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ABSTRACT

Modeling the dynamics of social contagion processes has recently attracted a substantial amount of

interest from researchers due to its wide applicability in network science, multi-agent systems, in-

formation science, and marketing. Unlike in biological spreading, the existence of a reinforcement

effect in social contagion necessitates considering the complexity of individuals in the systems.

Although many studies acknowledged the heterogeneity of the individuals in their adoption of in-

formation (or behavior), there are no studies that take into account the individuals’ uncertainty

during their decision-making despite its theoretical and experimental evidence in behavioral eco-

nomics, decision science, cognitive science, or multi-agent systems. This resulted in less than

optimal modeling of social contagion dynamics in the existence of phase transition in the final

adoption size versus transmission probability. We believe that it is mainly because traditional

approaches do not consider the uncertainty stemming from agent interactions through an informa-

tion exchange that can influence individuals’ emotions, change subconscious feelings, and trigger

subjective biases. To address this problem, we propose quantum-like generalization of social con-

tagion analysis for the analysis of co-evolutionary dynamics of social contagion. For this purpose,

we employed Inverse Born Problem (IBP) to represent probabilistic entities as complex proba-

bility amplitudes in edge-based compartmental theory and demonstrated that our novel approach

performs better in the prediction of social contagion dynamics through extensive simulations on

random regular networks.
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CHAPTER 1: INTRODUCTION

Contagion, in the simplest sense, is the spreading of an entity from one source to another through

direct or indirect contact. Although this term is primarily used in epidemiology to define the

spreading of a disease from one person to another, it recently has a more broad meaning since

ideas, emotions and behaviors can also be contagious. Researchers have mainly classified these

spreading dynamics in different disciplines into two main categories: Biological and social conta-

gion. Despite the analogy between these spreading mechanisms, social contagion has been found

to have a distinct inherent characteristic, which is called social reinforcement effect [2, 3, 4], com-

pared to biological spreading. In the reinforcement effect in social contagion, the simple contagion

mechanism in epidemic spreading, which assumes that even one single activated source might be

sufficient for the transmission, is transformed into a more complex contagion mechanism.

American Psychological Association (APA) Dictionary defines social contagion as "the spread of

behaviors, attitudes, and affect through crowds and other types of social aggregates from one mem-

ber to another1". Interaction among people in their daily lives and its consequences has been an

intuitive concept for years; however, the scientific explanation of social contagion and its rele-

vance was first emphasized by Gustave Le Bon in his well-known book "The crowd: A study of

popular mind" (1895). Le Bon’s social contagion theory focus on the impacts of social influence

on people’s perceptions, attitudes, and behaviors in a concept of diffusion and tries to understand

the causal factors behind their adoption. Although the terms "diffusion" and "adoption" are inter-

changeably used in the related studies, we refer to diffusion as a process in which behavior spreads

among entities through certain channels; whereas, adoption is used as a decision and posterior

implementation of acceptance or rejection for a modification through a series of stages [5].

1https://dictionary.apa.org/social-contagion
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The pioneering study of Granovetter [6], in which a mathematical approach for social contagion

is firstly introduced, proposed a linear threshold model based on the assumption that individuals’

behavior in a network can be affected by their neighbors’ actions. In this receiver-centric model,

individuals adopt a behavior only if a certain fraction of neighbors have already adopted the behav-

ior. Later, Goldenberg’s pioneering study [7] of diffusion in marketing became another well-known

technique in social contagion studies. In this sender-centric model called the independent cascade

model, each adopted node has a single chance to influence one of its susceptible neighbors. Re-

cently, inspired by epidemic models, one of the most commonly used methods in the literature

of social contagion studies is the message passing approach [8], in which individuals within the

target population (or network) are divided into mutually exclusive compartments based on their

current status and their future status at any time can be predicted based on the predefined rate of

contact between compartments and their certain transition rates. As opposed to the conventional

compartmental models, the reinforcement effect is also included with the existence of a threshold

value for individuals to adopt the behavior. Therefore, the message passing approach is considered

a non-Markovian process, which makes it more realistic in the application of real-world diffusion.

The most challenging task in employing any of these approaches in social contagion analyses is to

model the complexity of individuals. This complexity arises due to either the heterogeneity of the

individuals in their adoption threshold or the uncertainty in their decision-making process during

adoption. Although earlier studies employed a simplistic threshold model, i.e., uniform threshold

distribution in social contagion studies, to address the former challenge, recent studies utilized

more complex threshold distributions such as binary [4], tent-like function [9], truncated normal

distribution function [10] or sigmoid function [11]. To the best of our knowledge, the uncertainty

in their decision-making process has not been addressed yet in social contagion analyses despite

its theoretical and experimental evidence in behavioral economics, decision science, cognitive sci-

ence, or multi-agent systems. Although the whole process in social contagion studies is based on

2



the assumption that individuals are perfectly rational and do follow the rules of classical probabil-

ity theory and logic while taking an action during the process, it is well-known that only bounded

rationality can exist [12] and individuals do not obey the classical probability rules [13, 14, 15, 16].

It is mainly due to agent interactions through an information exchange that can influence individ-

uals’ emotions, change subconscious feelings, and trigger subjective biases [12, 17]. Furthermore,

the impacts of such behavioral effects become more significant when individuals make their deci-

sion under uncertainty [15]. To address this complexity in human decision-making and explain the

corresponding irrationality and existing paradoxes and fallacies, researchers developed numerous

quantum-like approaches [18, 19, 15, 20, 21, 22]. Although classical approaches argue that human

inference deterministically jumps between definite states across time, the main assumption behind

quantum-like approaches is that competitive beliefs exist in the human mind at the same time. They

form a composite entangled prospect for the decision-maker. Because behavior spreading in a so-

cial contagion is fueled with the successful transmission of behavior (or information) among two

entangled binary prospects (adopting/not adopting) of decision-makers in a network, the utilization

of these approaches in social contagion analyses may provide more realistic insights.

Since social contagion theory relates spreading of information such as rumors, fads; popularity of

new products via word-of-mouth marketing, and also helps to understand the structure and dynam-

ics of collective behavior, this phenomenon has gained researchers’ interests from different disci-

plines like epidemiology, biology, and different social science fields. Therefore, it is highly studied

in the existence of restricted contact [23], heterogeneous adoption threshold [4], local trend imita-

tion [9], heterogeneous credibility [24] and with memory of non-redundant information [25]. All

of these studies showed that these models are very effective in predicting social contagion dynam-

ics within defined scenarios. Understanding and better modeling contagion dynamics in complex

networks play a crucial role in shedding light on the spreading mechanisms of viral diseases, mi-

crofinance activities, false information, harmful emotions, and destructive technology adoptions.
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Understanding the dynamics of social contagion not only gives us an opportunity to design more

efficient anti-pathogen strategies during infectious disease outbreaks but also grants theoretical

foundations to predict collective behaviors, and even mitigate the propagation of false information

in social systems. We believe that the application of a quantum-like approach to extant social con-

tagion models may improve their performance by better simulating human decision-making in the

adoption process.

Motivation: Violations to Normative Theories of Rational Choice

Humans are complex creatures. What makes them so complex is the difficulty in understanding

and predicting their behavior. Pioneering neoclassical economic thought assumed that individuals

act with perfect rationality, and their decision-making process can be represented by utility func-

tions. Although the well-known Expected Utility (EU) theory of von Neumann and Morgenstern

[26] is accepted as one of the most significant axioms in explaining human decision-making, Al-

lais’ paradox [27] showed the complexity of human behavior under uncertainty; since the notion

of perfect rationality of individuals is an over-simplification of more complex phenomena. EU the-

orem, therefore, is improved to become the Subjective Expected Utility (SEU) theorem by pairing

utility and probability functions to represent agents’ desires and beliefs, respectively, by Leonard

Savage and Richard Jeffrey [13].

Savage’s Sure Thing Principle [13] states that if one prefers action A over B under the state of the

world X and again prefers action A over B under the complementary state of world X (X’), then

he/she prefers action A over B when you do not know the state of the world. Although classical

decision-making analysis used to rely on this well-known principle, previous experiments showed

that the human mind does not follow the rule of probability theory while making a decision, and

this phenomenon is highly observed in the case of uncertainty. The well-known experiment of
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Tversky and Shafir demonstrated this as follows: Participants are asked two consecutive gambles

in which they have an equal chance of winning $200 or losing $100. The experiment includes three

conditions;

(i) The students were informed that they won the first gamble.

(ii) The students were informed that they lost the first gamble.

(iii) The students were not informed about the outcome of the first experiment.

The results showed that if they knew that they won or lost the first gamble, %69 and % 59 of

participants second gamble, respectively. Since the majority is more likely to choose to play under

both winning (the world X) and losing (the complementary state of world X (X’)), it is expected

them to choose to play the second game when they were not informed about the outcome of the

first game according to the Sure-Thing Principle. However, the majority did not choose to play the

second gamble (only %36 wanted to play again). This is called as disjunction effect.

In another experiment of Twersky & Kahneman in 1983, participants are very briefly informed

about a woman Linda who used to be a philosophy student at a liberal university. It is also told

that Linda used to be very active in an anti-nuclear movement. After this brief introduction about

Linda, participants are asked to rank the likelihood of the following cases that can be Linda’s

present situation:

(a) Active in the feminist movement

(b) A bank teller

(c) Active in the feminist movement and a bank teller

(d) Active in the feminist movement and not a bank teller

(e) Active in the feminist movement or a bank teller
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Although b refers to a marginal probability and c is the joint probability of b with another event, and

therefore it is expected from participants to assign more likelihood to b than c, more participants

decided the likelihood relation will be as follows c > b. This example of a violation of normative

theories is called a conjunction fallacy.

Nevertheless, these experiments demonstrated the insufficiency of the SEU theorem either in ex-

plaining the complexity of human decision-making. All these open questions regarding the com-

plexity of decision-making remained relevant for years, and the work of Aerts & Aerts pioneered

the field of Quantum Cognition by showing the necessity of a form of quantum statistics [28].

Quantum cognition is a research area in which quantum mechanics foundations are integrated

into the mathematical principles used in cognitive science. For years, unobserved cognitive bi-

ases which are known to have strong effects on individuals’ decisions and actions, are represented

by probabilistic models using latent variables; however, these models are highly complex, and

latent variables are not sufficient in explaining the causality relations of observed / unobserved

effects and the behavior. Recent research shows that quantum probabilistic models yield better

results in explaining complex behavior which cannot be easily explained by the pure classical

models. The superiority of these models are shown in many studies from human decision-making

[29, 30, 31, 19, 32, 15] to Prisoner’s Dilemma [33], or even in biological interactions of cells [34].

Quantum Theory in The Concept of Decision-Making

Following the mid-century invention of the computer and subsequent cognitive revolution in psy-

chology, human minds are increasingly being regarded as linear, deterministic, computer-like ma-

chines in the social sciences in recent decades. Although this theory brought significant contribu-

tions to the cognitive science and psychology bodies of literature, the assumption that the human

brain makes computations according to the rules of classical computer science theories has been
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challenged with the quantum brain theory which assumes the human mind works as a non-linear

dynamical complex system [35]. Assuming that the brain makes computations as a quantum com-

puter does, yield remarkable alteration in our understanding of the mind. The differences between

classical and quantum brains might be better understood with a closer look at the difference be-

tween classical and quantum computers. Classical computers make computations by using a binary

digit (0 or 1) system, called bits, and serial binary operations help to transform inputs to outputs. In

quantum computing, on the other hand, not only binary states but also their superpositions, called a

qubit, can create serial interactions for the operation from input to output. In this regard, "Quantum

brain theory hypothesizes that quantum processes at the elementary level are amplified and kept in

superposition at the level of the organism, and then, through downward causation constrain what is

going on deep within the brain [36]." Accordingly, macro-level external information is transferred

into the micro-level internal quantum state, and the decoherence-free subspace of the brain carries

out the quantum computation. By considering this principle of the quantum brain, Busemeyer and

Bruza [19] explained six reasons for the application of quantum theory to the fields of cognition

and decision as follows:

• Judgments are based on indefinite states: According to the classical models, the decision-

making process is assumed to be stochastic since its definite time-dependent state (trajectory)

is not known. However, it is argued that in the case of a known trajectory (.g., seed selection

in a Monte-Carlo simulation), it is possible to predict the outcome with classical probability

rules since the human inference deterministically jumps from one state to another.

To exemplify, suppose that you are exposed to social media content in which two opponent

groups think positive and negative about the topic, and you are supposed to believe one of

them by weighing evidence. In such a case, the classical probability theory denotes that

at each time step you are in a definite state concerning positive or negative opinion - say

p ≥ 0.5 and p < 0.5 means you have a positive and negative opinion, respectively. Here,
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classical decision science models cognitive systems as if they were particles with definite

sample paths through state space. Whereas, there are indefinite states, called superposition

states, in quantum decision models to identify the undefined state of the cognitive system at

a specific time before a decision is made. Thus, the positive or negative opinion cannot be

identified with p, but with complex amplitudes, to consider the potential of both options.

• Judgments create rather than record: Although classical theory argues that the outcome

of the decision-making process is simply a reflection of the current state that has a strong

connection and correlation with past states, the quantum theory assumes that the decision is

made through an interaction between a current indefinite state and a concept that the person

tries to decide.

To exemplify, a person’s opinion or current mental state can show differences concerning a

specific question that is asked. Bohr states that the answer we obtain from a quantum system

is formed by the interaction of the indefinite state and the specific question that is asked.

This interaction constructs the definite state out of an indefinite state.

• Judgments disturb each other, introducing uncertainty: As aforementioned above, the quan-

tum theory dictates that a person’s state will change from an indefinite to a more definite

one after a question is asked. Since the state of mind changes after a person answers the

first question, this causes one to respond differently to subsequent questions, making the

order of questioning crucial. Since the probability of consecutive events is computed with

a joint probability of individual events in the classical decision-making theory, the quantum

decision-making theory argues that consecutive events are non-commutative and order effect

is undeniable. This effect is also known as the source of uncertainty in people’s judgments.

An answer to the former question creates a definite state by itself but an indefinite state with

respect to a different question.
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• Judgments do not always obey classic logic: The classical probability theory, which is based

on Kolmogorov axioms, assigns the probability values for events as a set value. Then the

Boolean logic in the decision-making mechanism is used to compute the probability of

events in given scenarios. The most important property in classical probability theory is

the existence of the distribution axiom. If we define {G,A,P} as the concepts that an indi-

vidual is a good person, an anti-vaxxer, and a pro-vaxxer, respectively, the distributive axiom

proposes that G∩ (A∪P) = (G∩A)∪ (G∩P). That can be also identified as follows: If one

tries to decide if an individual is a good person or not without knowing he is a pro or anti-

vaxxer, this event can happen in two mutually exclusive ways: either G∩A or G∩P. By

using the distributive axiom, one can derive the probability of event G as:

p(G) = p((G∩A)∪ (G∩P)) = p(G∩A)+ p(G∩P)

= p(G)p(G|A)+ p(G)p(G|P)

Bayesian statistics rules and their inferences are made based on this foundation of total prob-

ability law. However, the law of total probability is violated as in seen in two-slit experiments

in physics and in disjunction effect in decision-making, which we described previously.

In quantum probability theory, which is based on von Neumann axioms, the probability

values for events are assigned as subspaces of a vector space. An indefinite or superposition

state can be a point anywhere within the vector space, whereas definite states are the basis for

vector space. The most important distinction with the classical theory here is not obeying the

distributive axiom of Boolean logic. Thus, in addition to truthful or false attributes, another

ambiguous thought may be represented by a superposition.

• Judgments do not obey the principle of unicity: As the basis of cognitive and decision mod-

els today, the classic (Kolmogorov) probability theory relies on the principle of unicity. An

exhaustive and complete description of all possible events occurs in a single sample space.
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Therefore, if A and B represent two possible events in an experiment, then A∩B denotes

an event too, which is a very constrictive phenomenon. On the other hand, quantum prob-

ability theory does not obey the principle of unicity. The assumption is broken as soon as

we introduce incompatible questions into the theory causing measurements to become non-

commutative.

• Cognitive phenomena may not be decomposable: For any given experimental condition in

cognitive science, researchers often propose a large collection of random variables to model

a cognitive process, but the actual findings are only a small subset of these variables. The

assumption is then made that there is a complete joint distribution, or a joint probability dis-

tribution to account for all the variables, which allows for the determination of the observed

marginalized distribution for any subset of variables. On the other hand, real-world experi-

ments show that some cases may not be decomposable and cannot be identified as a single

joint distribution. In quantum entanglement, two seemingly separate and distinct systems

behave like one. When this occurs, these systems are referred to as "quantum correlated."

Purpose of the Study

The main purpose of this study is to better model the social contagion dynamics to shed light on

the control of viral disease, microfinance activities, false information, harmful emotions, and tech-

nology adoptions. For this purpose, we aim to develop a novel methodology for social contagion

analyses by engaging knowledge and skills from multiple disciplines including network science,

cognitive science, quantum information theory, and artificial intelligence -called quantum social

contagion.

Since quantum social contagion is a complex phenomenon, we also aim to address the following

issues that can be considered as subsidiary purposes of this study: i) creating a comprehensive
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approach for social contagion analysis that considers the heterogeneity of individuals and the un-

certainty in their decision-making in a social contagion process, ii) developing a general overview

of quantum social dynamics regardless of the changing network properties, iii) proposing a heuris-

tic approach that can ease the complexity of quantum approach in a social contagion analysis, iv)

generalizing the quantum social contagion by not only considering the diffusion of a single event

but focusing on the simultaneous existence of multiple events in a given network. All these items

will help us to better understand the social contagion dynamics by considering various behaviors

of individuals, numerous network structures, and diverse behavior characteristics.

Research Questions

• To better model the complexity of human decision-making and explain existing paradoxes

and fallacies, researchers developed numerous quantum-like approaches [18, 19, 15, 20, 21,

22]. Does the quantum-like approach model the dynamics of social contagion better?

• The most challenging task in employing social contagion analyses is to model heterogeneity

of the individuals in their adoption threshold. Current studies that use the classical approach

demonstrated the existence of discontinuous phase transitions in the final spreading size

versus transmission probability. What type of phase transitions are observed when agents

are modeled as quantum decision-makers?

• The variability of the social contagion dynamics with changing network properties (assor-

tativity, density, clustering, degree distribution, etc.) is highly studied among researchers

[37, 38]. Does the superiority/incapacity of quantum-based probabilistic models in social

contagion analyses over classical models vary with changing network properties?

• Quantum-like probabilistic models yield extra interference terms compared to classical ap-

proaches. Some studies that utilized quantum-like approaches in decision-making systems
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tunes these parameters manually [30], [39]; while others do automatically by using a static

heuristic [32] and/or dynamic heuristic [21]. Can a heuristics based on entropy measures be

an alternative to the extant heuristics in the literature?

• Despite the great interest in modeling a contagion of single behavior, there might be compet-

ing or cooperating contagions in the complex network in real case scenarios. Does quantum

contagion is applicable for these complex contagions, or is it too complex to handle?

Statement of Contributions

In this study, we aim to better model social contagion dynamics by utilizing quantum-like approach

in its mathematical modeling. During the ideation, development, and generation of this thesis, I

have conducted several studies on social contagion with the main focus of information diffusion

by using an interdisciplinary point of view. Following you can find several contributions to the

scientific community:

• Mutlu, E., & Garibay, O. O. (2022). “An Entropy-Based Heuristic Approach For The

Quantum-Like Generalization of Social Contagion”. Submitted to 7th International Work-

shop on Social Sensing Special Edition on Information Operation on Social Media. An

ICWSM 2022 Workshop.

In this paper, we propose a belief-entropy-based heuristic approach to predict interference effect

in quantum-like generalization of social contagion. Based on simulations of uncorrelated random

regular networks (RRNs) using the proposed approach, we concluded that belief entropy is use-

ful for detecting interference in quantum-like generalizations of social contagion models. These

results should lead to increased use of quantum social contagion models in any application area

without having to deal with calibration issues or time constraints.
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• Mutlu, E., & Garibay, O. O. (2021, July). “A Quantum Leap for Fairness: Quantum

Bayesian Approach for Fair Decision Making”. In International Conference on Human-

Computer Interaction (pp. 489-499). Springer, Cham.

Here, we aim to introduce quantum Bayesian approach as a candidate for fair decision-making

in causal learning, motivated by the human decision-making literature in cognitive science. We

demonstrated that quantum Bayesian perspective creates well-performing fair decision rules under

high uncertainty on the well-known COMPAS (Correctional Offender Management Profiling for

Alternative Sanctions) data set.

• Mutlu, E.C. & Garibay, O.O. (2021). “Quantum Contagion: A Quantum-Like Approach

for the Analysis of Social Contagion Dynamics with Heterogeneous Adoption Thresholds”.

Entropy, 23(5), 538.

https://doi.org/10.3390/e23050538

In this study, we employed the Inverse Born Problem (IBP) to represent probabilistic entities as

complex probability amplitudes in edge-based compartmental theory, and demonstrated that our

novel approach performs better in the prediction of social contagion dynamics through extensive

simulations on random regular networks.

• Mutlu, E.C. (2020). “Quantum Probabilistic Models using Feynman Diagram Rules in

Human Decision-Making”. In proceedings of the Twenty-Fifth AAAI/SIGAI Doctoral Con-

sortium collocated with the Thirty-Fourth Conference on Artificial Intelligence.

https://doi.org/10.1609/aaai.v34i10.7137

The project, mainly, aims to expand the use of current quantum probabilistic models in human

decision-making from two agents to multi-agent systems. First, I cultivate the classical Bayesian
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networks which are used to understand information diffusion through human interaction on online

social networks (OSNs) by taking into account the relevance of multitude of social, psychologi-

cal, behavioral and cognitive factors influencing the process of information transmission. Since

quantum like models require quantum probability amplitudes, the complexity will be exponen-

tially increased with increasing uncertainty in the complex system. Therefore, the research will be

followed by a study on optimization of heuristics. Here, I suggest to use an belief entropy based

heuristic approach. This research is an interdisciplinary research which is related with the branches

of complex systems, quantum physics, network science, information theory, cognitive science and

mathematics. Therefore, findings can contribute significantly to the areas related mainly with so-

cial learning behavior of people, and also to the aforementioned branches of complex systems. In

addition, understanding the interactions in complex systems might be more viable via the findings

of this research since probabilistic approaches are not only used for predictive purposes but also

for explanatory aims.

• Mutlu, E.C., Garibay, I. (2020). “CD-SEIZ: Cognition-Driven SEIZ Compartmental Model

for the Prediction of Information Cascades on Twitter”. In proceedings of the 11th The

Computational Social Science Society of the Americans (CSS2020) - Springer Collection

(in press).

We tackle the problem of predicting information cascades by presenting a novel variant of SEIZ

(Susceptible/ Exposed/ Infected/ Skeptics) model that outperforms the original version by taking

into account the cognitive processing depth of users. We define an information cascade as the set

of social media users’ reactions to the original content which requires at least minimal physical

and cognitive effort; therefore, we considered retweet/ reply/ quote (mention) activities and tested

our framework on the Syrian White Helmets Twitter data set from April 1st, 2018 to April 30th,

2019. In the prediction of cascade pattern via traditional compartmental models, all the activities
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are grouped, and their summation is taken into account; however, transition rates between compart-

ments should vary according to the activity type since their requirements of physical and cognitive

efforts are not same. Based on this assumption, we design a cognition-driven SEIZ (CD-SEIZ)

model in the prediction of information cascades on Twitter. We tested SIS, SEIZ, and CD-SEIZ

models on 1000 Twitter cascades and found that CD-SEIZ has a significantly low fitting error and

provides a statistically more accurate estimation.

• Mutlu, E.C., Garibay, I. (2020). “Effects of Assortativity on Consensus Formation with

Heterogeneous Agents”. Accepted by 6th International Conference on Computational Social

Science (IC2S2 2020).

