TAM significantly in accuracy across different dates and

time windows. Both PIM and RIM scored significantly smaller errors than DBMM did. Struc-

tural properties of social networks were found to provide a simple and yet accurate approach to

predicting model performances. These results indicate the models’ strong capability of account-

ing for user interactions in real-world social media networks and temporal activity detection. The

research should provide new approaches for temporal network activity detection, develop relevant

new measures, and report new findings from large social media datasets. Different from prior

work, the proposed models are grounded in social theories and do not assume static nodes of so-

cial networks over time. In addition, I designed and implemented these models atop Apache Spark

[10] to perform graph computation using an efficient data-parallel abstraction.

In the era of data explosion, a growing number of data-intensive computing frameworks, such as

MapReduce [11], Apache Hadoop [12], and Spark [13], have been proposed to handle the massive

volume of unstructured data in parallel. Since programming models provided by these frameworks

allow users to specify complex and diversified user-defined functions (UDFs) with predefined op-

erations, the grand challenge of tuning up entire system performance arises if programmers do not

fully understand the semantics of code, data, and runtime systems. In Chapter 4, I design a holis-

tic semantics-aware optimization for data-intensive applications using hybrid program analysis

(SODA) to assist programmers to tune performance issues. SODA is a two-phase framework: the

offline phase is a static analysis that analyzes code and performance profiling data from the on-

line phase of prior executions to generate a parameterized and instrumented application; the online

phase is a dynamic analysis that keeps track of the application’s execution and collects runtime

2

information of data and system. Technically, source code and performance log collected in prior

executions are analyzed to refactor code by applying three kinds of optimizations: cache manage-

ment, operation reordering, and element pruning. The offline phase is developed as a compiler

plugin of the host development languages (e.g., Scala, Java). However, not all performance issues

can be fixed in the offline phase, while some may need support from system runtime informa-

tion, such as intermediate data size, memory usage, and execution time of operations. The second

phase is an online dynamic analysis to obtain the required runtime information, where I instantiate

a parameterized framework based on the instrumentation generated in the offline phase to trace

applications’ execution and extract profiling information concerning data and system status. To

the best of my knowledge, the implementation is the first compiler plugin to help users optimize

data-intensive applications. Extensive experimental results on four real-world Spark applications

show that SODA can gain up to 60%, 10%, 8%, faster than its original implementation, with the

three proposed optimization strategies, i.e., cache management, operation reordering, and element

pruning, respectively.

Recently, a growing number of research studies are harnessing the power of graph-based deep

learning techniques [14] to assist software engineering tasks, such as code completion [15, 16, 17],

code clone [18, 19], bug localization and repair [20, 21, 22, 23, 24, 25, 26]. Although there are

a few endeavors to repair programs by learning neural language models (NLM), many program

properties, such as structure and semantics of identifiers as well as context alignment, are not well

handled in sequence embedding and model design, which results in undesired performance. In

Chapter 5, I propose a novel Transformer-based approach with multi-task learning of code trans-

lation and context-aware alignment to detect and fix a broad range of programming bugs auto-

matically. First, a novel semantics-preserved, scope-oriented, and vocabulary-closed context ab-

straction approach considering code structural and semantic meanings are designed to pre-process

program code and reduce vocabulary size. Then, a context-aware attention technique is designed

3

and orchestrated with token attention probabilities from the encoder-decoder attention sub-layers

in Graph Transformer to learn context-aware alignment [7]. Finally, I conduct multi-task training

by considering the homoscedastic (i.e. task-dependent) uncertainty of each task to detect and fix

bugs accurately and automatically. I implement the proposed approach in a tool called Bug2Fix

and evaluate its performance comprehensively on three datasets by generating patches to buggy

code. The experimental results show that Bug2Fix significantly outperforms the state-of-art tech-

niques by successfully predicting 56.16%, 34.12%, and 51.90% of the fixed code in these three

datasets, respectively. These success rates steadily increase along with the increase of beam size.

Besides, the overall syntactic correctness of all patches remains above 97%, 90%, and 49% on the

three benchmarks, respectively, regardless of the beam size.

As a follow-up project on the neural graph, I extend the knowledge of graph neural Transformer

network to a new domain of inertial navigation in Chapter 6. Inertial navigation is a never-ending

endeavor to estimate the states (i.e. position and orientation) of a moving subject (e.g. pedes-

trian) by using only IMUs attached to it. An IMU sensor, often a combination of accelerometers

and gyroscopes, plays a significant role in a wide range of applications from mobile devices to au-

tonomous systems because of its superior energy efficiency, mobility, and flexibility [27]. The con-

ventional Newtonian-based solutions to inertial navigation can benefit from these low-cost inertial

sensors to approximate positions and orientations [28]. Nevertheless, the conventional Newtonian-

based inertial navigation methods reveal not only poor performance but also require unrealistic

constraints that are incompatible with everyday usage scenarios. Furthermore, data-driven inertial

navigation approaches have been proposed and demonstrated their capability of using well-trained

neural networks to obtain accurate position estimates from inertial measurement units (IMUs)

measurements. In this project, I propose a novel robust Contextual Transformer-based network for

Inertial Navigation (CTIN) to accurately predict velocity and trajectory. To this end, I first design

a ResNet-based [29] encoder enhanced by local and global multi-head self-attention to capture

4

spatial contextual information from IMU measurements. Then we fuse these spatial representa-

tions with temporal knowledge by leveraging multi-head attention in the Transformer decoder [7].

Finally, multi-task learning with uncertainty reduction is leveraged to improve learning efficiency

and prediction accuracy of velocity and trajectory [30, 31, 32, 33]. To the best of my knowledge,

CTIN is the first Transformer-based model for inertial navigation. Through extensive experiments

over a wide range of inertial datasets (e.g. RIDI, OxIOD, RoNIN, IDOL, and our own), CTIN is

very robust and outperforms state-of-the-art models1.

1Note that the mathematical notations are consistent in each individual chapter, but the same symbol may refer to
different concepts in different chapters.

5

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1 Detecting Trends in Dynamic Social Networks

As social media facilitate the formation of temporal online networks, the theoretical and tech-

nical aspects of social media analytics are important for research development [34]. Social and

behavioral theories can help to guide the research into online social network trend detection [35],

whereas traditional theories may not address specific network characteristics, such as size, partici-

Table 2.1: Theoretical and Technical Aspects of Social Media Network Trend Detection

6

pants, diffusion, and evolution. Technical aspects of temporal online social networks are founded

on social media analytics [36, 37, 38] and on dynamic graph modeling [39, 40]. In particular, tem-

poral network dynamics, a specialty area in social network analysis, can be used to reveal changes

in human activities in a network over time [41]. Table 2.1 summarizes the theoretical and technical

aspects of this review.

2.1.1 Theoretical Aspects of Social Network Analysis

Theories help us understand why and under what circumstances a social network trend detection

method works. A number of social, economic, and behavioral theories serve as the foundations of

social network analysis [42]. For instance, homophily theory [43], social impact theory [44], social

interaction theory [45], and cognitive balance theory [46] have been used to explain the formation

of social links. This section highlights theories relevant to the research topics. A comprehen-

sive review of these theories and related theoretical questions can be found in Reference [47] and

Reference [48], respectively.

• Theories Based on Social Position. Homophily theory [43] states that similar entities create

social links more likely than dissimilar entities. The famous saying “birds of a feather flock

together” reflects the social choice based on similarity. People tend to link to others similar

to them, and such linkage strengthens their similarity. In a social network, similarities can

be observed between user profiles, geographic proximities, social engagements, and social

relationships [49]. Changes in these features over time need to be incorporated for detecting

dynamic trends in the networks. Social impact theory states that when other people are the

source of impact and the person is the target, the impact is a multiplicative power function of

the strength, immediacy, and a number of other people [44, 50]. Various aspects have been

considered to produce social impact, including social influence, social identity [51, 47], and

7

social capital [52, 53]. Social networks provide the conduit of social impact that may be

quantified and tracked over time [41]. Social interaction theory states that people make

decisions based on the decisions of their social neighbors [45]. The social position plays a

key role in impacting the decisions [54]. A social entity’s position in a network creates a

tendency for itself to conform to its neighborhood and allows information transmission to its

neighbors [55]. The social neighborhood is therefore a foundation of the theory to examine

the activity of social entities over time.

• Theories Based on Cognition and Perception. Cognitive balance theory states that two social

entities that link to a third common entity tend to establish a connection [46]. In a social

network, nodes that link to another well-connected node (or “Rockstar” [56]) are likely to

associate with each other [57], thereby strengthening the position of the rock-star over time.

Human cognition is also limited by the order of information received [58]. The primacy

effect states that people are more affected by first impressions than later ones [59], while the

recency effect states that people are more influenced by the latest information that they recall

than the earlier one [60]. These effects can be amplified in online social networks over time.

Detecting dynamic nodal activities in social networks needs to model these effects explicitly.

2.1.2 Technical Aspects of Social Network Analysis

Technical developments in social network analysis proliferated since the Internet became available

in the 1990s [61, 62] and continued to flourish in the 2000s and beyond [36, 63, 64, 65]. Data

about online social network activities and structure, if handled appropriately, could revolutionize

the understanding of collective human behavior [66]. The following reviews various technical ap-

proaches for dynamic graph modeling, and temporal network dynamics focusing on link prediction

and node activity detection.

8

• Dynamic Graph Modeling. Dynamic graph models have been developed to represent chang-

ing networks in a variety of applications. Xu and Hero III developed a dynamic stochastic

blockmodel that performed competitively with a state-of-the-art algorithm and achieved a

higher computational efficiency [40]. Karrer and Newman developed a heuristic blockmodel

algorithm for community detection [39]. For a network generated from the Stochastic Block-

model, Rohe et al. bound the number of nodes “misclustered” by spectral clustering [67].

Rossi et al. developed a temporal behavior model that extracts nodal roles in an evolving

network using non-negative matrix factorization [9]. The approach is fully automatic but

assumes static nodes and does not consider social theories about user interaction and net-

work positions. Jiang and Chen consider nodal attributes for dynamic network analysis and

achieved an increased prediction accuracy [68]. Leskovec et al. developed Kronecker graphs

to generate realistic networks using a non-standard matrix operation [69]. A comprehensive

survey of statistical network models found limited methodological work focusing on evaluat-

ing and comparing the predictive ability of various models [70]. Although prior research on

link prediction in relational networks exists, these works focus on combining heterogeneous

data to discover new links.

• Link-prediction Approaches. Link prediction aims to predict new links or deleted links be-

tween nodes for a future time [35]. Leskovec et al. studied a range of real-world graphs

and developed a forest-fire model to produce graphs that exhibit properties observed in these

graphs [71]. They observed densification of networks over time, as the log-log plot (num-

ber of edges e(t) versus the number of nodes n(t)) shows increasing trends across different

real-world datasets (ArXiv citation, patent citation, autonomous systems, and affiliation).

Wu et al. incorporate social theories to model the evolution of social network user-item and

user-user interactions [72]. They quantified social influence and homophily effect on users’

behaviors by using a joint model of user consumption prediction and social link prediction.

9

Dunlavy et al. show that both matrix and tensor-based techniques are effective for temporal

link prediction [73]. Gao et al. developed a link prediction model that integrates the global

network structure, the content of nodes, and the local or proximity information of a given

node [74]. Li et al. developed a deep learning framework using conditional temporal re-

stricted Boltzmann Machine that predicts links based on individual transition variance and

influence introduced by node neighbors [75]. Researchers have developed dynamic influence

models to study social learning and networking in social media websites [76]. Influence is

modeled as conditional dependence between an entity’s current state and previous states

based on a Markovian assumption and a Hidden Markov Model (HMM) [77]. Commu-

nity strength was measured to reveal robustness and coherence and was applied to discov-

ering community progression and formation [78]. Simulated experiments were conducted

to assess a network-based model that represents both spatial and temporal characteristics of

human dynamic behavior [79].

• Node Activity Detection Approaches. Network nodes have been characterized to reflect their

activities over time. Two classes of dynamic network metrics, emergence, and persistence,

were developed and applied to temporal network activity prediction [8]. Among four models

tested, the exponential aggregation model was found to outperform the average aggregation

and linear aggregation models. Temporal detection was formulated as weighted time-series

forecasting. Pinto et al. developed a trend detection algorithm to identify topical trends in

social networks using a Hawkes process, a self-exciting point process that considers broad-

casting times and user topic interaction [80]. Zhu et al. developed a socially regularized

time-decay model for user activity prediction and cast the problem as a classification of

active and inactive users [81].

The temporal stability of network nodes was studied in Reference [82], which developed

a method to identify active valuable nodes based on static structural properties and Spatio-

10

temporal attributes. Experiments on two online social networks with thousands of nodes

showed that the method identified valuable nodes in terms of node stability and influence. In

another research [83], a simple probabilistic model was developed to capture the probability

of tweet-retweet-follow (TRF) events. The model provides descriptive statistics on TRF

events but falls short of predictive power.

2.2 Semantics-aware Optimizations for Big Data Applications

There is an increasing number of obstacles concerning data processing and analytics on the sheer

size of these unstructured data. These obstacles include interactive computing and user-specific

element-wise data transformations [84]. To break through these dilemmas, a growing number

of data-intensive computing frameworks have been proposed, such as MapReduce [11], Apache

Hadoop [12], and Spark [13]. Generally, a mainstream approach to gaining computing capability

and scalability behind these platforms is to distribute data and computations across a cluster of

nodes so that a large volume of data can be processed in a parallel and robust manner within a rea-

sonable time [85, 86]. The successes of these frameworks owe to their MapReduce-like program-

ming models, which are further based on data distribution techniques (e.g., Resilient Distributed

Dataset (RDD) in Apache Spark [87]), and high-order functions (e.g., map, reduce, f ilter) that

can take user-defined functions (UDFs) as arguments. The semantics of these high-order func-

tions facilitate data-parallelism to manipulate datasets in an element-wise way while UDFs are

applied to each element to produce the desired result. The programming models hide the details

of scheduling, load balancing, execution, and communication from programmers, which eases

programming and allows programmers to focus on data flow and UDF designs. A surge of in-

terest in optimizing data-intensive applications using semantics-aware approaches has emerged

[88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98].

11

Manimal is a framework that applies relation-style query optimizations for data-centric MapRe-

duce programs via static analysis techniques [91]. An analyzer inspects already-compiled MapRe-

duce codes before execution to automatically discover possible issues. Then an optimizer creates

a pre-computed B+ tree index to slice input data in a manner of column-wise to avoid reading un-

used data. In addition, semantics-aware compression techniques have been designed to reduce I/O

operations for efficient representation of numerical values. There are two limitations in Manimal:

1) there is no runtime information about data and systems, and 2) the optimizations consider only

selection and projection operations in a single MapReduce job. SODA can leverage profiling data

from dynamic program execution to optimize an application with multiple MapReduce jobs.

Panacea is a framework for performing holistic compiler optimizations on legacy MapReduce ap-

plications [92]. It uses static program analysis to carry out additional runtime legality checks (e.g.,

convergence loop verification) on the map and reduce functions and utilizes a trace analyzer to

execute the optimized application several times for parameter auto-tuning. Although Panacea uses

a hybrid way by integrating information from static and dynamic analyses, there is one limitation:

statistical data needed by the trace analyzer is not real data. while SODA uses real profiling data

to determine performance behaviors.

Microsoft’s Scope compiler automatically optimizes a data-parallel program to eliminate unnec-

essary code and data [99, 100, 90, 98]. It performs early filtering and calculates small derived

values to minimize the amount of data-shuffling I/O based on information derived by static code

analysis. However, there is no dynamic information involved in its optimizations, which leaves

some runtime-related problems for SODA.

As an extensible logical optimizer for UDF-heavy data flows, Stratosphere SOFA extracts a con-

cise set of properties for describing the semantics of Map/Reduce-style UDFs via static analysis

techniques and uses these properties and a set of rule-based rewrite templates to infer semantically

12

equivalent plans, then these plans would be evaluated by a cost-based optimizer [88, 94]. SODA

extends this work to a more general scenario with two upgrades: 1) Redefining primitive operations

with more general constraints so that SODA can easily verify if semantics change after reordering;

2) Profiling data are used to determine performance behaviors.

Spark Catalyst is an extensible query optimizer that leverages advanced programming language

features (e.g., Scala’s pattern matching and quasi-quotes) in a novel way within the core of the

Spark SQL engine [89]. Catalyst uses a tree architecture to represent operation nodes and conduct

rule-based optimizations. Finally, cost-based optimization is performed by generating multiple

plans and calculating their cost to choose an optimal one. Unfortunately, it only supports Dataset

and DataFrame APIs [101, 102]. Thus, applications developed by RDD API cannot benefit from it

directly.

As to cache management, LRU caching policy is often used [13, 103]. To improve cache man-

agement, several research works, namely MemTune [104], LRC [105] and MRD [106], leverage

directed acyclic graph (DAG), data dependency among stages, and physical schedule unit (i.e.,

job and stage level) for new measurements of a data block reference. However, MemTune fails

to answer the question of which and when each RDD will be persisted in memory. LRC updates

a new reference count for each data block according to usages within a stage, however, it does

not take into account the impact of data blocks spanning across multiple stages. MRD proposes

a fine-grained time-locality measurement of data block reference, called reference distance. It is

based on a physical schedule unit assigned by the DAG Scheduler. Nonetheless, scheduling unit

orders can not reveal the real runtime executing an order to some extent. the approach in SODA

is a novel stage-level global cache management policy, which emphasizes two factors that would

impact system performance, especially for cache behaviors: execution order of stages and data

block size.

13

2.3 Graph Transformer for Automated Programming Repair

Automated program repair (APR) is a never-ending endeavor to fix software bugs without human

intervention [107, 108, 24]. The conventional solutions to detect and fix bugs focus on rule-based

methods ranging from static approaches (e.g., program analysis, bug detection, model checking,

validation, and verification) to dynamic methods (e.g., testing, debugging, and fault localization).

However, these existing methods reveal not only poor performance but also involve extra overhead

to manually define new types of bugs and corresponding rules [109, 110]. Thus, to avoid defining

tedious rules, mining-based approaches have been proposed to automatically extract implicit pro-

gramming patterns from code (e.g., frequent itemsets or sub-graphs), then to detect potential bugs

[111, 112, 113]. Nonetheless, these approaches still embrace a few critical limitations, such as an

exceptionally high false-positive rate due to that they cannot distinguish incorrect code patterns

from infrequent/rare correct patterns.

Recently, a growing number of research studies have taken advantage of the naturalness of software

[14] to learn statistical patterns from previously reported buggy/fixed codes, then automatically

detect and repair bugs in new ones [20, 114, 115, 21, 22, 116]. Specifically, the APR task can

be considered a type of neural machine translation (NMT) task [117, 23] that learns translation

from buggy code to produce the corresponding fixed version. With the recent advances in Neural

networks, deep learning-based approaches have been designed for automated program repair tasks,

which can be classified as follows.

Learning Similarity. To generate fixed code, neural models learn similarities between buggy code

and fixed corpus by leveraging the capability of deep learning models [20, 118, 119]. For instance,

DeepFix [20] proposes an attention-based model to first predict the buggy line and then generate

a replacement statement as the repair. DeepRepair [119] utilizes a recursive auto-encoder [120] to

select repair ingredients from code fragments similar to the buggy code.

14

Neural Machine Translation. In this category, an encoder-decoder architecture is often employed

to learn translation from buggy code to fixed one [121, 115, 114, 21, 22, 116]. For instance,

CODIT [115] integrates code structure in an NMT model to learn code edits and then generate

fixes. SequenceR [21] and BFP [22] take advantage of sequence-to-sequence with different code

abstractions to reduce the vocabulary size and then repair program errors at class-level and method-

level, respectively. Particularly, SequenceR employs a sequence-to-sequence model with a copy

mechanism to fix bugs, while BFP uses an LSTM-based NMT model with an attention-based

encoder-decoder to generate patches. The work [116] learns code changes using sequence-to-

sequence NMT with code abstraction and keyword replacing.

Structure Transformation. Recently, neural structure transformation is leveraged to detect and

repair bugs with the help of some auxiliary information, such as AST, control and data flow, com-

piler diagnostic messages [24, 122, 123, 124]. For instance, Graph2Diff [125] uses a Graph Neural

Network model to explore correlations among source code, build configuration files, and compiler

diagnostic messages, and then predict a diff specifying how to modify the code’s AST. Hoppity

[123] frames the problem of detecting and fixing bugs in terms of learning a sequence of graph

transformations: given a buggy program modeled by a graph structure, it makes a sequence of

predictions including the position of bug nodes and corresponding graph edits to produce a fix.

The works [24, 122] leverage local context extracted from AST and global context from Program

Dependence Graph (PDG) and Data Flow Graph (DFG) to learn context-based code presentation

and then perform neural code transformation to detect and repair bugs.

2.4 Contextual Transformer For Inertial Navigation

Inertial navigation is a never-ending endeavor to estimate the states (i.e. position and orientation)

of a moving subject (e.g. pedestrian) by using only IMUs attached to it. An IMU sensor, often

15

a combination of accelerometers and gyroscopes, plays a significant role in a wide range of ap-

plications from mobile devices to autonomous systems because of its superior energy efficiency,

mobility, and flexibility [27].

Conventional Newtonian-based solutions to inertial navigation can benefit from IMU sensors to

approximate positions and orientations [28]. In a strap-down inertial navigation system (SINS)

[126], accelerometer measurements are rotated from the body to the navigation frame using a ro-

tation matrix provided by an integration process of gyroscope measurements, then subtracted from

the earth’s gravity. After that, positions can be obtained by double-integrating the corrected ac-

celerometer readings [127]. However, the multiple integrations can lead to exponential error prop-

agation. To compensate for this cumulative error, step-based pedestrian dead reckoning (PDR)

approaches rely on the prior knowledge of human walking motion to predict trajectories by detect-

ing steps, estimating step length and heading, and updating locations per step [128]. Nevertheless,

the conventional Newtonian-based inertial navigation methods reveal not only poor performance

but also require unrealistic constraints that are incompatible with everyday usage scenarios. For

example, strap-down inertial navigation systems (SINS) may obtain erroneous sensor positions by

performing double integration of IMU measurements, due to exponential error propagation through

integration [129]. Step-based pedestrian dead reckoning (PDR) approaches can reduce this accu-

mulated error by leveraging the prior knowledge of human walking motion to predict trajectories

[128]. However, an IMU must be attached to a foot in the zero-velocity update [130] or a subject

must walk forward so that the motion direction is constant in the body frame [131].

Recently, a growing number of data-driven approaches such as IONet [132], RoNIN [133], and

IDOL [134] have demonstrated their capability of using well-trained neural networks to obtain ac-

curate estimates from IMU measurements with competitive performance over the aforementioned

methods. IoNeT [132] first proposed an LSTM structure to regress relative displacement in 2D

polar coordinates and concatenate to obtain the position. In RIDI [135] and RoNIN [133], IMU

16

measurements are first rotated from the body frame to the navigation from using device orientation.

While RIDI regressed a velocity vector from the history of IMU measurements to optimize bias,

then performed double integration from the corrected IMU samples to estimate positions. RoNIN

regressed 2D velocity from a sequence of IMU sensor measurements directly, and then integrate

positions. An LSTM-based model for classifying pedestrian activities of running and walking is

exploited to provide more refined thresholds for zero-velocity detection (ZUPT) [136].

In addition, inertial sensors are often combined with additional sensors and models using Extended

Kalman Filter [137] to provide more accurate estimations, where the typical sensors include WiFi

[138], Bluetooth [139], LiDAR [140], or camera sensors [141]. Nonetheless, these combinations

with additional sensors are posing new challenges to instrument installations, energy efficiency,

and data privacy. For instance, Visual-Inertial Odometry (VIO) substantially depends on environ-

mental factors such as lighting conditions, signal quality, blurring effects [142]. Additionally, It

is also very power-demanding that seriously limiting its applications in constrained platforms. An

end-to-end differentiable Kalman filter framework is proposed in Backprop KF, in which the noise

parameters are trained to produce the best state estimate, and do not necessarily best capture the

measurement error model since the loss function is on the accuracy of the filter outputs. TLIO

provides a neural model to regress the velocity prediction and uncertainties jointly [31]. The pre-

dictions are further applied in the Kalman filter framework as an innovation, where the covariance

noise measurement of the Kalman filter is generated by the same deep model. In IDOL [134] two

separate networks in an end-to-end manner are exploited. The first model is used to predict orienta-

tions to circumvent the inaccuracy in the orientation estimations with smartphone APIs. Next, the

IMU measurements in the world frame are used to predict the velocities using the second model.

17

CHAPTER 3: DETECTING TRENDS IN DYNAMIC SOCIAL MEDIA

NETWORKS

3.1 Introduction and Motivation

Detecting nodal activities in dynamic social networks has strategic importance in many applica-

tions. For instance, e-commerce marketers, homeland security experts, and customer relationship

managers study social networks of interested actors (e.g., customers, terrorists, and online forum

users) to examine activity trends. In recent years, social media has rapidly emerged as a source of

intelligence and business value [143]. The economic impact of social media on business is esti-

mated to exceed 1 trillion due to more efficient communication and collaboration [144]. Advanced

analytics play an important role in supporting understanding and trend analysis in social media

[37]. In particular, social media networks provide a diverse repertoire of theories and frameworks

to describe, analyze, and explain emerging behaviors in organizations and in society [34]. These

networks capture the information of the agents (modeled as nodes or vertices) and their relation-

ships (modeled as links or edges).

Our literature review shows that most technical approaches predict links based on static snapshots

of social networks. For instance, the work described in Reference [75] models node transition and

local neighbor influence but assumes the nodes to be static over time. This assumption may not be

realistic given that people join and leave social networks frequently. Existing works also do not

adequately consider features from social theories; and evaluations of link prediction approaches

are inadequate, which may lead to wrong conclusions [35]. Prior research does not examine social

and economic theories underlying social network link prediction methods [42]. In the prior works

about stochastic blockmodeling (e.g., References [69, 40]), model fitting is the primary focus, thus

18

emphasizing explanation at the expense of prediction. Nodal attributes were shown to increase the

prediction accuracy of network characteristics [68], but not on an individual nodal activity level. In

addition, changes in an agent’s (nodal) activities are often modeled as a function of the agent’s his-

torical behavior (e.g., Reference [8]) without adequately considering network connectivity, social

influence, and social theories. Aggregation functions in linear or exponential forms do not account

for the rich interaction among agents, thus adversely affecting the detection of nodal activities in

temporal networks.

The contributions of this research are threefold. First, I developed two new models for temporal

social network activity detection and have shown their novelty and robustness in detecting nodal

activities in social media networks. Second, I provided new experimental findings to validate

the performance of the proposed models, offering insights into understanding agent behaviors in

large-scale social networks. Third, I developed several metrics for evaluating social network nodal

activity detection and built a reusable implementation of temporal activity detection for large online

social networks. The methods and findings should be useful to researchers and practitioners.

3.2 Interaction Models for Dynamic Trend Detection

To address the research gaps, I developed two theory-based interaction models to support dynamic

social network activity detection and provided their instantiations, as shown in Algorithms 1 and

2, respectively. Their notation and meaning are listed in Table 3.1. The two interaction models,

namely, “Random Interaction Model” and “Preferential Interaction Model”, detect agent activities

based on different assumptions of agent behavior. Different from existing models (e.g., References

[69, 67]), the proposed models exploit interaction among agents who form the network; cover

multiple, consecutive time points of an evolving network; and are grounded in social theories

and do not assume static nodes of social networks over time. Existing works such as the Erdös-

19

Table 3.1: Notation and Its Meaning of Terms Used in Algorithms 1 and 2

Rényi [145], Gilbert [146], preferential attachment [147], and small-world models aim to represent

single time-point snapshots of a network [70]. By contrast, my models aim to represent multiple,

consecutive time points of an evolving network.

The theoretical rationale of the interaction models can be explained in four aspects. (1) Homophily

theory [49, 43] directs the generation of the new dynamic network to resemble the existing link

structure and network density. This is reflected in line 6 of Algorithm 1 and lines 11, 17, 25, 30 of

Algorithm 2; (2) The primacy and recency models of human cognition theory suggest that future

human activities depend on their preferences for recent memory or first impression (older memory)

[59, 58, 60]. These are modeled in line 5 of Algorithm 1 and in line 5 of Algorithm 2; (3) According

to social interaction theory, people make decisions based on their social neighbors’ decisions [45].

20

A social entity’s position in a network affects information exchange with neighbors [55] and thus

impacts his/her activities. Therefore, the social positions of nodes reflect activities in a social

network [54, 45, 55]. Accordingly, the interaction models represent nodal activities by using the

betweenness centrality algorithm that considers nodal position in a network (line 22 of Algorithm

1; line 34 of Algorithm 2); (4) Social impact theory suggests that impact is a multiplicative, power

function of strength, immediacy, and a number of other people [51, 44, 50]. This directs the

development of the selective procedure of forming preferential interaction in Algorithm 2 (lines

6–33).

3.2.1 Model Notation

This section provides algorithmic notation and steps of the interaction models. Let GL(W)
t be an

undirected network that consists of Vt agents (= nodes or vertices) and Et links (= edges) at time

t. Also, let L(w) be the function that specifies the network to span the most recent w time steps at

and before time t.

GL(w)
t = {V L(w)

t ,EL(w)
t } (3.1)

The proposed interaction models were designed to learn from the network characteristics of ran-

domness and preferential interaction due to community size, human bias, declining connection

cost, and rising reachability. Three general steps are used in detecting the temporal network activi-

ties of agents. (1) Initiation: The models identify the existing network’s configuration (numbers of

human agents and relationships) at time t, and the time frame (w days at and before t) during which

agent activities are considered in activity prediction. (2) Simulation of network for time (t + 1):

Based on an existing network, the models predict the configuration (numbers of human agents and

21

relationships) of the network at (t + 1) by using a single exponential smoothing procedure. (a)

Derive the density of the network at time (t + 1) (Equation 3.2) based on the predicted network

configuration. (b) Alter agents in the network based on the projected interaction of agents:

D(g) =
Number of links in Network g

Maximum Possible number of links in Network g
(3.2)

(3) Predicting activity levels of agents: The prediction uses the betweenness centrality (BC) for-

mula to represent Agent i’s activity level [148, 149], as in Equation 3.3.

