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ABSTRACT

There are currently about 466 million people worldwide who have a hearing disability, and that

number is expected to increase to 900 million by 2050. About 15% of adult Americans have

hearing disabilities and about every three in 1,000 U.S. children are born with hearing loss in one

or both ears. The World Health Organization (WHO) estimates that unaddressed hearing loss poses

an annual global cost of $980 billion, including cost of educational support, loss of productivity,

and societal costs. These are all evident that people with hearing loss are experiencing several kinds

and levels of difficulties. In this dissertation, we are addressing two main challenges of hearing

impaired people; sign language recognition and post-secondary education. Both sign language

recognition and reliable education systems that properly support the deaf community are essential

needs of the globe and in this dissertation we aim to attack these exact problems. For the first part,

we introduce novel dataset and methodology using machine learning while for the second part, a

novel agent-based model framework is proposed.

Facial expressions are important parts of both gesture and sign language recognition systems. De-

spite the recent advances in both fields, annotated facial expression datasets in the context of sign

language are still scarce resources. In this dissertation, we introduce an annotated sequenced facial

expression dataset in the context of sign language, comprising over 3000 facial images extracted

from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the major-

ity of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial

images with different head poses, orientations, and movements. In addition, in the majority of

images, identities are mouthing the words, which makes the data more challenging. To annotate

this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of ”sad”,

”surprise”, ”fear”, ”angry”, ”neutral”, ”disgust”, and ”happy”. We also considered the ”None”

class if the image’s facial expression could not be described by any of the emotions. Although we
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provide FePh as a facial expression dataset of signers in sign language, it has a wider application

in gesture recognition and Human Computer Interaction (HCI) systems.

In addition, post-secondary education persistence is the likelihood of a student remaining in post-

secondary education. Although statistics show that post-secondary persistence for deaf students

has increased recently, there are still many obstacles obstructing students from completing their

post-secondary degree goals. Therefore, increasing the persistence rate is crucial to increase ed-

ucation and work goals for deaf students. In this work, we present an agent-based model using

NetLogo software for the persistence phenomena of deaf students. We consider four non-cognitive

factors: having clear goals, social integration, social skills, and academic experience, which in-

fluence the departure decision of deaf students. Progress and results of this work suggest that

agent-based modeling approaches promise to give better understanding of what will increase per-

sistence.
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CHAPTER 1: INTRODUCTION

Language is an important key in human lives. It is a complex system that helps us not only to

effectively communicate with others, but also express our personalities. We utilize words, gestures,

and tones of voice in a multitude of situations to communicate with others and express our feelings,

desires, and queries to the world around us.

Sign language is the natural language of people with severe or profound hearing loss. Over 5% of

the world’s population (about 466 million people worldwide) have disabled hearing, and by 2050

this number will increase to 900 million people–one in every ten (based on the most recent report

of World health Organization (WHO) [2]).

Sign language was not truly defined until the first half of 20th century. It was thought that it was

a substitute for speech and a way to express natural language words with signs. Later on, in the

second half of the century, it was understood that signs performed in sign language do not stand

for natural (spoken) language words. In fact, signs performed in sign language express meanings

and not spoken language words. Sign language is not universal and is unique to each country or

region [3]. There are over 135 different sign languages all around the world. Countries that share

a spoken language do not usually share the same sign language. For example, United States of

America, England, and Australia share English as a spoken language, but their sign languages are

different [4].

It is also noteworthy that sign languages have their own grammar, syntax, and structure. The

grammar used in sign language is completely different from the spoken language. For example,

a single sign performed in sign language can be translated to a sentence in spoken language. In

addition, similar to all languages, sign languages of each region or country grow and change over

time [5].
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Sign language, as a well defined gesture inventory, is composed mainly of hand gestures and facial

expressions (usually known as manual and non-manual signals, respectively). Manual signals are

performed using hand shape, orientation, location, and motion. These signals are widely used to

convey meanings. On the other hand, other body parts, such as eye gaze and movement, lip pattern,

mouthing, and head orientations [6, 7, 8, 9], are usually utilized to perform non-manual signals.

These signals are usually used to convey grammatical and emotional information.

Sign language users typically utilize manual signals to convey information such as words or sen-

tences. However, sometimes a single manual signal (hand gesture) may convey different meanings.

In this case, the signer performs manual signals combined with non-manual signals (i.e., signer per-

forms facial expressions during the communication) to deliver the exact meaning and sense to the

signed gesture. In other words, non-manual signals give auxiliary information to convey the cor-

rect meaning and eliminate misunderstandings and mistranslations. Therefore, the combination of

both signals creates useful meaning in sign language that makes it unique and complex [10]. Both

signals are complementary to each other, and one is incomplete without the other [11].

1.1 Sign Language Recognition Systems

Due to the importance of sign language among the hearing impaired and deaf community, it has

been vastly studied by researchers in various fields including computer science, linguistics, com-

puter engineering, and education. Among these different aspects of sign language study, sign

language recognition is a research area with the objective of building methods and algorithms to

identify signs and perceive their meanings [12].

Over the past number of years, the majority of the works presented in the sign language and gesture

recognition literature have focused on recognizing either manual or non-manual signals. More
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specifically, only hand gestures and shapes have been considered to address the problem of sign

language recognition [13]. As previously mentioned, despite the importance of manual signals,

non-manual signals’ role in expressing grammar and emotion is undeniable [11]. Therefore, both

categories of signals are important for conveying information and communicating with others.

Sign language recognition systems without considering facial expressions are thus incomplete [6].

Research in sign language recognition systems can be categorized in two main groups: vision-

based (without using any special hardware) and hardware-based recognition systems. The hardware-

based recognition systems use datasets that are collected utilizing special colored gloves [14, 15],

special sensors, and/or depth cameras (such as Microsoft Kinect and Leap Motion) to capture spe-

cial features of signers’ gestures [16, 17, 18, 19]. On the other hand, some researchers argue that

although utilizing these tools ease the process of capturing special features, they limit applicability

where such hardware are not available. Therefore, they propose vision-based sign language recog-

nition systems utilizing datasets collected by regular cameras [20, 21, 22, 23, 24]. There are very

few researchers that consider both types of data [25].

1.1.1 Vision-Based Sign Language Recognition Systems

Vision-based sign language recognition systems are developed using computer vision Artificial

Intelligence (AI) techniques such as machine learning (ML) and deep learning (DL). Though re-

search in computer vision sign language and gesture recognition is challenging, it enabled the cre-

ation of a real time interpreter system to solve communication barriers between deaf and hearing

people who do not understand sign language [26].

AI is a broad field of science and research that has been applied in a vast variety of research areas

such as computer vision, computer science, robotics, gaming, healthcare, etc. AI is usually referred

to as the ability of a digital computer or computer-controlled robot to perform tasks commonly
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associated with intelligent creatures such as human beings. In another word, by the definition

of Professor John McCarthy, the goal of AI is to develop machines that behave as if they were

intelligent [27].

In order to apply AI techniques that enables computers to mimic human intelligence, scientists use

different kinds of tools. While some of these tools may seem disjointed (i.e., logic, if-then rules,

decision trees, etc.), some may be a subset of one another such as machine and deep learning.

For example, deep learning is a subset of machine learning, while machine learning is a subset of

AI. Neither machine learning nor deep learning are brand new ideas, but the way they are used

is changing and improving constantly. In the following subsections, both methods are further

discussed.

1.1.1.1 Machine Learning (ML)

As a subset of AI, machine learning goes back to 1950 when the concept of a “learning machine”

was discussed for the first time [28].

Machine learning includes complicated statistical and data science techniques that enhance a ma-

chine’s ability to learn and experience by itself, i.e., without outside help from human beings.

Machine learning systems usually have an objective function and are used to minimize an error or

maximize their correct prediction likelihood. In short, this method is an optimization algorithm

that can minimizes its errors by learning. In the machine learning method, there are several layers

of data, consisting of some number of hidden layers (i.e., layers that are not in the input or output

layer). Despite many successful achievements of machine learning methods, experimental results

illustrate that these techniques have increased ability as the hidden layers of a learning process

increase. In this case, deep neural networks are used, i.e., where the hidden layers are 3 or more

[29]. Today, machine learning algorithms, deep or not, are broadly used in supervised learning,
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unsupervised learning, and reinforced learning.

As mentioned before, modeling and analyzing complex real-world data is complicated and can be

approached by different methods. From the machine learning perspective, one way is capturing

relevant features by developing robust features and feature extractors. This method requires care-

ful engineering and expertise of the data as well as domain-specific features, which is expensive

and time-consuming [30]. After a year of experience, [31] discusses that due to these problems,

conventional machine learning techniques showed limited ability in processing natural data in their

raw format.

The alternative is using unsupervised learning [32, 33, 34]. While supervised learning uses labeled

data to train the machine, unsupervised learning generates answers on unlabeled data. Unlabeled

data is plentiful, easy to obtain, and does not require hand-engineered features. Another advantage

of unsupervised learning is that more layers of representation can be extracted, and these layers

can be stacked to create deep networks [30].

1.1.1.2 Deep Learning (DL)

Deep learning is a class of machine learning techniques that tries to mimic the human brain’s neu-

rons. Although deep learning is a subset of machine learning, it refers to a wider class of machine

learning techniques and architectures. Some of the more common techniques and architectures that

will be addressed in this section include Recurrent neural network (RNNs), Convolutional neural

networks (CNNs), Deep neural networks (DNNs), Deep belief networks (DBNs), Boltzmann ma-

chines (BMs), Restricted Boltzmann machines (RBMs), Deep Boltzmann machines (DBMs), Deep

auto-encoders, Hidden Markov models (HMMs), Generative Adversarial Nets (GAN), and Sum-

Product networks (SPNs). Depending on the way these architectures and techniques are used, most

of the works can be categorized in three main classes [35, 36]:
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• Generative or Unsupervised deep learning architectures

• Discriminative or Supervised deep learning architectures

• Hybrid Generative-Discriminative deep architectures

The traditional way of categorizing deep learning architectures did not include the third category

(i.e., hybrid deep architectures) and classified the architectures only in the first two classes: deep

generative models (e.g., RBMs, DBNs, DBMs and Regularized auto-encoders) and deep discrim-

inative models (e.g., DNNs, RNNs and CNNs). This two-way classification without the third cat-

egory missed out on a key benefit gained in deep learning research: generative models can greatly

improve the training of DNNs and other deep discriminative models via improved regularization

or optimization [36, 35]. Below, further descriptions of each of these main classes of deep leaning

networks will be illustrated.