Despite the widespread use of Barabasi’s scale-free networks and Erdos-Renyi networks of which

degree correlation (assortativity) is neutral, numerous studies demonstrated that online social net-

works tend to show assortative mixing (positive degree correlation), while non-social networks

show a disassortative mixing (negative degree correlation). First, we analyzed the variability in

the assortativity coefficients of different groups of the same platform by using three different sub-

reddits in Reddit. Our data analysis results showed that Reddit is disassortative, and assortativity

coefficients of the aforementioned subreddits are computed as -0.0384, -0.0588 and -0.1107, re-

spectively. Motivated by the variability in the results even in the same platform, we decided to

investigate the sensitivity of dynamics of consensus formation to the assortativity of the network.

We concluded that the system is more likely to reach a consensus when the network is disassor-

tatively mixed or neutral; however, the likelihood of the consensus significantly decreases when

the network is assortatively mixed. Surprisingly, the time elapsed until all nodes fix their opinions

is slightly lower when the network is neutral compared to either assortative or disassortative net-

works. These results are more pronounced when the thresholds of agents are more heterogeneously

distributed.
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• Mutlu, E.C., Garibay, I. (2019). “The Degree-Dependent Threshold Model: Towards a Bet-

ter Understanding of Information Diffusion Dynamics on Online Social Networks”. In pro-

ceedings of the 10th The Computational Social Science Society of the Americans (CSS2019)

- Springer Collection (in press).

In this study, we use Twitter data of size 30,704,025 tweets to mimic the adoption of a new opin-

ion. Our results show that the threshold is not only correlated with out-degree of nodes, which

contradicts other studies, but also correlated with nodes’ in-degree. Therefore, we simulated two

cases in which thresholds are out-degree and in-degree dependent, separately. We concluded that

the system is more likely to reach a consensus when thresholds are in-degree dependent; however,

the time elapsed until all nodes fix their opinions is significantly higher in this case. Additionally,

we did not observe a notable effect of mean-degree on either the average opinion or the fixation

time of opinions for both cases, and increasing seed size has a negative effect on reaching a consen-

sus. Although threshold heterogeneity has a slight influence on the average opinion, the positive

effect of heterogeneity on reaching a consensus is more pronounced when thresholds are in-degree

dependent.

• Garibay, I., Oghaz, T., Yousefi, N., Mutlu, E.C., ... (2019). “Deep Agent: Studying the

Dynamics of Information Spread and Evolution in Social Networks”. In proceedings of the

10th The Computational Social Science Society of the Americans (CSS2019) - Springer

Collection (in press)

This paper explains the design of a social network analysis framework, developed under DARPA’s

SocialSim program, with novel architecture that models human emotional, cognitive and social

factors. Our framework is both theory and data-driven, and utilizes domain expertise. Our simu-

lation effort helps understand- ing how information flows and evolves in social media platforms.
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We focused on modeling three information domains: cryptocurrencies, cyber threats, and software

vulnerabilities for the three interrelated social environments: GitHub, Reddit, and Twitter. We

participated in the SocialSim DARPA Challenge in December 2018, in which our models were

subjected to an extensive performance evaluation for accu- racy, generalizability, explainability,

and experimental power. This paper reports the main concepts and models, utilized in our so-

cial media modeling effort in devel- oping a multi-resolution simulation at the user, community,

population, and content levels.

Statement of Originality

I certify that the intellectual content of this thesis is the product of my own work to the best of my

knowledge. Some parts of this dissertation include published contents from my own studies and

all the assistance received in preparing this thesis and sources have been acknowledged. Please

see Appendix B for the permission to reuse published article content. This thesis has not been

submitted for any degree or other purposes.
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CHAPTER 2: CLASSICAL SOCIAL CONTAGION ANALYSIS

Cambridge Dictionary defines diffusion as "the action of spreading in many directions". Informa-

tion spread through a set of intermediate users in a network is called information diffusion. With

social media being the platform used by many individuals, users are able to communicate with each

other and share their ideas, opinions, and emotions freely. This fast-paced alteration in individuals’

communication style triggered researchers to analyze the formation, evaluation, and dissemination

of information.

Mathematical Models of Social Contagion

Information spread through a set of intermediate users in a network is called information diffusion.

The pioneering study of Granovetter [6], in which a mathematical approach for information diffu-

sion is firstly introduced, has been developed by researchers from different disciplines. Nowadays,

there are numerous approaches to model information diffusion in networks. We can classify those

approaches into two main categories according to their purpose [40]: i) Explanatory, ii) Predictive

models. Explanatory models aim to examine the information diffusion process by elucidating each

individual factor’s effects and their interactions. Predictive models, on the other hand, focuses on

the prediction capability based on certain factors. These methods are generally investigated under

two main classes: i) Graph-based models, ii) Non-graph-based methods. Graph-based models in-

clude well-known threshold and cascading methods and assume that information spread is driven

through interactions in a static network. Non-graph-based methods compromise epidemic models

like SI, SIR, SIRS, SEIZ models, and partial differential equation models that we will not cover

due to their rare use in information diffusion studies [41].
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Bass Model

Diffusion is a process in which innovation or information spreads among entities through certain

channels. At the same time, adoption can be defined as a decision and posterior implementation

of acceptance or rejection for a modification. Although these two terms are interchangeably used

in the studies related to the diffusion of information and adoption of innovation, the distinction

between these two phenomena and their applications is explained in [5] in detail. To sum up,

adoption is an individual-focused process in which a series of stages is undergone, and a state is

finalized with either adopting or not adopting. Diffusion signifies a process behavior in which

innovation/information travels within a population. Although collective behavior in the original

models of information diffusion models, i.e. Independent cascade model [7], linear threshold

model [6] and that of innovation adoption models, i.e. Bass model [42], differ in some respects.

As aforementioned in Section 1, the independent cascade model is sender-centric, and each active

node has a probability of influencing at least one of each neighbor with the given probability. The

linear threshold model is receiver-centric, and it is based on the following assumption: A node can

be activated only if a substantial fraction of its neighbor is already active.

The Bass model, which defines customers’ purchases with a set of differential equations by con-

sidering the aggregate first-purchase growth of a category of a durable good, on the other hand,

is a well-known approach to predict new product/innovation adoption in marketing. The model

assumes external and internal influences for new customers to adopt (purchasing the product). Ex-

ogenous influences are stem from the advertisement or external communications initiated by a firm,

while the interactions among the adopters in the network (word-of-mouth) are considered endoge-

nous influences. The Bass model expresses the linear relationship between innovation adoption

and the number of adopters in the previous time step [43]. Its capability of predicting a new prod-

uct adoption in a single market [44] and finding the optimal pricing [45] and advertising decisions
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[46] caught the attention of researchers for years. To integrate different factors, e.g., uncertainty

on sales, customer risk aversion [47], interpersonal communication, tie strength [48] etc., various

modifications to the original Bass model have been done. Granovetter’s original version of the

threshold model, on the other hand, focuses only on endogenous influence due to interactions be-

tween individuals. However, information can be diffused either internally through neighbors in a

network or through external sources such as news channels, Internet articles, or advertisements.

Therefore we can argue that the main advantage of Bass type of models compared to threshold

models is the existence of a parameter to model exogenous influence.

The Bass model is criticized for two reasons: i) It assumes a perfectly mixed network, i.e., every

individual in a network can communicate with each other, which is generally violated in real-world

applications, ii) another disadvantage of the Bass model is that the individuals’ purchase behav-

iors are approximated; however, real-world applications show that people may exhibit different

purchase behavior (heterogeneous adoption). This over-simplification triggered new approaches

that try to focus on the heterogeneous population. Thus, Chatterjee and Eliashberg [49] proposed

a micro-modeling approach to incorporate adoption heterogeneity in Bass models; however, its

necessity of strong assumptions made this approach less popular.

Epidemic Models

Motivated by the mathematical approach of Daniel Bernoulli in 1760 to model the spread of small-

pox, Kermack and McKendrick introduced the foundation of the compartmental models, i.e., SIS

(Susceptible-Infected-Susceptible) and SIR (Susceptible-Infected-Susceptible) for the analysis of

disease spread. The common feature of these epidemic methods is that individuals (or agents)

within the target population (or network) are divided into mutually exclusive compartments based

on their current status and their future status at any time can be predicted based on the predefined
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rate of contact between compartments and their certain transition rates. These statuses may define

different compartments in the transmission of a disease, an innovation, a change in cultural belief,

or a specific rumor. In this research, we mainly focus on these methods in the modeling of the

spread of information.

Pioneering studies [50, 51, 52, 53] introduced the application of compartmental models outside

of the epidemiology and new variations are proposed to model information diffusion on complex

networks over the years. The interpretation of compartmental models in a social context exhibits

significant differences since i) individuals have a driving force in acquiring new ideas or innova-

tions, while that is the opposite for getting a disease. ii) dynamics are different, e.g. An individual

may recover after being infected, but recovered status is not easy to transfer in information diffu-

sion concept [54]. These differences triggered researchers to identify qualitative and quantitative

differences in the application of compartmental models for information diffusion studies. In one of

the simplest compartmental models, i.e. SIS model, the whole population is divided into two main

compartments: Susceptible and Infected. Individuals can transition back and forth with respect to

the specified transition probabilities. Although this model is commonly used in the modeling of

repeatable diseases, e.g., flu, cold, or allergy, it is the most simplistic view of these approaches

and the modeling of information spread may require more complex models [55]. If we define β

and λ as the rate of contact from susceptible to infected, and from infected to susceptible, again,

the time-dependent model can be defined by the following set of ordinary differential equations

(ODEs):

d[S]
dt

=−β
SI
N

+λ
I
N

(2.1a)

d[I]
dt

= β
SI
N

−λ
I
N

(2.1b)

where N(t) denotes the number of individuals in the population which equals to S(t)+ I(t). A
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more complex epidemic model, i.e. SIR model, additionally defines recovered compartment for

the individuals that recover the disease after they become infected. Despite its common use and

good performance in epidemiology, its applications on information diffusion models are quite rare

since recovered status is not easy to transfer in these concepts [54]. If we define β and λ as the rate

of contact from susceptible to infected, and from infected to recovered statuses, the system can be

defined with the following set of ODEs:

d[S]
dt

=−β
SI
N

(2.2a)

d[I]
dt

= β
SI
N

−λ
I
N

(2.2b)

d[R]
dt

= λ
I
N

(2.2c)

Bettencourt et al. [56] proposed the SEIZ compartmental model in which time delay between

interaction and adoption is introduced. Many studies demonstrated its superior performance in

modeling information diffusion compared to aforementioned methods [57, 54, 58]. The system

can be analyzed by the following set of ordinary differential equations:

d[S]
dt

=−β
SI
N

−b
SZ
N

(2.3a)

d[E]
dt

=−(1− p)β
SI
N

+(1− l)−β
SZ
N

−ρ
EI
N

− εE (2.3b)

d[I]
dt

= pβ
SI
N

+ρ
EI
N

+ εE (2.3c)

d[Z]
dt

= lb
SZ
N

(2.3d)

Here, β , b, and ρ represent the rate of contact between S and I, S and Z, and E and I; while p and l

denote transition rate from S to I, and from S to Z, respectively. In addition to these compartmental

models used in epidemiology, new variants of these models are suggested to consider the different
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tie strengths, social factors, and network structures. Wang et al. [59] developed the SEIR model,

in which Exposed status is added to the traditional SIR model, to consider the effect of user login

frequency on information diffusion. In the following years, the value of information on individuals’

behavior is considered in S-SEIR model [60]. The effect of fans is in the SCIR model [61] by

adding one more compartment for the contacted individuals. An infection recovery kinetic process

is added in the analysis of information diffusion dynamics in the irSIR model [62]. In contrast, the

fSIR model [63] focuses on the effect of neighbors fractionally. Recently, we have proposed the

CD-SEIZ model in which transition rates vary for different types of diffusion activities since their

requirements of physical and cognitive efforts are not the same [55].
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Figure 2.1: Depth of processing of different twitter activities based on level of cognitive and phys-
ical efforts [1]

In the context of Twitter, for example, SEIZ model demonstrated superior performances in the

modeling the information cascades on online social networks; however, researchers employed this

model to predict only retweet behaviour based on the assumption that information propagation

can be described with the activity of re-sharing (retweet in Twitter) of the specific user-generated

content. On the other hand, information can diffuse in a variety of ways on Twitter. Retweet is one

of the most common diffusion tools in which users have shared the content as is. Furthermore, users
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can Reply the original content and share their comment on it, which may trigger the exposition of

the original and reply content of other users at the same time. Quote is also considered as a type

of Retweet, which enables the re-share of the original content by adding your own comment on

it. Despite the accepted definition of the Twitter cascade, that is the summation of Retweet, Reply,

and Quote activities on a user-generated content, the studies employed the compartmental model to

model information propagation on Twitter considered Retweet counts only. On the other hand, we

proposed a new compartmental model (CD-SEIZ) based on the fact that different type of actions

on Twitter require cognitive and physical efforts and processing depths.
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Figure 2.2: a. Original SEIZ and b. our proposed cognition-driven SEIZ (CD-SEIZ) model.
Subscripts 0,1 and 2 refers retweet, quote and reply in a sorted order.

Inspired by the current findings in [1], we argue that different actions in Twitter require different

physical and cognitive efforts along with varying processing depth. Levens et al. demonstrated that

Retweet action requires the least cognitive and physical efforts since it requires an online audience

to read the content and push a single button without adding any new content. It is followed by

Quote action which requires more physical and cognitive effort since users need to process the

information and think about writing an original content additionally. Reply, on the other hand, has

more processing depth than Quote because users communicate directly one or more other users

in this action. This significant change in level of physical and cognitive efforts, and depth of
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processing of the different actions on Twitter (Figure 2.1) motivated us to diversify the transition

rate between compartments in the SEIZ model for different types of activities. Since the rate of

contact of users between compartments depends on the user’s engagement on the Twitter platform,

we kept all these parameters as constant for each type of activity. The proposed framework of the

cognition-driven SEIZ (CD-SEIZ) model and definitions of its parameters can be seen in Figure

2.2 and Table 2.1 and 2.2, respectively. The ODE rules of the CD-SEIZ model can be written as:

d[S]
dt

=
2

∑
i=0

[
−β

SIi

N
−b

SZi

N

]
(2.4a)

d[Ei]

dt
=−(1− pi)β

SIi

N
+(1− li)−β

SZi

N
−ρ

EiIi

N
− εEi (2.4b)

d[Ii]

dt
= piβ

SIi

N
+ρ

EiIi

N
+ εEi (2.4c)

d[Zi]

dt
= lib

SZi

N
for i = {0,1,2} (2.4d)

Table 2.1: Definitions of The Parameters in SEIZ Model

Parameter Definition

β Rate of contact between S and I
b Rate of contact between S and Z
ρ Rate of contact between E and I
p Transition rate of S → I, given contact with I
1− p Transition rate of S → E , given contact with I
l Transition rate of S → Z, given contact with Z
1− l Transition rate of S → E , given contact with Z
ε Incubation rate
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Table 2.2: Definitions of The Parameters in CD-SEIZ Model

Parameter Definition

β Rate of contact between S and ∑
2
i=0 Ii

b Rate of contact between S and ∑
2
i=0 Zi

ρ Rate of contact between ∑
2
i=0 Ei and ∑

2
i=0 Ii

pi Transition rate of S → Ii, given contact with Ii
1− pi Transition rate of S → Ei , given contact with Ii
li Transition rate of S → Zi, given contact with Zi
1− li Transition rate of S → Ei
ε Incubation rate

Threshold Models

A network (graph) G is defined as a set of vertices (nodes) V , and the interactions between them

called edges (links) E, i.e. G = (V,E). According to the network characteristics, nodes may

denote people, proteins, economic goods, words. At the same time, edges may represent the

social interaction between people, the chemical connection of the proteins, the relation between

different products, or the co-existence of the words in a sentence. Threshold models are based on

the assumption that individuals’ behavior in a network can be affected by their neighbors’ actions.

The Linear Threshold Model (LTM) was first proposed by Granovetter [6] to model collective

behavior. In this model, there are N agents in a network, who can be in one of the states of active

or inactive, and each agent v has a threshold value φv in changing its status. For each neighbor

of v (u ∈ Γ(v)), the edge between them has a non-negative weight wu,v such that ∑u∈Γ(v)wu,v ≤ 1.

An inactive agent v becomes active in the next time step only if ∑u∈Γ(v)wu,v ≥ φv. This process

continues until every agent in the network stabilizes their status. To exemplify, Figure 2.3 shows a

schematic representation of LTM: Suppose that we focus on a given small network in which node i

and j are inactive at t = 1. Since the average opinion of the neighbors of i (ōi) exceeds its threshold

(φi), the node i will be active at t = 2 , while the node j will remain inactive since φ j > ō j. In the
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next time step, since ō j will be increased due to being i active, the node j will be active at t = 3.

Figure 2.3: A graphical representation of LTM.

The most challenging task in applying the threshold model is the determination of threshold distri-

butions of agents in the system. In many studies, the heterogeneity of the agents has been poorly

defined or ignored, and threshold distribution is assumed to be either homogeneous (uniform)

[64, 65, 66] or binary [4]. Although these studies provide very comprehensive details about the

dynamics of the information diffusion process, some researchers criticized these processes’ deter-

ministic structure and argued that more randomness should be given by increasing heterogeneity

in individual threshold values. These studies employed more complex threshold distributions such

as tent-like function [9], truncated normal distribution function [10] or sigmoid function [11].

The dependency of the threshold in LTM to a linear constraint of edge weight has been extended,

and numerous alternatives have been proposed [67]. One of the most well-studied variants of LTM

is called the Majority Threshold Model (MTM), in which a node becomes active if the majority

of its neighbors are active. This intuitive method has mainly been applied in voting systems [68],

distributing computing and influence maximization problems [69]. In the Small Threshold Model

(STM), whereas, threshold values are kept as minimal constant values to ease the optimization of

influence maximization problems [69]. In the Unanimous Threshold Model (UTM), the threshold
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of each node is taken to be equal to its degree; however, its applications are limited with the studies

related to complex network security and vulnerability [67]. All these methods still continue to

be improved for specific application areas, but Generalized Threshold Model (GTM) which is the

specialized version of the LTM, can be accepted as the most common method.

Cascading Models

After Goldenberg’s pioneering study of diffusion in marketing, this stochastic approach has be-

come another well-known technique in information diffusion studies. Again, each node can be

either in active or inactive states. According to Rogers [70], there are a small set of active nodes

at the beginning, who are called early adopters and information disseminates in a network through

cascades initiated by these early adopters. The main idea behind the Independent Cascade Model

(ICM) is that an active node i has a single chance to influence one of its inactive neighbors, i.e., the

node v with a probability pu,v. Whether the influencing attempt is successful or not, the node i will

not make any further attempt in the next time steps. Sequential order is considered in the existence

of attempts by multiple active nodes that try to influence one of their common neighbor nodes.

As in threshold models, the process continues until there is no more possible attempt. Figure 2.4

shows a schematic representation of ICM: Suppose that only i1 and i2 are active nodes in the given

small network; however, both of these nodes fail to influence i3 in the next time step, while i2 is

successful in influencing i4. Both nodes, i.e., i1 and i2, will be inactive at t = 2. If we suppose that

the attempt of i4 in influencing i6 is successful, i4 will be inactive while i6 is active at t = 3. i5 will

also be inactive at t = 3 since it has no susceptible neighbor to influence.

Since ICM offers a probability of infection associated with each edge rather than using a single

infection probability, it might be assumed as the generalized version of the SIR model mentioned

in the previous section. As in LTM, different versions of ICM have been studied in information
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Figure 2.4: A graphical representation of ICM.

diffusion studies. In Decreasing Cascade Model [71], for example, the influence probability is

obtained from a non-decreasing function. Therefore, the effect of attempts to activate an inactive

node and its chance of being activated in the future will be no longer independent on the contrary

of ICM. Since this modification’s main purpose is to model "market-saturation", its application in

information diffusion studies is rarely seen. Many studies proposed a topic-aware ICM by calibrat-

ing the different topics with different influence probability values [72, 73]. Wang et al. [74], for

example, proposed an emotion-based ICM model information propagation on online networks by

differentiating the information diffusion probabilities of the positive and negative sentiments. Le-

ung and Chung [75] modified traditional ICM by adding the social persuasion parameter to show

the effect of tie strength (user-to-user influence) on information propagation. They demonstrated

their models’ better prediction accuracy compared to traditional ICM with real-world OSN data.

Myers et al.[76] proposed a model in which the effects of out-of-network factors are also consid-

ered in the ICM and showed that almost one-third of the information propagation in Twitter stems

from the exogenous effects. On the other hand, some researchers modified the extant information

diffusion models by considering the information’s heterogeneity.

As we reviewed, there are numerous methods in simulating the information diffusion processes.
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The efficiency and accuracy of these methods may show significant differences with changing

network topology structures. In a recent study [77], three different network structures are gener-

ated, i.e., the preferential attachment, ER random, and small-world networks, to demonstrate the

variability of information diffusion models with changing network characteristics. In the same

study, the response variable of information diffusion efficiency is considered as the total number of

adopted individuals at the steady state. They showed that the maximum information adoption size

is observed in random networks (%90), and followed by the small-world network (%72) under the

ICM model with a 0.4 probability of diffusion. The adoption’s size is relatively small in the pref-

erential attachment network (%4). This is not surprising because preferential attachment networks

have power-law degree distribution, and the spread might be interrupted in the existence of unsuc-

cessful influence attempts. Although these results show the differences between these models on

different network structures, changing parameters might display different results.

Online Applications of Social Contagion Models

Online social networks (OSNs) are the platforms in which users can freely communicate with each

other easily, share their ideas and emotions freely, and participate in groups of people who have

similar interests promptly. All aforementioned fast-paced activities caused the generation of an

immense scale of data every day; thus, human-related studies have been gained more interest from

researchers from different disciplines. One of the most appealing research areas related to OSNs

is understanding the attributes and dynamics of information spread through intermediate users’ set

during this information exchange. The focal points in this process are users in a network structure

and the information itself. The pioneering study of Granovetter [6], in which a receiver-centric

linear threshold model (LTM) approach for information diffusion is firstly introduced, has been

developed by researchers from different disciplines. As the sender-centric counterpart of LTM,
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Goldenberg [7] proposed Independent Cascade Model (ICM) as an information diffusion modeling

approach. Nowadays, there are numerous approaches to model information diffusion in networks,

and we briefly surveyed these methods, i.e., threshold models, cascading models, epidemic models,

game theory models, in Section 1. Here, we aim to give examples of real-world applications of

information diffusion models on OSNs.

First, the general aim of applying information diffusion models on OSNs is to understand what,

how, why and how much information disseminates. Researchers utilized information diffusion

models in the investigation of trending (showing bursty behavior) topics detection and differenti-

ation of true news and fake news (what?), and in the prediction of cascading pattern (how?), and

understanding the self-organization in OSNs during information diffusion and effects of network

structure on this process (why?), and in the estimation of the size of the information spread (how

much?). Gruhl et al. demonstrated the effectiveness of the generative epidemic models for the

analysis of the information spread on OSNs [78]. Leskovec et al. investigated the cascading be-

havior of rumors, viruses, and ideas in large blog graphs by using information diffusion models.

Jin et al. [79] employed the SEIZ epidemic model to predict the sizes of different Twitter cascades.

Additionally, he demonstrated the difference in the model parameters for true and false information

to show these models’ potential in rumor detection on OSNs. Wang et al. [59] developed the SEIR

model, in which Exposed status is added to the traditional SIR model, to consider the effect of

user login frequency on information diffusion. In the following years, the value of information on

individuals’ behavior is considered in S-SEIR model [60]. The effect of fans is in the SCIR model

[61] by adding one more compartment for the contacted individuals. Fan et al. employed LTM

and ICM models to understand network topology’s effect on the information diffusion dynamics

by considering different network structures obtained from the Sina Weibo microblogging platform.

They demonstrated that cascade motifs display similar patterns when network structures and de-

gree correlations are similar [80]. Weng et al. [81], on the other hand, argued that information
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diffusion models could be used to investigate the evolution of the social network structure since

they explain how new social links are constructed during the information propagation process.

Due to these models’ effectiveness in mimicking information diffusion over OSNs, some studies

predicted the diffusion probabilities using real-world network data to calibrate their information

diffusion models and simulate different cases to understand the effect of the different network

topology [82, 83, 84].