CB(i,G′) = ∑
i, j,k∈G′;i̸= j,k ̸∈{i, j}

Pk(i j)/P(i j)
D(G′)

(3.3)

While other measures may be used, BC reflects the connectivity of agents and can reveal agents’

interaction and influence in the network. The aforementioned steps are to be further explained in

Sections 3.2.3 and 3.2.4. Section 3.2.2 describes models used to compare against the proposed

interaction models.

3.2.2 Benchmark Models

Three models, EAM, TAM, and DBMM, were used as benchmarks to compare against the two

interaction models. The Exponential Aggregation Model (EAM) was found in Reference [8] to

outperform two other temporal prediction models in empirical studies of four different datasets.

The method predicts Agent i’s activity level by using a single exponential smoothing method that

assigns high weights to activities that are closer to the current time step. The assignment is con-

trolled by a smoothing constant α ∈ [0,1] that reflects recency and primacy effects according to

cognitive theories [59, 60]. High values of α indicate that recent data are more emphasized in

prediction.

22

EAM has an implicit assumption that an existing trend will continue to be extended in the same

intensity as in reference history. However, this may not be always true due to the multiplicative

effects of human influence [44, 50]. Therefore, I developed another benchmark model named

Trend-adjusted-exponential Aggregation Model (TAM), which includes a trend adjustment term

mt−m1
t−1 to incorporate the changing temporal trends present in the community. TAM represents the

activity of a node as follows:

ActivityT (α∈[0,1])(m ∈ Rd) = [αd−1m1 +
t

∑
j=2

(1−α)αd− jm j]+
mt−m1

t−1
(3.4)

where mt represents the actual activity level of the node at time t; α is a parameter controlling

primacy and recency effects, and d is the size of the time window of reference history. In addition,

the Dynamic Behavioral Mix-membership Model (DBMM) [9] was used to compare against the

interaction models to examine the accuracy of role discovery of agents in temporal social networks.

Different from EAM and TAM, DBMM does not predict Agent i’s activity level but predicts the

likelihood of possessing different roles in the network. In DBMM, a network at time t is repre-

sented as a node-feature matrix using the approximation GtF ≈Vt , where each row of Gt (an n (=

node count) × r (= role count) matrix) represents an agent (node)’s membership in different roles

and each column of F (an r× f (= feature count) matrix) represents the extent to which a role con-

tributes to feature values. DBMM consists of three steps: network feature extraction, probabilistic

role discovery, and behavioral transition modeling. According to Rossi et al. [9], the summary tran-

sition model (which defines a summary behavioral snapshot GS(t) shown below) used in DBMM

achieved best performance (with k = 10,α = 0.7) and is thus used in the implementation:

GS(t) = α
w−1Gk +

w

∑
j=2

(1−α)αw− jG j (3.5)

where k = t−w and w,α are window size and parameters to determine the contribution of previous

23

Algorithm 1: Predicting the activity of Agent i with Random Interaction Model
Input : i, G, α , w, t
Output: Activity of Agent i at time (t+1)

1 V L(ω)
t+1 ,EL(ω)

t+1 = {},{}; G’ = {V L(ω)
t+1 ,EL(ω)

t+1 } /* A graph with empty node and links */

2 vt , v̂t+1 = |V L(w)
t |, |V L(w)

t+1 |; et , êt+1 = |EL(w)
t |, |EL(w)

t+1 | /* The numbers of nodes and links */

3 for i← V L(w)
t do vL(w)

t+1 = vL(w)
t+1 ∪Agent(i)

4 for i← EL(w)
t do EL(w)

t+1 = EL(w)
t+1 ∪Link(i)

/* Predictions for numbers of agents and links and for density */
5 v̂t+1 = αvt +(1−α)v̂t ; êt+1 = αet +(1−α)êt /* v̂2 = v1 and ê2 = e1 */

6 d
′
=

2êt+1
v̂t+1(v̂t+1−1) /* Density of graph G

′
*/

/* Prediction for G′ */
7 if v̂t+1 > vt then

/* Add new nodes */
8 for i = vt +1 to v̂t+1 do
9 vL(w)

t+1 = vL(w)
t+1 ∪Agent(i)

10 for j ∈V L(w)
t+1 do

11 r = U([0,1]); /* Generating a random float number r ∈ [0,1] */

12 if r ≤ d′ then EL(w)
t+1 = EL(w)

t+1 ∪Link(i,j)

13 else if v̂t+1 < vt then
/* Delete nodes */

14 for i ∈V L(w)
t+1 do

15 r = U([0,1]); /* Generating a random float number r ∈ [0,1] */

16 if r ≤ vt−v̂t+1
vt

then
/* Deleting a node and all links connected to that node */

17 V L(w)
t+1 = V L(w)

t+1 −{Agent(i)}; EL(w)
t+1 = EL(w)

t+1 −{Links o f Agent(i)}

18 else
19 if êt+1 > et then
20 for i, j ∈V L(w)

t+1 where i ̸= j do
21 r = U([0,1]); /* Generating a random float number r ∈ [0,1] */

22 if {Link(i, j)} ̸∈ EL(w)
t+1 & r ≤ d′ then Add Link(i,j)

23 else if êt+1 < et then
24 for j ∈ EL(w)

t+1 do
25 r = U([0,1]); /* Generating a random float number r ∈ [0,1] */

26 if r ≤ et−êt+1
et

then Delete Link(j)

27 else
/* Do nothing */

28 CB(i,G′) = ∑i jk∈G′,i ̸= j,k ̸∈i, j
Pk(i, j)/P(i, j)

(v̂t+1−1)(v̂t+1−2)/2

29 return CB(i,G′)

24

graph snapshots in the model. The prediction for the next network at (t +1) is computed as:

ˆGt+1 = GtGS(t) (3.6)

3.2.3 Random Interaction Model

The Random Interaction Model (RIM) detects the activity level of Agent i at a time (t + 1) by

computing his level of interaction with other agents in GL(w)
t+1 , the predicted network at the time

(t + 1). This network is simulated based on the numbers of agents and links predicted at time t

using a single exponential smoothing method with α ∈ [0,1] (lines 6-7 of Algorithm 1). As the

simulated network varies from the observed network at time t, the model adds or deletes agents and

links based on a uniform random distribution. The algorithm controls the network composition by

using a random variable r ∈ [0,1] (lines 7-27 of Algorithm 1). The predicted level of activity of

Agent i at the time (t +1) is then computed as his betweenness centrality in (see Section 3.2.5 for

activity measurement).

3.2.4 Preferential Interaction Model

The Preferential Interaction Model (PIM) detects the activity of Agent i at a time (t +1) by com-

puting his level of interaction with other agents in GL(w)
t+1 , the predicted network at the time (t +1).

The structure of the simulated network at the time (t + 1) follows that of the observed network

at time t, plus adding or deleting agents and links based on an assumption of preferential attach-

ment. PIM differs from RIM mainly by the use of the degree ratio p j and removal likelihood qi.

The degree ratio measures the connectivity of an agent in the social network (lines 8 and 20 of

Algorithm 2). Removal likelihood indicates the likelihood of an agent being removed (lines 13

25

Algorithm 2: Predicting the activity of Agent i with Preferential Interaction Model
Input : i, G, α , w, t
Output: Activity of Agent i at time (t+1)

1 V L(ω)
t+1 ,EL(ω)

t+1 = {},{}; G’ = {V L(ω)
t+1 ,EL(ω)

t+1 } /* A graph with empty node and links */

2 vt , v̂t+1 = |V L(w)
t |, |V L(w)

t+1 |; et , êt+1 = |EL(w)
t |, |EL(w)

t+1 | /* The numbers of nodes and links */

3 for i← V L(w)
t do vL(w)

t+1 = vL(w)
t+1 ∪Agent(i)

4 for i← EL(w)
t do EL(w)

t+1 = EL(w)
t+1 ∪Link(i)

5 v̂t+1 = αvt +(1−α)v̂t ; êt+1 = αet +(1−α)êt /* v̂2 = v1 and ê2 = e1 */
6 if v̂t+1 > vt then
7 u = SortByAscendingDegreeRatio(Agent←V L(w)

t)
8 for i = vt +1 to v̂t+1 do
9 vL(w)

t+1 = vL(w)
t+1 ∪Agent(i)

10 for j ∈V L(w)
t+1 do

11 r = U([0,1]); p j =
Deg(j)

max(Deg(V L(w)
t+1))

/* Degree ratio of j */

12 if r ≤ p j then
13 EL(w)

t+1 = EL(w)
t+1 ∪Link(i,j)

14 else if v̂t+1 < vt then
15 c = 0

16 for i ∈V L(w)
t+1 do

17 r = U([0,1]); qi = 1− Deg(i)

max(Deg(V L(w)
t+1)

18 if r ≤ qi & c < (vt − v̂t+1) then
19 V L(w)

t+1 = V L(w)
t+1 −{Agent(i)}; EL(w)

t+1 = EL(w)
t+1 −{Links o f Agent(i)}

20 c = c+1

21 else
22 c = 0
23 if êt+1 > et then
24 for i, j ∈V L(w)

t+1 where i ̸= j do
25 r = U([0,1]); pi =

Deg(i)

max(Deg(V L(w)
t+1))

; p j =
Deg(j)

max(Deg(V L(w)
t+1))

26 if {Link(i, j)} ̸∈ EL(w)
t+1 & r ≤ max(pi, p j) & c < (êt+1− et) then Add Link(i,j)

27 c = c+1

28 else if êt+1 < et then
29 for i, j ∈V L(w)

t+1 where i ̸= j do
30 r = U([0,1]); pi = 1− Deg(i)

max(Deg(V L(w)
t+1))

; p j = 1− Deg(j)

max(Deg(V L(w)
t+1))

31 if {Link(i, j)} ∈ EL(w)
t+1 & r ≤ max(pi, p j) & c < (et − êt+1) then Delete Link(i,j)

32 c = c+1

33 else
/* Do nothing */

34 CB(i,G′) = ∑i jk∈G′,i ̸= j,k ̸∈i, j
Pk(i, j)/P(i, j)

(v̂t+1−1)(v̂t+1−2)/2

35 return CB(i,G′)

26

and 26 of Algorithm 2). Agents with high degree ratios are preferable to be connected with other

agents. Agents with high removal likelihood are more likely to be removed. This process simulates

a community in which users tend to attach to those who already have high connectivity. The pre-

dicted level of activity of Agent i at a time (t +1) is then computed as his betweenness centrality

in GL(W)
t+1 . Different from prior work, PIM explicitly models the temporal process of link alteration

and allows flexible simulation of future networks by various parameters.

3.2.5 Measurement of Agent Activity

There are many metrics to measure the activity level of an agent, such as degree, centrality, and

clustering coefficient [149, 150]. In this research, I used Betweenness Centrality (BC) [148] to

indicate an agent’s activity level, which reflects his influence in a networked community due to its

emphasis on connectivity and agent interaction. The non-normalized BC of an Agent k is calcu-

lated as the proportion of the number of geodesics between any two distinct agents (̸= k; whose

connecting paths contain k) to the total number of geodesics between any two distinct agents. The

proposed models compute a normalized version of BC to be within [0,1] by dividing the non-

normalized BC by the density of the network (line 28 of Algorithm 1; line 34 of Algorithm 2).

Agents with a high BC score play an important role in bridging disparate members and transfer-

ring information or goods across different nodes. Different from other measures such as closeness

centrality (which measures “time-until-arrival” in network flow), BC reflects the level of agent ac-

tivity through interaction and influence in the network (similar to the notion of the frequency of

arrival in network flow) [151].

27

1

Figure 1. Data collection and experimental setup

Apache	Spark
GraphX

Structured	
Data

Temporal	graph	formation

Random	
Interaction	
Model	 (RIM)

Exponential	
Aggregation	
Model	 (EAM)

Preferential	
Interaction	
Model	 (PIM)

Symmetric	Mean	Absolute	
Percentage	Error	(SMAPE)

Root	Mean	Square	
Error	(RMSE)

Logarithmic	Median	Absolute	
Percentage	Error	(LMAPE)

G
L(w)
1 , G

L(w)
2 , . . . , G

L(w)
t

for varying w

Social	
Media

Filtering	and	
Extraction

Figure 3.1: Data collection and experimental setup

3.3 Experiment Design

This section describes the design of a series of experiments to assess the models’ predictive power

systematically under three temporal settings: (1) daily activity prediction over consecutive days,

(2) varying sizes of reference windows w, and (3) different events that affect agent activities. The

following sections describe the data used in the experiments, the experimental setup, and the per-

formance evaluation measures (see Figure 3.1).

3.3.1 Data Description

The data used in the experiments were collected from a social media community formed by users

who posted messages on the Twitter website. These messages were collected by using a set of

carefully selected keywords (see Reference [36] for details of the selection) obtained from review-

ing the literature on U.S. border security and immigration policy [152, 153, 154, 155]. Examples

28

RealDonaldTrump: “Amnesty lowers wages and invites more lawlessness. Obama
has unilaterally cancelled any chance of immigration reform."

TXOrganizingProject: “Today is Camino Americano, a rally in Washington D.C.
demanding comprehensive immigration reform with a path to ..."

of the queries include “immigration reform,” “US border security,” and “US immigration.” Be-

tween May 2013 and September 2015, the system collected over 3,286,473 tweets posted by over

790,462 users who formed more than 3,055,797 links. An undirected link is formed between two

users (A and B) when User A sends a tweet targeted to User B, re-tweets another tweet written

by User B, or modifies and then sends out a tweet written by User B [36]. These undirected links

can represent the transparent and public nature of the links formed on Twitter. The links and the

connected users are represented as edges and vertices, respectively, in an undirected graph G. A

temporal graph GL(w)
t is formed by considering all the vertices and edges formed within the most

recent w days at and prior to time t (see Section 3.1 for notation).

U.S. border security and immigration were chosen as the topic of study because of their timeliness

and the dynamic networked community on social media. For example, these sample tweets reveal

the diverse opinions expressed in the community:

Following Twitter’s guidelines of data collection and data privacy protection, the automated sys-

tem continually collected on average 4,650 tweets per day using the selected queries. Through

searching, retrieving, parsing, filtering, and storing, the system extracts temporal social network

data (represented as temporal graphs) from the unstructured social media data. Figure 1 provides

a high-level description of the data collection process and the experimental setup that was imple-

mented in a distributed computing environment.

29

3.3.2 Datasets and Experimental Setup

Through a series of experiments, I tried to answer these research questions: Which models perform

the best in temporal network activity detection in terms of different metrics and window sizes?

What is the effect of window size on the performance? How do the structural properties of the

temporal networks correlate with the performance? The experiments used two datasets covering

two periods of time to represent two different sets of events:

• Dataset 2013: The dataset contains 316,686 messages posted by 111,212 users during Sept.

1–Oct. 31, 2013. This period was marked by the high fluctuation of public sentiment due

to strong disappointment in the CIR bill impasse in the U.S. House of Representatives and a

massive protest occurred on October 6, 2013, in Washington, DC, that led to the arrests of

hundreds of people including prominent Congress members [156].

• Dataset 2015: The dataset contains 137,363 messages posted by 64,583 users during May

1–June 30, 2015. This period marked a turbulent time during which Donald Trump an-

nounced (on June 16, 2015) his candidacy for the U.S. presidency and made controversial

remarks about border security in the U.S. Other candidates including Hillary Clinton and 16

Republican candidates announced their candidacies mostly in the same year. The analysis

of this dataset can help to understand the effect of the U.S. presidential election on social

media responses.

3.3.3 Experimental Setup

Two parameters in the models require tuning and selecting values: the window size (w) and the

smoothing parameter (α). The value of w controls how many days of previous data were used

to predict the value of the period’s next day. The value of α (ranging from 0 to 1) determines

30

the weight assigned to primacy or recency effects in the prediction. Given the research focus on

the predictive and simulation capabilities of the interaction models, a comprehensive study of all

possible combinations of the parameters and their sensitivities is beyond the scope of this research.

• Model Performance for Various Dates with a Specified w. First, the four models (PIM,

RIM, EAM, and TAM) were evaluated over a series of dates on which predictions were

made based on a pre-defined w day of data. In the 61-day coverage of each dataset, I ran

the models to predict once per three days. I also selected w to be 18 so the models had the

same reference window to produce predictions. This value was set empirically to produce

high efficiency and significance of predictions. Hence, the predictions were made for the

activity levels on the 13th day of the first month, and then the 16th, 19th, 22nd, and so on.

This procedure generated 17 sets of predicted values for the 2013 dataset and 16 sets for

the 2015 dataset. Each set contains 12 (= 43) values that are the combinations of the four

models and three metrics (RMSE, SMAPE, and LMAPE). For each model, I empirically

determined the optimal smoothing constant α∗ that enabled the model to achieve its best

predictive performance within the period.

• Effect of Temporal Window Size. Second, the four models were evaluated over a set of

different temporal window sizes w (i.e., time spans in days), where w = 4,5,6, . . . ,20. Us-

ing these window sizes, the model performances for predicting each period’s last activity

levels (recorded on 10/30/2013 for Dataset 2013 and on 6/28/2015 for Dataset 2015) were

aggregated and compared empirically to identify statistical differences.

• Accuracy in Behavioral Role Discovery. Third, the interaction models were compared

against the Dynamic Behavioral Mix-membership Model (DBMM) [9] to evaluate the accu-

racy in discovering agents’ behavioral roles. Each of the three models (DBMM, PIM, and

RIM) was run, respectively, using the 2013 and 2015 datasets, each with two different win-

31

dow sizes (w =12 and w=18). To enable PIM and RIM to predict agent roles, the first two

steps of DBMM (network feature extraction and probabilistic role discovery) were applied

to predict node membership Ĝt+1 with the parameter values (k = 10,α = 0.7) recommended

in Reference [9].

• Structural Analysis of Model Performances. Fourth, I analyzed the relationship between

the performance of the four models (PIM, RIM, EAM, and TAM) and the structural prop-

erties of the temporal social networks involved. Five structural properties were selected to

provide information on the social networks: a total number of vertices (V), the total num-

ber of edges (E), network density (D), global clustering coefficient (C), and a number of

connected components (M). Their formulas are available in Reference [63].

3.3.4 Evaluation Metrics

A measure that accounts for agent position in a network, the betweenness centrality (BC) score,

represents the ability of an agent in bridging other users in the social media network. Due to

its capability to model user interaction in social media networks, it is used as the ground truth

to evaluate the models’ performances (see Section 3.2.5 for further explanation). Based on this

measure, four metrics were used to compare the interaction models and benchmarks.

• Root Mean Square Error (RMSE). Root Mean Square Error (RMSE) is one of the most

frequently used measures of predictive performance. RMSE is calculated as the square root

of the average of the squared differences between the actual values (At,i) and predicted values

(Ft,i). nt is the number of users in the network at time t. The RMSE formula is shown in

Equation 3.7.

RMSE(t) =

√
∑

nt
i=1(At,i−Ft,i)2

nt
(3.7)

32

• Symmetric Mean Absolute Percentage Error (SMAPE). Symmetric Mean Absolute Per-

centage Error (SMAPE) is a variant of Mean Absolute Percentage Error (MAPE), which

expresses accuracy as a percentage value instead of absolute value to adjust for extreme

values in the calculation. Different from MAPE, SMAPE uses the average of the absolute

actual and forecast values as the denominator to further smooth the deviation between the

two. Equation 3.8 shows the formula.

SMAPE(t) =
100%

nt

nt

∑
i=1

|At,i−Ft,i|
(|At,i|− |Ft,i|)/2

(3.8)

• Logarithmic Mean Absolute Percentage Error (LMAPE). Research shows that MAPE

and its variants (such as SMAPE) are biased toward predictions that are too low [157]. As

the activity levels of temporal network agents can change dramatically, the predictive models

may be required to produce extreme values that may create biases if MAPE is used. To ad-

dress the problem, I developed a new measure called Logarithmic Mean Absolute Percentage

Error (LMAPE; see Equation 3.9). LMAPE is designed to provide an unbiased evaluation

of predictive models that may make extreme forecasts. The measure considers the absolute

differences of the logarithm of actual and forecast values and divides the differences by the

geometric means of the actual values. The use of geometric mean helps to alleviate the

reliance on the arithmetic mean that is found to cause bias in evaluation [157]:

LMAPE(t) =
100%

nt

nt

∑
i=1

|ln(At,i)− ln(Ft,i)|
(∏

nt
i=1 At,i)1/nt

(3.9)

• Frobenius Loss (FL). Frobenius Loss (FL) can be used to reflect the approximation error

between the estimated agent membership Ĝt+1 and the true agent membership Ĝt+1 when

33

(a) RMSE (b) SMAPE (c) LMAPE

Figure 3.2: Model comparison across different dates for Dataset 2013

the models are used to predict agent roles. Equation 3.10 shows the computation of FL [9]:

FL(t +1) = ||Gt+1− Ĝt+1||F (3.10)

3.4 Experimental Finding

This section reports the results of a series of experiments comparing the models using different

time periods, window sizes, and performance measures. I provide statistical findings and charts

to explain the performance and support the observations. I analyze the relationship between the

temporal properties of the networks and the results, with a view to explaining the performance

differences. To provide a further contextual explanation, I conducted case studies to show agents’

interaction patterns within the temporal social media networks.

3.4.0.1 Model Comparison Across Different Dates

Figures 3.2 and 3.3 show comparisons of model performance by date across the two datasets (2013

and 2015) using three metrics (RMSE, SMAPE, and LMAPE; smaller values indicate better per-

formance; n = 15 (number of data points) for Dataset 2013 (from 9/18/13 to 10/30/13 with a

34

(a) RMSE (b) SMAPE (c) LMAPE

Figure 3.3: Model comparison across different dates for Dataset 2015

three-day increment), n = 14 for Dataset 2015 (from 5/18/15 to 6/27/15 with a three-day incre-

ment), and w = 18 for both datasets (this value of w was selected to provide the best performance

within a dataset)). The performance comparison for both datasets indicates that PIM and RIM

generally achieved better performance than EAM and TAM in terms of SMAPE and LMAPE (see

Figure 3.2(b–c) and Figure 3.3(b–c)), whereas the performance of TAM and EAM was generally

worse than the other models. Based on RMSE, the four models produced similar performance.

Therefore, as shown in Figure 3.2a and Figure 3.3a, these differences are not clearly distinguished.

To identify the significance of the performance differences, I conducted statistical comparisons

of model performances using the two datasets. The Welch two-sample pairwise t test was used,

assuming unequal variances of the sample data. The results are shown in Table 3.2. Each pair of

values embraced within parentheses refers to the performance values of two models being com-

pared (e.g., the LMAPEs of EAM and RIM are 0.042 and 0.026, respectively, for Dataset 2013).

Each value is the average of a model’s performance over all dates studied in a dataset. A lower

value indicates better performance of the respective model (e.g., RIM in the aforementioned exam-

ple) and is underlined if the performances of the models are significantly different (as shown in a

significant p-value). Significant results are marked with one or more asterisks next to the p-values

of the respective comparison (e.g., p = 0.0024 for EAM vs. RIM based on LMAPE).

35

Table 3.2: Performance and P-values of Model Comparison by Date

The results show that PIM and RIM outperformed both TAM and EAM significantly based on

SMAPE (for both the 2013 and 2015 datasets) and on LMAPE (for five of eight cases in the two

datasets). By contrast, the comparisons between RIM and PIM yielded diverse results. Using the

2013 dataset, RIM outperformed PIM significantly only at the p < 0.1 level (but not at p < 0.05 or

finer levels). Using the 2015 dataset, the performances of the RIM and PIM are not significantly

different based SMAPE and LMAPE. Because RMSE is suitable mainly for comparing linear

models, performance differences among models that describe both exponential and network effects

36

(e.g., RIM and PIM) may not be captured precisely by RMSE. Thus, many of the differences in

RMSE are not significant.

I observe a small number of spikes in errors on certain dates (e.g., 9/27/2013, 10/21/2013 in Figure

3.2a). These spikes may be caused by computational operations in specific metrics and by the

interaction models’ adjustment in nodes and links. First, the squaring operation in RMSE may

contribute to the spikes shown in Figure 3.2a. For instance, on 10/21/2013 shown in the figure,

the social media network consists of 49,725 vertices and 120,295 edges, which makes it one of

the largest networks in the 2013 dataset. Together with the randomness of user behavior, the

size and complexity of networks contribute to amplifying errors that are computed through the

squaring operation in the RMSE metrics. By contrast, such amplification is not as prominent in

Figure 3.2b and in Figure 3.2c, which do not use squaring in SMAPE and LMAPE, respectively.

Second, the node and link adjustment processes used in PIM and RIM may contribute to the spikes

shown in Figure 3.2 and Figure 3.3. For instance, for the spikes shown on 9/21/2013, 9/27/2013,

and 5/24/2015 in Figure 3.2(b–c) and Figure 3.3(a–c), all these dates have bursty upward trends of

users and links, for which RIM and PIM are required to create new agents and links in the simulated

networks at t + 1 (see Algorithms 1 and 2). These data might have contributed to larger-than-

required predictions (and thus the spikes) of the interaction models. Table 3.9 provides additional

information about the structural information of the networks on these dates. By contrast, EAM

assumes nodes to be static and does not have a similar dynamic adjustment process that PIM

and RIM have. As a result, EAM tends to make relatively smooth predictions, producing fewer

spikes in errors. Future studies may explore the mechanism to adjust nodes and links to increase

prediction accuracy.

37

(a) RMSE (b) SMAPE (c) LMAPE

Figure 3.4: Model comparison across different window sizes for Dataset 2013

(a) RMSE (b) SMAPE (c) LMAPE

Figure 3.5: Model comparison across different window sizes for Dataset 2015

3.4.0.2 Model Comparison Across Different Window Sizes

Figures 3.4 and 3.4 show comparisons of model performances by window size across the two

datasets using three metrics (RMSE, SMAPE, and LMAPE). For each window size (ranging from

4 to 20 with an increment of 1), the best alpha (that resulted in the highest performance values)

was used for each model in its running. The optimal alpha value is identified for each experimental

configuration (with one model, one window size, one prediction date, and one metric) by running a

given model five times using five alpha values: [0.1,0.3,0.5,0.7,0.9], and then choosing the alpha

that yielded the best performance (lowest error) in that configuration. The prediction periods are

the same as those listed in the previous section.

The performance comparison for both datasets (Figure 3.4(b–c) and Figure 3.5(b–c)) indicates

38

Table 3.3: Performance and P-values of Model Comparison by w

that, in terms of SMAPE and LMAPE, PIM and RIM outperformed EAM and TAM in almost all

window sizes. Based on RMSE, the four models produced similar performances (Figure 3.4a and

Figure 3.5a). A possible reason is that RMSE fails to explain the network and exponential effects

of PIM and RIM and treated all four models similarly.

Table 3.3 shows the results of statistical pairwise comparisons of the model performances. As in

Table 3.2, each pair of values embraced within parentheses refers to the performance values of two

39

models being compared. Each value is the average of a model’s performance for predicting the last

activity levels in each dataset (activity levels on 10/30/2013 for Dataset 2013 and on 6/28/2015

for Dataset 2015) using different window sizes (w = 4,5,6, . . . ,20). A lower value indicates better

performance of the respective model.

The results show that both RIM and PIM outperformed EAM and TAM significantly based on both

SMAPE and LMAPE, while no significant difference in model performances was found based

on RMSE. Thus, H3 was rejected in eight of the twelve cases. Using the 2013 dataset, RIM

outperformed PIM significantly based on RMSE. Using the 2015 dataset, PIM outperformed RIM

significantly based on all three metrics (RMSE, SMAPE, and LMAPE). Due to inconsistent results

found in two datasets, additional analyses of the environments and structural properties are needed

to explain these findings.

3.4.1 Model Comparison Using Frobenius Loss

As shown in Table 3.4, the interaction models achieved on average a lower Frobenius Loss (FL)

than DBMM did in all the eight comparisons in both the 2013 and 2015 datasets, indicating a

generally better capability in agents’ behavioral role discovery. The two interaction models sig-

nificantly outperformed DBMM in all four comparisons (p < 0.001) in the 2015 dataset. PIM

outperformed DBMM significantly (p = 0.01576) in the 2013 dataset (w = 12,n = 40), and RIM

obtained a better FL than DBMM did with moderate p values (0.1005 and 0.1551 for w = 12 and

w = 18, respectively). One reason for the superior performance of the interaction models is their

realistic adjustment of node composition in evolving networks. This is especially true in online

social media in which the composition of social networks can change dramatically over a short

time. By contrast, DBMM assumes nodes to be static and their composition unchanged over time.

Although DBMM estimates the dynamic behavior of nodes, the absence of change in nodal com-

40

Table 3.4: Performance and P-values of Model Comparison by Frobenius Loss

position in evolving networks makes the role estimation less effective and unrealistic. In addition,

the rank-r approximation used in DBMM makes another static assumption of roles and nodal fea-

tures. This is in contrast with the more flexible prediction of agents and links in PIM and RIM

based on relevant social theories that can be used to explain dynamic human behavior. However,

the only comparison showing no significant difference between DBMM and PIM is when w = 18

in the 2013 dataset (p = 0.795). It should be noted that the parameter value α = 0.7 used in PIM

and RIM (as recommended in Reference [9]) is not empirically tested to be optimal for the two

interaction models. Future studies may explore the effect of parameter values (w and α) on agent

role discovery.