Generative or unsupervised deep learning architectures. Whenever no information about target

class labels is available, generative, or unsupervised learning architectures will be used in order to

capture high-order correlations of the observed or visible data for pattern analysis. A key concept

of applying generative architectures for pattern recognition is pre-training. Pre-training arises from

learning all the layers of deep networks, starting from the lower layers without relying on all the

layers above and continuing this bottom-up process in a layer-by-layer manner. This makes the

model more efficient.

Unsupervised learning refers to a learning algorithm that generates answers on unlabeled data.

Deep generative or unsupervised learning models and techniques are usually easier to interpret

and compose, and are better at handling uncertainty and embedding domain knowledge. Several

examples of this class include RBMs, DBNs, DBMs, HMMs, auto-encoders, SPNs and RNNs.

Energy-based deep models that include auto-encoders are the most common among the various
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sub-classes of generative deep architectures. The original form of deep auto-encoders as well as

most other forms of deep auto-encoders (e.g., transforming deep auto-encoders, predictive sparse

coders and their stacked version and de-noising auto-encoders and their stacked versions) are in

the generative or unsupervised deep architecture class.

While a detailed discussion of these techniques, architectures, and learning algorithms is beyond

the scope of this section, an example of generative or unsupervised deep learning architectures

called deep Boltzmann machine (DBM) is discussed. DBM is a new learning algorithm for the

general Boltzmann machines that contains many layers of hidden variables [37]. In addition, in

DBMs, there is no connection between variables within the same layer. DBMs use two quite differ-

ent techniques for estimating the two types of expectations: a variational approximation that tends

to focus on a single mode for the data dependent expectations, and persistent Markov chains for

data-independent expectations. These techniques make it practical to learn Boltzmann techniques

with multiple hidden layers and millions of parameters. As mentioned before, using a pre-training

phase can make this model more efficient. Salakhutdinov and Hinton show that the DBM better

learns generative models if the pre-training phase is included. Moreover, they also show that it

performs well on handwritten digit and visual object recognition tasks.

Discriminative or supervised deep learning architectures. Supervised learning is the most com-

mon form of machine learning [31] in which both input and desired output data are provided. The

input and output data are used for classification and are labelled to provide a learning basis for

future data processing. In other words, the machine in supervised learning is trained with labeled

data. It is shown an image and outputs a vector of scores, which is compared with other scores

for each category of data. The difference between the output score and desired pattern scores

is measured with the help of an objective function to find the level of error. To decrease error,

the machine modifies its internal adjustable parameters, often called weights. Deep learning sys-

tems are usually trained with hundreds of millions of these adjustable weights and large amounts
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of labelled examples (hundreds of millions). Overall, discriminative or supervised learning takes

labelled datasets (paired input subjects and desired output) and learns to label new datasets by

extracting and gaining information from it.

Deep discriminative or supervised learning models and techniques have some benefits over the

unsupervised approach, but also have limitations. To number some of the benefits, they usually

are more efficient to train and test, more flexible to construct, and are more suitable for end-to-end

learning of complex systems.

One example of discriminative or supervised deep architectures is convolutional neural networks

(CNN). CNNs are a family of multi-layer neural networks particularly designed to process data in

the form of multiple arrays: 1D for signals and sequences, 2D for images or audios, and 3D for

video or volumetric images [31]. CNNs are the first truly successful deep learning approach [38].

CNN is highly effective in Computer Vision, Computer Recognition, Image Classification, Object

Detection and many other topics related to Image Processing. Thus, images are the most common

input for the input layer. In images, neurons are arranged in a three-dimensional structure including

“Width,” “Height,” and “Depth,” which in RGB images the Depth is equal to three. It should be

noted that each pixel of the raw input image will be considered as a neuron in the CNN process.

CNNs have three main layers including the Input Layer, Feature Extraction or Learning layer, and

Classification Layer. In addition, the feature extraction layer has two main layers: convolution,

and pooling. These two layers repeat the pattern of the algorithm sequentially. The convolution

layer is the heart of the CNN’s architecture and shares the weight of the neurons for the input

data. In other words, the convolution layer defines a mathematical operation to determine the

rule for neuron weight. The major components in convolution layers are Filters, Activation maps,

Parameter sharing, and Layer-specific hyper-parameters. The pooling layer sub-samples the data,

which is generated from underlying convolution layers, and then gives this new set of data to the
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convolution layer in the higher level of CNN system. Finally, the Classification Layer will classify

the input data to one class. In the CNN process, all layers are connected to all the neurons of the

previous layers.

Hybrid generative-discriminative deep architectures. This class of deep learning neural net-

works takes advantage of both generative and discriminative deep architectures. The final goal

of the hybrid deep architecture is exploiting a generative component to help with discrimination.

This goal can be achieved in two ways: first, discrimination which is assisted with the outcomes

of generative networks, and second, the use of discriminative criteria to estimate the parameters in

any of the deep generative networks. Generative modeling can help with discrimination from two

viewpoints: the optimization and the regularization perspective [34].

Some examples of this class of deep architectures are hybrid DBN, GAN, DNN-CRF, hybrid deep

architecture of DNN and HMM, generative DBN used to initialize the DNN weights, deep gener-

ative model of DBN with the gated MRF, and generative models of DBN used to pre-train deep

convolutional neural networks (deep DNN).

1.1.2 Multi-Modal Continuous Sign Language Recognition System

The aim of this dissertation is to enhance and propel sign language recognition systems by consid-

ering more that one signal (i.e., two signals of hand shapes and facial expressions) in sign language

recognition frameworks.

We started to achieve this goal by introducing the first real-life annotated sequenced facial expres-

sion dataset in the context of sign language. This dataset not only provides an annotated facial

expression dataset with different head poses, orientations, and movements, but also contributes a

sign language dataset with both hand shape and facial expression labels with attributions in multi-
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modal works to the field.

1.2 Student Retention Models

Post-secondary persistence refers to the likelihood of student retention in post-secondary educa-

tion (e.g., university, collage), especially after the first year of enrollment. Since retention in

post-secondary education affects college students in many different aspects [39], it has received

considerable attention in the last five decades [40]. Students’ retention, program completion, and

graduation, advances the overall quality of life for people with and without disabilities [41]. Stu-

dents with disabilities may have sensory, mobility, mental, emotional or cognitive disabilities.

Because of these disabilities, disabled students often encounter more barriers than other students

and they complete post-secondary education at lower rates [42].

Deafness or severe hearing impairment is considered as a kind of sensory impairment and a dis-

ability [43]. Compared to the general student population, deaf students find the transition to post-

secondary setting more problematic [44, 45]. Based on the National Deaf Center’s (NDC) most

recent report, about 1.3% of all currently enrolled college students are deaf [46]. Although post-

secondary enrollment rates for deaf people have increased since the 1980s, the completion degree

college rate is still fewer than their hearing peers [47]. These statistics show that there are many

deaf students who face obstacles preventing them from completing their post-secondary degree

goals. Therefore, increasing the persistence rate in these students plays an integral role in increas-

ing education and work goals of deaf students.
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1.3 Statement of Contributions

This dissertation aims to continue having contributions in the field of sign language recognition

research. Primarily, the Facial Expression Phoenix (FePh) dataset provides the first annotated

vision-based publicly available sequenced facial expression dataset in the context of sign language.

The introduction of the FePh dataset has multiple contributions:

• Providing a sequenced facial expression dataset to the fields of facial expression, sign lan-

guage, and gesture recognition.

• Attributing highly used hand shapes with their associated performed facial expressions.

• Illustrating the relationships between hand shapes and facial expressions in sign language.

• In conjunction with RWTH-PHOENIX-Weather 2014 and RWTH-PHOENIX-Weather 2014

MS Handshapes datasets, constitute the first sign language data with both handshapes and

facial expression labels.

With the introduction of the FePh dataset, we are capable to propose and introduce novel vision-

based sequenced multi-modal sign language recognition frameworks. Since both hand gestures/shapes

and facial expressions are integral parts of sign language and there is a distinguished correlation be-

tween hand shapes and facial expressions, multi-modal sign language recognition algorithms that

extract features from both modals of hand shapes and facial expressions are going to enhance the

accuracy and validity of the architectures. In addition, it will propel research in facial expression,

multi-modal sign language, and gesture recognition fields of research.

In addition, to the best of our knowledge, the proposed agent-based model for the problem of post-

secondary persistence of deaf students is the first agent-based modeling simulation for measuring
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the influence of non-cognitive factor on post-secondary persistence in deaf students. All previously

published research in the field of deaf students’ persistence were theoretical works and have never

addressed the problem with an either mathematical or agent-based modeling approach.

1.4 Statement of Originality

Parts of this work have been included in conferences and preprints publicly available. Other than

the works presented and discussed in the manuscripts that follows, the rest of this dissertation has

not been published publicly at the time of writing.

• Alaghband, M., & Garibay, I. (in-press). Effects of Non-Cognitive Factors on Post-Secondary

Persistence of Deaf Students: An Agent-Based Modeling Approach. 2020 Conference of the

Computational Social Science Society of the Americas (CSS 2020).

• Alaghband, M. , Yousefi, N. , Garibay, I.. ”Facial Expression Phoenix (FePh): An Annotated

Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language”. World

Academy of Science, Engineering and Technology, Open Science Index 171, International

Journal of Electronics and Communication Engineering (2021), 15(3), 131 - 138.
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CHAPTER 2: LITERATURE REVIEW

This chapter reviews sign language literature which generally can be divided in two main categories

of sign language recognition and translation. Figure 2.1 shows a schematic diagram of studies and

research conducted in sign language literature.