Furthermore, some studies criticized the identicality of the information propagation or threshold

probabilities in classical information diffusion models by arguing that these models generally un-

derestimate the heterogeneity between messages or individuals. This poorly-defined heterogeneity

for users triggered an extensive use of homogeneous (uniform) [64, 65, 66] and binary [4] thresh-

old in many studies. To remedy this oversimplification and thereby provide a more holistic and

accurate model, more complex threshold models such as tent-like function [9], truncated normal

distribution function [10] or sigmoid function [11] are also used in the literature by looking the

general information adoption behavior of users on OSNs. Leung and Chung [75] modified tradi-

tional ICM by adding the social persuasion parameter to show the effect of tie strength (user-to-user

influence) on information propagation. They demonstrated their models’ better prediction accu-

racy compared to traditional ICM with real-world OSN data. Myers et al.[76] proposed a model

in which the effects of out-of-network factors are also considered in the ICM and showed that al-

most one-third of the information propagation in Twitter stems from the exogenous effects. On the

other hand, some researchers modified the extant information diffusion models by considering the

heterogeneity in the information itself. Many studies proposed a topic-aware ICM by calibrating

the different topics with different influence probability values [72, 73]. Wang et al. [74], for ex-

ample, proposed an emotion-based ICM to model information propagation on online networks by

differentiating the information diffusion probabilities of the positive and negative sentiments.

Second, although these models are called information diffusion models, these methods and their

32



new variants are also used to model abstract values’ contagiousness such as emotions or sentiments.

Thus, we can list another common application of information diffusion models on online social

networks as sentiment (emotion) spreading. Wang et al. [85] proposed an emotion-based ICM

to model the process of sentiment spreading on Sina Weibo. In their novel method, the sentiment

spreading process introduces the propagation probabilities for each possible message sentiment and

executes a learning-based model that simultaneously considers user and tweet features. Wang et al.

[86] introduced emotional transmissibility along with information transmissibility to describe the

differences in the patterns of different emotions’ contagion under the emotion-based SIR model.

Xiong et al. demonstrated the effect of hub users in the evanescence of opposite emotions in a

network by proving a better performance of emotional-based ICM and the spreader-ignorant-stifler

model compared to traditional methods [87].

Third, another important application area of information diffusion models on OSNs is the influence

maximization problem, which can be defined as "the problem of finding a small set of seed nodes

in a social network that maximizes the spread of influence under certain influence cascade models"

[88]. Numerous studies proposed models with simply tunable parameters to optimize the trade-

off between running time and influence maximization accuracy and tested their algorithms on

real networks. This specific problem has gained a lot of attention after Kempe et al.’s pioneering

study in which LTM is employed to model diffusion of innovation under the concept of influence

maximization of word-of-mouth marketing [89]. The literature recently has been enriched with the

improvements of this research for either information diffusion and marketing approaches. Chen et

al. [90] proposed a degree distribution-based node-degree heuristic approach to enhance the speed

and the effectiveness of Kempe’s original method. Liu et al. [91] addressed influence maximization

problem under ICM in signed networks by introducing two opposite (constructive and destructive)

influential types and showed the superiority of their algorithm in a more realistic scenario with

the verification of their algorithm on a real-world, large-scale OSN. Recent research also showed
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that state-of-art influence maximization models for a single network do not as well perform as on

multi-layer networks in which spreading processes significantly differ on the same discussion in

two different OSN platforms, i.e., Twitter and Facebook [92].

Fourth, these models are also utilized to identify segregated echo-chambers in the polarized discus-

sions on OSNs. Xie et al. [93] investigated the polarization among the users in the climate-change

discussion by using ICM and identified the different echo-chambers by defining activist and skep-

tic clusters. Lei et al. showed the difference in the message propagation activities of the users who

clustered based on their previous tweeting activities to argue that information diffusion models as

a community detection approach might be helpful for recommendation systems [94].

Related Previous Works as a Motivational Source

Threshold Heterogeneity of Agents in Social Contagion Analysis

While network study is not new, its focus has shifted from physical proximity and socio-economic

networks to social media based networks. This change is arguably the product of the fast-paced

information flow that is engendered by the technological advances of the 21st century, and the

resulting impact on the needs and lifestyles of people. The need to address the newly emerged

phenomenon of the creation and dissemination of information on social media has amplified inter-

est in the field of network science. Indeed, network science applications have extended to the field

of marketing [95, 96], sociology [97, 98], political science [99], physics [100], economics [101],

machine learning [102] and biology [103], all attempting to reveal the interdependency between

units of interest. Social media has allowed people’s opinions to be voiced freely, with far reaching

consequences; this phenomena has affected many things including the shift to online marketing

and social media based political campaigning. The interplay between information from average
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users and bigger entities is much larger than in the past due to social media. This reciprocity in

information flow, the increase in the volume of information received and sent, and the ease of re-

laying information has made it imperative that researchers understand the dynamics of information

and opinion formation, propagation, and exchange [104, 105, 106, 107].

a. b. c.

Figure 2.5: a. Number of users b. Number of retweeters c. The retweeting probability of users in
each cluster -the element-wise ratio of number of retweeters in b to the number of users in a.

As aforementioned in previous subsections, in the mid-20th century, sociology pioneered the de-

velopment of information and opinion diffusion as a subject of study. One of the early studies is

the Markovian linear threshold model introduced by Granovetter [6]. According to the threshold

model, individuals adopt a new opinion only if a critical fraction of their neighbors have already

adopted the new opinion. Granovetter suggests that the threshold of individuals can be different,

and are influenced by demographic and psychographic factors. However, this heterogeneity among

researchers is poorly-defined, which leads to an extensive use of uniform [64, 65, 66] and binary [4]

thresholds in many studies. Arguably, this assumption of homogeneous or binary thresholds is an

oversimplification of reality and may produce misleading results. To remedy this oversimplifica-

tion and thereby provide a more holistic and accurate model, more complex threshold models such

as the tent-like function [9], the truncated normal distribution function [10] or the sigmoid function

[11] are also used in the literature. In our study [82], we employ threshold model to understand the

information diffusion behaviour of users in online social networks. Our Twitter data mining results
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Figure 2.6: The ratio of retweeters of RT1, RT2 and RT3 to all users when we cluster users accord-
ing to the their follower counts and following counts independently. Bar plots in a and b shows the
results for RT1 users, c and d for RT2 users and e and f for RT3 users.

show that the threshold of an individual for sharing the information (retweeting) is affected either

by their out-degree (number of followers) or in-degree (number followed). Some studies have

already employed degree-dependent threshold models in explaining the dynamics of information

diffusion [108, 109], however the degree dependency of an individual’s threshold is associated only

with their out-degree. Additionally, these studies have implemented threshold heterogeneity by us-

ing custom threshold functions, which renders the results less robust and less reliable. Therefore,

we seek to analyze the sensitivity of information diffusion dynamics to in-degree and out-degree

dependencies of thresholds.

The Twitter data set used for this study contains 30,704,025 tweets from the cybersecurity-related

events from March 2016 to August 2017, of which 16,884,353 are retweets. We first collected fol-

lower and following counts of each user to relate the retweeting probability of users with the two
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aforementioned counts. We then generated a matrix of rows representing follower count clusters,

and columns representing following count clusters of all users in our data set (Figure 2.5a). We also

filtered users who have retweets only and generated the same matrix (Figure 2.5b). Preliminary

results showed that a majority of users are clustered around the areas where follower and following

counts are not extreme, and the matrix of retweeted users show a similar pattern. Since retweet-

ing probabilities of users in each cluster are not clear from these matrices only, we calculated the

element-wise division of these two matrices to figure out the ratio of number of retweeters to the

number of all users in each cluster. Results show that the retweeting probability of users who have

a relatively low following count is higher, i.e., the threshold of a node seems to be positively corre-

lated with its out-degree. On the other hand, the effect of varying follower count on the retweeting

probability is unclear since the left-bottom of the matrix is empty (Figure 2.5c). To remedy this,

we extracted the 3 most retweeted tweets (RT1, RT2, RT3) of retweet sizes 138,969, 58,546, and

57,280, respectively. We divided users into 8 clusters with respect to their follower (Figure 2.6a-

2.6c) and following counts (Figure 2.6d-2.6f) independently rather than jointly. For each cluster,

we calculated the ratio of the number of users who retweeted RT1, RT2, or RT3 to the number

of all users, respectively, as in Figure 2.6c. The only difference is that instead of all retweeters,

we focused on retweeters of RT1, RT2 and RT3. Thus, we could prevent the masking effect of

non-active users in the whole data set. Results show that both follower and following counts have

a negative effect on the retweeting probability of users. Furthermore, we applied a one-sided Chi-

square test (α = 0.05) to determine whether this decreasing pattern is statistically significant. We

included relative χ2 values if the retweeting ratio in the cluster is significantly higher than that of

next cluster (p-value is lower than 0.005). We observed that the retweeting probability decreases

when follower count increases and this decreasing pattern is significant for almost all consecutive

clusters. Nevertheless, the decrease between the consecutive clusters defined by following counts

were significant only when following counts are not high. This is probably because clustering

users according to their follower and following counts with the same limits has a notable effect
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on the test statistics. Distributions of follower and following counts of users are not similar in the

data set, i.e, the .8 and .9 quantiles and the maximum of the user following counts are 1916, 3860,

and 3,136,215, while it is 2332, 5639, and 94,833,565 for user follower counts. When we decrease

the number of clusters from 8 to 3 ((0,1K],(1K,10K],(> 10K]), we observed that the retweeting

probability decreases when following count increases, and this decreasing pattern is significant for

all consecutive clusters (χ2 = {12602.8,18087,272.3} for RT1, {2762.3,1807.2,52.0} for RT2,

and {1299.3,987.1,87.1} for RT3). Thus, our data analysis shows that thresholds of individuals

to disseminate information is positively correlated with their in-degree and out-degree.
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Figure 2.7: The representation of network when N = 15 and a1. out-degrees are power-law dis-
tributed and in-degrees are kept constant as Min = 3, b1. in-degrees are power-law distributed and
out-degrees are kept constant as Mout = 3. Histogram plots of a2. out-degrees in a1, b2. in-degrees
in b1. In addition to out-degree and in-degree of nodes, their ranks r(i) and thresholds φi are also
given in the table for a3. the network in a1, b3. the network in b1.
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The main aim of this study was to investigate the dynamics of information diffusion when thresh-

olds are correlated with the degree-distribution of the nodes. For this purpose, we generated power-

law distributed random numbers (xi) to further assign them to the desired degree-distribution of the

network. To understand the effect of out-degree dependent threshold and in-degree dependent

threshold on the dynamics of opinion spreading separately, we created two independent networks:

1. CASE I: Out-degrees of the nodes (kout) are power-law distributed and has the form
√

Nxγ

and in-degrees are kept constant (Min).

2. CASE II: In-degrees of the nodes (kin) are power-law distributed and has the form
√

Nxγ

and out-degrees are kept constant (Mout) .

Here, N denotes number of nodes in the network (seed size) and γ = 3 for both cases for a fair com-

parison. Then, we added directed links between randomly selected node pairs (i, j) by employing

configuration model [110] if i ̸= j and kout < xi for Case I, kin < xi for Case II. In this network

structure, self-edges are not allowed while multiple edges between same node pairs are possible.

Since total in-degree in the network should be equal to the total out-degree in the network and total

in-degree is equal to total out-degree, one can easily realize that the mean-degree of the network is

equal to fixed in-degree (Min) in Case I, and fixed out-degree (Mout) in Case II.

After generating networks, we employed the degree-dependent threshold model by assigning the

threshold of node i to share the information (φi) as correlated with:

1. CASE I: its out-degree .

2. CASE II: its in-degree.

Since threshold heterogeneity is one of our main concerns in this study, we divided nodes into Nth

groups by their ranks which can be obtained by sorting their:

39



1. CASE I: out-degrees.

2. CASE II: in-degrees.

Then, we assigned thresholds as evenly spaced Nth points between 0.5 and 1 to prevent the con-

founding effect of the mean-threshold, i.e. the average threshold is always constant as 0.75. Thus,

increasing Nth yields more heterogeneity among thresholds of individuals.

φi =



0.5 if r(i)≤ N
Nth

0.5+ 0.5
Nth−1 if N

Nth
< r(i)≤ 2N

Nth

... ...

0.5+ 0.5(Nth−2)
Nth−1 if (Nth−2)N

Nth
< r(i)≤ (Nth−1)N

Nth

1 if (Nth−1)N
Nth

< r(i)≤ N

where r(i) represents the rank of the node when they are sorted according to their out-degree in

Case I and their in-degree in Case II.

An example of network generation for two cases, out-degrees and in-degrees and relative threshold

values of the nodes are shown in Figure 2.7.

We initialized the opinions of individuals as a Bernoulli distributed random variable with an initial

probability (p), i.e. the opinion of the node i (si) might equal to 1 with a probability p and equal

to 0 with a probability 1− p. We assumed that the opinion change process is reversible; thus,

individuals may change their opinions continuously rather than only once.

After generating the network, assigning thresholds, and initializing the opinions, we ran the opinion

change simulations. The process of updating their opinions is as follows:
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1. Picking a node i randomly.

2. Calculating the weighted average of the opinions of its in-neighbors (ōi). Here, weights are

the multiple edges formed between node i and its neighbors.

3. Updating the opinion of node i (si) according to the criteria as follows:

(a) if si = 0 and ōi − si > φi,

then si = 1 in the next step.

(b) if si = 1 and ōi − si <−φi,

then si = 0 in the next step.

a1.
a2.

a3.

b2.

b3.

b1.

Figure 2.8: Simulation result of average opinion at steady state as a function of initial probability
(p) a1. with varying threshold heterogeneity (Nth) when N = 1000 and Min = 15, a2. with varying
in-degree (Min) when N = 1000 and Nth = 10 and a3. with varying seed size (N) when Min = 15
and Nth = 10 if thresholds are out-degree dependent, and out-degrees are power-law distributed.
Additionally, the simulation result of the average opinion at steady state as a function of p b1. with
varying Nth when N = 1000 and Min = 15, b2. with varying out-degree (Mout) when N = 1000
and Nth = 10 and b3. as a function p when Mout = 15 and Nth = 10 if thresholds are in-degree
dependent, and in-degrees are power-law distributed.
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This Markovian chain is repeated until all possible opinion changes are made and individuals fix

their opinion. We carried out all the simulations on MATLAB and repeated these simulations

50,000 times.

.1 .2 .3 .4 .5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9
Initial Probability

0

300

600

900

1200

1500

1800

O
pi

ni
on

 F
ix

at
io

n 
Ti

m
e

.6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8
Initial Probability

300

600

900

1200

1500

1800

O
pi

ni
on

 F
ix

at
io

n 
Ti

m
e

.6 .7 .8 .6 .7 .8 .6 .7 .8 .6 .7 .8
Initial Probability

0

300

600

900

1200

1500

1800

O
pi

ni
on

 F
ix

at
io

n 
Ti

m
e

a.

b. c.

Min = 15
Nth = 10

Mout = 15
Nth = 10

Min = 15 Min = 35
Nth = 10 Nth = 10

Mout = 15
Nth = 10 Nth = 10

Mout = 35 Min = 15
Nth = 10

Min = 15
Nth = 2

Mout = 15
Nth = 10 Nth = 2

Mout = 15

Figure 2.9: The comparison of fixation time of individuals as a function of the initial probability
a. when thresholds are out-degree dependent (left) and in-degree dependent (right) b. with varying
mean-degree (Min/Mout) when thresholds are out-degree dependent (left) and in-degree dependent
(right) c. with varying threshold heterogeneity (Nth) when thresholds are out-degree dependent
(left) and in-degree dependent (right).

In the given study, we first aimed to analyze the effect of in-degree and out-degree dependence of

thresholds on the average opinion at steady state (s̄). Therefore, after all the individuals fix their
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opinions in a network, we averaged their opinions by using the equation below:

s̄ =
1
N

N

∑
i

si (2.5)

where si is the opinion of node i at steady state. We conducted our simulations to measure s̄ as a

function of the initial probability (p) with a varying mean-degree (Min/Mout), seed size (N), and

threshold heterogeneity Nth. Line plots in Figure 2.8 represent the expected value of 50,000 Monte

Carlo simulations, and shaded areas with the same colors denote the relative one standard deviation

from the expected value of these simulations. Here, Figure 4.a1-4.a3 shows the simulation results

when thresholds are out-degree dependent and out-degrees are power-law distributed, while in-

degrees are kept constant. Figure 4.b1-4.b3, on the other hand, indicates the simulation results

when thresholds are in-degree dependent and power-law distributed, while out-degrees are kept

constant.

Figure 2.9 shows the time elapsed until all individuals fix their opinion (t f ) as a function of p with

varying Min/Mout and varying Nth. We did not simulate the effect of varying N on t f since it is

already clear that increasing the seed size would cause more deviation in the opinions and increases

t f .

Figure 2.8a1 and 2.8b1 show s̄ as a function of p at various Nth values. Since the standard deviation

of the simulations are highest in the range 0.35≲ p≲ 0.65, we especially focus on the results when

p ≲ 0.35 and p ≳ 0.65. In general, the system is more likely to reach a consensus when thresholds

are in-degree dependent, and there is a clear asymmetry before and after p = 0.5 in both cases.

Therefore, we just focused on the region 0.6 ≤ p ≤ 0.8 for further analysis. Although threshold

heterogeneity of nodes in the system has a slight effect in the resulting average opinion when

thresholds are out-degree dependent, we can conclude that the probability that the system reaches

a consensus increases as the threshold heterogeneity increases; this increase is more pronounced
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when thresholds are in-degree dependent, e.g. s̄ = 0.8412 when Nth = 2, while s̄ = 0.9742 when

Nth = 100 at p = 0.7 (Figure 2.8b1). This can be explained as follows: When Nth = 2, thresholds

are distributed as 0.5 or 1, and a node which has opinion 0 can change its opinion from 0 to 1

when 8 neighbors or all of its neighbors have opinion 1 if Nth = 2, respectively. On the other hand,

thresholds may take values of 0.500,0.625,0.750,0.875 or 1.000 when Nth = 5, and a node can

change its opinion when 8, 10, 12, 14 or all of its neighbors have opinion 1 if Nth = 5, respectively.

When the initial probability is higher than 0.7, one may expect that a node has more than 10.5

(Minxp = 15x0.7) neighbors who have opinion 1 initially, and exceeding thresholds are easier

when thresholds are not equal to 1. Therefore, the number of nodes which have opinion 1 is higher

at the steady state when the threshold heterogeneity is higher.

When it comes to the effect of heterogeneity on the opinion fixation time, t f increases with in-

creasing Nth when thresholds are in-degree dependent. When thresholds are out-degree dependent,

the effect of Nth on ft is very minimal and the relation between Nth and t f depends on p, thus, in-

creasing Nth causes the people to fix their opinions later when p ≳ 0.7, while the effect is opposite

when 0.6 ≳ p ≳ 0.7.

Figure 2.8a2 and 2.8b2 show s̄ as a function of p at various Min and Mout values. Results show

that the change in the mean-degree has no prominent effect on the average opinion at the steady

state when thresholds are out-degree dependent; however, increasing the mean-degree seems to

facilitate reaching a consensus when thresholds are in-degree dependent if p ≲ 0.7. In the same

situation, if p ≳ 0.7, s̄ values are very close to each other. Since the standard deviations of the

results are high, we can conclude that the mean degree does not affect average opinion at a steady

state when thresholds are in-degree dependent or out-degree dependent. This is not surprising

when we redefine the threshold model. The threshold model takes the ratio of the node’s threshold

to the average opinion of his neighbors and changes the node’s opinion if the ratio is higher than

1. The ratio does not change with changing mean-degree when the initial, s̄, is not affected from
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Min and Mout . We would expect t f to increase because when the number of links between nodes

increased and caused more changes in ideas, but the results show that the change in mean-degree

has no effect on t f when thresholds are in-degree or out-degree dependent.

Increasing node size in the network decreases s̄ significantly when thresholds are in-degree depen-

dent, whereas it has very little effect when thresholds are out-degree dependent. The effect of seed

size on s̄, when 0.6 ≤ p ≤ 0.8, shows that there is more diversity in the opinions when the seed

size is higher, e.g. s̄ = 0.9480 when N = 1000, while s̄ = 0.7155 when N = 5000 at p = 0.7. Low

standard deviation in the Monte Carlo simulations also demonstrates the consistency of simulation

results in every trial.

We can easily argue that, our study is novel because the degree-dependency of thresholds is in-

ferred by using real world Twitter data. Social data analysis shows that the threshold of a node

does not only depend on its out-degree but also depend on its in-degree. Although the examples

of out-degree dependent threshold models can be found in some studies, we also examined the

results of opinion change simulations of the in-degree dependent threshold model. This study

also investigates the effect of heterogeneity in thresholds reaching a consensus for the first time.

Our simulations demonstrated that the system is more likely to reach a consensus when thresholds

are in-degree dependent, rather than out-degree dependent. However, people change their opin-

ion more and fix their opinion later in this case. Thresholds with higher heterogeneity are more

likely to come to a consensus, but reaching a consensus takes more time than thresholds with lower

heterogeneity, and this change is more significant when threshold are correlated with in-degree of

nodes. Additionally, increasing seed size in the network makes the formation of a consensus more

difficult regardless of the dependence of threshold to the in-degree or out-degree. We also note

that as mean degree increases, diversity in opinions of individuals decrease when thresholds are

in-degree dependent, while it has no effect when thresholds are out-degree dependent.
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Effects of Network Topology in Social Contagion Analysis

Networks are representations of the connection patterns of complex systems in which entities might

be proteins, individuals, economic goods, etc. Topological structures and different properties of

diverse complex networks have been investigated for decades. Most importantly, the characteri-

zation of the mixing patterns of these network structures helps us to understand the evolutionary,

functional and dynamic process of those complex systems [111]. If nodes in a network tend to

associate with other similar nodes, this pattern is called assortative mixing (also known as ho-

mophily). The concept of assortativity is extensively studied since its introduction by Newman

[112] in 2002. Although its application areas are diverse, the assortativity of a network is gener-

ally determined by the Pearson correlation coefficient between the degree distribution of its nodes.

Previous studies show that non-social networks generally show a disassortatively-mixed pattern,

i.e. metabolic pathways, protein-protein interactions, power-grid, World-Wide-Web [113] or yeast

genes and proteins [114]; however, brain connections are assortatively mixed [115] despite its non-

social property. Social networks, on the other hand, tend to be assortative, i.e. Facebook [116],

Flickr, mySpace [117]; however, there are some exceptions such as disassortative mixing patterns

on Twitter [118] and Youtube [117]. In such platforms where social networks are established, it is

not surprising that people interact with other people similar to them. This similarity might be based

on age, race, language, education or number of connections established. Fisher et al. argued that

social networks are assortative only when they are built as a group-based network [119]. Although

measuring assortativity will not give an idea about the variation of all entities in a network, it is

useful in understanding the average mixing behavior of them; thus, it plays an important role in

understanding the dynamics of epidemic spreading, signal connections, information diffusion or

consensus formation in a system.

In our previous study [120], we were focusing on the effect of the average mixing behavior of
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heterogeneous agents on consensus formation. It is important to obtain a better understanding

of consensus formation, since beliefs and opinions in social groups, including the society, con-

stantly evolve as societal dynamics introduce paradigmatic shifts over time. Fashion trends, cul-

tural changes, the rise and fall of political ideologies, marketing practices and technology innova-

tions are good examples for these paradigm shifts leading to consensus formation. Simultaneous

to these external influences in the society; internal communication patterns, such as online social

networking activities of individuals, can also influence opinion formation, adoption, and dissem-

ination of agents. For instance, it would be unexpected for an individual to adopt an opposing

opinion in a network that predominantly supports another opinion. These internal communication

patterns strongly depend on the network topology. Consensus formation of multi-agent systems

agents have attracted researchers from many different disciplines. This concept is applied in many

areas from spacecraft [121] to robotic teams [122]. There are applications of consensus strategies

in decision-making, the polarization of people in the examples of political affiliation [123] and

rumor spreading [124]. The multiplicity and diversity of uses necessitate a better understanding of

the consensus formation process.

