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ABSTRACT

This dissertation focuses on the effects of distributed delays modeled by ’weak generic

kernels’ on the collective behavior of coupled nonlinear systems. These distributed de-

lays are introduced into several well-known periodic oscillators such as coupled Landau-

Stuart and Van der Pol systems, as well as coupled chaotic Van der Pol-Rayleigh and

Sprott systems, for a variety of couplings including diffusive, cyclic, or dynamic ones. The

resulting system is then closed via the ’linear chain trick’ and the linear stability analysis

of the system and conditions for Hopf bifurcations that initiate oscillations are investi-

gated. A variety of dynamical regimes and transitions between them result. As an exam-

ple, in certain cases the delay produces transitions from amplitude death (AD) or oscilla-

tion death (OD) regimes to Hopf bifurcation-induced periodic behavior, where typically

we observe the delayed limit cycle shrinking or growing as the delay is varied towards

or away from the bifurcation point respectively. The conditions for transition between

AD parameter regimes and OD parameter regimes are investigated for systems in which

OD is possible. Depending on the coupling, these transitions are mediated by pitchfork

or transcritical bifurcations. The systems are then investigated numerically, comparing

with the predictions from the linear stability analysis and previous work. In several cases

the various transitions among AD, OD and periodic domains that we observe are more

intricate than the simple AD states, and the rough boundaries of the parameter regimes

where they occur, which have been predicted by linear stability analysis and also exper-

imentally verified in earlier work. The final chapter extends these studies by including

the effects of periodically amplitude modulated distributed delays in both position and

velocity. The existence of quasiperiodic solutions motivates the derivation of a second

slow flow, together with a comparison of results and predictions from the second slow
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flow and the numerical results, as well as using the second slow flow to approximate the

radii of the toroidal attractor. Finally, the effects of varying the delay parameter are briefly

considered.
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CHAPTER 1: INTRODUCTION

Unlike the effects of discrete delay, distributed delay effects have not been systematically

investigated in coupled nonlinear oscillatory and chaotic systems. This dissertation un-

dertakes a systematic treatment of this topic, including a variety of coupled systems, as

well as several commonly employed coupling schemes which admit diverse cooperative

behaviors both in the undelayed and delayed models. Given the large number of systems

and couplings we consider, rather than an overall introduction to the entire dissertation,

we felt it would provide clarity and ease of understanding if detailed introductions were

included in each of the following chapters to the various systems and couplings treated

there. Hence, that is the style of presentation that has been selected.

1



CHAPTER 2: DISTRIBUTED DELAY EFFECTS ON COUPLED VAN

DER POL OSCILLATORS, AND A CHAOTIC VAN DER

POL-RAYLEIGH SYSTEM WITH PARAMETRIC FORCING

2.1 Introduction

As is well-known, nonlinear dynamical systems, especially coupled ones, are of wide

interest in many areas of science and technology. When such systems which, in isolation

are capable of a great variety of behaviors, are coupled, a host of novel phenomena are

seen. These depend on the specific features, both of the individual systems, as well as the

type of coupling.

One important area of application of such systems is what might imprecisely be referred

to as ’stabilization’, i.e., the creation of simpler system attractors via the coupling. The

best known among these is suppression of oscillations, which is most often termed as

Amplitude Death (AD) [1], even when the uncoupled systems themselves do not exhibit

such stationary behavior. Coupling-induced AD is an instance of a more general phe-

nomenon that may include actual cessation of oscillations, or the conversion of chaotic

dynamics to periodic or quasiperiodic dynamics. In the case of oscillation suppression

by coupling, two separate phenomena are now recognized. The first is suppression of

oscillation to a single or homogeneous steady state (or AD), versus the second or Oscilla-

tion Death (OD) [2], where the oscillators asymptotically populate different fixed points

or ’inhomogeneous steady states’, some of which may not have been stable, or perhaps

not even present, for the uncoupled oscillators.

Both AD and OD are known to occur in various settings. These are reviewed in [1]- [2],
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and include mismatched oscillators [3]- [7], delayed interactions [8]- [12] (including dis-

tributed delays [13] and cumulative signals [14]- [15]), conjugate coupling [16]- [20], dy-

namic coupling [21], nonlinear coupling [22]- [23], linear augmentation [24]- [25], velocity

coupling [1], and other schemes.

In this chapter, we consider the effect of integral feedback terms over all past times, or

distributed delays, in detail on a variety of coupled systems. While discrete delays have

been considered in some detail, distributed delay effects are less-investigated, although

they are known to provide stronger AD or OD effects. In order to facilitate analytical

investigation to the extent possible, we use the so-called ’chain trick’ together with the

’weak generic kernel’ form of distributed delay [27]- [28] for the integral feedback terms

over all past times, or distributed delays. We consider the effect of incorporating such

delays in three different models viz. two different Van der Pol type oscillators, and a

chaotic oscillator [29].

The remainder of this chapter is organized as follows. Section 2 briefly reviews the lin-

ear stability analysis of the three oscillator systems above in the absence of delay, while

Section 3 repeats that analysis with the inclusion of ’weak generic kernel’ delays in some

nonlinear interaction terms, so as to get a first set of changes to the dynamics caused by

these modified terms. Section 4 considers detailed numerical results contrasting the be-

havior of the undelayed systems to the modifications created by the weak generic delays.

Finally, Section 5 summarizes the results and conclusions.
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2.2 Linear Stability

In this section we briefly recapitulate at the linear stability of the undelayed systems we

will be considering.

2.2.1 Van der Pol Type I

We will first look at a Van der Pol Equation which we will call Type I, which is given

by [26]

ẍ1 + εẋ1(1− (1 + ρ2)x21 +
1

2
ρ2x41) + x1 = εβ(ẋ2 − ẋ1)

ẍ2 + εẋ2(1− (1 + ρ2)x22 +
1

2
ρ2x42) + x2 = εβ(ẋ1 − ẋ2) (2.1)

where for ρ = 0 and ε < 0 the left hand sides are the usual Van der Pol oscillators. In

order to work with the system we first convert it in to a first order system by defining

u1(t) = x1(t), u2(t) = ẋ1(t) and u3(t) = x2(t), u4(t) = ẋ2(t). which gives:

u̇1 = u2

u̇2 = −εu2(1− (1 + ρ2)u21 +
1

2
ρ2u41)− u1 + εβ(u4 − u2)

u̇3 = u4

u̇4 = −εu4(1− (1 + ρ2)u23 +
1

2
ρ2u43)− u3 + εβ(u2 − u4) (2.2)

The only fixed point of this system is the trivial one P :

P = (u1, u2, u3, u4) = (0, 0, 0, 0) (2.3)
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The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.2) at P satisfy:

λ4 + 2ε(1 + β)λ3 + (2 + ε2 + 2βε2)λ2 + 2ε(1 + β)λ+ 1 = 0 (2.4)

2.2.2 Van der Pol Type II

Next we will look at another Van der Pol Equation which we will call Type II, which is

given by [26]

ẍ1 + εẋ1(x
2
1 − α1) + ω2

1x1 = εβ(ẋ2 − ẋ1)

ẍ2 + εẋ2(x
2
2 − α2) + ω2

2x2 = εβ(ẋ1 − ẋ2) (2.5)

where αi > 0 and β ∈ R. In order to work with the system we first convert it in to a

first order system by defining u1(t) = x1(t), u2(t) = ẋ1(t) and u3(t) = x2(t), u4(t) = ẋ2(t).

which gives:

u̇1 = u2

u̇2 = −εu2(u21 − α1) + ω2
1u1 + εβ(u4 − u2)

u̇3 = u4

u̇4 = −εu4(u23 − α2) + ω2
2u3 + εβ(u2 − u4) (2.6)

The only fixed point of this system is again the trivial one P :

P = (u1, u2, u3, u4) = (0, 0, 0, 0) (2.7)
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The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.6) at P satisfy:

λ4 − (α1 + α2 − 2β)ελ3 + (α1(α2 − β)ε2 − α2βε
2 + ω2

1 + ω2
2)λ2

+ ε(−α2ω
2
1 − α1ω

2
2 + β(ω2

1 + ω2
2))λ+ ω2

1ω
2
2 = 0 (2.8)

2.2.3 Chaotic System

The chaotic system we consider is given by [29]

ẍ+ p21x = ε[F1(x, y, ẋ, ẏ, t) +Mλ21F2(x, y, ẋ, ẏ, t)]

ÿ + p22y = ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t)] (2.9)

where

F1(x, y, ẋ, ẏ, t) = −Fd1 − γ1(ψ1y − ψ2x)3 + µ cos(2θt)(η1y − η2x)

F2(x, y, ẋ, ẏ, t) = −Fd2 − γ2χ3(x− y)3 − µ cos(2θt)(η1y − η2x)

Fd1(x, y, ẋ, ẏ, t) =
[
−α1 + β1(ψ1ẏ − ψ2ẋ)2

]
(ψ1ẏ − ψ2ẋ)

Fd2(x, y, ẋ, doty, t) =
[
−α2 + β2χ

2(x− y)2
]
χ(ẋ− ẏ) (2.10)

and

χ =
1

λ21 − λ22
, ψ1 = λ21χ, ψ2 = λ22χ, η1 = ψ1 + χ, η2 = ψ2 + χ (2.11)
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and µ ∈ (5.3, 6.2). In order to work with the system we first convert it in to a first-order

system by defining x1(t) = x(t), x2(t) = ẋ(t), y1(t) = y(t), y2(t) = ẏ(t) which gives:

ẋ1 = x2

ẋ2 = −p21x1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ẏ1 = y2

ẏ2 = −p22y1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t) (2.12)

which has the fixed point:

P0 = (x1,0, x2,0, y1,0, y2,0) = (0, 0, 0, 0) (2.13)

Next we convert the system to autonomous form by defining T (t) = t:

Ṫ = 1

ẋ1 = x2

ẋ2 = −p21x1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ẏ1 = y2

ẏ2 = −p22y1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t) (2.14)

The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.14) at P0 are given by:

f(λ) = λ(λ4 + b1λ
3 + b2λ2 + b3λ+ b4) = 0 (2.15)
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with

b1 = (−α1εψ1 + α1εψ2 − α2χελ21M + α2χελ22M) (2.16)

b2 =
(
−α2

1ε
2ψ1ψ2 + ε2(α2χλ21M − α1ψ1)(α2χλ22M − α1ψ2)

+α1α2χε
2λ21Mψ1 + α1α2χε

2λ22Mψ2 − α2
2χ

2ε2λ21λ22M
2

+εη1µ(λ22M − 1) cos(2Tθ)− εη2µ(λ21M − 1) cos(2Tθ) + p21 + p22
)

(2.17)

b3 =
(
ε2η1µ(λ21M − 1) cos(2Tθ)(α2χλ22M − α1ψ2)

+ε2η2µ(λ22M − 1) cos(2Tθ)(α2χλ21M − α1ψ1)

+α1ε
2η2µψ1(λ21M − 1) cos(2Tθ) + α1εψ2

(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
−α1εp

2
1ψ1 − α2χε

2η2λ22Mµ(λ21M − 1) cos(2Tθ)

−α2χελ21M
(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
+ α2χελ22Mp21

)
(2.18)

b4 =
(
ε2η1η2µ

2(λ21M − 1)(λ22M − 1) cos2(2Tθ)

−εη2µ(λ21M − 1) cos(2Tθ)
(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
+p21

(
εη1µ(λ22M − 1) cos(2Tθ) + p22

))
(2.19)

2.3 Linear Stability and Hopf Bifurcation Analysis of the Delayed Systems

In this section we introduce the delayed systems and repeat the linear stability and Hopf

bifurcation analysis on them.
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2.3.1 Delayed Van der Pol Type I

Next we consider here the case where the Van der Pol Type I oscillators are coupled with

a weak distributed time delay in the first equation:

ẍ1 + εẋ1(1− (1 + ρ2)x21 +
1

2
ρ2x41) + x1 = εβ

(∫ t

−∞
ẋ2(τ)ae−a(t−τ)dτ − ẋ1

)
ẍ2 + εẋ2(1− (1 + ρ2)x22 +

1

2
ρ2x42) + x2 = εβ(ẋ1 − ẋ2) (2.20)

By defining

u5(t) =

∫ t

−∞
ẋ2(τ)ae−a(t−τ)dτ (2.21)

we can reduce the system (2.20) to the system of differential equations:

ẍ1 + εẋ1(1− (1 + ρ2)x21 +
1

2
ρ2x41) + x1 = εβ (u5 − ẋ1)

ẍ2 + εẋ2(1− (1 + ρ2)x22 +
1

2
ρ2x42) + x2 = εβ(ẋ1 − ẋ2)

u̇5 = a(u4 − u5) (2.22)

As in the undelayed case, in order to work with this system we convert it to a first order

system by defining u1(t) = x1(t), u2(t) = ẋ1(t) and u3(t) = x2(t), u4(t) = ẋ2(t). which
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gives:

u̇1 = u2

u̇2 = −εu2(1− (1 + ρ2)u21 +
1

2
ρ2u41)− u1 + εβ(u5 − u2)

u̇3 = u4

u̇4 = −εu4(1− (1 + ρ2)u23 +
1

2
ρ2u43)− u3 + εβ(u2 − u4)

u̇5 = a(u4 − u5) (2.23)

The only fixed point of this system is the trivial one P :

P = (u1, u2, u3, u4, u5) = (0, 0, 0, 0, 0) (2.24)

The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.23) at P satisfy:

λ5 + (a+ 2ε(1 + β))λ4 + (2 + 2a(1 + β)ε+ (1 + β)2ε2)λ3

+ (2ε(1 + β) + a(2 + (1 + 2β)ε2))λ2 + (1 + 2a(1 + β)ε)λ+ a = 0 (2.25)

For P to be a stable fixed point within the linearized analysis, all the eigenvalues must

have negative real parts. From the Routh-Hurwitz criteria, the necessary and sufficient
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conditions for (2.23) to have Re(λ1,2,3,4,5,6) < 0 are:

b1 > 0 (2.26)

b5 > 0 (2.27)

b1b2 − b3 > 0 (2.28)

b1(b2b3 + b5)− b23 − b21b4 > 0 (2.29)

b1(b2b3b4 − b22b5 + 2b4b5)− b23b4 − b25 + b2b3b5 − b21b24 > 0 (2.30)

When the final condition (2.30) becomes an equality, the characteristic polynomial has

one pair of purely imaginary complex conjugate roots. Here, we consider a to be the

bifurcation parameter, and denote the left hand side of (2.30) by f(a), a fourth degree

polynomial in a of the form:

f(a) = d4a
4 + d3a

3 + d2a
2 + d1a

1 + d0 (2.31)

where

d0 = 4(1 + β)4ε4

d1 = 2(1 + β)3(4 + 8β + 3β2)ε5

d2 = ε4(8β5ε2 + 4(2 + ε2) + 8β(4 + 3ε2) + 8β3(3 + 8ε2)

+ β4(3 + 36ε2) + β2(44 + 56ε2))

d3 = 2(4 + 20β + 37β2 + 31β3 + 10β4)ε5

d4 = 4(1 + β)2(1 + 2β)ε4 (2.32)

Here we note that this condition is for a possible Hopf bifurcation setting (and the re-
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maining Routh-Hurwitz conditions) are independent of ρ because the jacobian at the fixed

point is independent of ρ. We reduce the conditions (2.26) to (2.29) along with the con-

dition f(a) = 0 using computer algebra, to obtain conditions on the parameters (ε, β, a)

that possibly yield a Hopf bifurcation in the delayed system, contingent on the additional

transversality condition in the Hopf bifurcation theorem.

For example, employing MATHEMATICA one of the several sets of conditions for a Hopf

bifurcation we obtain is that ε < −2 and β < −1, together with the requirement that a be

the fourth root1 of the polynomial:

4 + 16β + 24β2 + 16β3 + 4β4 + (8ε+ 40βε+ 78β2ε+ 74β3ε+ 34β4ε+ 6β5ε)x

+ (8 + 32β + 44β2 + 24β3 + 3β4 + 4ε2 + 24βε2 + 56β2ε2 + 64β3ε2

+ 36β4ε2 + 8β5ε2)x2 + (8ε+ 40βε+ 74β2ε+ 62β3ε+ 20β4ε)x3

+ (4 + 16β + 20β2 + 8β3)x4 (2.33)

In particular we can fix ε = −10 and β = −2, and pick a as the fourth root of the polyno-

mial −4(−1 + 306x2 + 120x3 + 3x4), that a ≈ 0.0565419. So we have that the parameter set

(ε, β, a) = (−10,−2, 0.0565419) may possibly result in a Hopf bifurcation in the delayed

Van der Pol Type I system for any value of the parameter ρ.

1roots ordered as in the undelayed case
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2.3.2 Delayed Van der Pol Type II

Now we consider here the case where the Van der Pol Type II oscillators are coupled with

a weak distributed time delay in the first equation:

ẍ1 + εẋ1(x
2
1 − α1) + ω2

1x1 = εβ

(∫ t

−∞
ẋ2(τ)ae−a(t−τ)dτ − ẋ1

)
ẍ2 + εẋ2(x

2
2 − α2) + ω2

2x2 = εβ(ẋ1 − ẋ2) (2.34)

By defining

u5(t) =

∫ t

−∞
ẋ2(τ)ae−a(t−τ)dτ

we can reduce the system (2.20) to the system of differential equations:

ẍ1 + εẋ1(x
2
1 − α1) + ω2

1x1 = εβ

(∫ t

−∞
ẋ2(τ)e−a(t−τ)dτ − ẋ1

)
ẍ2 + εẋ2(x

2
2 − α2) + ω2

2x2 = εβ(ẋ1 − ẋ2)

u̇5 = a(u4 − u5) (2.35)

As in the undelayed case, we convert this it to a first order system by defining u1(t) =

x1(t), u2(t) = ẋ1(t) and u3(t) = x2(t), u4(t) = ẋ2(t). which gives:

u̇1 = u2

u̇2 = −εu2(u21 − α1) + ω2
1u1 + εβ(u5 − u2)

u̇3 = u4

u̇4 = −εu4(u23 − α2) + ω2
2u3 + εβ(u2 − u4)

u̇5 = a(u4 − u5) (2.36)
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The only fixed point of the delayed system is the trivial one P :

P = (u1, u2, u3, u4, u5) = (0, 0, 0, 0, 0) (2.37)

The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.36) at P satisfy:

λ5 + (a− (α1 + α2 − 2β)ε)λ4 + (−a(α1 + α2 − 2β)ε+ α1(α2 − β)ε2

− α2βε
2 + β2ε2 + ω2

1 + ω2
2)λ3 + (a(α1(α2 − β)ε2 − α2βε

2 + ω2
1 + ω2

2)

+ ε(−α2ω
2
1 − α1ω

2
2 + β(ω2

1 + ω2
2)))λ2 + (ω2

1ω
2
2 + aε(−α2ω

2
1 − α1ω

2
2

+ β(ω2
1 + ω2

2)))λ+ aω2
1ω

2
2 = 0 (2.38)

From the Routh-Hurwitz criteria, the necessary and sufficient conditions for (2.23) to have

Re(λ1,2,3,4,5,6 < 0) are:

b1 > 0 (2.39)

b5 > 0 (2.40)

b1b2 − b3 > 0 (2.41)

b1(b2b3 + b5)− b23 − b21b4 > 0 (2.42)

b1(b2b3b4 − b22b5 + 2b4b5)− b23b4 − b25 + b2b3b5 − b21b24 > 0 (2.43)

As before, the final condition (2.30) becoming an equality corresponds to the characteristic

polynomial having one pair of purely imaginary complex conjugate roots, corresponding

to a possible Hopf bifurcation setting. Here we consider a to be the bifurcation parameter

and denote the left hand side of (2.30) by f(a) which is a fourth degree polynomial in a
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given by:

f(a) = d4a
4 + d3a

3 + d2a
2 + d1a

1 + d0 (2.44)

whose coefficients which depend on α1, α2, ω1, ω2, ε, and β are too large to include here.

In order to handle the reduction of the Routh-Hurwitz conditions we need to first fix val-

ues for ε, α1, α2 and ω1. We reduce the conditions (2.39) to (2.42) along with the condition

f(a) = 0 using computer algebra, to obtain conditions on the remaining parameters ω2, β,

and a that possibly yield a Hopf bifurcation to occur in the delayed system.

For example, one of the several sets of conditions for a Hopf bifurcation we obtain is by

first fixing ε = 5, ω1 = 3, α1 = 2 and α2 = 4. After reducing the Routh-Hurwitz conditions

we can take β = 2.8 and ω2 = 12 to get a ≈ 4.24936 or a ≈ 4.34771. Thus we have two

parameter sets

(ε, α1, α2, ω1, ω2, β, a) = (5, 2, 4, 3, 12, 2.8, 4.24936)

(ε, α1, α2, ω1, ω2, β, a) = (5, 2, 4, 3, 12, 2.8, 4.34771)

(2.45)

that possibly produce Hopf bifurcations in the delayed Van der Pol Type II system.

2.3.3 Delayed Chaotic System

Now we consider here the case where the oscillators in [30] are coupled with a weak

distributed time delay in the first equation:

ẍ+ p21x = ε[F ∗1 (x, y, ẋ, ẏ, z, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ÿ + p22y = ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t) (2.46)
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where F1, F2, Fd1, Fd2 are given in (2.10), the parameters given in (2.11), and

F ∗1 (x, y, ẋ, ẏ, z, t) = −Fd1 − γ1(ψ1y − ψ2x)3 + µ cos(2θt)(η1z − η2x) (2.47)

with

z(t) =

∫ t

−∞
y(τ)ae−a(t−τ)dτ (2.48)

and we can reduce (2.46) to the system of differential equations:

ẍ+ p21x = ε[F ∗1 (x, y, ẋ, ẏ, z, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ÿ + p22y = ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t)

ż − a(y − z) = 0 (2.49)

As in the undelayed case, we first convert it in to a first-order system by defining x1(t) =

x(t), x2(t) = ẋ(t), y1(t) = y(t), y2(t) = ẏ(t) which gives:

ẋ1 = x2

ẋ2 = −p21x1 + ε[F ∗1 (x, y, ẋ, ẏ, z, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ẏ1 = y2

ẏ2 = −p22y1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t)

ż = a(y1 − z) (2.50)

The fixed point of the delayed system is:

P0 = (x1,0, x2,0, y1,0, y2,0, z0) = (0, 0, 0, 0, 0) (2.51)
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Next we convert the system to an autonomous system by defining T (t) = t:

Ṫ = 1

ẋ1 = x2

ẋ2 = −p21x1 + ε[F ∗1 (x, y, ẋ, ẏ, z, t) +Mλ21F2(x, y, ẋ, ẏ, t)

ẏ1 = y2

ẏ2 = −p22y1 + ε[F1(x, y, ẋ, ẏ, t) +Mλ22F2(x, y, ẋ, ẏ, t)

ż = a(y1 − z) (2.52)

The eigenvalues of the characteristic equation (to be considered later) for the Jacobian

matrix of (2.52) at P0 satisfy:

λ(λ5 + b1λ
4 + b2λ

3 + b3λ
2 + b4λ+ b5) = 0 (2.53)

where
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b1 = a− α1εψ1 + α1εψ2 − α2χελ21M + α2χελ22M (2.54)

b2 = −aα1εψ1 + aα1εψ2 − aα2χελ21M + aα2χελ22M − α2
1ε

2ψ1ψ2

+ ε2(α2χλ21M − α1ψ1)(α2χλ22M − α1ψ2) + α1α2χε
2λ21Mψ1

+ α1α2χε
2λ22Mψ2 − α2

2χ
2ε2λ21λ22M

2 + εη1µ(λ22M − 1) cos(2Tθ)

− εη2µ(λ21M − 1) cos(2Tθ) + p21 + p22 (2.55)

b3 = −aα2
1ε

2ψ1ψ2 + aε2(α2χλ21M − α1ψ1)(α2χλ22M − α1ψ2)

+ aα1α2χε
2λ21Mψ1 + aα1α2χε

2λ22Mψ2 − aα2
2χ

2ε2λ21λ22M
2

+ a
(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
− aεη2µ(λ21M − 1) cos(2Tθ) + ap21

+ ε2η2µ(λ22M − 1) cos(2Tθ)(α2χλ21M − α1ψ1)

+ α1ε
2η2µψ1(λ21M − 1) cos(2Tθ) + α1εψ2

(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
− α1εp

2
1ψ1 − α2χε

2η2λ22Mµ(λ21M − 1) cos(2Tθ)− α2χελ21M (εη1µ(λ22M

−1) cos(2Tθ) + p22
)

+ α2χελ22Mp21 (2.56)

b4 = aε2η1µ(λ21M − 1) cos(2Tθ)(α2χλ22M − α1ψ2) + aε2η2µ(λ22M

− 1) cos(2Tθ)(α2χλ21M − α1ψ1) + aα1ε
2η2µψ1(λ21M − 1) cos(2Tθ)

+ aα1εψ2

(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
− aα1εp

2
1ψ1

− aα2χε
2η2λ22Mµ(λ21M − 1) cos(2Tθ)− aα2χελ21M (εη1µ(λ22M

−1) cos(2Tθ) + p22
)

+ aα2χελ22Mp21 − εη2µ(λ21M − 1) cos(2Tθ) (εη1µ(λ22M

−1) cos(2Tθ) + p22
)

+ p21
(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
(2.57)

b5 = aε2η1η2µ
2(λ21M − 1)(λ22M − 1) cos2(2Tθ)− aεη2µ(λ21M

− 1) cos(2Tθ)
(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
+ ap21

(
εη1µ(λ22M − 1) cos(2Tθ) + p22

)
(2.58)

For P0 to be a stable fixed point within the linearized analysis, all the eigenvalues must
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have negative real parts. Since λ0 = 0 is a root of the characteristic polynomial, we can

consider the remaining eigenvalues by looking at the polynomial λ5 + b1λ
4 + b2λ

3 + b3λ
2 +

b4λ + b5, and from the Routh-Hurwitz criteria, the necessary and sufficient conditions

forthe roots of this polynomial to have Re(λ1,2,3,4,5 < 0) are:

b1 > 0 (2.59)

b5 > 0 (2.60)

b1b2 − b3 > 0 (2.61)

b1(b2b3 + b5)− b23 − b21b4 > 0 (2.62)

b1(b2b3b4 − b22b5 + 2b4b5)− b23b4 − b25 + b2b3b5 − b21b24 > 0 (2.63)

When the final condition (2.63) becomes an equality, as before the characteristic polyno-

mial has a pair of purely imaginary complex conjugate roots. Here we consider a to be

the bifurcation parameter and denote the left hand side of (2.63) by f(a) which is a fourth

degree polynomial in a whose coefficients, which are too large to include, depend on

the remaining parameters. In order to solve the above conditions for parameter regimes

which contains a Hopf bifurcation, we fix values for all parameters except µ and a. Then,

with our fixed parameter values, we reduce the conditions (2.59) to (2.62) along with the

condition f(a) = 0 using computer algebra, to either obtain conditions on the µ and a that

guarantee a Hopf bifurcation to occur in the delayed system or see that a Hopf bifurcation

is not possible for the parameter values that we have chosen.
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In particular we will consider the following parameter set:

α1 = 0.01, α2 = 0.01, β1 = 0.05, β2 = 0.05, γ1 = 0.1, γ2 = 0.2,M = 0.5,

p1 = 0.766, p2 = 1.168, λ21 = 4.754, λ22 = −0.421, χ = 0.192,

ψ1 = 0.919, ψ2 = −0.0813, η1 = 1.112, η2 = 0.112, θ = 1, ε = 1 (2.64)

Using these parameters, and reducing the Routh-Hurwitz conditions with computer al-

gebra shows that for no values of µ, a, and T are all of the conditions satisfied. Thus the

system does not have a Hopf bifurcation for the parameter values we have considered here.

However, a more detailed parameter search in the next section reveals a rich array of

Hopf and other bifurcations, and various dynamical behaviors, in this delayed system.

2.4 Numerical Results and Discussion

We may immediately make two additional points here regarding the Hopf bifurcation.

In general systems, the Hopf bifurcation may occur either below or above the critical

value of the system’s chosen bifurcation parameter, and one needs to test which in fact

occurs. Since we have chosen the delay a as bifurcation parameter, and larger delays

or lower a values have a stabilizing effect, we know that for our delayed Landau-Stuart

system, the post-Hopf regime is for a values larger than the aHopf value found using the

second root of the polynomial in the last equation of Section 3.1. For a < aHopf , the strong

delay stabilizes the oscillations and yields a stable fixed point. This is thus the regime of

Amplitude Death(AD) for the system caused by the delay. The a = aHopf point is thus the

exact value of the delay parameter where AD sets in, and this may be precisely pinpointed

here via the semi-analytic treatment in Section 3.1.
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Note also that, in principle, the Hopf bifurcation might be either supercritical with stable

oscillations seen above a = aHopf or at weaker delays, or subcritical where the Hopf-

created periodic orbit is unstable and coexists with the stable fixed point in the a < aHopf

or Amplitude Death regime. In the latter case, there would be no nearby system attractor

for a > aHopf , and the dynamics in that regime would feature any of the three following

scenarios: a. jumping to a distant periodic attractor if one exists, b. flying off to infinity in

finite time (an attractor at infinity), or c. an aperiodic attractor on which the system orbits

evolve.

However, here we may plausibly rule out the occurrence of this latter, subcritical Hopf

scenario. This is because the undelayed van der Pol systems are both robust oscillators

showing stable periodic behavior, that, under the effect of delay, persists in the a > aHopf

regime of a post-supercritical Hopf bifurcation, while being reduced to Amplitude Death

by stronger delays for a < aHopf . This does in fact turn out to be correct, as will be verified

in the following numerical results.

2.4.1 Van der Pol Type I

Having made these points, let us turn to numerical results for the Van der Pol Type I

equation. Here we will consider the case where ε = 10, β = −0.55, ρ = 2 and values of a

around the Hopf bifurcation value aHopf ≈ 0.549997.
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Figure 2.1: Periodic oscillations in u1 for a = 5.