Following the two main categories in sign language literature, this chapter is carried out in two

main sections. Section 2.1 focuses on studies addressing sign language recognition, which typ-

ically employ sign language recognition through hand gestures recognition, facial expressions

recognition, or combined hand gesture and facial expression recognition. Section 2.1.4, on the

other hand, focuses on the studies addressing sign language translation in a machine translation

context.

2.1 Sign Language and Facial Expression Recognition Literature

As shown in the sign language recognition branch of Figure 2.1, works done in the field of sign

language recognition can be categorized in three subcategories: hand gesture, facial expression,

and combined recognition. These three categories are described below in subsections 2.1.1, 2.1.2,

and 2.1.3, respectively.

2.1.1 Hand Gesture Recognition

An efficient hand gesture recognition system can be an integral potential part of many applications

such as natural human-machine interaction (HCI) [48], Virtual object manipulation, Interaction

with multimedia and games, Smart houses, Infotainment systems in vehicles [49], and sign lan-
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Figure 2.1: Schematic diagram of conducted studies in sign language literature. As the diagram
shows, sign language literature in the field of engineering and computer science can be categorized
in two main branches of sign language recognition and translation. The problem of sign language
recognition by itself can be divided in three branches of facial expression, hand gesture recognition,
and combined or multi-modal sign language recognition.

guage recognition [50].

Hand gestures are an important part of sign language that can be described as a combination of hand

movement, shape, orientation, alignment, and position of the fingers to the hands and body[51].

Some signs involve hand movements and motions in a large area, while some others involve one

finger only [52].

In other words, high inter-class similarities, large intra-class variations, and constant occlusions

in hand shapes creates vast variation and complexity in sign language [53] and makes sign lan-

guage recognition a challenging task. Due to this complexity, hand gesture recognition problems

can be approached from different aspects. As Figure 2.1 illustrates, backgrounds, gestures, special

14



hardware usage, and continuity are the four main parts of the hand gesture recognition problem.

Any different combination of these parts can be used while addressing the problem of hand gesture

sign language recognition. However, we divide these studies in two main categories based on the

usage of any kind of special hardware. In other words, studies are categorized in two categories of

vision-based (without the usage of any special hardware) and hardware-based (with the usage of

special hardware such as dept cameras or special hand gloves) hand gesture sign language recog-

nition. Below, some studies that address the problem of hand gesture sign language recognition in

hardware-based and vision-based categories are further discussed.

Hardware-based studies. A recent study done by [53] addresses the static alphabets and numbers

sign recognition in American sign language (ASL). A novel method based on multiview augmen-

tation and inference fusion using depth images of two public data sets of ASL static signs captured

by Microsoft Kinect is introduced. In their method, they first retrieve 3D information of depth

images and then generate more data from different perspectives. Therefore, they simulate realistic

perspectives of sign gestures and comprehend information from each of these perspectives. In the

next step, the final prediction of each gesture recognition is shown as output. Experimental results

based on the ASL benchmark data set of [17] shows an accuracy rate of 93% to 100%, and on the

NTU digit data set of [18] the accuracy rate was shown to be 100%.

The study of [54] contributes an automatic recognition of 24 static alphabets and numbers from

0 to 9 in ASL. To take advantage of the depth images, the Kinect sensors are used to capture

signs. The proposed recognition system uses an CNN classifier and it is shown that the although

the method achieved an accuracy rate of 94.6774%, the accuracy rate can be improved as the

number of training data images from different subjects increases. In the same year, [55] uses

Leap motion depth sensors to recognize ArSL static and dynamic gestures. The studied dataset

consists 28 alphabets, the first 10 numbers, and words including nouns and verbs in ArSL. In

addition, a segmentation method to segment a sequence of continuous signs is addressed. Some
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well-known machine learning algorithms such as SVM, KNN, ANN, and DTW methods are used

for implementation. Two main feature sets of palm and bone are considered for the proposed

models. Several experiments were performed for the proposed models and it is concluded that

KNN outperforms other methods in recognizing both palm and bone features set while achieving

an accuracy rate of 99% and 98%, respectively. On the other hand, DTW dominates other methods

using the same feature sets with the accuracy rate of 97.4% and 96.4%, respectively.

While using the Microsoft Kinect sensor, [56] develops a novel 3D CNN framework to extract

discriminative spatial-temporal features from a raw video stream. With the advantage of using

a Microsoft Kinect sensor, multi-channel video streams including color image, depth map, and

body joints location were recorded simultaneously. Comparing their proposed method (3D CNN)

with the baseline method (Gaussian Mixture Model-Hidden Markov Model- GMM-HMM) with

the average accuracy rate of 90.8%, it was shown that the 3D CNN is capable of increasing the

accuracy of the method while using the multi-channels and was 94.2% accurate.

In 2017, [57] presents a multi-sensor framework to recognize Indian sign language words using

both Leap motion and Kinect sensors. By using these two depth sensors, the authors took ad-

vantage of inputting sign language gestures from two different angles which helps the framework

record the gestures efficiently and completely. A dataset containing 25 dynamic isolated Indian

sign language words signed by 10 different signers 8 times each for each sign is collected. While

applying the proposed method using Coupled HMM (CHMM), the model achieved 90.80% ac-

curacy. In a similar study using a multi-model framework to capture finger and palm positions,

[58] recognized 50 words signed gestures independently using a Leap motion and Kinect dataset.

To improve the accuracy of the proposed system, the collected data from both Leap motion and

Kinect was combined and it was shown that the accuracy of the system improves to 97.85% for

single and 94.55% for double hand gestures. HMM and bidirectional Long Short-term Memory

neural network (BLSTM-NN) are used for the recognition of single and double hand gestures,
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respectively.

In 2014, [59] proposes a systematic feature selection method that in the context of sign language

recognition was tested on the first 10 numbers of American sign language numbers (i.e., 0 to 9).

To illustrate the computational results of sign language recognition, the images of the first 10

numbers of ASL at the Massey University data set for hand gestures proposed by [60], was used.

They showed that the proposed feature method selection, which minimizes the feature vector while

maximizing the F1 score for the classification system, is able to achieve an accuracy rate of 97.7%.

With the goal of demonstrating a novel combination of feature and optimization technique, [49]

proposed a combination method of the ANNs and Genetic algorithm, named the Non-dominated

Sorting Genetic Algorithm II (NSGA-II). The data set of Massey University by [60] was used to

recognize 36 hand gestures (26 letters and 10 numbers of American sign language). With the pro-

posed method, authors achieved up to an 98.61 accuracy rate. In addition, they compared several

commonly used feature extraction methods on the same data set in terms of accuracy and computa-

tional cost. Using the same data set, [61] dealt with using CNN for recognizing sign language hand

gestures. They considered both static and dynamic American alphabets and numbers (36 gestures

in total) and showed that the proposed CNN model achieved an accuracy rate of 96%.

Due to some of the advantages of glove-based recognition methods, such as being independent

of locomotion during the recognition process and environmental lightening conditions they are

widely used for sign language recognition. In the context of using a data glove for recognizing the

sign language, several studies can be reviewed.

[62] introduces SIGMA that uses both a data glove housing a 6-DOF IMU and nine flex sensors for

both static and dynamic hand gesture recognition. Static and dynamic gestures are not considered

in a continues gesture recognition format. In other words, the signer must stop to punctuate the

ends of each gesture. With this, four states for the static gesture, and five, six, and seven states
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for dynamic gestures with same hand form, changing hand forms, and multiple movements are

considered, respectively. This is one of the main limitations of the proposed method, SIGMA. In

total, 30 data samples are used for each of the gestures with 17 features. By developing a Hidden

Markov Model (HMM), the authors achieved an accuracy rate of 79.44%. In another study by

[63], the authors recognized single handed Indian sign language alphabets (8 letters), American

sign language alphabets (A to Z), and sign numbers (0 to 9) based on hand kinematics while using

a data glove. After recognizing alphabets and numbers, they were then translated into speech with

the usage of a label matching and speech data base. The proposed method achieved an accuracy

rate of 96.7%.

Vision-based studies. Although utilizing special hardware such as data gloves or depth cameras

eases the process of capturing special features, they limit applicability where such hardwares are

not available. Therefore, vision-based sign language recognition systems utilizing datasets col-

lected by regular cameras are proposed [3, 20, 22, 23, 64]. In vision-based studies, interaction

between humans and computers for gesture recognition is involved.

One recent work done by [65] addresses real-time sign language recognition using vision-based

machine learning and deep learning methods CNN and RNN. They run a deep CNN for spatial

features, and an RNN for temporal features. With a data set including 46 gestures of words in

Argentinean sign language (LSA), the proposed method achieved an accuracy rate of 95.2%.

A study conducted by [66] proposes a novel end-to-end embedding of a CNN into an HMM while

treating the outputs of the CNN as true Bayesian posteriors. Using 3 publicly available benchmarks

in continuous sign language datasets (RWTH-PHOENIX-Weather 2012, RWTH-PHOENIX-Weather

Multisigner 2014, and SIGNUM single signer), computational results achieve about 15% lower

Word Error Rate (WER). On the first two datasets (RWTH-PHOENIX-Weather 2012 and SIGNUM),

the best known WER is achieved:30% and 7.4%, respectively. On the third dataset (RWTHPHOENIX-
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Weather 2014 Multisigner), which has more than 1000 vocabularies, a lower WER of 38.8% is

achieved. In addition, the authors released a one-million-hand image dataset for public use, which

is a valuable benchmark for evaluating state-of-the-art methods.

One year later, [67] presented a new network called SubUNets to improve the results of [66].

SubUNets are a series of specialized expert systems that are introduced to solve sequence-to-

sequence learning problems while allowing authors to use domain–specific expert knowledge in

the system. In order to illustrate the computational results, SubUNets are evaluated using the one

million-hand image dataset, which shows an improvement of about 30% in frame-level accuracy.