Despite the necessity of assigning heterogeneity to thresholds in Linear Threshold Model (LTM),

this heterogeneity is poorly-defined among researchers, which leads to extensive use of uniform

[64], [65], [66] and binary [4] thresholds in many studies. Arguably, this assumption of homoge-

neous or binary thresholds is an oversimplification of reality and may produce misleading results.

To remedy this oversimplification and thereby provide more holistic and possibly more accurate

models, many studies employed more complex threshold functions such as the tent-like function

[9], the truncated normal distribution function [10] or the sigmoid function [11]. In the current

study, we employ LTM to understand the dynamics of opinion formation and control the threshold

heterogeneity with a parameter Nth during the simulations.

Although the main analysis here was to understand the effect of the assortativity of the network on
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the dynamics of consensus formation; we also investigated the effect of threshold heterogeneity to

justify the robustness and scalability of the results. The heterogeneity of the agents is yielded by

the diversity of their thresholds.

We first generated a random network using a configuration model, in which out-degree distribution

is assigned as random numbers drawn from power-law distribution in the form of
√

Nxγ . Here,

γ = 3 and N denotes the number of nodes in a network, that equals to 1000. Furthermore, we keep

the in-degree as constant (kin = 17), motivated by Dunbar number, i.e. individuals have a cognitive

limit on the number of their social relationships [125]. This random network tends to be neutral

(uncorrelated) or slightly disassortative. To tune the magnitude of the assortativity, we applied the

Xulvi Brunet-Sokolov rewiring algorithm [126]. This algorithm chooses two linked node pairs at

each time step, i.e. i, j and m,n where Ai j,Amn = 1 and A denotes the adjacency matrix. Then, it

orders these four nodes according to their degree, i.e. Suppose that ki < km < k j < kn. To increase

the assortativity, first two nodes and last two nodes i.e. Ai j,Amn = 0 and Aim,A jn = 1; to decrease

the assortativity, first node with the last node and second node with the third node are rewired by

destroying the previous linkage, i.e. Ai j,Amn = 0 and Ain,Am j = 1. This process continues until

the desired assortativity is obtained. Note that, this algorithm does not change the overall degree

distribution, thus mean a degree in the network; however, a rewired network may exhibit different

geometrical and transport properties. The Xulvi Brunet-Sokolov algorithm considers only the out-

degree distribution of the directed graph since the in-degree is constant.

In the next step, we initialized the opinions of individuals as a Bernoulli distributed random variable

with an initial probability (p), i.e. the opinion of the node i (si) might equal to 1 with a probability

p and equal to 0 with probability (1− p). This probability value of p has a range of 0.2 to 0.8 in

the current study.

The heterogeneity of the agents is yielded by the heterogeneity in their thresholds of adopting a new
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opinion. For this purpose, we assigned thresholds as a uniformly distributed random variable (φi ∈

uni f (0.5,1)) throughout the interval defined by Nth which takes value from the set of 2,5,10,100

and increasing Nth yield more heterogeneity among agents. Thresholds of the agents are randomly

assigned from the subset defined by:

φi ∈ {0.5,0.5+
0.5

Nth −1
, ...,0.5+

0.5(Nth −2)
Nth −1

,1} (2.6)

After generating the network and bringing its assortativity to the desired degree, initializing the

opinions and assigning thresholds, we run the opinion change simulations. The process of updating

opinions is as follows as in [82]:

1. Picking a node i randomly.

2. Calculating the weighted average of the opinions of its in-neighbors (ōi). Here, weights are

the multiple edges formed between node i and its neighbors.

3. Updating the opinion of node i (si) according to the criteria as follows:

(a) if si = 0 and ōi − si > φi,

then si = 1 in the next step.

(b) if si = 1 and ōi − si <−φi,

then si = 0 in the next step.

This Markovian chain is repeated until individuals fix their opinion. After all the individuals fix

their opinions in the network, we averaged their opinions by using the equation below:

s̄ =
1
N

N

∑
i

si(∞) (2.7)
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where si(∞) is the opinion of node i at steady-state and N is the seed size, i.e. number of nodes in

the network. We conducted our simulations to measure s̄ as a function of the initial probability (p)

with a varying assortativity (r) and varying threshold heterogeneity Nth.
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Figure 2.10: a. Average opinion at steady state (s̄) b. Fixation time of opinions (tF ) when N =
1000, r = 0 and Nth = {2,5,10,100}. For each Nth seven boxplots show the variation in p =
0.2,0.3, ...,0.8.

Box plots in Figure 2.10 show the distribution of repeated experiments on the average opinion at

the steady-state (s̄) (left) and the time elapsed until all individuals fix their opinion (tF ) (right) when

N = 1000. We fixed assortativity coefficient of the network as neutral (r = 0) since many studies in

the literature generates Barabasi’s scale-free and/or Erdos-Renyi networks, which are tend to show

uncorrelated mixing pattern. Each figure includes 4 groups of box plots, in which groups represent

various Nth, and p varies from 0.2 to 0.8 in each group. Since average opinion shows the sample

mean of the opinions at steady-state, the values closer to either 0 or 1 show the dominance of one of

the opinions, i.e. the system is more likely to reach a consensus. Figure 3a shows that p determines

the dominance of the opinions; when p ≤ 0.4, s̄ take values close to 0, while p ≥ 0.6 it approaches

to 1. Furthermore, there is a clear asymmetry before and after p = 0.5 in all cases. As p closes

to 0.5, system has mix of both opinions rather than reaching a consensus. Figure 3b, on the other
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hand, shows the relatively long duration of opinion change process when opinions are initialized

halfway (p = 0.5). Although threshold heterogeneity of nodes in the system has a slight effect in

the resulting average opinion when thresholds are out-degree dependent, we can conclude that the

probability that the system reaches a consensus slightly increases as the threshold heterogeneity

increases; however, the time elapsed until all nodes fix their opinions increases significantly with

increasing Nth.
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Figure 2.11: a. Average opinion at steady state (s̄) b. Fixation time of opinions (tF ) when N = 1000,
r = −0.1 in dissortative, r = 0 in neutral and r = 0.1 in assortative mixing. For each Nth=5 or
Nth=100, and seven boxplots show the variation in p = 0.2,0.3, ...,0.8.

Figure 2.11a, on the other hand, shows the effect of rewiring the network before opinion update

simulations, when network is assortative (r = 0.1), neutral (r = 0) and disassortative (r = −0.1).

All simulations are carried out at Nth = 5 and Nth = 10 for each mixing pattern to understand

the moderator effect of the threshold heterogeneity. Results show that the increase in the assor-

tativity coefficient of a network has a prominent effect on the average opinion at the steady state

at both threshold heterogeneity. The system is more likely to reach a consensus when network

is disassortatively mixed and this effect is more prominent when thresholds are more heteroge-
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neous. Surprisingly, tF reaches its minimum value when network is neutral. Figure 2.11b shows

that bringing the network to the steady-state takes more time when degree distribution of its nodes

either positively or negatively correlated. Again, this unexpected effect is more prominent when

threshold heterogeneity is high.

To sum up, it is important to understand the dynamics of consensus formation in multi-agent system

studies. Opinion formation and change depends on either the external effects, i.e. change in belief,

ideologies and/or technology, or internal effects, i.e. change in interactions due to evolving network

structure, thresholds to adopt a new opinion. The mixing pattern of the networks has been studied

for many years, however, its effect on the dynamics of consensus formation is not analyzed in

detail. Here, we investigated the sensitivity of dynamics of consensus formation to the assortativity

of the network in the existence of heterogeneous agents. The contribution of the paper is as follows:

We examined the effect of assortative mixing in networks on the dynamics of consensus formation

with multi agent-based simulations. During the simulations we tested the effect of assortativity

coefficient of network, initial probabilities of the different opinions and threshold heterogeneity

of the agents in the network structure. We concluded that the system is more likely to reach a

consensus when the network is disassortatively mixed or neutral; however, the likelihood of the

consensus significantly decreases when the network is assortatively mixed. Surprisingly, the time

elapsed until all nodes fix their opinions is slightly lower when the network is neutral compared to

either assortative or disassortative networks. Reaching the consensus is more likely but more time-

consuming when thresholds of agents in the system are more heterogeneous. This slight effect

of heterogeneity is observed every cases regardless of the mixing pattern of the nodes; however,

its positive effect reaching a consensus is more pronounced when the system is disassortatively

mixed.
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CHAPTER 3: QUANTUM PROBABILISTIC APPROACHES

Since quantum theory is very comprehensive in its representations, computations, and inferences;

their explanation and applications require a very detailed description. In this chapter, we just aim

to briefly describe the fundamentals of quantum theory and its application in behavioral systems.

For the sake of simplicity, we will focus on finite-state systems, although quantum approaches

can facilitate modeling continuous state systems due to their more advanced representation com-

pared to classical approaches. For more detailed explanations, the approaches that are used in the

formulation of probability theory, and their applications in different disciplines can be found in

[19, 18]. To compare the differences in classical and quantum approaches, we will focus on two

main postulates which are sample space and events by using a simple example to illustrate them in

the decision-making concept.

Sample Spaces

Regardless of using the classical or quantum approach, probabilistic approaches aim to assign

marginal probabilities to each event in the sample space. More fundamentally, the two approaches

differ in their representation. The classical approach uses set-theoretic representation and its sam-

ple space is defined as a set of possible events, e.g. {m0,m1}. On the other hand, the quantum

approach uses vector space representation and its sample space is a plane space spanned by the

orthogonal basis vectors, e.g. |m0⟩ and |m1⟩. This braket notation is also called Dirac notation and

is commonly used in the representation of quantum states as in Figure 3.1.

The differences in classical and quantum sample space representations mainly stem from the as-

sumptions that are used in these approaches. The classic probabilistic theory assumes a sample
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Ω = {m0, m1} |M⟩ = m0 |0⟩ + m1 |1⟩a. b.

m0 m1

|m0⟩

|m1⟩

Figure 3.1: A graphical representation of sample spaces in a. classical approach, b. quantum
approach.

space in which the outcome of the events are mutually exclusive, i.e. Ω = {m0,m1}. In quantum

probabilistic theory, on the other hand, events are modeled as subspaces of a Hilbert space in which

each orthogonal basis vector corresponds to an elementary outcome, i.e. |M⟩ = m0|0⟩+m1|1⟩,

where

M =

m0

m1


An inner product of vector M is obtained with the multiplication of |M⟩ with its complex conjugate

(|M⟩∗ = ⟨M|) as follows:

⟨M|M⟩=

m0

m1

(m0 m1

)
=

 |m0|2 |m0||m1|∗

|m1||m0|∗ |m1|2

=

ψm0ψm0
∗ ψm0ψm1

∗

ψm1ψm0
∗ ψm1ψm1

∗

 (3.1)
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Events

As we are familiar with, representing the set of outcomes as mutually exclusive events in classical

theory enables us to easily define more complex events that require intersection, union, and/or

distribution of individual events. In general, the conjunction (intersection) of two independent

events is represented by (m0 ∩m1) and the disjunction (union) is by (m0 ∪m1). Furthermore, a

distributive axiom is also applicable in classical theory, i.e. m0 ∩ (m1 ∪m2) = (m0 ∩m1)∪ (m0 ∩

m2), since it obeys a set theory.

|m0⟩

|m1⟩
|S⟩

Figure 3.2: A graphical representation of sample spaces and their superposition in a Hilbert State.

In the quantum approach, on the other hand, mutually exclusive events are represented by orthonor-

mal basis vectors contained in the Hilbert space. This geometric approach enables us to define a

superposition state which comprises the occurrence of different events at the same time. For exam-

ple, Figure 3.2 shows a superposition state of happening both events of m0 and m1 and computed

as follows:

|S⟩= eθm0
√

2
|m0⟩+

eθm1
√

2
|m1⟩=

eθm0
√

2
ψm0 +

eθm1
√

2
ψm1 (3.2)

Here, the exponential term (eiθm0 ) is called global phase factor of the quantum probability ampli-
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tude. The probability (Pr(m0)) is related with a quantum probability amplitude (eiθm0 |m0⟩) which

corresponds to the amplitude of a wave function, and this relation to the classical probability is ob-

tained by multiplying this amplitude with its complex conjugate, i.e. |eiθm0 |2 = eiθm0 |m0⟩e−iθm0 |m0⟩∗.

This connection is obtained via Born’s rule as follows:

Pr(m0) = |eiθm0 ψm0|
2

(3.3)

Interference Effect in Quantum Probabilistic Approach

Although the result of an individual event probability in the classical probability theory converges

to that in the quantum approach, the computation of the union of mutually exclusive events differs

in these two methods. The quantum-like approach yields an extra term, "interference effect", which

does not exist in classical probability theory. To illustrate, suppose that we aim to obtain the union

of three mutually exclusive events by using classical probability formula, which is given by:

Pr(A∪B∪C) = Pr(A)+Pr(B)+Pr(C) (3.4)

The quantum counterpart of the classical probability of the union of three mutually exclusive events

is obtained by using Born’s rule in Eq. 3.11:
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Pr(A∪B∪C) = |eiθAψA + eiθBψB + eiθCψC|2

= eiθAψA.e−iθAψA + eiθAψA.e−iθBψB + eiθAψA.e−iθCψC

+ eiθBψB.e−iθAψA + eiθBψB.e−iθBψB + eiθBψB.e−iθCψC

+ eiθCψC.e−iθAψA + eiθCψC.e−iθBψB + eiθCψC.e−iθCψC

(3.5)

Knowing that,

cos(θ1 −θ2) =
eθ1−θ2 + e−θ1+θ2

2
(3.6)

Eq. 3.5 reduces to:

Pr(A∪B∪C) = |ψA|2 + |ψB|2 + |ψC|2 +2
(
|ψA||ψB|cos(θA −θB)

+ |ψA||ψC|cos(θA −θC)+ |ψB||ψC|cos(θB −θC)
) (3.7)

The additional terms in Eq. 3.7 compared to Eq. 3.4 are called as "interference terms" which does

not exist in classical probability theory [30, 29, 21, 31].

Related Previous Works as a Motivational Source

An Example of Quantum-Like Approach in Decision-Making Analysis

Artificial intelligence (AI) algorithms are proving increasingly useful in numerous situations since

they can perform more complex computations by handling bigger data sets than humans may com-
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prehend. Nowadays, AI-centered technologies are utilized for a wide range of activities including

optimization of healthcare systems, medical diagnosis, robot controls, automated trading systems

[127]. Furthermore, automated algorithms are not only used for prediction purposes but also con-

sidered as a decision-maker because it is believed that these algorithms may simulate decision-

making processes more objectively. However, data used to train AI algorithms for learning may

include biased measurements or historically biased human systematic errors. Missing data values

or selection biases may also result in biased learning outcomes. Moreover, the prediction method

might be biased against the minority groups by itself since it aims to optimize the aggregate error

which is mainly more favored to majority groups.

Nowadays, AI algorithms rank job candidates in receiving jobs, rate students in college admis-

sions, predict the likelihood of criminality of individuals and/or estimates the risk in giving loans.

With the increasing demand for using artificial intelligence algorithms in making decisions that

affect people’s lives, the need for a fairness-oriented design in automated decision-making systems

emerges as a major concern. These concerns about algorithmic fairness have also caused a lot of

controversy in recent years. One of the most remarkable examples is that recent studies showed

that the United States criminal justice system is falsely biased against the likelihood of criminality

of African-American people compared to that of white people [128]. Surprisingly, some big tech

companies are also showed to have gender discrimination in their automated decision-making sys-

tems. For example, Amazon’s AI hiring system is more likely to hire males than females in hiring

job candidates for software development and technical positions [129]. Also, Google’s ad-targeting

algorithms make recommendations of executive jobs positions more to male compared to female

users [130]. [127] also discusses some real-world examples of algorithmic biases in AI chatbots,

employment matching, flight routing, and automated legal aid for immigration algorithms, and

search and advertising placement algorithms.

Since these automated systems may affect people’s lives in almost everything, there is great im-
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portance in assessing and improving the ethics of the decisions made by these automated systems.

Therefore, researchers have introduced various tools to measure fairness in an algorithm or system.

For example, Aequitas offers a toolkit that measures the fairness of models used for making esti-

mations for different population subgroups. Additionally, IBM launched AI Fairness 360 (AIF360)

toolkit to help industrial applications of algorithmic fairness research studies. In all these exam-

ples, fairness metrics are calculated either for different groups or individuals. The most common

measures of algorithmic fairness classification tasks are disparate impact, demographic parity, and

equalized odds. Disparate impact [131] and demographic parity [132] aims to quantify the le-

gal notion of disparate impact by considering true positive rates for different groups. Equalized

odds [133], on the other hand, is designed to measure differences between predictions for different

groups by considering both false-positive rates and true positive rates of the two groups.

Although there is a great interest in algorithmic fairness among machine learning and deep learn-

ing researchers, and their studies focused on the optimization of the trade-off between fairness and

accuracy in recent years [134, 135, 136, 137, 138, 139, 140]; whereas, understanding the sources

of unfairness in decision-making is an essential challenge. To tackle this problem, researchers

proposed fair causal learning approaches, which enable us to model cause and effects knowledge

structure, to discover the sources of the bias, and to prevent unfair decision-making by amplifying

transparency and explainability of AI algorithms. Loftus et al. discuss the importance of causal

graphs in designing fair algorithms in detail [140]. They argue that mitigation of bias is only pos-

sible when the causal sources are examined thoroughly. Thus, they review extant fairness notions

and show a methodology to combine these with causal techniques such as counterfactual fairness.

Additionally, these causal interventions are carried out to address contrastive fairness in algorith-

mic decision-making [141]. [142] developed a novel methodology to get a fair classifier when the

causal model is not complete by linking causal inference to multiple dependencies. Despite using

traditional fairness measures in causal algorithms, [143] brought new definitions, i.e. fair on aver-
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age causal effect (FACE), and fair on average causal effect on the treated (FACT) for more robust

estimation in fair causal learning.

These studies consider fair causal learning problems based on the assumption that the underlying

probabilistic model of the world is known; whereas, it is well-known that humans do not obey

the classical probability rules in making decisions due to emotional changes, subconscious feel-

ings, and subjective biases, and this yields uncertainty in underlying probabilistic models. In this

study, we draw from quantum theory and convert classical probability rules to more generalized

concept of quantum probability rules. The reason behind this attempt can be explained as follows:

In quantum theory, the uncertainty principle states that one cannot assign the exact position and

momentum of a physical system at the same time. Therefore, these quantities are determined with

some characteristic uncertainties. There are a lot of examples of quantum decision making model-

ing in cognitive science due to the same reasons [144, 145]. In our previous study [146], we aim

to employ quantum-like approach to classical Bayesian framework to generate more fair causal

learning framework because we argue that transforming classical probability values as complex

quantum amplitudes allow us to model the uncertainties in the underlying probabilistic model of

the world is more efficiently.

We study a Bayesian setting in which decision-maker (DM) tries to maximize its expected utility,

and consider the fairness of the decision simultaneously. A Bayesian framework for the decision-

making problem can be seen in Figure 3.3. Here, x, y and z represents observations, the outcome,

and sensitive variable(s), respectively. The joint probability distributions of x,y and z are depend

on an unknown parameter θ . The conditional probability distribution of action a given x is also

conditioned by the selected policy π . With the given belief β , the DM tries to maximize its ob-

jective function that comprises expected utility u and fairness f . In this Bayesian framework, we

consider the same strategy as in [147]: At each discrete time step t, the DM’s policy acknowl-

edge the current action at ∈ A , by observing some data xt ∈ X depending on its current belief
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β θ y u

z x a πx

f

Figure 3.3: A decision problem with observations x, the outcome y, and sensitive variable(s) z. The
joint probability distributions of x,y and z are depend on an unknown parameter θ . The conditional
probability distribution of action a given x is also conditioned by the selected policy π . With the
given belief β , the DM tries to maximize its objective function that comprises expected utility u
and fairness f .

βt and makes a decision π(at |βt ,xt). Therefore, the stochasticity of the model parameters in β

will influence the outcomes in each time step and yield a stochastic outcome in the case of higher

uncertainty. Here, we assume that β has a probability distribution P ≜ {Pθ |θ ∈ Θ} that contains

the actual law of P∗
θ
= P for some θ ∗. The trade-off between utility and fairness is satisfied with

the following criteria:

max
π

(1−λ )Eπ
Pu−λEπ

P f (3.8)

Here, P denotes the underlying probability distribution and λ is a multiplier used to adjust trade-

off between fairness and utility, i.e. λ = 0 has no emphasis on fairness, while λ = 1 considers

maximizing fairness only. The fairness is measured with disparate impact as in [128], and the

decision rule is assumed to be fair if the decision rule is independent for all sensitive variables, i.e.,
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y ⊥⊥ z.

For the same decision problem, [147] introduces two balance models that considers model un-

certainty by taking all possible decisions into account to maximize DM’s objective. In Bayesian

balance model, the deviation from balance of policy π is measured with respect to each possible

parameter θ , and the outcomes are weighed to prevent extreme unfairness and lowest utility.

Definition 1. A decision rule λ (.) is (α, p)-Bayes balanced with respect to β if ∀a,y,z:

f (π)≜
∫

Θ

≤ ∑
a,y,z

∣∣∣∣∑
x

π(a|x)[Pθ (x,z|y)−Pθ (x|y)Pθ (z|y)]
∣∣∣∣pdβ (θ)≤ α

p (3.9)

In marginal balance approach, on the other hand, a single point estimate for the model is considered

instead of using a fully Bayesian approach, i.e., Pβ ≜
∫

Θ
Pθ dβ (θ).

Definition 2. A decision rule λ (.) is (α, p)-marginal balanced with respect to β if ∀a,y,z:

∑
a,y,z

∣∣∣∣∑
x

π(a|x)[Pβ (x,z|y)−Pβ (x|y)Pβ (z|y)]
∣∣∣∣p ≤ α (3.10)

Since quantum theory is very comprehensive in its representations, computations, and inferences;

their explanation and applications require a very detailed description. For the sake of simplicity,

we will focus on finite-state systems, although quantum approaches can facilitate modeling con-

tinuous state systems due to their more advanced representation compared to classical approaches.

The differences in classical and quantum sample space representations mainly stem from the as-

sumptions that are used in these approaches. The classic probabilistic theory assumes a sample

space in which the outcome of the events are mutually exclusive. In quantum probabilistic theory,

on the other hand, events are modeled as subspaces of a Hilbert space in which each orthogonal ba-

sis vector corresponds to an elementary outcome. To employ quantum-like probabilistic approach,
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we represent probabilistic entities as complex probability amplitudes by employing Inverse Born

Problem (IBP). This transition using Born’s rule can be seen in this expression:

Pr(A) ∝ |eiθAψA|
2

(3.11)

As we mentioned before, we assumed that β has a probability distribution P ≜ {Pθ |θ ∈ Θ} that

contains the actual law of P∗
θ
= P for some θ ∗. Therefore, for the application of balance gradient

descent, we need to focus on the following expression as in Eq. 3.12:

f (π)≜
∫

Θ

≤ ∑
a,y,z

∣∣∣∣∑
x

π(a|x)∆θ (x,y,z)
∣∣∣∣pdβ (θ)≤ α

p (3.12)

where ∆θ (x,y,z) = [Pθ (x,z|y)−Pθ (x|y)Pθ (z|y)] in Bayes balanced approach. Identifying delta

expression with its quantum counterpart is possible with integrating Eq. 3.11 in Eq.3.12:

∣∣∣∣eiθx,z|yΨθ (x,z|y)− eiθx|yΨθ (x|y)eiθz|yΨθ (z|y)
∣∣∣∣2

=

∣∣∣∣eiθx,z|yΨθ (x,z|y)− eiθx|yΨθ (x|y)eiθz|yΨθ (z|y)
∣∣∣∣

·
∣∣∣∣eiθx,z|yΨθ (x,z|y)− eiθx|yΨθ (x|y)eiθz|yΨθ (z|y)

∣∣∣∣∗
= eiθx,z|yΨθ (x,z|y).e−iθx,z|yΨθ (x,z|y)+ eiθx,z|yΨθ (x,z|y).e−iθx|yΨθ (x|y)eiθz|yΨθ (z|y)

+ e−iθx,z|yΨθ (x,z|y).eiθx|yΨθ (x|y)eiθz|yΨθ (z|y)

+ eiθx|yΨθ (x|y)eiθz|yΨθ (z|y).e−iθx|yΨθ (x|y)eiθz|yΨθ (z|y)

= |Ψθ (x,z|y)|2 + |Ψθ (x|y)Ψθ (z|y)|2 + |Ψθ (x,z|y)|.|Ψθ (x|y)Ψθ (z|y)|ei(θx,z|y−θx|yθz|y)

+ |Ψθ (x|y)Ψθ (z|y)|2 + |Ψθ (x,z|y)|.|Ψθ (x|y)Ψθ (z|y)|ei(θx|yθz|y−θx,z|y)

(3.13)

63



Knowing that

cos(θ1 −θ2) =
ei(θ1−θ2)ei(θ2−θ1)

2
(3.14)

Then Eq. 3.13 can be rewritten as:

|Ψθ (x,z|y)|2 + |Ψθ (x|y)Ψθ (z|y)|2

±2|Ψθ (x,z|y)|.|Ψθ (x|y)Ψθ (z|y)|cos(θx,z|y −θx|yθz|y)
(3.15)

Therefore, we can redefine delta expression in quantum counterpart of Bayes balanced approach

as in Eq. 3.15.