41

Table 3.5: Pearson Correlations (and P-values) between Structural Properties and Model Perfor-
mances for Datasets 2013 and 2015

3.4.2 Structural Analysis of Social Networks

To understand the relationship between the model performance and the structure of the social net-

works in each dataset, I conducted a correlation analysis to identify the degree to which structural

properties relate to performances. Table 3.5 shows the correlations (and p-values of testing their

significance) between each pair of structural properties and model performances for Datasets 2013

and 2015. Shaded cells in the first and third tables highlight correlations with absolute values

above 0.4 (light shade) or 0.7 (dark shade). Shaded cells in the second and fourth tables highlight

p-values below 0.05 (light shade) or 0.01 (dark shade).

The results show significant correlations between LMAPE (of all models) and the five structural

properties. For Dataset 2013, all 20 cases reported significant p-values, and all the absolute val-

ues of correlations are above 0.5, with the highest being 0.805 (LMAPE of TAMand clustering

42

coefficient). For Dataset 2015, 14 out of 15 cases reported significant p-values, and all the abso-

lute values of the significant correlations are above 0.5, with the highest being 0.958 (LMAPE of

RIM and density). The p-values in 10 of 15 cases in Dataset 2015 are less than 0.001, indicating

extremely significant correlations between LMAPE of the four models and structural properties.

Therefore, the findings reveal strong predictability of structural properties on LMAPE of all models

in both datasets.

The results also show high to moderate correlations between SMAPE (of EAM, TAM, and RIM)

and the structural properties. For Dataset 2013, 4 out of 20 cases reported significant p-values, and

all these cases have absolute correlations above 0.5. For Dataset 2015, 8 cases (all involving EAM

or TAM) reported significant p-values while 10 cases (involving PIM and RIM) have insignificant

p-values. The findings indicate that structural properties have moderately strong predictability on

SMAPE of EAM in Dataset 2015. But for RIM, the predictability is moderately strong in Dataset

2013 but is weak in Dataset 2015. The predictability for SMAPE of PIM is weak in Dataset 2015.

The structural properties have weak and insignificant correlations (<0.4 in absolute value) with

RMSE of the four models in most cases. All p-values are not significant in Dataset 2013 and

in Dataset 2015, with the only exception being the correlation between the number of connected

components and RMSE of PIM in Dataset 2015 (p = 0.03934, correlation = 0.5191). Therefore,

the results show that structural properties are poor predictors of RMSE in all models.

3.4.3 Case Studies of User Interaction Patterns

To enable contextual reasoning and explanation of the model’s predictions, I conducted case stud-

ies of the top 20 users (who have the highest activity scores) and all users and provided their

interaction patterns to show different results of RIM and PIM compared with the two benchmark

models. The case studies examine three dates of user interaction patterns in each of the two datasets

43

Table 3.6: Percentage of Overlap between ACTUAL Users and Users Predicted by Model

(2013 and 2015). The three dates chosen from the 2013 dataset were 10/3/2013, 10/9/2013, and

10/9/2013, during which a massive protest took place in Washington, D.C. in support of compre-

hensive immigration reform in the United States. This event resulted in over 200 people arrested

by police, among them 8 Democratic members of the U.S. Congress. The three dates chosen from

the 2015 dataset were 6/15/2015, 6/18/2015, and 6/21/2015, during (and before) which prominent

members of the Republican Party, Donald Trump and Jeb Bush (among others), both announced

their candidacies for the U.S. presidency (on 6/15/2015), triggering many reactions in social media.

First, for each model, I computed the percentage of overlap between the actual users (in the Top20

or All lists) and the model’s predicted users in the same two lists. The results, shown in Table

3.6, reveal that among all four models, RIM achieved (on five out of six days) the best matching

(marked with ∗) between the actual top-20 users and the predicted top-20 users; PIM is ranked

second (two out of six days). When considering all users, PIM achieved (on five out of six days)

the best matching between actual users and predicted users. These results confirm the superior

performance of PIM and RIM in predicting nodal activities in the social media networks of the

selected dates.

Second, I selected examples of top-20 users to examine cases where all models predicted them

successfully (i.e., matching actual top-20 users) in contrast with cases where only RIM and PIM

44

Table 3.7: Interaction Patterns of Users Predicted by All Four Models to be among Top20

predicted them successfully. Interaction patterns of these two groups of users can be used to

distinguish the predictive capabilities of the models. As shown in Table 3.7, the users predicted by

all four models to be among Top20 generally have significantly more retweets, more self retweets,

and more duplicate tweets. By contrast, users predicted by only PIM and RIM (see Table 9)

generally have fewer targeted tweets and fewer modified tweets. These message types may be

appropriately captured by PIM and RIM due to their unique nature in identifying interactive users.

Although the user “Hillary Clinton” appears in both tables, the dates that the user appears are

different with different interaction patterns: 6/21/2015 in Table 8 and 6/15/2015 in Table 3.8. It is

possible that PIM and RIM capture interaction patterns of the user better on 6/15/2015 due to their

capabilities of detecting nodal activities better in an environment with highly opposing views (two

Republican candidates announced candidacies on that date, whereas “HillaryClinton” belongs to

the Democratic Party).

3.4.4 Implications

The experimental findings provide insights into understanding the model performances, tempo-

ral features, structural properties of networks, user interaction patterns, and attributes of datasets.

Their implications for predicting dynamic social network activities are discussed below. First,

45

Table 3.8: Interaction Patterns of Users Predicted by Only PIM and RIM to be among Top20

Table 3.9: Structural Information of Social Media Networks on Selected Dates

the proposed interaction models (RIM and PIM) performed significantly better than the bench-

mark models (EAM, TAM, and DBMM) across datasets of different time frames and content,

indicating the models’ strong capability of accounting for user interactions in activity prediction

across different contexts. This result confirms that the proposed models can be useful for detect-

ing activity levels in large dynamic online social networks. Second, the time window size (w)

(the length of history that the models used to predict activity) was found to demonstrate the per-

formance differences between the interaction models and the benchmark models. Both RIM and

PIM outperformed TAM and EAM across different w. The result implies that user interaction is

captured sufficiently by the two proposed models consistently, despite changes in w. Third, PIM

outperformed RIM across different w in Dataset 2015, indicating that the performance of PIM is

less affected by changing w. It follows that when the length of prior history is relatively short

(4 ≤ w ≤ 20), PIM would be a preferred model for detecting activity levels of social network

users. For longer prior histories (w > 20), additional data and studies will be needed to under-

46

stand performance differences. Fourth, both PIM and RIM outperformed DBMM significantly in

terms of agents’ behavioral role discovery, indicating their superior performance due to a realistic

treatment of dynamic network composition. Fifth, structural properties of the social networks cor-

related significantly with LMAPE of all four models and with SMAPE of EAM. The result shows

that macroscopic, structural factors of networks have strong to moderately strong predictability of

model performances (as measured by LMAPE and SMAPE respectively). This allows the assess-

ment of temporal network activity detection models with relative ease of computation and yet with

high accuracy. Furthermore, interaction patterns of selected top users reveal that PIM and RIM

provide superior predictive capabilities, especially in social media networks composed of highly

opposing views.

47

CHAPTER 4: SEMANTICS-AWARE OPTIMIZATIONS FOR BIG DATA

APPLICATIONS

4.1 Introduction and Motivation

Recently, a growing number of data-intensive computing frameworks have been proposed, such

as MapReduce [11], Apache Hadoop [12], and Spark [13] to process a large volume of data in a

parallel and robust manner within a reasonable time [85, 86]. The successes of these frameworks

oI to their MapReduce-like programming models, which are further based on data distribution

techniques (e.g., Resilient Distributed Dataset (RDD) in Apache Spark [87]), and high-order func-

tions (e.g., map, reduce, f ilter) that can take user-defined functions (UDFs) as arguments. The

semantics of these high-order functions facilitate data-parallelism to manipulate datasets in an

element-wise way while UDFs are applied to each element to produce the desired result. The pro-

gramming models hide the details of scheduling, load balancing, execution, and communication

from programmers, which eases programming and allows programmers to focus on data flow and

UDF designs. Despite these advantages, an endeavor to improve the performance of data-intensive

applications exhibits a few challenging issues

• Usually, unstructured data expose less information about their schema if without metadata

or annotation provided by programmers or help from runtime profiling tools.

• It is difficult to apply conventional database-style optimizations on unstructured data directly,

such as relational algebraic reordering and filter pushdown since the programming models

of current data-intensive computing platforms lack information about data schema [84].

• Although Spark can process raw unstructured data directly using DataFrame or Dataset APIs,

48

it needs to parse them before performing transformations (e.g, Map) and actions (Reduce-

ByKey). Particularly, these applications can spend 80-90% of the entire executing time in

data parsing [158].

• Programming models usually treat UDFs as black boxes and their semantics are therefore

hidden from the system, resulting in insufficient information for further optimization [90,

159, 94, 160].

• Runtime factors are not fully utilized to tune the performance of a specific operation’s exe-

cution, such as cache management [106, 105].

Therefore, it is vital to integrate program semantics, data property, and runtime factors to improve

the performance of data-intensive applications since pure static optimizations are either limited or

impossible without efficient profiling information about data and runtime systems. In this paper,

SODA is proposed as a two-phase framework, i.e., offline static analysis and online dynamic analy-

sis, to interactively and semi-automatically assist programmers to scrutinize performance problems

camouflaged in source code.

4.2 System Overview

4.2.1 Architecture

The framework of SODA includes offline and online phases, as shown in Figure 4.1. The of-

fline (static) phase is developed as a compiler plugin of host programming languages (i.e., Scala,

Java), and analyzes source code (src) and performance log about data and runtime factors to gen-

erate a nearly-optimized and parameterized program. Firstly, Code Analyzer analyzes source code

with the help of a local compiler to construct a directed data operation graph (DOG), which rep-

49

Offline Phase

Code
Analyzer

DOG

Console Warning

srcUser

Log
Analyzer

Optimizer

Operation
Reordering

Element
Pruning

Online Phase

Config
Generator

Performance
Log

Profiling
Guidance

Input Data

Output

Runtime
Profiler

Application
System

Event Log
Cache

Management
Metrics
System

Revise
Code

Figure 4.1: The full life cycle of Semantics-Aware Optimization Approach for Data-Intensive
Applications (SODA).

resents the skeleton of an application. This graph comprises a set of nodes and edges, which

denote operations and dataflows, respectively. In addition to static properties associated with cor-

responding operations, a group of dynamic profiling data is extracted by Log Analyzer from the

performance log, which is accumulated in prior executions, including execution time, memory us-

age, input, and output data size of operations, runtime system status etc. This information can be

extracted from system log [161, 162, 163] and provided by the profiling tool using Javassist (Java

Programming Assistant), a high-level bytecode instrumentation tool to instrument APIs of Spark

to expose information needed [164]. Next, three optimization strategies, i.e. cache management,

operation reordering, and element pruning, are applied to assist users to scrutinize performance

problems. When a problem is found, users would get informed about performance bugs from

SODA and then refactor code. However, not all problems can be determined statically, it may need

more information coming from executions. For example, SODA makes use of execution time and

output size of operations to verify performance behavior and then create a global cache alloca-

tion strategy. To reduce system overhead resulting from the profiling process, Config Generator

produces Profiling Guidance to inform the online phase about which operations and what kinds

of computational resources need to be monitored. In the online phase, SODA initializes an ap-

plication with a parameterized configuration based on Profiling Guidance and starts a piggyback

50

listener residing in each worker and master node to collect runtime information about memory

usage, data property, and system configuration. The profiling data would be accumulated and then

delivered back as a performance log to the offline phase for further optimizations.

Furthermore, SODA is implemented on Apache Spark, and several real-world Spark applications

are used as benchmarks to evaluate its effectiveness. Apache Spark [87] is an efficient and general

engine for large-scale data processing that supports the scalability of MapReduce [11]. Its main

abstraction, named Resilient Distributed Dataset (RDD) [87], is a fault-tolerant and immutable

collection of objects, which are logically partitioned across a cluster of computing nodes so that

they can be manipulated in parallel. Spark’s programming model provides two types of operations,

transformation and action. A transformation creates a new RDD dataset from an existing one

while an action returns a value to the driver program. The lazy feature of transformations enables

Spark to run more efficiently since they do not compute their results immediately until action is

invoked. An RDD has to be recomputed when invoking an action on it unless it is persisted in

memory using the persist (or cache) method, which facilitates much faster access. Apache Spark

automatically monitors cache usage on each node and drops out old data partitions in an LRU

fashion by default. In the Spark execution model, a Spark application is divided into a group of

jobs executed in a sequential order1, where a job is a parallel computation in response to a Spark

action (e.g., save, collect); Within a job, multiple stages are generated and bounded by shuffle

behaviors (e.g., reduce), then run in parallel if there is no data dependency among them; otherwise,

they are scheduled sequentially. Internally, a stage is a physical execution unit consisting of several

operations. The unit is further divided into tasks, which share identical code but run on different

data partitions in parallel. Given that, I need a fine-grained profiling tool to analyze semantic

properties in code as well as runtime factors, such as the evolution of data, the execution time

of operations, and system status, to narrow down the gap between the programming model and

1Multiple jobs can run simultaneously if they were submitted from separate threads

51

execution model).

4.2.2 Performance Problems

SODA looks for three kinds of performance problems: Cache Management (CM), Operation Re-

ordering (OR), and Element Pruning (EP).

Cache Management (CM): It is crucial to managing cache resources for these data analytics

frameworks [103, 165, 166, 13], which leverage in-memory computing to speed up performance

and bypass the hindrance of disk and network I/O. Within these systems, intermediate comput-

ing data block would be put in memory by default. There is a block management component to

manage these blocks and determine when and which one is evicted from memory. Recently, a

rich line of research work proposes different data block reference measurements to improve cache

hit, such as least recently used (LRU), least reference count (LRC) [105] and most reference dis-

tance (MRD) [106]. However, there remain two important factors that previous works have not

taken into account, especially in Spark.

1. The executing order of all stages. This could impact system performance, especially for

cache behaviors.

2. Data block size. Data blocks with the same reference in LRU or other fancy measurements,

might not all fit the memory at the same time, and therefore it raises the concern about cache

priority with regard to system performance.

In addition, programmers may brutally persist the desired dataset in memory by invoking corre-

sponding APIs (i.e., using the persist (or cache) method in Spark), resulting in a more com-

plicated research problem. Therefore, an intelligent cache management mechanism using hybrid

52

program analysis is needed to manage memory for efficiency. In this paper, I propose a stage-

level cache allocation strategy in a data-intensive system by reducing it to a convex optimization

problem [167, 168, 169].

Operation Reordering(OR): A data-intensive system usually supports a rich line of operations,

such as map, reduce, filter, reduceByKey, and join. A developer may face a variety of

executing plans assembled by a sequence of operations associated with UDFs to accomplish an

application. Nonetheless, not all of these arrangements will yield identical performance. There-

fore, it is crucial to orchestrate the operations in an appropriate order to bypass common pitfalls

affecting performance significantly. For example, filter pushdown and join reorder are two com-

mon optimization strategies to improve the performance of relational algebra-based systems when

handling structured data. As to processing unstructured datasets, however, it is difficult to apply

these conventional database-style techniques to systems using non-relational algebraic program-

ming models. In this paper, I propose SODA to break through such kinds of dilemmas and extend

these two strategies into a more general approach for processing unstructured data.

Element Pruning (EP): It is common that not all portions of a dataset are used to produce output,

which leads to a series of redundant I/O operations, such as Disk I/O for reading/writing data and

network I/O for transferring data among computing nodes. These redundant operations can become

more severe when processing unstructured data. Due to the lack of a predefined schema of a given

dataset, it is difficult to detect data workflow in a fine-grained granularity (i.e., on attribute level),

hence failing to identify unused data attributes. In particular, the redundant portion of the dataset

may be a dominant barrier to performance when shuffling a huge size of data across networks in a

data-intensive computing system.

53

4.3 Semantics-Aware Data Model

I propose semantics-aware data model to keep track of the evolution of dataset(s), which are ma-

nipulated by a set of well-chosen operations and elaborated UDFs.

4.3.1 Attribute-Based Data Abstraction

SODA parses and represents an unstructured dataset as a multiset of elements in which repetitive

ones may be included, termed as X = {x1, ...,xn}, where n is the number of elements. To exploit

datasets deeper and provide more information to optimizations, SODA treats an element x ∈ X as

an ordered m-tuple: x = ⟨x[a1], . . . ,x[am]⟩, where x[ai] is the value(s) of an attribute ai. One or two

datasets can be manipulated by an operation (including user-defined function (UDF)) to generate

a new dataset, where the operation can access and transform the attributes of an element. Let

Y = X .op(f) denote that a new dataset Y is generated by applying a unary operation op (e.g., map,

reduce, and f ilter) and its corresponding UDF f to an input dataset X . Similarly, I can define

binary operations. In the following discussion, I use unary operations to demonstrate the approach

for simplicity, and the same idea can be applied to binary operations.

To process such a transformation in static code analysis, SODA first models attributes of X and Y

by analyzing their type information, as well as the input and output of f . Let β (X), β (Y) denote

all extracted attributes of X and Y , respectively. Next, SODA analyzes the source code of f to

create dataflows between β (X) and β (Y) at the level of the attribute.

54

Table 4.1: The Definition of Primitive Operations

Operation Notation Examples in Apache Spark
Map Map : X× f 7→ Z map, flatmap, mapValues,mapPartions
Filter Filter : X× f 7→ Z filter, sample, collect

Set Set : X×Y × f 7→ Z ++, intersection, union
Join Join : X×Y × f ×K 7→ Z join, leftOuterJoin, rightOuterJoin, fullOuterJoin

Group Group : X× f ×K 7→ Z reduceByKey, groupByKey, aggregateByKey, foldByKey
Agg Agg : X× f × init 7→ reg reduce, aggregate, fold, max, min

4.3.2 Primitive Operations

SODA defines six primitive operations to imitate common behaviors of a general data-intensive

system, as shown in Table 4.1.

• Map : X× f 7→ { f (x) | x ∈ X } is an operation to return a new dataset by applying f to each

element x of X . Flatmap is a special map by flattening all elements of the input.

• Filter : X × f 7→ { x | x ∈ X , f (x) = True } is an operation taking f as a parameter and

keeps element x when f (x) is true. Filter reduces the number of elements involved in the

successive computation so as to reduce data size for computing and communication later.

• Set : X ×Y × f 7→ { f (x,y) | x ∈ X , y ∈ Y} is an operation on two input datasets, X and Y ,

to generate a new one by applying f to each pair of ⟨x,y⟩, where the two datasets X and Y

should have identical attribute sets.

• Join : X ×Y × f ×K 7→ { f (x,y) | x ∈ X , y ∈ Y, x[K] = y[K] } is a binary operation on two

input datasets, X and Y , to generate a new one by applying f to each pair of ⟨x,y⟩ with

matching keys K, where K is a subset of attributes shared by both X and Y .

• Group : X × f ×K 7→ { f (gk) | gk = {x1, ..,xm} ⊆ X , x1[K] = ... = xk[K] = k} is a unary

operation that returns a new dataset by applying f to a group of elements sharing an identical

55

value(s) k on key(s) K.

• Agg : X × f × init 7→ f (X , init) is to combine all elements in X into a single value with the

help of f and an initial value init. Note that the result of an operation (e.g., reduceByKey) is

not a single value, I classify it into a “Group" operation.

Actually, there is an implicit Shuffle operation behind the last four operations to transfer data across

processing nodes, which dramatically affects the whole system performance due to expensive I/O

operations. One of the ultimate goals of SODA is to reduce the amount of shuffling data as much

as possible with the help of the proposed optimization strategies. Although the above definitions

just involve at most two input datasets, it is easy to extend the concepts to accommodate more.

4.3.3 Data Operational Graph

SODA builds a directed data operational graph (DOG) G = (V,E) to represent an application and

conducts three kinds of optimizing strategies atop this graph. A vertex v∈V depicts a primitive op-

eration described in Table 4.1 and the dataset generated by this operation. An edge e ∈ E denotes

data flows between two operations. For each vertex, there is a group of properties accumulated

from static analysis, dynamic analysis, or both on code, data, and runtime system, which is de-

fined in Table 4.2 in more detail. I also add two special nodes, named Source and Sink. Source

node is connected to all initial input datasets while all sole output of stages would point to Sink

node. SODA conducts optimizations atop of a DOG, rather than on an abstract syntax tree (AST)

due to the following considerations: 1) usually a data-intensive system supports various program

language APIs (e.g., Scala, Java, python APIs in Apache Spark), a general optimization backend

is compatible with different programming models; 2) SODA focuses on optimizations at the level

of operations, rather than at the lower level of AST nodes; 3) There is a huge gap between AST

nodes and simulating system behaviors that interpret applications and datasets.

56

Table 4.2: The statistics information and corresponding notations needed by SODA

Level Notation Data Source Comments

Application

G = (V,E) Source code Data Operational Graph with nodes V and edges E
S Source code, System Log All stages in an application
W Defined by SODA A binary matrix W ∈ {0,1}|ES|×|V |

D1 Defined by SODA Set of matrices W ∈ {0,1}|ES|×|V |

D2 Defined by SODA Set of matrices W ∈ {0,1}|ES|×|V | satisfying hypothesis of Hs
F(w) Defined by SODA The expected caching gain (4.4) in D1
L(w) Defined by SODA The concave approximation (4.7) of F(w)

Stage
s Source code, System Log A stage in an application

Hs Defined by SODA Cache candidate datasets after a stage s is finished
Cs Defined by SODA The computational cost of a stage s
Ts System Log, Runtime Profiler The submission time of a stage s

Operation
Tv System Log, Runtime Profiler The execution time of an operation of v
U f Source code A Use-Set of an operation op with UDF f
D f Source code A Def-Set of an operation op with UDF f

Dataset
Sv System Log, Runtime Profiler The size of a dataset generated by operation v
Nv System Log, Runtime Profiler The number of elements in a dataset generated by operation v

System
Mexe System Log The memory size of an executor

Mstore Defined by SODA The size of storage memory

Execution model. Without loss of generality, SODA splits an execution plan of DOG into a

series of stages that are bounded by shuffle behaviors, denoted by S = {s1,s2, . . . ,sn}. As shown in

Figure 4.2, the toy application is composed of seven stages. A stage s∈ S is delegated as a physical

scheduling unit consisting of multiple operations to fulfill a sub-job. Generally, a stage s involves

an execution path between the Source node and its target vt (i.e., s.target) if no cache mechanism is

provided: s = {v0, . . . ,vt}. For example, s3 = {v0,v1,v2,v5,v6,v7,v8} is a set of nodes involved in

computing the outcome (i.e. v8) of stage s3 in Figure 4.2. A number wrapped by dashed rectangles

and labeled by texts starting with s indicates a stage of computation and the dependencies of data

blocks are represented by solid arrows. Generally speaking, the computational cost of a stage s is

calculated by aggregating all involved operations’ execution time, denoted as Cs = ∑v∈s Tv where

let Tv denote the execution time of an operation of node v. Furthermore, The total execution time

of an application is given by summing all stages’ cost: CS = ∑s∈SCs.

It is well known that stages can run in parallel if there is no data dependency among them in a

57

91 2

0

13

3 4

7 8

5 6 10 11

12

s0 s1 s4

s6s3

s5s2

Figure 4.2: Data Operational Graph of Customer Reviews Analysis benchmark.

data-intensive system. However, without loss of generality, I assume that they are scheduled in

sequential order. SODA determines this order by analyzing the data dependency of stages and

the submission time Ts of stages in prior executions extracted from the performance log. An

operation can be executed and interpreted simultaneously by a cluster of executors on different data

partitions. Technically, these executors can be equipped with the configurable size of computing

resource (e.g., CPU, memory). I also assume that memory resource in an executor is divided into

two sections storage (i.e., caching intermediate data) and computation(i.e., allocating objects). I

denote Mstore as the size of storage memory.

4.4 Optimization Strategies

There are three kinds of optimization strategies: cache management, operation reordering, and

element pruning.

4.4.1 Cache Management

In this section, I go over the details of the Cache Management policy. The summary notation is

categorized and listed in Table 4.2.

58

Maximizing Expected Caching Gain. A global cache allocation is usually preferred to minimize

the aggregated execution cost of an application. In particular, I assume C0 is the real executing

time of an application without any optimizations and works as an upper bound on the expected

costs. Here the objective is to determine a feasible cache allocation (i.e. w) that maximizes

the caching gain, i.e., the expected cost reduction attained by caching data, which is defined as:

F(w) = C0−∑s∈SC
′
s, where C′s is defined as the predicted (or expected) computational cost of a

stage s by consideration of w.

To determine a global cache allocation policy, a binary matrix W = [wsv]s∈ES,v∈V ∈ {0,1}|ES|×|V |

is defined to indicate cache status of a data generated by node v after executing a stage s, where

ES = {Es1,Es2, . . . ,Esn} reveals the real-time scheduling order of all stages extracted from online

profiling information. In the matrix, a cell with value 1 (i.e., W [s,v] = 1) indicates that the output

of the data of v is reserved in memory after a stage s is done (See Equation 4.5b); otherwise, i.e.,

when W [s,v] = 0, the data is evicted from memory (See Equation 4.5c). It is worth mentioning

that cache capacity constraints in an executor (Mstore is the size of memory for storage) would limit

the amount of involved data that could be reserved in memory (See Equation 4.5d). From top to

bottom in a column of W , it is easy to identify which stage a data is stored in memory, and which

stage it is evicted from memory. Such an allocation plan tells programmers when to persist or

unpersist data in memory in code.

Given a global cache allocation, all operations involved in the computation of a stage s are well

routed by following the execution path until it encounters data of v cached in memory. This data

and its predecessors do not need to be recomputed so far. In the previous example of Cs3 , the cost

is equal to Tv7 +Tv8 if data generated by v2 and v6 are cached in memory. Next, given the current

executing stage s with a global cache allocation w ∈W , the number of re-computation times of

vk ∈V (because it is used again later but not cached) is needed to get the outcome of vl ∈V , which

defined in Equation (4.1).

59

P(vk,vl,s) = ∑
p∈τ(vk,vl)

∏
v∈p

(1−w[s.pred,v])) (4.1)

where τ(vk,vl) returns a set of paths from node vk to vl; if vk is identical to vl , then it is {{vk}};

s.pred reveals the previous executing stage of s. Therefore, the predicted (or expected) computa-

tional cost of a stage s can be regulated concisely under a global cache allocation policy w ∈W ,

and defined in Equation (4.2).

C′s =
vt=s.target

∑
v∈s

Tv ∗P(v,vt ,s)

=
vt=s.target

∑
v∈s

Tv ∗ ∑
p∈τ(v,vt)

∏
v′∈p

(1−w[s.pred,v′]))
(4.2)

Finally, I try to obtain an allocation of policy w that maximizes the aggregate expected caching

gain:

F(w) = ∑
s∈S

Cs−∑
s∈S

C′s

=C0−∑
s∈S

vt=s.target

∑
v∈s

Tv ∗ ∑
p∈τ(v,vt)

∏
v′∈p

(1−w[s.pred,v′]))
(4.3)

Convex-Concave Relaxation. In particular, I seek solutions to the following problem:

argmaxF(w) (4.4a)

s. t. w ∈ D1 (4.4b)

60

where D1 is the set of matrices W ∈ {0,1}|ES|×|V | satisfying source constraints, cache behaviors

and cache capacity, i.e.,

∀s ∈ ES,v ∈V : W [s,v] ∈ {0,1} (4.5a)

∃s ∈ ES,v ∈V,W [s,v] = 1 : s cached−−−−→ v (4.5b)

∃s ∈ ES,v ∈V,W [s,v] = 0 : s uncached−−−−−→ v (4.5c)

∀s ∈ ES : ∑
v∈V

W [s,v]∗Sv ≤Mstore (4.5d)

where Sv denotes the size of an intermediate data generated by an operation of v. As far as I know,

this deterministic, combinatorial version of (4.4) is NP-hard, even when I already have background

knowledge about the submitted application and runtime statistics. Nonetheless, I can relax it to

a submodular maximization problem subject to knapsack constraints and take a linear relaxation

algorithm to optimize cache allocation on the stage level by minimizing the expected computational

cost [168, 169]. It is obvious that Equation (4.4) is not a convex optimization problem. However,

it can be approximated as follows. I can define L : W → R based on Equation (4.3) as:

L(w) =C0 −

∑
s∈S

vt=s.target

∑
v∈s

Tv ∗ ∑
p∈τ(v,vt)

(1−min(1, ∑
v′∈p

w[s.pred,v′]))
(4.6)

Note that L is a concave function, and now I have the following:

argmaxL(w) (4.7a)

s. t. w ∈ D1 (4.7b)

61

According to [168], an optimal solution w to (4.7) can be approximated and guaranteed within

a constant factor (1− 1/e) from the optimal value of Equation (4.4): (1− 1/e)L(w) ≤ F(w) ≤

L(w),∀w ∈ D1.

Global Execution Distance. So far, SODA can approximate a solution to (4.7) within a (1−1/e)

factor by searching all cache allocation space, which may lead to bad runtime performance. In

other words, I am convinced that knowledge about data flow and stages’ dependency could have a

positive effect on this defect. Therefore, I devise a new metric to measure the time-locality distance

of an operation, namely execution distance, and introduce another constraint to D1.

Definition 4.4.1 (Global Execution Distance (GED)). For a node v ∈ V , execution distance is

defined as a relative difference between the current execution point Sc and a future executing

stage S f in which it will be referenced: S f −Sc.