In the same year, [68] proposed a weakly supervised deep architecture with recurrent convolutional

neural network for the continuous sign language recognition. Training their model on the same

benchmark dataset of the RWTH-PHOENIX-Weather multi-signer 2014, the authors observe that

in various settings, the (WER) of the proposed model achieved comparable results to state-of-the-

art models without using extra supervision.

In another study by [69], an iterative re-alignment approach applicable to visual sequence labelling

tasks is presented. To model the algorithm, a deep hybrid CNN-BLSTM network was embedded

into a Hidden Markov Model (HMM). Results on two publicly available datasets featuring over

1000 classes outperform the state-of-the-art by about 10% absolute WER. In a more recent study

by [70] and similar to the [68], a recurrent convolutional neural network for a continuous sign lan-

guage recognition system is proposed. In contrast to the previous state-of-the-art models, the re-

current neural network in their work is used as the sequence learning module of the framework. By

evaluating the proposed method on two publicly available datasets of RWTH-PHOENIX-Weather

multi-signer 2014 and SIGNUM, the representation and performance of the model is improved.

In contrast with the majority of vision-based research that considers one gesture (static vs. dy-

namic), [71]’s study considers both static and dynamic letters in ASL and input webcam image
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data is stored in the database. A SVM-HMM method is proposed for hybrid arrangements that can

perceive single hand motions. Performance metrics of the system are accuracy, sensitivity, preci-

sion, FNR, and FDR. The results demonstrate constant improvement of proficiency and robustness

via the proposed system.

2.1.2 Facial Expression Recognition

As previously mentioned, sign language is a combination of hand movements and facial expres-

sions. Facial expressions such as eye gaze recognition or direction, eyebrows, eye blinks, and

mouth plays an integral role in conveying emotions, feelings, and/or grammar [72]. Signers use

facial expressions to support grammatical constructions, called grammatical Facial Expressions

(GFEs). GFEs are considered in morphological and syntactic levels of sign language and help in

eliminating the ambiguity of signs [16]. Therefore, sign language recognition systems without the

facial expression recognition that expresses grammar and emotion are incomplete [7].

For the first time, [73] discussed the importance of facial expressions and addressed it as one of the

most powerful and natural signals expressed universally to convey human emotions and intentions.

Due to the practical importance in several different fields of research such as sociable robotics,

driver fatigue surveillance, sign language recognition, and many other HCI systems, numerous

research conducted facial expression recognition studies[74].

In sign language recognition systems, facial expressions play an important role in conveying gram-

matical and emotional information. Conducted research in this field can be categorized in two main

groups depending on the special hardware usage: vision-based (without using any special hard-

ware) and hardware-based recognition systems. The hardware-based recognition systems usually

use special sensors such as Microsoft Kinect or Leap Motion to capture special features of sign-

ers’ gestures. [16] uses Microsoft Kinect to present a new model for automatically recognizing
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Grammatical Facial Expressions (GFEs) at the discourse syntactic level.

Since deep neural networks outperform traditional models in numerous fields of computer vision,

much research introduces novel vision-based deep learning models to capture and recognize fa-

cial expressions. To address a few, [75] propose a novel multi-region ensemble CNN to capture

both global and local features from multiple human face sub-regions. [76] presents a new hybrid

CNN-Recurrent Neural Network (CNN-RNN) method for facial expression recognition in images

of two datasets, the MMI facial expression and the Japanese Female Facial Expression (JAFFE)

Database. [77] demonstrates a novel Deep CNN method to learn from noisy labels, using facial

expression recognition as an example. In 2015, [78] presented a joint fine-tuning framework using

deep CNNs to address the facial expression recognition problem. The proposed framework has

two different models: one for capturing temporal appearance features from image sequences and

one for temporal geometry features extracted from temporal facial landmark points. For further

study on facial expression recognition methods, please see [79], [74], and [80] surveys.

2.1.3 Combined hand gesture and facial expression recognition

As previously discussed, for complete sign language recognition systems, both manual and non-

manual signals must be integrated. Although most research studies each category of signals sep-

arately, little research proposes combined hand gesture and facial expression frameworks. Frame-

works that utilize multi-signals, considering signals as different parts of the human body for the

gesture or sign language recognition systems, are called multimodal methods (some of the works

in the literature may also call these methods as multi-semantics such as [81]). Here, we review

some of most recent and related multimodal studies.

The study conducted by [11] presents a multimodal HMM-based system to recognize hand gestures
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as manual signals and head movements as non-manual signals simultaneously. Later on, [8] pro-

posed a new multimodal framework, using Hierarchical Conditional Field (H-CRF) and Support

Vector Machine (SVM) to recognize hand gestures and facial expressions, respectively. Two years

later, the authors proposed another multimodal framework using three cameras capturing three dif-

ferent directions [82]. Another study by [83] presents a novel multimodal framework combining

both face and body gestures using Histogram of Oriented Gradients (HOG) features from videos.

The proposed model uses an SVM to classify 10 different expressions.

As a recent work, [84] presents a multimodal framework considering global hand locations/motions

and local hand gesture details. By proposing a novel continuous sign language recognition frame-

work that consists of a Hierarchical Attention Network with Latent Space (LS-HAN), the accu-

racy of continuous sign language recognition on the benchmark dataset of RWTH-PHOENIX-

Weather 2014 was increased. [81] presents the most recent multimodal vision-based continuous

sign language recognition study. The authors utilize a spatial-temporal multimodal network and

design a joint optimization strategy to achieve end-to-end sequence learning. By training the pro-

posed model on three benchmark datasets (RWTH-PHOENIX-Weather 2014, CSL, and RWTH-

PHOENIX-Weather T), the computational results achieve new state-of-the-art accuracy and per-

formance.

In addition to the vision-based model, some research utilizes special sensors to address multimodal

sign language recognition such as [7] and [85]. [7] presents one of the most recent articles combin-

ing facial expression and hand gesture recognition. Both facial expressions (captured by Kinect)

and hand gestures (captured by Leap motion) are considered simultaneously to increase the in-

formation that results in enhancing recognition performance. The HMM method is used for the

sake of the recognition task, while an independent Bayesian classification combination approach

is applied to improve the recognition performance. In order to illustrate the results, the authors

collected a dataset containing 51 words in Indian sign language (which is publicly available now)

22



and showed that the accuracy rate for the single hand gesture recognition was 96.05% for single

and 94.27% for double hand gestures. [85] presents a novel multimodal framework considering

both signals using two different sensors for face and hand gestures. A survey on both manual and

non-manual sign language recognition systems is presented by [13].

2.1.4 Sign Language Translation

In this section, research that address translation of sign language to other form of languages is con-

sidered. These articles may have considered the sign language recognition problem to recognize

sign language as a step before translating the sign language.

2.1.4.1 Within a language (Translating a sign language to text or speech)

As the first application of sign language recognition on a mobile platform, [86] proposed a sign lan-

guage recognizing and translating platform to translate American sign language to text or speech.

In their article, the proposed framework is able to recognize 16 static alphabets of ASL with an

accuracy rate of 97.13% on average. Canny edge detection and region growing techniques are

used to detect hand gestures from moderately complex backgrounds. In addition, SURF and SVM

methods are used for the feature extraction and classifying. It is also demonstrated that the com-

putational results are highly dependant of the illumination and background conditions, and the

performance can decrease if any such kind of changes occur.

Not using machine learning or deep learning techniques, [87] developed a software-based sign

language converter in which a geometric matching algorithm is used to recognize the cue symbols

of ASL. Next, the values given by the matching algorithm after the decision making process are

given to a case structure which generates a distinct text output for each corresponding match.
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Finally, the text or its converted audio is generated for the final user.

[88] introduces a sign language converter system that recognizes static hand gestures of Indian sign

language and translates them to texts in Indian spoken language. The proposed system captures

images of the signs and uses Hue, Saturation, and Value (HSV) of the RGB colored images for

hand tracking and segmentation (feature extraction). The captured images are then sent to a web

hosting server and are given as input to the neural network in Matlab. After mapping the image

to its equivalent in the Indian spoken language in Matlab, the converted text is sent back to the

user’s mobile device. To better illustrate the aforementioned process, an Android application using

Android Studio is developed. One weak point of its research is its sensitivity to the lightening

variations. The proposed system images are captured under constrained environments such as dark

backgrounds, while in the real-world, the lightening conditions and background situations may

vary.

Another study by [89] presents a real time gesture recognition system for recognizing sign lan-

guage and converting it to speech output. The hand gesture recognition stage follows three steps:

image prepossessing, feature extraction, and gesture classification. The former step uses Local

Binary pattern, while the second step uses Gray level Co-occurrence Matrix. The last step of clas-

sification task is done by using a KNN classifier. Using a dataset containing 10 alphabets of ASL,

the proposed method achieved an accuracy rate of 92.5% for k=3 and 94% for k=5.

Another way to approach the translation problem is converting a speech or text to signs for hearing

impaired people. One of the recent papers that addresses this problem is [90], in which the authors

use an automatic speech recognition module (ASR) to convert speech to text and then integrate

it with a model which translates the text scripts to Arabic sign language (ArSL). To achieve this

goal (Arabic text-to-sign (ArTTS) translation), 3D Avatar signers are generated and used. The 3D

avatar character is able to employ four parameters in hands including hand shape, location, orien-
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tation, and movement. The results on testing 10 words demonstrate that the model is successful in

translating the meaning of text scripts and has a detection rate as high as 85%.

2.1.4.2 Between languages (Translating a sign language to another)

This subsection is the literature review of sign language translation between languages, which

in other words means translating a sign language to another sign language or another language’s

speech or text. Many deaf people do not know spoken languages and are not able to write or read

spoken language [52], therefore, translating a sign language to a spoken language may not help the

deaf community. As a result, another form of sign language translation may be needed, in which

one sign language is translated to another one. At the same time, this area may consider translation

of one sign language to its spoken language and then to another spoken one.