Figure 2.2: The limit cycle in (u1, u2, u3) phase space for the parameters of Figure 2.1 and

the approach from the initial conditions.
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Figures 2.1 and 2.2 show the limit cycle for a = 5 above the Hopf bifurcation value aHopf .

Here we observe periodic behavior shown in Figure 2.1 for u1(t). Figure 2.2 shows the

limit cycle in (u1, u2, u3) phase space and the approach from the initial conditions. Figure

2.3 shows both the delayed (in red) and undelayed (in blue) limit cycles in u1, u2, u3)

phase space from which we can see the delay cause the limit cycle to deform causing it to

become smaller and starting to flatten out the top and bottom portions.

Figure 2.3: The deformed thinner delayed limit cycle in red and undelayed limit cycle in

blue plotted in (x2, y1, y2) phase space for the parameters of Figure 3.1.

Figure 2.4 shows both the limit cycle for a = 0.64, just above the bifurcation point, a0 in

red, and also for the undelayed system in blue, in (u1, u2, u3) phase space. Here we can

see that, as parameter a is further decreased towards the bifurcation value, the increased

delay continues to deform and shrink the original limit cycle .
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Figure 2.4: The delayed limit cycle in red and undelayed limit cycle in blue plotted in

(u1, u2, u3) phase space for a = 0.64.

Next in Figures 2.5 and 2.6 show the delayed solution for a = 0.4 below the bifurcation

value a0 and starting at initial conditions close to the origin:

(0.001, 0.003,−0.005, 0.009,−0.005). (2.65)

Here we see that below the bifurcation the delayed system experiences amplitude death

when we start close enough to the origin.
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Figure 2.5: Amplitude death in y1 for a = 0.4 and initial conditions.

Figure 2.6: Amplitude death in the delayed system in (u1, u2, u3) phase space.
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However, starting at initial conditions further from the origin cause the system to head

to a stable limit cycle instead as shown in Figures 2.7 and 2.8 with initial conditions:

(0.1,−0.3,−0.5, 0.9,−0.5)

Figure 2.7: Periodic Oscillations in u1 for a = 0.4.

Figure 2.8: The delayed limit cycle plotted in (u1, u2.u3) phase space for a = 0.4.
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In this delayed system, as mentioned earlier, the limit cycles in the a > aHopf regime are

very robust, which is expected since the undelayed system is well-known to demonstrate

stable periodic behavior. However, it is quite possible that these robust limit cycles might

be quickly disrupted by secondary symmetry breaking, cyclic-fold, flip, transcritical, or

Neimark-Sacker bifurcations when some other system parameter is changed. To investi-

gate this, for chosen values of a well above aHopf , we varied the other system parameters

deep into this post-Hopf regime. Th post-supercritical Hopf limit cycle proves extremely

robust under variation of all the other parameters. No further complex dynamics arises

from further bifurcations of the Hopf-created limit cycles, perhaps not very surprisingly,

because the undelayed van der Pol system is a stable oscillator over a very wide range of

these parameters.

2.4.2 Van der Pol Type II

Next we shall consider the Van der Pol Type II equation. Here we will consider the case

in section 3.3 where ε = 5, β = 2.8, α1 = 2, α2 = 4, ω1 = 3, ω2 = 12 and values of a around

the two bifurcation values a0 ≈ 4.24936 and a1 ≈ 4.34771.
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Figure 2.9: Periodic oscillations in u1 for a = 8.

Figure 2.10: The limit cycle in (u1, u2, u3) phase space for the parameters of Figure 2.9

Figures 2.9 and 2.10 show the limit cycle for a = 8 above the Hopf bifurcation value a1.
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Where we observe periodic behavior shown in Figure 2.9 for u1(t). Figure 2.10 shows the

limit cycle in (u1, u2, u3) phase space. Figure 2.11 shows both the delayed (in red) and

undelayed (in blue) limit cycles in (u1, u2, u3) phase space, from which we can see the

delay further deforming and shrinking the limit cycle.

Figure 2.11: The smaller and rotated delayed limit cycle in red and undelayed limit cycle

in blue plotted in (x2, y1, y2) phase space for the parameters of Figure 3.1.

Figure 2.12 shows the limit cycle for a = 4.36 just above the bifurcation point a1 in red,

and also for the undelayed system in blue in (u1, u2, u3) phase space. Here we can see that

as we further decrease the parameter a towards the bifurcation value the limit cycle of the

delayed equation continues to decrease in size.
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Figure 2.12: The delayed limit cycle in red and undelayed limit cycle in blue plotted in

(u1, u2, u3) phase space for a = 4.36.

Next, Figures 2.13 and 2.14 show the delayed solution for a = 4.29 between the bifurcation

points a0 and a1. In this region of a values, the origin is now stable and the delayed system

experiences amplitude death.
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Figure 2.13: Amplitude death in u1 for a = 4.29.

Figure 2.14: Amplitude death in the delayed system in (u1, u2, u3) phase space.

Figures 2.15 and 2.16 show the delayed solution for a = 4 below a0 where the origin is
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now unstable again and we see the delayed system has a stable limit cycle.

Figure 2.15: Periodic Oscillations in u1 for a = 4

Figure 2.16: The delayed limit cycle in red and undelayed limit cycle in blue plotted in

(u1, u2.u3) phase space for a = 4
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In this second delayed system too, as for the Van der Pol Type I system, the limit cycles

in the a > aHopf regime are very robust, which is expected since the corresponding unde-

layed system is well-known to demonstrate stable periodic behavior over wide ranges of

parameter space. However, it is possible that these robust limit cycles might be quickly

disrupted by secondary symmetry breaking, cyclic-fold, flip, transcritical, or Neimark-

Sacker bifurcations when some system parameter is changed. To investigate this, for

chosen values of a well above aHopf , we varied the other system parameters deep into

this post-Hopf regime. As for Van der Pol Type I, the post-supercritical Hopf limit cycle

proves extremely robust under variation of all the other parameters. No further complex

dynamics arises from additional bifurcations of the Hopf-created limit cycles, not very

surprisingly, because the corresponding undelayed system is a stable oscillator over a

very wide range of these parameters.

2.4.3 Chaotic System

Since our preliminary search for a Hopf bifurcations yielded a negative result in Section 3

for one choice of parameters, let us first vary the value of the delay parameter a and study

its effect on the system. While the effect of delay can be predicted to be stabilizing, a much

more complex set of dynamical behaviors occurs for this case, including a rich array of

evolving system attractors as a, as well as other system parameters, are varied. Hence,

the latter part of the section will also systematically consider the bifurcations and dynam-

ics as the other important parameter µ, which measures the strength of the parametric

excitation, is varied. This will systematically reveal a variety of dynamical behaviors.

Let us look at the chaotic system given in (2.52) with the parameters as in (2.11) and values

of µ in (5.3, 6.2) where chaotic behavior occurs.
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First we consider µ = 5.31 just after the system enters the region where chaotic behavior is

possible in Figure 2.17. In this case we have the undelayed orbit in the shape of a thinner

loop. We see that for large values of the delay parameter the delayed and undelayed

attractor are almost identical. Decreasing the value of a results in the delayed attractor

still having a similar shape as the undelayed system but flipped (a = 40, 60, 80). Further

decreasing a we see the delayed attractor begins to have a more symmetric and pointed

shape.

Figure 2.17: The delayed (red) and undelayed (blue) solutions of the system in the in the

case µ = 5.31 for selected values of a showing the evolution of the attractor in the delayed

system as the delay strength is varied.
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Next, Figure 2.18 shows both the delayed and undelayed attractors for comparison while

Figure 2.19 shows only the attractor of the delayed system for clarity, for various values

of the delay parameter a in the case of µ = 5.5. Here the undelayed attractor is a much

thicker version of the previous case. From these two figures we can see for very large

values of a (corresponding to very weak delay) the attractor of the delayed equation is

almost identical to the undelayed attractor in size and shape. As we decrease the value of

a (increase the strength of the delay) we see that the delayed attractor begins to become

much thinner, the previous, solidly filled out shape splitting into two to two thin loops

(a=40,60), before becoming to a single thing loop while still retaining a similar shape to

the undelayed attractor (as can be seen from the comparison figure). An exception is the

case a = 10 where we see the delay causes the solution to becomes two larger loops, one

above and one below the undelayed attractor.
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Figure 2.18: The delayed (red) and undelayed (blue) solutions of the system in the in the

case µ = 5.5 for selected values of a showing the evolution of the attractor in the delayed

system as the delay strength is varied.
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Figure 2.19: The delayed solutions of the system in the in the case µ = 5.5 for selected

values of a showing the evolution of the attractor in the delayed system as the delay

strength is varied.

Finally we consider µ = 6.19 near the end of the region where chaotic behavior is possible

as shown in Figures 2.20 and 2.21. In this case the undelayed attractor is more complicated

than the previous two cases. As in the previous two cases we also see that for large values

of the delay parameters (weak strength delay) the delayed attractor is very similar to the

undelayed attractor. However we see that as we increase the delay strength (decrease

a) the delay simplifies the behavior to a thin loop either looping around the top (such
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as a = 60) or bottom (such as a = 40) of the undelayed attractor, or taking on similar

attractor shapes to the case µ = 5.5.

Figure 2.20: The delayed (red) and undelayed (blue) solutions of the system in the in the

case µ = 6.19 for selected values of a showing the evolution of the attractor in the delayed

system as the delay strength is varied.
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Figure 2.21: The delayed solutions of the system in the in the case µ = 6.19 for selected

values of a showing the evolution of the attractor in the delayed system as the delay

strength is varied.

2.4.4 Varying the Parametric Forcing

The above gives a general idea about the effects of the delay on the system dynamics.

In order to understand the various possible dynamical regimes, and the transitions be-

tween them, more comprehensively, we shall next consider the effect of systematically

increasing the other, and perhaps most important, system parameter µ which controls the
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parametric forcing.

We first consider the case of strong delay with a = 0.1, although larger a values show

qualitatively similar behavior. At small values, up through µ = 8.27, we see periodic

dynamics, as seen in the phase plot of Figure 2.22, and the power spectral density of

Figure 2.23 which shows a single narrow peak at ω ' 0.16.

Figure 2.22: The phase space plot for µ = 8.19, and a = 0.1.
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Figure 2.23: The power spectral density for µ = 8.19, and a = 0.1

There is a sequence of Hopf bifurcations for µ ∈ (8.27, 8.28), leading to a more complex

chaotic attractor with one positive Lyapunov exponent at µ = 8.28, as seen in the phase

plot of Figure 2.24, and the broad features in the power spectral density of Figure 2.25.

Figure 2.24: The phase space plot for µ = 8.28, and a = 0.1.
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Figure 2.25: The broad chaotic features in the power spectral density for µ = 8.28, and

a = 0.1. Note the secondary single peak at ω ' 0.48.

The chaotic behavior persists over the window µ ∈ (8.28, 8.83) with Figures 2.26 and 2.27

showing the phase-space orbits and power spectrum at µ = 8.83. It is then is destroyed in

a boundary crisis for µ ∈ (8.8302, 8.8303), leading into a new symmetry broken periodic

orbit at µ = 3.44 with a dominant single peak at a second harmonic frequency ω ' 0.32

as seen in Figures 2.28 and 2.29. This corresponds to a synchronized state of the two

oscillators.
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Figure 2.26: The phase space plot for µ = 8.83 and a = 0.1.
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Figure 2.27: The broad chaotic features in the power spectral density for µ = 8.83 and

a = 0.1.
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Figure 2.28: The phase space plot for µ = 8.8303 and a = 0.1 showing the clean symmetry-

broken periodic orbit.
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Figure 2.29: The single peaked power spectral density for µ = 8.8303 and a = 0.1, with

ω ' 0.32.
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Following this, as is usually the case, there is a nearby period doubling bifurcation for

µ ∈ (8.8667, 8.8668), leading into the new orbit at µ = 8.8668 shown in Figure 2.30, with a

peak at the half frequency ω ' 0.16 and other peaks as seen in Figure 2.31. Soon after, a

Neimark bifurcation for µ ∈ (8.88, 8.89) gives rise to a second frequency ω ' 0.362, thus

leading into a quasiperiodic state of the two oscillators.

Figure 2.30: The phase space plot for µ = 8.8668 and a = 0.1 showing the period doubled

orbit.
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Figure 2.31: The power spectral density for µ = 8.8668 and a = 0.1, with ω ' 0.16 and

other peaks at ω ' 0.263, 0.37, 0.416, as well as a zero frequency.

We shall end our bifurcation sequence here for this case, as the general features are clear

by now. Clearly additional bifurcations may occur as µ is increased further, and they may

be tracked in the same way.

To conclude our numerical results, let us very briefly consider the case of weak delay with

a = 200. The range of periodic behavior with ω ' 0.16 at low values of µ now persists up

to µ ' 5.72 with the phase space plot for that value being shown in Figure 2.32.
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Figure 2.32: The phase space plot for µ = 5.72 and a = 200.

After this, a second frequency ω ' 0.265 comes in via Hopf bifurcation. Further Hopf

bifurcations lead to additional frequencies as shown in the phase space plot and power

spectral density of Figures 2.33 and 2.34 for µ = 5.73

47



Figure 2.33: The phase space plot for µ = 5.73 and a = 200 showing the clean symmetry-

broken periodic orbit.
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Figure 2.34: The power spectral density for µ = 5.73 and a = 200, with peaks at ω ' 0.265

and ω ' 0.37.
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The chaotic attractor at the culmination of the sequence of bifurcations around µ = 5.78 is

shown in the phase space plot and power spectral density plot of Figures 2.35 and 2.36.

Figure 2.35: The phase space plot for µ = 5.73 and a = 200.
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Figure 2.36: The broad features in the power spectral density for µ = 5.78, and a = 200.

As µ in raised further, the chaotic attractor is destroyed by a boundary crisis at µ ' 6.20199
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and terminates in a stable symmetry broken periodic attractor at the second harmonic

frequency of ω ' 0.32 as shown in Figures 2.37 and 2.38.

Figure 2.37: The phase space plot for µ = 6.202 and a = 200 showing the clean symmetry-

broken periodic orbit.
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Figure 2.38: The power spectral density for µ = 6.202 and a = 200, with a peak at the

second harmonic frequency of ω ' 0.32.
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We shall end our bifurcation sequence here for this case, as the general features are clear

by now, and additional bifurcations for increasing parametric forcing µ may be similarly

tracked.

2.5 Results and Conclusions

In this chapter, we consider the effect of integral feedback terms over all past times, or

distributed ’weak generic kernel’ delays, in detail on a variety of coupled systems. In

order to facilitate analytical investigation to the extent possible, we used the so-called

’chain trick’ together with the ’weak generic kernel’ form of distributed delay [27]- [28]

for the integral feedback terms over all past times, or distributed delays.

We have comprehensively analyzed the effects of distributed ’weak generic kernel’ delays

on two coupled van der Pol oscillator systems, as well as a chaotic oscillator system with

parametric forcing. Increasing the delay by reducing the delay parameter a is found to

be stabilizing, with its Hopf bifurcation value (dependent of course on the other system

parameters) being a point of exact Amplitude death for both van der Pol oscillators as

well as the chaotic van der Pol-Rayleigh parametrically forced system we consider here.

In both van der Pol systems, the Hopf-generated limit cycles for a > aHopf are very robust

under large variations of all other system parameters beyond the Hopf bifurcation point,

and do not undergo further symmetry breaking, cyclic-fold, flip, transcritical or Neimark-

Sacker bifurcations. This is to be expected as the corresponding undelayed systems are

robust oscillators over very wide ranges of their respective parameters.

Numerical simulations reveal strong distortion of the limit cycle shapes in phase space as

the parameters are pushed far into the post-Hopf regime, and also enable tracking of other
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features, such as how the oscillation amplitudes and time periods of the physical variables

on the limit cycle attractor change as the delay and other parameters are varied. For the

chaotic system, very strong delays may still lead to the onset of AD (even for relatively

large values of the system forcing which tends to oppose this stabilization phenomenon).

Varying of the other important system parameter, the parametric excitation, leads to a

rich sequence of evolving dynamical regimes, with the bifurcations leading from one into

the next being carefully tracked numerically here.
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CHAPTER 3: BIFURCATIONS AND AMPLITUDE DEATH FROM

DISTRIBUTED DELAYS IN COUPLED LANDAU-STUART

OSCILLATORS AND A SECOND PARAMETRICALLY FORCED

CHAOTIC VAN DER POL-RAYLEIGH SYSTEM

3.1 Introduction

In this chapter, we continue our analysis of the effect of distributed delays on a variety

of coupled systems. As mentioned in the introduction to the previous chapter, While

discrete delays have been considered in some detail, distributed delay effects are less-

investigated. We consider the effect of incorporating the ’weak generic kernel delays’

detailed in the last chapter into two different models viz. two different coupled Landau-

Stuart oscillators, and a different chaotic oscillator [29] from that treated in the previous

chapter.

The remainder of this chapter is organized as follows. Section 2 briefly reviews the lin-

ear stability analysis of the two Landau-Stuart oscillator systems in the absence of delay,

while Section 3 repeats that analysis with the inclusion of ’weak generic kernel’ delays in

some of the nonlinear interaction terms, thus giving a first set of modifications of the dy-

namics. The normal form at Hopf bifurcation of one of the delayed systems is derived in

Section 4. Section 5 then considers detailed numerical results contrasting the behavior of

the undelayed systems to the modifications created by the weak generic delays. Finally,

Section 6 summarizes the results and conclusions.
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3.2 Linear Stability

In this section we briefly recapitulate the linear stability of the undelayed systems we will

be considering.

3.2.1 The Landau-Stuart Equation

The coupled Landau-Stuart system is given by [8], [9], [10], [11], and [12]

ż1(t) = (1 + iω1 − |z1(t)|2)z1(t) + ε(z2(t)− z1(t))

ż2(t) = (1 + iω2 − |z2(t)|2)z2(t) + ε(z1(t)− z2(t)) (3.1)

where zi(t) are complex and ωi > 0 for i = 1, 2 and ε > 0. In order to work with the system

we first convert it in to a real system by defining zk(t) = xk(t) + iyk(t) for each k = 1, 2

which gives:

ẋ1 = x1 − ω1y1 − (x21 + y21)x1 + ε(x2 − x1)

ẏ1 = y1 + ω1x1 − (x21 + y21)y1 + ε(y2 − y1)

ẋ2 = x2 − ω2y2 − (x22 + y22)x2 + ε(x1 − x2)

ẏ2 = y2 + ω2x2 − (x22 + y22)y2 + ε(y1 − y2) (3.2)

The only fixed point of this system is the trivial one P :

P = (x1,0, y1,0, x2,0, y2,0) = (0, 0, 0, 0) (3.3)
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The Jacobian matrix of (3.2) is given by:



1− ε− 3x21 − y21 −ω1 − 2x1y1 ε 0

ω1 − 2x1y1 1− ε− x21 − 3y21 0 ε

ε 0 1− ε− 2x22 − y22 −ω2 − 2x2y2

0 ε ω2 − 2x2y2 1− ε− x22 − 3y22


(3.4)

and evaluating at the fixed point P gives:



1− ε −ω1 ε 0

ω1 1− ε 0 ε

ε 0 1− ε −ω2

0 ε ω2 1− ε


(3.5)

The eigenvalues of this matrix then satisfy the characteristic equation (to be considered

later)

λ4 + (−4 + 4ε)λ3 + (6− 12ε+ 4ε2 + ω2
1 + ω2

2)λ2

+ (−4 + 12ε− 8ε2 − 2ω2
1 + 2εω2

1 − 2ω2
2 + 2εω2

2)λ

+ (1− 4ε+ 4ε2 + ω2
1 − 2εω2

1 + ε2ω2
1 + 2ε2ω1ω2

+ ω2
2 − 2εω2

2 + ε2ω2
2 + ω2

1ω
2
2) = 0 (3.6)

which will be considered later.
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3.2.2 Chaotic System

The chaotic system we consider is a coupled van der Pol-Rayleigh oscillator system with

parametric excitation, and is given by [29]

ẍ+ (−α1 + β1ẋ
2)ẋ+ δ1x+ γ1x

3 + (δ12 − µ cos(2νt))(x− y) = q cos(νt)

ÿ +M(−α2 + β2ẏ
2)ẏ +Mδ2y + γ2y

3 −M(δ12 − µ cos(2νt))(y − x) = 0 (3.7)

In order to work with the system we first convert it in to a first-order system by defining

x1(t) = x(t), x2(t) = ẋ(t), y1(t) = y(t), y2(t) = ẏ(t) which gives:

ẋ1 = x2

ẋ2 = (α1 − β1x22)x2 − δ1x1 − γ1x31 − (δ12 − µ cos(2νt))(x1 − y1) + q cos(νt)

ẏ1 = y2

ẏ2 = M(α2 − β2y22)y2 −Mδ2y1 − γ2y31 +M(δ12 − µ cos(2νt))(y1 − x1) (3.8)

Considering the homogeneous system q = 0, we find the fixed point:

P0 = (x1,0, x2,0, y1,0, y2,0) = (0, 0, 0, 0) (3.9)

and if, in addition, we have δ1/γ1 = δ2/γ2 < 0 then there are two additional fixed points:

P1 = (x1,1, x2,1, y1,1, y2,1) =

(√
− δ1
γ1
, 0,

√
− δ1
γ1
, 0

)
(3.10)

P2 = (x1,2, x2,2, y1,2, y2,2) =

(
−

√
− δ1
γ1
, 0,−

√
− δ1
γ1
, 0

)
(3.11)
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Next we convert the system to an autonomous system by defining T (t) = t:

Ṫ = 1

ẋ1 = x2

ẋ2 = (α1 − β1x22)x2 − δ1x1 − γ1x31 − (δ12 − µ cos(2νT ))(x1 − y1) + q cos(νT )

ẏ1 = y2

ẏ2 = M(α2 − β2y22)y2 −Mδ2y1 − γ2y31 +M(δ12 − µ cos(2νT ))(y1 − x1) (3.12)

The Jacobian matrix of (3.12) is given by:



0 0 0 0 0

0 0 1 0 0

c1 c2 α1 − 3β1x
2
2 δ12 − µ cos(2νT ) 0

0 0 0 0 1

c3 M(δ12 − µ cos(2νT ) 0 c4 M(α2 − 3β2y
2
2)


(3.13)

where

c1 = −2µν(x1 − y1) sin(2νT ) (3.14)

c2 = −δ1 − δ12 − 3γ1x
2
1 + µ cos(2νT ) (3.15)

c3 = 2Mµν(x1 − y1) sin(2νT ) (3.16)

c4 = M(−δ2 − 3γ2y
2
1 − δ12 + µ cos(2νT )) (3.17)
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and evaluating at the fixed point P0 gives:



0 0 0 0 0

0 0 1 0 0

0 −δ1 − δ12 + µ cos(2νT ) α1 δ12 − µ cos(2νT ) 0

0 0 0 0 1

0 M(δ12 − µ cos(2νT ) 0 M(−δ2 − δ12 + µ cos(2νT )) M(α2 − 3β2y
2
2)


(3.18)

The eigenvalues of this matrix then satisfy the characteristic equation which will be con-

sidered later

λ(λ4 + (−α1 − α2M)λ3 + (δ1 + δ12 + α1α2M − µ cos(2νT )

+M(δ12 + δ2 − µ cos(2νT )))λ2 + (−α2δ1M − α2δ12M + α2Mµ cos(2νT )

− α1M(δ12 + δ2 − µ cos(2νT )))λ+−M(δ12 − µ cos(2νT ))2

+ δ1M(δ12 + δ2 − µ cos(2νT )) + δ12M(δ12 + δ2 − µ cos(2νT ))

−Mµ cos(2νT )(δ12 + δ2 − µ cos(2νT ))) = 0 (3.19)

Next, evaluating the Jacobian at either of the fixed points P1 or P2 gives the matrix:



0 0 0 0 0

0 0 1 0 0

0 2δ1 − δ12 + µ cos(2νT ) α1 δ12 − µ cos(2νT ) 0

0 0 0 0 1

0 M(δ12 − µ cos(2νT ) 0 M(2δ2 − δ12 + µ cos(2νT )) Mα2


(3.20)
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The eigenvalues of this matrix then satisfy the characteristic equation (to be considered

later):

λ(λ4 + (−α1 − α2M)λ3 + (−2δ1 + δ12 + α1α2M − µ cos(2νT )−M(−δ12 + 2δ2

+ µ cos(2νT )))λ2 + (2α2δ1M − α2δ12M + α2Mµ cos(2νT ) + α1M(−δ12 + 2δ2

+ µ cos(2νT )))λ−M(δ12 − µ cos(2νT ))2 + 2δ1M(−δ12 + 2δ2 + µ cos(2νT ))

− δ12M(−δ12 + 2δ2 + µ cos(2νT )) +Mµ cos(2νT )(−δ12 + 2δ2 + µ cos(2νT ))) = 0 (3.21)

3.3 Linear Stability and Hopf Bifurcation Analysis of the Delayed Systems

In this section we introduce the delayed systems and perform the linear stability and

Hopf bifurcation analysis on them.

3.3.1 Delayed Landau-Stuart Equation

Now we consider here the case where the Landau-Stuart oscillators are coupled with a

weak distributed time delay in the first equation:

ż1(t) = (1 + iω1 − |z1(t)|2)z1(t) + ε

(∫ t

−∞
z2(τ)ae−a(t−τ)dτ − z1(t)

)
ż2(t) = (1 + iω2 − |z2(t)|2)z2(t) + ε(z1(t)− z2(t)) (3.22)

By defining

z3(t) =

∫ t

−∞
z2(τ)ae−a(t−τ)dτ (3.23)
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we can reduce the system (3.22) to the system of differential equations:

ż1(t) = (1 + iω1 − |z1(t)|2)z1(t) + ε(z3(t)− z1(t))

ż2(t) = (1 + iω2 − |z2(t)|2)z2(t) + ε(z1(t)− z2(t))

ż3(t) = a(z2 − z3) (3.24)

As in the undelayed case, in order to work with this system we convert it to a real system

by defining zk(t) = xk(t) + iyk(t) for each k = 1, 2, 3, which gives:

ẋ1 = x1 − ω1y1 − (x21 + y21)x1 + ε(x3 − x1)

ẏ1 = y1 + ω1x1 − (x21 + y21)y1 + ε(y3 − y1)

ẋ2 = x2 − ω2y2 − (x22 + y22)x2 + ε(x1 − x2)

ẏ2 = y2 + ω2x2 − (x22 + y22)y2 + ε(y1 − y2)

ẋ3 = a(x2 − x3)

ẏ3 = a(y2 − y3) (3.25)

The only fixed point of this system is the trivial one P :

P = (x1,0, y1,0, x2,0, y2,0, x3,0, y3,0) = (0, 0, 0, 0, 0, 0) (3.26)
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The Jacobian matrix of (3.25) is:



1− ε− 3x21 − y21 −ω1 − 2x1y1 0 0 ε 0

ω1 − 2x1y1 1− ε− x21 − 3y21 0 0 0 ε

ε 0 1− ε− 3x22 − y22 −ω2 − 2x2y2 0 0

0 ε ω2 − 2x2y2 1− ε− x22 − 3y22 0 0

0 0 a 0 −a 0

0 0 0 a 0 −a


(3.27)

which, evaluated at the fixed point P , gives:



1− ε −ω1 0 0 ε 0

ω1 1− ε 0 0 0 ε

ε 0 1− ε −ω2 0 0

0 ε ω2 1− ε 0 0

0 0 a 0 −a 0

0 0 0 a 0 −a


(3.28)

The eigenvalues of this matrix satisfy the characteristic equation

λ6 + b1λ
5 + b2λ

4 + b3λ
3 + b4λ

2 + b5λ+ b6 = 0 (3.29)

where
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b1 = 2(−2 + a+ 2ε) (3.30)

b2 = 6 + a2 + 8a(−1 + ε)− 12ε+ 6ε2 + ω2
1 + ω2

2 (3.31)

b3 = 2(2a2(−1 + ε) + (−1 + ε)(2− 4ε+ 2ε2 + ω2
1 + ω2

2)

+ a(6− 12ε+ 5ε2 + ω2
1 + ω2

2)) (3.32)

b4 = (1− 2ε+ ε2 + ω2
1)(1− 2ε+ ε2 + ω2

2) + 4a(−1 + ε)(2− 4ε+ ε2 + ω2
1 + ω2

2)

+ a2(6− 12ε+ 4ε2 + ω2
1 + ω2

2) (3.33)

b5 = 2a(−2ε3 + (1 + ω2
1)(1 + ω2

2)− 2ε(2 + ω2
1 + ω2

2) + ε2(5 + ω2
1 + ω1ω2 + ω2

2)

− a(2 + 4ε2 + ω2
1 + ω2

2 − ε(6 + ω2
1 + ω2

2))) (3.34)

b6 = a2((1 + ω2
1)(1 + ω2

2)− 2ε(2 + ω2
1 + ω2

2) + ε2(4 + ω2
1 + 2ω1ω2 + ω2

2)) (3.35)

For P to be a stable fixed point within the linearized analysis, all the eigenvalues must

have negative real parts. From the Routh-Hurwitz criteria, the necessary and sufficient

conditions for (3.25) to have Re(λ1,2,3,4,5,6 < 0) are:

b1 > 0 (3.36)

b6 > 0 (3.37)

b1b2 − b3 > 0 (3.38)

b1(b2b3 + b5)− b23 − b21b4 > 0 (3.39)

b1(b2b3b4 − b22b5 + 2b4b5 − b3b6)− b23b4 − b25

+b2b3b5 + b21(−b24 + b2b6) > 0 (3.40)

−b23b4b5 + b2b3b
2
5 − b35 + b33b6 − b31b26 + b21(−b24b5 + b3b4b6 + 2b2b5b6)

−b1(b22b25 + b2b3(−b4b5 + b3b6) + b5(−2b4b5 + 3b3b6)) > 0 (3.41)
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When the final condition (3.41) becomes an equality, the characteristic polynomial has

one pair of purely imaginary complex conjugate roots. Here, we consider a to be the

bifurcation parameter and denote the left hand side of (3.41) by f(a) which is a ninth

degree polynomial in a whose coefficients, which are too large to include, depend on

ω1, ω2, and ε. In order to solve the above conditions for parameter sets possibly leading

to a Hopf bifurcation, we must first fix a value for ε. Then, with our fixed value of ε, we

reduce the conditions (3.36) to (3.40) along with the condition f(a) = 0 using computer

algebra, to obtain conditions on the remaining parameters that may possibly lead to a

Hopf bifurcation in the delayed system.