In particular, there may have multiple execution distances for the data of v if it is used in several

stages. At this point, the final number should be the sum of all these distances. For instance, Table

4.3 shows an evolution of execution distance for each node in Figure 4.2 as the workload runs

along with scheduling order ES from top to bottom. In the first row of the table, I have twelve

operations, which may be cached in memory after a stage is done; The leftmost two columns

reveal the relationship between stages S and their corresponding scheduling order ES. The number

in the rest of the cells indicates how far away from a future reference point to the current executing

stage, and it should be recalculated and updated after each execution of stages every time. For

example, after executing stage s2 (its corresponding schedule order is 1), the execution distance

of v2 is updated from 5 to 3 since v2 will be referred in stage s1 and s3 and their corresponding

schedule order is 2 and 3, respectively. So the new value will be recalculated by (2−1)+(3−1).

A cell [s,v] can be set to zero if 1) the data generated by v is referenced by another node in the same

stage s (See case cell of [0,v1]); 2) the data of v gets referenced and there is no more reference in

62

Table 4.3: The cache allocation policy based on Execution Distance for the workload in Figure 4.2

ES S v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
0 s0 0 5
1 s2 0 3 0 0 0 6
2 s1 0 1 0 2 0 4
3 s3 0 0 0 1 0 2 0 1
4 s4 0 0 0 0 0 1 0 0 2
5 s5 0 0 0 0 0 0 0 0 1 0 1
6 s6 0 0 0 0 0 0 0 0 0 0 0 0

the future (See case cell of [3,v2]). The cells with empty content mean the nodes that have not been

accessed so far.

With the help of GED, I can also learn a set of candidates that can be persisted in memory after a

stage s is finished, termed as Hs. For example, Hs1 = {v2,v4,v6} since the corresponding cells are

non-zero in the row of ES(= 2). Therefore I can narrow down search space to approach an optimal

solution to (4.8) by merely considering data in HS, rather than all data in V , for a stage s. Consider

the following problem:

argmaxL(w) (4.8a)

s. t. w ∈ D2 (4.8b)

where D2 is the set of matrices W ∈ {0,1}|ES|×|V | satisfying source constraints, cache behaviors,

cache capacity, and hypothesis of Hs, i.e.:

63

∀s ∈ ES ,v ∈V : W [s,v] ∈ {0,1} (4.9a)

∃s ∈ ES ,v ∈V,W [s,v] = 1 : s cached−−−−→ v (4.9b)

∃s ∈ ES ,v ∈V,W [s,v] = 0 : s uncached−−−−−→ v (4.9c)

∀s ∈ ES : ∑
v∈V

W [s,v]∗Sv ≤Mstore (4.9d)

∀s ∈ ES ,v ∈ (V \Hs) : W [s,v] = 0 (4.9e)

It is apparent that D2 is a subset of D1, a solution w′ to (4.8) can also be fit for (4.7), as well as (4.4)

with (1− 1/e)L(w′) ≤ F(w′) ≤ L(w′),∀w′ ∈ D2. To gain better approximating rate, I implement

Pipage Rounding [168] using Gurobi optimizer APIs [170] to approximate a solution to (4.8).

4.4.2 Operation Reordering

The goal of operation reordering (i.e. Filter Pushdown) is to improve applications’ performance

by reordering operations along with the data path. There are two challenges: Is reordering correct

concerning the original semantics? Does the reordering improve performance? To answer these

questions, I first define Use-Set and Def-Use by following the dataflow technique in static code

analysis [171].

Definition 4.4.2 (Use-Set). Given Y =X .op(f), Use-Set U f = {a | a ∈ β (X) and a is accessed by

f }. Use-Set defines all attributes of input data used by f to generate Y .

Definition 4.4.3 (Def-Set). Given Y = X .op(f), Def-Set D f = {b | b ∈ β (Y) and b is created or

updated by f }. Def-Set is the attribute set newly created by an operation op, or inherited directly

from β (X).

64

Then, SODA uses a two-step way to handle these two challenges. In the first step (static verifi-

cation), Theorem 4.4.1 is proposed to ensure semantic correctness. It captures the fact that two

successive operations can be reordered if a latter UDF f2 does not use attributes that a former UDF

f1 defines.

Theorem 4.4.1. Two successive operations op1 and op2 on an execution path can be reordered,

i.e., X .op1(f1).op2(f2)≡ X .op2(f2).op1(f1), if U f2 ∩D f1 = /0.

Let’s take filter pushdown as an example to illustrate this theorem. Filter pushdown is a conven-

tional optimization that pushes a filter towards the direction of data loading as much as possible so

that the volume of intermediate data can be reduced.

Lemma 4.4.2. For Y = X .Map(f1).Filter(f2), Filter and Map can be reordered, if U f2 ∩D f1 = /0.

The comprehensive proof statement of Lemma 4.4.2 is followed:

Proof. Assume the two plans

O1 = X .Map(m).Filter(f)

O2 = X .Filter(f).Map(m)

I prove that O1 ≡ O2. Assume a record x ∈ X , let O1
x = f (m(x)) and O2

x = m(f (x)) are set of

element(s) generated by applying according operations by sequence to x. Notice that here O1 =⋃
x∈X

f (m(x)), and O2 =
⋃

x∈X
m(f (x)), and in all the proofs, set is referring to dataset (mathematically

termed as a multiset) which allows repetitive elements and union operations (here alias to sum

operation in multiset) preserve repetitive elements as well. To prove O1 ≡ O2, it suffices to show

that ∀x ∈ X : O1
x ≡ O2

x . I prove it by justifying the following two cases: 1 f (x) is the indicator

function of filter f to represent its selectiveness. 1. When f (x) = 1 f (x) · x = 0 · x = /0, where

Then, O2
x = m(f (x)) = m(/0) = /0. Now since UFilter ∩DMap = /0, I know that for ∀x′ ∈ m(x),

65

πUFilter(x
′) = πUFilter(x), and by definition 4.4.2, f ’s behavior is solely depending on attribute set

UFilter, I have

O1
x = f (m(x)) =

⋃
x′∈m(x)

f (x′) =
⋃

x′∈m(x)

1 f (x′) · x′

=
⋃

x′∈m(x)

1 f (πUFilter(x
′)) · x′ =

⋃
x′∈m(x)

1 f (πUFilter(x)) · x
′

=
⋃

x′∈m(x)

1 f (x) · x′ =
⋃

x′∈m(x)

0 · x′ = /0

Thus for ∀x, in case 1, I have O1
x ≡ O2

x .

2. Similarly, when f (x) = 1 f (x) · x = 1 · x = {x}, O2
x = m(f (x)) = m(x). And

O1
x = f (m(x)) =

⋃
x′∈m(x)

f (x′) =
⋃

x′∈m(x)

1 f (x′) · x′

=
⋃

x′∈m(x)

1 f (πUFilter(x
′)) · x′ =

⋃
x′∈m(x)

1 f (πUFilter(x)) · x
′

=
⋃

x′∈m(x)

1 f (x) · x′ =
⋃

x′∈m(x)

1 · x′ =
⋃

x′∈m(x)

x′ = m(x)

Thus for ∀x, in case 2, I also have O1
x ≡ O2

x . Combining the results in both cases (which are all

cases possible), I have proved for ∀x ∈ X , O1
x ≡ O2

x , and consequently, O1 ≡ O2.

Correspondingly, I can get the following lemmas to determine if a Filter operation can be pushed

down before Group and Set operations, respectively.

Lemma 4.4.3. For Y =X .Group(f1).Filter(f2), Filter and Group can be reordered, if U f2∩D f1 =

/0.

Lemma 4.4.4. For Z = X .Set(Y, f1).Filter(f2), Filter and Set can be reordered along with X and

66

Y data path safely:

Z = X .Filter(f2).Set(f1)(Y.Filter(f2)) if U f2 ∩D f1 = /0.

In the second step (dynamic evaluation), two polynomial regression models (due to their wide

applicability in engineering [172]) are trained for op1 and op2 respectively using profiling infor-

mation, then predict the execution time of each operation on new input. If SODA gets positive

feedback from predicted models, it will suggest programmers reorder these two operations.

4.4.3 Element Pruning

Element pruning is an optimization to eliminate unused attributes in an element by analyzing data

dependency in the attribute level among operations. SODA analyzes an operation and its associated

UDF(s) to analyze attribute dependency between the input and output dataset of this operation.

Then a directed data dependency graph (DDG), G′ = (V ′,E ′), is built to represent the whole data

flow of the application by combining all attribute dependency relationships among operations. A

node v∈V ′ represents an attribute of an dataset involved in an operation while an edge e∈ E ′ from

a node s to another node d indicates that d has either data or control dependency on s. If an edge

is a control dependency, it means that s and d have identical attributes. Data dependency means

that the value of d is updated or created from s. An attribute node may have multiple incoming and

outgoing edges. To identify an application’s start and endpoints, I add two special nodes source

and sink to this graph and connect all input attributes of this application to source and connect

all output attributes to sink. All these dummy edges outgoing from source and incoming to sink

are assigned as control dependencies. Therefore, I can reduce the complicated optimization into a

problem of traversing the graph and eliminating a node v if there exists no path between v and sink

since an attribute node can be eliminated safely if it does not make a contribution to producing an

output of the application.

67

source

attr_0 attr_1 attr_2 attr_3 attr_n

attr_0 attr_2 attr_3

attr_0 [attr_2] [attr_3]

attr_0 [attr_2].sum

reviewRDD

map

groupByKey

map

sink

Figure 4.3: A simplified example of data dependency tree

Figure 4.3 shows an example of a data dependency graph of Listing 4.1. Each row represents a

group of attributes of a dataset named by the corresponding leftmost text above the dashed ar-

row. A rectangle reveals an attribute labeled by the inside text. It is obvious that the attribute

“[attr_3]" does not contribute to “sink" while it is grouped by groupByKey operation from the at-

tribute “attr_3" in first map. The preliminary experiment shows that this kind of awkward design

leads to a significant computation and I/O cost because of shuffling a huge size of data among

computing nodes over the network. According to the proposed constraint, there is no edge be-

tween these yellow rectangles and “sink" so they can be removed without changing the snippet

code purpose.

Listing 4.1: An example showing the problem of EP

val aggData = reviewRDD.map(row⇒

(row. getString (0) ,(row.getDouble(2) , row.getString(3)))

) .groupByKey().map{

case (attr_0 , attr_2) ⇒ attr_2 .map(_._1).sum }

68

4.5 Experiment and Evaluation

In this section, I use the real-world data-intensive applications in different domains to evaluate

the overall effectiveness of SODA on a 9-node cluster of Apache Spark (v3.0.0) by comparing

the runtime performance of these applications before and after optimization by SODA. Each node

has a hardware configuration with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 32GB main

memory with DDR4-2133 MHz ECC and 1 GigE Ethernet as the internal communication channel

between nodes.

4.5.1 Benchmarks

• System Log Analysis (SLA) is a job to find the average ranking and total advertising rev-

enue for each website within a specified date range. There are two datasets, uservisits and

pageranks.

• Customer Reviews Analysis (CRA) is a project aiming at ranking the top 20 brands ac-

cording to average customer rating score in the book categories. The review datasets include

over 138.1 million customer reviews spanning from May 1996 to July 2014 [173].

• Social Network Analysis (SNA) focuses on ranking the top 20 users who are the most

active in a specified time period based on tweets analysis. I use a social-media community

consisting of 790,462 users who posted over 3,286,473 tweets and have more than 3,055,797

links from 2013 to 2015 [5, 6].

• Pre-Processing Job (PPJ) is a clean task and looks for products satisfying two criteria: 1)

product ID starts with “B000"; 2) average word count of the product description is greater

than 100. N/A data element will be removed to avoid program crashes during runtime. The

metadata dataset includes 15.5 million products.

69

Table 4.4: The results of running SODA on Spark Applications

Bechmark Description CM OR EP
SLA Filter, Join, Agg Detected Not Present Detected
CRA Filter, Join, Agg Detected Detected Detected
SNA Map, Filter, Agg Failed Detected Detected
PPJ Map, Filter, Group Detected Not Present Detected

4.5.2 Effectiveness Assessment

To evaluate the effectiveness of SODA, I first manually examine all source code to see which

problems are present by rules-of-thumb. I then apply each optimization on four benchmarks in-

dividually to obtain their results in detecting problems: Detected, Undetected, or Not Present. If

a problem is detected but the performance behaves worse after the revision, I label it as a Failed

case. The results are shown in Table 4.4 allow for quantifying their performance, in which CM,

OR and EP represent Cache Management, Operation Reordering, and Element Pruning, respec-

tively. In general, most potential performance problems are detected by SODA successfully with

one exception of a Failed case in SNA workload when being applied with CM optimization.

• SLA is an application working on two datasets to evaluate the performance of CM and EP,

and OR is not applied in this application. SODA can scrutinize the problems successfully.

• CRA is a complicated student project using Filter, Join, Agg operations, which exposes

problems of EP and OR to SODA. In addition, the complicated workflow allows SODA to

dig into the CM issue. All of the problems can be detected by SODA successfully.

• SNA is a research project that involved all the optimizations. All of them can be detected by

SODA statically, however, CM leads to negative feedback regarding execution time while

the other two have positive effects on the application. We, therefore, label CM as Failed.

More discussion regarding this unusual phenomenon will be given in the next section. It is

70

a research project in which there is a problem with OR. SODA can detect it and give some

feedback about how to revise it. SODA also suggests persisting the “user" dataset in mem-

ory, since there are multiple references to that data in later computations. Unfortunately, I get

a worse performance when the revised application is submitted to Spark. This unusual phe-

nomenon is caused by two reasons: 1) This benchmark is a memory-intensive application;

2) The most of storage memory in an executor is occupied by cached dataset, which leads to

high pressure on the GC thread. For this problem, SODA cannot handle it right now since

SODA only considers cache memory capacity constraints and fails to take the mutual effect

between storage and execution memory into consideration. I will leave this functionality to

future work.

• PPJ is a data clean task involved in Map, Filter and Group operations. There are two prob-

lems of CM and EP, that are successfully detected by SODA.

4.5.3 Performance Behavior

I start the performance improvement evaluation of SODA on workloads for each optimization.

I implemented this by submitting the revised code to spark and running it five times for each

workload to obtain average experimental data. Figure 4.4 shows the experimental results of exe-

cution time, size of shuffling data, and GC time for each benchmark, where Label “RDD" refers

to the performance of baseline without any optimizations. Labels “CM", “OR", “EP" represent

performances of applications optimized by cache management, operation reordering and element

pruning, respectively. Each describes experimental results in terms of execution time, shuffling

data size, and garbage collection time. Table 4.5 lists the speed up each optimization achieves for

each benchmark.

71

(a) SLA (b) CRA (c) SNA (d) PPJ

Figure 4.4: The performance of individual optimization over the baseline.

Table 4.5: System speed up of individual optimization over the baseline implementation in RDD.

Benchmark CM OR EP
SLA 2.07% 0.77% 1.55%
CRA 59.57% 3.09% 6.38%
SNA -7.88% 9.70% 6.15%
PPJ 2.96% 0.24% 7.47%

• SLA. There are two performance problems: CM and EP, that are detected by SODA. The

revised applications are submitted to Apache Spark and become 2.07% and 1.55% faster

than the baseline (RDD) (see Table 4.5), respectively. Figure 4.4a reveals that these two

optimizations are not related to shuffling data size, while GC time of CM is about 2.2 times

faster than the others, since cached dataset triggers a frequent GC procedure to collect JVM

garbage.

• CRA. All three kinds of optimizations, CM, OR, and EP, can be used on this application and

their performance speeds up by 59.57%, 3.09%, 6.38%, respectively, according to Table 4.5.

In Figure 4.4b, OR and EP have a positive effect on execution time and shuffling data size,

while CM has speedup over execution time and does not reduce shuffling data size. Even CM

has a better performance than the other two, however, the corresponding GC time is bigger.

EP can reduce shuffling data size significantly but with the minimum time consumed.

72

Table 4.6: Overall comparison about System Overheads incurred by SODA

Benchmark Optimization No Partial All
SLA CM 78.8 87.3 107.6
CRA OR 240 275.3 532.3
SNA OR 138 153.4 197.6
PPJ CM 153.6 176.3 317.5

• SNA. Table 4.5 shows that after applying the three optimizations, this application speeds

up by -7.88%, 9.70%, 6.15%, respectively. I believe two reasons are causing this worse

performance (-7.88%) of the revised application-optimized by CM: 1) this benchmark is a

memory-intensive application; and 2) most of the storage memory in an executor is occupied

by cached dataset, which leads to high pressure on garbage collection threads. Since SODA

only handles cache memory capacity constraints and does not consider the mutual effect

between storage and execution memory, such a case is difficult to be avoided. Additionally,

OR has reduced shuffling data size significantly.

• PPJ. According to Table 4.5, EP and CM can speed up the application by 7.47% and 2.96%,

respectively. In Figure 4.4d, the shuffling data size has been reduced by EP from 948.8 MB

to 392.2 MB while the GC time is decreased to 22.3 seconds.

4.5.4 System Overhead

In this section, I conduct experiments in different granularity of monitoring, e.g. monitoring no

operation, partial operations suggested by SODA, or all operations involved in applications, to

compare system overhead. Table 4.6 shows the execution time of each application with different

monitoring granularity. In the partial granularity, I get profiling guidance for SLA and PPJ based

on CM’s suggestions, CRA and SNA based on OR’s suggestions. Monitoring on all operations

73

takes a longer time than the other two granularities. The rational reasons behind the acceptable

system overhead lie in the lightweight design of online phase: 1) Enabling and customizing Spark

internal event and metrics subsystems only cast needed information with a lower system overhead;

2) Exploiting data access pattern behind semantics code and DAG-based workflow provides an

instrumentation guide to probe runtime system. For instance, I only consider candidate operations

contributing to future ones if they are persisted in memory. It is worth mentioning that the system

overhead of an application depends on its characteristic, input data size, and system configurations.

74

CHAPTER 5: GRAPH TRANSFORMER FOR AUTOMATED PROGRAM

REPAIR

5.1 Introduction and Motivation

Usually, an Automated program repair (APR) task can be considered a neural machine translation

(NMT) task that learns translation from buggy code to produce the corresponding fixed version

[117, 23, 174]. Although these innovative methods have outperformed some rule- or mining-based

approaches on specific tasks with desired performance, grand challenges still exist when applying

NMT techniques to source code.

Challenge-1: Unbounded Vocabulary. It is extremely challenging to learn bug-fix patterns at

the raw code level because of the large (or even unlimited) and sparse vocabulary caused by the

fact that software developers tend to define identifiers as they like. Although a large body of

research work has been proposed to handle these issues [175, 176, 177, 21, 22, 178], there are still

many drawbacks. For instance, translating rare tokens with their subword units can undermine

the structural representation of a program [175]; SequenceR [21] using the copy mechanism to

overcome the unlimited vocabulary; BFP [22, 116] failed to take semantics and lexical scope of

tokens into consideration when renaming identifiers in a buggy and fixed code to reduce vocabulary

size. In this paper, I design and develop a novel pre-processing mechanism based on semantic and

lexical scope knowledge of a token to prepare datasets.

Challenge-2: Structure and Semantics of Missing. Usually, a program is a stream of tokens

comprising language keywords (e.g., for, if), separators (e.g., “(”, “;”, “}”), arbitrary identifiers,

and literals defined by developers. These tokens are orchestrated structurally and semantically,

which leads to the fact that tokens may represent different semantics in a variety of scopes even if

75

they share an identical name. Unfortunately, these NMT-based models for program repair and their

corresponding embedding layers (e.g., Word2Vec [179, 180], or CodeBERT [181], or a learnable

neural network) fail to well capture code structural and semantic information. Thus, it is difficult

to learn mappings between program tokens in the buggy and fixed code concerning structural and

semantic constraints, which leads to imprecise mappings and incorrect code patches. In this work,

I encode semantic information of a token and its surrounding context as a path from the root node

to this terminal token in an abstract syntax tree (AST) and hypothesize this auxiliary context-path

information can improve program repair tasks.

Challenge-3: Context Misalignment. Context alignment is referred to as the context of tokens in

fixed code that should be consistent with corresponding ones in buggy code. It is well known that

the attention mechanism used in NMT decoder models can exploit alignment probabilities between

buggy and fixed input, however, attention to the context information rather than the aligned source

tokens might be more helpful for translation quality [23, 182, 183, 184, 185, 186, 187]. Without

such context knowledge, the models must learn to implicitly align the source code before and after

the fix. The learned alignment might be imprecise, making those NMT-based models incorrectly

identify the fixing location in the new buggy code. In this paper, I propose context-aware atten-

tion to enhance Transformer to learn context-aware alignment, and leverage multi-task learning to

exploit the correlations between lexical translation and the alignment tasks.

In response to the observations and concerns raised above, a novel semantics-preserved, scope-

oriented, and vocabulary-closed context abstraction approach is designed for pre-processing code

corpus. I then conduct joint multi-task learning about code translation and context-aware alignment

using Transformer [7] architecture for automatically detecting and repairing bugs.

76

Tokens

Tokens

Bug2Fix Model

Multi‐Head
Attention

Add & Norm

Position‐wise
Feed Forward

Add & Norm

Masked
Multi‐Head
Attention

Add & Norm

Multi‐Head
Attention

Add & Norm

Position‐wise
Feed Forward

Add & Norm

Encoder (Nx)

Decoder (Nx)

+

+

Positional
Encoding

Positional
Encoding

Token
Embedding

Token
Embedding

Buggy‐Fixed Context Abstraction

Context Metadata

Token
Taxonomy

Lexical
Scope Rename

Token
Taxonomy

Lexical
 Scope Rename

Java Buggy
Code Corpus

Java Fixed
Code Corpus

bm

fm

babs

fabs

M

TPE‐based Code
Com

pressed

Context
Embedding

Context
Embedding

Path
Decoding

bpath

fpath

Linear
Softm

ax

Patch
Generation

Well‐trained
Model Predicted Code

Performance
MetricsBeam Search Decoder

Patch
Candidates

3

babs

abs f

M

2

1

Test
Datasets

Path Encoding

Context
Fusion

Multi‐Task
Loss

Lexical
Loss

Context
Loss

Figure 5.1: Overview of the proposed Bug2Fix for APR tasks

5.2 System Overview

Figure 5.1 shows the workflow of Bug2Fix, which involves the following key steps:

1⃝ Pre-Processing: Context Abstraction. I take the following steps to prepare for training and

testing Bug2Fix. First, a pair of buggy (mb) and fixed (m f) codes are scanned by the token pair

encoding (TPE) algorithm to compress code structure without losing its key semantics (See details

in 5.3.1). Then, I perform renaming on identifiers in ASTs according to their types and lexical

scopes to abstract code representations (i.e., absb and abs f are generated for mb, m f , respectively.

See details in Section 5.3.2 & 5.3.3). Finally, I transverse the ASTs of absb and abs f to extract a set

of paths between the root node and each identifier as the input for further context-ware alignment

task (see details in 5.3.4).

2⃝ Multi-task Learning: Code Translation and Context-aware Alignment. To improve the

performance of program repair tasks, Bug2Fix performs two sub-tasks concurrently to jointly learn

bug/fixes patterns and context alignment using multi-task learning techniques. The first task is to

77

learn how to translate absb into abs f at the token level, which is fulfilled by a sequence-to-sequence

model (i.e., Transformer [7]). It is well known that code translation and token context alignment

tasks are very closely related and program repair tasks can benefit from multi-task learning by

exploiting the correlations between the two tasks. To this end, novel context-aware attention is

designed and embedded in an encoder-decoder attention sub-layer to learn context alignment. A

novel loss function combining lexical loss of code translation task and context loss of alignment

task is used to update the model.

3⃝ Patch Inference. A well-trained model can be used to predict and generate patches for test

datasets using a beam search decoder [23, 16, 188, 189]. These patches are evaluated comprehen-

sively in the following Sections to acknowledge the effectiveness of Bug2Fix. The major intuition

behind beam search is that rather than predicting a token with the best probability at each time

step, the decoding process keeps track of s hypotheses if beam size is s. At each step, then I pick

the first s candidates and combine them with the prior s beam paths to form s× s paths. From these

candidate paths, the decoding process keeps s sequences with the highest probability. The process

continues until each hypothesis reaches the special token representing the end of a sequence. I

consider these s final sentences as candidate patches for the buggy code. Note that when s = 1,

beam search decoding is a greedy strategy.

Technically, Bug2Fix is designed and developed atop of Transformer [7] and enhanced by a novel

context-aware attention layer to repair semantic bugs on the method level. given the following

considerations: 1) A method represents a reasonable unit of operations and is implemented as a

single task or functionality. 2) A method provides meaningful context including variables, param-

eters, and intraprocedural calls, to learn bug-fix patterns. 3) The other options such as class-level

or package-level possess a bunch of redundant contexts, which lead to a complex model that is too

hard to be trained. This selection of method-level for NLM models has been justified by recent

empirical studies [121, 190, 22, 24].

78

public void mockSpec(mockit.MockedEnumsTest.MyEnum unused) {
new mockit. Expectations () {{

mockit.MockedEnumsTest.MyEnum.First
. getDescription () ;

mockit.MockedEnumsTest.MyEnum.Second
. getDescription () ;

}};
mockit.MockedEnumsTest.MyEnum.Second.getDescription();

}

Buggy Code−−−−−−−−−−−→
Context Abstraction

public void method1(type1 var1) {
new type2.type3 () {{

type1 . ident1
.method2();

type1 . ident2
.method2();

}};
type1 . ident2 .method2();

}

public void mockSpec(mockit.MockedEnumsTest.MyEnum unused) {
new mockit. Expectations () {{

onInstance(mockit.MockedEnumsTest.MyEnum.First)
. getDescription () ;

onInstance(mockit.MockedEnumsTest.MyEnum.Second)
. getDescription () ;

}};
mockit.MockedEnumsTest.MyEnum.Second.getDescription();

}

Fixed Code−−−−−−−−−−−→
Context Abstraction

public void method1(type1 var1) {
new type2.type3 () {{

method3(type1 . ident1)
.method2();

method3(type1 . ident2)
.method2();

}};
type1 . ident2 .method2();

}

Figure 5.2: The Context Abstraction of buggy (top panel) and fixed (bottom panel) code

5.3 Pre-Processing: Context Abstraction

A pair of buggy (denoted by mb) and the corresponding fixed (denoted by m f) codes are used to

train the NLM model to learn a translation from mb to m f , thus generating patches. The arbitrary

and various conventions to name variables and methods in a big code project hinder the goal

of learning transformations in light of a huge and unbounded vocabulary containing many rare

tokens. Therefore, it is extremely challenging to learn bug-fix patterns at the level of raw source

code. For this reason, I first abstract the context of the buggy and fixed codes, then generate

an expressive yet vocabulary-limited representation. In this section, I propose an approach to

compress and abstract the context of mb and m f , then generate an expressive yet vocabulary-limited

representations (i.e.absb, abs f and M).

5.3.1 Token Pair Encoding

Usually, duplicated code snippets make less contribution to code structure and semantics, which

leads to a larger size of code sequence and two further research challenges: 1) undesired redun-

79

dant tokens for model training, 2) the repeated identifiers used under different scope contexts

[191, 192, 175, 178]. In this study, I propose a novel token pair encoding (TPE) approach by ex-

tending Byte pair encoding (BPE) [193] to compress code at the token level while preserving its key

structural and semantic information. BPE is a data compression technique for a character string,

where the most common pair of consecutive bytes in a sequence is replaced with a single and un-

used byte iteratively. It has widely been used in NLP applications [194, 195, 175, 178, 181, 196].

However, when handing program code, disassembling an identifier into multiple subword units

can ruin the structural representation of a program and hinder NLM tasks from learning structural

information to repairing semantic bugs. To overcome the aforementioned drawbacks, TPE makes

the following modifications and improvements: 1) It performs on token level, rather than charac-

ter granularity; 2) It maintains a vocabulary containing all the original tokens plus the symbols

created from the merge operations; 3) The ordered list of merge operations performed in each it-

eration is provided to recover the original sequence later. The benefits of TPE are twofold. First,

the code size of a program can be reduced while its key structural information is preserved. Dur-

ing traversing AST to generate abstract code, the most common sub-tree found by TPE will be

replaced by a single identifier according to their roles in AST. Secondly, TPE allows for fine-

grained control of vocabulary size by tuning the number of merge operations. For example in

Figure 5.2, there are multiple kinds of compression granularity, such as mockit.MockedEnums

and mockit.MockedEnumsTest.MyEnum, which leads to two different vocabulary sizes.

5.3.2 Taxonomy, Lexical Scope, and Idioms

As mentioned earlier, a program method is coded by a formal language (e.g.Java) using a set of

language keywords (e.g.for, if), special marks (e.g."(", ";", "}"), as well as identifiers and liter-

als, declared by developers. For an NLM task, it is essential to discern the role of each identifier

(i.e.type name, variable or method) and the type of a literal. Identifying the lexical scope of an

80

identifier is also critical. Establishing a set of top-k most common tokens is also beneficial for un-

derstanding the code semantics. I will elaborate on each of these three properties in the remainder

of this section.

Taxonomy. For a translation task in NLP, it is to learn word embedding using a neural network,

by which an individual token is encoded as a real-valued vector in a predefined vector space. In

this process, words with more similarity in context have more in common in their representations

[197, 180]. From this perspective, it is critical for word embedding to identify the structural and

semantic information of each token. To achieve this goal, a program is parsed and represented as

an AST by a Java Parser [198] and each node of the tree denotes a construct occurring in the source

code, such as the declaration of variables and methods, method calls, string, and numerical literals.

Next, I traverse AST to discern the role of each identifier and the signature of a literal (e.g., Integer,

Long, String), and then use this information in the following renamed procedure to assign a new

ID to each token if need.

Lexical Scope. It is common to use repeated identifiers to define variables, classes, and meth-

ods, such as local variables, parameters, and private methods in Java. However, these duplicated

identifiers tend to be localized in various scopes and may represent different semantic meanings.