Table 2.1: An overview of some hardware-based sign language data sets

Au-

thors

Name Language Gesture

Type

Language

level

Classes Data Type

[64] UCI Australian Aus-

lan Sign Language

dataset1

Australian Dynamic Alphabets 95 Data Glove

[17] ASL Finger Spelling

A 2

American Static Alphabets 24 Depth Im-

ages

[17] ASL Finger Spelling B

3

American Static Alphabets 24 Depth Im-

age

1Stands for Australian Sign Language (Available at: https://archive.ics.uci.edu/ml/datasets/
Australian+Sign+Language+signs+(High+Quality))

2Available at: http://empslocal.ex.ac.uk/people/staff/np331/index.php?section=Fin
gerSpellingDataset

3Available at: http://empslocal.ex.ac.uk/people/staff/np331/index.php?section=Fin
gerSpellingDataset
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Au-

thors

Name Language Gesture

Type

Language

level

Classes Data Type

[91] MSRGesture 3D 4 American - Words 12 Depth

Video

[25] CLAP14 Italian - Words 20 Depth

Video

[92] ChaLearn LAP

IsoGD5 & ConGD6

- Static

& Dy-

namic

- 249 RGB &

Depth

Video

[93] PSL Kinect 307 Polish Dynamic Words 30 Kinect

Video

[19] ISL8 Indian static Alphabets,

Numbers,

Words

140 Depth Im-

ages

2.1.5 Sign Language Datasets

As previously discussed in subsection 2.1.1, conducted research in sign language recognition sys-

tems can be categorized in two main groups: hardware-based and vision-based recognition sys-

tems. Hardware-based recognition systems use datasets that are collected utilizing special colored

gloves [14, 15, 94], special sensors, and/or depth cameras (such as Microsoft Kinect and Leap

Motion) [16, 17, 18, 19, 95, 96, 97] to capture special features of the signer’s gestures. Some well

known hardware-based sign language datasets are listed in Table 2.1.

4Available at: https://www.uow.edu.au/˜wanqing/Datasets
5Available at: http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html
6Available at: http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html
7Available at: http://vision.kia.prz.edu.pl/dynamickinect.php
8Available at: https://github.com/zafar142007/Gesture-Recognition-for-Indian-Sign

-Language-using-Kinect
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Although utilizing hardware eases the process of capturing special features, they limit applicability

where such hardware is not available. Therefore, vision-based sign language recognition systems

utilizing datasets collected by regular cameras are proposed [3, 20, 98, 21, 22]. Table 2.2 lists some

of the well known vision based sign language datasets.

Table 2.2: An overview of some vision-based sign language data sets

Authors Name Language Gesture

Type

Language

level

Classes Data

Type

[60] - American Static Alphabets,

numbers

36 Image

[17] ASL Finger Spelling

A 9

American Static Alphabets 24 Image

[99] HUST-ASL10 American Static Alphabets,

Numbers

34 RGB

&

Kinect

Image

[22,

100]

Purdue RVL-SLLL

ASL Database11

American - Alphabets,

Numbers,

Words,

Paragraphs

104 Image,

Video

[101] Boston ASLLVD12 American Dynamic Words >3300 Video

9Available at: http://empslocal.ex.ac.uk/people/staff/np331/index.php?section=Fin
gerSpellingDataset

10Stands for Huazhong University of Science & Technology
11Available at: http://www2.ece.ohio-state.edu/˜aleix/ASLdatabase.htm and https:

//engineering.purdue.edu/RVL/Database/ASL/asl-database-front.htm

12Stands for American Sign Language Lexicon Video Dataset (Available at: http://www.bu.edu/av/asll
rp/dai-asllvd.html)
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Authors Name Language Gesture

Type

Language

level

Classes Data

Type

[23] ASL-LEX13 American - Words Nearly 1000 Video

[3] MS-ASL 14 American Dynamic - 1000 Video

[102] - Arabic - Words 23 Video

[21] RWTH-PHOENIX-

Weather 201215

German - Sentence 1200 Image

[20,

103]

RWTH-PHOENIX-

Weather Multisigner

201416

German Dynamic Sentence ¿1000 Video

[104] SIGNUM17 German - words,

Sentences

450 Words,

780 Sen-

tence

Video

[15] LSA1618 Argentinian - Alphabets,

Words

16 Image

[15] LSA6419 Argentinian - Words 64 Video

[19] the ISL dataset20 Indian static Alphabets,

Numbers,

Words

140 Image

13Available at: http://asl-lex.org/
14Available at: https://www.microsoft.com/en-us/download/details.aspx?id=100121
15Available at: https://www-i6.informatik.rwth-aachen.de/˜forster/database-rwth-p

hoenix.php

16Available at: https://www-i6.informatik.rwth-aachen.de/˜koller/RWTH-PHOENIX/
17Available at: http://www.phonetik.uni-muenchen.de/Bas/SIGNUM/
18Available at:http://facundoq.github.io/unlp/lsa16/index.html
19Available at: http://facundoq.github.io/unlp/lsa64/index.html
20Available at: https://github.com/zafar142007/Gesture-Recognition-for-Indian-Sign

-Language-using-Kinect

28

http://asl-lex.org/
https://www.microsoft.com/en-us/download/details.aspx?id=100121
https://www-i6.informatik.rwth-aachen.de/~forster/database-rwth-phoenix.php
https://www-i6.informatik.rwth-aachen.de/~forster/database-rwth-phoenix.php
https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX/
http://www.phonetik.uni-muenchen.de/Bas/SIGNUM/
http://facundoq.github.io/unlp/lsa16/index.html
http://facundoq.github.io/unlp/lsa64/index.html
https://github.com/zafar142007/Gesture-Recognition-for-Indian-Sign-Language-using-Kinect
https://github.com/zafar142007/Gesture-Recognition-for-Indian-Sign-Language-using-Kinect


Authors Name Language Gesture

Type

Language

level

Classes Data

Type

[105] ISL hand shape

dataset21

Irish Static

& Dy-

namic

- 23 Static &

3 Dynamic

Image

Video

[106] Japaneese Fin-

ger spelling sign

language dataset

Japan - - 41 Image

2.2 Student Retention Literature

Much research has been conducted to identify and study factors affecting the post-secondary en-

rollment, persistence, completion, and graduation rates for deaf students [39, 107, 108, 109, 110,

111, 112, 112]. These studies show that cognitive factors such as academic preparation and English

literacy are the important in post-secondary enrollment and success rate predictions of deaf stu-

dents [43], but not for completion or graduation. These findings indicate that deaf students with ad-

equate academic skills are still likely to drop out of college [113]. Hence, after deaf students enrol;

in a post-secondary institution, other factors such as personal and non-cognitive factors are con-

sidered as stronger predictors for academic persistence and graduation rates [114, 115, 116, 117].

Some important non-cognitive factors influencing post-secondary persistent of deaf students are

considered as academic experience, social integration, social skills, and clear goals and strategies.

Positive academic experiences such as having informal mentorship from faculty, participating in

college activities outside of class, and collaborating with academic advisor, as well as high levels

of social integration, such as being satisfied with social experience and having the ability to ad-

just socially, have a direct influence on students who persist post-secondary education [42, 118].

21Available at: https://github.com/marlondcu/ISL
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Another important non-cognitive factor is social skills which include a high level of involvement

in social activities, and the ability to perceive social situations and respond to the behaviors of

others [108, 119]. Last but not least, having clear goals and strategies helps deaf students to have

self-confidence and the desire to overcome post-secondary barriers [120].

Agent-based modeling (ABM) is a computational method that allows us to create, analyze, and

model a system composed of autonomous decision-making artificial entities called agents [121].

ABMs are usually used in cases of modeling real-world phenomena that need more generalized

models which can adapt to our world. ABMs can be coupled with other well developing methods

such as machine learning –an area of artificial intelligence that attracted attentions in various fields

of research such as cyber security [122] and computer vision [24]– to alter and enhance the way

we analyze all different kinds of data.

An agent in ABM is an artificial autonomous individual who has properties, actions, and goals,

which enables it to assess situations and make decisions based on defined rules [123]. In ABMs,

agents may have interactions with themselves, other agents, and/or environments that permits us to

execute and study how rules of agent behavior give rise to the emergence of macro-phenomena as

the simulation output [124]. This capability of ABMs in capturing emergent macro-phenomena,

along with other benefits in providing a natural description of a system and flexibility, has made

them a popular modeling approach in various fields of research [125].

Deaf student post-secondary persistence is affected by various factors which if modified, can lead

to a better life by providing the necessary boost for education and employment goals [39, 107, 112].

Such important phenomena can be best understood by using a bottom-up approach; ABM. De-

spite previously conducted research which identified non-cognitive factors influencing the post-

secondary persistence of deaf students, interactions between these factors and their influence in

predicting the persistence and graduation rate is still a barely explored field of research. In this
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work, we present an agent-based computational model for post-secondary persistence of deaf stu-

dents with the goal of studying the effects of non-cognitive factors in post-secondary persistence.

Based on the literature, academic experience, social integration, social skill, and clear goals and

strategies described before are considered as four non-cognitive factors influencing post-secondary

persistence for deaf students. To the best of our knowledge, this is the first agent-based modeling

simulation for measuring the influence of non-cognitive factor on post-secondary persistence in

deaf students.
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CHAPTER 3: METHODOLOGY AND FRAMEWORK OF FACIAL

EXPRESSION RECOGNITION AND HEARING IMPAIRED STUDENTS’

RETENTION MODEL1

Vision-based recognition systems usually require large amounts of annotated data and vision-based

sign language recognition systems are not an exception. Without more robust data concerning

multi-modal features within sign language recognition, research and practical use for this concept

remains stunted. Therefore, as the first step in proposing a multi-modal vision-based sign language

recognition framework, the model requires a proper multi-modal sign language dataset.

To the best of our knowledge, although there are sufficient hand shape datasets in the context of sign

language, the literature lacks facial expression datasets in the context of sign language or a multi-

modal sign language datasets considering both hand shapes and facial expressions. The scarcity

of multi-modal sign language datasets limits researchers’ ability to study and propose multi-modal

sign language recognition models that consider both facial expressions and hand gestures.