For example, fixing ε = 2, one of the several sets of conditions for a Hopf bifurcation we

obtain is that

0 < ω2 ≤
√

3 (3.42)

− 2ω2

1− ω2
2

+

√
3 + 6ω2

2 − ω4
2

(1 + ω2
2)2

< ω1 < ω2 + 2
√

3 (3.43)

and that a is the second root1 of the polynomial:

(−12 + ω2
1 + ω4

1 + 22ω1ω2 + 2ω3
1ω2 + ω2

2 − 2ω2
1ω

2
2 + ω4

1ω
2
2 + 2ω1ω

3
2 − 2ω3

1ω
3
2 + ω4

2 + ω2
1ω

4
2)

+ (−96− 16ω2
1 + 2ω4

1 + 32ω1ω2 − 8ω3
1ω2 − 16ω2

2 + 12ω2
1ω

2
2 − 8ω1ω

3
2 + 2ω4

2)x

+ (−216 + 6ω2
1 + ω4

1 − 36ω1ω2 − 2ω3
1ω2 + 6ω2

2 + 2ω2
1ω

2
2 − 2ω1ω

3
2 + ω4

2)x2

+ (−96 + 8ω2
1 − 16ω1ω2 + 8ω2

2)x3 + (−12 + ω2
1 − 2ω1ω2 + ω2

2)x4 (3.44)

In particular we can fix ω2 = 15 to obtain the condition 11.5359 < ω1 < 18.4641. Then fix-

ing ω1, say to ω1 = 15, we obtain that a be the second root of the polynomial−12(−17324+

1when the roots are ordered in increasing real part, with real roots listed before complex roots and
complex conjugate pairs listed next to each other
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8x + 468x2 + 8x3 + x4), or a ≈ 5.63185. So we have that the parameter set (ε, ω1, ω2, a) =

(2, 15, 15, 5.63185) possibly results in a Hopf bifurcation in the delayed system.

3.3.2 Delayed Chaotic System

Now we consider here the case where the Landau-Stuart oscillators are coupled with a

weak distributed time delay in the first equation:

ẍ+ (−α1 + β1ẋ
2)ẋ+ δ1x+ γ1x

3 + (δ12 − µ cos(2νt))(x− z) = q cos(νt)

ÿ +M(−α2 + β2ẏ
2)ẏ +Mδ2y + γ2y

3 −M(δ12 − µ cos(2νt))(y − x) = 0 (3.45)

where

z(t) =

∫ t

−∞
y(τ)ae−a(t−τ)dτ (3.46)

and we can reduce the system (3.45) to the system of differential equations:

ẍ+ (−α1 + β1ẋ
2)ẋ+ δ1x+ γ1x

3 + (δ12 − µ cos(2νt))(x− z) = q cos(νt)

ÿ +M(−α2 + β2ẏ
2)ẏ +Mδ2y + γ2y

3 −M(δ12 − µ cos(2νt))(y − x) = 0

ż − a(y − z) = 0 (3.47)
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As in the undelayed case, we first convert it in to a first-order system by defining x1(t) =

x(t), x2(t) = ẋ(t), y1(t) = y(t), y2(t) = ẏ(t) which gives:

ẋ1 = x2

ẋ2 = (α1 − β1x22)x2 − δ1x1 − γ1x31 − (δ12 − µ cos(2νt))(x1 − z) + q cos(νt)

ẏ1 = y2

ẏ2 = M(α2 − β2y22)y2 −Mδ2y1 − γ2y31 +M(δ12 − µ cos(2νt))(y1 − x1)

ż = a(y1 − z) (3.48)

The fixed points of the delayed system are:

P0 = P0 = (x1,0, x2,0, y1,0, y2,0, z0) = (0, 0, 0, 0, 0) (3.49)

and if, in addition, we have δ1/γ1 = δ2/γ2 < 0 then there are two additional fixed points:

P1 = (x1,1, x2,1, y1,1, y2,1, z1) =

(√
− δ1
γ1
, 0,

√
− δ1
γ1
, 0,

√
− δ1
γ1

)
(3.50)

P2 = (x1,2, x2,2, y1,2, y2,2, z2) =

(
−

√
− δ1
γ1
, 0,−

√
− δ1
γ1
, 0,−

√
− δ1
γ1

)
(3.51)

However, in what follows the parameter regimes we will consider will include the case

δ1/γ1 = δ2/γ2, and so these two additional fixed points will not exist in our case. Next we
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convert the system to an autonomous system by defining T (t) = t:

Ṫ = 1

ẋ1 = x2

ẋ2 = (α1 − β1x22)x2 − δ1x1 − γ1x31 − (δ12 − µ cos(2νt))(x1 − z) + q cos(νt)

ẏ1 = y2

ẏ2 = M(α2 − β2y22)y2 −Mδ2y1 − γ2y31 +M(δ12 − µ cos(2νt))(y1 − x1)

ż = a(y1 − z) (3.52)

The Jacobian matrix of (3.52) is:



0 0 0 0 0 0

0 0 1 0 0 0

c1 c2 α1 − 3β1x
2
2 0 0 δ12 − µ cos(2νT )

0 0 0 0 1 0

c3 M(δ12 − µ cos(2νT ) 0 c4 M(α2 − 3β2y
2
2) 0

0 0 0 a 0 −a


(3.53)

where

c1 = −2µν(x1 − z) sin(2νT ) (3.54)

c2 = −δ1 − δ12 − 3γ1x
2
1 + µ cos(2νT ) (3.55)

c3 = 2Mµν(x1 − y1) sin(2νT ) (3.56)

c4 = M(−δ2 − 3γ2y
2
1 − δ12 + µ cos(2νT )) (3.57)
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Evaluating at the fixed point P0 of the original nonautonomous system gives:



0 0 0 0 0 0

0 0 1 0 0 0

0 −δ1 − δ12 + µ cos(2νT ) α1 0 0 δ12 − µ cos(2νT )

0 0 0 0 1 0

0 M(δ12 − µ cos(2νT ) 0 M(−δ2 − δ12 + µ cos(2νT )) Mα2 0

0 0 0 a 0 −a


(3.58)

The eigenvalues of this matrix satisfy the characteristic equation

λ(λ5 + b1λ
4 + b2λ

3 + b3λ
2 + b4λ+ b5) = 0 (3.59)

where

b1 = a− α1 − α2M (3.60)

b2 = −aα1 − aα2M + α1α2M + δ1 + δ12M + δ12 + δ2M −Mµ cos(2νT )− µ cos(2νT )

(3.61)

b3 = aα1α2M + aδ1 + aδ12M + aδ12 + aδ2M − aMµ cos(2νT )− aµ cos(2νT )

− α1δ12M − α1δ2M + α1Mµ cos(2νT )− α2δ1M − α2δ12M + α2Mµ cos(2νT ) (3.62)

b4 = −aα1δ12M − aα1δ2M + aα1Mµ cos(2νT )− aα2δ1M − aα2δ12M

+ aα2Mµ cos(2νT ) + δ1δ12M + δ1δ2M − δ1Mµ cos(2νT ) + δ212M + δ12δ2M

− 2δ12Mµ cos(2νT )− δ2Mµ cos(2νT ) +Mµ2 cos2(2νT ) (3.63)

b5 = aδ1δ12M + aδ1δ2M − aδ1Mµ cos(2νT ) + aδ212M + aδ12δ2M − aM(δ12 − µ cos(2νT ))2

− 2aδ12Mµ cos(2νT )− aδ2Mµ cos(2νT ) + aMµ2 cos2(2νT ) (3.64)
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For P0 to be a stable fixed point within the linearized analysis, all the eigenvalues must

have negative real parts. Since λ0 = 0 is a root of the characteristic polynomial, we can

consider the remaining eigenvalues by looking at the polynomial λ5 + b1λ
4 + b2λ

3 + b3λ
2 +

b4λ + b5, and from the Routh-Hurwitz criterion, the necessary and sufficient conditions

for the roots of this polynomial to have Re(λ1,2,3,4,5 < 0) are:

b1 > 0 (3.65)

b5 > 0 (3.66)

b1b2 − b3 > 0 (3.67)

b1(b2b3 + b5)− b23 − b21b4 > 0 (3.68)

b1(b2b3b4 − b22b5 + 2b4b5)− b23b4 − b25 + b2b3b5 − b21b24 > 0 (3.69)

When the final condition (3.69) becomes an equality, the characteristic polynomial has one

pair of purely imaginary complex conjugate roots. Here we consider the delay parameter

a to be the bifurcation parameter. Denote the left hand side of (3.69) by f(a), which is a

fourth degree polynomial in a, and whose coefficients, which are too large to include, de-

pend on the remaining parameters. In order to solve the above conditions for parameter

regimes which contains a Hopf bifurcation, we fix values for all parameters except µ and

a. Then, with our fixed parameter values, we reduce the conditions (3.65) to (3.68) along

with the condition f(a) = 0 using computer algebra. The objective is to either obtain

conditions on the µ and a that guarantee a Hopf bifurcation setting with a conjugate pair

of imaginary roots, or see that a Hopf bifurcation is not possible for the chosen parameter

values.
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In particular we will consider the following parameter set:

α1 = 0.01, β1 = 0.05, γ1 = 3.0, α2 = 0.01, β2 = 0.05, γ2 = 3.0,

M = 0.5, δ1 = −0.5, δ2 = −0.3, ν = 2.6, δ12 = 0.3

(3.70)

Reducing our Routh-Hurwitz Conditions and Hopf Condition for these parameters with

computer algebra shows that for no values of µ, a, and T are all of the conditions satisfied.

Thus the system does not have a Hopf bifurcation for the above parameter values. However,

note that a systematic parameter search in Section 5 reveals a rich array of Hopf and other

bifurcations, and various dynamical behaviors in our system.

3.4 Multiple Scales for the Delayed Landau-Stuart Equation

In this section, we will use the method of multiple scales to construct analytical approxi-

mations for the periodic orbits arising through the Hopf bifurcation of the fixed point of

the delayed Landau Stuart system 3.25 discussed above. The parameter a will be used

as the bifurcation parameter. The limit cycle is determined by expanding about the fixed

point using progressively slower time scales. The expansions take the form

x1 = x10 +
3∑

n=1

δnx1n(T0, T1, T2) + ..., (3.71)

y1 = y10 +
3∑

n=1

δny1n(T0, T1, T2) + ..., (3.72)

z1 = z10 +
3∑

n=1

δnz1n(T0, T1, T2) + ..., (3.73)
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x2 = x10 +
3∑

n=1

δnx2n(T0, T1, T2) + ..., (3.74)

y2 = y10 +
3∑

n=1

δny2n(T0, T1, T2) + ..., (3.75)

z2 = z10 +
3∑

n=1

δnz2n(T0, T1, T2) + ..., (3.76)

where Tn = δnt and δ is a small positive non-dimensional parameter that is introduced

as a bookkeeping device and will be set to unity in the final analysis. Utilizing the chain

rule, the time derivative becomes

d

dt
= D0 + δD1 + δ2D2 + δ3D3..., (3.77)

where Dn = ∂/∂Tn. Using the standard expansion for Hopf bifurcations, the delay pa-

rameter a is ordered as

a = a0 +
3∑

n=1

δnan(T0, T1, T2) + ..., , (3.78)

where a0 is given by satisfying the Routh-Hurwitz conditions (3.36) to (3.40) and (3.41)

with equality. This allows the influence from the nonlinear terms and the control param-

eter to occur at the same order.

Using (3.71)-(3.78) in (3.25) and equating like powers of δ yields equations at O(δi), i =

1, 2, 3 of the form:

L1(x1i, y1i, z1i, x2i, y2i, z2i) = Si,1 (3.79)
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L2(x1i, y1i, z1i, x2i, y2i, z2i) = Si,2 (3.80)

L3(x1i, y1i, z1i, x2i, y2i, z2i) = Si,3 (3.81)

L4(x1i, y1i, z1i, x2i, y2i, z2i) = Si,4 (3.82)

L5(x1i, y1i, z1i, x2i, y2i, z2i) = Si,5 (3.83)

L6(x1i, y1i, z1i, x2i, y2i, z2i) = Si,6 (3.84)

where the Li, i = 1, 2, 3, 4, 5, 6 are the differential operators:

L1(x1i, y1i, z1i, x2i, y2i, z2i) = D0x1i + (ε− 1)x1i − εx3i + ω1y1i (3.85)

L2(x1i, y1i, z1i, x2i, y2i, z2i) = D0y1i + (ε− 1)y1i − εy3i − ω1x1i (3.86)

L3(x1i, y1i, z1i, x2i, y2i, z2i) = D0x2i + (ε− 1)x2i − εx1i + ω2y2i (3.87)

L4(x1i, y1i, z1i, x2i, y2i, z2i) = D0y2i + (ε− 1)y2i − εy1i − ω2x2i (3.88)

L5(x1i, y1i, z1i, x2i, y2i, z2i) = D0x3i + a0(x3i − x2i) (3.89)

L6(x1i, y1i, z1i, x2i, y2i, z2i) = D0y3i+ a0(y3i − y2i) (3.90)

The source terms Si,j for i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6 i.e. at O(δ),O(δ2), and O(δ3) are

given as follows. The first order sources S1,j = 0 for j = 1, 2, 3, 4, 5, 6. The second order
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sources are:

S21 = −D1x11

S22 = −D1y11

S23 = −D1x21

S24 = −D1y21

S25 = −D1x31 + a1(x21 − x31)

S26 = −D1y31 + a1(y21 − y31) (3.91)

and the third order sources are:

S31 = −D2x11 −D1x12 − x11y211 − x311

S32 = −D2y11 −D1y12 − x211y11 − y311

S33 = −D2x21 −D1x22 − x21y221 − x321

S34 = −D2y21 −D1y22 − x221y21 − y321

S35 = −D2x31 −D1x32 + a1(x22 − x32) + a2(x21 − x31)

S3,6 = −D2y31 −D1y32 + a1(y22 − y32) + a2(y21 − y31) (3.92)

Next, equation (3.84) may be solved for y2i in terms of y3i . Using this in (3.82), we can

solve for y1i in terms of y3i and x2i. Then, we replace y1i in (3.80) and add ω2/ε multiplied

by (3.81) to (3.80) which then enables us to solve for x1i in terms of y3i. Next, replacing x1i

and y1i in equation (3.79), we can solve for x3i in terms of y3i and x2i. Then in (3.83) we

can replace x3i and add to it ω1ω2/ε
2 multiplied by (3.81), which then allows us to solve

for x2i in terms of y3i. Finally, using these relations in equation (3.81) gives the composite
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equation

Lcwi = Γi (3.93)

where

Lc = D6
0 + β5D

5
0 + β4D

4
0 + β3D

3
0 + β2D

2
0 + β1D0 + β0 (3.94)

and

β5 = −4 + 2a0 + 4ε (3.95)

β4 = 6 + a20 + 8a0(ε− 1)− 12ε+ 6ε2 + ω2
1 + ω2

2 (3.96)

β3 = 2(2a20(ε− 1) + (ε− 1)(2− 4ε+ 2ε2 + ω2
1 + ω2

2)

+ a0(6− 12ε+ 5ε2 + ω2
1 + ω2

2)) (3.97)

β2 = (1− 2ε+ ε2 + ω2
1)(1− 2ε+ ε2 + ω2

2) + 4a0(ε− 1)(2− 4ε+ ε2 + ω2
1 + ω2

2)

+ a20(6− 12ε+ 4ε2 + ω2
1 + ω2

2) (3.98)

β1 = 2a0(−2ε3 + (1 + ω2
1)(1 + ω2

2)− 2ε(2 + ω2
1 + ω2

2) + ε2(5 + ω2
1 + ω1ω2 + ω2

2)

− a0(2 + 4ε2 + ω2
1 + ω2

2 − ε(6 + ω2
1 + ω2

2))) (3.99)

β0 = a20((1 + ω2
1)(1 + ω2

2)− 2ε(2 + ω2
1 + ω2

2) + ε2(4 + ω2
1 + 2ω1ω2 + ω2

2)) (3.100)

The composite source Γi is equal to

r10Si1 + r20Si2 + r30Si3 + r40Si4 + r50Si5 + r60Si6

+ r11D0Si1 + r21D0Si2 + r31D0Si3 + r41D0Si4 + r51D0Si5 + r61D0Si6

+ r12D
2
0Si1 + r22D

2
0Si2 + r32D

2
0Si3 + r42D

2
0Si4 + r62D

2
0Si6

+ r23D
3
0Si2 + r33D

3
0Si3 + r43D

3
0Si4 + r63D

3
0Si6

− a0D4
0Si4 + (4− a0 − 4ε)D4

0Si6 −D5
0Si6 (3.101)
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where

r10 = −a20(ε− 1)ε(ω1 + ω2) (3.102)

r20 = a20ε(−1 + 2ε+ ω1ω2) (3.103)

r30 = −a20(−2εω2 + (1 + ω2
1)ω2 + ε2(ω1 + ω2)) (3.104)

r40 = a20(1 + 2ε2 + ω2
1 − ε(3 + ω2

1)) (3.105)

r50 = −a0(ε− 1)ε2(ω1 + ω2) (3.106)

r60 = a0(2ε
3 − (1 + ω2

1)(1 + ω2
2) + 2ε(2 + ω2

1 + ω2
2)− ε2(5 + ω2

1 + ω1ω2 + ω2
2)) (3.107)

r11 = −a0ε(ε− 1 + a0)(ω1 + ω2) (3.108)

r21 = a0ε(−1− 2a0(ε− 1) + 2ε− ε2 + ω1ω2) (3.109)

r31 = −a0(1 + 2a0(ε− 1)− 2ε+ ε2 + ω2
1)ω2 (3.110)

r41 = −a0((ε− 1)(1− 2ε+ ε2 + ω2
1) + a0(3− 6ε+ 2ε2 + ω2

1)) (3.111)

r51 = −a0ε2(ω1 + ω2) (3.112)

r61 = −(1− 2ε+ ε2 + ω2
1)(1− 2ε+ ε2 + ω2

2)− 2a0(ε− 1)(2− 4ε+ ε2 + ω2
1 + ω2

2) (3.113)

r12 = −a0ε(ω1 + ω2) (3.114)

r22 = −a0ε(−2 + a0 + 2ε) (3.115)

r32 = −a0(−2 + a0 + 2ε)ω2 (3.116)

r42 = −a0(3 + 3a0(ε− 1)− 6ε+ 3ε2 + ω2
1) (3.117)

r62 = −2(ε− 1)(2− 4ε+ 2ε2 + ω2
1 + ω2

2)− a0(6− 12ε+ 5ε2 + ω2
1 + ω2

2) (3.118)

r23 = −a0ε (3.119)

r33 = −a0ω2 (3.120)

r43 = −a0(−3 + a0 + 3ε) (3.121)

r63 = −6− 4a0(ε− 1) + 12ε− 6ε2 − ω2
1 − ω2

2 (3.122)
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We use (3.93) later to identify and suppress secular terms in the solutions of (3.79)-(3.84)

Let us now turn to finding the solutions of (3.79)-(3.84), solving order by order in the

usual way.

For i = 1 or O(δ) we know S1,k = 0 for k = 1, ..., 6. Hence we pick up a solution for the

first order fields using the eigenvalues (from the previous section) at Hopf bifurcation,

which we denote λ1 = iω and it’s complex conjugate λ2, i.e.

y31 = α[T1, T2, T3]e
−iωt + β[T1, T2, T3]e

iωt (3.123)

where β = ᾱ is the complex conjugate of α since λ2 = λ̄1 and y31 is real. As is evident,

the α and β modes correspond to the center manifold where λ1,2 = ±iω are purely imag-

inary and where the Hopf bifurcation occurs. Since we wish to construct and analyze

the stability of the periodic orbits which lie in the center manifold, we suppress the other

eigenvalues with non-zero real parts.

Using (3.123) in (3.79)-(3.84) for i = 1 and the process used to derive the composite equa-

tion we have:

y21 =
e−iωT0

a0

(
(a0 − iω)α[T1, T2, T3] + e2iωT0(a0 + iω)β[T1, T2, T3]

)
(3.124)
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x21 =
e−iωT0

a0(ω1 + ω2) (a0 (ε2 + ω1ω2)− (ε− 1)ω1ω2)

(
iω3
(
a20 + 6a0(ε− 1) + 3ε2

− 6 ε+ ω2
1 + ω2

2 + 3
) (
α(T1, T2, T3)− e2iωT0β(T1, T2, T3)

)
− ω2

(
3a20(ε− 1) + a0

(
5ε2 − 12ε+ 2ω2

1 + ω1ω2 + 2ω2
2 + 6

)
+(ε− 1)

(
ε2 − 2ε+ ω2

1 − ω1ω2 + ω2
2 + 1

)) (
α(T1, T2, T3) + e2iωT0β(T1, T2, T3)

)
− iω

(
a20
(
2ε2 − 6ε+ ω2

1 + ω1ω2 + ω2
2 + 3

)
+ a0(ε− 1)

(
ε2 − 4ε+ 2

(
ω2
1 + ω2

2 + 1
))

+ω1ω2

(
−ε2 + 2ε+ ω1ω2 − 1

)) (
α(T1, T2, T3)− e2iωT0β(T1, T2, T3)

)
− a0

(
a0
(
2ε2 − ε

(
ω2
1 + ω1ω2 + ω2

2 + 3
)

+ ω2
1 + ω1ω2 + ω2

2 + 1
)

−ω1ω2(2ε+ ω1ω2 − 1))
(
α(T1, T2, T3) + e2iωT0β(T1, T2, T3)

)
+ ω4(2a0 + 3ε− 3)

(
α(T1, T2, T3) + e2iωT0β(T1, T2, T3)

)
− iω5α(T1, T2, T3)

+ iω5e2iωT0β(T1, T2, T3)

)
(3.125)

x11 =
e−iωT0

a0ε(ω1 + ω2)

((
a0
(
ε(−2− 2iω)− ω2 + 2iω + ω2

2 + 1
)

−iω
(
ε2 + ε(−2− 2iω)− ω2 + 2iω + ω2

2 + 1
))
α(T1, T2, T3)

+ e2iωT0
(
a0
(
2iε(ω + i)− ω2 − 2iω + ω2

2 + 1
)

+ iω
(
ε2 + 2iε(ω + i)

−ω2 − 2iω + ω2
2 + 1

))
β(T1, T2, T3)

)
(3.126)

where we have omitted y11 and x31 as the expressions for them are too long to include.

Now that the first order solutions are known, the second-order sources S21, S22, S23, S24, S25, S26

may be evaluated using (3.91). Computing the second-order composite source Γ2, we find

that the entire source is secular and that the Setting the coefficients of the secular e±iωt

terms in these sources to zero yields

D1α =
∂α

∂T1
= 0, D1β =

∂β

∂T1
= 0 (3.127)
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Next, using the second-order sources, and (3.127) , the second-order particular solution

is taken in the usual form to balance the zeroth and second harmonic terms at this order,

i.e.,

y32 = y32,0 + y32,2e
2iωt (3.128)

Then since the entire second order source was secular, upon removing the secular terms

with (3.127) we find the second order source is now zero. Thus using (3.128) in (3.93) for

i = 2 we find the coefficients in the second-order particular solution are y32,0 = y32,2 = 0,

thus y32 = 0. Then using y32 in (3.79)-(3.84) for i = 2, together with the second-order

sources, yields that the other second-order fields are also zero,

y12 = y22 = x12 = x22 = x32 = 0 (3.129)

Using these, together with the first-order results, we may evaluate the coefficients of the

secular terms in the composite source Γ3, from (3.92) and (3.93). Suppressing these sec-

ular, first-harmonic, terms to obtain uniform expansions yields the final equation for the

evolution of the coefficients in the linear solutions on the slow second-order time scales

∂β

∂T2
= C1β + C2αβ

2 (3.130)

where the very large expressions for the coefficients Ci are omitted for the sake of brevity.

This equation (3.130) is the normal form, or simplified system in the center-manifold, in

the vicinity of the Hopf bifurcation point. We shall now proceed to compare the pre-

dictions for the post-bifurcation dynamics from this normal form with actual numerical

simulations.
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3.5 Numerical Results and Discussion

3.5.1 Landau-Stuart Equation

We may immediately make two additional points here regarding the Hopf bifurcation.

In most systems [27], the Hopf bifurcation may occur either below or above the critical

value of the system’s chosen bifurcation parameter, and one needs to test which in fact

occurs. Since we have chosen the delay a as bifurcation parameter, and larger delays

or lower a values have a stabilizing effect, we know that for our delayed Landau-Stuart

system, the post-Hopf regime is for a values larger than the aHopf value found using the

second root of the polynomial in the last equation of Section 3.1. For a < aHopf , the strong

delay stabilizes the oscillations and yields a stable fixed point. This is thus the regime of

Amplitude Death(AD) for the system caused by the delay. The a = aHopf point is thus the

exact value of the delay parameter where AD sets in, and this may be precisely pinpointed

here via the semi-analytic treatment in Section 3.1.

Note also that, in principle, the Hopf bifurcation might be either supercritical with stable

oscillations seen above a = aHopf or at weaker delays, or subcritical where the Hopf-

created periodic orbit is unstable and coexists with the stable fixed point in the a < aHopf

or Amplitude Death regime. In the latter case, there would be no nearby system attractor

for a > aHopf , and the dynamics in that regime would feature any of the three following

scenarios: a. jumping to a distant periodic attractor if one exists, b. flying off to infinity in

finite time (an attractor at infinity), or c. an aperiodic attractor on which the system orbits

evolve.

However, we may plausibly rule out the occurrence of this latter, subcritical Hopf sce-

nario. This is because the undelayed Landau-Stuart system is a robust oscillator show-
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ing stable periodic behavior, that, under the effect of delay, persists in the a > aHopf

regime of a post-supercritical Hopf bifurcation, while being reduced to Amplitude Death

by stronger delays for a < aHopf . This does in fact turn out to be correct, as will be verified

below via both the normal form and numerical simulations.

By approximating the flow of the system in a computer model, we can easily analyze the

behavior of the system for various sets of parameters. Here we will consider the case in

section 3.1 where ε = 2, ω1 = 15, and ω2 = 15 and values of a around the Hopf bifurcation

value aHopf ≈ 5.63185.

Figure 3.1: Periodic oscillations in y1 for a = 10.
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Figure 3.2: The limit cycle in (x2, y1, y2) phase space for the parameters of Figure 3.1 and

the approach from the initial conditions.

Figure 3.3: The smaller delayed limit cycle in red and undelayed limit cycle in blue

plotted in (x2, y1, y2) phase space for the parameters of Figure 3.1.
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Figures 3.1 through 3.3 show the limit cycle for a = 10 above the Hopf bifurcation value

aHopf . As predicted from the normal form, and our plausibility argument above, we have

stable periodic behavior above the bifurcation point as shown in Figure 3.1 for y1(t). Fig-

ure 2 shows the limit cycle in (x2, y1, y2) phase space and the approach from the initial

conditions. Figure 3 shows both the delayed (in red) and undelayed (in blue) limit cycles

in (x2, y1, y2) phase space from which we can see the stabilizing effect of the delay causing

the limit cycle to shrink towards the fixed point at the origin, as well as rotate in phase

space.

Figure 3.4 shows the limit cycle for a = 5.73 just above the bifurcation point aHopf in red

and the undelayed system in blue in (x2, y1, y2) phase space. Here we can see that, as we

further decrease the parameter a towards the bifurcation value or increase the delay, the

limit cycle continues to shrink towards the fixed point at the origin.

Figure 3.4: The delayed limit cycle in red and undelayed limit cycle in blue plotted in

(x2, y1, y2) phase space for a = 5.73.
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Next, Figures 3.5 and 3.6 show the delayed solution for an even larger delay a = 5.4 which

is now below the bifurcation value aHopf . Here, we see the system exhibit Amplitude

Death as the solutions spiral towards the now stabilized origin.

1000 1050 1100 1150 1200 1250 1300

-5.×10-12

0

5.×10-12

t

y1

Figure 3.5: Amplitude death in y1 for a = 5.4.
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Figure 3.6: The delayed limit cycle in red tending to the origin and undelayed limit cycle

in blue plotted in (x2, y1, y2) phase space for a = 5.4.

Finally Figure 3.7 shows the delayed time series for y1 when a = 2. Figure 3.8 shows both

the delayed solution in red and the undelayed solution in blue, as well as their approach

from the initial conditions, where the delayed system again exhibits Amplitude Death.

We also observe that the smaller the value of a, or the greater the delay, the faster the

approach to the origin.
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Figure 3.7: Amplitude death in y1 for a = 2.

Figure 3.8: The delayed limit cycle in red tending to the origin and undelayed limit cycle

in blue plotted in (x2, y1, y2) phase space for a = 2.
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In this delayed system, as mentioned above, the limit cycles in the a > aHopf regime

are very robust, as one might expect since the undelayed Landau-Stuart system is well-

known to demonstrate stable periodic behavior over wide ranges of the system parame-

ters. However, it is quite possible that these robust limit cycles might be quickly disrupted

by secondary symmetry breaking, cyclic-fold, flip, transcritical, or Neimark-Sacker bifur-

cations when some other system parameter is changed. To investigate this, for chosen

values of a well above aHopf , we varied the other system parameters deep into this post-

Hopf regime, i.e. far from the starting values ε = 2, ω1 = 15, and ω2 = 15 used above. The

post-supercritical Hopf limit cycle proves extremely robust under variation of all three of

these parameters. No further complex dynamics arises in this delayed system from addi-

tional bifurcations of the Hopf-created limit cycles, not surprisingly since the undelayed

Landau-Stuart system is a stable oscillator over a wide range of these parameters.