Code structures used to define repeated identifiers within their corresponding nested scopes lead to

the issue of nested-scope vocabulary. These repeated identifiers then may hinder NLM tasks from

learning their specific meanings [176]. Therefore, a lexical scope analysis is needed to capture

the local repetition within a scope si, and then make it available to scopes (i.e., si,si+1 . . .) nested

within si. In the design, I first traverse AST with a stack data structure of scope indicator to identify

the scope of each identifier and then verify whether or not a new ID is needed for an identifier if it

already appears in previous scopes.

81

Idioms. Keywords are a group of special meaningful words reserved by a programming language

so that a developer can orchestrate their combinations with identifiers and literals in a manner of

structural and semantic constraints to fulfill jobs. Some research studies propose approaches to

handle domain- or developer-specific vocabularies [199]. Usually, NLM tasks can benefit from

these reserved keywords and idioms to exploit code structures and semantics efficiently. However,

reserving a limited number of tokens and keeping their as-is text in the source code may lead to

the greater complexity of models and an extreme challenge to train them. To achieve a trade-off

between these two, I follow similar steps in BFP [22] to reserve the top 0.005% frequent words

(outliers of the distribution) as the list of idioms according to the results achieved by analyzing the

distribution of the frequencies.

5.3.3 Semantics-preserved and Scope-oriented Rename

Given the structural and semantic meanings of each token, the lexical scope of an identifier, key-

words, idioms, identifiers, and literals are renamed to new IDs to reduce vocabulary size in this

study. To this end, I leverage implicit classes feature in Scala programming language [200] by

adding a functionality (i.e., a method of genCode) to closed classes of AST nodes defined by a

Java Parser [198]. Then I traverse the code’s AST and use this functionality to generate abstracted

code. For mb and m f , I first parse them as two independent ASTs, then traverse them to discern

the role of each identifier and the signature of a literal. Next, I rename identifiers and literals to

different IDs in a sequential and positional fashion, that is 1st method, variable and type name

are assigned with IDs of method1, var1 and type1, respectively; likewise the 2sts receive IDs

of method2, var2 and type2. This similar process applies to all literals, e.g., stringX, intX,

floatX where the last char X means the ordinal position appearing in the source code. During the

abstraction process, global context metadata (denoted by M) is created to memorize the mappings

between identifiers/literals and their corresponding abstracted IDs. As shown examples in Figure

82

Figure 5.3: An AST example of Java program along with an example of one of the paths

5.2, the right column represents abstraction codes (i.e., absb and abs f) for the original ones (i.e.,

mb and m f), respectively. Finally, I define (absb,abs f ,M) as the abstraction representation of an

instance (mb,m f). At this point, the abstraction code representation is composed of a stream of

language keywords and idioms, separators (e.g.“;", “.", “(", “}",) and IDs representing identifiers

and literals. Next, these abstracted code corpora will be fed to Bug2Fix to learn a code translation

from absb to abs f . context metadata (i.e.M) will be used in predicting phase to generate patches

for potential errors via beam search strategy.

5.3.4 Context Path

In this section, I introduce a context path extracted from AST that represents auxiliary knowledge

for each terminal node (nonterminal nodes are out of consideration). Given an AST, a context path

of a terminal node t is a path from the root node to t, denoted by pt = {v1→ ··· → vk→ t}, where

a vi (i ∈ [1,k]) is a nonterminal node in AST and the v1 is the root node. The t is a token in the

source code.

As shown in Figure 5.3, I first parse the program’s source code into an AST to capture its syntactic

83

structure, in which the ones filled in blue or grey colors are terminal nodes. Unlike previous

approaches [201, 202, 203, 204], I additionally add SpecialMark nodes (e.g., the ones with grey

color in Figure 5.3) with edges connecting them with their corresponding parent nodes, to store

the value of tokens that do not appear in AST, such as semicolon, bracket symbols. The purpose of

introducing SpecialMark is to provide a way to exploit all context information for each token in the

source code. Then I transverse this modified AST to get all terminal nodes and their corresponding

context path recursively. As shown at the left bottom of Figure 5.3, the context path of identifier

int starts with root node MethodDeclaration and ends up with its value as shown in the source

code.

Thus, a set of paths from the root node of AST to each terminal token are extracted, and the

GumTree Spoon AST Diff tool [205] is leveraged to construct a ground truth alignment matrix

between ASTs of absb and abs f . Let Gm×n denote a 0-1 matrix such that Gi, j = 1 if the jth node

in the AST of absb is aligned to the ith node of abs f ’s AST. I normalize each value in the rows of

matrix G that correspond to fixed tokens to get a matrix Gp as the golden target for the supervised

learning of the context-aware alignment task.

5.4 Code Translation and Context-aware Alignment

5.4.1 Token and Context Embedding

Initially, I need to compute vector representations for all the abstracted code tokens and their

corresponding context path within the method pairs.

Token Embedding. I use a neural network to learn token embedding, i.e., how to encode ab-

stracted tokens to vector representations. The buggy and fixed token embedding layers share the

same weight matrix and vocabulary. By comparison with BPE-based NLM models [194, 195, 175,

84

178, 181], I apply a pre-trained CodeBERT [181] model on plaintext code corpus to obtain vectors

for all tokens to verify the effectiveness of the proposed context abstraction. CodeBERT is a bi-

modal pre-trained model for a programming language (PL) and natural language (NL) and learns

general-purpose representations that support downstream combined NL-PL applications such as

code documentation generation and program repair. To improve the handling of rare tokens, Code-

BERT divides them into a limited set of common sub-word units (“wordpieces”) for both input and

output [174].

Context Embedding. Given a set of context paths {p1, . . . , pm}, I design a neural embedding layer

atop of code2seq [202] model to generate a vector representation zi for each path pi = {vi
1→ . . .→

vi
2→ vi

l}. Intuitively, I first get a vector representation (Etokens
vi

l
) for the last terminal node (vi

l) from

Token embedding layer directly, and represent each nonterminal node in the rest of the path (vi
<l)

using a learned embedding matrix Enode. Next, a LSTM is leveraged to encode the path using

its final states: hi
<l = LST M(Enode

vi
1

, . . . ,Enode
vi

l−1
). Finally, I concatenate the path’s representation

with the token representation, and apply a fully connected layer to get the vector representation:

ei = tanh(We[hi
<l;Etokens

vi
l

]) where We is a learnable hyper-parameter matrix.

5.4.2 Context-aware Attention

The attention mechanism can be considered as a procedure that maps a query for a set of key-value

pairs to an output [23, 7, 206]. The output is computed as a sum of weighted values and the weight

assigned to each value is computed by a compatibility function of the query with the corresponding

key, as shown in Equation 5.1.

Attention(q,K,V) = αq×V αq = so f tmax(
qKT
√

dk
) (5.1)

85

where a query (i.e., q), keys (i.e., K) and values (i.e., V) are vectors with dimension dk. Accord-

ingly, it computes the dot products of q with all K, divides each resulting element by
√

dk, and ap-

plies a softmax function to obtain the weights (i.e.αq) for V . In the attention sub-layer in Bug2Fix

decoder model, the vector αq ∈ R1×n denotes the attention probabilities for a target (fixed) token

over all the source (buggy) tokens. Thus, an attention matrix Cm×n be constructed by stacking

together αq(s) corresponding to all the fixed tokens. Instead of implementing a single attention

function, Bug2Fix also adopts multi-head attention that allows the model to jointly summarize in-

formation from different representation sub-spaces at different positions. For any particular head,

there is a corresponding attention matrix Cm×n. A common way to obtain alignments between

buggy and fixed code tokens is to average all attention matrices across all heads within each layer.

Unfortunately, this method is quite erroneous [207, 186, 187] and there is no context knowledge in-

volved in the attention. In this paper, I introduce a context-aware attention network residing along

with the encoder-decoder attention sub-layer in the Bug2Fix decoder model, which is supervised

by external context path information. The obtained context-aware alignment loss will be combined

into lexical loss by multi-task learning techniques to enhance the ability of Bug2Fix for repairing

bugs precisely (See details in 5.4.3).

5.4.3 Multi-task Learning: Code Translation and Context Alignment

Contemporary NMT models are largely based on an encoder-decoder architecture [117, 23, 174],

where the encoder maps an input sequence of tokens x = (x1, ...,xn) to a sequence of continuous

representations z = (z1, . . . ,zn). Given z, the decoder then generates a sequence of output tokens,

y = (y1, . . . ,ym), one token at a time. At each decoding step, the probability of the next target token

86

depends on the previously generated token, and can therefore be factorized as:

p(y1, . . . ,ym|x1, . . . ,xn) =
m

∏
j=1

p(y j|y< j,z1, . . . ,zn) (5.2)

In this paper, I model APR tasks as a sequence-to-sequence translation problem. Bug2Fix can

learn a neural translation from the buggy code to a fixed one to repair bugs automatically. In the

current design, I use a regularization technique called label smoothing [208] instead of using hard

labels directly, to calculate gradients to update the model, as shown in the following Equation:

Lt =−
m

∑
i=1

L

∑
y=1

[(1−ω)p(y|xi)+ωu(y|xi)] logqθ (y|xi) (5.3)

where L are candidate labels {1,2, . . . ,L}, u(y|x) is a noise distribution of labels and ω ∈ [0,1] is

a weight factor. It computes cross-entropy with a weighted average of hard labels and uniform

distribution over labels, rather than with hard labels. I name Lt as lexical loss.

In order to make Bug2Fix embrace context knowledge of the input program, I introduce dedicated

context attention to learn context-aware alignment. Let Cm×n denote the attention matrix computed

by the context attention. For every fixed token i, I minimize the Kullback-Leibler divergence [209]

between ground truth Gp
i and Ci which is equivalent to optimizing the following cross-entropy-

based context-aware alignment loss:

Lc(C) =− 1
m

m

∑
i=1

n

∑
j=1

Gp
i, jlog(Ci, j) (5.4)

where n, m means the number of tokens in buggy and fixed code. I train the model to minimize

Lc(C) in conjunction with the lexical translation loss Lt . Therefore, the overall loss is: L =

Lt +λLc(C), where λ is a learnable hyperparameter.

87

5.4.4 Patch Generation via Beam Search

I deploy the well-trained model to predict and generate patches for test datasets using a beam

search decoder [23, 16, 188, 189]. The major intuition behind beam search is that rather than

predicting a token with the best probability at each time step, the decoding process keeps track of s

hypotheses if beam size is s. At each step, then I pick the first s candidates and combine them with

the prior s beam paths to form s× s paths. From these candidate paths, the decoding process keeps

s sequences with the highest probability. The process continues until each hypothesis reaches the

special token representing the end of a sequence. I consider these s final sentences as candidate

patches for the buggy code. In the experiments, I increase the beam size s from 1 (i.e., a single

patch is created by MD′ using a greedy decoder) to 50 (i.e., 50 patches are created) with the step of

5. Finally, these generated patches can be concretized by replacing all identifiers with their actual

values in M.

5.5 Research Questions

In this study, I aim to answer the following three research questions: RQ1: How to evaluate the

quality of context abstraction algorithm? RQ2: How to assess the overall performance of Bug2Fix

for repairing bugs? RQ3: What kinds of bugs can be fixed by Bug2Fix?

5.5.1 Quality of Context Abstraction

To evaluate the performance of context abstraction, I perform three kinds of abstraction approaches

(i.e., Plaintext, BFP [22], and Bug2Fix) on three datasets (i.e. small, median and big). In Plaintext,

a program is kept as-is characters in the original dataset except that 1) comments and annotations

are removed; 2) it is converted to a one-line representation by replacing all newline characters with

88

spaces; 3) redundant space symbols are removed. Plaintext’s output is used as a gold standard

dataset to compare the different abstraction approaches. BFP [22] renames identifiers and literals

to new ones by considering their types and absolute positions [22, 116]. Bug2Fix exploits a group

of special program properties to compress and extract meaningful context of the code without

damaging its key structure. Finally, I get three abstracted outputs for each dataset and evaluate

these outputs in terms of data quality and model behaviors.

Quality of Abstracted Data. For each abstracted dataset, I first calculate the average number of

tokens per instance and vocabulary size of the buggy and fixed code corpora, respectively. Then,

Bilingual Evaluation Understudy (BLEU) score [210] between buggy and fixed corpora are com-

puted to indicate their matching quality; perfect match results in a BLEU score of 100.0, whereas

a complete mismatch leads to a score of 0.0. Finally, BFP’s and Bug2Fix’s relative degradation

of score over Plaintext’s one is defined in |(BLEU(D′b,D
′
f)−BLEU(Db,D f))|/BLEU(Db,D f), to

quantify their difference of data quality, where Db and D f represent buggy and fixed code corpora

in Plaintext, respectively; D′b and D′f denote buggy and fixed ones generated by BFP or Bug2Fix.

Model Behaviors. I aim at evaluating the abstractions’ performance using a vanilla Transformer

architecture [7]. Specifically, let MD′ be a model trained and evaluated by 80% and 10% of an

abstracted dataset D′ ∈ {smallabs, medianabs, bigabs}, where abs ∈ {Plaintext, BFP, Bug2Fix}.

When MD′ is converged, the test datasets T ′ (10% of D′) are used to predict the corresponding

fixed versions by a beam search strategy. The test process is performed as follows: for an instance

d = {absb, pathb,M} ∈ T ′, I feed absb to the well-trained MD′ , performing inference with beam

search decoder given a beam size s. The model will generate s different potential patches pd =

{p1
d, . . . , ps

d}. Ultimately, MD′ processes all instances in T ′ by following the above steps, then

generates predicted code corpora P. P and T ′ will be evaluated by the following measurement to

verify the performance of the models.

89

• Success Ratio. I would say that MD′ successfully fixes absb in d if ∃pi
d ∈ pd : pi

d
s
= abs f ,

where s
= means that these two code should be semantically equivalent [211]. In the imple-

mentation, I use the GumTree AST Diff tool [205] to compute the difference between their

ASTs; they are equivalent semantically if there is no difference. pi
d is output as a perfect

and semantic match case for absb. In the experiments, I only report the raw count and the

percentage of successfully fixed in T ′ as Success ratio. Besides that, I calculate two scores

for a pi
d if there is no equivalent prediction found in pd: 1) action hit between absb and

pi
d (See details in 5.5.2); 2) BLEU score (divided by 100) between abs f and pi

d . Then the

averaged value of these two scores is assigned as a selection indicator of pi
d . I follow the

same procedure to compute all indicators for the rest of the patches in pd , the one with the

maximum value will be chosen as the most matched prediction for absb. These selected best

(nearly) matched patch for each instance in T ′ outputs as the best predicting results of the

test dataset for further assessments.

It is worthwhile to mention that I replace the encoder component in Transformer with a pre-trained

CodeBERT model [181] and fine-tune it to evaluate performance on the Plaintext dataset since I

can not train the model because of the explosive vocabulary size in raw plaintext. CodeBERT is a

bimodal pre-trained model for a programming language (PL) and natural language (NL) and learns

general-purpose representations that support downstream combined NL-PL applications such as

code documentation generation and program repair. To improve the handling of rare tokens, Code-

BERT divides them into a limited set of common sub-word units (“wordpieces”) for both input and

output [174].

90

5.5.2 Overall Model Performance

I evaluate the performance of Bug2Fix against two baseline models, SequenceR [21] and BFP-

RNN [22] using the three datasets. SequenceR leverages a sequence-to-sequence model with a

copy mechanism to overcome the unlimited vocabulary and learn translation from buggy code to

fixed version. While BFP-RNN learns buggy/fixes translation using an attention-based Encoder-

Decoder model with code abstraction and keyword replacing to repair bugs automatically. After

conducting experiments following similar train and inference procedures in Section 5.5.1, I not

only report Success Ratio for each model but also compare experimental results using the following

two measurements:

• Action Hit. First of all, I use GumTree Spoon AST Diff tool [205] to compute the AST

difference between absb and abs f in d, denoted by Ag
d . This computes a sequence of actions

performed at the AST level to transform absb’s AST into abs f ’s AST. Then I measure the

difference between absb and one of its potential patch pi
d ∈ pd , which is termed by Ai

d , further

to calculate the percentage of how many actions in Ai
d can be hit in Ag

d , that is |A
i
d ∩ Ag

d |
|Ag

d |
×

100%. Likewise, I compute all hit ratios for the rest of the patches in pd and then average

them to identify the quality of this inference given the input of the instance d. I can also

expand this metric to T ′ by computing action hits for each instance and averaging them. In

the following results, I report action hits over the whole test dataset.

• Syntactic Correctness. I also analyze the syntactic correctness of the patches for absb in d.

That is, I feed each potential patch pi
d to Java Parser [198]. In the process of compilation,

I just focus on scanning the code to check whether it is lexically and syntactically correct

since it is impossible to download full projects to accomplish compilation for each instance.

Then I report the percentage of how many patches can be parsed in pd . The overall score

can be computed by averaging all correctness values of all instances in P.

91

5.5.3 Semantic Bug Repair

I investigate the types of semantic bugs that can be fixed by Bug2Fix using automated analysis.

First, I only focus on instances that are successfully repaired by Bug2Fix (beam size s = 25) and

analyze the types of AST operations performed during the fix. Let p′d be the patch generated by

the model to fix the buggy code (absb) in an instance (absb,abs f). Specifically, I use the GumTree

AST Diff tool [205] to compute the AST difference between absb and its p′d , and list all edit actions

needed to repair absb at the AST level. Although the model does not technically work on the source

code’s AST, but rather on sequences of abstracted datasets, it is still worthwhile to understand the

types of AST operations that such a model can emulate. Since the proposed context abstraction

algorithm can produce abstractions of the buggy and fixed code with good quality. The GumTree

tool offers four edit actions to transform an AST to a new one: Delete is a kind of operation to

delete a node in the AST; Insert can add a new node to the AST; Move is a way to shift an existing

node to a different location in the AST; Update replaces the value of a node with a new one in the

AST.

5.6 Experiment and Evaluation

In this section, I shall evaluate Bug2Fix’s performance comprehensively.

5.6.1 Dataset

I create three Java code corpora based on previous work [21, 22] to evaluate Bug2Fix’s perfor-

mance. In [22], two method-level datasets (small and median) were built according to bug-fix

commits from GitHub between March 2010 and October 2017. I use their source code directly but

different context abstractions to pre-process them in this study. In addition, I create a big dataset

92

Table 5.1: Three datasets and their statistical information in Plaintext, BFP, and Bug2Fix, recep-
tively.

Dataset Type No of
Instances

Plaintext BFP Bug2Fix
Tokens Vocabulary BLEU Tokens Vocabulary BLEU Tokens Vocabulary BLEU

small
Buggy

58350
52 179759

70.26
32 427/433

77.94 (10.93%)
36 491/504

70.19 (0.10%)
Fixed 47 179759 29 431/433 33 492/504

median
Buggy

65455
114 347159

84.45
75 491/493

90.79 (7.51%)
85 602/607

82.88 (1.86%)
Fixed 111 347159 73 491/493 82 574/607

big
Buggy

12910
213 99528

80.75
182 599/783

97.78 (21.09%)
185 1039/1209

89.95 (11.39%)
Fixed 214 99528 140 776/783 140 1185/1209

using code corpus from [21]. Note that small, median and big refer to the number of tokens in

each instance, rather than the number of instances in each dataset. More details about the numbers

of tokens and instances are shown in Table 5.1. Each dataset is split into training, validation, and

testing in a ratio of 8:1:1.

5.6.2 Model and Training Setting

In Bug2Fix, I first initialize token and context embedding layers with 512 and 256 dimensions,

respectively. Then I stack 6 identical layers with 512 model dimensions for both encoder and

decoder, the inner feed-forward layer has 2048 dimensions and I employ h = 8 parallel attention

layers. The Adam optimizer [212] with β1 = 0.9 and β2 = 0.98 is leveraged to compute and update

gradients, and label smoothing with ratio 0.1 is selected as loss function. In addition, I learning rate

of 0.01, 2 and 0.2 for small, median and big datasets, respectively. For implementation, context

abstraction is designed using Scala implicit classes and Bug2Fix is developed atop of OpenNMT-

py [213]. Bug2Fix is trained on a machine with 4 Nvidia Titan RTX GPUs. For each dataset,

I use an identical batch size for each model (e.g., 4096, 4096, 1024 for small, median and big,

respectively).

93

5.6.3 Results of RQ1

Quality of Abstracted Data. As shown in Table 5.1, small, median and big datasets include

58350, 65455, 12910 instances, respectively. The BLUE in the Bug2Fix approximates Plaintext

and is lower than BFP [22], which indicates the quality of data generated by Bug2Fix is closed to

the original dataset. The average lengths per buggy and fixed code in these datasets are shown in

the column of “Tokens". The average lengths under BFP and Bug2Fix are reduced in comparison

with Plaintext because both compress the datasets; while Bug2Fix can achieve balanced code

length by a trade-off between compressing the most common pair of consecutive tokens by TPE

and the reserved idioms and special separators. As to the vocabulary size of each dataset (showed

by the “Vocabulary" column), it has been reduced by an order of magnitude (e.g., from 179759

(Plaintext) to 433 (BFP) and 504 (Bug2Fix) on small dataset, respectively. In the implementation,

I use a shared vocabulary for buggy and fixed code corpora (i.e., combining their vocabularies)

to overcome the out-of-vocabulary problem. The numbers separated by a slash marker in the

“Vocabulary" column denote the original size and shared size, respectively, for buggy or fixed

code. The “BLEU" column shows a BLEU score between buggy and fixed code corpora and

the relative performance degradation over the BLEU score of Plaintext (if present and wrapped

by parentheses). The lower degradation values in Bug2Fix show that Bug2Fix outperforms BFP

significantly in all three datasets. Bug2Fix’s BLEU scores are closer to the ones of Plaintext, which

means their data qualities are similar.

Model Behaviors. The success ratio of three models (i.e., Plaintext (Transformer), BFP (Trans-

former), and Bug2Fix (Transformer)) on three datasets are shown in Table 5.2, 5.4 and 5.6, respec-

tively. For each dataset, the success are shown an increasing trend over beams size from 1 to 50,

except for Plaintext (Transformer) on median dataset. For example, Bug2Fix (Transformer) can fix

11.31%, 4.61%, and 25.19% of bugs with the only attempt successfully in small, median and big

94

Table 5.2: Success Ratio achieved by models on small dataset.

Beam
Size

s
Plaintext

(Transformer)
BFP

(Transformer)
Bug2Fix

(Transformer)
SequenceR

[21]
BFP-RNN

[22] Bug2Fix

1 8.28% 9.40% 11.31% 3.02% 10.57% 14.00%
10 25.98% 36.80% 40.00% 20.05% 37.00% 41.65%
20 29.91% 42.02% 46.00% 25.45% 44.15% 48.96%
30 31.91% 44.99% 49.00% 28.00% 47.68% 52.25%
40 33.28% 47.20% 51.00% 29.85% 49.84% 54.65%
50 34.10% 48.60% 53.00% 30.75% 51.29% 56.16%

datasets respectively, and 53%, 33.45%, and 46.28% of perfect predictions when beam sizes is 50.

Bug2Fix (Transformer) outperforms the other models regardless of beam size and datasets, while

Plaintext (Transformer) performs the worst. Plaintext (Transformer) fixes a few bugs, especially

for the median dataset.

Summary of RQ1: Overall, Bug2Fix significantly outperforms the other two models. For data

quality, the relative BLEU degradation of Bug2Fix is much smaller than BFP on each dataset,

while Bug2Fix has a bigger average length of individual instances and a larger vocabulary. Model

behaviors indicate that Bug2Fix (Transformer) can perform smoothly and stably to learn bug-

fix patterns from training datasets with the help of the proposed TPE and renaming mechanism

according to semantics and structures of tokens.

5.6.4 Results of RQ2

The performance of Bug2Fix is evaluated against with two baseline models (i.e., SequenceR and

BFP-RNN) using small, median and big datasets.

Small dataset. In Table 5.2, SequenceR, BFP-RNN, and Bug2Fix can predict and fix 3.02%,

10.57%, and 14.00% of buggy code with the only attempt successfully. The success steadily

95

Table 5.3: Performance metrics on small dataset.

Beam
Size

s

SequenceR [21] BFP-RNN [22] Bug2Fix

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

1
18.00%

41.00%
16.00%

96.00%
50.00%

100.00%

10
26.00%

29.00%
22.00%

84.00%
49.00%

99.00%

20
28.00%

23.00%
22.00%

82.00%
49.00%

98.00%

30
29.00%

20.00%
21.00%

81.00%
49.00%

98.00%

40
29.00%

18.00%
21.00%

80.00%
48.00%

98.00%

50
29.00%

17.00%
21.00%

80.00%
48.00%

97.00%

Table 5.4: Success Ratio achieved by models on median dataset.

Beam
Size

s
Plaintext

(Transformer)
BFP

(Transformer)
Bug2Fix

(Transformer)
SequenceR

[21]
BFP-RNN

[22] Bug2Fix

1 0.05% 6.39% 4.61% 1.02% 1.42% 7.99%
10 0.31% 20.99% 21.33% 9.15% 16.94% 21.48%
20 0.00% 25.36% 26.75% 12.67% 21.70% 26.91%
30 0.00% 28.46% 29.64% 15.05% 24.34% 29.87%
40 0.00% 30.68% 31.57% 16.30% 26.04% 32.36%
50 0.00% 32.41% 33.45% 18.41% 27.67% 34.12%

increases when more candidate patches are generated by the models, to reach 30.75%, 51.29%,

and 56.16% of perfect predictions when beam size s is 50. In Table 5.3, syntactic correctness

of Bug2Fix is much higher than that of SequenceR and BFP-RNN, where the former is also less

impacted by the increasing beam size. That is, syntactic correctness of Bug2Fix is only reduced

by 3% from beams size 1 to 50, however, the other two models are lowered by 24% and 5%,

respectively. The action hit of Bug2Fix is bigger and more stable than that of SequenceR and

BFP-RNN, regardless of beam size.

96

Table 5.5: Performance metrics on median dataset.

Beam
Size

s

SequenceR [21] BFP-RNN [22] Bug2Fix

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

1 1.00% 97.00% 2.00% 92.00%
65.00%

97.00%

10
11.00%

35.00% 8.00% 83.00%
65.00%

92.00%

20
12.00%

32.00% 8.00% 81.00%
65.00%

91.00%

30
13.00%

30.00% 8.00% 81.00%
65.00%

91.00%

40
13.00%

29.00% 8.00% 81.00%
64.00%

90.00%

50
14.00%

28.00% 8.00% 80.00%
64.00%

90.00%

Table 5.6: Success Ratio achieved by models on big dataset.

Beam
Size

s
Plaintext

(Transformer)
BFP

(Transformer)
Bug2Fix

(Transformer)
SequenceR

[21]
BFP-RNN

[22] Bug2Fix

1 0.70% 1.09% 25.19% 8.76% 5.58% 48.25%
10 2.48% 7.05% 42.48% 10.54% 10.93% 51.36%
20 2.79% 9.15% 44.03% 10.78% 12.40% 51.67%
30 3.10% 10.16% 45.35% 10.93% 13.26% 51.82%
40 3.10% 10.93% 45.89% 11.01% 14.03% 51.90%
50 3.57% 12.40% 46.28% 11.01% 14.26% 51.90%

Median dataset. In Table 5.5, the action hit of Bug2Fix is around five times of SequenceR and

eight times of BFP-RNN. The syntactic correctness of Bug2Fix is higher than that of SequenceR

and BFP-RNN by 60% and 10%, respectively. In Table 5.4, Bug2Fix can fix 7.99% of bugs with

only one attempt successfully, which is significantly better than SequenceR (i.e., 1.02%) and BFP-

RNN (i.e., 1.42%). When beam size is 50, 34.12% of bugs can be repaired by Bug2Fix, which is

around two times that of SequenceR and speeds up BFP-RNN by 23%.

Big dataset. Table 5.6 shows that Bug2Fix is significant powerful to repair bugs than SequenceR

and BFP-RNN. Specifically, Bug2Fix can fix 48.25% of bugs when beam size is 1, which is higher

97

Table 5.7: Performance metrics on big dataset.

Beam
Size

s

SequenceR [21] BFP-RNN [22] Bug2Fix

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

Action
Hit

Syntactic
Correct-

ness

1
27.00%

12.00%
20.00%

31.00%
70.00%

60.00%

10
24.00%

7.00%
20.00%

30.00%
58.00%

50.00%

20
24.00%

6.00%
20.00%

30.00%
59.00%

50.00%

30
24.00%

6.00%
20.00%

30.00%
60.00%

50.00%

40
24.00%

6.00%
20.00%

30.00%
60.00%

49.00%

50
24.00%

6.00%
20.00%

30.00%
61.00%

49.00%

than 8.76% (SequenceR) and 5.58% (BFP-RNN). In Table 5.7, the action hit of Bug2Fix is around

two times greater than that of SequenceR and three times greater than that of BFP-RNN. The

syntactic correctness of Bug2Fix is higher than SequenceR’s and BFP-RNN’s by over 45%, 20%,

respectively.

Summary of RQ2: Overall, the experimental results indicate that Bug2Fix significantly outper-

forms sequenceR and BFP-RNN in terms of all metrics on each single beam size. Bug2Fix can

achieve higher and more stable values of syntactic correctness than others in each dataset. For

big dataset with longer sequences, Bug2Fix’s performance is much better than SequenceR and

BFP-RNN, which means the model can process a much larger size of code. In addition, the exper-

itmental results shown in Table 5.2, 5.4 and 5.6 also indicate that Bug2Fix can fix more bugs than

Bug2Fix (Transformer) with the help of multi-task learning of code translation and context-aware

alignment, regardless of beam size used.

98

Figure 5.4: Statistics of actions performed to fix buggy code.