Therefore, in order to contribute to this research gap, we present a facial expression dataset (Facial

expression Phoenix (FePh)) for a well-known continuous sign language dataset with full frames

and hand shape images and annotations. Methodology of the aforementioned step is further dis-

cussed as following.

1Some parts of this chapter’s material have been previously published in the International Journal of Electronics
and Communication Engineering (2021), 15(3), 131 - 138 and 2020 Conference of the Computational Social Science
Society of the Americas (CSS 2020).
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3.1 Facial expression Phoenix (FePh) Data collection

In this section we illustrate the Facial expression Phoenix (FePh) data collection’s methodology,

which to the best of our knowledge is the first annotated vision-based publicly available sequenced

facial expression dataset in the context of sign language. The introduction of FePh in conjunc-

tion with RWTH-PHOENIX-Weather 2014 and RWTH-PHOENIX-Weather 2014 MS Handshapes

datasets constitute the first sign language data with both handshape and facial expression labels.

This characteristic enables us to propose novel multi-modal vision-based sign language recognition

frameworks which consider two modalities of facial expressions and hand shapes.

In order to annotate facial expressions of a sign language dataset with annotated hand shapes,

we considered the well-known publicly available continuous RWTH-PHOENIX-Weather 2014

dataset. The annotated hand shape dataset of the RWTH-PHOENIX-Weather 2014 is publicly

available as RWTH-PHOENIX-Weather 2014 MS Handshapes dataset [66]. Therefore, by pro-

viding facial expression annotations for the same dataset, we introduce the first multi-modal sign

language dataset. This enables us to utilize a multi-modal sign language dataset with both hand

shape and facial expression annotations.

To achieve the aforementioned goal, we collected the full frame images of RWTH-PHOENIX-

Weather 2014 development set that are identical to the RWTH-PHOENIX-Weather 2014 MS

Handshapes dataset [66] and automatically detected, tracked, and cropped faces of all full frame

images using facial recognition techniques. The result was a collection of cropped facial expres-

sion images. Figure 4.4 illustrates exemplary full frame and cropped facial images of the RWTH-

PHOENIX-Weather 2014 and FePh datasets.

Twelve annotators (six women and six men) between 20 to 40 years old were asked to annotate

the data. We asked annotators to answer three questions about each static image: the signer’s
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(a) Exemplary full frame images of the RWTH-
PHOENIX-Weather 2014 dataset

(b) Exemplary cropped facial images of the
FePh dataset using the full frame images of the
RWTH-PHOENIX-Weather 2014 dataset

Figure 3.1: Exemplary full frame and cropped facial images of the RWTH-PHOENIX-Weather
2014 dataset. The cropped facial images shown in 3.1b are considered as Facial expression Phoenix
(FePh) dataset images.

emotion, visibility, and gender. In terms of emotion, annotators could choose one or more of the

following applicable basic universal facial expressions for each static image: ”sad”, ”surprise”,

”fear”, ”angry”, ”neutral”, ”disgust”, and ”happy”. Although more than seven emotions and their

primary, secondary, and tertiary dyads exist, considering all of them was not within the scale of this

project. Therefore, we offered the eighth class of ”None” as well. Annotators were asked to choose

the ”None” class when none of the aforementioned emotions could describe the facial expression

of the image. In addition, since annotators could choose more than one facial expression for

each individual image, the combinations of basic universal facial expressions were also considered

(interestingly, this did not result in choosing more than two emotions for each image) and shown by

a ” ” in between such as surprise fear. The sequence of emotions is not important in the secondary

and tertiary dyads (i.e., surprise fear and fear surprise are the same).

With regard to the second question, visibility, we asked the annotators to evaluate whether the

signer’s face is completely visible. Although the signer’s face was visible in majority of images,

this was not always the case. The partial visibility of the face was due to the signer’s head move-

ment, position, hand movement, and transitions from one emotion to another emotion. This helped

us to detect and opt out these obscured images in the data. Figure 3.2 shows some obscured exem-
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Figure 3.2: Exemplary images of obscured faces

plary images.

The last question of signer’s gender was asked to provide statistics of signers’ gender. This statis-

tics enables future research in the effects of gender in expressing and detecting emotions and facial

expressions.

For our labelling purpose, we took advantage of the Labelbox [126] annotating solution tool

through which we defined an annotation project and randomly distributed images to be labeled by

the annotators. In addition, due to the complexities of the facial images of the RWTH-PHOENIX-

Weather 2014 dataset, we used the auto consensus option of the Labelbox tool. These complexities

are as follows:

• The ambiguity of images, due to signer’s movement, head position, and transitions from one

emotion to another (e.g., eyes are closed and/or the lips are still open).

• Low quality (resolution) and blurriness of images.

• Mouthed words that confuse facial expression annotators.

• Personal differences between signers expressing facial expressions.

• The best facial expression that describes the image is not included in the dataset.

• Images may not be in facial expression’s top frame.
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• Large intra-class variance (such as ”surprised” emotion with open or closed mouth).

• Inter-class similarities.

With the usage of the auto consensus option of Labelbox, we asked more than one annotator (i.e.,

three annotators) to annotate about 60% percent of the data. For the images with three labels, we

chose the most voted emotion as the final label of the facial image. In cases where there was not

a most voted emotion, but the image was a part of a sequence of images, we have assigned labels

based on the before or after images’ facial expression of the same sequence. On the other hand, if

there was not a most voted emotion, and the image was not a part of a sequence of images (i.e., one

single image without any sequence), we asked our annotators to relabel the image. In this case, all

images needed to be labelled by three different annotators.

3.1.1 Facial expression Phoenix (FePh) Data Usage

The FePh facial expression dataset produced with the above method is stored on Harvard Dataverse

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:

10.7910/DVN/358QMQ). All facial images are stored in ”FePh images.zip”. Although the full

frame images of the FePh dataset are identical to the RWTH-PHOENIX-Weather 2014 images, the

images’ filename in the FePh images.zip are different from the original images. FePh filenames

consider both image folder name and image file number. For example, the full frame image of the

facial image with filename ”01August 2011 Monday heute defa ult-6.avi pid0 fn000054-0.png”

in the FePh dataset is identical to the full frame image with the directory of ”... / 01August 2011

Monday heute default-6 / 1 / 01August 2011 Monday heute.avi pid0 fn000054-0.png” in the

RWTH-PHOENIX-Weather 2014 and ”... / 01August 2011 Monday heute default-6 / 1 / .png

fn000054-0.png” image in the RWTH-PHOENIX-Weather 2014 MS Handshapes dataset. This

helped us to store all images in one single folder (FePh images). The FePh labels.csv file contains
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Table 3.1: The facial expression labels with their corresponding numbers

label# Emotion label# Emotion label# Emotion
0 neutral 10 anger neutral 52 sad disgust
1 anger 21 disgust anger 53 sad fear
2 disgust 31 anger fear 60 neutral surprise
3 fear 32 fear disgust 61 surprise anger
4 happy 40 neutral happy 62 surprise disgust
5 sad 50 neutral sad 63 surprise fear
6 surprise 51 sad anger 65 surprise sad
7 none

images’ filenames, facial expression labels, and gender labels. To ease data usability, we stored

the facial expression labels as codes. Table 3.1 shows the facial expression labels with their corre-

sponding code numbers. In addition, 0 and 1 in the gender column represent the male and female

genders, respectively.

3.2 Hearing Impaired Students’ Retention Agent-based Model

Among several student retention models, the one presented by Tinto [1, 127] is held in high regard

and is the most cited model [40, 128]. Tinto’s model, shown in Figure 3.3, provides a heuristic and

theoretical framework for understanding student behaviour while describing the factors influenc-

ing the persistence process. With some modifications, this model can be applied to deaf college

students as well [39, 107]. According to this theory, a combination of student characteristics and

academical, environmental, and social integration in an institution influence the student’s departure

decision. To create our model, we use the theoretical model of Tinto [127]. By only considering

the influence of four non-cognitive factors (academic experience, social integration, social skill,

and clear goals) on Tinto’s model, we created a new simplified framework as shown in Figure3.4.

This figure shows the diagram of four non-cognitive factors influencing student departure decision
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Figure 3.3: A conceptual diagram for dropout from college presented by [1]

Figure 3.4: Diagram of four non-cognitive factors effecting student’s departure decision based on
Tinto’s dropout from college model

utilizing the same relations as Tinto’s model (Figure3.3). In this work, this theoretical framework

is used to create the ABM and measure the probability of the departure decision of a student.

Our proposed ABM model involves two categories of actors: teachers and deaf agents. Deaf

agents are members of the general population who have graduated from secondary school and
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are capable of attending post-secondary education regardless of their age. While teachers stay at

college during college years (runs of the model), deaf agents can decide whether to attend college

or not. The specifications, attributes, and behavioral rules of teachers and deaf agents during the

SETUP and RUN phases of the ABM are as follows;

SETUP Specifications. In order to setup the model, the user sets exogenous parameters of the

total number of agents available in the model (called ”num agents”), fraction of teachers (called

”frac teachers”), and college attendance percentage of deaf students (called ”College Attendance”).

The total number of agents will show the sum of teachers and deaf agents. To show the mathemat-

ical equations, the total number of teachers and deaf agents is equal to:

num teachers = num agents ∗ frac teachers

num deaf agents = num agents− num teachers

In the model settings, academic experience, social integration, social skill, and clear goals are

named as Academic Experience, Social Integration, Social Skill, and Goal, respectively. Clear

goals and social skill factors are considered to be exogenous and heterogeneous across agents.

Lacking real-world data, each agent’s value for the two exogenous factors are considered to have

the uniform distribution on the interval of (0,1); U(0, 1). Setting the value of 0 for each of these

factors show the lowest level of the factor. As the value increases, the level of having that positive

factor increases, while ”1” is the highest level of the factor.