Definition 3. A decision rule λ (.) is (α, p)-Quantum Bayes balanced with respect to β if ∀a,y,z:

f (π)≜
∫

Θ

≤ ∑
a,y,z

∣∣∣∣∑
x

π(a|x)
[
|Ψθ (x,z|y)−Ψθ (x|y)Ψθ (z|y)|2

]∣∣∣∣pdβ (θ)≤ α
p (3.16)

which satisfies

f (π)≜
∫

Θ

≤ ∑
a,y,z

∣∣∣∣∑
x

π(a|x)
[
Pθ (x,z|y)+Pθ (x|y)Pθ (z|y)−2cosθ

√
M
]∣∣∣∣pdβ (θ)≤ α

p (3.17)

where

M= Pθ (x,z|y)Pθ (x|y)Pθ (z|y) (3.18)

The aim of this study was to compare and contrast performances of our Quantum Bayes balanced

framework with the extant approaches of marginal and Bayes balanced approaches given in [147]
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when the underlying probabilistic model of the world is not known. For this purpose, we have

used ProPublica COMPAS (Correctional Offender Management Profiling for Alternative Sanc-

tions) data set [148, 149, 150]. ProPublica risk assessment data set includes a number of previous

felonies, charge degree, age, race, and gender of 7214 individuals as features and a binary outcome

variable that shows whether an inmate recidivated within two years after release from prison. We

assigned race and gender as sensitive attributes, while the remaining attributes are used as obser-

vations for policy. For the non-binary features, we applied discretization by assigning the average

value as a threshold, and the values higher than the threshold are assigned as 1, while the rest is

assigned as 0. Randomly selected 6000 observations are used for training, whereas, remaining

1214 are tested for validation purposes.
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Figure 3.4: The results of the optimization criteria given in Eq. 3.8 by using marginal-balanced
(black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with varying inter-
ference values when a. λ = 0, a. λ = 0.25.

Figure 3.4 shows the results of the optimization criteria given in Eq. 3.8 by using marginal-

balanced (black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with
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varying interference values (cosθ ). Since the aim is to maximize the utility and minimize the

deviation from the fairness criterion, the higher values are more favorable. In Figure 3.4.a, λ = 0,

that means fairness is not taken into account and the gradient descent algorithm tries to maximize

utility only. We realized that the Bayesian approach performs slightly better than the classical

marginal approach. The superiority of the performance of the quantum Bayesian approach varies

with respect to the specified interference effect. When cosθ = 0, a higher score is obtained, i.e.

A higher utility is obtained in the decision-making process. When we assign more importance

to fairness in the objective function as λ = 0.25 in Figure 3.4.b, we could not observe a signifi-

cant difference in the results obtained via marginal and Bayesian approaches. However, in some

definite interference values (−0.25 ⪅ cosθ ⪅ 0.25), the quantum Bayes balanced approach gives

significantly better results with satisfying higher utility and less deviation from fairness.
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Figure 3.5: The results of the optimization criteria given in Eq. 3.8 by using marginal-balanced
(black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with varying inter-
ference values when λ = 0.5.

Figure 3.5 shows the results of the optimization criteria given in Eq. 3.8 by using marginal-

balanced (black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with vary-
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ing interference values (cosθ ) when equal importance is given to utility and fairness (λ = 0.5).

Here, we observed that the Bayesian balanced approach decreases the objective function com-

pared to the marginal balanced approach, and quantum Bayesian balanced with interference term

−1 ⪅ cosθ ⪅ 0 yields even smaller values. However, results demonstrated that the quantum

Bayesian approach performs better when the range of interference term between ∼0.25 to ∼0.5.
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Figure 3.6: The results of the optimization criteria given in Eq. 3.8 by using marginal-balanced
(black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with varying inter-
ference values when a. λ = 0.75, a. λ = 1.

Figure 3.6 shows the results of the optimization criteria given in Eq. 3.8 by using marginal-

balanced (black bar), Bayes-balanced (red bar) and quantum Bayes balanced (blue bars) with

varying interference values (cosθ ) when the optimization function weight more on fairness than

utility. Although the quantum Bayes balanced approach may show relatively similar results when

cosθ = 0.5 compared to the Bayesian approach, the marginal approach performs better than both.

When the optimization of the decision making is only keep the deviation on fairness as low as

possible, the quantum Bayesian approach falls short regardless of the interference value. It should
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be noted that, better results in the quantum Bayesian approach are observed when interference is

0.5 ⪅ cosθ ≤ 1.

To sum up, here, we introduced the quantum Bayesian approach as a candidate for fair decision-

making in causal learning, motivated by the human decision-making literature in cognitive sci-

ence. We demonstrated that the quantum Bayesian perspective creates well-performing fair de-

cision rules under high uncertainty on the well-known COMPAS data set when the optimization

function aims to maximize the utility and minimize the deviation from the fairness at the same

time. Whereas, when the aim of the DM to make a fair decision only, marginal and Bayes bal-

anced approaches perform better than their quantum counterpart.Although our approach yields

very promising results, it should be noted that computational complexity of Bayesian methods

are raised significantly with the increasing number of data points and features. This complex-

ity increase is much more higher when quantum Bayesian approaches are employed, since these

methods bring extra interference terms. The most efficient way to tackle this problem is to discover

heuristics that predict the interference terms. Then, our method will be as fast as classical Bayesian

approaches in the existence of larger data sets. Future studies may aim to find a heuristic to pre-

dict optimum interference value in the quantum approach, and adapting the quantum framework to

different AI methodologies.
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CHAPTER 4: FUNDAMENTALS OF ENTROPY MEASURES

The second law of thermodynamics states that the total entropy of an isolated system (the thermal

energy per unit temperature that is unavailable for doing useful work) can never decrease. This

concept of entropy that was introduced by Rudolf Clausius in 1865 [151] as a term in the field

of thermodynamics, later adapted into statistical physics and information theory to characterize

the uncertain, ambiguous and disordered behavior of stochastic processes [152]. After Clasius’

definition of entropy as a thermodynamic concept, Shannon [153, 153] argued that this concept

can be extended into different disciplines due to its probabilistic nature in defining the randomness

of stochastic processes, and proposed Shannon entropy [154] as a uncertainty measure. Later,

the entropy measure proposed by Renyi et al. [155], called Renyi entropy, has been applied in

diverse areas including quantum information, information theory, and fractal theory. Another non-

extensive measure of Tsallis entropy which is an extension of Boltzman entropy [156] has also

gained a lot of attention. Recently, a new entropy named Deng entropy [157] has been proposed

to solve uncertainty of the stochastic processes based on the given evidence. [40] describes the

similarities and differences of these entropy measures to better explain their use areas.

For a random variable X over a probability space Ω, Shannon entropy is defined for continuous

and discrete variables as follows, respectively:

S(X) =−
∫

Ω

p(x)log2(p(x))dx

S(X) =− ∑
x∈Ω

p(x)log2(p(x))
(4.1)

where p(x) denotes the probability distribution. Although this measure performs well in the exis-

tence of finite storage capacity of transmitting channel in communication, it falls short in infinite

storage capacity. To address this, Renyi [158] proposed a new measure, called Renyi entropy,
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which is defined for discrete variables as follows:

Sα(X) =
1

1−α
ln(

n

∑
k=1

pα
k ) (4.2)

where α ̸= 1 and α ≥ 0. When the order of α equals to 1, Renyi entropy degenerates into Shannon

entropy.

On the contrary of Shannon and Renyi entropy measures which yields exponential equilibrium

distribution, Tsallis extended these definitions and proposed a new entropy measure which can be

used with any non-negative real number, which yields a power-law equilibrium distribution [159].

The formula of Tsallis entropy for a non-negative real number q is as follows:

Sq(X) =
1−∑

n
i=1 pα

i
q−1

(4.3)

where q ̸= 1 and q ≥ 0. When the order of q equals to 1, Tsallis entropy degenerates into Shannon

entropy.

Belief entropy, named as Deng entropy, on the other hand, can be described as a combination of a

measure of total non-specificity in the basic probability assignment indicating the degree of belief

in Ai ∈ P(X) and a measure of discord of the mass function among various focal elements. Its

formula is:

Hd =−∑
i

m(Ai)ln
m(Ai)

2|Ai−|−1
(4.4)

Belief Entropy as an Uncertainty Measure of Stochastic Processes

[160] utilized the belief entropy to calculate the interference effects caused by phase differences

in quantum-like Bayesian networks for the first time. To prove the effectiveness of the proposed
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model, Prisoner’s dilemma game is one of the simplest yet efficient example of the cooperation

between two individuals. In this game, each individual chooses to either cooperate or betray to

the other without knowing their actions, and each joint action will yield different payoffs. In the

example given in [160] the payoff matrix is defined as follows:

Table 4.1: Payoff Matrix.

A/B 0 1
0 4/4 2/5
1 5/2 3/3

Numerical results for the experiments of Prisoner’s Dilemma game with the payoff table given

in Table 4.1 are given in [161] by averaging the correspondingly probabilities as an average of

four different sources. Accordingly, the probabilities of the second player chooses to betray when

she knows the first player chose to betray or cooperate are equal to 0.87 and 0.74, respectively.

Although the classical probability theory computes the result as 0.8050, experimental results show

that the probability of the second player chooses to betray when she does not know the action of

the first player is found to be equal to 0.64, violating the law of total probability.

In the light of aforementioned probability values, interference effect in quantum-like Bayesian

network aims to find a heuristic for the calibration of cos(θ1−θ2) in Equation 3.6. For this purpose,

[160] firstly defines the belief degree as an estimate of the phase difference as follows:

Db = cos(θi −θ j) (4.5)

where θi and θ j are angles in the interference term in Equation 3.7.

Since the vectors of two possible answers of player’s actions in Prisoner’s dilemma game can be
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described as: αT

βT

=

ψPN=T .ψParents=T

ψPN=T .ψParents=F

 ,
αF

βF

=

ψPN=F .ψParents=T

ψPN=F .ψParents=F

 (4.6)

Therefore, αT

βT

=

√0.5.
√

0.26
√

0.5.
√

0.13

=

0.3606

0.2550

 (4.7)

αF

βF

=

√0.5.
√

0.74
√

0.5.
√

0.87

=

0.6083

0.6595

 (4.8)

Later, the belief distance that measures the deviation from neutral probability of 0.5 is calculated

as follows:

Bdx = |αx +
αx −βx

αx +βx −1
| (4.9)

where |αx −0.5|< |βx −0.5|. Thus, the belief distance in the aforementioned numerical example

of Prisoner’s dilemma game can be calculated as:

BdT = |0.6083+
0.6083−0.6595

0.6083+0.6595−1
|= 0.4171 (4.10)

BdF = |0.3606+
0.3606−0.2550

0.3606+0.2550−1
|= 0.6353 (4.11)

Finally the belief degree is calculated by using Deng entropy as follows:

Db = ∑
x

Bdx log
Bdx

2|Ai|−1
(4.12)
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Here, |Ai| represents the number of possible actions which is equal to 2 in our example since

players have chances of either cooperation or betrayal. Thus,

Db = 0.4171log
0.4171
21 −1

+0.6353log
0.6353
21 −1

=−0.9420 (4.13)

The quantity of belief degree is used as a heuristic for the interference term and the conditional

probability in a quantum Bayesian network is calculated by:

P(X |e) = δ

|Y |

∑
i=1

|
N

∏
x

ψ(Xx|Parents(Xx,e,y = i))|2 +2Inter f erence (4.14)

Therefore,

P(P2 = De f ect) = δ [|ψP2=D|P1=D|2 + |ψP2=D|P1=C|2 +2|ψP2=D|P1=D|.|ψP2=D|P1=C|.cos(θ1 −θ2)]

= δ [0.5(0.87)+0.5(0.74)+2
√

0.5(0.87)
√

0.5(0.74)−0.9420] = δ0.04917

P(P2 =Cooperate) = δ [|ψP2=C|P1=D|2 + |ψP2=C|P1=C|2 +2|ψP2=C|P1=D|.|ψP2=C|P1=C|.cos(θ1 −θ2)]

= δ [0.5(0.13)+0.5(0.26)+2
√

0.5(0.13)
√

0.5(0.26)−0.9420] = δ0.02182

(4.15)

And the final result is:

P(P2 =Cooperate) =
δ0.04917

δ0.04917+δ0.02182
= 0.6926

P(P2 =Cooperate) =
δ0.02182

δ0.04917+δ0.02182
= 0.3074

(4.16)
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CHAPTER 5: METHODOLOGY

Proposed Framework: Quantum Social Contagion

In the context of network theory, a complex network, G⟨V,E⟩, is defined as the set of vertices

(nodes) (V = {v1,v2, ...,vn |n∈N}) and edges between them (Evi,v j =(vi,v j) where (i, j ∈N; i ̸= j).

To exemplify the social contagion mechanism in this study, we integrate a quantum-like point of

view to the classical message-passing approach [8], that generalizes the well-known susceptible-

adopted-recovered (SAR) model, to fully describe the mechanisms of information (or behavior)

spreading on a complex network with N nodes and a degree distribution P(k). In this model, each

individual in a network falls into one of three states: susceptible, adopted and recovered. An indi-

vidual in a susceptible state (S) does not adopt the information yet. Adopted individuals (A) adopts

the information and tries to transmit it to its every susceptible neighbors with a probability λ at

each time step. After each successful transmission, the susceptible individual, who receives infor-

mation from his adopted neighbor, updates his cumulative units of information, i.e. m ⇒ m+1. It

should be noted that non-redundant, thus non-Markovian, information transmission is considered

to focus on a more legit scenario, i.e. information can be transmitted only once from an adopted

individual to a specific susceptible individual who records each successful transmission at each

time step. A susceptible individual becomes adopted if its cumulative units of information exceeds

its threshold. Simultaneously, each adopted individual may lose his interest in the information and

becomes recovered with a probability γ . Since recovered individuals will not further participate in

information spreading, a steady-state is reached if all individuals in the network become recovered

or there is no chance for individuals to change their current states. We initialize the social conta-

gion model with small fraction of individuals (ρ0) assigned as adopted, and the rest as susceptible

in the network. In the rest of this study, S(t), A(t), and R(t) represent the fractions of susceptible,
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adopted, and recovered individuals at the time step t, respectively.

Edge-Based Compartmental Theory for Quantum Social Contagion Analysis

In the current study, we employ an edge-based compartmental theory to understand the dynamics

of the quantum social contagion approach inspired by numerous studies [24, 4, 9]. Suppose that

u,(u ∈ V ) is an individual who is in the susceptible state, i.e. He can receive information from

his neighbors but cannot transfer since he has not adopted information yet. Let v,(v ∈ V ) be a

randomly chosen neighbor of u (Eu,v ̸= 0). If we define θ(t) as the probability that the individual

v has not transmitted information to an individual u by time t, the probability that individual u

with degree ku has received m pieces information from his distinct neighbors by time t will be

binomially distributed and expressed as:

τm(ku, t) =
(

ku

m

)
θ(t)(ku−m)(1−θ(t))m (5.1)

The quantum counterpart of this step is intuitively the same, because the binomial distribution

property holds true. Since we have defined θ(t) as the probability that the individual v has not

transmitted information to an individual u by time t, the quantum probability of the same event can

be calculated by using Born’s rule in Eq. 3.11 as follows:

|
√

θ(t)eθ(t)|2 = (
√

θ(t)eθ(t)).(
√

θ(t)e−θ(t)) = θ(t) (5.2)

Similarly, the probability of a successful transmission is equal to:

|
√

1−θ(t)e(1−θ(t))|2 = (
√

1−θ(t)e(1−θ(t))).(
√

1−θ(t)e(θ(t)−1)) = 1−θ(t) (5.3)
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Therefore, we get exactly the same outcome (Eq.5.1) as in the classical theory. Furthermore, if the

individual u could receive enough pieces of information from his distinct neighbors to exceed his

threshold (φu), i.e. m ≥ φu, he will adopt the information and try to transmit it to his susceptible

neighbors in the next time step. Otherwise, he will keep his susceptible state in the next time step.

Thus, the probability of individual u with degree ku being susceptible is:

su(ku, t) = ∑
φu

F(φu)
φu−1

∑
m=0

τm(ku, t)

= ∑
φu

F(φu)
φu−1

∑
m=0

(
ku

m

)
θ(t)(ku−m)(1−θ(t))m

(5.4)

where F(φu) denotes the information adoption threshold function.

We obtain the fraction of susceptible individuals at time t by combining Eqs. 5.4 with the degree

distribution of the network as:

S(t) = ∑
ku

P(ku)su(ku, t)

= ∑
ku

P(ku)∑
φu

F(φu)
φu−1

∑
m=0

(
ku

m

)
θ(t)(ku−m)(1−θ(t))m

(5.5)

We can follow a similar strategy to calculate the probability of individual v with degree kv being

susceptible state. Being in susceptible state, the individual u is unable to transmit the information

to its neighbor v. Thus, the individual v can receive information from his kv−1 distinct neighbors.

Taking all possible values of receiving m pieces of cumulative information and φv into considera-

tion, we obtain:
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sv(kv, t) = ∑
φv

F(φv)
φv−1

∑
m=0

τm(kv, t)

= ∑
φv

F(φv)
φv−1

∑
m=0

(
kv −1

m

)
θ(t)(kv−m−1)(1−θ(t))m

(5.6)

Recall that, the transfer between states of individuals occur not only between susceptible and

adopted states; but also adopted and recovered states. Adopted individuals may lose their in-

terest in the transmission process and move into the recovered state with a predefined probability.

Thus, the following set of ordinary differential equations (ODEs) define the time dependence of

the individuals in each compartment in the system described above.

dA(t)
dt

=−dS(t)
dt

− γA(t)

dR(t)
dt

= γA(t)
(5.7)

By computing θ(t), we can solve the equations for S(t), and also A(t) and R(t), and investigate the

system dynamics. In edge-based compartmental theory, we have not made any assumption about

the state of individual v; therefore, θ(t) may consist of three possible outcomes which are mutually

exclusive in classical approach:

θ(t) = ξS(t)+ξA(t)+ξR(t) (5.8)

where ξS(t) (ξA(t), ξR(t)) represents the probability that a neighbor v in the susceptible (adopted,

recovered) state, and has not transmitted the information to individual u by time t.
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To employ quantum probability rules, we can use Born’s rule in Eq. 3.11 and write counterpart of

Eq. 5.8 as follows (see Eq. 3.7):

θ(t) = |eiθψξS(t) + eiθψξA(t) + eiθψξR(t)|
2

= |ψξS(t)|
2 + |ψξA(t)|

2 + |ψξR(t)|
2 +2

[
|ψξS(t)||ψξA(t)|cos(θξS(t)−θξA(t))

+ |ψξS(t)||ψξR(t)|cos(θξS(t)−θξR(t))+ |ψξA(t)||ψξR(t)|cos(θξA(t)−θξR(t))

] (5.9)

Here, the amplitude |ψξS(t)|
2 refers to P(ξS(t)), |ψξA(t)|

2 to P(ξA(t)) and |ψξR(t)|
2 to P(ξR(t)). The

angle θξS(t)−θξA(t) corresponds to the phase of the inner product between |ξS(t)| and |ξA(t)|. Note

that there is no direct transition from susceptible state to recovered state, so cos(θξS(t)−θξR(t)) will

be equal to 0. By recalling inverse Born’s rule again, we can finalize the relation above as:

θ(t) = ξS(t)+ξA(t)+ξR(t)

+
√

ξS(t)ξA(t)cos(θξS(t)−θξA(t))+
√

ξA(t)ξR(t)cos(θξA(t)−θξR(t))

(5.10)

Herein, the additional terms are called as interference terms that does not exist in classical proba-

bility theory. From this point, we will call
√

ξS(t)ξA(t)cos(θξS(t)−θξA(t)) as SA interference term

and
√

ξA(t)ξR(t)cos(θξA(t)−θξR(t)) as AR interference term for the sake of simplicity.

Later, we draw from statistical network science to make the connection between these two indi-

viduals u and v. In the case of the existence of an uncorrelated network, the probability of an edge

connecting individual v with a degree kv to one of its neighbors, e.g., individual u with degree ku,

is equal to kvP(kv)/⟨k⟩, where ⟨k⟩ is the mean degree. Thus, it can be obtained that:
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ξS(t) =
∑kv kvP(kv)sv(kv, t)

⟨k⟩

=
∑kv kvP(kv)∑φv F(φv)∑

φv−1
m=0 τm(kv, t)

⟨k⟩

=
∑kv kvP(kv)∑φv F(φv)∑

φv−1
m=0

(kv−1
m

)
θ(t)(kv−1−m)(1−θ(t))m

⟨k⟩

(5.11)

θ(t) is a time-dependent variable, and it will not accomplish its definition after any successful

transmission. Therefore, we need to consider its time-dependence to fully understand the sys-

tems dynamics from the beginning till the steady-state. If we suppose that an adopted individual

transmits behavioral information with probability λ , the decrease in θ(t) can be written as:

dθ(t)
dt

=−λξA(t) (5.12)

At time t, the behavioral information is not transmitted with probability 1− λ and the adopted

individuals move into recovered state with probability γ , simultaneously. Then;

dξR(t)
dt

= γ(1−λ )ξA(t) (5.13)

Substituting Eqs. 5.12 into 5.13 and integrating it with the initial conditions of θ(0) = 1 and

ξR(0) = 0, we can obtain:

ξR(t) =
γ(1−λ )[1−θ(t)]

λ
(5.14)
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Binomial Threshold Distribution

Since the quantum-like social contagion is a novel approach, and it introduces a complexity via its

additional interference terms. Because the heterogeneity of individuals in information adoption is

significant, we assume that F(φu) can be represented as a binomial distribution. In other words,

individuals may have either a relatively lower threshold (Ta = 1) with probability p, or a relatively

higher threshold (Tb > 1) with probability 1− p. Thus;

F(φu) =


Ta, with probability p

Tb, with probability 1-p
(5.15)

We obtain the fraction of susceptible individuals at time t by combining Eqs. 5.4 and 5.15 with the

degree distribution of the network as:

S(t) = ∑
ku

P(ku)su(ku, t)

= ∑
ku

P(ku)

[
pθ(t)ku +(1− p)

TB−1

∑
m=0

(
ku

m

)
θ(t)(ku−m)(1−θ(t))m

] (5.16)

We can follow a similar strategy to calculate the probability of individual v with degree kv being

susceptible state. Taking all possible values of receiving m pieces of cumulative information and

φv into consideration, we obtain:

sv(kv, t) = pθ(t)(kv−1)+(1− p)
TB−1

∑
m=0

(
kv

m

)
θ(t)(kv−m−1)(1−θ(t))m (5.17)
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Then, the rest of the methodology is followed from Eq. 5.17 till the end. Finally, we obtain ξA(t)

inserting Eqs. 5.11 and 5.14 into 5.9. Substituting the resulting equation of ξA(t) into Eq. 5.12, we

derive the time evolution of θ(t). Furthermore, the dynamics of quantum social contagion can be

described with the ODE equations in Eq. 5.7. When t → ∞, we find the final adoption size R(∞)

once the degree distribution is known.