Table 5.8: The top-5 targets of each action in each dataset

Action Target small median big

Delete

VariableRead 3232/12196 (26.50%) 8288/14258 (58.13%) 2743/3631 (75.54%)
TypeAccess 2425/12196 (19.88%) 1442/14258 (10.11%) 42/3631 (1.16%)
Invocation 2071/12196 (16.98%) 1420/14258 (9.96%) 45/3631 (1.24%)
FieldRead 913/12196 (7.49%) 629/14258 (4.41%) 93/3631 (2.56%)
VariableWrite 92/12196 (0.75%) 631/14258 (4.43%) 529/3631 (14.57%)

Insert

TypeAccess 1489/4142 (35.95%) 4251/9199 (46.21%) 1250/3515 (35.56%)
FieldRead 1361/4142 (32.86%) 3604/9199 (39.18%) 1882/3515 (53.54%)
FieldWrite 89/4142 (2.15%) 538/9199 (5.85%) 191/3515 (5.43%)
Literal 268/4142 (6.47%) 156/9199 (1.70%) 55/3515 (1.56%)
Invocation 228/4142 (5.50%) 177/9199 (1.92%) 29/3515 (0.83%)

Move

Invocation 281/681 (41.26%) 263/712 (36.94%) 11/95 (11.58%)
TypeAccess 162/681 (23.79%) 98/712 (13.76%) 31/95 (32.63%)
FieldRead 43/681 (6.31%) 65/712 (9.13%) 36/95 (37.89%)
BinaryOperator 44/681 (6.46%) 74/712 (10.39%) 9/95 (9.47%)
ThisAccess 18/681 (2.64%) 12/712 (1.69%) 2/95 (2.11%)

Update

Parameter 2433/3641 (66.82%) 2138/5506 (38.83%) 657/1866 (35.21%)
LocalVariable 449/3641 (12.33%) 2352/5506 (42.72%) 807/1866 (43.25%)
TypeAccess 178/3641 (4.89%) 217/5506 (3.94%) 96/1866 (5.14%)
CatchVariable 44/3641 (1.21%) 265/5506 (4.81%) 23/1866 (1.23%)
Invocation 77/3641 (2.11%) 76/5506 (1.38%) 77/1866 (4.13%)

99

5.6.5 Results of RQ3

In this section, I discuss four kinds of actions performed by Bug2Fix for repairing program bugs.

Due to the space limit, I only report experimental results of Bug2Fix when the beam size is set to

20. Figure 5.4 illustrates the numbers of the four actions used for program repair in each dataset.

It shows that the model has the best performance on Delete action for all three datasets. Insert’s

performance is also good. Move operation is the least performed among the four. Next, I examine

the details of these four actions. Table 5.8 reports the top-5 targets of each action in each dataset.

What all four actions have in common is that both TypeAccess and Innovation are among the top-5

targets though their positions (i.e., percentages) vary from one to another. In addition, both Delete

and Move have FieldRead in there lists. Look at five targets of an individual action, Delete of

big dataset has a discrepancy as large as 74% and Update of small dataset is 65%. Whereas,

smallest discrepancy (26%) occurs in Delete of small dataset. These results indicate that with

a high consistency of the results in the three datasets, there is a high variation in each action in

terms of the frequencies of targets being used. In addition, TypeAccess and Invocation are the most

needed targets.

Summary of RQ3: Bug2Fix performs well on this buggy code that can be fixed by deleting or

adding variables. The bugs related to type issues and method calls can also be fixed by Bug2Fix.

100

CHAPTER 6: CONTEXTUAL TRANSFORMER FOR INERTIAL

NAVIGATION

6.1 Introduction and Motivation

Inertial navigation is a never-ending endeavor to estimate the states (i.e. position and orienta-

tion) of a moving subject (e.g. pedestrian) by using only IMUs attached to it. An IMU sensor,

often a combination of accelerometers and gyroscopes, plays a significant role in a wide range

of applications from mobile devices to autonomous systems because of its superior energy effi-

ciency, mobility, and flexibility [27]. Technically, 3D angular velocity (ω) and 3D acceleration (α)

provided by IMUs are subjected to bias and noise based on some sensor properties, as shown in

Equation 6.1 & 6.2:

ωt = rω
t +bω

t +nω
t (6.1)

αt = rα
t +bα

t +nα
t (6.2)

where rω
t and rα

t are real sensor values measured by the gyroscope and accelerometer at timestamp

t, respectively; bω
t and bα

t are time-varying bias; nω
t and nα

t are noise values, which usually follow

a zero-mean gaussian distribution.

According to Newtonian mechanics [28], states (i.e. position and orientation) of a moving subject

(e.g. pedestrian) can be estimated from a history of IMU measurements, as shown in Equation

101

6.3:

Rn
b(t) = Rn

b(t−1)⊗Ω(t) (6.3a)

Ω(t) = exp(
dt
2

ω(t−1)) (6.3b)

vn(t) = vn(t−1)+∆(t) (6.3c)

∆(t) = (Rn
b(t−1)⊙α(t−1)−gn)dt (6.3d)

Pn(t) = Pn(t−1)+ vn(t−1)dt (6.3e)

Here, the orientation Rn
b(t) at timestamp t is updated with a relative orientation (Ω(t)) between

two discrete instants t and t − 1 according to Equation 6.3a & 6.3b, where ω(t − 1) measures

proper angular velocity of an object at timestamp (t− 1) in the body frame (denoted by b) with

respect to the navigation frame (denoted by n). Rn
b can be used to rotate a measurement x ∈ [ω,α]

from the body frame b to the navigation frame n, which is denoted by an expression Rn
b⊙ x =

Rn
b⊗ x⊗ (Rn

b)
T where ⊗ is a hamilton product between two quaternions. The navigation frame

in the case is defined such that Z axis is aligned with earth’s gravity gn and the other two axes

are determined according to the initial orientation of the body frame. In Equation 6.3c & 6.3d,

velocity vector vn(t) is updated with its temporal difference ∆(t), which is obtained by rotating

α(t−1) to the navigation frame using Rw
b (t−1) and discarding the contribution of gravity forces

gn. Finally, positions Pn(t) are obtained by integrating velocity in Equation 6.3e. Therefore, given

current IMU measurements (i.e. α , ω), the new system states (i.e. Pn, vn and Rn
b) can be obtained

from the previous states using a function of f in Equation 6.4, where f represents transformations

in Equation 6.3.

[Pn,vn,Rn
b]t = f ([Pn,vn,Rn

b]t−1, [α,ω]t) (6.4)

Drawback and Solution: However, using IMUs for localization results in significant drift due

to the bias and noise intrinsic to the gyroscope and accelerometer sensing can explode quickly

in the double integration process. Using pure data-driven models with IMU measurements for

Inertial Navigation has shown promising results in pedestrian dead-reckoning systems. To tackle

102

the problems of error propagation in Equation 6.4, I break the cycle of continuous integration and

segment inertial measurements into independent windows, then leverage a sequence-to-sequence

neural network architecture [117, 23, 174, 7] to predict velocities and positions from an input

window m of IMU measurements, as shown in Equation 6.5.

[Pn,vn]1:m = Fθ (Pn
0 ,v

n
0, [R

n
b,α,ω]1:m) (6.5)

where Fθ represents a latent neural system that learns the transformation from IMU samples to

predict positions and velocities, where Pn
0 , vn

0 are initial states.

In summary, the success of data-driven approaches for inertial navigation shows that with the aid

of learned prior, the IMU sensor can provide enough information to infer low drift localization

for inertial odometry. Obviously, the common shortcoming of this approach is a limitation of the

training data and seen trajectories. The existing approaches reveal that similar to other data-driven

models in the other domains, the generalization of the model across datasets is susceptible. The

degradation of the model when trained on one dataset and tested on different datasets with varying

underlying data collection settings requires more investigation. One obvious explanation is related

to different bias and noise patterns in IMU data collected from different devices which prevent the

model to generalize statistical motion patterns. In this project, CTIN is composed of two major

components: Spatial and Temporal Encoders, to exploit high-level feature representations of IMU

samples from the perspective of spatiality at a single timestamp and temporal across a sliding time

window of measurements.

6.2 System Overall

The Attention-based architecture for inertial navigation is shown in Figure 6.1. It follows an

encoder-decoder architecture using stacked self-attention and convolutional modules for Spatial

103

1x1 Conv

Add & ReLU

3x3 Local
Self‐attention

Multi‐Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Temporal Decoder
(Nx)

Spatial
Embedding

Temporal
Embedding

Positional
Encoding

MLP

IMU IMU Buffer

~
R n 1:[,]n m 1:[,] m

1x1 Conv

1x1 Global
Self‐attention

1x1 Conv

Masked
Self attention

Add & Norm

Spatial Encoder
(Nx)

MLP

Rotation Matrix Selector
(VIO, Game Vector, Double Integration)

Key: 1x1 Query: 1x1 Value: 1x1

X

+

Softmax

*

Y

Key: 3x3

X

*

Concat

Value: 1x1

Cov: 1x1

Attention

Y

(a). Global Self‐attention (b). Local Self‐attention

Query

*

ReLU

z

h Multi‐Task
Loss

Vel head

Cov head

1:cov m

1:mvel

Figure 6.1: Overall workflow of the proposed contextual transformer model for inertial navigation.

Encoder, stacked self-attention and point-wise, fully connected layers for Temporal Decoder,

shown in the right sub figures wrapped by dark dash line and red solid line, respectively. The

whole workflow is depicted as follows:

• Data Preparation. Initially, an IMU sample is the concatenation of data from a gyroscope

and accelerometer. To exploit temporal characteristics of IMU samples, I leverage a sliding

window with size m to prepare datasets at timestamp t, denoted by X1:m
t = [xt−m+1, . . . ,xt].

Similarly, I adopt this rolling mechanism with the same window size to build the ground

truth of velocities: gt1:m
vel . Usually, IMU samples in each window are rotated from the body

frame (i.e. ωb,αb) to the navigation frame (i.e. ωn,αn) using provided orientations. Ro-

tation Matrix Selector is designed to select sources of orientation for training and testing

automatically. Typically, I use the device orientation estimated from IMU for testing.

• Embedding. I need to compute feature representations for IMU samples before feeding

them into the encoder and decoder. Spatial Embedding uses a 1D convolutional neural

network followed by batch normalization and linear layers to learn spatial representations;

Temporal Embedding adopts a 1-layer bidirectional LSTM model to exploit temporal infor-

104

mation, and then adds positional encoding provided by a trainable neural network.

• Spatial Encoder. The encoder comprises a stack of N identical layers, which maps an input

sequence of X1:m
t to a sequence of continuous representations z = (z1, . . . ,zm). To capture

spatial knowledge of IMU samples at each timestamp, I strengthen the functionality of the

core bottleneck block in ResNet-18 [29] by replacing spatial convolution with a local self-

attention layer and inserting a global self-attention module before the last 1× 1 downsam-

pling convolution (cf. in Section 6.3). All other structures, including the number of layers

and spatial downsampling, are preserved. The modified bottleneck layer is repeated multiple

times to form Spatial Encoder, with the output of one block being the input of the next one.

• Temporal Decoder. The decoder also comprises a stack of N identical layers. Within each

layer, I first perform a masked self-attention sub-layer to extract dependencies in the tempo-

ral dimension. The masking emphasizes a fact that the output at timestamp t can depend only

on IMU samples at timestamp less than t. Next, I conduct a multi-head attention sub-layer

over the output of the encoder stack to fuse spatial and temporal information into a single

vector representation and then pass through a position-wise fully connected feed-forward

sub-layer. I also employ residual connections around each of the sub-layers, followed by

layer normalization.

• Velocity and Covariance. Finally, two MLP-based branch heads regress 2D velocity (vel1:m
t)

and the corresponding covariance matrix (cov1:m
t) using the input of h, respectively. Position

can be obtained by the integration of velocity. The model of the covariance, denoted by

ΣΣΣ : x→ R2×2 where x is a system state, can describe the distribution difference between

ground-truth velocity and the corresponding predictions of them during training. Given that,

the probability of a velocity yv considering current system state x can be approximated by a

105

multivariate Gaussian distribution [214]:

pc(yv|x) =
1√

(2π)2|ΣΣΣ(x)|
×

exp(−1
2
(yv−Fθ (x))T

ΣΣΣ(((xxx)))−1
(yv−Fθ (x)))

(6.6)

It is worthwhile to mention that I also leverage multi-task learning with uncertainty reduction

to accomplish the desired performance (See details in Section 6.4).

6.3 Attention In Inertial Navigation

Attention can be considered as a query procedure that maps a query Q for a set of key-value pairs

(K,V) to an output [7, 206], which is denoted by AT T (Q,K,V) = γ(Q,K)×V . Typically, the

output is computed as a sum of weighted values (V), where the weights γ(Q,K) are computed

according to a compatibility function of Q and K. There are two kinds of γ used in this paper

[23, 215]: (1) I perform a dot product between Q and K, divides each resulting element by
√

d,

and applies a softmax function to obtain the weights: γ(Q,K) = so f tmax(QKT
√

d
) where d is the

dimension size of vectors Q, K and V . (2) Inspired by Relation Networks [216], I investigate a

form of concatenation: γ(Q,K) = ReLU(Wγ [Q,K]), where [·, ·] denotes concatenation and Wγ is a

weight vector that projects the concatenated vector to a scalar. Self-attention networks compute a

representation of an input sequence by applying attention to each pair of tokens from the sequence,

regardless of their distance [7]. Technically, given IMU samples X ∈ Rm×d , I can perform the

following transformation on X directly to obtain Q, K and V : Q,K,V = XWQ,XWK,XWV , where

{WQ,WK,WV} ∈ Rd×d are trainable parameters. Usually, these intermediate vectors are split into

different representation subspaces at different positions (i.e. h = 8,dk =
d
h), e.g. K = [K1, . . . ,Kh]

with Ki ∈ Rm×dk . For a subspace, the attention output is calculated by headi = AT T (Qi,Ki,V i).

The final output representation is the concatenation of outputs generated by multiple attention

106

heads: MultiHead(Q,K,V) = [headi, . . . ,headh].

In this paper, the encoder and decoder rely entirely on an attention mechanism with different

settings for embedding matrix {WQ,WK,WV} and γ to explore spatial and temporal knowledge

from IMU samples.

Global self-attention in Encoder. It triggers the feature interactions across different spatial lo-

cations, as shown in Figure 6.1(a). Technically, I first transform X into Q, K, and V using three

separated 1D 1× 1 convolutions, respectively. After that, I obtain the global attention matrix

(i.e. γ(Q,K)) between K and Q using a Dot Product version of γ . Finally, the final output Y is

computed by γ(Q,K)×V . In addition, I also adopt multi-head attention to jointly summarize

information from different sub-space representations at different spatial positions.

Local self-attention in Encoder. Although performing a global self-attention over the whole fea-

ture map can achieve competitive performance, it not only scales poorly but also misses contextual

information among neighbor keys. Because it treats queries and keys as a group of isolated pairs

and learns their pairwise relations independently without exploring the rich contexts between them.

To alleviate this issue, a body of research work [217, 218, 219, 220, 221] employs self-attention

within the local region (i.e. 3×3 grid) to boost self-attention learning efficiently, and strengthen

the representative capacity of the output aggregated feature map. In this paper, I follow up on

this track and design a novel local self-attention for inertial navigation, as shown in Figure 6.1(b).

In particular, I first employ 3× 3 group convolution over all the neighbor keys within a grid of

3× 3 to extract local contextual representations for each key, denoted by C1 = XWK,3×3. After

that, the attention matrix (i.e. γ(Q,C1)) is achieved through a concatenation version of γ in which

Wγ is a 1×1 convolution and Q is defined as X . Next, I calculate the attended feature map C2 by

γ(Q,C1)×V , which captures the global contextual interactions among all IMU samples. The final

output Y is fused by an attention mechanism between local context C1 and global context C2.

107

Multi-head attention in Decoder. I inherit settings from vanilla Transformer Decoder for atten-

tion mechanisms [7]. In other words, I take three separated linear layers to generate Q, K and V

from X , respectively, and leverage a pairwise function of Dot product to calculate the attention

matrix (i.e. γ(Q,K)). Finally, the final output Y is computed by γ(Q,K)×V .

6.4 Jointly Learning Velocity and Covariance

I leverage multi-task learning with uncertainty reduction to improve learning efficiency and pre-

diction accuracy of the two regression tasks: prediction of 2D velocity and its covariance. Inspired

by [30, 31, 32, 33], I derive a multi-task loss function by maximizing the Gaussian likelihood

with uncertainty [222]. First, I define the likelihood as a Gaussian with mean given by the model

output as pu(y|Fθ (x)) = N (Fθ (x),δ 2), where δ is an observation noise scalar. Next, I derive

the model’s minimization objective as a Negative Log-Likelihood (NLL) of two model outputs yv

(velocity) and yc (covariance): L (Fθ ,δv,δc)

=− log(pu(yv,yc|Fθ (x)))

=− log(pu(yv|Fθ (x))× pu(yc|Fθ (x)))

=−(log(pu(yv|Fθ (x)))+ log(pu(yc|Fθ (x)))

=−(log(N (yv;Fθ (x),δ 2
v))+ log(N (yc;Fθ (x),δ 2

c)))

∝
∥ yv−Fθ (x) ∥2

2δ 2
v

+ logδv︸ ︷︷ ︸
Velocity

+
∥ yc−Fθ (x) ∥2

2δ 2
c

+ logδc︸ ︷︷ ︸
Covariance

=
1

2δ 2
v
Lv +

1
2δ 2

c
Lc + logδvδc

(6.7)

where δv and δc are observation noises for velocity and covariance, respectively. Their loss func-

tions are denoted by Lv and Lc, and depicted as follows:

Integral Velocity Loss (IVL, Lv). Instead of performing mean square error (MSE) between pre-

108

dicted velocity (v̂) and the ground-truth value (v), I first integrate predicted positions from v̂ (cf.

Equation 6.3e), and then define an L2 norm against the ground-truth positional difference within

the same segment of IMU samples, denoted by L p
v . In addition, I calculate cumulative error

between v̂ and v, denoted by L e
v . Finally, Lv is defined as L p

v +L e
v .

Covariance NLL Loss (CNL, Lc). According to the covariance matrix in Equation 6.6, I define

the Maximum Likelihood loss as the NLL of the velocity with consideration of its corresponding

covariance ΣΣΣ:

Lc =− log(pc(yv|x))

=
1
2
(yv− f (x))T

ΣΣΣ(((xxx)))−1
(yv− f (x))+

1
2

ln |ΣΣΣ(((xxx)))|

=
1
2
∥ yv− f (x) ∥2

ΣΣΣ(((xxx))) +
1
2

ln |ΣΣΣ(((xxx)))|

(6.8)

There is a rich body of research work to propose various covariance parametrizations for neural

network uncertainty estimation [31, 214]. In this study, I simply define the variances along the

diagonal, which are parametrized by two coefficients of a velocity.

6.5 Experiment and Evaluation

I evaluate CTIN on five datasets against four representative prior research works. CTIN was im-

plemented in Pytorch 1.7.1 [223] and trained using Adam optimizer [224]. During training, early

stopping with 30 patience [225, 226] is leveraged to avoid overfitting according to model perfor-

mance on the validation dataset. To be consistent with the experimental settings of baselines, I

conduct both training and testing on NVIDIA RTX 2080Ti GPU.

109

Table 6.1: Description of public datasets used for evaluation of navigation models.

Dataset Year IMU
Carrier

Sample
Frequency

No of
Subjects

No of
Sequences

Ground
Truth

Motion
Context Source

RIDI 2017 Lenovo Phab2 Pro 200 Hz 10 98 Google Tango phone
Four attachments: leg pocket,
bag, hand, body

Public [135]

OxIOD 2018
iPhone 5/6, 7 Plus,

Nexus 5 100 Hz 5 158 Vicon
Four attachments: handheld, pocket,
handbag, trolley

Public [227]

RoNIN 2019 Galaxy S9, Pixel 2 XL 200 Hz 100 276 Asus Zenfone AR Attaching devices naturally Public [133]
IDOL 2020 iPhone 8 100 Hz 15 84 Kaarta Stencil Attaching devices naturally Public [134]

CTIN 2021 Samsung Note, Galaxy 200 Hz 5 100 Google ARCore Attaching devices naturally
Collected by the own and

will be released soon

6.5.1 Dataset

As shown in Table 6.1, all selected datasets with rich motion contexts (e.g. handheld, pocket, and

leg) are collected by multiple subjects using two devices: one is to collect IMU measurements and

the other provides ground truth, like position and orientation. All datasets are split into training,

validation, and testing datasets in a ratio of 8:1:1. For testing datasets except in CTIN, there are

two sub-sets: one for subjects that are also included in the training and validation sets, the other

for unseen subjects.

Data Description and Acquisition. For these open-source datasets, I developed data loaders fol-

lowing the protocol in the RoNIN project [133] to load and prepare training/testing datasets. To

collect the CTIN dataset, I use the two-device framework for IMU and six-degrees-of-freedom

ground truth data acquisition. One device is used to capture IMU data and the other device is used

to collect Google ARCore poses (translation and orientation). I use Samsung Galaxy devices in all

the sensory experiments. Loop closure measurement is performed before each sensory experiment

to ensure high-quality ground truth poses with low drift. An in-house Android application is in-

stalled on the devices for IMU data measurements. I use the calibrated IMU data from the device

and further remove the offset from acceleration and gyro data through the sensory data in the table

test experiment. The IMU data and ARCore data are captured at 200 HZ and 40 HZ, respectively,

which leads to spatial and temporal alignment issues. To resolve them, the device system clock is

110

used as the timestamp for sensor events and time synchronization. ARCore data is interpolated at

200 HZ to synchronize the IMU and ARCore devices. For spatial alignment IMU data, ARCore

data have to be represented in the same coordinate system. The camera and IMU local coordinate

systems are aligned using the rotation matrix estimated by Kalibr toolbox [228]. The data is cap-

tured by 5 subjects and it includes various motion activities constitutes from walking and running.

For each sequence, a subject moves for 2 to 10 minutes. The IMU device is mounted to the chest

by a body harness and the ARCore device is attached to the hand to have a clear line of sight.

Data Preparation. During training, I use a sliding window (N=200) with an overlapping step

size (20 for OxIOD, 50 for RIDI, and 10 for the rest of datasets) on each sequence to prepare

input 6D IMU samples, ground truth 2D velocities, and 2D positions. In addition, a random

shift is applied to a sliding window to enhance the robustness of the model to the indexing of

sliding windows. Since ground truth data are provided in the navigation frame and the network

can capture a motion model concerning the gravity-aligned IMU frame, IMU samples in each

window are rotated from the IMU body frame to the navigation frame using device orientations at

beginning of the window. In this study, the navigation frame is defined that the Z axis aligned with

the negation of the gravity axis, and a coordinate frame augmentation agnostic to the heading in

the horizontal frame is applied. This will indirectly provide the gravity information to the network,

while augmentation of the sample by rotating around the Z axis in the horizontal plane would

remove heading observability as it is theoretically unobservable to the data-driven model and the

model should be invariant to rotation around the Z axis.

In this study, I design a component of Rotation Matrix Selector to choose orientation sources auto-

matically for training, validation, and testing. For the RIDI dataset, I use the orientation estimated

from IMU for training, validation, and testing; For the OxIOD dataset, I use ground-truth orienta-

tions from Vicon during training/validation, and Eular Angle from the device for testing, because

of significant erroneous accuracy of estimated orientations. For the RoNIN dataset, I follow up on

111

the same procedures in the RoNIN project to choose orientations for training and testing. That’s,

estimated orientations are used for testing; during training/validation, estimated orientations are

selected if the end-sequence alignment error is below 20 degrees, otherwise, orientations from

ground-truth are chosen to minimize noise during training. For IDOL and CTIN datasets, I use

orientations from ground truth during training, validation, and testing. In addition to using the un-

certainty reduction strategy to train the model, I also increase the robustness of the network against

IMU measurements noise and bias by random perturbation of samples, since these perturbations

can decrease the sensitivity of the network to input IMU errors. The additive bias perturbations for

acceleration and gyroscope data are different. The additive sample bias for acceleration and gy-

roscope is sampled uniformly from the interval [−0.2,0.2] m/s2 and [−0.05,0.05] rad/s for each

sample, respectively. The experimental results demonstrate that CTIN can be more generalized

than other baselines to wider use cases or other datasets.

6.5.2 Baseline

The selected baseline models are listed below:

• Strap-down Inertial Navigation System (SINS): The subject’s position can be obtained from

double integration of linear accelerations (with earth’s gravity subtracted). To this end, I need

to rotate the accelerations from the body frame to the navigation frame using device orien-

tations and perform an integral operation on the rotated accelerations twice to get positions

[126].

• Pedestrian Dead Reckoning (PDR): I leverage Adaptiv1 to detect foot-steps and update po-

sitions per step along the device heading direction. I assume a stride length of 0.67m/step.

1An Adaptive Jerk Pace Buffer Step Detection Algorithm

112

• Robust IMU Double Integration (RIDI): I use the original implementation [135] to train a

separate model for each device attachment in RIDI and OxIOD datasets. For the rest of the

datasets, I train a unified model for each dataset separately, since attachments during data

acquisition in these datasets are mixed.

• Robust Neural Inertial Navigation (RoNIN): I use the original implementation [133] to eval-

uate all three RoNIN variants (i.e. R-LSTM, R-ResNet, and R-TCN) on all datasets.

6.5.3 Evaluation Metrics

Usually, positions in trajectory can be calculated by performing integration of velocity predicted by

CTIN. The major metric used to evaluate the accuracy of positioning is a Root Mean Squared Error

(RMSE) with various definitions of estimation error: RMSE =
√

1
m ∑

m
t=1 ∥ Et(xt , x̃t) ∥, where m

means the number of data points; Et(xt , x̃t) represents an estimation error between a position (i.e.xt)

in the ground truth trajectory at timestamp t and its corresponding one (i.e. x̃t) in the predicted path.

In this study, I define the following metrics [229]:

• Absolute Trajectory Error (ATE) is the RMSE of estimation error: Et = xt− x̃t . The metric

shows a global consistency between the trajectories and the error is increasing by the path

length.

• Time-Normalized Relative Traj. Error (T-RTE) is the RMSE of average errors over a

time-interval window span (i.e. ti = 60 seconds in the case). The estimation error is defined

formally as Et = (xt+ti − xt)− (x̃t+ti − x̃t). This metric measures the local consistency of

the estimated and ground truth path. Formally, the error for the timestamp t with the inter-

val of size m The metric measures the squared root distance between the displacements of

positioning across a window of specified size.

113

Table 6.2: Overall Trajectory Prediction Accuracy. The best result is shown in bold font.

Dataset Test
Subject Metric

Performance (meter) Perf. Improvement

SINS PDR RIDI
RoNIN

CTIN
CTIN improvement over RoNIN

R-LSTM R-ResNet R-TCN R-LSTM R-ResNet R-TCN

RIDI

Seen
ATE 6.34 22.76 8.18 2.55 2.33 3.25 1.39 45.36% 40.10% 57.13%

T-RTE 8.13 24.89 9.34 2.34 2.36 2.64 1.99 15.00% 15.78% 24.80%
D-RTE 0.52 1.39 0.97 0.16 0.16 0.17 0.11 32.47% 32.26% 35.91%

Unseen
ATE 4.62 20.56 8.18 2.78 1.97 2.06 1.86 33.07% 5.40% 9.68%

T-RTE 4.58 31.17 10.51 2.95 2.47 2.43 2.49 15.66% -0.70% -2.36%
D-RTE 0.36 1.19 1.09 0.15 0.14 0.14 0.11 28.00% 21.22% 22.72%

OxIOD

Seen
ATE 15.36 9.78 3.78 3.87 2.40 3.33 2.32 40.10% 3.52% 30.27%

T-RTE 11.02 8.51 3.99 1.56 1.83 1.49 0.62 60.40% 66.27% 58.67%
D-RTE 0.96 1.16 2.30 0.20 0.56 0.19 0.07 61.94% 86.67% 61.21%

Unseen
ATE 13.90 17.72 7.16 5.22 3.51 6.16 3.34 35.90% 4.61% 45.69%

T-RTE 10.51 17.21 7.65 2.65 2.51 2.61 1.33 50.00% 47.18% 49.15%
D-RTE 0.89 1.10 2.62 0.29 0.49 0.24 0.13 55.57% 73.45% 45.48%

RoNIN

Seen
ATE 7.89 26.64 16.82 5.11 3.99 6.18 4.62 9.49% -15.81% 25.23%

T-RTE 5.30 23.82 19.50 3.05 2.83 3.27 2.81 7.70% 0.69% 13.91%
D-RTE 0.42 0.98 4.99 0.22 0.19 0.20 0.18 18.94% 2.75% 10.15%

Unseen
ATE 7.62 23.49 15.75 8.73 5.76 7.49 5.61 35.77% 2.60% 25.11%

T-RTE 5.12 23.07 19.13 4.87 4.50 4.70 4.48 8.04% 0.42% 4.61%
D-RTE 0.43 1.00 5.37 0.29 0.25 0.26 0.25 12.63% 0% 4.83%

IDOL

Seen
ATE 21.54 18.44 9.79 4.57 4.44 4.68 2.90 36.49% 34.63% 37.98%

T-RTE 14.93 14.53 7.97 1.72 1.58 1.77 1.35 21.47% 14.54% 23.46%
D-RTE 1.07 1.14 0.97 0.19 0.26 0.18 0.13 28.39% 48.21% 25.12%

Unseen
ATE 20.34 16.83 9.54 5.60 3.81 5.89 3.69 34.19% 3.28% 37.40%

T-RTE 18.48 15.67 9.07 1.99 1.67 2.21 1.65 16.73% 1.02% 25.30%
D-RTE 1.36 1.31 1.04 0.20 0.22 0.20 0.15 25.36% 30.14% 25.52%

CTIN Seen
ATE 5.63 12.05 4.88 2.22 2.39 2.02 1.28 42.25% 46.45% 36.68%

T-RTE 5.34 16.39 4.21 2.10 2.01 1.73 1.29 38.54% 35.87% 25.55%
D-RTE 0.50 0.79 0.18 0.11 0.16 0.11 0.08 28.91% 50.56% 24.61%

• Distance Normalized Relative Traj. Error (D-RTE) is the RMSE across all corresponding

windows when a subject travels a certain distance d, like d is set to 1 meter in the case. The

estimation error is given by Et = (xt+td−xt)−(x̂t+td− x̂t) where td is the time interval needed

to traverse a distance of d.