3.5.2 Chaotic System

Since our preliminary search for a Hopf bifurcation yielded a negative result for one set of

parameters, let us first vary the value of the delay parameter a and study its effect on the

system. While the effect of delay can be predicted to be stabilizing, a much more complex

set of dynamical behaviors occurs for this case, including a rich array of evolving system

attractors as a, as well as other system parameters, are varied. Hence, the latter part of

this sub-section will also systematically consider the bifurcations and dynamics as the

other important parameter µ, which measures the strength of the parametric excitation,

is varied. This will systematically reveal a variety of dynamical behaviors.
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3.5.2.1 Chaotic Case µ = 0.5

Figure 3.9 show solutions in (x1, x2, y1) phase space of the delayed attractor in red and

undelayed attractor in blue in the chaotic case of µ = 0.5 (having one positive Lyapunov

exponent, three negative exponents, and a fifth one along the time coordinate and hence

always having value zero). We first consider the system in the absence of forcing (q = 0)

as values of the delay parameter a range from a = 0.5 to a = 10. Here we observe 3

types of behavior as we vary a, the first being a cocoon shaped structure surrounding the

undelayed attractor which occurs for a = 0.5 to a = 2, a = 5.5 to a = 10. The second type

of behavior is a double loop type structure for the delayed solutions, again surrounding

the undelayed attractor, and occurring in two different ways, the first oriented as for a = 3

and the second oriented as in the case a = 4 (a rotated version of a = 3). The final type of

behavior is the case a = 3.5 where we see a slightly more complicated looping structure

surrounding the undelayed attractor.
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Figure 3.9: The delayed (red) and undelayed (blue) solutions of the system in the chaotic

case (µ = 0.5) with no forcing (q = 0) for various values of the delay parameter a.
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Figure 3.10: The delayed (red) and undelayed (blue) solutions of the system in the chaotic

case (µ = 0.5) with forcing (q = 0.5) for various values of the delay parameter a.

Next, in Figure 3.10 we have plots in (x1, x2, y1) phase space of the delayed attractor in

red and undelayed attractor in blue in a forced chaotic case with µ = 0.5 and q = 0.5 as
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we vary the delay parameter. As in the unforced case, for several values of a, the delayed

solution is like a cocoon around the undelayed attractor. For the cases a = 1 to a = 3,

a = 5.5, 6, and a = 9 to a = 10 we see the delayed solution is now a thin horizontal loop

around the undelayed attractor. For the cases a = 4, 4.5, 6.5 the delay makes the shape of

the attractor much more complicated with several loops now surrounding the undelayed

attractor. In the case a = 5 we see the delay results in a much thicker smaller attractor

while in the case a = 8 we see the delayed attractor is very similar to the undelayed

case. Both are expected results, with the stabilizing effect of the smaller a or larger delay

shrinking the attractor, while the case with larger a has only weak delay and so does not

differ appreciably from the undelayed system.

Finally in Figure 3.11 we have solutions of the of the delayed and undelayed system

for µ = 0.5 as we vary both the delay parameter a (increasing down the columns) and

forcing parameter q (increasing down the rows). The first thing to observe is that the

most varied behavior occurs in the unforced case, and that as we increase the forcing the

effect of the delay decreases. For instance, for q = 4, 8 the undelayed and delayed systems

have very similar solutions even as we vary the delay strength. Again this is intuitively

something one would expect, with the increasing q or forcing having a destabilizing effect

that counteracts the stabilizing effect of increasing delay as a is reduced.
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Figure 3.11: The delayed (red) and undelayed (blue) solutions of the system in the chaotic

case (µ = 0.5) for values of a = 2, 4, 6, 7, 10 and q = 0, 0.5, 4, 8

Note that, unlike in the case of the delayed Landau-Stuart system, even for very large

delays or small values of a the system does not exhibit complete Amplitude Death or sta-
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bilization of the chaotic behavior to either a stable limit cycle or, even further, to a stable

fixed point. As we shall see below, transition from chaotic regimes to synchronized pe-

riodic oscillations on limit cycles (sometimes referred to as Oscillation Death, or perhaps

more accurately Chaos Death in this case) is indeed possible if we look more widely in

our parameter space.

3.5.2.2 Hyperchaotic Case µ = 2

In this section we look at numerically generated solutions of the system (3.48) for hyper-

chaotic cases with µ = 2 (having two positive, two negative, and one zero (along the time

coordinate) Lyapunov exponent).
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Figure 3.12: The delayed (red) and undelayed (blue) solutions of the system in the hy-

perchaotic case (µ = 2) with no forcing (q = 0) for various values of the delay parameter

a.

Figure 3.12 shows plots in (x1, x2, y1) phase space of the delayed attractor in red and un-

delayed attractor in blue in the hyperchaotic case µ = 2 with no forcing (q = 0) as values
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of the delay parameter a range from a = 0.5 to a = 10. We see that the delayed attractor

is initially thin and long, and oriented vertically. As we increase a from a = 0.5 to a = 3.5

the top and bottom ends of the attractor form a loop. From a = 4 to a = 5 we see the at-

tractor does not have a more amorphous shape, forming a cocoon around the undelayed

attractor. For a = 5.5 through a = 10, the delay causes the system’s attractor to take on

a much more complicated shape that loops around the undelayed attractor, with the ex-

ception of a = 7 where the delayed solution forms a horizontal loop around the delayed

attractor instead.

Next in Figure 3.13 we have plots in (x1, x2, y1) phase space of the delayed attractor in

red and undelayed attractor in blue in the forced hyperchaotic case, µ = 2 and q = 2.5 as

we vary the delay parameter. From this figure we see that at higher values of a or weak

delay, the delayed and undelayed solutions are, as one would expect, almost the same. At

small values of a, the stabilizing effect of the stronger delay causes the attractor to become

much smaller than for the undelayed case. Since the destabilizing effect of the forcing is

quite strong for q = 2.5, note that only strong delay (corresponding to when a is small)

has a significant effect on the system attractor.

In Figure 3.14 we have solutions of the of the delayed and undelayed system as we vary

both the delay parameter a (increasing down the columns) and forcing parameter q (in-

creasing down the rows). We see that for no forcing the introduction of the delay causes

very different behavior as the delay strength varies as we saw in Figure 3.12. However,

increasing the forcing parameter we see that the effects of the delay for different values of

a become similar. We also see that at the higher forcing value q = 8 the delayed orbits are

simpler than the undelayed orbit. In particular the case q = 8 shows that unlike in Figure

3.13 it is not always the case that the delay only has significant effects on the system at

smaller values of a. This is again expected, as the very strong destabilizing effect of this
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large forcing would be partially counteracted even by weak delays.

Figure 3.13: The delayed (red) and undelayed (blue) solutions of the system in the hy-

perchaotic case (µ = 2) with forcing (q = 2.5) for various values of the delay parameter

a.
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Figure 3.14: The delayed (red) and un delayed (blue) solutions of the system in the hy-

perchaotic case (µ = 2) for values of a = 2, 4, 6, 7, 10 and q = 0, 0.5, 4, 8
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3.5.3 Varying the Parametric Forcing

The above gives a general idea about the effects of the delay and forcing on the sys-

tem dynamics. In order to understand the various possible dynamical regimes, and the

transitions between them, more comprehensively, we shall next consider the effect of sys-

tematically increasing the other, and perhaps most important, system parameter µ which

controls the parametric forcing.

We consider the case of weak delay with a = 10, although smaller a values show qualita-

tively similar behavior. At small µ0.1, we see periodic dynamics, as seen in the phase plot

of Figure 3.15, and the power spectral density of Figure 3.16 which shows a single narrow

peak at ω ' 0.137.

Figure 3.15: The phase space plot for µ = 0.1, and a = 10, q = 0.5.
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Figure 3.16: The power spectral density for µ = 0.1, and a = 10, q = 0.5.

There is a complete cascade of period doublings for µ ∈ (0.1, 0.11), leading to a more

complex chaotic attractor with one positive Lyapunov exponent at µ = 0.11, as seen in

the phase plot of Figure 3.17, and the broad features in the power spectral density of

Figure 3.18.
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Figure 3.17: The phase space plot for µ = 0.11, and a = 10, q = 0.5.
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Figure 3.18: The broad chaotic features in the power spectral density for µ = 0.11, and

a = 10, q = 0.5. Note the secondary single peak at ω ' 0.416.
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The chaotic behavior persists over the window µ ∈ (0.11, 3.43) and then is destroyed

in a boundary crisis for µ ∈ (3.43, 3.44), leading into a new period doubled attractor at

µ = 3.44 with a dominant single peak at ω ' 0.208 as seen in Figures 3.19 and 3.20. This

corresponds to a synchronized state of the two oscillators.

Figure 3.19: The phase space plot for µ = 3.44, and a = 10, q = 0.5.
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Figure 3.20: The single peaked power spectral density for µ = 0.11, and a = 10, q = 0.5,

with ω ' 0.208 and a very small secondary peak still persisting at ω ' 0.416.

This periodic attractor then immediately undergoes a symmetry breaking bifurcation for

µ ∈ (3.44, 3.45), as shown in the power spectral density plot of Figure 3.21 where the

symmetry breaking gives rise to the peak at the second harmonic frequency of ω ' 0.416
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Figure 3.21: The single peaked power spectral density for µ = 3.45, and a = 10, q = 0.5

with ω ' 0.416, the second harmonic of the frequency in Figure 20.

As µ is increased further, a small secondary peak at ω ' 0.24 is created as the oscillators

losing synchronization near µ ' 5.3. The behavior is thus now two-period quasiperiodic,

and this persists till µ = 83.41, as seen in Figures 3.22 and 3.23, showing the attractor and

the double-peaked power spectrum at that value.
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Figure 3.22: The two-period quasiperiodic attractor for µ = 83.41, and a = 10, q = 0.5.
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Figure 3.23: The power spectral density for µ = 83.41, and a = 10, q = 0.5, with ω ' 0.208

and a second peak at an incommensurate frequency ω ' 0.24.
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Following this, there is a cascade of torus doublings for µ ∈ (83.4113, 83.4114), leading to

a more complex chaotic attractor at µ = 83.42 with one positive Lyapunov exponent, as

seen in the phase space plot of Figure 3.24, and the broad features in the power spectral

density of Figure 3.25.

Figure 3.24: The phase space plot for µ = 83.42, and a = 10, q = 0.5 after a sequence of

torus doublings.
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Figure 3.25: The broad chaotic features in the power spectral density for µ = 83.42, and

a = 10, q = 0.5. Note the secondary single peak at ω ' 0.416.

As µ in raised further, the chaotic attractor is destroyed by a boundary crisis at µ ' 83.45

as seen in Figures 3.26 and 3.27. In the latter, the earlier two peaks in the power spectral

density persist, but sidebands and a new peak at ω ' 0.095 have been created.
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Figure 3.26: The phase space plot for µ = 83.45, and a = 10, q = 0.5.
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Figure 3.27: The power spectral density for µ = 83.45, and a = 10, q = 0.5. The earlier two

peaks in the power spectral density persist, but sidebands and a new peak at ω ' 0.095

have been created.
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Finally this exterior crisis begins to terminate in a stable quasiperiodic attractor at µ '

83.48 as seen in Figure 3.28 where the earlier two peaks in the power spectral density

persist, but a new peak at ω ' 0.175 has been created.
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Figure 3.28: The power spectral density for µ = 83.48, and a = 10, q = 0.5. The earlier two

peaks in the power spectral density persist, but a new peak at ω ' 0.175 has been created.

For slightly higher µ ' 83.5, a new second harmonic peak is born at ω ' 0.35 by symmetry

breaking, and the crisis terminates with the cleaner-looking power spectrum at µ ' 85

seen in Figure 3.29.
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Figure 3.29: The power spectral density for µ = 85, and a = 10, q = 0.5. The new peak at

ω ' 0.175 and its second harmonic now remain.

We shall end our bifurcation sequence here for this case, as the general features are clear

by now.

To conclude our numerical results, let us very briefly consider the case of strong delay

with a = 0.1, q = 8, where we use a stronger forcing to partly balance the stabilizing

effect of the very large delay. Now the range of periodic behavior with ω ' 0.416 at

low values of µ persists up to µ ' 94.63 after which a second frequency ω ' 0.24 comes

in via Hopf bifurcation. Further bifurcations and changes in system dynamics as µ is

raised then mimic those discussed above for the weak delay case, except that they occur

at significantly larger values of µ.
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3.6 Results and Conclusions

We have comprehensively analyzed the effects of distributed ’weak generic kernel’ delays

on the coupled Landau-Stuart system, as well as a second chaotic oscillator system with

parametric forcing. As expected, increasing the delay by reducing the delay parameter a

is stabilizing, with its Hopf bifurcation value (dependent, of course, on the other system

parameters) being a point of exact Amplitude death for both the Landau-Stuart and the

chaotic van der Pol-Rayleigh parametrically forced system. In the Landau-Stuart system,

the Hopf-generated limit cycles for a > aHopf are very robust under large variations of all

other system parameters beyond the Hopf bifurcation point, and do not undergo further

symmetry breaking, cyclic-fold, flip, transcritical or Neimark-Sacker bifurcations. This is

to be expected as the corresponding undelayed systems are robust oscillators over very

wide ranges of their respective parameters.

Numerical simulations reveal strong distortion and rotation of the limit cycles in phase

space as the parameters are pushed far into the post-Hopf regime, and also enable track-

ing of other features, such as how the oscillation amplitudes and time periods of the

physical variables on the limit cycle attractor change as the delay and other parameters

are varied. For the chaotic system, very strong delays may still lead to the onset of AD

(even for relatively large values of the system forcing which tends to oppose this stabi-

lization phenomenon).

Varying of the other important system parameter, the parametric excitation, leads to a

rich sequence of evolving dynamical regimes, with the bifurcations leading from one into

the next being carefully tracked numerically here.
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CHAPTER 4: DELAY EFFECTS ON AMPLITUDE DEATH,

OSCILLATION DEATH, AND RENEWED LIMIT CYCLE BEHAVIOR

IN CYCLICALLY COUPLED OSCILLATORS

4.1 Introduction

Cooperative behaviors in coupled oscillators have been actively studied in various fields

in recent years [32]. Various such phenomena include several kinds of synchronization

[33], quenching of oscillations, phase locking, and complex chimera states [34].

Oscillation quenching [35]- [36] has applications in a variety of biological and chemical

systems [37]- [39], and may occur via a variety of couplings, as well as via both discrete

and distributed time delays of sufficient strength [40]- [44].

Quenched states are now distinguished into two categories, viz. amplitude death (AD)

and oscillation death (OD). The former (AD) occurs when all the coupled sub-systems

settle to a common stable and homogeneous steady state (HSS) or fixed point. By contrast,

the latter (OD) corresponds to the various oscillators settling to or populating different,

coupling-dependent stable states, referred to as inhomogeneous steady states (IHSS). In

some systems, coexistence of HSS and IHSS behaviors [45], or of OD with limit cycles [46],

or multi-cluster OD and other more complex states [47] in networks, or bifurcations of

limit cycles to more complex oscillatory states [48] have also been observed.

Transitions from HSS to IHSS states are of significant interest in physical phenomena, a

classical example being the diffusion induced Turing instability [49] leading to the forma-

tion of pattern from a homogeneous background. For instance, such behavior has been
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observed [35] in systems with diffusive coupling, discrete delay, conjugate coupling, dy-

namic coupling, repulsive interaction, mean-field coupling, and linear augmentation [50]-

[60]. If the individual oscillators are of the limit cycle variety, the symmetry breaking from

the HSS to the IHSS state has generally been found to occur via a pitchfork bifurcation,

irrespective of the coupling or other symmetry breaking features of the system. In chaotic

oscillators, the situation is more complicated, and that will be one of our primary areas of

focus in this chapter.

This chapter explores the above issues, and is organized as follows. Section 2 considers

the linear stability analysis, and local bifurcations of a system of Van der Pol oscillators,

and a chaotic Sprott system, both cyclically coupled and with a distributed delay incorpo-

rated. Section 3 considers detailed numerical results for both systems, including various

parameter regimes and types of dynamics. The results and conclusions are summarized

in Section 4

4.2 Linear Stability and Local Bifurcation Analysis

4.2.1 Van Der Pol Oscillators with Cyclic Coupling and Delay

First consider a system of Van der Pol Equations under cyclic coupling given by

ẋ1 = ω1y1 + ε1(x2 − x1)

ẏ1 = b(1− x21)y1 − ω1x1

ẋ2 = ω2y2

ẏ2 = b(1− x22)y2 − ω2x2 + ε2(y1 − y2) (4.1)
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where ε1,2 are the coupling strengths, ω1,2 are the frequencies, and we take b = 3/10 [61].

Introducing a weak distributed time delay in the last equation:

ẋ1 = ω1y1 + ε1(x2 − x1)

ẏ1 = b(1− x21)y1 − ω1x1

ẋ2 = ω2y2

ẏ2 = b(1− x22)y2 − ω2x2 + ε2

(∫ t

−∞
ay1(τ)e−a(t−τ)dτ − y2

)
(4.2)

and defining

z(t) =

∫ t

−∞
ay1(τ)e−a(t−τ)dτ (4.3)

we can reduce the system (4.2) to the system of ordinary differential equations:

ẋ1 = ω1y1 + ε1(x2 − x1)

ẏ1 = b(1− x21)y1 − ω1x1

ẋ2 = ω2y2

ẏ2 = b(1− x22)y2 − ω2x2 + ε2 (z − y2)

ż = a(y1 − z) (4.4)

The fixed points of the delayed system are the trivial fixed point P0:

P0 = (x1, y1, x2, y2) = (0, 0, 0, 0, 0) (4.5)
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and two nontrival fixed points given by:

P1 = (x+, y+, ε2y+/ω2, 0, y+) (4.6)

P2 = (x−, y−, ε2y−/ω2, 0, y−) (4.7)

where

x± = ±

√
1− ω2

1ω2 + ε1ε2ω1

bω2ε1
(4.8)

y± =
ω1x±

b(1− x2±)
(4.9)

In this chapter we will consider the case where ε1 = ε2 = ε. Following the methods of

phase-plane analysis, the eigenvalues of the Jacobian matrix of (4.4) evaluated at the fixed

point P0 (and with b = 3/10) satisfy the characteristic equation

λ5 + (a− 2b+ 2ε)λ4 +

(
a

(
2ε− 3

5

)
+ ε2 − 9ε

10
+ ω2

1 + ω2
2 +

9

100

)
λ3

+

(
a

(
ε2 − 9ε

10
+ ω2

1 + ω2
2 +

9

100

)
− 3ε2

10
+ ε

(
ω2
1 + ω2

2 +
9

100

)
− 3

10

(
ω2
1 + ω2

2

))
λ2 +

(
1

100
a
(
−30ε2 + ε

(
100ω2

1 + 100ω2
2 + 9

)
−30

(
ω2
1 + ω2

2

))
− 3εω2

2

10
+ ω2

1ω
2
2

)
λ+

1

10
aω2

(
10ε2ω1 − 3εω2 + 10ω2

1ω2

)
= 0 (4.10)

Similarly, and also setting b = 3/10, the eigenvalues of the Jacobian matrix of (4.4) at either

of the nontrivial fixed points P1 or P2 satisfy the (same) characteristic equation:

λ5 + b1λ
4 + b2λ

3 + b3λ
2 + b4λ+ b5 = 0 (4.11)

where the coefficients bi, i = 1, 5 are given in Appendix A.1.
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For the fixed point Pi, i = 0, 1, 2, to be a stable fixed point within the linearized analysis,

all the associated eigenvalues must have negative real parts. From the Routh-Hurwitz

criteria, the necessary and sufficient conditions for a fifth degree polynomial equation of

the form:

λ5 + b1λ
4 + b2λ

3 + b3λ
2 + b4λ+ b5 = 0 (4.12)

to have Re(λ1,2,3,4,5) < 0 are:

b1 > 0 (4.13)

b5 > 0 (4.14)

b1b2 − b3 > 0 (4.15)

b1(b2b3 + b5)− b23 − b21b4 > 0 (4.16)

b1(b2b3b4 − b22b5 + 2b4b5)− b23b4 − b25 + b2b3b5 − b21b24 > 0 (4.17)

It is straightforward to check that, for general values of b, the fixed point P0 undergoes a

supercritical pitchfork bifurcation when

1− ω2
1ω2 + ε1ε2ω1

bω2ε1
= 0 (4.18)

with P0 going unstable, and the two non-trivial fixed points being born (and being stable)

when the expression on the left becomes positive. For b = 3/10 and ε1 = ε2 = ε, this

pitchfork bifurcation surface is plotted in Figure 4.1.

When the final Routh-Hurwitz condition (4.17) becomes an equality the polynomial (4.12)

has one pair of purely imaginary complex conjugate roots. Upon fixing values for ω1

and ω2 we may solve the Routh-Hurwitz conditions (with the final condition (4.17) an
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Figure 4.1: Pitchfork bifurcation surface of trivial fixed point of (4.2) for b = 3/10 and
ε1 = ε2 = ε.

equality) polynomial by polynomial to find parameters in (ε, a)-parameter space where

the system undergoes a Hopf bifurcation.

For example, one set of conditions for a Hopf bifurcation of the trivial fixed point P0 in

the case where ω1 = 1 and ω2 = −1 is that 0.3 < ε < 0.437913 and a is either1 the third or

1depending on ε it can be one or both
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fourth root2 of the polynomial:

x4
(
3000000ε5 − 44050000ε4 + 37890000ε3 − 12964500ε2 + 2184300ε− 162000

)
+ x3

(
6000000ε6 − 99900000ε5 + 111210000ε4 − 51363000ε3 + 12417300ε2

−1634580ε+ 97200) + x2
(
3000000ε7 − 66750000ε6 + 104805000ε5 − 123130000ε4

+82932450ε3 − 27585675ε2 + 4710987ε− 338580
)

+ x
(
−10900000ε7

+32985000ε6 − 103331500ε5 + 102939450ε4 − 48149595ε3 + 12146787ε2

−1649160ε+ 97200)− 900000ε6 + 10215000ε5 − 31817000ε4 + 29239350ε3

− 11819790ε2 + 2232900ε− 162000

In particular we fix ε = 0.31 which gives two values for a as the third and fourth root of

the polynomial

−127977700− 1387299577x+ 1437004310065x2 − 152978250x3 − 6147350000x4 (4.19)

so that a ≈ 0.00993214 and a ≈ 15.2763. So we have that the parameter sets (ε, a) =

(0.31, 0.00993214) and (ε, a) = (0.31, 15.2763) result in Hopf bifurcations of the trivial fixed

point. We also note that the Routh-Hurwitz stability conditions at the two nontrivial fixed

points are not satisfied for these parameters, so the other two fixed points do not bifurcate.

Alternatively for ω1 = 1 and ω2 = −1, solving the Routh-Hurwitz conditions for the

nontrivial fixed points gives the range 1.60071 < ε ≤ 1.82239 where a, again, is a root of

a polynomial whose coefficients depend on ε. For example, taking ε = 1.65, we obtain

a ≈ 0.0101494 and a ≈ 4.20511 as Hopf bifurcation points.

2when the roots are ordered in increasing real part, with real roots listed before complex roots and
complex conjugate pairs listed next to each other

115



4.2.2 Cyclically Coupled and Delayed Sprott System

Next consider the Sprott system with cyclic coupling which is is given by

ẋ1 = x1y1 − ω1z1 + ε1(x2 − x1)

ẏ1 = x1 − y1

ż1 = ω1x1 + αz1

ẋ2 = x2y2 − ω2z2

ẏ2 = x2 − y2

ż2 = ω2x2 + αz2 + ε2(z1 − z2) (4.20)

where α = 3/10, and we note that each individual oscillator is chaotic in isolation for this

value of α.

Introducing a weak distributed time delay in the last equation, and considering the case

where ω1 = −ω2 = ω and ε1 = ε2 = ε:

ẋ1 = x1y1 − ωz1 + ε(x2 − x1)

ẏ1 = x1 − y1

ż1 = ωx1 + αz1

ẋ2 = x2y2 + ωz2

ẏ2 = x2 − y2

ż2 = −ωx2 + αz2 + ε

(∫ t

−∞
az1(τ)e−a(t−τ)dτ − z2

)
(4.21)
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where α = 3/10, and by defining w(t) as:

w(t) =

∫ t

−∞
z1(τ)ae−a(t−τ)dτ (4.22)

we can reduce the system (4.21) to the system of ordinary differential equations:

ẋ1 = x1y1 − ωz1 + ε(x2 − x1)

ẏ1 = x1 − y1

ż1 = ωx1 + αz1

ẋ2 = x2y2 + ωz2

ẏ2 = x2 − y2

ż2 = −ωx2 + αz2 + ε (w − z2)

ẇ = a(z1 − w) (4.23)

The fixed points of the delayed system are the trivial fixed point:

P0 = (0, 0, 0, 0, 0, 0, 0) (4.24)

and the nontrivial fixed point:

P1 =

(
x∗1, x

∗
1,−

ωx∗1
α
, x∗2, x

∗
2,−

(x∗2)
2

ω
,−ωx

∗
1

α

)
(4.25)

where

x∗2 =
1

ε

(
−ω

2x∗1
α

+ εx∗1 − (x∗1)
2

)
(4.26)
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and x∗1 is the real root of the cubic equations given by:

−ω
ε

(
ε− ω2

α
− x∗1

)
− (α− ε)x∗1

ωε2

(
ε− ω2

α
− x∗1

)2

− ωε

α
= 0 (4.27)

The cubic equation has a singularity at ε = 0.3 where it can either have three real roots for

ε < 0.3 (corresponding to three fixed points) or one real root for ε > 0.3 (corresponding

to a single fixed point) [31]. In our bifurcation analysis that follows, we find through

numerical searches that no bifurcations are possible in the case where three real roots

(fixed points) exists, and thus we focus on the cases where we have a single nontrivial

fixed point P1 in the following work.

The eigenvalues of the Jacobian matrix of (4.23) at the trivial fixed point P0 satisfy the

characteristic equation

λ7 + b1λ
6 + b2λ

5 + b3λ
4 + b4λ

3 + b5λ
2 + b6λ+ b7 = 0 (4.28)

where the coefficients bi, i = 1, 7 are given in Appendix A.2.

Similarly, the eigenvalues of the Jacobian matrix at the fixed point P1 satisfy the charac-

teristic equation:

λ7 + b1λ
6 + b2λ

5 + b3λ
4 + b4λ

3 + b5λ
2 + b6λ+ b7 = 0 (4.29)

where the coefficients bi, i = 1, 7 are also given in Appendix A.2.

For the fixed point Pi, i = 0, 1, to be stable within the linearized analysis, all the eigenval-

ues must have negative real parts. From the Routh-Hurwitz criterion, the necessary and
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sufficient conditions for a seventh degree polynomial equation of the form:

λ7 + b1λ
6 + b2λ

5 + b3λ
4 + b4λ

3 + b5λ
2 + b6λ+ b7 = 0 (4.30)

to have Re(λ1,2,3,4,5) < 0 are:

b1 > 0 (4.31)

b7 > 0 (4.32)

b1b2 − b3 > 0 (4.33)

b1(b2b3 + b5)− b23 − b21b4 > 0 (4.34)

−b23b4 − b25 + b21(−b24 + b2b6) + b3(b2b5 + b7)

−b1(b22b5 − 2b4b5 + b3b6 + b2(−b3b4 + b7)) > 0 (4.35)

b31
(
−b26

)
+ b21

(
b4(b3b6 − b2b7) + 2b6(b2b5 + b7)− b24b5

)
+b1

(
b22
(
b3b7 − b25

)
− b2

(
b23b6 − b3b4b5 + b5b7

)
− 3b3b5b6 + 2b4b

2
5 − b27

)
−b23(b2b7 + b4b5) + b3b5(b2b5 + 2b7) + b33b6 − b35 > 0 (4.36)

−b31b36 + b21
(
b4b6(b3b6 − 3b2b7) + b26(2b2b5 + 3b7) + b34b7 − b24b5b6

)
−b1

(
b32b

2
7 + b22

(
−2b3b6b7 − b4b5b7 + b25b6

)
+ b2

(
b23b

2
6 + b3b4(b4b7 − b5b6)

+b7(b5b6 − 3b4b7))− b4b6
(
b3b7 + 2b25

)
+ 3b6

(
b3b5b6 + b27

)
+ 2b24b5b7

)
+b3

(
b22b

2
7 + b2b5(b5b6 − b4b7) + b7(3b5b6 − 2b4b7)

)
+ b23

(
−2b2b6b7 + b24b7

−b4b5b6)− b2b5b27 + b33b
2
6 + b4b

2
5b7 − b35b6 + b37 > 0 (4.37)

It is straightforward to check that, for α = 3/10, the fixed point P0 undergoes a transcriti-
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Figure 4.2: Transcritical bifurcation curves where fixed points P0 and P1 of (4.23) col-
lide and exchange stability for α = 3/10. The relevant portions are to the right of the
intersections of the jagged curves with both the left and right rotated V-shaped curves .

cal bifurcation, colliding and exchanging stability with P1, when

−10ε2 − 3ε+ 10ω2 = 0 (4.38)

For α = 3/10 and ε1 = ε2 = ε, this transcritical bifurcation curve is plotted below in Figure

4.2

When the final condition (4.37) becomes an equality, the polynomial (4.30) has one pair

of purely imaginary complex conjugate roots. Upon fixing values for ω we may numeri-

cally solve the Routh-Hurwitz conditions with the final condition (4.37) taken to be equal-

ity (along with equation (4.27) for x∗1 in the nontrivial case) to find parameters in (ε, a)-

parameter space where the system undergoes a Hopf bifurcation.
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For example, one set of conditions for a Hopf bifurcation of the trivial fixed point P0 we

obtain in the case where ω = 5 is that 0.3 < ε < 0.457474 and a is either the third or fourth

root3 of the polynomial:

x4
(
3000000ε5 − 1004050000ε4 + 901890000ε3 − 315364500ε2 + 54024300ε− 4050000

)
+ x3

(
6000000ε6 − 2259900000ε5 + 2631210000ε4 − 1239363000ε3 + 304017300ε2

−40514580ε+ 2430000) + x2
(
3000000ε7 − 1506750000ε6 + 2480805000ε5

−36019930000ε4 + 38060772450ε3 − 14728329675ε2 + 2709722187ε− 202864500
)

+ x
(
−250900000ε7 + 788985000ε6 − 44560931500ε5 + 54766779450ε4

−27662777595ε3 + 7269617187ε2 − 1013229000ε+ 60750000
)
− 22500000ε6

+ 5655375000ε5 − 319545425000ε4 + 378208983750ε3 − 169382994750ε2

+ 33795562500ε− 2531250000 (4.39)

In particular, we can fix ε = 0.4 which gives a as the third and fourth root of the poly-

nomial −31473200− (16371964/5)x + 57507566x2 − 210120x3 − 850600x4, or a ≈ 0.773509

and a ≈ 8.03562. So we have that the parameter sets (ε, a) = (0.4, 0.773509) and (ε, a) =

(0.4, 8.03562) result in Hopf bifurcations of the trivial fixed point. Here we note that the

Routh-Hurwitz stability conditions at the nontrivial fixed point are satisfied for these val-

ues of ω and ε for any choice of a, so P1 does not bifurcate at these parameters as we vary

a around the Hopf bifurcation point of P0.