Belief-Entropy-Based Heuristic

In this study, we propose belief entropy as a heuristic for the calculation of interference term in

Equation 5.10.

Di j = cos(θi −θ j) =−∑
i

m(xi)ln
m(xi)

2|xi−1 −1
(5.18)

where |xi| represents the number of possible actions which is equal to three in our example since

individuals can be in one of three states. m(.) denotes the function of belief mass in Dempster-

Shafer evidence theory. Accordingly,

DSA = cos(θξS(t)−θξA(t)) =−m(xSA)lnm(xSA) (5.19)

where

m(xSA) = α

∣∣∣∣∣ξS(t)+
ξS(t)−ξA(t)

ξS(t)+ξA(t)−1

∣∣∣∣∣ (5.20)

It should be noted that masses of all the members of the set add up to a total of 1. Therefore, α is

used as a normalization parameter.

α

(∣∣∣∣∣ξS(t)+
ξS(t)−ξA(t)

ξS(t)+ξA(t)−1

∣∣∣∣∣+
∣∣∣∣∣ξA(t)+

ξA(t)−ξR(t)
ξA(t)+ξR(t)−1

∣∣∣∣∣
)

= 1 (5.21)
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Accordingly, Equation 5.10 can be rewritten as:

θ(t) = ξS(t)+ξA(t)+ξR(t)+
√

ξS(t)ξA(t)DSA +
√

ξA(t)ξR(t)DAR

= ξS(t)+ξA(t)+ξR(t)−
√

ξS(t)ξA(t)m(xSA)lnm(xSA)−
√

ξA(t)ξR(t)m(xAR)lnm(xAR)

(5.22)

Co-evolution of Two Quantum Social Contagions

In this section, we will explain the mathematical modeling of co-evolution of two quantum social

contagions by using edge-based compartmental theory inspired by [162]. During this process,

suppose that there are two behavior (information), i.e., b ∈ {1,2} successively disseminate in the

network. To exemplify the social contagion mechanism in this study, we integrate a quantum-

like point of view to the classical message-passing approach [8] that generalizes the well-known

susceptible-adopted-recovered (SAR) model, to fully describe the mechanisms of information (or

behavior) spreading on a complex network. In this approach, each individuals of the network of

N nodes and a degree distribution P(k) falls into one of three states: susceptible, adopted and

recovered. These states represent:

• An individual in a susceptible state (S) does not adopt the behavior yet,

• An individual in an adopted state observed the behavior and adopted it already and tries to

transmit it to his susceptible neighbors,

• An individual in a recovered state adopted the behavior once but lose interest and will not

further participate in spreading.
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First of all, we focus on the spreading of first behavior (information) (b1). Suppose that u,(u ∈V )

is an individual who is in the adopted state and all other individuals are in susceptible state, i.e.

They can receive information from his neighbors but cannot transfer since they have not adopted

information yet. In each time step, u tries to transmit to information to all his susceptible neighbors

with the probability of λ1. Let v,(v ∈ V ) be a randomly chosen neighbor of u (Eu,v ̸= 0). Once

the influence successful and u transmit information to v, he loses his interest in spreading by

probability γ1, and goes to recovered state and v increase his cumulative piece of information m by

1. The probability of individual v with degree kv adopts b1 can be identified with:

π(kv,m) = 1− (1− τ1)
m (5.23)

where m is the cumulative number of b1 that individual v has received from adopted neighbors,

while τ1 is the unit of adopting probability for each reception of b1. Since each adopted individual

will try to transmit the information b1 during the process, individual v will update his cumulative

piece of information each time until it exceeds his threshold.

Later, following the dynamical process of b1, a random seed node is selected to be in the adopted

state for behavior 2 (b2) and the rest of the nodes set to be in the susceptible state for b2. The

dynamical properties of b1 and b2 are analogous; however, transmission probability is equal to

λ2 instead of λ1, and the recovery probability is equal to γ2 instead of γ1. Furthermore, let Xu

represents the final state of individual u for b1 and Xu = S means that individual u did not adopt b1

yet, while Xu = R means that individual u has adopted b1. Additionally, the susceptible individual

u of degree ku receives the pth piece of b2, and the cumulative number of pieces of received b2 is

m, then individual u adopts b2 with a probability:
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Ψ(kv,m,X) =


1− (1− τ2)

m,Xu = S

1− (1−ατ2)
m,Xu = R

(5.24)

Here, τ2 represents the unit adopting probability for each reception of b2. Also, when a node has

adopted b1, i.e., Xu = R, the actual unit adoption probability τ2 converts to ατ2, where α ∈ [0, 1
τ2
]

is a parameter that is used to adjust the adoption synergy between b1 and b2. For example, α = 0

means that if an individual adopted b1 it never adopts b2. Furthermore, α = 1
τ2

means that if an

individual adopted b1 needs to receive only one piece of b2 to adopt b2. On the other hand, α = 1

means that adopting b1 has no impact on adopting b2.

During the spread of b1, we employ an edge-based compartmental theory to understand the dy-

namics of the quantum social contagion approach as in the previous subsection. Again, we focus

on a single individual, - called u, who is in the susceptible state and one of its neighbor v, where

Eu,v ̸= 0. Let θ1(t) is the probability that the individual v has not transmitted b1 to the individual

u by time t, then the probability that individual u with degree ku has received m pieces of b1 from

his distinct neighbors by time t will be binomially distributed and computed as:

τ(ku, t) =
(

ku

m

)
θ1(t)(ku−m)(1−θ1(t))m (5.25)

If the individual u could receive enough pieces of information from his distinct neighbors, he will

adopt the information and try to transmit it to his susceptible neighbors in the next time step. Oth-

erwise, he will keep his susceptible state in the next time step. Thus, the probability of individual

u with degree ku being susceptible is:
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su(ku, t,b1) =
ku

∑
m=0

τ(ku, t)
m

∏
i=0

(1−π(ku, i))

=
ku

∑
m=0

(
ku

m

)
θ1(t)(ku−m)(1−θ1(t))m

m

∏
i=0

(1−π(ku, i))

(5.26)

Thus, we obtain the fraction of susceptible individuals at time t by combining Eqs. 5.26 with the

degree distribution of the network as:

S1(t) = ∑
ku

P(ku)su(ku, t,b1)

= ∑
ku

P(ku)
k

∑
m=0

(
ku

m

)
θ1(t)(ku−m)(1−θ1(t))m

m

∏
i=0

(1−π(ku, i))
(5.27)

Being in susceptible state, the individual u is unable to transmit the information to its neighbor v.

Thus, the individual v can receive information from his kv − 1 distinct neighbors. If we consider

all the possible values of receiving m pieces of cumulative information and φv values, we obtain

the following:

sv(kv, t,b1) =
kv−1

∑
m=0

τ(kv, t)
m

∏
i=0

(1−π(kv, i))

=
kv−1

∑
m=0

(
kv −1

m

)
θ1(t)(kv−m−1)(1−θ1(t))m

m

∏
i=0

(1−π(kv, i))

(5.28)

Taking into consideration the fact that individuals transfer between states not only from susceptible

to adopted states, but also from adopted to recovered states; the following set of ordinary differ-
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ential equations (ODEs) define the time dependence of the individuals in each compartment in the

system described above

dA1(t)
dt

=−dS1(t)
dt

− γ1A1(t)

dR1(t)
dt

= γ1A1(t)
(5.29)

As aforementioned above, in edge-based compartmental theory, we have not made any assumption

about the state of individual v; therefore, θ1(t) may consist of three possible outcomes which are

mutually exclusive in classical approach:

θ1(t) = ξS1(t)+ξA1(t)+ξR1(t) (5.30)

where ξS1(t) (ξA1(t), ξR1(t)) represents the probability that a neighbor v in the susceptible (adopted,

recovered) state, and has not transmitted b1 to individual u by time t.

By utilizing the using the Born’s rule in Eq. 3.11 and using the similar assumption in Eq. 5.9, we

can derive the quantum counterpart of Eq. 5.30 as follows:

θ1(t) = ξS1(t)+ξA1(t)+ξA1(t)

+
√

ξS1(t)ξA1(t)cos(θξS1(t)−θξA1(t))+
√

ξA1(t)ξR1(t)cos(θξA1(t)−θξR1(t))

(5.31)

Here, the amplitude |ψξS1(t)|
2 refers to P(ξS1(t)), |ψξA1(t)|

2 to P(ξA1(t)) and |ψξR1(t)|
2 to P(ξR1(t)).

The angle θξS1(t) − θξA1(t) corresponds to the phase of the inner product between |ξS1(t)| and

|ξA1(t)|. Also, the additional terms are called as interference terms that does not exist in clas-

sical probability theory. From this point, we will call
√

ξS1(t)ξA1(t)cos(θξS1(t)− θξA1(t)) as SA1
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interference term and
√

ξA1(t)ξR1(t)cos(θξA1(t)−θξR1(t)) as AR1 interference term for the sake of

simplicity.

To calculate θ1(t), lets recall that individual u and individual v with a degree kv are connected

to each other. In the case of the existence of an uncorrelated network, the probability of an

edge connecting individual v to one of its neighbors, e.g., individual u with degree ku, is equal

to kvP(kv)/⟨k⟩, where ⟨k⟩ is the mean degree. Thus, it can be obtained that:

ξS1(t) =
∑kv kvP(kv)sv(kv, t,b1)

⟨k⟩

=
∑kv kvP(kv)∑

kv−1
m=0

(kv−1
m

)
θ1(t)(kv−m−1)(1−θ1(t))m

∏
m
i=0(1−π(kv, i))

⟨k⟩

(5.32)

We assume that the adoption transmits b1 with probability λ1, so the decrease in θ1(t) can be

expressed by:

dθ1(t)
dt

=−λ1ξA1(t) (5.33)

At time t, b1 is not transmitted with probability 1− λ1 and the adopted individuals move into

recovered state with probability γ1, simultaneously. Then;

dξR1(t)
dt

= γ1(1−λ1)ξA1(t) (5.34)

Substituting Eqs. 5.33 into 5.34 and integrating it with the initial conditions of θ1(0) = 1 and

ξR1(0) = 0, we obtain:
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ξR1(t) =
γ1(1−λ1)[1−θ1(t)]

λ1
(5.35)

In the second part of the analysis, we will model the spread of the second behavior (information),

b2. Let ω(X) be the probability of the state of a random individual in terms of b1. Here, X = S and

X = R indicates that indicates that the individual has not adopted and has adopted b1, respectively.

Therefore, ω(S) = 1−R1 and ω(R) = R1. For b2, the transmission probability is depend on the

actual state of the individual for b1 as identified in Eq. 5.40. Now, the probability of individual

u with degree ku being susceptible can be investigated under two steps. First, there is a chance

for individual u has not adopted b1 and does not adopt b2 by time t. Second, there is a chance

for individual u has adopted b1 and does not adopt b2 by time t. Combining both gives us the

probability of individual u with degree ku being susceptible as follows:

su(ku, t,b2) = ∑
X∈{S,R}

ω(X)
ku

∑
m=0

τ(ku, t)
m

∏
i=0

(1−ψ(ku, i,X))

= ∑
X∈{S,R}

ω(X)
ku

∑
m=0

(
ku

m

)
θ2(t)(ku−m)(1−θ2(t))m

m

∏
i=0

(1−ψ(ku, i,X))

(5.36)

where F(φu) denotes the information adoption threshold function.

Thus, we obtain the fraction of susceptible individuals at time t for the second behavior b2 by

combining Eqs. 5.26 with the degree distribution of the network as:
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S2(t) = ∑
ku

P(ku)su(ku, t,b2)

= ∑
ku

P(ku) ∑
X∈{S,R}

ω(X)
ku

∑
m=0

(
ku

m

)
θ2(t)(ku−m)(1−θ2(t))m

m

∏
i=0

(1−ψ(ku, i,X))

(5.37)

As explained in the derivation of Eq. 5.38, being in susceptible state, the individual u is unable to

transmit the information to its neighbor v. Thus, the individual v can receive information from his

kv−1 distinct neighbors. If we consider all the possible values of receiving m pieces of cumulative

information and φv values, we obtain the following:

sv(kv, t,b2) =
kv−1

∑
m=0

τ(kv, t)
m

∏
i=0

(1−π(kv, i))

=
kv−1

∑
m=0

(
kv −1

m

)
θ2(t)(kv−m−1)(1−θ2(t))m

m

∏
i=0

(1−ψ(kv, i,X))

(5.38)

Then, we repeat the same procedure to calculate θ2. Since θ2 is obtained with the summation of

ξS2(t), ξA2(t) and ξR2(t), where each represents the probability that a neighbor v in the susceptible

(adopted, recovered) state, and has not transmitted b2 to individual u by time t, we calculate the

probability of an edge connecting individual v to one of its neighbors as follows:

ξS2(t) =
∑kv kvP(kv)sv(kv, t,b2)

⟨k⟩

=
∑kv kvP(kv)∑

kv−1
m=0

(kv−1
m

)
θ2(t)(kv−m−1)(1−θ2(t))m

∏
m
i=0(1−ψ(kv, i,X))

⟨k⟩

(5.39)
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where

Ψ(kv,m,X) =


1− (1− τ2)

m,Xu = S

1− (1−ατ2)
m,Xu = R

(5.40)

Inserting Eqs. 5.39 and into main θ2 function yields ξA(t) in classical theory as follows:

ξA2(t) = θ2(t)−
∑kv kvP(kv)sv(kv, t,b2)

⟨k⟩
− γ2(1−λ2)[1−θ2(t)]

λ2

= θ2(t)−
∑kv kvP(kv)∑

kv−1
m=0

(kv−1
m

)
θ2(t)(kv−m−1)(1−θ2(t))m

∏
m
i=0(1−ψ(kv, i,X))

⟨k⟩

− γ2(1−λ2)[1−θ2(t)]
λ2

(5.41)

Then, the time evolution of θ2(t) in classical theory is found to be equal to:

dθ2(t)
dt

=−λ2

[
θ2(t)−

∑kv kvP(kv)sv(kv, t,b2)

⟨k⟩

]
− γ2(1−λ2)[1−θ2(t)] (5.42)

In quantum counterpart of this calculation; however, is more complex due to the interference terms

in 3.7. In this case, we insert Eqs. 5.39 into Eq. 5.10 to obtain ξA2(t) by using the quantum

approach:

θ2(t) =
∑kv kvP(kv)sv(kv, t,b2)

⟨k⟩
+ξA2(t)+

γ2(1−λ2)[1−θ2(t)]
λ2

+

√
∑kv kvP(kv)sv(kv, t,b2)

⟨k⟩
ξA2(t)cos(θξS2(t)−θξA2(t))

+

√
ξA2(t)

γ2(1−λ2)[1−θ2(t)]
λ2

cos(θξA2(t)−θξR2(t))λ )

(5.43)
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CHAPTER 6: RESULTS

In this study, we aim to answer five research questions given in Introduction section. Every ques-

tion will be investigated under relative subsections. To understand the analyses and organization

in this section, recall the following research question:

• To better model the complexity of human decision-making and explain existing paradoxes

and fallacies, researchers developed numerous quantum-like approaches [18, 19, 15, 20, 21,

22]. Does the quantum-like approach model the dynamics of social contagion better?

• The most challenging task in employing social contagion analyses is to model heterogeneity

of the individuals in their adoption threshold. Current studies that use the classical approach

demonstrated the existence of discontinuous phase transitions in the final spreading size

versus transmission probability. What type of phase transitions are observed when agents

are modeled as quantum decision-makers?

• The variability of the social contagion dynamics with changing network properties (assor-

tativity, density, clustering, degree distribution, etc.) is highly studied among researchers

[37, 38]. Does the superiority/incapacity of quantum-based probabilistic models in social

contagion analyses over classical models vary with changing network properties?

• Quantum-like probabilistic models yield extra interference terms compared to classical ap-

proaches. Some studies that utilized quantum-like approaches in decision-making systems

tunes these parameters manually [30], [39]; while others do automatically by using a static

heuristic [32] and/or dynamic heuristic [21]. Can a heuristics based on entropy measures be

an alternative to the extant heuristics in the literature?

• Despite the great interest in modeling a contagion of single behavior, there might be compet-
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ing or cooperating contagions in the complex network in real case scenarios. Does quantum

contagion is applicable for these complex contagions, or is it too complex to handle?

Comparison of Quantum-Like and Classical Approaches in Modeling Social Contagion

As aforementioned in the Introduction section, human inference is deterministic and jumps be-

tween state-like steps over time according to classical approaches. In contrast, quantum-like ap-

proaches are based on the aspect that human minds simultaneously hold competing beliefs. De-

spite bringing more generalizable and realistic point of view, quantum-like approaches are more

complex and time-inefficient. Thus, in this section, we will first focus on the scenario in which in-

dividuals are homogeneous, i.e. all individuals have same threshold value (Ta = Tb = 1 in Equation

5.15). Later, we will integrate binomial threshold distribution (Ta ̸= Tb in Equation 5.15).

Homogeneous Adoption Threshold

Here, we aim to compare and contrast the dynamics and performances of classical social contagion

along with its quantum counterpart. In fact, the differences in these two approaches stem from the

definition of θ(t) in Eqs. 5.8 and 5.10; therefore, we first investigated the graphical solution of

fixed point equation dθ(t)/dt at steady-state, i.e. t → ∞ with different threshold values on random

regular networks in Figure 6.1.

Figure 6.1a shows the graphical solution of the fixed point of equation dθ(t)/dt when all agents

have same adoption threshold Ta = Tb = 1 and the classical social contagion model is utilized. Re-

sults show that there is only one nontrivial solution regardless of the value of λ , and the increasing

λ yield the solution on lower θ(∞). Since only the maximum solution is physically meaningful in

such situations, we plotted the physically meaningful solutions of θ(t) for each possible λ values
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Figure 6.1: The graphical solution of fixed point of equation dθ(t)/dt at steady-state in the exis-
tence of homogeneous agents (Tb = 1) on random regular networks (⟨k⟩= 10 and p = 0.3) when a.
no interference term (classical method), b. cos(θξS(t)−θξA(t)) = 0.5, c. cos(θξA(t)−θξR(t)) = 0.2.
The physically meaningful solutions of θ(t) for each possible λ values are shown in the subplots
a1, b1 and c1, respectively.

by using the classical approach in Figure 6.1a1. The solution for θ(∞) shows a continuous change

after the critical transmission probability (λ I
c = 0.113). It means that the final adoption size R(∞)

grows continuously with the increasing λ . The quantum approach, on the other hand, yields two

interference terms: SA (cos(θξS(t)−θξA(t))) and AR (cos(θξS(t)−θξA(t))) interference terms. Fig-

ure 6.1b and 6.1c show the graphical solution of fixed point of equation dθ(t)/dt at steady-state

when Tb = 2 and only SA and AR interference terms are observed, respectively. The change in

θ(∞) with respect to λ in the existence of SA and AR interference is also plotted in Figure 6.1b1

and 6.1c1. Results show that the SA interference term makes the pattern discontinuous, i.e. R(∞)

increases discontinuously with the increasing λ and jump to another point at critical transmis-

sion probability (λ I
c = 0.249). In the existence of AR interference term, on the other hand, same

continuous change pattern is observed as in classical social contagion; however, at lower critical

transmission probability (λ I
c = 0.099).
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Heterogeneous Adoption Threshold

In the previous subsection, we investigated the dynamics and performances of classical social

contagion along it quantum counterpart when all individuals have same adoption threshold (TA =

TB = 1). Here, to implement the heterogeneity of agents in a social contagion analysis we used

binomial threshold distribution defined in Equation 5.15. To understand the effect of threshold

heterogeneity, we repeated our experiments on two different threshold values, e.g., Tb = 2 and

Tb = 4.
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Figure 6.2: The graphical solution of fixed point of equation dθ(t)/dt at steady-state when a. Tb =
2 and b. Tb = 4 on random regular networks (⟨k⟩ = 10 and p = 0.3). The physically meaningful
solutions of θ(t) for each possible λ values are shown when c. Tb = 2 and d. Tb = 4. Subplots a1,
b1 and c1 show the relative solutions when cos(θξS(t)−θξA(t)) = 0.2, while subplots a2, b2 and c2
do when cos(θξA(t)−θξR(t)) = 0.2

Figure 6.2a shows the graphical solution of fixed point of equation dθ(t)/dt when Tb = 2. Re-

sults show that, as in the case of homogeneous adoption threshold distribution, there is only one
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nontrivial solution when λ is small; however, at moderate λ values there are cases in which two

nontrivial solutions are observed. In such a case, only the maximum solution is physically mean-

ingful. In Figure 6.2c, we plotted the physically meaningful solutions of θ(t) for each possible λ

values by using the classical approach. The solution for θ(∞) show a discontinuous change and

jump to another point at critical transmission probability (λ I
c = 0.262). Therefore, R(∞) grows

discontinuously with the increasing λ . The quantum approach, on the other hand, yields two in-

terference terms: SA (cos(θξS(t)−θξA(t))) and AR (cos(θξS(t)−θξA(t))) interference terms. Figure

6.2a1 (6.2a2) shows the graphical solution of fixed point of equation dθ(t)/dt at steady-state when

Tb = 2 and only SA (AR) interference is observed. The change in θ(∞) with respect to λ in the

existence of SA (AR) interference is also plotted in Figure 6.2c1 (6.2c2). Results show that the

SA interference term makes the pattern continuous, i.e. R(∞) increases continuously with the

increasing λ . In the existence of AR interference term, on the other hand, same discontinuous

change pattern is observed as in classical social contagion; however, at lower critical transmission

probability (λ I
c = 0.238).

For the case of Tb = 4 (Figure 6.2b), θ(∞) decreases continuously and a continuous phase transition

observed at the first critical transmission probability (λ I
c = 0.335), then another discontinuous

change occurs at the second critical transmission probability (λ II
c = 0.535) in the classical approach

(Figure 6.2d). It means that, R(∞) first increases continuously and then a discontinuous pattern is

observed, which is called as hybrid phase transition. W. Wang et al. [4] explains this situation

as follows: In the existence of more than one critical transmission probability, two different types

of information adoption occur: i) Local adoption in which the information is adopted by a small

fraction of individuals, ii) Global adoption in which the information is adopted by a finite fraction

of individuals. When λ < λ I
c , individuals adopt information locally, while a global adoption is

observed when λ > λ II
c . In the case of λ I

c < λ < λ II
c , individuals who have lower thresholds

adopt behavior globally while individuals who have higher thresholds adopt behavior locally. In
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the quantum social contagion model, SA interference term makes R(∞) growth continuous with

increasing λ , while AR term displays same pattern as in classical approach with lower the critical

transmission probabilities, i.e. (λ I
c = 0.306 and λ II

c = 0.515).
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Figure 6.3: The final information adoption size R(∞) versus λ with classical (black solid line),
various cos(θξS(t)−θξA(t)) = 0.2 and 0.4 (red dash and solid lines) and cos(θξA(t)−θξR(t)) = 0.2
and 0.4 (blue dash and solid lines) when a. Tb = 2 and b.Tb = 4 on random regular networks
(⟨k⟩= 10 and p = 0.3). Subplots show the same simulations when ⟨k⟩= 15.

Figure 6.3 shows R(∞) versus λ by using classical approach and varying strength of SA and AR

interference terms in Equation 5.10 when Tb = 2 (Figure 6.3a) and Tb = 4 (Figure 6.3b). As we

mentioned, classical approaches show a hybrid phase transition in both cases. This hybrid phase

transition pattern is also observed when only AR interference exists; however, a second-order

(continuous) phase transition is observed in the existence of SA interference. We observed the

similar pattern until Tb ≥ 6 only, since after this level the fraction of individuals who have lower

adoption threshold were not enough to persuade individuals who have higher adoption threshold in

the system. Furthermore, the phase transition becomes continuous even in the classical approach

also when Tb = 1, since the model reduces to the traditional SAR model [2]. The mini subplots

on the left-top corner of each figure shows same dynamics when mean-degree (⟨k⟩) of RNN is

increased, and same conclusions are observed. Therefore, we can conclude that our results are
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robust to the changes in ⟨k⟩ of RNNs.
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Figure 6.4: The dependence of R(∞) on p and λ on random regular networks with ⟨k⟩ = 10 and
Tb = 4 as a result of a. numerical simulations, b. theoretical analysis by using a classical approach.