• Position Drift Error (PDE) measures final position (at timestamp m) drift over the total

distance traveled (i.e. traj._len): (∥ xm− x̂m ∥) / traj._len

114

6.5.4 Overall Performance

Table 6.2 shows experimental trajectory errors across entire test datasets. It demonstrates that

CTIN can achieve the best results on most datasets in terms of ATE, T-RTE, and D-RTE metrics,

except for two cases in RoNIN and RIDI datasets. R-TCN can get a smaller T-RTE number than

CTIN in the RIDI-unseen test case; R-ResNet reports the smallest ATE of 3.99 for RoNIN-seen.

In particular, CTIN improves an average ATE on all seen test datasets by 34.74%, 21.78%, and

37.46% over R-LSTM, R-ResNet, and R-TCN, respectively; the corresponding numbers for all

unseen test datasets are 34.73%, 3.97%, and 29.47%.

The main limitation of RoNIN variants (i.e. R-LSTM, R-ResNet, and R-TCN) is that they do not

capture the spectral correlations across time series which hampers the performance of the model.

Therefore, it is convincing that CTIN achieves better performance over these baselines. Table 6.2

also shows that CTIN generalizes well to unseen test sets, and outperforms all other models on

test sets. PDR shows a persistent ATE due to the consistent and precise updates owing to the

jerk computations. This mechanism leads to PDR failure on long trajectories. Over time, the

trajectory tends to drift owing to the accumulated heading estimation and the drift would increase

dramatically, which results in decentralized motion trajectory shapes. R-LSTM does not show

satisfactory results over large-scale trajectories. The margin of the outperforms of CTIN compared

to R-LSTM and R-TCN is notable. The results for SINS show a large drift that highlights the noisy

sensor measurements from smartphones.

6.5.5 Ablation Study

In this section, I evaluate model behaviors, the effectiveness of the attention layer, and loss func-

tions used in CTIN on all dataset.

115

Table 6.3: Models’ Evaluation Performance on CTIN dataset

Model
No of Params

(106)
GFLOP Per

Second (109)
Average GPU

time (ms)
Trajectory Error (meter)
ATE T-RTE D-RTE

CTIN 0.5571 7.27 65.96 1.28 1.29 0.08
R-LSTM 0.2058 7.17 704.23 2.22 2.10 0.11
R-TCN 2.0321 33.17 19.05 2.02 1.73 0.11

R-ResNet 4.6349 9.16 75.89 2.39 2.01 0.16

Model Behaviors. As shown in Figures from 6.2 to 6.6, CTIN outperforms the three RoNIN vari-

ant models (i.e. R-LSTM, R-ResNet, R-TCN) significantly on CTIN, RIDI, OxIOD, and IDOL,

and lightly better on RoNIN. Specifically, the blue line of CTIN in most sub-figures regarding tra-

jectory errors is steeper than in other plots. Sub-figures in the right column show that CTIN and

R-ResNet can obtain lower scores of avg MSE Loss between ground truth velocity and predicted

one, and Position Drift Error (PDE (%)), than the other two models. However, the PDE (%) perfor-

mance of CTIN is better than R-ResNet, which is consistent with the performance pattern shown in

the ATE metric. For the RoNIN dataset, the best performance is in a tangle of CTIN and R-ResNet.

RoNIN is a group of 276 sequences, which is collected by 100 different subjects who perform var-

ious motion activities as well. Technically, this dataset should be more comprehensive than others.

Unfortunately, only 50% of the dataset is released by authors, and these 138 (=276× 50%) se-

quences may be gathered by total different 100 subjects, which leads to a significant difference in

motion context, and various IMU sensor bias and noise. Therefore, it is difficult for CTIN to learn

repeated and shared patterns from this undesired dataset. During training, I also perform random

perturbations on the sensor bias, CTIN manifests less sensitivity to these input errors and achieves

the desired performance.

For example, each plot shows the cumulative density function (CDF) of the chosen metric on the

entire test datasets in Figure 6.2a. The blue line of CTIN is steeper than other plots, which indicates

that CTIN shows significantly lower overall errors than all RoNIN variants for all presented met-

116

(a) (b)

Figure 6.2: Performance Comparison of CTIN and RoNIN variant models on CTIN dataset

(a) (b)

Figure 6.3: Performance Comparison of CTIN and RoNIN variant models on RIDI dataset

rics.As shown in Figure 6.2b, although CTIN’s overall MSE is higher than R-Resnet and smaller

than R-LSTM and R-TCN, its position drift error (i.e. PDE (%)) is the smallest (i.e. the best). In

Table 6.3, I show the number of parameters for each model, GFLOPs performed by GPU during

testing and the average GPU execution time for testing a sequence of IMU samples (excluding

the time to load data and generate trajectories after model prediction) and trajectory errors. Over-

all, CTIN possesses a significantly smaller number of parameters than R-TCN and R-ResNet, and

more parameters than R-LSTM, achieving a competitive runtime performance with lower trajec-

tory errors in a real deployment. Therefore, CTIN performs better than all RoNIN variants.

Attention Effectiveness. In this paper, I propose a novel attention mechanism to exploit local and

global dependencies among the spatial feature space, and then leverage the multi-head attention

117

(a) (b)

Figure 6.4: Performance Comparison of CTIN and RoNIN variant models on OXIOD dataset

(a) (b)

Figure 6.5: Performance Comparison of CTIN and RoNIN variant models on RoNIN dataset

(a) (b)

Figure 6.6: Performance Comparison of CTIN and RoNIN variant models on IDOL dataset

118

(a) (b)

Figure 6.7: The effectiveness of proposed attention layers on CTIN dataset.

layer to combine spatial and temporal information for better accuracy of velocity prediction. To

evaluate their effectiveness, I conduct a group of experiments using CTIN/R-ResNet and their

variant without/with the capability of attention mechanism. The experimental results are shown in

Figures from 6.7 to from 6.11. In each sub-figure, “*-atts" means CTIN or R-ResNet models with

attention functionalities; “*-Conv" represents the models using a conventional spatial convolution

instead. Overall, the effectiveness of the proposed attention mechanism has been demonstrated in

all figures. For trajectory errors shown in the left column of figures, CTIN and R-ResNet capability

of attention mechanism outperforms the ones with spatial convolution layers instead, respectively,

especially for OxIOD and IDOL datasets. Attention-based models can achieve lower score of

Avg MSE Loss and PDE (%). For example, Figure 6.7a shows that CTIN-Atts and R-ResNet-

Atts models outperform the models without attention layer. Furthermore, CTIN-Atts perform the

best for all metrics, and the performance of CTIN-Conv is better than all R-ResNet variants. In

Figure 6.7b, CTIN-Atts and R-ResNet-Atts have lower average MSE loss of velocity prediction and

smallest PDE than CTIN-Conv and R-ResNet-Conv. Overall, CTIN and R-ResNet can benefit from

the proposed attention mechanism.

Loss function. I expand the experiments on four extra datasets to evaluate the performance of

multi-task loss (i.e. IVL+CNL) by performing a group comparison experiments using different

119

(a) (b)

Figure 6.8: The effectiveness of proposed attention layers on RIDI dataset.

(a) (b)

Figure 6.9: The effectiveness of proposed attention layers on OxIOD dataset.

(a) (b)

Figure 6.10: The effectiveness of proposed attention layers on RoNIN dataset.

120

(a) (b)

Figure 6.11: The effectiveness of proposed attention layers on IDOL dataset.

Figure 6.12: The performance of CTIN network with different loss functions evaluated on CTIN
dataset.

loss functions, such as mean square error (MSE), Integral Velocity Loss (IVL) and Covariance

NLL Loss (CNL), to train the models. Figures from 6.12 to 6.16 verifies the performance of CTIN

with loss of IVL+CNL. Accordingly, these four-loss functions can achieve similar performance

behaviors. CTIN with loss of IVL+CNL achieves better performance in RIDI OxIOD and IDOL.

For RoNIN, the performance of CTIN with CNL is the best, and the model with IVL+CNL is

better than the rest of the two loss functions. For example, As shown in Figure 6.12, CTIN with a

loss of IVL+CNL achieves the best performance for ATE and D-RTE metrics.

121

Figure 6.13: The performance of CTIN network with different loss functions evaluated on RIDI
dataset.

Figure 6.14: The performance of CTIN network with different loss functions evaluated on OxIOD
dataset.

Selected Visualization of Trajectory. Two selected sequences visualization of reconstructed tra-

jectories against the ground-truth for each dataset are shown from Figure 6.17 to Figure 6.20. I

only show CTIN and three RoNIN variants methods. For each sequence, I mark it with the se-

quence name and the trajectory length, also report both ATE, T-RTE D-RTE, and PDE of selected

approaches. The trajectory with blue color is generated by the models and the orange one is built

122

Figure 6.15: The performance of CTIN network with different loss functions evaluated on RoNIN
dataset.

Figure 6.16: The performance of CTIN network with different loss functions evaluated on IDOL
dataset.

from ground truth data. Positional errors are marked within each figure, where “AT", “TR", “DR",

and “PD" denote metrics of ATE, T-RTE, D-RTE, and PDE, respectively. Sub-figures in a row

show the visualizations of a selected sequence (named by the title of the first sub-figure) between

the ground truth trajectory and predicted ones generated by CTIN, R-LSTM, R-ResNet, and R-

TCN, sequentially. Due to the uncertainty of predicted trajectories, there maybe have different

shapes of ground truth trajectory for a sequence. For example in Figure 6.18, it looks like the

123

Figure 6.17: Selected visualizations of trajectories from CTIN and RoNIN variants models on the
RIDI dataset.

shapes of ground truth trajectory for the sequence “handbag_data2_seq2 (Length: 494m)" are dif-

ferent because of different scales of axes. Actually, they are the same and use identical data to

draw them.

124

Figure 6.18: Selected visualizations of trajectories from CTIN and RoNIN variants models on
OxIOD dataset.

125

Figure 6.19: Selected visualizations of trajectories from CTIN and RoNIN variants models on the
RoNIN dataset.

126

Figure 6.20: Selected visualizations of trajectories from CTIN and RoNIN variants models on the
IDOL dataset.

127

Figure 6.21: Selected visualizations of trajectories from CTIN and RoNIN variants models on
CTIN seen dataset.

128

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Detecting Trends in Dynamic Social Networks

As social media networks are increasingly used to represent human activities in online environ-

ments, effective methods for detecting temporal nodal activities are needed. This research has

developed and validated a new class of models that examine user interactions to support activity

detection in dynamic social networks. The models incorporated information about agents’ activi-

ties in the network and their interaction over time to detection at the next time step. The innovation

of the models consists of a novel simulation of online social networks, accurate detection based

not only on historical activities but also on agent interaction, and adaptive link addition or removal

based on ongoing activity patterns.

7.1.1 Summary of Findings

The experimental findings show that the two interaction models outperformed the benchmark mod-

els significantly across different dates and across different temporal window sizes. PIM was also

found to significantly outperform RIM across different window sizes in Dataset 2015, demonstrat-

ing the best accuracy among all four models when w ranges from 4 to 20. For a fixed window size,

performances of RIM and PIM are not significantly different across dates. This finding shows that

both PIM and RIM capture unique activity patterns that are complementary to each other. Behav-

iors exhibited in random interaction and preferential interaction both contribute to future activity

levels detected by these models. Therefore, both patterns demonstrate a significant presence in

user activities in the temporal networks. In addition, the two interaction patterns (preferential in-

teraction and random interaction) do not have a significant difference in their contribution to user

129

activities. Such lack of clear distinction is not because their individual effects are not significant,

but possibly because users adopt these behavior patterns selectively, contingent on the circum-

stances that they face. In other words, although the majority of users favor preferential interaction,

most activities are characterized by random interaction as users make contingent choices to ad-

just to reality. Examining these contingencies can possibly reveal patterns of strategic behavioral

adoption and its relationship with external factors.

Regarding evaluation metrics, the experimental results demonstrate significant advantages of SMAPE

and LMAPE over RMSE. The results show that the linear assumption of RMSE often fails to char-

acterize the differences in model performance, making it less capable to measure activities that

exhibit primarily non-linear patterns. The findings show that SMAPE and LMAPE captured the

random interaction and exponential activity patterns very well, and hence should be more suitable

for measuring online social network activities than traditional approaches such as RMSE (e.g.,

Reference [27]).

Results of the correlation analysis show that the structural properties of social networks provide

a simple and yet accurate approach to predicting model performance (measured by LMAPE and

SMAPE). These properties allow linear projection of the performance values that are based on

non-linear model prediction. However, the directions and intensity of correlation vary according to

datasets and performance measures. Future research may examine in more detail these variations.

As online social network activities tend to change dramatically over time, there is a strong poten-

tial to use these properties to support advanced analysis and understanding of temporal network

activities.

130

7.1.2 Contributions and Limitations

This research should provide several contributions. The interaction models for temporal network

prediction are shown to advance traditional models (e.g., References [57, 67]) by explicitly model-

ing agent interaction and by simulating network behavior. New experimental findings obtained in

this research can be used to inform model development and performance. Moreover, the research

developed a reusable implementation of temporal prediction for large networks in a social media

community, thus contributing to standardizing the evaluation of temporal social networks [27].

The computational framework developed in this research provides a reusable graph construction

and transformation pipeline that is not available in prior research [37]. The methods and findings

should be useful to computer and information scientists, and intelligence experts (e.g., for cyber-

surveillance [14]), social researchers (e.g., for public- and health-policy decision-making [42]),

and business practitioners (e.g., business analytics [10, 12]), among others. There are several limi-

tations to this research. The datasets used in this research came from one specific source (Twitter).

Although different time spans of datasets and different analysis aspects were considered, the choice

of data source may limit the generalizability of the findings. There is a lack of prior theoretical

study of temporal nodal activity detection in online social networks. The identification of relevant

theoretical and technical aspects was non-trivial in this research before the technical infrastructure

was built. The resources available to collect and handle the data were limited, restricting additional

analysis that could be performed.

There are several limitations to this research. The datasets used in this research came from one

specific domain. Although different time spans of datasets and different analysis aspects were

considered, the choice of the domain may limit the generalizability of the findings. There is a

lack of prior theoretical study of temporal social network activity trend detection in the sharing

economy. The identification of relevant theoretical and technical aspects was non-trivial in this

131

research before the technical infrastructure was built. The resources available to collect and handle

the data were limited, restricting additional analysis that could be performed.

7.1.3 Future Directions

In the future, this research may be extended in several ways. Extending the temporal window

w to study its impact on predictive performance using different models may help to characterize

the domains being predicted for and the models being used. Multiple domains could be studied

to examine their effect on model performance. Additional types of interaction and datasets may

be modeled to capture their unique activity patterns. Social links other than geodesics used in

BC calculation may be explored (e.g., direct links). Comparison of which behavioral assumptions

work well in which predictive circumstances should advance understanding of model design and

deployment.

7.2 Semantics-aware Optimizations for Big Data Applications

In this paper, I propose a semantics-aware optimization approach to assist programmers to de-

velop and optimize an application interactively and semi-automatically. I propose three kinds of

optimization strategies: cache management, operation reordering and element pruning. Element

pruning is a static rule-based model and the other two are hybrid models using static and dynamic

information. To get dynamic information about data and runtime system, the online phase is devel-

oped as a piggyback monitoring tool by integrating spark internal event component, metrics system

and source code profiling tools. Extensive empirical results on several real-world benchmarks us-

ing Spark RDD APIs reveal that the approach achieves better performance on the optimized code

than their original implementation.

132

In the future work, I will extend the optimization of operation reordering to map as well as other

operations. So far SODA can only take care of filter and join reordering, and help programmers

choose the right operation with acceptable performance. For example, reduceByKey can replace

groupByKey to reduce shuffling data size. Another promising area is to add a growing number

of performance-oriented constraints to the global cache management policy. For example, I can

require that all datasets needed by an operation are persisted in memory simultaneously to gain

better performance.

7.3 Graph Transformer for Automated Programming Repair

In this study, I introduce Bug2Fix, a novel Transformer model enhanced by the proposed context-

aware attention for APR tasks. In particular, a novel semantics-preserved, scope-oriented, and

vocabulary-closed context-aware abstraction approach is designed for pre-processing code cor-

pus, and then joint multi-task learning of code translation and context-aware alignment is pro-

posed for automatically detecting and repairing bugs. The extensive empirical evaluation suggests

that Bug2Fix significantly outperforms the baseline models in terms of three research questions.

Specifically, Bug2Fix can successfully predict the fixed code of 14.00%, 7.99%, and 48.25% of

three different datasets with only one attempt, respectively. The success rate steadily improves

over an increasing beam size, and it eventually achieves 56.16%, 34.12%, and 51.90%, respec-

tively, when 50 candidate patches are considered. In addition, regardless of beam size used, the

overall syntactic correctness of all patches are very high, i.e., above 97%, 90%, 49% for the three

datasets, respectively.

In future work, I would like to improve the proposed approach by overcoming a few limitations.

Integrating more information from AST into the model is of great interest. For example, it is

effective to use a token’s position in AST, rather than its absolute position in the sequence. This

133

is because the tree-based positional information can help the model exploit and understand the

code from the perspective of a tree structure. In addition, the semantic meaning of a token in

AST, such as path context [202], can be used to design an attention mechanism in the model.

Next, enhancing the model’s capability to process class even package is more desired. Expanding

granularity from method to class or package level can accommodate more context for certain bugs,

such as interprocedural issues. However, this may yield a more complex model and more difficulty

in training.

7.4 Contextual Transformer For Inertial Navigation

In this paper, I propose CTIN, a novel robust contextual Attention-based model to regress accu-

rate 2D velocity and trajectory from segments of IMU measurements. To this end, I first design a

ResNet-based encoder enhanced by local and global self-attention layers to capture spatial contex-

tual information from IMU measurements, which can guide the learning of an efficient attention

matrix and thus strengthens the capacity of inertial representation. I further fuse these spatial

representations with temporal knowledge by leveraging multi-head attention in the Transformer

decoder. Finally, multi-task learning using uncertainty is leveraged to improve learning efficiency

and prediction accuracy of 2D velocity. Through extensive experiments over a wide range of iner-

tial datasets, CTIN is very robust and outperforms state-of-the-art models.

The main limitation of CTIN is to use 3D orientation estimation generated by the device (e.g. Game

Vector), which can be inaccurate. In future work, I will extend CTIN with better orientation esti-

mations. Secondly, although the proposed pipeline of CTIN achieves good accuracy on pedestrian

inertial observations, the accuracy of CTIN on vehicle IMU data is not desirable due to the errors

in the uncertainty of sensory data such as noisy sensory data, inhomogeneous offset values across

devices, and variant environments.

134

LIST OF REFERENCES

[1] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22, no. 7, pp. 97–114,

2009.

[2] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing big data issues in sci-

entific data infrastructure,” in 2013 International conference on collaboration technologies

and systems (CTS). IEEE, 2013, pp. 48–55.

[3] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and P. Chen, “Rapid 3d seismic source inversion

using windows azure and amazon ec2,” in 2011 IEEE World Congress on Services. IEEE,

2011, pp. 602–606.

[4] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang, “Dart: A geographic information system on

hadoop,” in 2015 IEEE 8th International Conference on Cloud Computing. IEEE, 2015,

pp. 90–97.

[5] W. Chung, B. Rao, and L. Wang, “Dynamic trend detection in us border security social-

media networks,” Simulation and Education Conference (I/ITSEC),In 2016 Interservice/In-

dustry Training, 2016.

[6] ——, “Interaction models for detecting nodal activities in temporal social media networks,”

ACM Transactions on Management Information Systems (TMIS), vol. 10, no. 4, pp. 1–30,

2019.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, 2017, pp. 5998–6008.

135

[8] W. Wei and K. M. Carley, “Measuring temporal patterns in dynamic social networks,” ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 10, no. 1, pp. 1–27, 2015.

[9] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling dynamic behavior in

large evolving graphs,” in Proceedings of the sixth ACM international conference on Web

search and data mining, 2013, pp. 667–676.

[10] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A resilient distributed

graph system on spark,” in First International Workshop on Graph Data Management Ex-

periences and Systems. ACM, 2013.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Com-

munications of the ACM, 2008.

[12] Apache, “Hadoop,” 2009.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al., “Spark: Cluster

computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[14] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of software,”

in 2012 34th International Conference on Software Engineering (ICSE), IEEE. IEEE

Computer Society, 2012, pp. 837–847.

[15] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to improve code com-

pletion systems,” in Proceedings of the 7th joint meeting of the European software engineer-

ing conference and the ACM SIGSOFT symposium on the foundations of software engineer-

ing. ACM, 2009, pp. 213–222.

[16] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language models,”

in Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation. ACM, 2014, pp. 419–428.

136

[17] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional neural architecture

for code completion with multi-task learning,” in Proceedings of the 28th International

Conference on Program Comprehension, 2020, pp. 37–47.

[18] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection of semantic code

clones via tree-based convolution,” in 2019 IEEE/ACM 27th International Conference on

Program Comprehension (ICPC). IEEE, 2019, pp. 70–80.

[19] J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug report detection using dual-channel

convolutional neural networks,” in Proceedings of the 28th International Conference on

Program Comprehension, 2020, pp. 117–127.

[20] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c language errors

by deep learning,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-

gence. AAAI Press, 2017, pp. 1345–1351.

[21] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus,

“SequenceR: Sequence-to-sequence learning for end-to-end program repair,” IEEE Trans-

actions on Software Engineering, 2019.

[22] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and D. Poshyvanyk, “An empir-

ical study on learning bug-fixing patches in the wild via neural machine translation,” ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 28, no. 4, pp. 1–29,

2019.

[23] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” in 3rd International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

137

[24] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug detection via context-

based code representation learning and attention-based neural networks,” Proceedings of the

ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[25] J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, “Exploiting code knowledge graph for

bug localization via bi-directional attention,” in Proceedings of the 28th International Con-

ference on Program Comprehension, 2020, pp. 219–229.

[26] L. Wu, F. Li, Y. Wu, and T. Zheng, “Ggf: A graph-based method for programming language

syntax error correction,” in Proceedings of the 28th International Conference on Program

Comprehension, 2020, pp. 139–148.

[27] D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski, and S. Sen, “A real-

istic evaluation and comparison of indoor location technologies: Experiences and lessons

learned,” in Proceedings of the 14th international conference on information processing in

sensor networks, 2015, pp. 178–189.

[28] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and orientation

estimation,” arXiv preprint arXiv:1704.06053, 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

[30] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses

for scene geometry and semantics,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 7482–7491.

138

[31] W. Liu, D. Caruso, E. Ilg, J. Dong, A. I. Mourikis, K. Daniilidis, V. Kumar, and J. Engel,

“Tlio: Tight learned inertial odometry,” IEEE Robotics and Automation Letters, vol. 5, no. 4,

pp. 5653–5660, 2020.

[32] J. Yao, W. Xing, D. Wang, J. Xing, and L. Wang, “Active dropblock: Method to enhance

deep model accuracy and robustness,” Neurocomputing, vol. 454, pp. 189–200, 2021.

[33] Y. Yang, W. Xing, D. Wang, S. Zhang, Q. Yu, and L. Wang, “Aevrnet: Adaptive exploration

network with variance reduced optimization for visual tracking,” Neurocomputing, vol. 449,

pp. 48–60, 2021.

[34] G. C. Kane, M. Alavi, G. Labianca, and S. P. Borgatti, “What’s different about social media

networks? a framework and research agenda,” MIS quarterly, vol. 38, no. 1, pp. 275–304,

2014.

[35] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social networks: the state-of-the-

art,” Science China Information Sciences, vol. 58, no. 1, pp. 1–38, 2015.

[36] W. Chung and D. Zeng, “Social-media-based public policy informatics: Sentiment and net-

work analyses of us immigration and border security,” Journal of the Association for Infor-

mation Science and Technology, vol. 67, no. 7, pp. 1588–1606, 2016.

[37] W. Fan and M. D. Gordon, “The power of social media analytics,” Communications of the

ACM, vol. 57, no. 6, pp. 74–81, 2014.

[38] D. Zeng, “Policy informatics for smart policy-making,” IEEE Intelligent Systems, vol. 30,

no. 06, pp. 2–3, 2015.

[39] B. Karrer and M. E. Newman, “Stochastic blockmodels and community structure in net-

works,” Physical review E, vol. 83, no. 1, p. 016107, 2011.

139

[40] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels for time-evolving social net-

works,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 552–562,

2014.

[41] X. Zheng, Y. Zhong, D. Zeng, and F.-Y. Wang, “Social influence and spread dynamics in

social networks,” Frontiers of Computer Science, vol. 6, no. 5, pp. 611–620, 2012.

[42] Z. Li, X. Fang, and O. R. L. Sheng, “A survey of link recommendation for social networks:

Methods, theoretical foundations, and future research directions,” ACM Transactions on

Management Information Systems (TMIS), vol. 9, no. 1, pp. 1–26, 2017.

[43] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily in social

networks,” Annual review of sociology, pp. 415–444, 2001.

[44] B. Latané, “The psychology of social impact,” American psychologist, vol. 36, no. 4, p. 343,

1981.

[45] G. S. Becker, “A theory of social interactions,” Journal of political economy, vol. 82, no. 6,

pp. 1063–1093, 1974.

[46] F. Heider, The psychology of interpersonal relations. Psychology Press, 2013.

[47] E. W. Ngai, S. S. Tao, and K. K. Moon, “Social media research: Theories, constructs, and

conceptual frameworks,” International journal of information management, vol. 35, no. 1,

pp. 33–44, 2015.

[48] L. A. McFarland and R. E. Ployhart, “Social media: A contextual framework to guide re-

search and practice.” Journal of applied psychology, vol. 100, no. 6, p. 1653, 2015.

[49] J. M. McPherson and J. R. Ranger-Moore, “Evolution on a dancing landscape: organizations

and networks in dynamic blau space,” Social Forces, vol. 70, no. 1, pp. 19–42, 1991.

140

[50] C. Sedikides and J. M. Jackson, “Social impact theory: A field test of source strength, source

immediacy and number of targets,” Basic and applied social psychology, vol. 11, no. 3, pp.

273–281, 1990.

[51] H. C. Kelman, “Compliance, identification, and internalization three processes of attitude

change,” Journal of conflict resolution, vol. 2, no. 1, pp. 51–60, 1958.

[52] H. H. Chang and S.-S. Chuang, “Social capital and individual motivations on knowledge

sharing: Participant involvement as a moderator,” Information & management, vol. 48,

no. 1, pp. 9–18, 2011.

[53] A. Portes, “Social capital: Its origins and applications in modern sociology,” Knowledge

and social capital: Foundations and applications, pp. 43–67, 2009.

[54] G. A. Akerlof, “Social distance and social decisions,” Econometrica: Journal of the Econo-

metric Society, pp. 1005–1027, 1997.

[55] G. R. Salancik and J. Pfeffer, “A social information processing approach to job attitudes and

task design,” Administrative science quarterly, pp. 224–253, 1978.

[56] M. J. Lee, B. Ferwerda, J. Choi, J. Hahn, J. Y. Moon, and J. Kim, “Github developers use

rockstars to overcome overflow of news,” in CHI’13 Extended Abstracts on Human Factors

in Computing Systems, 2013, pp. 133–138.

[57] X. Zheng, D. Zeng, and F.-Y. Wang, “Social balance in signed networks,” Information Sys-

tems Frontiers, vol. 17, no. 5, pp. 1077–1095, 2015.

[58] C. I. Hovland, “The order of presentation in persuasion,” 1957.

[59] J. Deese and R. A. Kaufman, “Serial effects in recall of unorganized and sequentially orga-

nized verbal material,” Journal of experimental psychology, vol. 54, no. 3, p. 180, 1957.

141

[60] N. Miller and D. T. Campbell, “Recency and primacy in persuasion as a function of the

timing of speeches and measurements.” The Journal of Abnormal and Social Psychology,

vol. 59, no. 1, p. 1, 1959.

[61] J. Scott, “Social network analysis: developments, advances, and prospects,” Social network

analysis and mining, vol. 1, no. 1, pp. 21–26, 2011.

[62] S. Wasserman, K. Faust et al., “Social network analysis: Methods and applications,” 1994.

[63] M. O. Jackson, Social and economic networks. Princeton university press, 2010.

[64] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the

national academy of sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[65] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also for the infor-

mation sciences,” Journal of information Science, vol. 28, no. 6, pp. 441–453, 2002.

[66] D. J. Watts, “A twenty-first century science,” Nature, vol. 445, no. 7127, pp. 489–489, 2007.

[67] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-dimensional stochastic

blockmodel,” The Annals of Statistics, vol. 39, no. 4, pp. 1878–1915, 2011.

[68] S. Jiang and H. Chen, “Natergm: A model for examining the role of nodal attributes in

dynamic social media networks,” IEEE transactions on knowledge and data engineering,

vol. 28, no. 3, pp. 729–740, 2015.

[69] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker

graphs: an approach to modeling networks.” Journal of Machine Learning Research, vol. 11,

no. 2, 2010.

142

[70] A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi et al., “A survey of statistical

network models,” Foundations and Trends® in Machine Learning, vol. 2, no. 2, pp. 129–

233, 2010.

[71] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws, shrink-

ing diameters and possible explanations,” in Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in data mining, 2005, pp. 177–187.