Alternatively for ω = 1 and ε = 1.41, we can numerically solve the Routh-Hurwitz condi-

tions and condition (4.27) on x∗1 for the nontrivial fixed point to obtain that x∗1 ≈ 0.722446,

3when the roots are ordered in increasing real part, with real roots listed before complex roots and
complex conjugate pairs listed next to each other
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so that the nontrivial fixed point is:

P1 ≈ (0.722446, 0.722446,−2.40815,−1.35563,−1.35563,−1.83772,−2.40815) (4.40)

and a ≈ 0.241658 and a ≈ 23.8302 as bifurcation points. Here, we again note that for

these values of ω and ε the the Routh-Hurwitz conditions at the trivial fixed point are not

satisfied for any choice of a and so it does not undergo an Hopf bifurcation as we vary a

around the bifurcation points of the nontrivial fixed point.

4.3 Numerical Results and Discussion

4.3.1 Delayed Van der Pol System

Let us now turn to numerical results for the Van Der Pol System. Here we will consider

two sets of parameters: one for ω1 = 1 and ω2 = −1, and the other for ω1 = ω2 = 1,

corresponding to counter- and co-rotating oscillators respectively. In general the ’param-

eter mismatch’ ∆ = ω2/ω1 allows for symmetry breaking of the system via a pitchfork

bifurcation, as already discussed earlier, and plotted in Figure 1.

4.3.1.1 Parameter Set 1 (ω1 = −ω2 = 1): Trivial Fixed Point

Here we will consider the case where ω1 = 1, ω2 = −1, ε = 31/100 corresponding to the

trivial fixed point being stable, i.e., prior to the symmetry-breaking pitchfork bifurcation

. First we note that for this set of parameters each Van der Pol system is in oscillation

in isolation (that is uncoupled and without delay), while the coupled system (without

delay) is in a state of amplitude death (that is the trivial fixed point is stable). For this
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set of parameters, the Routh Hurwitz conditions at the trivial fixed point show that the

trivial fixed point Hopf bifurcates at a ≈ 0.00993214 and a ≈ 15.2763. By contrast, the

nontrivial fixed points do not bifurcate as we vary a for this case.

0 5000 10000 15000 20000 25000 30000

-0.10

-0.05

0.00

0.05

0.10

t

x1

Figure 4.3: Amplitude Death in x1 for a = 20.

Figure 4.3 shows the solutions for x1 for a = 20 above the first Hopf bifurcation value a ≈

15.2763. Here, the origin is stable and we have amplitude death above the first bifurcation

point. Figure 4.4 shows the solution in (x1, x2, y2) phase space and the approach from the

initial conditions as the solution spirals towards the origin.

In figure 4.5 we have plotted the limit cycle of the isolated (undelayed) Van der Pol os-

cillator in green and the solutions in (x1, y1) phase space of the delayed, coupled system

(in red) for various values of a between the two bifurcation points of our system. We

observe, as expected, that on this side of the Hopf bifurcation point we have periodic be-

havior. Also, just below the first bifurcation point a ≈ 15.2763 the limit cycle is very small

and close to the origin and as we decrease the delay parameter a the limit cycle grows in

size. Then as we start to approach the second bifurcation point a ≈ 0.00993214, we see
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Figure 4.4: The solution for a = 20 spiraling in towards the stable origin from the initial
conditions.

that immediately above a = 0.00994 the delayed limit cycle has begun to shrink toward

the origin again.

Next Figures 4.6 shows the delayed solution for a = 0.005 below the second bifurcation

value a ≈ 0.00993214. Here we see that below the second Hopf bifurcation point the

delayed system experiences amplitude death as the origin regains stability. In Figure 4.7

we see the solution in (x1, x2, y1) parameter space approaching the now stable origin from

the initial conditions.

4.3.1.2 Parameter Set 1 (ω1 = −ω2 = 1): Nontrivial Fixed Points

Here we will consider the case where ω1 = 1, ω2 = −1, ε = 1.65. As we can see from

(4.18), for b = 3/10 the trivial fixed point undergoes a pitchfork bifurcation at ε = 0.862,

and so we are now past that bifurcation where the stable nontrivial fixed points were
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Figure 4.5: The limit cycle of an isolated undelayed Van der Pol oscillator in green and the
limit cycle of the delayed system in red for various values of a between the two bifurcation
points.
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Figure 4.6: Amplitude Death in x1 for a = 0.005.
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Figure 4.7: The solution in (x1, x2, y1) parameter space for a = 0.005 spiraling towards
the stable origin from the initial conditions.

born. First we note that for this set of parameters each Van der Pol system is in oscillation

in isolation (that is uncoupled and without delay), while the coupled system (without

delay) is in a state of amplitude death (that is the trivial fixed point is stable). For this

set of parameters the Routh Hurwitz conditions at the nontrivial fixed point show that it

bifurcates at a ≈ 0.0101494 and a ≈ 4.20511. The Routh Hurwitz conditions at the trivial

fixed point show that, for our choice of (ω1, ω2, ε), P0 does not bifurcate as we vary a. For

these parameters the two nontrivial fixed points are given by:

P+ ≈ (2.11655,−2.02747, 3.34532, 0,−2.02747) (4.41)

P− ≈ (−2.11655, 2.02747,−3.34532, 0, 2.02747) (4.42)
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Figure 4.8: As the coupled system approaches P+, the first oscillator (x1, y1) approaches

the steady state (2.11655,−2.02747).

Figure 4.8 shows the solution in phase space for the first oscillator (x1, y1) and Figure 4.9

shows the solution for the second oscillator in (x2, y2) phase space with initial condition

near P+ for a = 9 above the first Hopf bifurcation value a ≈ 4.20511. Similarly, Figure 4.10

shows the solution in phase plane for the first oscillator (x1, y1) and Figure 4.11 shows the

solution for the second oscillator in (x2, y2) phase space with initial condition near P− for

a = 9. Here, both nontrivial fixed points are stable and we see that we have oscillation

death above the first bifurcation point (that is two oscillators (x1, y1) and (x2, y2) settling

to two distinct steady states).
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Figure 4.9: As the coupled system approaches P+, the second oscillator (x2, y2) approaches
the steady state (3.34532, 0).
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Figure 4.10: As the coupled system approaches P−, the first oscillator (x1, y1) approaches

the steady state (−2.11655, 2.02747).
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Figure 4.11: As the coupled system approaches P−, the second oscillator (x2, y2) ap-

proaches the steady state (−3.34532, 0).

After the first Hopf bifurcation at a ≈ 4.20511, both nontrivial fixed points become un-

stable. In figure 4.12 we have plotted the limit cycles for the delayed system for initial

conditions near P+ in red, and initial conditions near P− in green in (x1, x2, y2) phase

space for various values of a between the first and second bifurcation points. Here we

see that the limit cycle is stable and expands in size as we decrease the delay parameter

a until a ≈ 1.34896 where the solutions begin to grow in size. In figure 4.13 we plot the

limit cycles for initial conditions starting near P+ in red, and initial conditions starting

near P− in green for the delayed system, and the limit cycle for an isolated, undelayed

system in blue in the first four graphs. We see that the delayed limit cycles start out very

small around each nontrivial fixed point and, as we decrease the delay parameter a, the

limit cycles grow in size and begin to stretch out. Then, as we move even closer to the
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second bifurcation point (past a ≈ 1.347), we observe that the solutions no longer tend

to a stable limit cycle and instead solutions extend off towards infinity in the cases for

a = 0.5, 0.0102.

 , ,

, 

Figure 4.12: The first three plots show the limit cycles for the delayed system for initial

conditions near P+ in red and initial conditions near P−, for various values of a between

the two bifurcation points. The final plot for a = 1.3486 shows the solutions beginning to

grow.
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Figure 4.13: The first four plots contain the limit cycles for the delayed system for initial

conditions near P+ in red and initial conditions near P−, and the limit cycle of the unde-

layed and uncoupled system, for various values of a between the two bifurcation points.

The last two show that, as we further decrease a, we no longer have a stable limit cycle

and the solutions fly off to infinity.

Next we consider the delayed solution for a = 0.005 below the second bifurcation value

a ≈ 0.0101494. Figure 4.14 shows the solution in phase plane for the first oscillator (x1, y1)

and Figure 4.15 shows the solution for the second oscillator in (x2, y2) phase space with

initial condition near to P+. Similarly, Figure 4.16 shows the solution in phase plane for

the first oscillator (x1, y1) and Figure 4.17 shows the solution for the second oscillator in

(x2, y2) phase space with initial condition near to P−. Here, both nontrivial fixed points

have regained their stability, and we see that we have oscillation death below the second

bifurcation point (that is two oscillators (x1, y1) and (x2, y2) settling to two distinct steady

states).
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Figure 4.14: As the coupled system approaches P+, the first oscillator (x1, y1) approaches

the steady state (2.11655,−2.02747).
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Figure 4.15: As the coupled system approaches P+, the second oscillator (x2, y2) ap-

proaches the steady state (3.34532, 0).
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Figure 4.16: As the coupled system approaches P−, the first oscillator (x1, y1) approaches

the steady state (−2.11655, 2.02747).
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Figure 4.17: As the coupled system approaches P−, the second oscillator (x2, y2) ap-

proaches the steady state (−3.34532, 0).
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4.3.1.3 Parameter Set 2 (ω1 = ω2 = 1)

Here we will consider the case where ω1 = ω2 = 1, ε = 1. First we note that for this set

of parameters each Van der Pol system is in oscillation in isolation (that is uncoupled and

without delay) and the coupled system (without delay) is in a state of oscillation as well.

For this set of parameters the Routh Hurwitz conditions at the trivial fixed point give

us that the trivial fixed point Hopf bifurcates at a ≈ 0.28607, and the other two nontrivial

fixed points do not exist as the pitchfork bifurcation boundary (4.18) has not been crossed.
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Figure 4.18: Oscillations in x1 for a = 2.
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Figure 4.19: Limit cycles for the coupled system without delay in blue, and for the coupled

system with delay in red for a = 2 in (x1, x2, y2) phase space.

Figures 4.18 shows the solution for x1 for a = 2 above the Hopf bifurcation value a ≈

0.28607. Above the bifurcation point we have oscillatory behavior and Figure 4.19 shows

the limit cycles for the coupled system without delay in blue and the coupled system

with delay in red in (x1, x2, y2) phase space. We see that the delay deforms and stretches

the limit cycle. Figure 4.20 shows the undelayed (blue) and delayed (red) limit cycles for

several values of the delay parameter a, from which we see that as we decrease a towards

the bifurcation point (that is strengthen the delay) the delayed limit cycle in red deforms

from the undelayed one, becoming thinner and shrinking towards the origin.
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Figure 4.20: The limit cycles for the undelayed (in blue) and delayed (in red) systems for

several values of the delay parameter a. We observe that the delayed limit cycle shrinks

to the origin as we decrease a towards the bifurcation point.

Next, figure 4.21 shows the solution for x1 for a = 0.08 after the Hopf Bifurcation, where

the origin is now stable. Figure 4.22 shows the solution in (x1, x2, y2) phase space spiraling

towards the stable origin. Here we note that the coupled system without delay is still

in oscillation (as it does not depend on the delay parameter a), that is the delay causes

amplitude death where the cyclic coupling alone cannot.
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Figure 4.21: The solution for x1 for the case a = 0.08.

Figure 4.22: The solution in (x1, x2, y2) phase space for a = 0.08 approaching the stable

origin from initial conditions.
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4.3.2 Delayed Sprott Oscillators

Next we consider the numerical results for the delayed Sprott system with cyclic coupling.

4.3.2.1 Trivial Fixed Point

Here we will consider the case where ω = 5, ε = 0.4. First we note that for this set of

parameters each Sprott oscillator is chaotic in isolation (that is uncoupled and without

delay), while the coupled system (without delay) is in a state of amplitude death (that is

the cyclic coupling results in the trivial fixed point being stable). Also, this parameter set

is prior to the transcritical bifurcation at (4.38), and hence fixed point P0 is stable. For this

set of parameters, the Routh-Hurwitz conditions at the trivial fixed point of the delayed

and coupled system reveal that it Hopf bifurcates at a ≈ 8.03562 and a ≈ 0.773509. The

Routh-Hurwitz conditions at the nontrivial fixed point show us that, for this choice of

(ω1, ω2, ε), it does not bifurcate as we vary a.
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Figure 4.23: Amplitude Death in x1 for a = 14.
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Figure 4.23 shows the solution for x1 for a = 14 above the first Hopf bifurcation value

a ≈ 8.03562. Here, the origin is stable which means we have amplitude death above the

first bifurcation point. Figure 4.24 shows the solution in (x1, x2, y2) phase space as the

solution spirals towards the origin.

Figure 4.24: The solution for a = 14 spiraling in towards the stable origin from the initial

conditions.

In figure 4.25 we have plotted the attractor of the isolated (undelayed) Sprott system in

blue and the solutions of the delayed, coupled system in red for values of a = 8, 6, 4, 2, 0.9, 0.79

between the two bifurcation points of our system. We observer, as expected, that on this

side of the bifurcation the origin has gone unstable. Here, just below the first bifurcation

point at a = 8, the periodic attractor for the delayed system is very small and close to the

origin, and, as we decrease the delay parameter a, this limit cycle grows in size towards

the attractor of the undelayed isolated system.
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Figure 4.25: Phase plane plots for the undelayed Sprott system in blue and the delayed

system in red for various values of a between the two bifurcation points.

Next, Figure 4.26 shows the delayed solution for a = 0.02 below the second bifurcation

value a ≈ 0.773509. Below this second Hopf bifurcation point the delayed system expe-

riences amplitude death as the origin regains stability. Figure 4.27 shows the solution in

(x1, x2, y1) parameter space approaching the now stable origin from the initial conditions.
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Figure 4.26: Amplitude Death in x1 for a = 0.02.

Figure 4.27: The solution in (x1, x2, y1) parameter space for a = 0.02 spiraling towards

the stable origin from the initial conditions.
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4.3.2.2 Nontrivial Fixed Point

Moving on, we consider the case where ω = 1 and ε = 1.41. This is past the transcritical

bifurcation curve (4.38), and hence the trivial fixed point P0 in now unstable. For this set

of parameters the Routh Hurwitz conditions at the nontrivial fixed point P1 along with

the condition (4.27) on for the fixed points, gives us that x∗1 ≈ 0.722446 and the fixed point

P1 Hopf bifurcates at a ≈ 0.241658 and a ≈ 23.8302. The Routh Hurwitz conditions at the

trivial fixed point shows that, for our choice of (ω, ε), P0 does not bifurcate as we vary a.

For these parameters the nontrivial fixed points are given by:

P1 ≈ (0.722446, 0.722446,−2.40815,−1.35563,−1.35563,−1.83772,−2.40815) (4.43)
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Figure 4.28: Solutions in (x1, y1, z1) phase space of the undelayed coupled system in blue

and the delayed system in red for a = 0.01, 0.05, 0.1, 0.2, 0.22, 0.24, before the first bifur-

cation.
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Figure 4.29: Solutions in (x1, y1, z1) phase space of the attractor for the isolated Sprott
system in green (without coupling or delay), the solutions for the coupled system without
delay in blue and the solution for the delayed system in red for a = 0.05

Figure 4.28 shows the solutions in (x1, y1, z1) phase space of the coupled system (without

delay) in blue and the delayed system in red for a = 0.01, 0.05, 0.1, 0.2, 0.22, 0.24, before

the first bifurcation. Here we see that for small values of a the delayed solutions is larger

than the undelayed, coupled solution and, as we increase a towards the first bifurcation

point a ≈ 0.241658, the delayed solution shrinks in size around the nontrivial fixed point

P1. In figure 4.29, we have the attractor for the isolated Sprott system in green (without

coupling or delay), the solutions for the coupled system without delay in blue and the

solution for the delayed system in red. Here we see that the effects of both the coupling

and delay simplifies the behavior of the system. Note that as we further increase a past

the first bifurcation point, the delay combined with coupling does what that coupling

alone cannot for our parameters, and produces oscillation death:
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Figure 4.30: Oscillation death in x1 for a = 12

After the first Hopf bifurcation at a ≈ 0.241658, the nontrivial fixed point becomes stable.

In figure 4.30 we have the solution for the delayed system for a = 12 showing the x1

solution approaching the fixed point. Figure 4.31 shows the solution in (x1, y1, z1) phase

space and the approach towards the fixed point P1 from the initial conditions.
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Figure 4.31: Solution in (x1, y1, z1) phase space for a = 12 and approach to the fixed point

P1 from initial conditions.

Upon further increasing the delay parameter a past the second bifurcation value a ≈

23.8302 we find that the nontrivial fixed point loses its stability. Figure 4.32 shows the

solution of the coupled, undelayed system in blue and the delayed system in red for

several values of a past the second bifurcation point in (x1, y1, z1) phase space. Here we

see that initially, after the bifurcation, the delayed periodic solution is very small, still

orbiting close to the fixed point and as we increase the value for a the orbit for the delayed

solution grows in size. Figure 4.33 shows the periodic solutions in (x1, y1, z1) phase space

for the isolated Sprott system in green (without coupling or delay), the solutions for the

coupled system without delay in blue, and the solution for the delayed system in red for

a = 40. Once again, we see that the delay plus coupling has simplified the motion of the

system.
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Figure 4.32: Solutions of the coupled, undelayed system in blue and the delayed system

in red for values of a = 24, 26, 28, 30, 40, 50 in (x1, y1, z1) phase space.

Figure 4.33: Solutions in (x1, y1, z1) phase space of the attractor for the isolated Sprott

system in green (without coupling or delay), the solutions for the coupled system without

delay in blue and the solution for the delayed system in red for a = 40
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4.4 Discussion and Conclusions

In this chapter, we have systematically considered the effects of a distributed ’weak generic

kernel’ exponential delay on both cyclically coupled limit cycle and chaotic oscillators.

The effects of the delay are similar, both for coupled Van der Pol oscillators and in fact,

other oscillators as well, where the delay can produce transitions from AD/OD to peri-

odic orbits via Hopf bifurcation, with the delayed limit cycle shrinking or growing as we

vary the delay towards or away from the bifurcation point respectively [66]- [67]. The

transition from AD to OD is mediated here via a pitchfork bifurcation, as seen earlier for

other couplings as well [58], [60]. Also, the cyclically coupled van der Pol system here

is already in a state of AD/OD, and introducing the delay allows both oscillations and

AD/OD as the delay parameter is varied. This is in contrast to [66] for example, where

the diffusive coupling alone did not result in the onset of AD/OD.

For systems whose isolated systems are chaotic, such as the Sprott system in this chapter,

or a coupled van der Pol-Rayleigh system with parametric forcing [66]), we see that the

delay may produce AD/OD (as in the Sprott case), with the AD to OD transition now

however mediated by a transcritical bifurcation. However, this might not be possible,

and the delay might just vary the attractor shape [66]. In both cases however, we see that

increased delay strength tends to cause the system to have simpler behavior, simplifying

the shape of the attractor, or shrinking it in cases with limit cycle behavior.
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CHAPTER 5: AMPLITUDE DEATH, OSCILLATION DEATH, AND

PERIODIC REGIMES IN DYNAMICALLY COUPLED

LANDAU-STUART OSCILLATORS WITH AND WITHOUT

DISTRIBUTED DELAY

5.1 Introduction

In this chapter, we continue our investigation of HSS to IHSS transitions, but now for

for dynamically coupled oscillators. Dynamic couplings were initially considered in [62],

and extensive linear stability analysis, nonlinear evolution and bifurcations being tracked

using Lyapunov exponent calculations, as well as some experimental realizations were

carried out in [63]- [64].

The remainder of the chapter is organized as follows. Section 2 considers the linear sta-

bility analysis, and local bifurcations of a system of dynamically coupled Landau-Stuart

oscillators, and Section 3 treats the same system with a distributed delay incorporated.

The particular ’weak generic kernel’ [28], [65] we employ turns out, after reformulation,

to mathematically resemble the linear augmentation scheme [35], [60]. Section 4 consid-

ers detailed numerical results for both systems, including various parameter regimes and

types of dynamics. The results and conclusions are summarized in Section 5.
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5.2 Linear Stability of Undelayed Dynamically Coupled Landau-Stuart System

In this section we look at the linear stability of the undelayed Landau-Stuart System with

dynamic coupling, which is given by:

ẋ1 = x1(1− x21 − y21)− ωy1 + k(z1 − x1)

ẏ1 = y1(1− x21 − y21) + ωx1

ẋ2 = x2(1− x22 − y22)− ωy2 + k(z2 − x2)

ẏ2 = y2(1− x22 − y22) + ωx2

ż1 = x2 − z1

ż2 = x1 − z2 (5.1)

where ω is the frequency and k is the coupling strength.
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Figure 5.1: Plot of x1 of the dynamically coupled Landau-Stuart oscillators (5.1) for ω = 4

and k = 2.02.
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Figure 5.2: Plot of the limit cycle of the dynamically coupled Landau-Stuart oscillators

(5.1) for ω = 4 and k = 2.02 in (x1, x2, y2)-phase space.

The fixed points of this system are the trivial fixed point P0:

P0 = (0, 0, 0, 0, 0, 0) (5.2)

and there are four nontrivial fixed points given by:

P1,− = (x1,−, y1,−,−x1,−,−y1,−,−x1,−, x1,−) (5.3)

P1,+ = (x1,+, y1,+,−x1,+,−y1,+,−x1,+, x1,+) (5.4)

P2,− = (x2,−, y2,−,−x2,−,−y2,−,−x2,−, x2,−) (5.5)

P2,+ = (x2,+, y2,+,−x2,+,−y2,+,−x2,+, x2,+) (5.6)

150



where:

xi,± = ± 1√
2

√√√√
Ai

√
(2k2 − k)2 (k2 − ω2)

k2
+
ω2

k
− 2k + 1 (5.7)

yi,± = ±
2kxi,± − 4k2xi,± − 2kx3i,± + ω2xi,±

(2k − 1)ω
(5.8)

where Ai = −1 for i = 1 and Ai = 1 if i = 2.

The Jacobian matrix of (5.1) is given by:



−k − 3x21 − y21 + 1 −ω − 2x1y1 0 0 k 0

ω − 2x1y1 −x21 − 3y21 + 1 0 0 0 0

0 0 −k − 3x22 − y22 + 1 −ω − 2x2y2 0 k

0 0 ω − 2x2y2 −x22 − 3y22 + 1 0 0

0 0 1 0 −1 0

1 0 0 0 0 −1


(5.9)

The eigenvalues of this matrix evaluated at the trivial fixed point P0 satisfy the character-

istic equation:

λ6 + (2k − 2)λ5 + λ4
(
k2 − 2k + 2ω2 − 1

)
+ λ3

(
2kω2 − 4k + 4

)
+ λ2

(
−3k2 + 2kω2 + 4k + ω4 − 4ω2 − 1

)
+ λ

(
2k2 − 2kω2 + 2k + 2ω4 − 2

)
− 2kω2 − 2k + ω4 + 2ω2 + 1 = 0 (5.10)

For each i = 1, 2, the eigenvalues of the Jacobian (5.9) at the fixed points Pi,± satisfy the
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same equation in both the plus and minus cases:

λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0 (5.11)

where the ai are given in Appendix B.1.

5.3 Linear Stability and Hopf Bifurcation Analysis of the Delayed Dynamically

Coupled Landau-Stuart System

In this section we perform the linear stability and Hopf bifurcation analysis of the Landau-

Stuart system which are dynamically coupled with a distributed ’weak generic kernel’

time delay [28], [65]:

ẋ1 = x1(1− x21 − y21)− ωy1 + k(z1 − x1)

ẏ1 = y1(1− x21 − y21) + ωx1

ẋ2 = x2(1− x22 − y22)− ωy2 + k(z2 − x2)

ẏ2 = y2(1− x22 − y22) + ωx2

ż1 =

∫ t

−∞
ay1(τ)e−a(t−τ)dτ − z1

ż2 = x1 − z2 (5.12)

By defining

w(t) =

∫ t

−∞
ay1(τ)e−a(t−τ)dτ (5.13)
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we can reduce the system (5.12) to the system of differential equations:

ẋ1 = x1(1− x21 − y21)− ωy1 + k(z1 − x1)

ẏ1 = y1(1− x21 − y21) + ωx1

ẋ2 = x2(1− x22 − y22)− ωy2 + k(z2 − x2)

ẏ2 = y2(1− x22 − y22) + ωx2

ż1 = w − z1

ż2 = x1 − z2

ẇ = a(x2 − w) (5.14)

Note that, after this reformulation, the effect of the ’weak generic kernel’ delay is mathe-

matically similar to adding the last, linear equation of a linear augmentation scheme [35],

[60].

The fixed points of this system are the trivial fixed point P0:

P0 = (0, 0, 0, 0, 0, 0, 0) (5.15)

and there are four nontrivial fixed points given by:

P1,− = (x1,−, y1,−,−x1,−,−y1,−,−x1,−, x1,−,−x1,−) (5.16)

P1,+ = (x1,+, y1,+,−x1,+,−y1,+,−x1,+, x1,+,−x1,+) (5.17)

P2,− = (x2,−, y2,−,−x2,−,−y2,−,−x2,−, x2,−,−x2,−) (5.18)

P2,+ = (x2,+, y2,+,−x2,+,−y2,+,−x2,+, x2,+,−x2,+) (5.19)
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where:

xi,± = ± 1√
2

√√√√
Ai

√
(2k2 − k)2 (k2 − ω2)

k2
+
ω2

k
− 2k + 1 (5.20)

yi,± = ±
2kxi,± − 4k2xi,± − 2kx3i,± + ω2xi,±

(2k − 1)ω
(5.21)

where Ai = −1 for i = 1 and Ai = 1 if i = 2.

The Jacobian matrix of (5.14) is:



c1 −ω − 2x1y1 0 0 k 0 0

ω − 2x1y1 −x21 − 3y21 + 1 0 0 0 0 0

0 0 c2 −ω − 2x2y2 0 k 0

0 0 ω − 2x2y2 −x22 − 3y22 + 1 0 0 0

0 0 0 0 −1 0 1

1 0 0 0 0 −1 0

0 0 a 0 0 0 −a



(5.22)

where:

c1 = −k − 3x21 − y21 + 1

c2 = −k − 3x22 − y22 + 1

154



and, at the trivial fixed point P0,its eigenvalues satisfy the characteristic equation

λ7 + (a+ 2k − 2)λ6 + (2ak − 2a+ k2 − 2k + 2ω2 − 1)λ5 + (ak2 − 2ak

+ 2aω2 − a+ 2kω2 − 4k + 4)λ4 + (2akω2 − 4ak + 4a− 2k2 + 2kω2

+ 4k + ω4 − 4ω2 − 1)λ3 + (−3ak2 + 2akω2 + 4ak + aω4 − 4aω2

− a− 2kω2 + 2k + 2ω4 − 2)λ2 + (2ak2 − 2akω2 + 2ak + 2aω4 − 2a

+ k2 − 2kω2 − 2k + ω4 + 2ω2 + 1)λ+−2akω2 − 2ak + aω4

+ 2aω2 + a = 0 (5.23)

For each i = 1, 2, evaluating the Jacobian (5.22) at the fixed point Pi,± gives the same

matrix in both the plus and minus cases. The eigenvalues at both these non-trivial fixed

points satisfy the equation:

λ7 + e1λ
6 + e2λ

5 + e3λ
4 + e4λ

3 + e5λ
2 + e6λ+ e7 = 0 (5.24)

where the ei are given in Appendix B.2.