On the other hand, the other two factors, academic experience and social integration, (which are

usually dependent to connections and interactions with others, such as teachers and other students
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Figure 3.5: Exemplary visualizations of the setup screen of the student retention ABM. The blue
square in the middle of the screen with a thick black edge shows the college. White locations
surrounding the college are considered residential locations. The green human shapes on the resi-
dential locations and the green stars at college represent deaf agents and the teachers, respectively.

Figure 3.6: Exemplary visualizations of the proposed NetLogo model after two ticks of running
the model. Screen of the student retention ABM while running the model. As soon as deaf agents
attend college at the first tick (year), their color changes to yellow and they will be called students.
If students quit the college, their color turns to red and they will leave college and move into a
random location on the residential locations. The gray lines connecting agents show the created
links of each student with teachers and other students.
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Figure 3.7: Exemplary visualizations of the proposed NetLogo model after four ticks of running
the model. Screen of the student retention ABM after four ticks. At the end of the fourth year,
students will graduate. By graduating, their color will turn to blue and they will move into one of
the residential locations (leave college).

Table 3.2: Input assumptions for all runs and experiments. Factors values changes with steps of
0.1 in the interval of (0.1,1).

factor influence num agents college attendance repetitions goal academic experience social skill social integration
goal 200 87.2 10 (0.1,1) 0.5 0.5 0.5
academic experience 200 87.2 10 0.5 (0.1,1) 0.5 0.5
social skill 200 87.2 10 0.5 0.5 (0.1,1) 0.5
social integration 200 87.2 10 0.5 0.5 0.5 (0.1,1)

at the college), are considered to be derived from a multiplication of the initial value of the factor

that the user sets and the number of the links (connections) with others that a student create at

college.

There are two locations in our ABM screen: college, and residential. College is an institution that

deaf agents can attend to pursue their post-secondary education. College is located at the middle

of the screen and is colored in blue with a thick black line around outside edges. On the other

hand, residential locations can be any other kind of location in which deaf people cannot have

post-secondary education. Residential locations are represented by the white color surrounding
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the college. Figure 3.5 shows both college and residential locations. When the model starts, only

teachers are located at the college; all deaf agents are randomly located in one of the empty spaces

of the residential locations. Figure 3.5 shows the setup screen of the proposed ABM. In Figure 3.5,

deaf agents are shown as green human shapes located at white residential locations while teachers

are shown as green stars located randomly in the college.

RUN Specifications. To begin each run of the model, the user sets the initial number of agents,

fraction of teachers, and the college attendance percentage as well as the initial values of the four

non-cognitive factor variables. The model runs based on ticks (i.e,., each run ticks the model once).

For simplification, in this work we only consider 4-year colleges or university programs (that we

call ”college” at the rest of this dissertation) for post-secondary education. Therefore, model runs

for the total of four ticks to achieve the end of the fourth year at college. At the end of the fourth

year, students graduate and leave the college.

The deaf agents can only decide whether to attend college or not in the first tick (that is, the

first year). If they do, they move to one of empty spots at the college location and their color

changes to yellow. Otherwise, they will remain at residential locations without any color change.

We call the attended college agents ”students”. Students are deaf agents who not only attended

college, but also are still persisting at college at the end of each tick (i.e., year). If attended agents

decide to depart college during a tick, they move out of the college and move to a random spot in

the residential locations. These agents who attended college but departed it are called ”quitters”.

Quitters are shown as red human shapes located at residential locations. For simplicity, we assume

that if students depart college, they do not attend it again.

In the second, third, and fourth ticks of the model, students can only decide whether to depart

college or not. Just as in the first run, if they decide to depart, they will leave college and locate

to a random spot of the residential locations. Their color will also turn to red. The screen of the
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model after running two ticks is shown in Figure 3.6.

During college years, students can randomly create links or connections (shown with gray lines

in Figure 3.6 and 3.7) with teachers or other students at the college. The total number of these

links are used to adjust and update the level of social integration and academic experience factors

of the student. The number of links that a student creates with teachers and other students will be

used to evaluate the level of the academic experience and social integration factors of the student,

respectively. The more links, the higher the level of the factor. The number of links that each

student creates with other teachers and students can vary between zero to three and zero to eight,

respectively. The minimum value of both social integration and academic experience of each

student is considered to be 0.2. Each created link with other students add 0.1 to the minimum

value of a student’s social integration. Similarly, each created connection with a teacher at the

college adds 0.1 to the minimum value of the student’s academic experience factor.

Similar to the first three ticks, during the fourth tick of the model, students can still persist in

college. If they do, they have finished four years of college and therefore, they have completed the

program have graduated. These students are called ”graduates”. Graduates, whose color change

to blue, depart college at the end of the fourth year and move to one of the empty spots at the

residential locations. Figure 3.7 shows the model screen after the fourth tick.
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CHAPTER 4: FACIAL EXPRESSION PHOENIX (FEPH) TECHNICAL

VALIDATION AND FINDINGS1

The FePh dataset is created by manually labelling 3359 images of the RWTH-PHOENIX-Weather

2014 development set that are identical to the full frame images of the RWTH-PHOENIX-Weather

2014 MS Handshapes dataset. Seven universal basic emotions of ”sad”, ”surprise”, ”fear”, ”an-

gry”, ”neutral”, ”disgust”, and ”happy” are considered as facial expression labels. In addition to

these basic emotions, we asked annotators to choose all the emotions that may apply to an image.

This resulted in secondary and tertiary dyads of seven basic emotions such as fear sad, fear anger,

etc. Interestingly, this did not result in having combinations of three basic emotions. Figure 4.1

shows the corresponding graph of seven basic emotions, their primary, secondary, and tertiary dy-

des presented in FePh dataset. Seven basic emotions are shown by colored circles with the emotion

labels written inside them. Other colored circles connecting each two basic emotions illustrate the

secondary or tertiary dyads of the basic emotions that are connected to. Emotion ”Happy” has only

one dyad, which is with ”Neutral” emotion, named as ”Neutral Happy”.

Although the FePh dataset presents annotated facial expression for all hand shape classes of the

RWTH-PHOENIX-Weather 2014, we analyzed the facial expression labels for the top 14 hand

shapes (i.e., classes ”1”, ”index”, ”5”, ”f”, ”2”, ”ital”, ”b”, ”3”, ”b thumb”, ”s”, ”pincet”, ”a”,

”h”, and ”ae”). This is due to the demonstrated distribution of the counts per hand shape classes

in [?] that shows the top 14 hand shape classes represent 90% of the data. Seven universal basic

facial expressions and their secondary or tertiary dyads occur with different frequencies in the

data. Figure 4.2a shows the distribution counts per facial expression class in the data. As it shows,

about 90% of the data is expressed with basic facial expressions. In addition, Figures 4.2b and

1This chapter’s material has been previously published in the International Journal of Electronics and Communi-
cation Engineering (2021), 15(3), 131 - 138.
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Happy

Sad

Surprise

Fear

Anger

Disgust

Neutral

Figure 4.1: Graph displaying the primary, secondary, and tertiary dyads on seven basic univer-
sal emotions in the FePh dataset. Seven basic universal emotions are shown with colored circles
containing their name. In addition, colored circles that are connecting each two basic emotions
show the secondary or tertiary dyads of the basic emotions that they are connected to. For ex-
ample, the orange circle connected to the ”Disgust” and ”Surprise” emotions, shows the emotion
of ”Disgust Surprise”. Emotion ”Happy”’s only dyad is with ”Neutral” emotion named as ”Neu-
tral Happy”.

4.2c illustrate the frequency of images with obscured faces and the ”None” class in the top 14 hand

shape classes, respectively.

By analyzing facial expressions per hand shape class, we found out that more than one facial

expression class represents each hand shape class. Figure 4.3 shows the frequency heatmaps of the

seven facial expressions and their primary, secondary, and tertiary dyads for the top 14 hand shape

classes. Each heatmap illustrates the frequency of facial expressions based on the facial expression

graph of seven basic universal emotions and their primary, secondary, and tertiary dyads (shown

in Figure 4.1) for one of the top 14 hand shape classes. The heatmaps show that more than one

45



(a) Pareto chart showing the distribution counts per facial expression class in the FePh dataset for the top 14
hand shape classes (briefly shown as HSH). As the chart shows, basic facial expressions represent 90% of
the data.

(b) Pareto chart showing the distribution of the
”None” facial expression class counts per top 14
hand shape classes (HSH)

(c) Pareto chart showing the distribution of the
obscured image counts per top 14 hand shape
classes (HSH)

Figure 4.2: Pareto chart showing the distribution of the facial expression ”None” and obscured
image counts for top 14 hand shape classes (HSH).

facial expression is expressed within a single hand shape class, which is due to the complexity of

sign language in using facial expressions with hand shapes. Two of these complexities that affect

performing different facial expressions within each hand shape class are as follows:

First, although some meanings are communicated using only one hand (usually the right hand),
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(a) HSH 1 (b) HSH index (c) HSH 5 (d) HSH f

(e) HSH 2 (f) HSH ital (g) HSH b (h) HSH 3

(i) HSH b thumb (j) HSH s (k) HSH pincet (l) HSH a

(m) HSH h (n) HSH ae

Figure 4.3: Heatmaps showing the frequency distribution of the top 14 hand shape classes. Each
heatmap, assigned to one hand shape class (briefly mentioned as HSH), shows the frequency of
facial expressions on the assigned hand shape class over the facial expression graph of seven basic
universal emotions and their primary, secondary, and tertiary dyads. As they show, more than one
facial expressions are expressed within a single hand shape class.
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(a) Exemplary images of hand shape class ”1”

(b) Full frame images with similar hand
shapes but different facial expressions

Figure 4.4: Exemplary full frame images of the RWTH-PHOENIX-Weather 2014 dataset

many sign language meanings are communicated using both hands with different hand poses, ori-

entations, and movements. Figure 4.4a shows some exemplary full frame images of hand shape

class ”1” of the RWTH-PHOENIX-Weather 2014 dataset with different facial expressions. As the

figure illustrates, the usage of right hand shapes have large intra-class variance (i.e., the left hand

may not be used or may perform similar or different hand shape from the right hand) that may

affect the meanings, and as a result, the facial expressions corresponding to them. The first top

row in the figure shows the full frame images with the right hand shape of class ”1” and no left

hand shape. The second row shows some exemplary full frame images, in which the signer has

used both hands. In this row, although both right and left hands demonstrate the same hand shape

class (hand shape class ”1”), their pose, orientation, and movement can differ, which may affect

the corresponding facial emotion. The third row of images in Figure 4.4a illustrates full frame

examples of using both hands with different hand shapes and facial expressions. Therefore, al-

though RWTH-PHOENIX-Weather 2014 MS Handshapes is a valuable resource presenting right

hand shape labels, it lacks pose, orientation, and movement labels of the right hand along with the

left hand shape labels. Adding this information to the data affects the communicated meanings as
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Table 4.1: Correlation matrix of facial expressions’ dummy variables and their frequencies for the
top 14 hand shape classes. Empty cells show the absence of the correlation (the facial expression
is not expressed in the hand shape class images).