For the comparison of performances of classical and quantum approaches in this study, extensive

numerical simulations are performed on uncorrelated random regular networks (RRNs) with N =

10,000, ⟨k⟩ = 10 and γ = 1.0. Figure 6.4 shows the fraction of adopted individuals with varying

behavioral information transmission probability (λ ) and initial fraction of adopted individuals (p).

The theoretical solutions of R(∞) described in Figure 6.2 can be seen at λ p plane more clearly.

A first continuous, then a discontinuous increase in R(∞) shows a hybrid phase transition. This

crossover phenomena in the increase of R(∞) with respect to p separates the λ p plane into three

different regions: i) region I (p ≤ 0.15), only negligibly small fraction of individuals adopt the

information (local information adoption), ii) region II with a first-order phase transition (0.15 <

p ≤ 0.42), a definite fraction of individuals adopt the information above λ I
c , iii) region III with a

second order phase transition (p > 0.42), a global adoption is observed above λ I
c . On the other

hand, a theoretical analysis by using a classical approach fails to model spreading mechanism in

region I when p is small, because θ(∞) is observed to be equal to 1 until a fixed value although

it has gradually decreasing pattern in numerical simulations. This results with an overestimation
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of final adoption size in this region. Moreover, a smooth transitions of R(∞) on the λ p plane

in region II in numerical simulations are also modeled with a redundant sharp transitions in the

classical approach.
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Figure 6.5: The dependence of error between R(∞) numerical simulations and theoretical analysis
by using a quantum-like approach on cos(θξS(t)−θξA(t)) and cos(θξA(t)−θξR(t)) interference terms
when a. p = 0.3, b. p = 0.6.

The squared difference of R(∞) versus λ from 0.01 to 1.00 (0.01 increments) between results

obtained via theoretical analysis and numerical simulations using a quantum-like approach with

varying interference terms are shown in Figure 6.5. The origin point represents the squared error

when classical approach is used since both interference terms are equal to zero (e2
p=0.3 = 4.1707

and e2
p=0.6 = 1.7643). Regardless of the initial fraction of adopted individuals (p), the minimum

errors are observed near to the diagonal of interference terms plane, and the minimum value is

obtained when cos(θξS(t) − θξA(t)) = 0.15 and cos(θξA(t) − θξR(t)) = 0.16 (e2
p=0.3 = 4.1229 and

e2
p=0.6 = 1.7326). These results demonstrate that quantum-like approach in edge-based compart-

mental model of message passing approach in the modeling of social contagion performs better

compared to the classical method since it can better predict the final adoption size at close to the

critical transmission probabilities.
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Phase Transitions in a Social Contagion Process With Quantum Decision-Makers

a. b.

0 0.5 1
0

0.5

1

(
)

Tb=5
Tb=4
Tb=3
Tb=2
Tb=1

0 0.5 1
0

0.5

1

(
)

Tb=5
Tb=4
Tb=3
Tb=2
Tb=1

0 0.5 1
0

0.5

1

(
)

Tb=5
Tb=4
Tb=3
Tb=2
Tb=1

0 0.5 1
0

0.5

1
(

)
c. d.

Figure 6.6: The physically meaningful solutions of fixed point of equation dθ(t)/dt at steady-
state for each possible λ values on random regular networks (⟨k⟩ = 10 and p = 0.3) with varying
Tb when a. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0, b. cos(θξS(t)− θξA(t)) = 0.5 and
cos(θξA(t)− θξR(t)) = 0, c. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0.5, d. cos(θξS(t)−
θξA(t)) = 0.5 and cos(θξA(t)−θξR(t)) = 0.5

In the comparison of phase transitions in social contagion dynamics when classical and quantum

approaches are utilized, we first observed the case in which individuals have homogeneous adop-

tion threshold values. Here, we observed that the final adoption size R(∞) grows continuously

with the increasing λ in the utilization of classical approach. Whereas, SA interference term in the

quantum approach makes the pattern discontinuous and R(∞) increases discontinuously with the
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increasing λ and jump to another point at critical transmission probability. In the existence of AR

interference term, on the other hand, same continuous change pattern is observed as in classical

social contagion; however, at lower critical transmission probability. In the case of heterogeneous

adoption threshold, θ(∞) decreases continuously and a continuous phase transition observed at

the first critical transmission probability, then another discontinuous change occurs at the second

critical transmission probability even in the classical approach. It means that, R(∞) first increases

continuously and then a discontinuous pattern is observed, which is called as hybrid phase transi-

tion.

Table 6.1: Critical Transmission Probabilities (λ I
c (λ II

c )) of Social Contagion on Random Regular
Networks (⟨k⟩= 10 and p = 0.3) With Varying Tb

Tb = 1 Tb = 2 Tb = 3 Tb = 4 Tb = 5
cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0 0.113 0.293 0.373 (0.450) 0.373 (0.605) 0.373 (0.737)

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0 0.249 0.404 0.551 0.682 0.794

cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0.5 0.100 0.266 0.343 (0.419) 0.343 (0.573) 0.343 (0.711)

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0.5 0.155 0.300 0.452 0.605 0.737

To understand the dependence of phase transitions in a social contagion process with quantum

decision makers, we have plotted the physically meaningful solutions of fixed point of equation

dθ(t)/dt at steady-state for each possible λ values on random regular networks (⟨k⟩ = 10 and

p = 0.3) with varying Tb in 6.6. Critical transmission probabilities for each Tb are also recorded

in Table 6.1. Figure 6.6a shows the case in which classical approach is utilized. In the case of

homogeneous adoption threshold, a continuous phase transition exists (Tb = 1 shown with a black

line). When the difference between threshold values are relatively lower between two groups

(Tb = 2 shown in yellow line), e.g., a group who has a low and high threshold values, only a

discontinuous phase transition is observed. In higher threshold values (Tb ≥ 2), on the other hand,
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a hybrid phase transition occurred. When there is only SA interference in the quantum-like social

contagion model, a discontinuous phase transition is observed regardless of the threshold value

(Figure 6.6b). However, the existence of only AR interference term in the quantum-like social

contagion model exhibits same phase transition patterns with that of classical model, - only a small

changes in the critical transmission probability values are observed (Table 6.6). The existence of

both interference terms prevented the hybrid phase transition in the classical model and only a

discontinuous phase transition is observed.

The Variability of The Social Contagion Dynamics With Changing Network Properties

The previous section showed the physically meaningful solutions of fixed point of equation dθ(t)/dt

at steady-state for each possible λ values on random regular networks (⟨k⟩= 10 and p = 0.3) with

varying Tb in Figure 6.6. We have repeated same experiments to understand the effect of initial

probability p and the mean-degree ⟨k⟩ in this section. Therefore, Figure 6.7 shows the results when

there is no interference term (6.7a), only SA interference term (6.7b), only AR interference term

(6.7c) and when both interference exist (6.7d) when ⟨k⟩ is increased from 10 to 15. The critical

transmission probabilities observed in these analyses are also written in Table 6.2.

Table 6.2: Critical Transmission Probabilities (λ I
c (λ II

c )) of Social Contagion on Random Regular
Networks (⟨k⟩= 15 and p = 0.3) With Varying Tb

Tb = 1 Tb = 2 Tb = 3 Tb = 4 Tb = 5
cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0 0.073 0.190 0.241 (0.291) 0.241 (0.398) 0.241 (0.497)

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0 0.166 0.271 0.374 0.470 0.559

cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0.5 0.065 0.171 0.218 (0.265) 0.218 (0.366) 0.218 (0.463)

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0.5 0.101 0.195 0.294 0.398 0.496
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Figure 6.7: The physically meaningful solutions of fixed point of equation dθ(t)/dt at steady-
state for each possible λ values on random regular networks (⟨k⟩ = 15 and p = 0.3) with varying
Tb when a. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0, b. cos(θξS(t)− θξA(t)) = 0.5 and
cos(θξA(t)− θξR(t)) = 0, c. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0.5, d. cos(θξS(t)−
θξA(t)) = 0.5 and cos(θξA(t)−θξR(t)) = 0.5

Results demonstrated that phase transition do not depend on the mean-degree and same types

of phase transitions are observed. Whereas, critical transmission probabilities are affected with

the changing mean degree of random regular networks. Increasing mean degree unexpectedly

lowered the critical transmission probabilities, since increasing connectivity between individuals

will increase the likelihood of global adoption.

Later, we showed the physically meaningful solutions of fixed point of equation dθ(t)/dt at steady-
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state for each possible λ values on random regular networks (⟨k⟩ = 15 and p = 0.6) with varying

Tb in Figure 6.8 and the critical transmission probabilities are also given in Table 6.3.
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Figure 6.8: The physically meaningful solutions of fixed point of equation dθ(t)/dt at steady-
state for each possible λ values on random regular networks (⟨k⟩ = 15 and p = 0.6) with varying
Tb when a. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0, b. cos(θξS(t)− θξA(t)) = 0.5 and
cos(θξA(t)− θξR(t)) = 0, c. cos(θξS(t)− θξA(t)) = 0 and cos(θξA(t)− θξR(t)) = 0.5, d. cos(θξS(t)−
θξA(t)) = 0.5 and cos(θξA(t)−θξR(t)) = 0.5

Here, results show that increasing initial probability extinguished the hybrid phase transitions,

i.e. one single critical transmission probability is observed in every cases. Regardless of Tb, a

continuous phase transition is observed when the classical approach is utilized (Figure 6.8a) or

there is only AR interference exist in the quantum social contagion (Figure 6.8c). The existence
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of SA interference term, on the other, triggers a discontinuous phase transition in quantum social

contagion (Figure 6.8b and Figure 6.8c).

Table 6.3: Critical Transmission Probabilities (λ I
c (λ II

c )) of Social Contagion on Random Regular
Networks (⟨k⟩= 15 and p = 0.6) With Varying Tb

Tb = 1 Tb = 2 Tb = 3 Tb = 4 Tb = 5
cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0 0.073 0.121 0.121 0.121 0.121

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0 0.166 0.232 0.310 0.399 0.494

cos(θξS(t)−θξA(t)) = 0
cos(θξA(t)−θξR(t)) = 0.5 0.065 0.108 0.108 0.108 0.108

cos(θξS(t)−θξA(t)) = 0.5
cos(θξA(t)−θξR(t)) = 0.5 0.101 0.151 0.197 0.242 0.293

Belief Entropy as a Heuristic

Figure 6.5 shows the dependence of error between R(∞) numerical simulations and theoretical

analysis by using a quantum-like approach on SA (cos(θξS(t)−θξA(t))) and AR (cos(θξA(t)−θξR(t)))

interference terms on different initial probabilities p. Each data pint on heat map figures are cal-

culated by taking the squared difference of R(∞) versus λ from 0.01 to 1.00 (0.01 increments)

between results obtained via theoretical analysis and numerical simulations using a quantum-like

approach. Since the origin points represents when both interference terms are equal to zero, the

error degenerates to the one between numerical simulations and the theoretical analysis when clas-

sical approach is used (e2
p=0.3 = 4.1707 and e2

p=0.6 = 1.7643). Since smaller error values are

obtained when cos(θξS(t) − θξA(t)) = 0.15 and cos(θξA(t) − θξR(t)) = 0.16 (e2
p=0.3 = 4.1229 and

e2
p=0.6 = 1.7326), we can easily argue that quantum-like approach in edge-based compartmental

model of message passing approach in the modeling of social contagion performs better compared

to the classical method since it can better predict the final adoption size at close to the critical
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transmission probabilities.

Furthermore, we observed that the optimum value for both interference terms are obtained when

cos(θξS(t)−θξA(t)) = 0.15 and cos(θξA(t)−θξR(t)) = 0.16 regardless of the changing initial proba-

bility. Using belief entropy in Equation 5.22 when t → ∞ gives results of cos(θξS(t)−θξA(t)) = 0.15

and cos(θξA(t)−θξR(t)) = 0.17 which shows that our proposed method can be used in the prediction

of interference terms in quantum-like social contagion.

Quantum-Like Analysis of Interactive Social Contagions

In the previous section, we have performed extensive numerical simulations on uncorrelated ran-

dom regular networks (RRNs) with N = 10,000, ⟨k⟩ = 10 and γ = 1.0 for the comparison of

performances of classical and quantum approaches in this study. We have demonstrated that a hy-

brid phase transition is observed and the crossover phenomena in the increase of R(∞) with respect

to p separates the λ p plane into three different regions: i) region I: only negligibly small fraction of

individuals adopt the information (local information adoption), ii) region II with a first-order phase

transition: a definite fraction of individuals adopt the information, iii) region III with a second

order phase transition, a global adoption is observed.

In this section, on the other hand, we examined the effect of the spread of behavior 1 b1 on adoption

of behavior 2 b2 and what kind of phase transitions are observed on the same network. In these

analyses, four different adoption regions are observed: i) Region I (orange colored): Both b1 and b2

are adopted by only negligibly small fraction of individuals, ii) Region II (brown colored): While

a definite fraction of individuals adopt b1, a negligibly small fraction of individuals adopted b2, iii)

Region III (light orange colored): While a definite fraction of individuals adopt b2, a negligibly

small fraction of individuals adopted b1, iv) Region IV (black colored): A global adoption is
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Figure 6.9: The phase diagram of the system that shows the impact of b1 on the spread of b2
on random regular networks with ⟨k⟩ = 10 a. with numerical simulations, b. theoretical analy-
sis by using a classical approach, c) theoretical analysis by using a quantum-like approach with
cos(θξS(t)− θξA(t)) = 0.16 and cos(θξA(t)− θξR(t)) = 0.15 interference terms. Orange and black
colored areas represent no behaviors adopted and two behaviors are widely adopted in these re-
gions, respectively. Brown and light orange colored regions, respectively, represent only b1 and
only b2, widely adopted. The blue and red lines represent the discontinuous critical information
transmission rate λ I

1c of b1 and critical information transmission rate λ I
2c of b2.

observed for both b1 and b2. Figure 6.9.a shows that R1(∞) discontinuously increases with λ2 and

displays an abrupt behavior with increasing above λ I
1c = 0.351 when τ1 = 0.3. Although R2(∞)

discontinuously increases with λ2 when τ1 = 0.3, no breakdown is observed in the spread of b1.

Liu et al. [162] explained this situation as follows: When the b1 outbreak occurs, the probability

of an individual adopted b1 for each b2 decreases; susceptible nodes have to have more b2 to adopt

the behavior, and so more nodes remain in a sub-critical state. Therefore, increasing λ1 above

λ I
1c = 0.351 triggers R2(∞) increase with more abruptly and outbreak information threshold λ I

2c of

b2.

When we define the results obtained with numerical simulations on RNNs as ground truth, we can

easily compare and contrast the efficiency and accuracy of edge-based compartmental theoretical

analysis by using a classical approach and a quantum-like approach. As aforementioned above,

there are mainly four regions to describe the adoption behavior of two behavior: Region I is where
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there is no outbreak (or global adoption) of either b1 or b2 when λ I
1 < λ I

1c and λ I
1 < λ I

2c, while

Region IV refers shows the 2D plane when there is outbreak (global adoption) for both b1 or b2

when λ I
1 ≥ λ I

1c and λ I
1 ≥ λ I

2c. Although a quantum-like approach in Figure 6.9.c is able to compute

these critical points, the use of a classical approach will underestimate the size of Region I and

overestimate that of Region IV. These results demonstrated that quantum-like generalization of

social contagion is able to model the co-diffusion of two synergistic behavior on a single network

and yield better results compared to classical approach.
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CHAPTER 7: CONCLUSION AND FUTURE PLANS

The spread of ideas, attitudes or behavioral patterns among a group of individuals is called social

contagion. Although this spread among individuals used to be regarded as a pathogen in a bio-

logical spreading, empirical studies demonstrated that social contagion is far more complex due

to the social, cognitive, and behavioral differences of humans. The complexity of humans in a

social contagion process is addressed by considering the heterogeneity of their adoption thresh-

olds with the assumption of perfect rationality; however, numerous empirical studies demonstrate

that humans violate the rules of classical probability while making decisions. In order to improve

the modeling of human decision-making about the adoption of information and/or behavior, we

employed a quantum-like approach in social contagion analysis as well as assigning individuals

heterogeneous adoption thresholds. We believe that our method, so-called quantum contagion, is

able to portray the complexity of individuals and better model a social contagion process. We

integrate Inverse Born Problem (IBP) to represent classical probabilistic entities as complex prob-

ability amplitudes in a quantum-like message-passing approach. An edge-based compartmental

theory is used to quantify the classical and quantum-theoretical models, and a large number of

simulations on RRNs are carried out for the comparison of their performances. In this study, we

have conducted several experiments to investigate i) the superiority of quantum-like approaches

compared to classical ones in the existence of both homogeneous and heterogeneous agents, ii) the

types of phase transitions in the final spreading size versus transmission probability when agents

are modeled as quantum decision-makers, iii) the variability of the social contagion dynamics with

changing network properties, iv) the efficiency of belief entropy measure as an alternative to the

extant heuristics in the definition of interference terms in quantum-like social contagion model, v)

the quantum social contagion dynamics when there are interactive social contagions on complex

networks.
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First, we examined the phase transitions in social contagion dynamics when adoption thresholds

of individuals are homogeneous and heterogeneous separately. Later, we have conducted simi-

lar experiments when individuals are modeled as quantum decision-makers. For the analysis of

heterogeneity in their adoption thresholds, we employed a two-state spreading threshold model

in which individuals have a relatively low threshold (TA = 1) with probability p, and a relatively

high threshold (TB > 1) with probability 1− p. The effect of threshold heterogeneity with vary-

ing network properties has been already investigated in previous studies. These studies showed

that two different types of information adoption occur in the existence of more than one critical

transmission probability: local and global adoption. The local adoption is observed when λ < λ I
c

and information is adopted by a small fraction of individuals who has a lower adoption thresh-

old. Whereas, the global adoption occurs when λ > λ II
c and information is adopted by a finite

fraction of individuals. In the case of λ I
c < λ < λ II

c , individuals who have lower thresholds adopt

behavior globally while individuals who have higher thresholds adopt behavior locally. Although

edge-based compartmental theory can model social contagion dynamics in most cases, these anal-

yses fall short when transmission rates are close to these critical transmission probabilities. In the

classical social contagion model, the final adoption size (R(∞)) grows discontinuously with the in-

creasing behavioral information transmission probability (λ ). Numerical investigations carried out

on RRNs show that the quantum social contagion model performs better than the extant classical

social contagion model since it is able to model the dynamics near the critical transmission prob-

abilities. The quantum social contagion model displays the same hybrid phase transition pattern;

however, both phase transitions are observed at lower critical transmission probability values. It

means that local and global adoption behavior in the two-state spreading threshold model is ob-

served earlier than the classical approach. The sharp discontinuous changes in final adoption size

near the critical transmission probabilities are also observed smoother in the quantum approach.

Testing our conclusions on different mean degrees of RNN and with a different initial fraction of

adopted individuals also demonstrates the generalizability and robustness of our conclusions. The
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optimum SA and AR interference values remain the same, as the initial fraction of adopted indi-

viduals changes. Thus, we argue that interference in quantum social contagion is not dependent on

the initial fraction of adopted individuals on the network.

Second, we have carried out quantum social contagion experiments with changing mean degree ⟨k⟩

and initial probability p of RNN. Based on the results, increasing initial probability caused hybrid

phase transitions to be extinguished, meaning that only one critical transmission probability was

observed in all cases. Regardless of Tb, a continuous phase transition is observed when the classical

approach is utilized or there is only AR interference exist in the quantum social contagion. The

existence of SA interference term, on the other, yielded a discontinuous phase transition in quantum

social contagion. When it comes to the effect of mean degree of RNN on the social contagion

dynamics, we observed that that phase transition do not depend on the mean-degree and same

types of phase transitions are observed. Whereas, critical transmission probabilities are affected

with the changing mean degree of random regular networks. Increasing mean degree unexpectedly

lowered the critical transmission probabilities, since increasing connectivity between individuals

will increase the likelihood of global adoption.

Although quantum-like generalization of social contagion models are able to portray the com-

plexity of individuals and better model a social contagion process, the interference term brings an

additional complexity that decreases the time-efficiency of these models. Additionally, this effect

can be determined only by calibration with a real dataset, causing its application to become harder.

Therefore, third, we have proposed a new heuristic approach based on belief entropy in the cal-

culation of interference term that quantum social model includes. To test the effectiveness of the

proposed approach, we have performed extensive numerical simulations on uncorrelated random

regular networks (RRNs) and concluded that belief entropy can be used to compute the interfer-

ence effect in the quantum-like generalization of social contagion models. We believe that these

results will increase the use of quantum social contagion models in any application area without
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having a concern of calibration or time complexity.

The purpose of this study is to better model the real-life social contagion dynamics to shed light

on the control of viral disease, microfinance activities, false information, harmful emotions, and

technology adoptions. Actually, the co-evolutionary dynamics of spreading mechanisms play an

important role in the explanation of these real-world phenomena. The simultaneous evolution of

different contagions at the same network may alter social contagion dynamics, and we may observe

significant differences in different successive or competitive social contagions. Thus, lastly, we

have initiated an analysis to compare classical and quantum-like social contagion models when

there are two behavior successively spread in a single network. In this case, we have observed four

regions to describe the adoption behavior of two behavior: Region I: when there is no outbreak (or

global adoption) of either b1 or b2 when λ I
1 < λ I

1c and λ I
2 < λ I

2c, Region II: when b1 is globally

adopted while b2 is locally adopted as λ I
1 ≥ λ I

1c and λ I
2 < λ I

2c, Region III: when b2 is globally

adopted while b1 is locally adopted as λ I
1 < λ I

1c and λ I
2 ≥ λ I

2c, and Region IV: when both b1 and b2

are globally adopted with λ I
1 ≥ λ I

1c and λ I
2 ≥ λ I

2c. Comparing critical points obtained via theoretical

analysis using classical and quantum-like approach demonstrated that quantum-like generalization

of social contagion is able to model the co-diffusion of two synergistic behavior on a single network

and yield better results compared to classical approach.

Although this study aims to propose a novel theoretical approach to the problem of social contagion

dynamics, it can also portray useful insights for many applications since outcomes help us to better

understand the real-world social contagion dynamics. One of the most appealing application areas

related to social contagion is understanding the attributes and dynamics of information spread

through intermediate users’ set during this information exchange. Marketing companies or political

campaigns may use these insights to better reach out to the certain amount of people. Additionally,

although these models are called information diffusion models, these methods and the outcomes

of this study can be used to model abstract values’ contagiousness such as emotions or sentiments.
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Thus, we can list another common application of information diffusion models on online social

networks as sentiment (emotion) spreading. Furthermore, another important application area of

social contagion models is the influence maximization problem, which can be defined as "the

problem of finding a small set of seed nodes in a social network that maximizes the spread of

influence under certain influence cascade models". These application areas can be expanded for

other applications.