For the fixed point P0 or Pi,± (i = 1, 2), to be a stable fixed point within the linearized

analysis, all the eigenvalues must have negative real parts. From the Routh-Hurwitz cri-

terion, the necessary and sufficient conditions for a seventh degree polynomial equation

of the form:

λ7 + b1λ
6 + b2λ

5 + b3λ
4 + b4λ

3 + b5λ
2 + b6λ+ b7 = 0 (5.25)
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to have Re(λk) < 0, for k = 1, 2, 3, 4, 5, 6, 7, are:

b1 > 0 (5.26)

b7 > 0 (5.27)

b1b2 − b3 > 0 (5.28)

b1(b2b3 + b5)− b23 − b21b4 > 0 (5.29)

b21
(
b2b6 − b24

)
− b1

(
b22b5 + b2(b7 − b3b4) + b3b6 − 2b4b5

)
+ b3(b2b5 + b7)

−b23b4 − b25 > 0 (5.30)

b31
(
−b26

)
+ b21

(
b4(b3b6 − b2b7) + 2b6(b2b5 + b7)− b24b5

)
+ b1

(
b22
(
b3b7 − b25

)
−b2

(
b23b6 − b3b4b5 + b5b7

)
− 3b3b5b6 + 2b4b

2
5 − b27

)
− b23(b2b7 + b4b5)

+b3b5(b2b5 + 2b7) + b33b6 − b35 > 0 (5.31)

−b31b36 + b21
(
b4b6(b3b6 − 3b2b7) + b26(2b2b5 + 3b7) + b34b7 − b24b5b6

)
−b1

(
b32b

2
7 + b22

(
−2b3b6b7 − b4b5b7 + b25b6

)
+ b2

(
b23b

2
6 + b3b4(b4b7 − b5b6)

+b7(b5b6 − 3b4b7))− b4b6
(
b3b7 + 2b25

)
+ 3b6

(
b3b5b6 + b27

)
+ 2b24b5b7

)
+b3

(
b22b

2
7 + b2b5(b5b6 − b4b7) + b7(3b5b6 − 2b4b7)

)
+ b23 (−2b2b6b7

+b24b7 − b4b5b6
)
− b2b5b27 + b33b

2
6 + b4b

2
5b7 − b35b6 + b37 > 0 (5.32)

The transition from AD to OD occurs via a pitchfork bifurcation of the trivial fixed point.

For this system AD is is only possible when |ω| ' 1.73205 which is the case where only the

nontrivial fixed points P2,+ and P2,− can exist and the transition from AD to OD occurs

via a supercritical pitchfork bifurcation when:

1√
2

√√√√√(2k2 − k)2 (k2 − ω2)

k2
+
ω2

k
− 2k + 1 = 0 (5.33)
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Figure 5.3: Bifurcation curve of trivial fixed point of (5.14) in (k, ω) parameter space. The
bifurcation curve of equation (5.33) for fixed points P2,± is in green and (−1+2k−ω2)(1+
ω2) = 0, the curve for where the trivial fixed point has an eigenvalue that passes through
zero, is plotted as the red dashed curve and overlaps the curve of equation (5.33). The
two horizontal lines ω ≈ ±1.73205 in cyan, outside of which AD is possible via a pitchfork
bifurcation. The curve in blue is for x1,± = 0 given in equation (5.20) for the fixed points
P1,± which we see lines up with the bifurcation curves.

with P0 going unstable, and two non-trivial fixed points, P2,+ and P2,−, being born (and

being stable) when the expression under the square root on the left becomes positive. This

pitchfork bifurcation curve is plotted in green in Figure 5.3 in (k, ω) parameter space, with

the relevant portion being outside the two horizontal blue lines ω ≈ ±1.73205.

When the final condition (5.32) becomes an equality, the polynomial (5.25) has one pair

of purely imaginary complex conjugate roots. Upon fixing a value for ω we may solve

this Routh-Hurwitz conditions (with the final condition (5.32) taken to be equality) corre-

sponding to each characteristic polynomial to find parameters in (k, a)-parameter space

where the system undergoes a Hopf bifurcation.
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For example, one set of conditions for a Hopf bifurcation for the trivial fixed point P0 we

obtain for the case where ω = 4 is that 2 < k < 2.34315 and a is either the fourth, fifth, or

sixth root1 (depending on the choice of k) of the sixth degree polynomial:

x6(−71303168 + 146800640k − 116654080k2 + 43646976k3 − 7270400k4

+ 348160k5 + 10496k6 − 2432k7 + 64k8 + 4k9) + x5(142606336− 436207616k

+ 523501568k2 − 317456384k3 + 101339136k4 − 15435776k5 + 719744k6 + 23168k7

− 4992k8 + 130k9 + 8k10) + x4(−2210398208 + 4693426176k − 3960995840k2

+ 1703673856k3 − 415371264k4 + 67270656k5 − 8040960k6 + 344128k7 + 11715k8

− 2444k9 + 76k10 + 4k11) + x3(10k11 + 118k10 − 1054k9 − 23232k8 + 99648k7

+ 8951424k6 − 194770944k5 + 1163776000k4 − 3030908928k3 + 3596091392k2

− 1409286144k − 285212672) + x2(4k11 + 52k10 + 5516k9 − 80580k8 − 671744k7

+ 30060800k6 − 315213824k5 + 580386816k4 + 3529113600k3 − 16644308992k2

+ 25472008192k − 13618905088) + x(2048k9 − 47104k8 + 497664k7 − 16795648k6

+ 387743744k5 − 4773715968k4 + 25108414464k3 − 63380914176k2 + 77007421440k

− 36364615680)262144k7 − 15466496k6 + 340525056k5 − 3435397120k4

+ 16190013440k3 − 38396755968k2 + 44849692672k − 20606615552

In particular we can fix k = 2.1 which gives a is the fourth root of the polynomial

61628x6−179450x5−282600x4−324090x3−984089x2−748492x−86715.9 so that a ≈ 4.43063.

So we have that the parameter set (k, a) = (2.1, 4.43063) results in a Hopf bifurcation of

the trivial fixed point (where we note that the Routh-Hurwitz conditions at the two non-

trivial fixed points that exist are not satisfied by these parameters, so the other two fixed

1when the roots are ordered in increasing real part, with real roots listed before complex roots and
complex conjugate pairs listed next to each other
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points do not bifurcate at these parameters).

For the nontrivial fixed points we can take, for example, ω = 2.8 which is the case where

only the two fixed points P2,± exist, with the other two being imaginary, and in this case

the Routh-Hurwitz conditions gives us that 4.42 < k ≤ 4.46091 and a is again the root of

a polynomial whose coefficients depend on k (however the terms are too large to include

here). In particular if we choose k = 4.46 then values for a that satisfy the Routh-Hurwitz

conditions are the seventh and tenth roots of the polynomial

3.20149× 1044x12 − 2.49069× 1046x11 + 7.24306× 1047x10 − 9.40641× 1048x9

+ 4.37841× 1049x8 + 1.01437× 1050x7 − 8.65502× 1050x6 − 3.20543× 1051x5 + 4.84812× 1051x4

+ 6.51277× 1052x3 + 1.18591× 1053x2 + 6.90104× 1052x+ 9.63498× 1051

In this case we find, for both P2,±, that there are two Hopf bifurcation points a ≈ 9.60524

and a ≈ 26.5914.

5.4 Numerical Results and Discussion

Let us now turn to numerical results for the Landau-Stuart System with dynamic cou-

pling.

Before we start looking at the numerical results, we would like to note that the ’weak

generic kernel’ delay we consider is mathematically similar to the linear augmentation

scheme used in the previous section. This similarity occurs in the sense that all bifurca-

tions and transitions between the various behaviors in the seven-dimensional system ob-

tained from the linear augmentation scheme will also occur in the original, six-dimensional,
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delayed system and will occur within similar parameter ranges as the seven-dimensional

system. This allows us to take our analysis of the previous section and use it to predict the

behavior expected in the delayed system and the regions in parameter space where such

behavior occur. However, as we shall see in the results below, more extensive numerical

searches reveal that the six-dimensional, delayed system has additional, more complex

HSS to IHSS transitions than predicted by the linear augmentation of the oscillator. For

instance, we will see the creation of additional periodic orbits that the linear augmenta-

tion analysis does not predict as well as such a periodic orbit coexisting in regions of the

parameter space where the linear augmentation predicts only stable fixed points.

5.4.1 Trivial Fixed Point

Here we will consider the case where ω = 4 and k = 2.02. First we note that for this set

of parameters the coupled system (without delay) is in a state of oscillation. For this set

of parameters the Routh Hurwitz conditions at the trivial fixed point gives us that the

trivial fixed point bifurcates three times at the values a ≈ 0.0798556, a ≈ 2.12427, and

a ≈ 2.52575. We also note that the nontrivial fixed points don’t exist for this choice of

parameters.
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Figure 5.4: Amplitude Death in x1 for a = 0.03.
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Figure 5.5: Amplitude death in x1 for a = 0.03.

Figures 5.4 and 5.5 show the solutions for x1 for a = 0.03 below the first Hopf bifurcation

value a ≈ 0.0798556. Here, the origin is stable and we have amplitude death since a

smaller increases the delay and causes stabilization. Figure 5.6 shows the solution of the

delayed system in amplitude death in (x1, x2, y2) phase space and the approach from the
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initial conditions as the solution spirals towards the origin in red while we have the limit

cycle of the undelayed system in blue.

Figure 5.6: The delayed solution for a = 0.03 spiraling in towards the stable origin from

the initial conditions in red, and the limit cycle of the undelayed solution in blue.

In figure 5.7 we have plotted the limit cycle of the undelayed Landau-Stuart system in

blue and the solutions of the delayed system in red, in in (x1, x2, y2) phase space, for val-

ues of the delay a = 0.08, 0.5, 1, 1.5, 2, 2.1 between the two bifurcation points a ≈ 0.0798556

and a ≈ 2.12427 . We observe, as expected from the Routh-Hurwitz conditions, that be-

tween these two Hopf bifurcation points we have periodic behavior. Here we see that just

above the first bifurcation point a ≈ 0.0798556, the limit cycle is very small and close to

the origin. As the delay parameter a is increased, thus decreasing the delay, the limit cycle

grows in size. Then, as we start to approach the second bifurcation point a ≈ 2.12427, we

see that the delayed limit cycle begin to shrink toward the origin again.
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Figure 5.7: The limit cycle of the undelayed Landau-Stuart system in blue and the limit

cycle of the delayed system in red for various values of a between the two bifurcation

points a ≈ 0.0798556 and a ≈ 2.12427.

Next, Figures 5.8 and 5.9 show the delayed solution for a = 2.32 after the second bifur-

cation value a ≈ 2.12427. Here we see that, after the second Hopf bifurcation point, the

delayed system again experiences amplitude death as the origin regains stability. Figure

5.10 plots the amplitude death solution in (x1, x2, y2) phase space approaching the now

stable origin from the initial conditions plotted in red, while in contrast the undelayed

system has a limit cycle is plotted in blue.
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Figure 5.8: Amplitude Death in x1 for a = 2.32.
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Figure 5.9: Amplitude Death in x1 for a = 2.32.
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Figure 5.10: The delayed solution for a = 2.32 spiraling in towards the stable origin from

the initial conditions in red and the limit cycle of the undelayed solution in blue.

In figure 5.11 we have plotted the limit cycle of the undelayed Landau-Stuart system in

blue, and the solutions of the delayed system in red in (x1, x2, y2) phase space, for values

of a = 2.6, 3, 4, 7, 14, 28 above the final bifurcation point a ≈ 2.52575, so that the delay

is now even weaker. We observe, as expected from the Routh-Hurwitz conditions, that

above this final bifurcation point we have periodic behavior as the delay is too weak to

quench it. Here we see that just above the bifurcation point a ≈ 2.52575 the limit cycle is

small and close to the origin. As the delay parameter a is further increased, the weaker

delays lead to the limit cycle growing in size. The further a is raised above the bifurcation

point, the closer the delayed limit cycle approaches the undelayed one.
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Figure 5.11: The limit cycle of the undelayed Landau-Stuart system in blue and the limit

cycle of the delayed system in red for various values of a above the final bifurcation point

a ≈ 2.52575.

5.4.2 Nontrivial Fixed Points

Next we will consider the case where ω = 2.8 and k = 4.46. First we note that for this

set of parameters the coupled system (without delay) is in a state of oscillation. Also

we note that for these parameters only two nontrivial fixed points exist, P2,+ and P2,−.

For these parameters the nontrivial fixed points occur through a pitchfork bifurcation of

trivial fixed point, as discussed earlier and plotted in Figure 5.3. In this case they are
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given by:

P2,+ ≈ (−0.035762, 0.10130, 0.035762,−0.10130, 0.035762,−0.035762, 0.035762) (5.34)

P2,− ≈ (0.035762,−0.10130,−0.035762, 0.10130,−0.035762, 0.035762,−0.035762) (5.35)

The Routh Hurwitz conditions at the nontrivial fixed points give us that both bifurcate

at a ≈ 9.6052417 and a ≈ 26.5914375. The Routh Hurwitz conditions at the trivial fixed

points reveal that, for our choice of (ω, k), the trivial fixed point does not bifurcate as we

vary a.
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Figure 5.12: As the coupled system approaches P2,+, the first oscillator (x1, y1) approaches

(−0.035762, 0.10130), the projection of the steady state on the two-dimensional subspace

(x1, y1) of the first oscillator.
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Figure 5.13: As the coupled system approaches P2,+, the second oscillator (x2, y2) ap-

proaches (0.035762,−0.10130), the projection of the steady state on the two-dimensional

subspace (x2, y2) of the first oscillator.
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Figure 5.14: As the coupled system approaches P2,−, the first oscillator (x1, y1) approaches

(0.035762,−0.10130), the projection of the steady state on the two-dimensional subspace

(x1, y1) of the first oscillator.
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Figure 5.15: As the coupled system approaches P2,−, the second oscillator (x2, y2) ap-

proaches (−0.035762, 0.10130), the projection of the steady state on the two-dimensional

subspace (x2, y2) of the first oscillator.

Figure 5.12 shows the solution in phase space for the first oscillator (x1, y1), and Figure

5.13 shows the solution for the second oscillator in (x2, y2) phase space with initial condi-

tion near P2,+ for a = 5 below the first Hopf bifurcation value a ≈ 9.6052417. Similarly,

Figure 5.14 shows the solution in phase plane for the first oscillator (x1, y1) and Figure

5.15 shows the solution for the second oscillator in (x2, y2) phase space with initial condi-

tion near P2,− for a = 5. Here, both nontrivial fixed points are stable and we see that we

have oscillation death above the first bifurcation point (that is, the two oscillators (x1, y1)

and (x2, y2) settling to two distinct steady states).

In addition to the two stable fixed points, there is also a coexisting stable limit cycle cre-

ated around a ≈ 3.21293 that our system will approach if starting at initial conditions

far from the two fixed points. This coexisting stable limit cycle and the associated Hopf
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bifurcation are not predicted by our current analysis and does not show up in the Routh-

Hurwitz conditions we derived, here it was found by careful inspection and varying of

the parameters. Figure 5.16 shows the stable limit cycle that exists below the bifurcation

at a ≈ 9.6052417 in cyan and the limit cycle that is created after the first predicted bifurca-

tion at a ≈ 9.6052417 in red for comparison in (x1, x2, y2) phase space2. We see that, as we

increase a from a = 1 up to a = 3.21292, the solution in cyan approaches the stable fixed

point P2,− and as we increase a further to a = 3.21293 a stable limit cycle is created. As

we continue to increase a towards the first bifurcation point the stable limit cycle grows

in size and approaches the limit cycle that exists after the bifurcation at a ≈ 9.6052417.

2That is the cyan one exists below a ≈ 9.6052417 and the red one exists above a ≈ 9.6052417
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Figure 5.16: A stable solution in cyan for a = 1, 3.21292 approaching P2,− and the stable

limit cycle for a = 3.21293, 6, 9, 9.5 plotted in cyan that exists before the bifurcation of the

nontrivial fixed points in (x1, x2, y2) phase space along with a limit cycle solution that in

red for a = 17 after the bifurcation.

After the first Hopf bifurcation at a ≈ 9.6052417, both nontrivial fixed points become

unstable. In figure 5.17 we have plotted the limit cycle of the coupled system (without

delay) in blue and the limit cycle for the delayed system in red in (x1, x2, y2) phase space

for values of a = 9.7, 13, 18, 20, 23, 26.4 between the first and second bifurcation points.

Here we see that, in contrast to the trivial fixed point case, the stable limit cycle is is only

slightly deformed from the undelayed limit cycle and changes only slightly in size and
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shape as a varies by a large amount, unlike what was previously seen for the trivial fixed

point case.
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Figure 5.17: The limit cycle of the coupled system (without delay) in blue and the

limit cycle for the delayed system in red in (x1, x2, y2) phase space for values of a =

9.7, 13, 18, 20, 23, 26.4 between the first and second bifurcation points.

Next, we consider the delayed solution for a = 36 above the second bifurcation value a ≈

26.5914375. Here both nontrivial fixed points have regained stability after the bifurcation.

Figure 5.18 shows the solution in phase space for the first oscillator (x1, y1) and Figure 5.19

shows the solution for the second oscillator in (x2, y2) phase space with initial condition

near P2,+ for a = 36 above the second Hopf bifurcation value. Similarly, Figure 5.20
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shows the solution in phase plane for the first oscillator (x1, y1) and Figure 5.21 shows

the solution for the second oscillator in (x2, y2) phase space with initial condition near

P2,− for a = 36. We see that we again have oscillation death above the after the second

bifurcation point (that is two oscillators (x1, y1) and (x2, y2) settling to two distinct steady

states). In addition to the two stable fixed points the system also supports a coexisting

stable limit cycle attractor for these parameters. This again is not predicted by the current

analysis and was found by careful inspection and varying of the parameters. Plotted in

Figure 5.22 is the stable limit cycle that after the second bifurcation of the nontrivial fixed

points in cyan and the limit cycle that is created after the first predicted bifurcation at

a ≈ 9.6052417 in red for comparison in (x1, x2, y2) phase space. We see that in this case, in

contrast to the case below the first bifurcation, the limit cycle after the second bifurcation

at a ≈ 26.5914375 continues to persist even for large values of a and only changes in shape

by a very small amount even as we vary a appreciably.
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Figure 5.18: As the coupled system approaches P2,+, the first oscillator (x1, y1) approaches

(−0.035762, 0.10130), the projection of the steady state on the two-dimensional subspace

(x1, y1) of the first oscillator.
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Figure 5.19: As the coupled system approaches P2,+, the second oscillator (x2, y2) ap-

proaches (0.035762,−0.10130), the projection of the steady state on the two-dimensional

subspace (x2, y2) of the first oscillator.

0.04 0.05 0.06 0.07 0.08 0.09
x1

-0.24

-0.22

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

y1

Figure 5.20: As the coupled system approaches P2,−, the first oscillator (x1, y1) approaches

(0.035762,−0.10130), the projection of the steady state on the two-dimensional subspace

(x1, y1) of the first oscillator.
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Figure 5.21: As the coupled system approaches P2,−, the second oscillator (x2, y2) ap-

proaches (−0.035762, 0.10130), the projection of the steady state on the two-dimensional

subspace (x1, y1) of the first oscillator.
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Figure 5.22: The stable limit cycle for a = 27, 30, 35, 40, 50, 100 plotted in cyan that exists

after the second bifurcation of the nontrivial fixed points in (x1, x2, y2) phase space along

with a limit cycle solution that in red for a = 17 after the bifurcation.

5.5 Discussion and Conclusions

In this chapter, we have considered the effects of a distributed ’weak generic kernel’ ex-

ponential delay on dynamically coupled Landau-Stuart limit cycle oscillators. The effects

of the delay we observe for the coupled Landau-Stuart system are similar to other limit

cycle oscillators previously considered, where the delay can produce transitions between

AD/OD to periodic orbits via Hopf bifurcations, with the delayed limit cycle shrinking or
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growing as we vary the delay towards or away from the bifurcation point respectively [66]

and [67]. The transition from AD to OD occurs through a supercritical pitchfork bifurca-

tion of the trivial fixed point, as seen earlier for other couplings as well [58], [60]. In

contrast to previous couplings and systems considered in [66] and [67], in the delayed

dynamically coupled Landau-Stuart system, we see for the nontrivial fixed points the

emergence of another limit cycle inside the OD parameter regime, where the nontrivial

fixed points are stable.

The various HSS to IHSS to periodic transitions that we observe are more intricate than

the simple AD(HSS) states predicted by linear stability analysis and experimentally veri-

fied in [63], and also show involved dynamical transitions rather than parameter regimes

where no AD is possible as per the analysis in [63]. Since we conduct more extensive

numerical searches, our boundaries for the AD(HSS) regimes are also more accurately

mapped than the ones roughly predicted there via linear stability analysis. And we also

see transitions between OD(IHSS) regimes and periodic windows as well in the parame-

ter space.

As noted earlier, the ’weak generic kernel’ delay we consider is mathematically similar to

the linear augmentation scheme used earlier to couple and stabilize some oscillator sys-

tems. However, our more extensive numerical searches show more complex HSS to IHSS

transitions between various dynamical regimes of our delay-coupled limit cycle systems

than the direct AD and OD predicted and experimentally demonstrated following linear

augmentation of chaotic oscillators [35], [60].
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CHAPTER 6: DISTRIBUTED POSITION AND VELOCITY DELAY

EFFECTS IN A VAN DER POL SYSTEM WITH TIME-PERIODIC

FEEDBACK

6.1 Introduction

Self-excited systems, featuring oscillatory systems, together with various combinations of

energy sources, devices for control of the energy flow into the system, and feedback from

the system to the control device are widely used and discussed in a variety of applications

[71].

Delays in such systems, modeling time lags due to a variety of factors, have also been

discussed [71]- [75] in controlling limit cycle and quasiperiodic responses. Some of these

papers have included parametric excitations [73] and forcing [74]. The effect of fast exci-

tations combined with delay have also been analyzed in other studies above.

The delay feedback terms used in these earlier studies were time invariant or ’discrete’

delays [28]. Time-varying feedback has also been used earlier, although infrequently.

Applications of this have included improving stability features [76], controlling bistability

[77]- [79], and periodic controllers, and analyzing quasiperiodic responses to periodically

modulated delay feedback in van der Pol systems [81].

In this chapter, we extend this last set of studies by including the effects of periodically

amplitude modulated distributed delays in both position and velocity. A similar system,

with periodically modulated delay amplitude, but using a discrete or constant delay, has

been recently treated in [83].
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Section 2 introduces the model, and then uses the ’linear chain trick’ [28] to reformulate it

into a form that we will analyze in the following sections. Section 3 derives and analyzes

the normal form or ’slow flow’ through the method of multiple scales and uses the normal

form to search for bifurcations and parameter regimes of different behavior. Section 4 first

summarizes the regimes of different dynamical behaviors as delineated by the analysis up

to that point, and then considers numerical solutions in the various dynamical regimes in

detail. The existence of quasiperiodic solutions then motivates the derivation of a second

slow flow in Section 5. Setion 6 presents a comparison of results and predictions from

the second slow flow to the results in Section 4 as well as using the second slow flow

to approximate amplitudes of the quasiperiodic solution. Finally, a brief discussion of

varying the delay parameter and the resulting behavior is presented in Section 7. The

results and conclusions are summarized in Section 8.

6.2 A Van der Pol Oscillator with Periodic Feedback and Distributed Delay

In this section we consider the the generalized Van der Pol system, given by:

ẍ+ x− ε(α− βx2)ẋ− ελ(t)x(t)− ελ3ẋ(t) = 0 (6.1)

where ε, α, β are a small parameter and the linear and nonlinear damping coefficients

respectively, and the amplitude of the feedback position term is λ(t) = λ1 + λ2 cos(ωt).

Introducing distributed time delays into the position and the velocity terms gives:

ẍ+ x− ε(α− βx2)ẋ− ελ(t)

(∫ t

−∞
cx(τ)e−c(t−τ)dτ

)
− ελ3

(∫ t

−∞
dẋ(τ)e−d(t−τ)dτ

)
= 0

(6.2)
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Next, defining [28]

y = ẋ

z(t) =

∫ t

−∞
cx(τ)e−c(t−τ)dτ

w(t) =

∫ t

−∞
dẋ(τ)e−d(t−τ)dτ (6.3)

we can reduce (6.2) to a first order system of ordinary differential equations:

ẋ = y

ẏ = −x+ ε(α− βx2)ẋ+ ελ(t)z(t) + ελ3w(t)

ż = c(x− z)

ẇ = d(y − w) (6.4)

This is the so-called ’linear chain trick’ [28].

6.3 Multiple Scales Expansion

In this section, we will use the method of multiple scales to derive the slow flows (or

normal forms) for the delayed system (6.4) which will enable us to examine parameter

space for regions of periodic behavior of the original system, and construct analytical

approximations for such orbits.

In particular, we will be considering the resonance case where the frequency of the mod-

ulation ω is approximately twice the natural frequency which results in the resonance
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condition:

1 =
(ω

2

)2
+ εσ (6.5)

where σ is the detuning parameter. Rewriting and expanding as a series in terms of

epsilon gives:

ω = 2
√

1− εσ = 2− εσ +O(ε2) (6.6)

Expanding the variables into slower time scales gives:

x =
3∑

n=0

εnxn(T0, T1, T2, T3) + ..., (6.7)

y =
3∑

n=0

εnyn(T0, T1, T2, T3) + ..., (6.8)

z =
3∑

n=0

εnzn(T0, T1, T2, T3) + ..., (6.9)

w =
3∑

n=0

εnwn(T0, T1, T2, T3) + ..., (6.10)

where Tn = εnt. Utilizing the chain rule, the time derivative becomes

d

dt
= D0 + εD1 + ε2D2 + ε3D3..., (6.11)

where Dn = ∂/∂Tn. Using (6.7)-(6.10) in (6.4) and equating like powers of ε yields equa-
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tions at O(εi), i = 0, 1, 2, 3 of the form:

L1(xi, yi, zi, xi, yi, zi) = Si,1 (6.12)

L2(xi, yi, zi, xi, yi, zi) = Si,2 (6.13)

L3(xi, yi, zi, xi, yi, zi) = Si,3 (6.14)

L4(xi, yi, zi, xi, yi, zi) = Si,4 (6.15)

where the Li, i = 1, 2, 3, 4 are the differential operators:

L1(xi, yi, zi, wi) = D0xi − yi (6.16)

L2(xi, yi, zi, wi) = D0yi + xi (6.17)

L3(xi, yi, zi, wi) = D0zi + c(zi − xi) (6.18)

L4(xi, yi, zi, wi) = D0wi + d(wi − yi) (6.19)

The source terms S0,j = 0 for j = 1, 2, 3, 4 and Si,j for i = 1, 2, 3 and j = 1, 2, 3, 4 i.e. at

O(ε),O(ε2), and O(ε3) are given as follows. The first order sources are:

S11 = −D1x0

S12 = −λ3w0 + αy0 − βx20y0 − λ1z0 −
1

2
e−iωT0λ2z0 −

1

2
eiωT0λ2z0 −D1y0

S13 = −D1z0

S14 = −D1w0 (6.20)
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and the second order sources are:

S21 = −D2x0 −D1x1

S22 = −λ3w1 − 2βx0x1y0 + αy1 − βx20y1 − λ1z1 −
1

2
e−iωT0λ2z1 −

1

2
eiωT0λ2z1 −D2y0 −D1y1

S23 = −D2z0 −D1z1

S24 = −D2w0 −D1w1 (6.21)

and the third order sources are:

S31 = −D3x0 −D2x1 −D1x2

S32 = −λ3w2 − βx21y0 − 2βx0x2y0 − 2βx0x1y1 + αy2 − βx20y2 − λ1z2

− 1

2
e−iωT0λ2z2 −

1

2
eiωT0λ2z2 −D3y0 −D2y1 −D1y2

S33 = −D3z0 −D2z1 −D1z2

S34 = −D3w0 −D2w1 −D1w2 (6.22)

Next, equation (6.12) may be solved for yi in terms of xi to get y0 = D0xi and plugging

into (6.13) gives the composite equation:

(
D2

0 + 1
)
xi = Γi,1 (6.23)

where

Γi,1 = Si,2 +D0Si,1 (6.24)

Let us now turn to finding the solutions of (6.12)-(6.15). We will solve order by order

in the usual way until we find nontrivial secular conditions which is our slow flow or
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normal form.

For i = 0, we solve the composite equation (6.23) to obtain:

x0 = r[T1, T2, T3]e
iT0 + s[T1, T2, T3]e

−iT0 (6.25)

where s = r̄ is the complex conjugate of r and:

y0 = D0x0 = ir[T1, T2, T3]e
iT0 − is[T1, T2, T3]e−iT0 (6.26)

and plugging into (6.14) and (6.15) and solving the two zeroth order systems gives

z0 =
ceiT0r[T1, T2, T3]

c+ i
+
ce−iT0s[T1, T2, T3]

c− i
+ e−cT0p[T1, T2, T3] (6.27)

w0 =
ideiT0r[T1, T2, T3]

d+ i
− ide−iT0s[T1, T2, T3]

d− i
+ e−dT0q[T1, T2, T3] (6.28)

Now that the zeroth order solutions are known, the first-order sources S11, S12, S13, S14

may be evaluated using (6.20). Since we are considering the resonance case we need to

use our resonance condition (6.6), replacing ω = 2− εσ in our first order sources to reveal

all secular terms.