[72] L. Wu, Y. Ge, Q. Liu, E. Chen, R. Hong, J. Du, and M. Wang, “Modeling the evolution

of users’ preferences and social links in social networking services,” IEEE Transactions on

Knowledge and Data Engineering, vol. 29, no. 6, pp. 1240–1253, 2017.

[73] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using matrix and tensor

factorizations,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 5,

no. 2, pp. 1–27, 2011.

[74] S. Gao, L. Denoyer, and P. Gallinari, “Temporal link prediction by integrating content and

structure information,” in Proceedings of the 20th ACM international conference on Infor-

mation and knowledge management, 2011, pp. 1169–1174.

[75] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang, “A deep learning approach to link predic-

tion in dynamic networks,” in Proceedings of the 2014 SIAM International conference on

data mining. SIAM, 2014, pp. 289–297.

[76] W. Pan, W. Dong, M. Cebrian, T. Kim, J. H. Fowler, and A. S. Pentland, “Modeling dynam-

ical influence in human interaction: Using data to make better inferences about influence

within social systems,” IEEE Signal Processing Magazine, vol. 29, no. 2, pp. 77–86, 2012.

143

[77] V. Raghavan, G. Ver Steeg, A. Galstyan, and A. G. Tartakovsky, “Modeling temporal activity

patterns in dynamic social networks,” IEEE Transactions on Computational Social Systems,

vol. 1, no. 1, pp. 89–107, 2014.

[78] N. Du, X. Jia, J. Gao, V. Gopalakrishnan, and A. Zhang, “Tracking temporal community

strength in dynamic networks,” IEEE Transactions on Knowledge and Data Engineering,

vol. 27, no. 11, pp. 3125–3137, 2015.

[79] C. Gao and J. Liu, “Network-based modeling for characterizing human collective behaviors

during extreme events,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 47, no. 1, pp. 171–183, 2016.

[80] J. C. L. Pinto, T. Chahed, and E. Altman, “Trend detection in social networks using hawkes

processes,” in Proceedings of the 2015 IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining 2015, 2015, pp. 1441–1448.

[81] Y. Zhu, E. Zhong, S. J. Pan, X. Wang, M. Zhou, and Q. Yang, “Predicting user activity

level in social networks,” in Proceedings of the 22nd ACM international conference on

Information & Knowledge Management, 2013, pp. 159–168.

[82] D. Qiu, H. Li, and Y. Li, “Identification of active valuable nodes in temporal online so-

cial network with attributes,” International Journal of Information Technology & Decision

Making, vol. 13, no. 04, pp. 839–864, 2014.

[83] D. Antoniades and C. Dovrolis, “Co-evolutionary dynamics in social networks: A case study

of twitter,” Computational Social Networks, vol. 2, no. 1, pp. 1–21, 2015.

[84] A. Alexandrov, G. Krastev, and V. Markl, “Representations and optimizations for embed-

ded parallel dataflow languages,” ACM Transactions on Database Systems (TODS), vol. 44,

no. 1, p. 4, 2019.

144

[85] B. Rao and L. Wang, “A survey of semantics-aware performance optimization for data-

intensive computing,” in 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure

Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/Pi-

Com/DataCom/CyberSciTech). IEEE, 2017, pp. 81–88.

[86] A. Y. Zomaya and S. Sakr, Handbook of Big Data Technologies. Springer, 2017.

[87] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing,” in Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation. USENIX Association, 2012, pp. 2–2.

[88] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Le-

ich, U. Leser, V. Markl et al., “The stratosphere platform for big data analytics,” The VLDB

Journal, 2014.

[89] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi et al., “Spark sql: Relational data processing in spark,” in Proceedings

of the 2015 ACM SIGMOD International Conference on Management of Data. ACM,

2015, pp. 1383–1394.

[90] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou, S. McDirmid, C. Liu, W. Lin, J. Zhou,

and L. Zhou, “Spotting code optimizations in data-parallel pipelines through periscope,”

in OSDI, 2012.

[91] E. Jahani, M. J. Cafarella, and C. Ré, “Automatic optimization for mapreduce programs,”

Proceedings of the VLDB Endowment, 2011.

145

[92] J. Liu, N. Ravi, S. Chakradhar, and M. Kandemir, “Panacea: towards holistic optimization

of mapreduce applications,” in Proceedings of the Tenth International Symposium on Code

Generation and Optimization. ACM, 2012.

[93] Z. Liu, H. Zhang, B. Rao, and L. Wang, “A reinforcement learning based resource manage-

ment approach for time-critical workloads in distributed computing environment,” in 2018

IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp. 252–261.

[94] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and F. Naumann, “Sofa: An extensible

logical optimizer for udf-heavy data flows,” Information Systems, vol. 52, pp. 96–125, 2015.

[95] H. Zhang, L. Wang, and H. Huang, “Smarth: Enabling multi-pipeline data transfer in hdfs,”

in 2014 43rd International Conference on Parallel Processing. IEEE, 2014, pp. 30–39.

[96] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, and J. L. Ram, “Atomicity and prove-

nance support for pipelined scientific workflows,” Future Generation Computer Systems,

vol. 25, no. 5, pp. 568–576, 2009.

[97] H. Zhang, H. Huang, and L. Wang, “Mrapid: An efficient short job optimizer on hadoop,” in

2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,

2017, pp. 459–468.

[98] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li, W. Lin, J. Zhou, and L. Zhou,

“Optimizing data shuffling in data-parallel computation by understanding user-defined func-

tions.” in NSDI, 2012.

[99] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou,

“Scope: easy and efficient parallel processing of massive data sets,” Proceedings of the

VLDB Endowment, vol. 1, no. 2, pp. 1265–1276, 2008.

146

[100] D. Garbervetsky, Z. Pavlinovic, M. Barnett, M. Musuvathi, T. Mytkowicz, and E. Zoppi,

“Static analysis for optimizing big data queries,” in Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering. ACM, 2017, pp. 932–937.

[101] M. Interlandi, S. D. Tetali, M. A. Gulzar, J. Noor, T. Condie, M. Kim, and T. Millstein,

“Optimizing interactive development of data-intensive applications,” in Proceedings of the

Seventh ACM Symposium on Cloud Computing, 2016, pp. 510–522.

[102] A. Roy, A. Jindal, H. Patel, A. Gosalia, S. Krishnan, and C. Curino, “Sparkcruise: Handsfree

computation reuse in spark,” Proceedings of the VLDB Endowment, vol. 12, no. 12, pp.

1850–1853, 2019.

[103] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino, “Apache tez: A

unifying framework for modeling and building data processing applications,” in Proceedings

of the 2015 ACM SIGMOD international conference on Management of Data, 2015, pp.

1357–1369.

[104] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu, “Memtune: Dynamic memory

management for in-memory data analytic platforms,” in 2016 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, 2016, pp. 383–392.

[105] Y. Yu, W. Wang, J. Zhang, and K. B. Letaief, “Lrc: Dependency-aware cache management

for data analytics clusters,” in IEEE INFOCOM 2017-IEEE Conference on Computer Com-

munications. IEEE, 2017, pp. 1–9.

[106] T. B. Perez, X. Zhou, and D. Cheng, “Reference-distance eviction and prefetching for cache

management in spark,” in Proceedings of the 47th International Conference on Parallel

Processing, 2018, pp. 1–10.

147

[107] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do automated program repair

techniques repair hard and important bugs?” Empirical Software Engineering, vol. 23, no. 5,

pp. 2901–2947, 2018.

[108] M. Monperrus, “Automatic software repair: a bibliography,” ACM Computing Surveys

(CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[109] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too many,” in Pro-

ceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software

tools and engineering. ACM, 2007, pp. 9–14.

[110] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,” IEEE

Transactions on Software Engineering, vol. 45, no. 1, pp. 34–67, 2017.

[111] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit programming rules and

detecting violations in large software code,” ACM SIGSOFT Software Engineering Notes,

vol. 30, no. 5, pp. 306–315, 2005.

[112] J. Toman and D. Grossman, “Taming the static analysis beast,” in 2nd Summit on Advances

in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA, ser. LIPIcs,

vol. 71. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 18:1–18:14.

[113] P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai, “Nar-miner: discovering negative associa-

tion rules from code for bug detection,” in Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering. ACM, 2018, pp. 411–422.

[114] H. Hata, E. Shihab, and G. Neubig, “Learning to generate corrective patches using neural

machine translation,” arXiv preprint arXiv:1812.07170, 2018.

148

[115] S. Chakraborty, M. Allamanis, and B. Ray, “Codit: Code editing with tree-based neural

machine translation,” arXiv preprint arXiv:1810.00314, 2018.

[116] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk, “On learning mean-

ingful code changes via neural machine translation,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 2019, pp. 25–36.

[117] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-

works,” in Advances in neural information processing systems, 2014, pp. 3104–3112.

[118] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector for introductory pro-

gramming assignments,” in 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE), IEEE. ACM, 2018, pp. 60–70.

[119] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk, “Sorting and trans-

forming program repair ingredients via deep learning code similarities,” in 2019 IEEE 26th

International Conference on Software Analysis, Evolution and Reengineering (SANER).

IEEE, 2019, pp. 479–490.

[120] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61,

pp. 85–117, 2015.

[121] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “sk_p: a neural program corrector

for moocs,” in Companion Proceedings of the 2016 ACM SIGPLAN International Con-

ference on Systems, Programming, Languages and Applications: Software for Humanity.

ACM, 2016, pp. 39–40.

[122] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation learning for

automated program repair,” in Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering, 2020, pp. 602–614.

149

[123] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity: Learning graph trans-

formations to detect and fix bugs in programs,” in International Conference on Learning

Representations (ICLR), 2020.

[124] D. Tarlow, S. Moitra, A. Rice, Z. Chen, P.-A. Manzagol, C. Sutton, and E. Aftandil-

ian, “Learning to fix build errors with graph2diff neural networks,” in Proceedings of the

IEEE/ACM 42nd International Conference on Software Engineering Workshops, 2020, pp.

19–20.

[125] ——, “Learning to fix build errors with graph2diff neural networks,” arXiv preprint

arXiv:1911.01205, 2019.

[126] P. G. Savage, “Strapdown inertial navigation integration algorithm design part 2: Velocity

and position algorithms,” Journal of Guidance, Control, and dynamics, vol. 21, no. 2, pp.

208–221, 1998.

[127] S. Shen, M. Gowda, and R. Roy Choudhury, “Closing the gaps in inertial motion tracking,”

in Proceedings of the 24th Annual International Conference on Mobile Computing and Net-

working, 2018, pp. 429–444.

[128] Q. Tian, Z. Salcic, I. Kevin, K. Wang, and Y. Pan, “An enhanced pedestrian dead reckoning

approach for pedestrian tracking using smartphones,” in 2015 IEEE Tenth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

IEEE, 2015, pp. 1–6.

[129] D. Titterton, J. L. Weston, and J. Weston, Strapdown inertial navigation technology. IET,

2004, vol. 17.

[130] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer graph-

ics and applications, vol. 25, no. 6, pp. 38–46, 2005.

150

[131] A. Brajdic and R. Harle, “Walk detection and step counting on unconstrained smartphones,”

in Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous

computing, 2013, pp. 225–234.

[132] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to cure the curse of drift in

inertial odometry,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,

2018.

[133] S. Herath, H. Yan, and Y. Furukawa, “Ronin: Robust neural inertial navigation in the

wild: Benchmark, evaluations, & new methods,” in 2020 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2020, pp. 3146–3152.

[134] S. Sun, D. Melamed, and K. Kitani, “Idol: Inertial deep orientation-estimation and localiza-

tion,” arXiv preprint arXiv:2102.04024, 2021.

[135] H. Yan, Q. Shan, and Y. Furukawa, “Ridi: Robust imu double integration,” in Proceedings

of the European Conference on Computer Vision (ECCV), 2018, pp. 621–636.

[136] B. Wagstaff, V. Peretroukhin, and J. Kelly, “Robust data-driven zero-velocity detection

for foot-mounted inertial navigation,” IEEE Sensors Journal, vol. 20, no. 2, pp. 957–967,

2019. [Online]. Available: https://arxiv.org/abs/1910.00529

[137] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using a

direct ekf-based approach,” in 2015 IEEE/RSJ international conference on intelligent robots

and systems (IROS). IEEE, 2015, pp. 298–304.

[138] D. Ahmetovic, C. Gleason, C. Ruan, K. Kitani, H. Takagi, and C. Asakawa, “Navcog:

a navigational cognitive assistant for the blind,” in Proceedings of the 18th International

Conference on Human-Computer Interaction with Mobile Devices and Services, 2016, pp.

90–99.

151

https://arxiv.org/abs/1910.00529

[139] J. Li, M. Guo, and S. Li, “An indoor localization system by fusing smartphone inertial sen-

sors and bluetooth low energy beacons,” in 2017 2nd International Conference on Frontiers

of Sensors Technologies (ICFST). IEEE, 2017, pp. 317–321.

[140] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Robotics:

Science and Systems, vol. 2, 2014.

[141] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual–

inertial odometry using nonlinear optimization,” The International Journal of Robotics Re-

search, vol. 34, no. 3, pp. 314–334, 2015.

[142] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-inertial odometry with

stereo cameras,” in 2016 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2016, pp. 1885–1892.

[143] D. Tayouri, “Social media as an intelligence goldmine,” Cyber security review, pp. 27–30,

2016.

[144] M. Chui, J. Manyika, and J. Bughin, “The social economy: Unlocking value and productiv-

ity through social technologies,” McKinsey Global Institute, Tech. Rep., 2012.

[145] E. N. Gilbert, “Random graphs,” The Annals of Mathematical Statistics, vol. 30, no. 4, pp.

1141–1144, 1959.

[146] B. Bollobás, “Random graphs,” in Modern graph theory. Springer, 1998, pp. 215–252.

[147] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science, vol.

286, no. 5439, pp. 509–512, 1999.

[148] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40,

no. 1, pp. 35–41, 1977.

152

[149] M. O. Jackson, Social and Economic Networks. Princeton, NJ: Princeton University Press,

2008.

[150] M. E. J. Newman, “Modularity and community structure in networks,” Proceedings of

the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp.

8577–8582, 2006. [Online]. Available: <GotoISI>://WOS:000238278400002

[151] S. P. Borgatti, “Centrality and network flow,” Social networks, vol. 27, no. 1, pp. 55–71,

2005.

[152] J. Bush, T. F. McLarty III, and E. H. Alden, U.S. immigration policy, ser. Independent Task

Force Report No. 63. New York: Council on Foreign Relations, 2009.

[153] J. Gans, E. M. Replogle, and D. J. Tichenor, Debates on U.S. Immigration. Sage Publica-

tions, Inc., 2012.

[154] M. C. LeMay, U.S. immigration: A reference handbook, ser. ABC-

CLIO’s contemporary world issues series. Santa Barbara, Calif.: ABC-CLIO,

2004. [Online]. Available: http://www.loc.gov/catdir/toc/ecip049/2003021522.htmlhttp:

//www.loc.gov/catdir/description/abcclio041/2003021522.html

[155] U. C. on Immigration Reform, U.S. immigration policy - Restoring credibility: A report to

Congress. Washington, DC (1825 Connecticut Ave., NW, Suite 511, Washington 20009):

U.S. Commission on Immigration Reform, 1994.

[156] P. Constable and C. Morello, “Marchers urge congress to pass immigration reform; several

congressmen arrested,” The Washington Post, 2013.

[157] C. Tofallis, “A better measure of relative prediction accuracy for model selection and model

estimation,” Journal of the Operational Research Society, vol. 66, no. 8, pp. 1352–1362,

2015.

153

<Go to ISI>://WOS:000238278400002
http://www.loc.gov/catdir/toc/ecip049/2003021522.html http://www.loc.gov/catdir/description/abcclio041/2003021522.html
http://www.loc.gov/catdir/toc/ecip049/2003021522.html http://www.loc.gov/catdir/description/abcclio041/2003021522.html

[158] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia, “Filter before you parse: Faster analytics

on raw data with sparser,” Proceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1576–

1589, 2018.

[159] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and K. Tzoumas,

“Opening the black boxes in data flow optimization,” Proceedings of the VLDB Endowment,

vol. 5, no. 11, pp. 1256–1267, 2012.

[160] A. Rheinländer, U. Leser, and G. Graefe, “Optimization of complex dataflows with user-

defined functions,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–39, 2017.

[161] S. Lu, B. Rao, X. Wei, B. Tak, L. Wang, and L. Wang, “Log-based abnormal task detection

and root cause analysis for spark,” in 2017 IEEE International Conference on Web Services

(ICWS). IEEE, 2017, pp. 389–396.

[162] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data system logs using convo-

lutional neural network,” in IEEE Cyber Science and Technology Congress (CyberSciTech).

IEEE, 2018, pp. 151–158.

[163] S. Lu, X. Wei, B. Rao, B. Tak, L. Wang, and L. Wang, “Ladra: Log-based abnormal task

detection and root-cause analysis in big data processing with spark,” Future Generation

Computer Systems, vol. 95, pp. 392–403, 2019.

[164] S. Chiba, “Javassist—a reflection-based programming wizard for java,” in Proceedings of

OOPSLA’98 Workshop on Reflective Programming in C++ and Java, vol. 174, 1998, p. 21.

[165] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3r: increased performance for

in-memory hadoop jobs,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1736–

1747, 2012.

154

[166] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,” in Proceedings of the 2014 ACM

SIGMOD international conference on Management of data. ACM, 2014.

[167] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university

press, 2004.

[168] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality guarantees,” ACM

SIGMETRICS Performance Evaluation Review, vol. 44, no. 1, pp. 113–124, 2016.

[169] Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate data caching optimiza-

tion for multi-stage and parallel big data frameworks,” in 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD). IEEE, 2018, pp. 277–284.

[170] G. Optimization, “Inc.,“gurobi optimizer reference manual,” 2015,” 2014.

[171] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer, 2015.

[172] G. P. Gibilisco, M. Li, L. Zhang, and D. Ardagna, “Stage aware performance modeling of

dag based in memory analytic platforms,” in 2016 IEEE 9th International Conference on

Cloud Computing (CLOUD). IEEE, 2016, pp. 188–195.

[173] J. McAuley and A. Yang, “Addressing complex and subjective product-related queries with

customer reviews,” in Proceedings of the 25th International Conference on World Wide Web.

International World Wide Web Conferences Steering Committee, 2016, pp. 625–635.

[174] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging the gap

between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[175] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with

subword units,” arXiv preprint arXiv:1508.07909, 2015.

155

[176] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best choice for modeling

source code?” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. ACM, 2017, pp. 763–773.

[177] R.-M. Karampatsis and C. Sutton, “Maybe deep neural networks are the best choice for

modeling source code,” arXiv preprint arXiv:1903.05734, 2019.

[178] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big code!= big vocabu-

lary: Open-vocabulary models for source code,” arXiv preprint arXiv:2003.07914, 2020.

[179] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” arXiv preprint arXiv:1310.4546, 2013.

[180] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s negative-sampling

word-embedding method,” arXiv preprint arXiv:1402.3722, 2014.

[181] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang

et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv

preprint arXiv:2002.08155, 2020.

[182] W. Chen, E. Matusov, S. Khadivi, and J.-T. Peter, “Guided alignment training for topic-

aware neural machine translation,” arXiv preprint arXiv:1607.01628, 2016.

[183] P. Koehn and R. Knowles, “Six challenges for neural machine translation,” arXiv preprint

arXiv:1706.03872, 2017.

[184] J.-T. Peter, A. Nix, and H. Ney, “Generating alignments using target foresight in attention-

based neural machine translation,” The Prague Bulletin of Mathematical Linguistics, vol.

108, no. 1, pp. 27–36, 2017.

[185] E. Strubell, P. Verga, D. Andor, D. Weiss, and A. McCallum, “Linguistically-informed self-

attention for semantic role labeling,” arXiv preprint arXiv:1804.08199, 2018.

156

[186] S. Garg, S. Peitz, U. Nallasamy, and M. Paulik, “Jointly learning to align and translate with

transformer models,” arXiv preprint arXiv:1909.02074, 2019.

[187] K. Song, K. Wang, H. Yu, Y. Zhang, Z. Huang, W. Luo, X. Duan, and M. Zhang,

“Alignment-enhanced transformer for constraining nmt with pre-specified translations,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 8886–

8893.

[188] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-search optimiza-

tion,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016. The Association for

Computational Linguistics, 2016, pp. 1296–1306.

[189] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, “Compilation error repair:

for the student programs, from the student programs,” in Proceedings of the 40th Interna-

tional Conference on Software Engineering: Software Engineering Education and Training.

ACM, 2018, pp. 78–87.

[190] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh, “Neural program repair by

jointly learning to localize and repair,” arXiv preprint arXiv:1904.01720, 2019.

[191] C. Maddison and D. Tarlow, “Structured generative models of natural source code,” in In-

ternational Conference on Machine Learning. JMLR.org, 2014, pp. 649–657.

[192] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering. IEEE

Computer Society, 2014, pp. 269–280.

[193] P. Gage, “A new algorithm for data compression,” C Users Journal, vol. 12, no. 2, pp. 23–38,

1994.

157

[194] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword

tokenizer and detokenizer for neural text processing,” arXiv preprint arXiv:1808.06226,

2018.

[195] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” arXiv

preprint arXiv:2005.14165, 2020.

[196] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu

et al., “Graphcodebert: Pre-training code representations with data flow,” arXiv preprint

arXiv:2009.08366, 2020.

[197] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[198] N. Smith, D. van Bruggen, and F. Tomassetti, “Javaparser: visited,” Leanpub, oct. de, 2017.

[199] J. Saraiva, C. Bird, and T. Zimmermann, “Products, developers, and milestones: how should

i build my n-gram language model,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering. ACM, 2015, pp. 998–1001.

[200] M. Odersky, L. Spoon, and B. Venners, Programming in scala. Artima Inc, 2008.

[201] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based representation for

predicting program properties,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 404–419, 2018.

[202] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating sequences from structured

representations of code,” arXiv preprint arXiv:1808.01400, 2018.

[203] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed represen-

tations of code,” Proceedings of the ACM on Programming Languages, vol. 3, no. POPL,

pp. 1–29, 2019.

158

[204] Y. David, U. Alon, and E. Yahav, “Neural reverse engineering of stripped binaries using

augmented control flow graphs,” Proceedings of the ACM on Programming Languages,

vol. 4, no. OOPSLA, pp. 1–28, 2020.

[205] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and

accurate source code differencing,” in Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering. ACM, 2014, pp. 313–324.

[206] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu et al.,

“A survey on visual transformer,” arXiv preprint arXiv:2012.12556, 2020.

[207] X. Li, G. Li, L. Liu, M. Meng, and S. Shi, “On the word alignment from neural machine

translation,” in Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, 2019, pp. 1293–1303.

[208] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing help?” in Advances

in Neural Information Processing Systems 32: Annual Conference on Neural Information

Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada,

2019, pp. 4696–4705.

[209] T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler divergence,” IEEE

Transactions on Information Theory, vol. 60, no. 7, pp. 3797–3820, 2014.

[210] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation

of machine translation,” in Proceedings of the 40th annual meeting of the Association for

Computational Linguistics. ACL, 2002, pp. 311–318.

[211] N. Tran, H. Tran, S. Nguyen, H. Nguyen, and T. Nguyen, “Does bleu score work for code

migration?” in 2019 IEEE/ACM 27th International Conference on Program Comprehension

(ICPC). IEEE, 2019, pp. 165–176.

159

[212] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[213] G. Klein, Y. Kim, Y. Deng, V. Nguyen, J. Senellart, and A. M. Rush, “Opennmt: Neural

machine translation toolkit,” in Proceedings of the 13th Conference of the Association for

Machine Translation in the Americas, AMTA 2018, Boston, MA, USA, March 17-21, 2018 -

Volume 1: Research Papers. Association for Machine Translation in the Americas, 2018,

pp. 177–184.

[214] R. L. Russell and C. Reale, “Multivariate uncertainty in deep learning,” IEEE Transactions

on Neural Networks and Learning Systems, 2021.

[215] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7794–7803.

[216] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and

T. Lillicrap, “A simple neural network module for relational reasoning,” arXiv preprint

arXiv:1706.01427, 2017.

[217] H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks for image recognition,”

in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.

3464–3473.

[218] P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens, “Stand-alone

self-attention in vision models,” arXiv preprint arXiv:1906.05909, 2019.

[219] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recognition,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.

10 076–10 085.

160

[220] Y. Li, T. Yao, Y. Pan, and T. Mei, “Contextual transformer networks for visual recognition,”

arXiv preprint arXiv:2107.12292, 2021.

[221] J. Yao, D. Wang, H. Hu, W. Xing, and L. Wang, “Adcnn: Towards learning adaptive dilation

for convolutional neural networks,” Pattern Recognition, vol. 123, p. 108369, 2022.

[222] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for com-

puter vision?” Advances in neural information processing systems, vol. 30, 2017.

[223] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep

learning library,” Advances in neural information processing systems, vol. 32, pp. 8026–

8037, 2019.

[224] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR (Poster),

2015.

[225] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of the trade. Springer,

1998, pp. 55–69.

[226] D. Wang, Y. Li, L. Wang, and B. Gong, “Neural networks are more productive teachers

than human raters: Active mixup for data-efficient knowledge distillation from a black-

box model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 1498–1507.

[227] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni, “Oxiod: The dataset

for deep inertial odometry,” arXiv preprint arXiv:1809.07491, 2018.

[228] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr: Cali-

brating the extrinsics of multiple imus and of individual axes,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 4304–4311.

161

[229] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, D. Cremers, R. Siegwart,

and W. Burgard, “Towards a benchmark for rgb-d slam evaluation,” in Rgb-d workshop on

advanced reasoning with depth cameras at robotics: Science and systems conf.(rss), 2011.

162

	Effficient Graph-based Computation and Analytics
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: BACKGROUND AND LITERATURE REVIEW
	2.1 Detecting Trends in Dynamic Social Networks
	2.1.1 Theoretical Aspects of Social Network Analysis
	2.1.2 Technical Aspects of Social Network Analysis

	2.2 Semantics-aware Optimizations for Big Data Applications
	2.3 Graph Transformer for Automated Programming Repair
	2.4 Contextual Transformer For Inertial Navigation

	CHAPTER 3: DETECTING TRENDS IN DYNAMIC SOCIAL MEDIA NETWORKS
	3.1 Introduction and Motivation
	3.2 Interaction Models for Dynamic Trend Detection
	3.2.1 Model Notation
	3.2.2 Benchmark Models
	3.2.3 Random Interaction Model
	3.2.4 Preferential Interaction Model
	3.2.5 Measurement of Agent Activity

	3.3 Experiment Design
	3.3.1 Data Description
	3.3.2 Datasets and Experimental Setup
	3.3.3 Experimental Setup
	3.3.4 Evaluation Metrics

	3.4 Experimental Finding
	3.4.0.1 Model Comparison Across Different Dates
	3.4.0.2 Model Comparison Across Different Window Sizes

	3.4.1 Model Comparison Using Frobenius Loss
	3.4.2 Structural Analysis of Social Networks
	3.4.3 Case Studies of User Interaction Patterns
	3.4.4 Implications

	CHAPTER 4: SEMANTICS-AWARE OPTIMIZATIONS FOR BIG DATA APPLICATIONS
	4.1 Introduction and Motivation
	4.2 System Overview
	4.2.1 Architecture
	4.2.2 Performance Problems

	4.3 Semantics-Aware Data Model
	4.3.1 Attribute-Based Data Abstraction
	4.3.2 Primitive Operations
	4.3.3 Data Operational Graph

	4.4 Optimization Strategies
	4.4.1 Cache Management
	4.4.2 Operation Reordering
	4.4.3 Element Pruning

	4.5 Experiment and Evaluation
	4.5.1 Benchmarks
	4.5.2 Effectiveness Assessment
	4.5.3 Performance Behavior
	4.5.4 System Overhead

	CHAPTER 5: GRAPH TRANSFORMER FOR AUTOMATED PROGRAM REPAIR
	5.1 Introduction and Motivation
	5.2 System Overview
	5.3 Pre-Processing: Context Abstraction
	5.3.1 Token Pair Encoding
	5.3.2 Taxonomy, Lexical Scope, and Idioms
	5.3.3 Semantics-preserved and Scope-oriented Rename
	5.3.4 Context Path

	5.4 Code Translation and Context-aware Alignment
	5.4.1 Token and Context Embedding
	5.4.2 Context-aware Attention
	5.4.3 Multi-task Learning: Code Translation and Context Alignment
	5.4.4 Patch Generation via Beam Search

	5.5 Research Questions
	5.5.1 Quality of Context Abstraction
	5.5.2 Overall Model Performance
	5.5.3 Semantic Bug Repair

	5.6 Experiment and Evaluation
	5.6.1 Dataset
	5.6.2 Model and Training Setting
	5.6.3 Results of RQ1
	5.6.4 Results of RQ2
	5.6.5 Results of RQ3

	CHAPTER 6: CONTEXTUAL TRANSFORMER FOR INERTIAL NAVIGATION
	6.1 Introduction and Motivation
	6.2 System Overall
	6.3 Attention In Inertial Navigation
	6.4 Jointly Learning Velocity and Covariance
	6.5 Experiment and Evaluation
	6.5.1 Dataset
	6.5.2 Baseline
	6.5.3 Evaluation Metrics
	6.5.4 Overall Performance
	6.5.5 Ablation Study

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	7.1 Detecting Trends in Dynamic Social Networks
	7.1.1 Summary of Findings
	7.1.2 Contributions and Limitations
	7.1.3 Future Directions

	7.2 Semantics-aware Optimizations for Big Data Applications
	7.3 Graph Transformer for Automated Programming Repair
	7.4 Contextual Transformer For Inertial Navigation

	LIST OF REFERENCES