Future studies may aim to integrate quantum-like generalization of social contagion model on not

only successive but also competing behavior (or information) in the same network. Moreover, the

co-evolution of multiple social contagions more than two remains open for further exploration. We

intend to continue our analyses in these directions. It should be noted that, despite the quantum-like

approach in edge-based compartmental theory bringing heterogeneity due to the entangled struc-

ture of complex amplitudes in λ , we assumed that each adopted node has an equal chance to trans-

mit the behavior to his susceptible neighbors. Thus, we ignored the influence variety of specific

nodes in the spreading mechanism. Researchers can integrate IBP to other high-performance the-

oretical approaches for epidemic spreading such as dynamical message passing and/or edge-based

mean-field theory; however, these techniques yield very complex equations, and the quantum-like

approach may exacerbate its complexity to make this problem even more challenging to resolve

[163].
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APPENDIX A: CALCULATION OF ξA(t) AND TIME EVOLUTION OF

θ(t) IN CLASSICAL AND QUANTUM APPROACH
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Inserting Eqs. 5.11 and 5.14 into Eq. 5.8 yields ξA(t) by using the classical approach and gives the

following expression:

ξA(t) = θ(t)− ∑kv kvP(kv)sv(kv, t)
⟨k⟩

− γ(1−λ )[1−θ(t)]
λ

(A.1)

Substituting Eq.A.1 in Eq. 5.12 gives us the time evolution of θ(t) as:

dθ(t)
dt

=−λ

[
θ(t)− ∑kv kvP(kv)sv(kv, t)

⟨k⟩

]
− γ(1−λ )[1−θ(t)] (A.2)

In quantum counterpart of this calculation; however, is more complex due to the interference terms

in 3.7. In this case, we insert Eqs. 5.11 and 5.14 into Eq. 5.10 to obtain ξA(t) by using the quantum

approach:

θ(t) =
∑kv kvP(kv)sv(kv, t)

⟨k⟩
+ξA(t)+

γ(1−λ )[1−θ(t)]
λ

+

√
∑kv kvP(kv)sv(kv, t)

⟨k⟩
ξA(t)cos(θξS(t)−θξA(t))

+

√
ξA(t)

γ(1−λ )[1−θ(t)]
λ

cos(θξA(t)−θξR(t))λ )

(A.3)

Solving this quadratic equation for ξA(t) yields 4 different roots, the physically meaningful one is

as follows:
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ξA(t) =
1
2

[
cos2(θξS(t)−θξA(t))

∑kv kvP(kv)sv(kv, t)
⟨k⟩

−

√√√√(cos4(θξS(t)−θξA(t))

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)2

−4cos3(θξS(t)−θξA(t))cos(θξA(t)−θξR(t))

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)(3/2)
√(

γ(1−λ )[1−θ(t)]
λ

)
+6cos2(θξS(t)−θξA(t))cos2(θξA(t)−θξR(t))

∑kv kvP(kv)sv(kv, t)
⟨k⟩

γ(1−λ )[1−θ(t)]
λ

+4cos2(θξS(t)−θξA(t))θ(t)
∑kv kvP(kv)sv(kv, t)

⟨k⟩
−4cos2(θξS(t)−θξA(t))

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)2

−4cos2(θξS(t)−θξA(t))
∑kv kvP(kv)sv(kv, t)

⟨k⟩
γ(1−λ )[1−θ(t)]

λ

−4cos(θξS(t)−θξA(t))cos3(θξA(t)−θξR(t))

√(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)(
γ(1−λ )[1−θ(t)]

λ

)(3/2)

−8cos(θξS(t)−θξA(t))cos(θξA(t)−θξR(t))θ(t)

√(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)√(
γ(1−λ )[1−θ(t)]

λ

)

+8cos(θξS(t)−θξA(t))cos(θξA(t)−θξR(t))

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)(3/2)
√(

γ(1−λ )[1−θ(t)]
λ

)

+8cos(θξS(t)−θξA(t))cos(θξA(t)−θξR(t))

√(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)(
γ(1−λ )[1−θ(t)]

λ

)(3/2)

+ cos4(θξA(t)−θξR(t))

(
γ(1−λ )[1−θ(t)]

λ

)2

+4cos(θξA(t)−θξR(t))θ(t)
(

γ(1−λ )[1−θ(t)]
λ

)
−4cos2(θξA(t)−θξR(t))

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)(
γ(1−λ )[1−θ(t)]

λ

)
−42cos(θξA(t)−θξR(t))

(
γ(1−λ )[1−θ(t)]

λ

)2
)

−2cos(θξS(t)−θξA(t))cos(θξA(t)−θξR(t))

√(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)√(
γ(1−λ )[1−θ(t)]

λ

)
+ cos2(θξA(t)−θξR(t))

(
γ(1−λ )[1−θ(t)]

λ

)
+2θ(t)−2

(
∑kv kvP(kv)sv(kv, t)

⟨k⟩

)
−2
(

γ(1−λ )[1−θ(t)]
λ

)]
(A.4)
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[55] Ece Çiğdem Mutlu, Amirarsalan Rajabi, and Ivan Garibay. Cd-seiz: Cognition-driven seiz

compartmental model for the prediction of information cascades on twitter. arXiv preprint

arXiv:2008.12723, 2020.

[56] Luís MA Bettencourt, Ariel Cintrón-Arias, David I Kaiser, and Carlos Castillo-Chávez. The

power of a good idea: Quantitative modeling of the spread of ideas from epidemiological

models. Physica A: Statistical Mechanics and its Applications, 364:513–536, 2006.

[57] Raul Isea and Karl E Lonngren. A new variant of the seiz model to describe the spreading

of a rumor. International Journal of Data Science and Analysis, 3(4):28–33, 2017.

124



[58] Fang Jin, Wei Wang, Liang Zhao, Edward Dougherty, Yang Cao, Chang-Tien Lu, and Naren

Ramakrishnan. Misinformation propagation in the age of twitter. Computer, (12):90–94,

2014.

[59] Chao Wang, Xu-ying Yang, Ke Xu, and JF Ma. Seir-based model for the information spread-

ing over sns. Acta Electronica Sinica, 11:031, 2014.

[60] Ru-Zhi Xu, He-Li Li, and Chang-Ming Xing. Research on information dissemination model

for social networking services. International Journal of Computer Science and Application,

2(1):1–6, 2013.

[61] Ding Xuejun. Research on propagation model of public opinion topics based on scir in

microblogging [j]. Computer Engineering and Applications, 8:20–26, 2015.

[62] John Cannarella and Joshua A Spechler. Epidemiological modeling of online social network

dynamics. arXiv preprint arXiv:1401.4208, 2014.

[63] Ling Feng, Yanqing Hu, Baowen Li, H Eugene Stanley, Shlomo Havlin, and Lidia A Braun-

stein. Competing for attention in social media under information overload conditions. PloS

one, 10(7):e0126090, 2015.

[64] Quan-Hui Liu, Feng-Mao Lü, Qian Zhang, Ming Tang, and Tao Zhou. Impacts of opinion

leaders on social contagions. Chaos: An Interdisciplinary Journal of Nonlinear Science,

28(5):053103, 2018.

[65] Daniel A Sprague and Thomas House. Evidence for complex contagion models of social

contagion from observational data. PloS one, 12(7):e0180802, 2017.

[66] Pramesh Singh, Sameet Sreenivasan, Boleslaw K Szymanski, and Gyorgy Korniss.

Threshold-limited spreading in social networks with multiple initiators. Scientific reports,

3:2330, 2013.

125



[67] Huiyuan Zhang, Subhankar Mishra, My T Thai, J Wu, and Y Wang. Recent advances in in-

formation diffusion and influence maximization in complex social networks. Opportunistic

Mobile Social Networks, 37(1.1):37, 2014.

[68] David Peleg. Local majority voting, small coalitions and controlling monopolies in graphs:

A review. In Proc. of 3rd Colloquium on Structural Information and Communication Com-

plexity, pages 152–169, 1997.

[69] Ning Chen. On the approximability of influence in social networks. SIAM Journal on

Discrete Mathematics, 23(3):1400–1415, 2009.

[70] Everett M Rogers. Diffusion of innovations. Simon and Schuster, 2010.

[71] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for

social networks. In International Colloquium on Automata, Languages, and Programming,

pages 1127–1138. Springer, 2005.

[72] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence propagation models.

Knowledge and Information Systems, 37:555–584, 2012.

[73] Thi Kim Thoa Ho, Q. V. Bui, and M. Bui. Homophily independent cascade diffusion model

based on textual information. In ICCCI, 2018.

[74] Zhipeng A. Wang, Jichang Zhao, and K. Xu. Emotion-based independent cascade model

for information propagation in online social media. 2016 13th International Conference on

Service Systems and Service Management (ICSSSM), pages 1–6, 2016.

[75] Terrence Leung and K. Chung. Persuasion driven influence propagation in social networks.

2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM 2014), pages 548–554, 2014.

126



[76] Seth A Myers, Chenguang Zhu, and Jure Leskovec. Information diffusion and external

influence in networks. In Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 33–41, 2012.

[77] Zhuo Chen. An agent-based model for information diffusion over online social networks.

Papers in Applied Geography, 5(1-2):77–97, 2019.

[78] Daniel Gruhl, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins. Information

diffusion through blogspace. In Proceedings of the 13th international conference on World

Wide Web, pages 491–501, 2004.

[79] Fang Jin, E. Dougherty, P. Saraf, Yang Cao, and Naren Ramakrishnan. Epidemiological

modeling of news and rumors on twitter. In SNAKDD ’13, 2013.

[80] Pengyi Fan, Pei Li, Zhihong Jiang, Wei Li, and Hui Wang. Measurement and analysis of

topology and information propagation on sina-microblog. In Proceedings of 2011 IEEE

International Conference on Intelligence and Security Informatics, pages 396–401. IEEE,

2011.

[81] Lilian Weng, Jacob Ratkiewicz, Nicola Perra, Bruno Gonçalves, Carlos Castillo, Francesco

Bonchi, Rossano Schifanella, Filippo Menczer, and Alessandro Flammini. The role of in-

formation diffusion in the evolution of social networks. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 356–

364, 2013.

[82] Ece C Mutlu and Ivan Garibay. The degree-dependent threshold model: Towards a

better understanding of opinion dynamics on online social networks. arXiv preprint

arXiv:2003.11671, 2020.

127



[83] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of information diffusion

probabilities for independent cascade model. In International conference on knowledge-

based and intelligent information and engineering systems, pages 67–75. Springer, 2008.

[84] Devesh Varshney, Sandeep Kumar, and Vineet Gupta. Predicting information diffusion

probabilities in social networks: A bayesian networks based approach. Knowledge-Based

Systems, 133:66–76, 2017.

[85] Q. Wang, Y. Jin, Tan Yang, and S. Cheng. An emotion-based independent cascade model

for sentiment spreading. Knowl. Based Syst., 116:86–93, 2017.

[86] T. Wang, Min Hu, and Lan Kou. A information propagation model based on various emo-

tions and heterogeneous mean field in social networks. 2019.

[87] Xi Xiong, Y. Li, Shaojie Qiao, Nan Han, Yue Wu, Jing Peng, and Binyong Li. An emo-

tional contagion model for heterogeneous social media with multiple behaviors. Physica

A-statistical Mechanics and Its Applications, 490:185–202, 2018.

[88] C. Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for independent

cascade model in large-scale social networks. Data Mining and Knowledge Discovery,

25:545–576, 2012.

[89] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through

a social network. In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 137–146, 2003.

[90] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 199–208, 2009.

128



[91] W. Liu, Xin Chen, B. Jeon, Ling Chen, and Bolun Chen. Influence maximization on signed

networks under independent cascade model. Applied Intelligence, 49:912–928, 2018.

[92] F. Erlandsson, Piotr Bródka, and A. Borg. Seed selection for information cascade in multi-

layer networks. ArXiv, abs/1710.04391, 2017.

[93] Yan Xia, T. Chen, and Mikko Kivelä. Spread of tweets in climate discussions. ArXiv,

abs/2010.09801, 2020.

[94] K. Lei, Y. Liu, Shangru Zhong, K. Xu, Ying Shen, and M. Yang. Understanding user behav-

ior in sina weibo online social network: A community approach. IEEE Access, 6:13302–

13316, 2018.

[95] Raghuram Iyengar, Christophe Van den Bulte, and Thomas W Valente. Opinion leadership

and social contagion in new product diffusion. Marketing Science, 30(2):195–212, 2011.

[96] Aron Culotta and Jennifer Cutler. Mining brand perceptions from twitter social networks.

Marketing science, 35(3):343–362, 2016.

[97] Kevin Lewis and Jason Kaufman. The conversion of cultural tastes into social network ties.

American journal of sociology, 123(6):1684–1742, 2018.

[98] Peter Hedström. Contagious collectivities: On the spatial diffusion of swedish trade unions,

1890-1940. American Journal of Sociology, 99(5):1157–1179, 1994.

[99] Feng Shi, Misha Teplitskiy, Eamon Duede, and James A Evans. The wisdom of polarized

crowds. Nature Human Behaviour, page 1, 2019.

[100] Zhongyuan Ruan, Gerardo Iniguez, Márton Karsai, and János Kertész. Kinetics of social

contagion. Physical review letters, 115(21):218702, 2015.

129



[101] Shraddha Mishra, Surya Prakash Singh, John Johansen, Yang Cheng, and Sami Farooq.

Evaluating indicators for international manufacturing network under circular economy.

Management Decision, 57(4):811–839, 2019.

[102] Ece C Mutlu and Toktam A Oghaz. Review on graph feature learning and feature extraction

techniques for link prediction. arXiv preprint arXiv:1901.03425, 2019.

[103] Taibo Li, Rasmus Wernersson, Rasmus B Hansen, Heiko Horn, Johnathan Mercer, Greg

Slodkowicz, Christopher T Workman, Olga Rigina, Kristoffer Rapacki, Hans H Stærfeldt,

et al. A scored human protein–protein interaction network to catalyze genomic interpreta-

tion. Nature methods, 14(1):61, 2017.

[104] Duncan J Watts and Peter Sheridan Dodds. Influentials, networks, and public opinion for-

mation. Journal of consumer research, 34(4):441–458, 2007.

[105] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and false news online.

Science, 359(6380):1146–1151, 2018.

[106] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. Structural diversity

in social contagion. Proceedings of the National Academy of Sciences, 109(16):5962–5966,

2012.

[107] Alexandre Bovet and Hernán A Makse. Influence of fake news in twitter during the 2016 us

presidential election. Nature communications, 10(1):7, 2019.

[108] James P Gleeson. Binary-state dynamics on complex networks: Pair approximation and

beyond. Physical Review X, 3(2):021004, 2013.

[109] Eun Lee and Petter Holme. Social contagion with degree-dependent thresholds. Physical

Review E, 96(1):012315, 2017.

130



[110] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[111] Alfonso Allen-Perkins, Juan Manuel Pastor, and Ernesto Estrada. Two-walks degree as-

sortativity in graphs and networks. Applied Mathematics and Computation, 311:262–271,

2017.

[112] Mark EJ Newman. Assortative mixing in networks. Physical review letters, 89(20):208701,

2002.

[113] Mark EJ Newman. Mixing patterns in networks. Physical Review E, 67(2):026126, 2003.

[114] Insuk Lee, Eiru Kim, and Edward M Marcotte. Modes of interaction between individuals

dominate the topologies of real world networks. PloS one, 10(3):e0121248, 2015.

[115] Kiho Im, Michael J Paldino, Annapurna Poduri, Olaf Sporns, and P Ellen Grant. Altered

white matter connectivity and network organization in polymicrogyria revealed by individ-

ual gyral topology-based analysis. Neuroimage, 86:182–193, 2014.

[116] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the

facebook social graph. arXiv preprint arXiv:1111.4503, 2011.

[117] Hai-Bo Hu and Xiao-Fan Wang. Disassortative mixing in online social networks. EPL

(Europhysics Letters), 86(1):18003, 2009.

[118] Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng, and Ben Y Zhao. Whis-

pers in the dark: analysis of an anonymous social network. In Proceedings of the 2014

Conference on Internet Measurement Conference, pages 137–150. ACM, 2014.

[119] David N Fisher, Matthew J Silk, and Daniel W Franks. The perceived assortativity of social

networks: methodological problems and solutions. In Trends in Social Network Analysis,

pages 1–19. Springer, 2017.

131



[120] Ece Mutlu and Ozlem Ozmen Garibay. Effects of assortativity on consensus formation with

heterogeneous agents. In Conference of the Computational Social Science Society of the

Americas, pages 1–10. Springer, 2022.

[121] Matthew C VanDyke and Christopher D Hall. Decentralized coordinated attitude control

within a formation of spacecraft. Journal of Guidance, Control, and Dynamics, 29(5):1101–

1109, 2006.

[122] Ronald C Arkin and Tucker Balch. Cooperative multiagent robotic systems. 1997.

[123] Cheng Jin, Yifu Li, and Xiaogang Jin. Political opinion formation: Initial opinion distri-

bution and individual heterogeneity of tolerance. Physica A: Statistical Mechanics and its

Applications, 467:257–266, 2017.

[124] Javier Borge-Holthoefer and Yamir Moreno. Absence of influential spreaders in rumor

dynamics. Physical Review E, 85(2):026116, 2012.

[125] Robin IM Dunbar. Neocortex size as a constraint on group size in primates. Journal of

human evolution, 22(6):469–493, 1992.

[126] Ramón Xulvi-Brunet and Igor M Sokolov. Changing correlations in networks: assortativity

and dissortativity. Acta Physica Polonica B, 36(5):1431, 2005.

[127] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.

A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635, 2019.

[128] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidi-

vism prediction instruments. Big data, 5(2):153–163, 2017.

[129] Dana Pessach and Erez Shmueli. Algorithmic fairness. arXiv preprint arXiv:2001.09784,

2020.

132



[130] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad

privacy settings: A tale of opacity, choice, and discrimination. Proceedings on privacy

enhancing technologies, 2015(1):92–112, 2015.

[131] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. Certifying and removing disparate impact. In proceedings of the 21th

ACM SIGKDD international conference on knowledge discovery and data mining, pages

259–268, 2015.

[132] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-

ness through awareness. In Proceedings of the 3rd innovations in theoretical computer

science conference, pages 214–226, 2012.

[133] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning.

arXiv preprint arXiv:1610.02413, 2016.

[134] Chelsea Barabas, Madars Virza, Karthik Dinakar, Joichi Ito, and Jonathan Zittrain. Inter-

ventions over predictions: Reframing the ethical debate for actuarial risk assessment. In

Conference on Fairness, Accountability and Transparency, pages 62–76. PMLR, 2018.

[135] Silvia Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 33, pages 7801–7808, 2019.

[136] Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik

Janzing, and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. arXiv

preprint arXiv:1706.02744, 2017.

[137] Matt J Kusner, Joshua R Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness.

arXiv preprint arXiv:1703.06856, 2017.

133



[138] Chris Russell, M Kusner, C Loftus, and Ricardo Silva. When worlds collide: integrating dif-

ferent counterfactual assumptions in fairness. In Advances in neural information processing

systems, volume 30. NIPS Proceedings, 2017.

[139] Junzhe Zhang and Elias Bareinboim. Fairness in decision-making—the causal explanation

formula. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[140] Joshua R Loftus, Chris Russell, Matt J Kusner, and Ricardo Silva. Causal reasoning for

algorithmic fairness. arXiv preprint arXiv:1805.05859, 2018.

[141] Tapabrata Chakraborti, Arijit Patra, and J Alison Noble. Contrastive fairness in machine

learning. IEEE Letters of the Computer Society, 3(2):38–41, 2020.

[142] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Interventional fairness: Causal

database repair for algorithmic fairness. In Proceedings of the 2019 International Confer-

ence on Management of Data, pages 793–810, 2019.

[143] Aria Khademi, Sanghack Lee, David Foley, and Vasant Honavar. Fairness in algorithmic

decision making: An excursion through the lens of causality. In The World Wide Web

Conference, pages 2907–2914, 2019.

[144] Peter D Bruza, Zheng Wang, and Jerome R Busemeyer. Quantum cognition: a new theoret-

ical approach to psychology. Trends in cognitive sciences, 19(7):383–393, 2015.

[145] Andrei Khrennikov. Quantum-like modeling of cognition. Frontiers in Physics, 3:77, 2015.

[146] Ece C Mutlu and Ozlem Ozmen Garibay. Quantum contagion: A quantum-like approach for

the analysis of social contagion dynamics with heterogeneous adoption thresholds. Entropy,

23(5):538, 2021.

134



[147] Christos Dimitrakakis, Yang Liu, David C Parkes, and Goran Radanovic. Bayesian fairness.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 509–

516, 2019.

[148] I Northpointe. Practitioner’s guide to compas core. 2015.

[149] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica,

May, 23(2016):139–159, 2016.

[150] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas

recidivism algorithm. ProPublica (5 2016), 9(1), 2016.

[151] Clausius Rudolf. The mechanical theory of heat: With its applications to the steam-engine

and to the physical properties of bodies. 1867.

[152] Alireza Namdari and Zhaojun Li. A review of entropy measures for uncer-

tainty quantification of stochastic processes. Advances in Mechanical Engineering,

11(6):1687814019857350, 2019.

[153] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE

mobile computing and communications review, 5(1):3–55, 2001.

[154] Claude Elwood Shannon. A mathematical theory of communication. The Bell system tech-

nical journal, 27(3):379–423, 1948.

[155] Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions

to the Theory of Statistics, volume 4, pages 547–562. University of California Press, 1961.

[156] Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of sta-

tistical physics, 52(1):479–487, 1988.

135



[157] Yong Deng. Deng entropy. Chaos, Solitons & Fractals, 91:549–553, 2016.

[158] Petr Jizba and Toshihico Arimitsu. The world according to rényi: thermodynamics of mul-

tifractal systems. Annals of Physics, 312(1):17–59, 2004.

[159] Constantino Tsallis. Entropic nonextensivity: a possible measure of complexity. Chaos,

Solitons & Fractals, 13(3):371–391, 2002.

[160] Zhiming Huang, Lin Yang, and Wen Jiang. Uncertainty measurement with belief entropy

on the interference effect in the quantum-like bayesian networks. Applied Mathematics and

Computation, 347:417–428, 2019.

[161] Catarina Moreira and Andreas Wichert. Quantum-like bayesian networks for modeling

decision making. Frontiers in psychology, page 11, 2016.

[162] Quan-Hui Liu, Lin-Feng Zhong, Wei Wang, Tao Zhou, and H Eugene Stanley. Interactive

social contagions and co-infections on complex networks. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 28(1):013120, 2018.

[163] Wei Wang, Ming Tang, H Eugene Stanley, and Lidia A Braunstein. Unification of theoretical

approaches for epidemic spreading on complex networks. Reports on Progress in Physics,

80(3):036603, 2017.

136


	Complex Quantum Contagion: A Quantum-Like Approach for The Analysis of Co-Evolutionary Dynamics of Social Contagion
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Motivation: Violations to Normative Theories of Rational Choice
	Quantum Theory in The Concept of Decision-Making
	Purpose of the Study
	Research Questions
	Statement of Contributions
	Statement of Originality

	CHAPTER 2: CLASSICAL SOCIAL CONTAGION ANALYSIS
	Mathematical Models of Social Contagion
	Bass Model
	Epidemic Models
	Threshold Models
	Cascading Models

	Online Applications of Social Contagion Models
	Related Previous Works as a Motivational Source
	Threshold Heterogeneity of Agents in Social Contagion Analysis
	Effects of Network Topology in Social Contagion Analysis


	CHAPTER 3: QUANTUM PROBABILISTIC APPROACHES
	Sample Spaces
	Events
	Interference Effect in Quantum Probabilistic Approach
	Related Previous Works as a Motivational Source
	An Example of Quantum-Like Approach in Decision-Making Analysis


	CHAPTER 4: FUNDAMENTALS OF ENTROPY MEASURES
	Belief Entropy as an Uncertainty Measure of Stochastic Processes

	CHAPTER 5: METHODOLOGY
	Proposed Framework: Quantum Social Contagion
	Edge-Based Compartmental Theory for Quantum Social Contagion Analysis
	Binomial Threshold Distribution
	Belief-Entropy-Based Heuristic


	Co-evolution of Two Quantum Social Contagions

	CHAPTER 6: RESULTS
	Comparison of Quantum-Like and Classical Approaches in Modeling Social Contagion
	Homogeneous Adoption Threshold
	Heterogeneous Adoption Threshold

	Phase Transitions in a Social Contagion Process With Quantum Decision-Makers
	The Variability of The Social Contagion Dynamics With Changing Network Properties
	Belief Entropy as a Heuristic
	Quantum-Like Analysis of Interactive Social Contagions

	CHAPTER 7: CONCLUSION AND FUTURE PLANS
	APPENDIX A: CALCULATION OF A(t) AND TIME EVOLUTION OF (t) IN CLASSICAL AND QUANTUM APPROACH
	APPENDIX B: COPYRIGHT PERMISSION TO REUSE A PUBLISHED CONTENT
	MDPI Copyright Permission
	Springer Copyright Permission

	LIST OF REFERENCES