Then, by looking at the coefficients of e±iT0 in the composite source Γ1,1, we find our first
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nontrivial secularity condition:

0 =
d

dT1
r(T1, T2, T3)−

1

2
i

(
−r(T1, T2, T3)

(
iα− cλ1

c+ i
− idλ3
d+ i

)
+ iβr(T1, T2, T3)|r(T1, T2, T3)|2

(6.29)

+
cλ2e

−iσT1 r̄(T1, T2, T3)

2(c− i)

)
(6.30)

where r̄ is the complex conjugate of r. Next examining the first order sources of equations

(6.14) and (6.15) for secular terms (which are the coefficients of e±cT0 and e±dT0 respec-

tively), we find the additional two (trivial) conditions:

D1p0(T1, T2, T3) = 0 (6.31)

D1q0(T1, T2, T3) = 0 (6.32)

Then we express r in polar from r(T1, T2, T3) = A(T1, T2, T3)e
iB(T1,T2,T3) our slow flow

(6.29):

0 = eiB
dA

dT1
+ iAeiB

dB

dT1
− 1

2
i

(
iA3eiBβ + AeiB

(
−iα +

cλ1
c+ i

+
idλ3
d+ i

)
+
Acλ2e

−i(B+σT1)

2(c− i)

)
(6.33)

or, after multiplying both sides by e−iB and simplifying:

0 =
dA

dT1
+ iA

dB

dT1
− 1

2
i

(
iA3β + A

(
−iα +

cλ1
c+ i

+
idλ3
d+ i

)
+
Acλ2e

−i(2B+σT1)

2(c− i)

)
(6.34)

Then converting complex exponential terms to sines and cosines, and separating real and
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imaginary parts we obtain:

0 =
1

4

(
2A3β − 2Aα− Ac2λ2 sin(2B + σT1)

c2 + 1
+
Acλ2 cos(2B + σT1)

c2 + 1
− 2Acλ1
c2 + 1

+
2Ad2λ3
d2 + 1

+ 4
dA

dT1

)
(6.35)

0 =
1

4
A

(
−cλ2 sin(2B + σT1)

c2 + 1
− c2λ2 cos(2B + σT1)

c2 + 1
− 2c2λ1
c2 + 1

− 2dλ3
d2 + 1

+ 4
dB

dT1

)
(6.36)

Finally we make the change of variables 2γ(T1, T2, T3) = 2B(T1, T2, T3) + σT1 to convert

our secularity conditions to an autonomous system which is our normal form:

dA

dT1
= k1A+ k2A

3 + k3A cos(2γ) + k4A sin(2γ)

A
dγ

dT1
= k5A+ k4A cos(2γ) + k3A sin(2γ) (6.37)

where:

k1 =
α

2
+

cλ1
2 (c2 + 1)

− d2λ3
2 (d2 + 1)

,

k2 = −β
2

k3 = − cλ2
4 (c2 + 1)

k4 =
c2λ2

4 (c2 + 1)

k5 =
2c2d2λ1 + 2c2d2σ + 2c2dλ3 + 2c2λ1 + 2c2σ + 2d2σ + 2dλ3 + 2σ

4 (c2 + 1) (d2 + 1)
(6.38)

Next we will examine this slow flow system for its fixed points, which will correspond to

periodic orbits in the original system, and periodic orbits, which will correspond to quasi-

periodic orbits in the original system. The system has the ”trivial fixed point” (A, γ) =

(0, γ) for any γ. To examine the nontrivial fixed points we set dA
dT1

= dγ
dT1

= 0. Eliminating
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γ and letting R = A2 we obtain the following quadratic equation in R:

BR2 − 2CR +D = 0 (6.39)

where B = k22, C = −k1k2, D = k12 + k52 − k23 − k24 . Letting ∆ represent the discriminant

of equation (6.39), then the equation has two real roots if ∆ > 0 and these two solutions

are are positive if C,D > 0 and in this case:

A1,2 =

√
C ±
√
C2 −BD
B

(6.40)

we also note that for C > 0, if ∆ = 0 or if ∆ > 0 and D < 0 then we have a single fixed

point solution.

For each of these fixed points we will look for possible bifurcations by examining the

characteristic equation of our second order system, which has the form:

λ2 − trace(J)λ+ det(J) = 0 (6.41)

where trace(J) = 2(k1 + 2k2A
2
n) and det(J) = 4k2(k1 + k2A

2
n)A2

n (n = 1, 2) are the trace

and determinant of the Jacobian matrix evaluated at the fixed points respectively and

kn’s are given as in (6.38). The necessary condition for a Hopf bifurcation1 is: trace(J) =

0 and det(J) > 0. While the necessary condition for a saddle-node or a pitchfork bifur-

cation is given by det J = 0. We examine both of these conditions numerically to search

for parameter sets that can give the resulting bifurcations. In order to handle this using

computer algebra we consider the case where d = c and λ3 = λ1, and fixing values for λ2

1As in previous papers [66] and [67], these are the Routh-Hurwitz conditions in the case of a two dimen-
sional system.
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and β.

For example, fixing λ2 = 1 and β = 2, we find that one of the sets of conditions for a

pitchfork bifurcation is that first we require our delay strength c to be nonzero and get the

conditions on σ, λ1, α whose expressions are large and thus listed in C.1. Taking c = 1 we

then obtain the conditions that σ, λ1, α are then given by one of the three possibilities:

λ1 = ± 1

2
√

2
− σ

α ∈ R
(6.42)

or

−σ − 1

2
√

2
< λ1 <

1

2
√

2
− σ

α = −
√

1− 8(λ1 + σ)2

2
√

2

(6.43)

The, for example to get specific parameter sets, we can fix σ = −2 to obtain the conditions

from (6.42) that: λ1 = 1
4

(
8±
√

2
)

and α ∈ R or from (6.43) that: 1
4

(
8−
√

2
)
< λ1 <

1
4

(
8 +
√

2
)

and α = − 1
2
√
2

√
−8λ21 + 32λ1 − 31.

While for a Hopf bifurcation on the trivial fixed point we obtain the following set of

conditions, which are again listed in full in C.1. First we require that c be nonzero, then

for example taking c = 1 we obtain the following conditions:

λ1 < −
1

2
√

2
− σ or λ1 >

1

2
√

2
− σ (6.44)

α = 0 (6.45)

Then, for example to get a specific parameter set, we can fix σ = −2 to then obtain that
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λ1 <
1
4

(
8−
√

2
)

or λ1 > 1
4

(
8 +
√

2
)

with α = 0.

Let’s consider the form we picked for our slow flow solutions: A(T1)e
iB(T1), where 2γ(T1) =

2B(T1) − σT1 in conjunction with our first order solutions given in (6.25)-(6.28). We can

use this to attempt to predict the type of behavior we’ll see in our delayed system based

on the behavior of A(T1) in our slow flow system. In particular if A(T1) approaches zero

(as in the case of a stable trivial fixed point of the slow flow) we see that the slow flow

predicts the original system to approach the a stable trivial fixed point as well. If A(T1)

approaches a nonzero constant value (as in the case of a stable nontrivial fixed point of the

slow flow) the form of our slow flow solutions predicts we should see a periodic solution

in our original system. Finally if A(T1) is periodic leads to a prediction of quasiperiodic

motion in our original system. In the following section we shall compare these predic-

tions and the numerical results.

6.4 Numerical Results and Discussion

Let us now turn to numerical results for the delayed Van der Pol system, we will consider

both the slow flow system derived above in (6.37) and the delayed system given in (6.4).

Here we will consider the parameter set from above: c = d = 1, σ = −2, λ2 = 1, λ3 =

λ1, ω = 2.1, β = 2 and the conditions on the remaining parameters λ1 and α given (6.42)

and (6.43), and taking ε = 1/20 in our delayed system (6.4). These conditions are plotted in

(λ1, α)-parameter space in 6.1, which divides the parameter space into regions of several

different predicted types of behavior for our system.
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I - QP

II - TS

III - LC

V - QP

VI - TSIV - TS

1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4

λ1

α

Figure 6.1: The (λ1, α)-parameter space and the slow flow bifurcation curves for the nu-

merical example we are considering. Where we have labeled the regions as QP (quasi-

periodic) solutions, LC (limit cycle) solutions, and TS (stable trivial solution) as predicted

by our slow flow analysis.

On the left of the vertical line λ1 = 1
4

(
8−
√

2
)

and to the right of the vertical line λ1 =

1
4

(
8 +
√

2
)

the slow flow system undergoes a Hopf bifurcation at α = 0. For α < 0 in

region II and VI of 6.1 we have a stable trivial fixed point in the slow flow with A = 0,

which corresponds to a stable trivial fixed point in the original system. For α > 0 in

region I and V of 6.1, the trivial fixed point goes unstable and the the slow flow system

now has a periodic behavior in A, which corresponds to a quasi-periodic solution of our

original system. Figure 6.2 shows the numerical solution of the slow flow and figure 6.3

shows the numerical solution of the original system in the quasi-periodic case of region I

for α = 1/2, λ1 = 1 confirming the analytic predictions of the slow flow.
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Figure 6.2: Limit cycle in the slow flow system in region I of parameter space for α =

1/2, λ1 = 1.
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Figure 6.3: Quasi-periodic of the original system in region I of parameter space for α =

1/2, λ1 = 1.

Then we see that as we decrease α towards the bifurcation point at zero the amplitude of
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the solutions in both the slow flow and original delayed system begin to decrease towards

zero. We can see an example of this as we decrease α from 1/2 in the previous example

to the case α = 1/1000, shown in figures 6.4 and 6.5 for the slow flow and original system

respectively.

9900 9920 9940 9960 9980 10000

0.018

0.020

0.022

0.024

0.026

t

A

Figure 6.4: Periodic solution of A in the slow flow system in region I of parameter space

for α = 1/1000, λ1 = 1.
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Figure 6.5: Quasi-periodic of the original system in region I of parameter space for α =

1/1000, λ1 = 1.

In between the two vertical lines λ1 = 1
4

(
8−
√

2
)

and λ1 = 1
4

(
8 +
√

2
)

we have a stable

fixed point in the slow flow with A = 0 and so we have a stable trivial fixed point in

the original system, in region IV of figure 6.1, shown in 6.6. The slow flow system then

undergoes a pitchfork bifurcation as we pass through the bifurcation curve given by the

equation (6.43) where the stable A = 0 fixed point goes unstable and two stable nontrivial

fixed points are created in region III of figure 6.1. For instance, for α = 1/2, λ1 = 2, these

two nontrivial fixed points in the slow flow are given by:

(A1, γ1) ≈ (−0.458343, 1.39717) (6.46)

(A2, γ2) ≈ (0.458343, 1.39717) (6.47)

and we can see the slow flow solution approaching (A2, γ2) in Figure 6.7.
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Figure 6.6: Stable trivial solution in the original system in region IV of parameter space

for α = −1/2, λ1 = 2.
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Figure 6.7: Slow flow solutions approaching the stable fixed point (0.458343, 1.39717) in

region III of parameter space for α = 1/2, λ1 = 2.

Plugging in the fixed points (An, γn), (n = 1, 2), into our approximations (6.25), after
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simplifying we obtain:

x(t) = 2An cos((1 + ε)t+ γn) (6.48)

from which see the slow flow system predicts periodic behavior. The slow flow solution

approaching the stable fixed point is shown in Figure 6.7 and the plot of the predicted

approximation (6.48) is shown in Figure 6.8. However, we see that in contradiction to

our prediction and approximation the original nonlinear delayed system is quasiperiodic.

The plot of the delayed system in region III is shown in Figure 6.9 from which we can see

the quasiperiodic behavior. We also note here that while the slow flow transitions from

periodic behavior to two stable fixed point behavior as λ1 passes from regions I and V

into region III for α > 0 the original delayed system does not change from quasiperiodic

behavior as we have seen in the numerical results plotted below.
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Figure 6.8: Predicted approximate solution (6.48) of our original system showing periodic

behavior in region III of parameter space for α = 1/2, λ1 = 2.
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Figure 6.9: Numerical solution of our original delayed system in region III of parameter

space for α = 1/2, λ1 = 2.

These results are similar to the discrete delay case for the same equation (6.1) covered

in [83], with the distributed delay producing two similar types of behavior: trivial so-

lution and quasi-periodic motion. However, one major difference is that we do not ob-

tain periodic behavior despite the normal form predicting it in the distributed delay case

while in the discrete delay case it is possible. Another difference from discrete delay to

distributed delay has appeared to result in simpler regions of behavior in both the nor-

mal form and the original system. For example in the above case we see that the region

of quasiperiodicity in the distributed delay case is regions I, III, and V, making up a large

continuous region of (λ1, α) parameter space where as the discrete delay case studied

in [83] had multiple distinct regions where quasiperiodicity occurs. That is we see that

the distributed delay allows for larger, continuous regions of fewer types of behavior

which would be useful if we want our system behavior to be robust as we vary parame-

ters while the discrete delay case studied in [83] shows many distinct regions of a larger
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variety of behavior which would be useful if we want our system to change behavior as

we vary the parameters as it allows us a wider amount of opportunities.

Finally we compare the results with the undelayed system given in (6.1) to see the effects

of adding in the distributed delay terms. Checking the undelayed system in the various

regions outlined in 6.1, we find that the undelayed system has quasiperiodic behavior in

all six of our regions. In regions I, III, and V where the distributed delayed system also

has quasiperiodic behavior we see that the effect of introducing the delay terms on the

system is the shrinking of the amplitudes of our solution. An example of this comparison

is shown in figure 6.10 for region I. In regions II, IV, and VI where the distributed delay

system has a stable trivial fixed point we observe that adding the delay to the our system

has quenched the quasiperiodic oscillations and produced amplitude death in our system

in these regions. An example comparison is shown in figure 6.11 for region II.
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Figure 6.10: The undelayed solution in blue and the distributed delayed solution in red

in region I of our parameter space for α = 1/2, λ1 = 1. Here we see the shrinking effect

the delay has on the amplitude
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Figure 6.11: Numerical solution of the undelayed system on the left in blue and the

distributed delayed system on the right in red in region II of parameter space for α =

−1/2, λ1 = 1. We see the introduction of the delay quenches the quasiperiodic oscillations

in this region.

6.5 Multiple Scales Expansion of the Slow Flow Equations

In this section, we will use the method of multiple scales to derive the secularity condi-

tions (slow flows) of slow flow equations (6.37) that we found in Section 3. To that end we

will convert our slow flow to rectangular coordinates by making the change of variables

u = A cos(γ), v = −A sin(γ) in (6.37) and simplifying to obtain:

du

dT1
= (k4 − k5)v + δ(k1 + k3 + k2(u

2 + v2))u

dv

dT1
= (k4 + k5)u+ δ(k1 − k3 + k2(u

2 + v2))v (6.49)

where the coefficients are given as in (6.38) and δ is a new bookkeeping parameter in-

troduced to implement perturbation procedure, noting that δ is introduced such that the
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unperturbed system of (6.49) admits a basic solution. Expanding the variables into slower

time scales gives:

u = u0(T0, T1) + δu1(T0, T1) + O(δ2), (6.50)

v = v0(T0, T1) + δv1(T0, T1) + O(δ2), (6.51)

Substituting into (6.49) and equating like powers of δ yields equations at O(δi), i = 0, 1 of

the form :

L1(ui, vi) = Si,1 (6.52)

L2(ui, vi) = Si,2 (6.53)

where the Li, i = 1, 2 are the differential operators

L1(ui, vi) = Diui(T0, T1) + (k4 − k5)vi(T0, T1) (6.54)

L2(ui, vi) = Divi(T0, T1) + (k4 + k5)ui(T0, T1) (6.55)

The source terms S0,1 = S0,2 = 0 at at order O(1) and at O(δ) the source terms are given

by:

S1,1 = u0(T0, T1)
(
k2v0(T0, T1)

2 + k1 + k3
)

+ k2u0(T0, T1)
3 −D1u0(T0, T1) (6.56)

S1,2 = v0(T0, T1)
(
k2u0(T0, T1)

2 + k1 − k3
)

+ k2v0(T0, T1)
3 −D1v0(T0, T1) (6.57)

Next, equation (6.52) may be solved for vi in terms of ui and plugging into (6.53) gives the
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composite equation

D2
i ui(T0, T1) + (k25 − k24)ui(T0, T1) = (k5 − k4)Si,2 +D1Si,1 (6.58)

Let us now turn to finding the solutions of (6.52)-(6.53). We will solve order by order in

the usual way until we find nontrivial secular conditions which is our slow flow.

For i = 0 or O(1), solving gives:

u0 = r(T1)e
iνT0 + s(T1)e

−iνT0 (6.59)

where ν =
√
k25 − k24 is the frequency of the periodic solution and corresponds to the

modulation frequency of the quasi-periodic response in the original system and s = r̄ is

the complex conjugate of r. Then:

v0 =
1

k4 − k5
d

dT0
(−x0(T0, T1)) =

iνs(T1)e
−iνT0 − iνr(T1)eiνT0
k4 − k5

(6.60)

Now that the zeroth order solutions are known, the first-order sources S1,1, S1,2 may be

evaluated. Then by looking at the coefficients of e±iνT0 in the composite source we can

pick out the secular terms. Suppressing these secular, first-harmonic, terms to obtain

uniform expansions yields the final equation for the evolution of the coefficients in the

linear solutions on the slow first-order time scales

∂r

∂T1
= k1r(T1)−

4k2k5r(T1)|r(T1)|2

k4 − k5
(6.61)

This equation (6.61) is the normal form of our slow flow of our delayed system. After
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converting to a real system in polar form using the substitution r(T1) = R(T1)e
(iφ(T1)) we

obtain:

dR

dT1
= k1R(T1)−

4k2k5R(T1)
3

k4 − k5
dφ

dT1
= 0 (6.62)

Solving for our fixed points we see that φ is free (and constant) while R has three possi-

bilities:

R0 = 0, R± = ±

√
k1(k4 − k5)

4k2k5
(6.63)

so our system can have a trivial fixed point and up to two nontrivial fixed points depend-

ing on the parameters.

6.6 Numerical Results From The Second Slow Flow

Let us now turn to the numerical results we can obtain from our second slow flow. In

particular we’ll look at how the predictions from the second slow flow compare to our

previous predictions, as well as the numerical results from the original system and we’ll

look at using the second slow flow to predict the maximum amplitude of the quasiperi-

odic oscillations and how it varies as we vary different parameters.

First we’ll take a look at the behavior predictions from the second slow flow and check

the numerical results and compare to the results in Section 3. As such, we’ll be using the

same parameters from Section 3: c = d = 1, σ = −2, λ2 = 1, λ3 = λ1, ω = 2.1, β = 2.
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Looking at our expressions for the fixed points in (6.63), and plugging in our parameters

we obtain:

R± = ±
√
α
√

9− 4λ1

4
√

4− 2λ1

From which we see the nontrivial fixed points exists only when α > 0 with λ1 < 2 or

λ1 > 2.25 and α < 0 with 2 < λ1 < 2.25. However, here we’ll note again that once we

enter Region III our approximation and predictions become inaccurate. The second slow

flow predicts stable nontrivial fixed points in part of Region III which predicts periodic

behavior in our first slow flow but that contradicts the first slow flow having stable non-

trivial fixed points in this region. Preforming a linear stability analysis similar to that at

the end of section 3 on the second slow flow equations (6.62), in the regions where the

nontrival fixed points exist, by looking at the trace and determinant of the Jacobian J of

(6.62):

trace(J) = k1 −
12k2k5R

2
±

k4 − k5
, det(J) = 0 (6.64)

After plugging in expressions for our fixed points and the parameters we’ve fixed, we

obtain: trace(J) = −α and det(J) = 0. So we see we have pitchfork bifurcation occurs at

α = 0.

For α < 0 the linear stability analysis gives that we have a stable trivial fixed point. In

particular, for Regions II, IV, and VI we see that a second slow flow solution with r(T1)

approaching zero, we see that the first slow flow will have a stable trivial fixed point

by plugging into our approximation (6.59) which is consistent with the numerical results

of Section 3 which both the first slow flow and delayed system have stable trivial fixed

points. However, we see that in the portion of Region III with α < 0 while the second slow
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flow predicts a stable trivial fixed point in the delayed system, we know from Section 3

there is quasiperiodic behavior in this region instead. An example solution in Region II

of the second slow flow tending to zero is shown in Figure 6.12 for α = −1/2 and λ = 1

which can be compared to the delayed system tending to zero in Figure 6.11.
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t

R

Figure 6.12: Second slow flow solution for R in Region II for α = −1/2 and λ = 1.

After the pitchfork bifurcation at α = 0, the trivial fixed point goes unstable and two

stable nontrivial fixed points R± are born in Regions I and V. For a stable nontrivial fixed

point in the second slow flow, by plugging into our approximation (6.59), we see that this

predicts periodic behavior in the first slow flow. This is again consistent with our earlier

results in Section 3 where the first slow flow has periodic behavior and the delayed system

has quasiperiodic behavior. An example of the second slow flow system approaching one

of the stable fixed points in Region I for α = 1/2 and λ = 1 is shown in Figure 6.13. This

can be compared to Figures 6.2 and 6.3, where we can see the first slow flow and delayed
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system exhibiting periodic and quasiperiodic behavior respectively which is in line with

the second slow flow predictions.
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0.0

0.2

0.4

0.6

0.8

1.0

t

R

Figure 6.13: Second slow flow solution for R in Region I for α = 1/2 and λ = 1.

Now let’s consider Region III for α > 0 where we’ll see another example of our approxi-

mations’ inaccuracy in this region. Here we can see from above that the non trivial fixed

points exist and are stable for 1
4
(8 −

√
2) < λ1 < 2 and 2.25 < λ1 <

1
4
(8 +

√
2). As men-

tioned earlier this predicts a stable periodic orbit in our first slow flow, which is not the

behavior that occurs in our first flow flow2. For 2 < λ < 2.25, the nontrivial fixed points

do not exists and we are left with the unstable trivial fixed point. Thus, for 2 < λ < 2.25,

our second slow flow solutions go off to infinity, which would predict that our delayed

system should also go off to infinity but we know that this is not the case as there is

quasiperiodic behavior in Region III. We can see and example of this in Figure 6.14 for

2It has stable nontrivial fixed points as noted in Section 3.
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λ1 = 2.15, α = 1/2.
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Figure 6.14: Second slow flow solution diverging to infinity forR in Region III for α = 1/2

and λ = 2.15.

Next, we’ll take a look at approximating the maximum amplitude of the quasiperiodic

oscillations in x(t) using our results from the second slow flow as well as how the am-

plitude of our quasiperiodic solutions vary as we vary α and λ1. To get our approx-

imation we’ll take the expressions for the nontrivial fixed points (6.63) of the second

slow flow and plug them back into the slow flow approximations (6.59) and (6.25), and

maximizing. In particular, from the zeroth order solution (6.25) of the first MMS proce-

dure we see the maximum amplitude for x(t) is predicted to be approximately 2A(T1)

when we maximize with respect to T0. Next we note that from our change of variables

2A(T1) = 2
√

(u(T1))2 + (v(T1))2. Then we substitute the expressions of our nontrivial

fixed points (6.63) into our expressions for u0 and v0 from (6.59) and (6.60) from the second
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MMS procedure and substitute these expressions into 2A(T1) ≈ 2
√

(u0(T1))2 + (v0(T1))2.

Maximizing this expression with respect to T1 gives us the following expression for the

maximum amplitude for x(t):

Maximum amplitude of x(t) ≈


4|R±| if k5+k4

k5−k4 ≤ 1

4|R±|
√

k5+k4
k5−k4 if k5+k4

k5−k4 > 1

(6.65)

Figures 6.15 and 6.16 shows four graphs of our predicted amplitude (solid red line) ob-

tained from substituting our parameter set into (6.65) and obtaining the following ap-

proximations:

√
α
√
−(9− 4λ1)

4
√

2
√
λ1 − 2

, if
√

7− 4λ1
9− 4λ1

≤ 1 (6.66)
√
α
√
−(7− 4λ1)

4
√

2
√
λ1 − 2

, if
√

7− 4λ1
9− 4λ1

> 1 (6.67)

as well as the maximum amplitude obtained from numerical solutions for different values

of λ1 and α respectively (blue points). The first thing we’ll note is that in all four graphs

we see that as we approach region III in our parameter space the prediction diverges

sharply from the actual maximum amplitudes as our approximation breaks down in this

region. Next we can observe that varying λ1 does not significantly vary the maximum

amplitude of our quasiperiodic solutions. However, we can see that decreasing α towards

0 causes the maximum amplitude to shrink while increasing α allows for larger amplitude

quasiperiodic solutions. Figure 6.16 shows examples of the amplitudes increasing as we

increase α for λ1 = 1/2 and λ1 = 4 in regions I and V respectively.
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Figure 6.15: Predicted (red solid line) and actual (blue points) maximum amplitudes for

α = 1/100 on the left and α = 3 on the right.
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Figure 6.16: Predicted (red solid line) and actual (blue points) maximum amplitudes for

λ1 = 1/2 on the left and λ1 = 4 on the right.

In Figures 6.17 and 6.18 we have the absolute and relative errors between our prediction

and the actual solution in Region V for α = 3 and α = 1/100. For either value of α we

can again see that as we approach region III the error spikes as our approximation fails

in this region while as we increase λ1 away from region III the error reduces and our

207



approximation becomes much more accurate. We also see that while the absolute error

appears to be smaller for smaller values of α, the relative error is higher at smaller values

of α. For both cases the tolerable error would depend on the application. We can say,

however, that the approximation can be used as prediction/indication of the magnitude

of the amplitude and can be utilized to find parameter sets for small or larger ampli-

tude quasiperiodic oscillations (away from region III where the approximation fails). The

ability to find parameter sets or regions in parameter space with larger amplitudes, for

example, is of interest in different applications, such as energy harvesting.
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Figure 6.17: Plots of the absolute error (left) and relative error (right) between the pre-

dicted maximum amplitudes and the actual maximum amplitudes for α = 3 in region

V.
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Figure 6.18: Plots of the absolute error (left) and relative error (right) between the pre-

dicted maximum amplitudes and the actual maximum amplitudes for α = 1/100 in region

V.

6.7 Varying the Delay Parameter

In this section we will briefly look at a case of varying the delay parameter. Here we

will look at the case where c = d, that is, the case of only one delay parameter. We

will proceed as in Section 3 and use the characteristic equation (6.41) of our slow flow

system and the conditions for both the Hopf and Saddle-node bifurcation to search for

potential parameter sets. However, unlike Section 3, due to the complicated nature of the

conditions, we will need to fix all other parameters first in order to solve numerically for

our delay parameter c. So we will consider the case:

ω = 2.1, λ2 = 1, λ1 = λ3 = 4, α = 1/2, β = 2, σ = −2 (6.68)
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With these parameters the condition for a Hopf bifurcation becomes:

0 = trace(J) =
2(c− 1)c

c2 + 1
− 1

2

√
−15c4 + 64c3 + 31c2 − 64c+ 16

(c2 + 1)2
− 1

4

0 < det(J) =
1

4 (c2 + 1)4

((
c3 + c

)2 − 16
(
c4 + 2c3 + 2c− 1

)2
+
(
c2 + 1

)2
c4

−
(
c2 + 1

)3 (
7c2 − 8c− 1

)√
−15c4 + 64c3 + 31c2 − 64c+ 16

(c2 + 1)2

)
(6.69)

and the conditions for a saddle-node or pitchfork bifurcation becomes det(J) = 0 with

det(J) given as above in (6.69):

Solving the condition (6.69) gives us that there are no values for c for which there are

Hopf bifurcations. Solving the condition det(J) = 0 gives us two bifurcation values for c

for which see there are saddle-node bifurcations at

c ≈ 0.378029, 0.458067. (6.70)

These two points divide our parameter space into three separate regions as shown and

labeled in the number line for our free parameter c below:

Region 1 Region 2 Region 3

c≈0.378029 c≈0.458067

0.38 0.40 0.42 0.44 0.46 0.48
c

Figure 6.19: Parameter line for our bifurcation parameter c. The bifurcation points listed

in (6.70) are denoted by the red lines, splitting it into 3 regions.

In the first (c < 0.378029) and third regions (c > 0.458067), we observe that the slow flow

has a stable limit cycle. The periodic behavior in the slow flow, as noted earlier, leads to
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the prediction of quasiperiodic behavior in our delayed system. As an example of this we

have the slow flow exhibiting periodic behavior for c = 1/10 in the first region pictured in

Figure 6.20. We can see an example of the quasiperiodic behavior of the delayed system

in the first region for c = 1/10 shown in Figure 6.21 confirming the prediction.
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Figure 6.20: Periodic slow flow solution in region 1 for c = 1/10.
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Figure 6.21: Quasiperiodic solution to the delayed system in region 1 for c = 1/100.
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In the second region, for 0.378029 < c < 0.458067, we see that two pairs of nontrivial

fixed points are born out of two saddle-node bifurcations as we cross either of the critical

values c = 0.378029, 0.458067. In this region the slow flow solution approaches either of

the stable fixed points depending on the initial conditions, we can see an example of this

in Figure 6.22 for c = 4/10 where the two stable nontrivial fixed points of each pair are

given by:

(A1, γ1) =

(
1

2

√
1

481

(√
12065 + 1273

)
, π − tan−1

(
1

83

(√
12065 + 180

)))

≈ (0.847781, 1.8497) (6.71)

(A2, γ2) =

(
1

2

√
1

481

(√
12065 + 1273

)
,− tan−1

(
1

83

(√
12065 + 180

)))

≈ (0.847781,−1.2919) (6.72)
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Figure 6.22: The slow flow solution approaching a stable fixed point for c = 4/10 in

Region 2.
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As noted earlier when we plug in the fixed points (An, γn), (n = 1, 2), into our approxima-

tions (6.25), after simplifying we obtain:

x(t) = 2An cos((1 + ε)t+ γn) (6.73)

from which see the slow flow system predicts periodic behavior. The plot of the pre-

dicted approximation (6.73) is shown in Figure 6.22. However, like earlier, we see that in

contradiction to our prediction and approximation the original nonlinear delayed system

exhibits different behavior, and in this case it approaches the zero solution. The plot of

the delayed system in this region for c = 4/10 is shown in Figure 6.23 from which we can

see the numerical solution tending to zero.
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Figure 6.23: The delayed system exhibiting a stable trivial fixed point for c = 4/10 in

Region 2.

So we see that we again have the case that while the slow flow accurately predicts where

the behavior changes when it comes to regions where the slow flow predicts the delayed

system will have periodic behavior, we see that our approximation yields different be-
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havior than the actual numerical solution.

We have observed in Section 4 that introducing the delay into our original system can pro-

duce amplitude death into our system, quenching the oscillations. Here we can see an-

other example of this in region 2, since in this region the undelayed system has quasiperi-

odic (shown in Figure 6.24 below) behavior and adding a delay quenches the oscillations

as in Figure 6.23. From this section we see that, in addition to introducing the delay,

varying the delay parameter can also allow for possible transitions the delayed system

between states of quasiperiodic motion (regions I and III above for example) to ampli-

tude death states (for instance, region II above) through two saddle-node bifurcations in

the slow flow.
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Figure 6.24: The undelayed system in region 2 for the parameters listed in (6.68).
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6.8 Discussion and Conclusions

In this chapter, we have considered the effects of a distributed ’weak generic kernel’ ex-

ponential delay on a parametrically forced Van der Pol limit cycle oscillator. The effects of

the delay we observe for the parametrically forced Van der Pol system are similar to other

systems previously considered, where the delay can produce transitions to amplitude

death, with the delayed amplitudes shrinking or growing as we vary the delay towards

or away from the bifurcation point respectively [66] and [67]. In contrast to previous

systems considered in [66] and [67], in the delayed, parametrically forced Van der Pol

system, we see the regions of qusaiperiodic behavior of the system which occurs through

a Hopf bifurcation of the slow flow system, and transitions from quasiperiodic behavior

into regions of amplitude death.

These results were obtained by using averaging, specifically we used the method of mul-

tiple scales to derive the averaged or slow flow equation and parameter regimes where

the different dynamics occur. In particular, looking at the different types and stability of

fixed points and limit cycles in the slow flow system allows us to find parameter regimes

with different types of dynamics in the original system. In this chapter we have observed

that using the slow flow system we can obtain the following predictions from the slow

flow approximation: a trivial stable fixed point predicts amplitude death in the original

system, a stable nontrivial fixed point predicts a stable limit cycle in the original system,

and a stable periodic orbit predicts quasiperiodic behavior in the original system. Find-

ing parameter regimes for such behavior, in general, is otherwise very difficult to do for

multi-parameter systems such as ours. The numerical results above show that the be-

havior of the solution of the slow flow, together with the averaging ansatz, predicts the

dynamics of the original system in all but one region for our system. The region with
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predicted periodic behavior is where our approximation fails and we see the nonlinear

system retains its quasiperiodic behavior.

As we pass through to the second slow flow approximation, similar to the first slow flow,

we observe the following predictions: a stable trivial fixed point predicts amplitude death

in the original system and a stable nontrivial fixed point predicts quasiperiodic behavior

in the original system. Our numerical results show that these predictions are consistent

in the regions of quasiperiodic and amplitude death behavior outlined in Section 3. How-

ever, we again found for the second slow flow inconsistencies in the region where the first

slow flow predicted periodic behavior, namely the second slow flow predicts quasiperi-

odic behavior in part of the region which contradicts the first slow flow. In Regions I

and V, where our prediction was accurate, we have also used the second slow flow to

approximate/predict the maximum quasiperiodic amplitude of our delayed system and

compared to the numerical results. This illustrates the process of using the second slow

flow of a system to find parameter regimes of quasiperiodic behavior, which is in general

very difficult to do in multi-parameter systems, by instead searching for stable nontrivial

fixed points in the second slow flow. It also shows a possible way to find larger amplitude

quasiperiodic solutions which, as we noted earlier, can be of use in certain applications.

Finally, we looked at varying the strength of the delay showing that not only is it possible

to induce amplitude death by adding delay to our equation but it is also possible through

varying the delay strength.
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CHAPTER 7: CONCLUSION

Nonlinear dynamical systems, especially coupled ones, are of wide interest in many areas

of science and technology. When such systems which, in isolation are capable of a great

variety of behaviors, are coupled, a host of novel collective phenomena are seen. These

depend on the specific features, both of the individual systems, as well as the type of

coupling.

This dissertation involved a systematic treatment of systems with distributed delays in

a variety of coupled systems, as well as several commonly employed coupling schemes

which admit diverse cooperative behaviors both in the undelayed and delayed models.

One important area considered here was what might imprecisely be referred to as ’stabi-

lization’, i.e., the creation of simpler system attractors via the coupling. The best known

among these is suppression of oscillations, which is most often termed as Amplitude

Death (AD) [1], even when the uncoupled systems themselves do not exhibit such sta-

tionary behavior. Coupling-induced AD is an instance of a more general phenomenon

that may include actual cessation of oscillations, or the conversion of chaotic dynamics to

periodic or quasiperiodic dynamics. In the case of oscillation suppression by coupling,

two separate phenomena, viz. suppression of oscillation to a single or homogeneous

steady state (or AD), versus the second or Oscillation Death (OD) [2], where the oscil-

lators asymptotically populate different fixed points or ’inhomogeneous steady states’.

Both types of behavior were carefully investigated under a variety of coupling schemes.

The final chapter extended these studies by including the effects of periodically amplitude

modulated distributed delays in both position and velocity. The existence of quasiperiodic

solutions motivates the derivation of a second slow flow, a comparison of results and
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predictions from the second slow flow and the numerical results, as well as using the

second slow flow to approximate the amplitudes of the quasiperiodic solution or the radii

of the toroidal attractor. Finally, the results of varying the delay parameter were briefly

discussed.

Future extensions of the broad area treated in this dissertation will consider quasiperiodic

oscillator systems under a variety of couplings, both with and without delays. As is

generally realized but not systematically investigated to date, the collective behavior in

such coupled systems may be significantly more complex than the coupled oscillator or

coupled chaotic systems considered in this dissertation.

Other future extensions would be to look at systems with multiple distributed delays,

different types of distributed delays, and systems with a mix of distributed and discrete

delays.

In addition, the results obtained here, particularly those in Chapter 6, may be applica-

ble to the recent area of attempting to harvest energy from the output responses of such

coupled systems.
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A.1 Coefficients in characteristic equation (4.11)

The coefficients in (4.11) are:

b1 =
1

10εω2 (ε2 + ω1ω2)
2

(
10aε5ω2 + 2(10a− 3)ε3ω1ω

2
2 + (10a− 3)εω2

1ω
3
2

− 20ε6(ω1 − ω2)− 40ε4ω1ω2(ω1 − ω2) + 10ε2ω2
1ω

2
2(2ω2 − 3ω1)− 10ω4

1ω
3
2

)
(A.1)

b2 =
1

10εω2
2 (ε2 + ω1ω2)

2

(
− 20aε6ω2(ω1 − ω2) + 2ε4ω1ω

2
2((3− 20a)ω1 + 20aω2)

+ 2ε3ω1ω
2
2

(
−3aω2 + 5ω3

1 − 40ω2
1ω2 + 5ω1ω

2
2 + 10ω3

2

)
+ ε2ω2

1ω
3
2((9− 30a)ω1

+ (20a+ 3)ω2) + εω2
1ω

4
2

(
10
(
ω2
2 − 3ω2

1

)
− 3a

)
+ (3− 10a)ω4

1ω
4
2

+ 10ε7
(
ω2
1 − 3ω1ω2 + ω2

2

)
+ 10ε5ω2

(
2ω3

1 − 8ω2
1ω2 + 2ω1ω

2
2 + ω3

2

))
(A.2)

b3 =
1

50εω2
2 (ε2 + ω1ω2)

3

(
5a
(
10ε9

(
ω2
1 − 3ω1ω2 + ω2

2

)
+ 10ε7ω2

(
3ω3

1 − 11ω2
1ω2

+3ω1ω
2
2 + ω3

2

)
+ 6ε6ω2

1ω
2
2 + 10ε5ω1ω

2
2

(
3ω3

1 − 16ω2
1ω2 + 3ω1ω

2
2 + 3ω3

2

)
+ 3ε4ω2

1ω
3
2(5ω1 + ω2) + 10ε3ω2

1ω
3
2

(
ω3
1 − 11ω2

1ω2 + ω1ω
2
2 + 3ω3

2

)
+ 3 ε2ω3

1ω
4
2(4ω1 + ω2) + 10εω3

1ω
5
2

(
ω2
2 − 3ω2

1

)
+ 3ω5

1ω
5
2

)
+ 50ε10ω1(ω1 − ω2)

+ 50ε8ω2

(
4ω3

1 − 5ω2
1ω2 − ω1ω

2
2 + ω3

2

)
+ 30ε7ω1ω

3
2 + 50ε6ω1ω

2
2

(
5ω3

1 − 9ω2
1ω2

−4ω1ω
2
2 + 3ω3

2

)
+ 15ε5ω2

1ω
3
2(5ω1 + 4ω2) + 2ε4ω2

1ω
3
2

(
50ω3

1 − 175ω2
1ω2

−150ω1ω
2
2 + 75ω3

2 − 9ω2

)
+ 15ε3ω3

1ω
4
2(7ω1 + 2ω2)− ε2ω3

1ω
5
2

(
100ω2

1

+200ω1ω2 − 50ω2
2 + 9

)
+ 30εω5

1ω
5
2 − 50ω5

1ω
7
2

)
(A.3)
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b4 =
a

50εω2
2 (ε2 + ω1ω2)

3

(
50ε10ω1(ω1 − ω2) + 50ε8ω2

(
4ω3

1 − 5ω2
1ω2 − ω1ω

2
2 + ω3

2

)
+ 30ε7ω1ω

3
2 + 50ε6ω1ω

2
2

(
5ω3

1 − 9ω2
1ω2 − 4ω1ω

2
2 + 3ω3

2

)
+ 15ε5ω2

1ω
3
2(5ω1 + 4ω2)

+ 2ε4ω2
1ω

3
2

(
50ω3

1 − 175ω2
1ω2 − 150ω1ω

2
2 + 75ω3

2 − 9ω2

)
+ 15ε3ω3

1ω
4
2(7ω1 + 2ω2)

− ε2ω3
1ω

5
2

(
100ω2

1 + 200ω1ω2 − 50ω2
2 + 9

)
+ 30εω5

1ω
5
2 − 50ω5

1ω
7
2

)
− ω1ω2 (5ε4 + 15ε2ω1ω2 − 3εω2

2 + 10ω2
1ω

2
2)

5 (ε2 + ω1ω2)
(A.4)

b5 =
1

5
aω2

(
−10ε2ω1 + 3εω2 − 10ω2

1ω2

)
(A.5)

where

c1 =
ε2ω1 − 3εω2

5
+ ω2

1ω2

ε2 + ω1ω2

(A.6)

c2 = − 3ε4

10 (ε2 + ω1ω2)
2 +

ε3ω1

ε2ω2 + ω1ω2
2

− ε+
3

10
(A.7)
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A.2 Coefficients in characteristic equations (4.28) and (4.29)

The coefficients in (4.28) are:

b1 = a+ 2ε+
7

5
(A.1)

b2 = a

(
2ε+

7

5

)
+ ε2 +

31ε

10
+ 2ω2 − 11

100
(A.2)

b3 =
1

100

(
100aε2 + 310aε+ 200aω2 − 11a+ 170ε2 + 200εω2 + 29ε

+340ω2 − 42
)

(A.3)

b4 =
1

100

(
170aε2 + 200aεω2 + 29aε+ 340aω2 − 42a+ 40ε2 + 370εω2

−72ε+ 100ω4 + 80ω2 + 9
)

(A.4)

b5 =
1

100

(
−100aε2ω2 + 40aε2 + 370aεω2 − 72aε+ 100aω4 + 80aω2 + 9a

−30ε2 + 140εω2 + 9ε+ 200ω4 − 60ω2
)

(A.5)

b6 =
1

100

(
−200aε2ω2 − 30aε2 + 140aεω2 + 9aε+ 200aω4 − 60aω2

−30εω2 + 100ω4
)

(A.6)

b7 =
1

10
aω2

(
−10ε2 − 3ε+ 10ω2

)
(A.7)
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And the coefficients in (4.29) are:

b1 = a+ 2ε− x∗1 − x∗2 +
7

5
(A.8)

b2 = a

(
2ε− x∗1 − x∗2 +

7

5

)
+ ε2 + ε

(
−x∗1 − 2x∗2 +

31

10

)
+ 2ω2 + x∗1x

∗
2

− 12x∗1
5
− 12x∗2

5
− 11

100
(A.9)

b3 =
1

100

(
a
(
100ε2 − 10ε(10x∗1 + 20x∗2 − 31) + 200ω2 + 100x∗1x

∗
2 − 240x∗1

−240x∗2 − 11) + ε2(170− 100x∗2) + ε
(
200ω2 + 100x∗1x

∗
2 − 270x∗1 − 510x∗2

+29)− 100ω2x∗1 − 100ω2x∗2 + 340ω2 + 340x∗1x
∗
2 − 29x∗1 − 29x∗2 − 42

)
(A.10)

b4 =
1

100

(
−a
(
10ε2(10x∗2 − 17) + ε

(
−200ω2 − 100x∗1x

∗
2 + 270x∗1 + 510x∗2 − 29

)
+20ω2(5x∗1 + 5x∗2 − 17)− 340x∗1x

∗
2 + 29x∗1 + 29x∗2 + 42

)
+ ε2(40− 270x∗2)

−ε
(
10ω2(10x∗2 − 37) + x∗1(110− 370x∗2) + 139x∗2 + 72

)
+ 100ω4

−270ω2x∗1 − 270ω2x∗2 + 80ω2 + 169x∗1x
∗
2 + 93x∗1 + 93x∗2 + 9

)
(A.11)

b5 =
1

100

(
a
(
−10ε2

(
10ω2 + 27x∗2 − 4

)
− ε

(
10ω2(10x∗2 − 37)− 370x∗1x

∗
2 + 110x∗1

+139x∗2 + 72) + 100ω4 − 10ω2(27x∗1 + 27x∗2 − 8) + 169x∗1x
∗
2 + 93x∗1 + 93x∗2 + 9

)
−10ε2(11x∗2 + 3) + ε

(
−20ω2(15x∗2 − 7) + 20x∗1(14x∗2 + 3) + 153x∗2 + 9

)
+ 200ω4

−10ω2(11x∗1 + 11x∗2 + 6)− 6(x∗1(34x∗2 + 3) + 3x∗2)
)

(A.12)

b6 =
1

100

(
2
(
3ε− 10ω2 − 6x∗1

) (
(10ε− 3)x∗2 − 5ω2

)
− a

(
10ε2

(
20ω2 + 11x∗2 + 3

)
+ε
(
20ω2(15x∗2 − 7)− 280x∗1x

∗
2 − 60x∗1 − 153x∗2 − 9

)
+ 2

(
−100ω4 + 5ω2(11x∗1

+11x∗2 + 6) + 102x∗1x
∗
2 + 9x∗1 + 9x∗2))) (A.13)

b7 =
1

50
a
(
ε2
(
30x∗2 − 50ω2

)
− 5εω2(20x∗2 + 3)− 3ε(20x∗1 + 3)x∗2

+2
(
5ω2 + 3x∗1

) (
5ω2 + 3x∗2

))
(A.14)
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B.1 Coefficients in (5.11)

The coefficients in (5.11) are given by:

a1 = 2k + 8x2i,+ + 8y2i,+ − 2 (B.11)

a2 = k2 + 2k
(
5x2i,+ + 7y2i,+ − 1

)
+ 2ω2 + 22x4i,+ + 44x2i,+y

2
i,+ − 8x2i,+

+ 22y4i,+ − 8y2i,+ − 1 (B.12)

a3 = 2
(
k2
(
x2i,+ + 3y2i,+

)
+ k

(
ω2 + 7x4i,+ + 22x2i,+y

2
i,+ + 15y4i,+ − 2

)
+ 4x2i,+

(
ω2

+9y4i,+ − 2
)

+ 4ω2y2i,+ + 12x6i,+ + 36x4i,+y
2
i,+ + 12y6i,+.− 8y2i,+ + 2

)
(B.13)

a4 = k2
(
x4i,+ + x2i,+

(
6y2i,+ + 2

)
+ 9y4i,+ + 6y2i,+ − 3

)
+ 2k

(
ω2
(
x2i,+ + 3y2i,+ + 1

)
+ 3x6i,+ + x4i,+

(
15y2i,+ + 7

)
+ x2i,+

(
21y4i,+ + 22y2i,+ − 10

)
+ 9y6i,+ + 15y4i,+

−14y2i,+ + 2
)

+ ω4 + 2ω2
(
3x4i,+ + x2i,+

(
6y2i,+ + 4

)
+ 3y4i,+ + 4y2i,+ − 2

)
+ 9x8i,+ + 36x6i,+y

2
i,+ + 24x6i,+ + 54x4i,+y

4
i,+ + 72x4i,+y

2
i,+ − 44x4i,+

+ 36x2i,+y
6
i,+ + 72x2i,+y

4
i,+ − 88x2i,+y

2
i,+ + 16x2i,+ + 9y8i,+ + 24y6i,+

− 44y4i,+ + 16y2i,+ − 1 (B.14)

a5 = 2
(
k2
(
x2i,+ + 3y2i,+ − 1

)2
+ k

(
ω2
(
2x2i,+ + 6y2i,+ − 1

)
+ 6x6i,+

+x4i,+
(
30y2i,+ − 7

)
+ x2i,+

(
42y4i,+ − 22y2i,+

)
+ 18y6i,+ − 15y4i,+ + 1

)
+ ω4 + 2ω2

(
3x4i,+ + x2i,+

(
6y2i,+ − 2

)
+ y2i,+

(
3y2i,+ − 2

))
+ 9x8i,+ + 36x6i,+y

2
i,+

− 12x6i,+ + 54x4i,+y
4
i,+ − 36x4i,+y

2
i,+ + 36x2i,+y

6
i,+ − 36x2i,+y

4
i,+ + 4x2i,+ + 9y8i,+

−12y6i,+ + 4y2i,+ − 1
)

(B.15)
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a6 = 2k
(
x2i,+ + 3y2i,+ − 1

) (
ω2 + 3x4i,+ + x2i,+

(
6y2i,+ − 4

)
+ 3y4i,+ − 4y2i,+ + 1

)
+ ω4 + 2ω2

(
3x4i,+ + x2i,+

(
6y2i,+ − 4

)
+ 3y4i,+ − 4y2i,+ + 1

)
+ 9x8i,+

+ 36x6i,+y
2
i,+ − 24x6i,+ + 54x4i,+y

4
i,+ − 72x4i,+y

2
i,+ + 22x4i,+ + 36x2i,+y

6
i,+

− 72x2i,+y
4
i,+ + 44x2i,+y

2
i,+ − 8x2i,+ + 9y8i,+ − 24y6i,+ + 22y4i,+ − 8y2i,+ (B.16)
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B.2 Coefficients in (5.24)

The coefficients in (5.24) are:

e1 = a+ 2k + 8x2i,+ + 8y2i,+ − 2 (B.21)

e2 = 2ak + 8ax2i,+ + 8ay2i,+ − 2a+ k2 + 10kx2i,+ + 14ky2i,+ − 2k + 2ω2

+ 22x4i,+ + 44x2i,+y
2
i,+ − 8x2i,+ + 22y4i,+ − 8y2i,+ − 1 (B.22)

e3 = ak2 + 10akx2i,+ + 14aky2i,+ − 2ak + 2aω2 + 22ax4i,+ + 44ax2i,+y
2
i,+ − 8ax2i,+

+ 22ay4i,+ − 8ay2i,+ − a+ 2k2x2i,+ + 6k2y2i,+ + 2kω2 + 14kx4i,+ + 44kx2i,+y
2
i,+

+ 30ky4i,+ − 4k + 8ω2x2i,+ + 8ω2y2i,+ + 24x6i,+ + 72x4i,+y
2
i,+ + 72x2i,+y

4
i,+

− 16x2i,+ + 24y6i,+ − 16y2i,+ + 4 (B.23)

e4 = 2ak2x2i,+ + 6ak2y2i,+ + 2akω2 + 14akx4i,+ + 44akx2i,+y
2
i,+ + 30aky4i,+ − 4ak

+ 8aω2x2i,+ + 8aω2y2i,+ + 24ax6i,+ + 72ax4i,+y
2
i,+ + 72ax2i,+y

4
i,+ − 16ax2i,+

+ 24ay6i,+ − 16ay2i,+ + 4a+ k2x4i,+ + 6k2x2i,+y
2
i,+ + 2k2x2i,+ + 9k2y4i,+ + 6k2y2i,+

− 2k2 + 2kω2x2i,+ + 6kω2y2i,+ + 2kω2 + 6kx6i,+ + 30kx4i,+y
2
i,+ + 14kx4i,+

+ 42kx2i,+y
4
i,+ + 44kx2i,+y

2
i,+ − 20kx2i,+ + 18ky6i,+ + 30ky4i,+ + 16y2i,+ − 1

− 28ky2i,+ + 4k + ω4 + 6ω2x4i,+ + 12ω2x2i,+y
2
i,+ + 8ω2x2i,+ + 6ω2y4i,+ + 8ω2y2i,+

− 4ω2 + 9x8i,+ + 36x6i,+y
2
i,+ + 24x6i,+ + 54x4i,+y

4
i,+ + 72x4i,+y

2
i,+ − 44x4i,+

+ 36x2i,+y
6
i,+ + 72x2i,+y

4
i,+ − 88x2i,+y

2
i,+ + 16x2i,+ + 9y8i,+ + 24y6i,+ − 44y4i,+ (B.24)
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e5 = ak2x4i,+ + 6ak2x2i,+y
2
i,+ + 2ak2x2i,+ + 9ak2y4i,+ + 6ak2y2i,+ − 3ak2 + 2akω2x2i,+

+ 6akω2y2i,+ + 2akω2 + 6akx6i,+ + 30akx4i,+y
2
i,+ + 14akx4i,+ + 42akx2i,+y

4
i,+

+ 44akx2i,+y
2
i,+ − 20akx2i,+ + 18aky6i,+ + 30aky4i,+ − 28aky2i,+ + 4ak + aω4

+ 6aω2x4i,+ + 12aω2x2i,+y
2
i,+ + 8aω2x2i,+ + 6aω2y4i,+ + 8aω2y2i,+ − 4aω2 + 9ax8i,+

+ 36ax6i,+y
2
i,+ + 24ax6i,+ + 54ax4i,+y

4
i,+ + 72ax4i,+y

2
i,+ − 44ax4i,+ + 36ax2i,+y

6
i,+

+ 72ax2i,+y
4
i,+ − 88ax2i,+y

2
i,+ + 16ax2i,+ + 9ay8i,+ + 24ay6i,+ − 44ay4i,+ + 16ay2i,+

− a+ 2k2x4i,+ + 12k2x2i,+y
2
i,+ − 2k2x2i,+ + 18k2y4i,+ − 6k2y2i,+ + 4kω2x2i,+

+ 12kω2y2i,+ − 2kω2 + 12kx6i,+ + 60kx4i,+y
2
i,+ − 14kx4i,+ + 84kx2i,+y

4
i,+

− 44kx2i,+y
2
i,+ + 36ky6i,+ − 30ky4i,+ + 2k + 2ω4 + 12ω2x4i,+ + 24ω2x2i,+y

2
i,+

− 8ω2x2i,+ + 12ω2y4i,+ − 8ω2y2i,+ + 18x8i,+ + 72x6i,+y
2
i,+ − 24x6i,+ + 108x4i,+y

4
i,+

− 72x4i,+y
2
i,+ + 72x2i,+y

6
i,+ − 72x2i,+y

4
i,+ + 8x2i,+ + 18y8i,+ − 24y6i,+ + 8y2i,+ − 2 (B.25)

e6 = 2ak2x4i,+ + 12ak2x2i,+y
2
i,+ − 4ak2x2i,+ + 18ak2y4i,+ − 12ak2y2i,+ + 2ak2

+ 4akω2x2i,+ + 12akω2y2i,+ − 2akω2 + 12akx6i,+ + 60akx4i,+y
2
i,+ − 14akx4i,+

+ 84akx2i,+y
4
i,+ − 44akx2i,+y

2
i,+ + 36aky6i,+ − 30aky4i,+ + 2ak + 2aω4 + 12aω2x4i,+

+ 24aω2x2i,+y
2
i,+ − 8aω2x2i,+ + 12aω2y4i,+ − 8aω2y2i,+ + 18ax8i,+ + 72ax6i,+y

2
i,+

− 24ax6i,+ + 108ax4i,+y
4
i,+ − 72ax4i,+y

2
i,+ + 72ax2i,+y

6
i,+ − 72ax2i,+y

4
i,+ + 8ax2i,+

+ 18ay8i,+ − 24ay6i,+ + 8ay2i,+ − 2a+ k2x4i,+ + 6k2x2i,+y
2
i,+ − 2k2x2i,+ + 9k2y4i,+

− 6k2y2i,+ + k2 + 2kω2x2i,+ + 6kω2y2i,+ − 2kω2 + 6kx6i,+ + 30kx4i,+y
2
i,+ − 14kx4i,+

+ 42kx2i,+y
4
i,+ − 44kx2i,+y

2
i,+ + 10kx2i,+ + 18ky6i,+ − 30ky4i,+ + 14ky2i,+ − 2k + ω4

+ 6ω2x4i,+ + 12ω2x2i,+y
2
i,+ − 8ω2x2i,+ + 6ω2y4i,+ − 8ω2y2i,+ + 2ω2 + 9x8i,+ + 36x6i,+y

2
i,+

− 24x6i,+ + 54x4i,+y
4
i,+ − 72x4i,+y

2
i,+ + 22x4i,+ + 36x2i,+y

6
i,+ − 72x2i,+y

4
i,+ + 44x2i,+y

2
i,+

− 8x2i,+ + 9y8i,+ − 24y6i,+ + 22y4i,+ − 8y2i,+ + 1 (B.26)
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e7 = 2akω2x2i,+ + 6akω2y2i,+ − 2akω2 + 6akx6i,+ + 30akx4i,+y
2
i,+ − 14akx4i,+ − 8ay2i,+ + a

+ 42akx2i,+y
4
i,+ − 44akx2i,+y

2
i,+ + 10akx2i,+ + 18aky6i,+ − 30aky4i,+ + 14aky2i,+

− 2ak + aω4 + 6aω2x4i,+ + 12aω2x2i,+y
2
i,+ − 8aω2x2i,+ + 6aω2y4i,+ − 8aω2y2i,+

+ 2aω2 + 9ax8i,+ + 36ax6i,+y
2
i,+ − 24ax6i,+ + 54ax4i,+y

4
i,+ − 72ax4i,+y

2
i,+ + 22ax4i,+

+ 36ax2i,+y
6
i,+ − 72ax2i,+y

4
i,+ + 44ax2i,+y

2
i,+ − 8ax2i,+ + 9ay8i,+ − 24ay6i,+ + 22ay4i,+ (B.27)

where

c1 = −k − 3x2i,+ − y2i,+ + 1 (B.28)

c2 = −x2i,+ − 3y2i,+ + 1 (B.29)

c3 = 2xi,+yi,+ (B.210)
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C.1 Bifurcation Conditions

The following are the full list of the pitchfork bifurcation conditions on c, σ, λ1, α found

numerically for the case λ2 = 1, β = 2, included for completeness:

c = −1 (C.11)

and

σ = ± 1

2
√

2
(C.12)

or

0 6= c(1 + c) (C.13)

and

λ1 =
−2c4σ − 2c3σ − 2c2σ −

√
c4(c+ 1)2 (c2 + 1)− 2cσ

2c2(c+ 1)2
(C.14)
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or

c 6= 0 (C.15)

and

0 =
1

4
√

(c2 + 1)2

(
±
(
−4c4λ21 − 8c4λ1σ − 4c4σ2 + c4 − 8c3λ21 − 8c3λ1σ

−4c2λ21 − 8c2λ1σ − 8c2σ2 + c2 − 8cλ1σ − 4σ2
)1/2

−
√

(c2 + 1)2
(

1

(c2 + 1)2
(
−4c4λ21 − 8c4λ1σ − 4c4σ2 + c4

− 8c3λ21 − 8c3λ1σ − 4c2λ21 − 8c2λ1σ − 8c2σ2 + c2 − 8cλ1σ − 4σ2

))1/2

(C.16)

and

0 6=
(

1

(c2 + 1)2

(
− 4c4λ21 − 8c4λ1σ − 4c4σ2 + c4 − 8c3λ21 − 8c3λ1σ

− 4c2λ21 − 8c2λ1σ − 8c2σ2 + c2 − 8cλ1σ − 4σ2

))1/2

(C.17)

and

α =
2c2λ1 − c2

√
−4c4λ21−8c4λ1σ−4c4σ2+c4−8c3λ21−8c3λ1σ−4c2λ21−8c2λ1σ−8c2σ2+c2−8cλ1σ−4σ2

(c2+1)2

2 (c2 + 1)

+
−
√
−4c4λ21−8c4λ1σ−4c4σ2+c4−8c3λ21−8c3λ1σ−4c2λ21−8c2λ1σ−8c2σ2+c2−8cλ1σ−4σ2

(c2+1)2
− 2cλ1

2 (c2 + 1)
(C.18)

The next set of conditions is the full set for the Hopf bifurcation on c, σ, λ1, α for the case

λ1 = 1, β = 2 found numerically.
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c < −1 (C.19)

and

λ1 <
c2(−σ)− σ
c(c+ 1)

− 1

2

√
c2 + 1

(c+ 1)2
or λ1 >

c2(−σ)− σ
c(c+ 1)

+
1

2

√
c2 + 1

(c+ 1)2
(C.110)

or

c = −1 (C.111)

and

σ < − 1

2
√

2
or σ >

1

2
√

2
(C.112)

or

−1 < c < 0 (C.113)

and

λ1 <
c2(−σ)− σ
c(c+ 1)

− 1

2

√
c2 + 1

(c+ 1)2
or λ1 >

c2(−σ)− σ
c(c+ 1)

+
1

2

√
c2 + 1

(c+ 1)2
(C.114)

or

c > 0 (C.115)

and

λ1 <
c2(−σ)− σ
c(c+ 1)

− 1

2

√
c2 + 1

(c+ 1)2
or λ1 >

c2(−σ)− σ
c(c+ 1)

+
1

2

√
c2 + 1

(c+ 1)2
(C.116)
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and for any of these conditions on c, σ, λ1 we have that α is given by:

α =
c2λ1 − cλ1
c2 + 1

(C.117)
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