Frequency of facial expressions for hand shape class
1 index 5 f 2 ital b 3 b thumb s pincet a h ae

Frequency 1 1 1 1 1 1 1 1 1 1 1 1 1 1
neutral -0.027 -0.145 0.153 -0.210 0.115 0.066 0.666 -0.221 -0.019 -0.168 -0.150 -0.371 0.995
anger 0.194 0.114 0.176 -0.047 0.582 0.405 -0.164 0.287 0.343 -0.093 0.991 0.087 -0.259 0.350
disgust 0.233 -0.024 -0.067 0.041 0.075 -0.231 0.459 -0.076 -0.099 -0.242 -0.112
fear 0.064 -0.089 0.257 0.335 -0.126 -0.061 -0.277 0.697 0.303 -0.192 -0.150 0.250
happy 0.038 -0.080 -0.206 -0.036 -0.045 -0.241 -0.126 -0.124 0.022 0.850 -0.073 -0.209
sad -0.040 0.502 0.338 0.805 -0.032 0.130 0.308 -0.124 -0.019 0.379 -0.170 -0.350
surprise 0.857 0.737 0.234 0.139 0.662 0.787 -0.164 0.383 0.624 -0.015 0.612 -0.209 -0.250
none -0.053 0.187 0.651 -0.005 0.034 0.093 0.263 0.546 -0.109 0.751
anger neutral -0.150
disgust anger -0.170 -0.153 -0.005 -0.199 -0.353 -0.196 -0.300
anger fear -0.196 -0.260
fear disgust -0.170 -0.230 -0.296 -0.300
happy neutral -0.292
neutral sad -0.097 -0.218 -0.209
sad anger -0.169 -0.160 -0.298 -0.221 -0.300 -0.350
sad disgust -0.169 -0.195
sad fear -0.145 -0.206 -0.139 -0.437
neutral surprise -0.222 -0.260 -0.242 -0.150 -0.437
surprise anger -0.209 -0.192 -0.178 -0.148
surprise disgust -0.183 -0.219 -0.172
surprise fear -0.118 -0.113 -0.241 -0.189 -0.192 -0.125 0.214
surprise sad -0.190 -0.169 -0.287 -0.219 -0.178

well as the facial expressions that are expressed.

Second, due to the communication of grammar via facial expressions, identical hand shapes may

be performed with different facial expressions. Figure 4.4b demonstrates some images of this kind

that despite the similarity of hand shapes, the facial expressions are different. This complex usage

of hands with large intra-class variance and inter-class similarities help signers to communicate

different meanings with similar or different facial expressions.

In addition to the above, the frequency of facial expressions expressed in each hand shape class

shows evidence of a meaningful association between hand shapes and facial expressions in the

data. To better illustrate this correlation, we calculated the correlation matrix of facial expressions’

frequency in each hand shape class. Since the correlations between the facial expressions together
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is not the focus of this manuscript, the first column of each correlation matrix that shows the

correlation between frequency and each facial expression is only considered. Table 4.1 illustrates

the first columns of facial expressions and their frequencies of occurrence in the top 14 hand shape

classes correlation matrices. Monitoring each column in Table 4.1 gives the most correlated facial

expressions for each hand shape. For example, in the column of hand shape class ”3”, the positive

values of 0.697, 0.383, 0.287, 0.214 and 0.093 (that are in intersections with ”fear”, ”surprise”,

”anger”, ”surprise fear” and ”None”, respectively) show the positive correlation values with facial

expressions in hand shape class ”3”. These highly correlated facial expressions in each hand shape

class can also be interpreted from heatmaps illustrated in Figure 4.3.

4.1 Usage Notes

To the best of our knowledge, this dataset is the first annotated vision-based publicly available

sequenced facial expression dataset in the context of sign language. Although the number of facial

images is enough for statistical and some machine learning methods, it may not be sufficient for

some of the state-of-the-art learning techniques in the field of computer vision. Therefore, for such

studies, we suggest users to create matched samples choosing subjects from the dataset. This work

not only provides an annotated facial expression dataset with different head poses, orientations,

and movements, but also contributes in availability of a sign language dataset with both hand

shape and facial expression labels with attributions in multi-modal future works in the field. In

addition, this dataset has a wider application in other research areas such as gesture recognition

and Human-Computer Interaction (HCI) systems.

50



CHAPTER 5: TECHNICAL VALIDATION AND FINDINGS OF

POST-SECONDARY PERSISTENCE OF DEAF STUDENTS

AGENT-BASED MODEL1

The implementation of this work is done using NetLogo 6.1.1 [129]. The results of replicating,

repeating, and reproducing the results, with input assumptions for all runs are provided in Table

3.2.

We performed four experiments using the behavior search tool of NetLogo to find the influence

of each factor on the college persistence of deaf students for years one, two, three, and four. Per-

sistence of four years at college is considered as graduating from college and receiving a 4-year

college degree. In order to run each experiment, we considered one non-cognitive factor value

changing in an interval of (0,1) with steps of 0.1 while the values of the other three factors are

fixed at 0.5. The results of these four experiments are shown in Figure 5.1. As the figure shows,

although increasing the level of a factor increases the persistence of students at post-secondary

education, these four non-cognitive factors’ impacts vary from one to another. In addition, as all

four figures show, the black line showing the number of students who persisted one year at col-

lege is further away from the other lines for students who persisted two or more years at college.

This shows that the majority of students depart post-secondary education during the first year of

education. In other words, students who do not have clear goals and strategies, positive academic

experience, strong social skills, and high levels of social integration are most likely to depart post-

secondary education during the first year. If they persist after the first year, the chance of departing

decreases with a high margin.

1This chapter’s material has been previously presented in the 2020 Conference of the Computational Social Science
Society of the Americas (CSS 2020).

51



(a) Goal factor (b) Academic experience factor

(c) Social skill factor (d) Social integration factor

Figure 5.1: Results of behavior space experiment for four non-cognitive factors of goal, academic
experience, social skill, and social integration. Each graph shows the result of behavior search for
one factor changing in an interval of (0,1) with steps of 0.1. To run the experiment for one factor,
all other three factors are considered to have a value of 0.5.

In order to compare the number of graduated and departed students with different levels of non-

cognitive factors together in two separate graphs, an experiment in which the level of all factors

can change in an interval of (0.1,1) with steps of 0.1 is performed. This enables us to extract a plot

for the total number of graduated (i.e., all green lines of four year at college from Figure 5.1 in

one single plot) and departed students with different levels of factors. Figure 5.2 shows the graphs

of the number of graduated and departed deaf students with fixed three non-cognitive factors at
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(a) Number of graduated students based on dif-
ferent levels of one factor while fixing the other
factors.

(b) Number of departed students based on dif-
ferent levels of one factor while fixing the other
factors.

Figure 5.2: Number of graduated and departed students based on different levels of one factor
while fixing the other factors to the level of 0.5 during four years of post-secondary education.

level 0.5 and varying one factor in an interval of (0.1,1) with steps of 0.1 during four years of post-

secondary education. Different colored lines show the line plot for the assigned factor for them

that is changing. As Figure 5.2b shows, although by increasing the level of factors the total number

of departed students decreases, it still does not merge to zero. This indicates that despite the high

levels of non-cognitive factors, some students may still depart college due to other factors, issues,

or concerns. Furthermore, considering low levels of academic experience and social integration,

the total number of departed students are noticeably more than other factors, while in contrast, with

high levels of goal and social skill, the total number of departed students are noticeably decreased.

This illustrates the importance of academic experience and social integration in low margins and

strong goals and social skill in high margins when a student decides whether to depart college or

not.

The results of the sensitivity analysis for each individual non-cognitive factor can be seen in Figure

5.3. The +- 10% range is illustrated using error bars while the boxplots represent the range of
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(a) Boxplot of the results of the behavior space
experiment for goal factor

(b) Boxplot of the results of the behavior space
experiment for academic experience factor

(c) Boxplot of the results of the behavior space
experiment for social skill factor

(d) Boxplot of the results of the behavior space
experiment for social integration factor

Figure 5.3: Boxplots of the results of the behavior space experiment for the four non-cognitive
factors of goal, academic experience, social skill, and social integration. Each graph shows the
result of the behavior search for one factor changing from interval of (0,1) with steps of 0.1. To
run the experiment for one factor, all other three factors are assigned the value of 0.5.
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(a) Plot of ten different searches for maximizing the total number of departed students. Maxi-
mized fitness is achieved with level 1 for goal, social skill, and social integration and level of 0.8
for academic integration.

(b) Plot of ten different searches for minimizing the total number of departed students. Minimized
fitness is achieved with level 1 for goal, social skill, and social integration, and level of 0.8 for
academic integration.

Figure 5.4: Result screens of running the Behavior Search tool on the proposed NetLogo model

55



number of departed students in ten repetitions of the model. Although boxplot graphs of the four

factors’ influence are somewhat similar, it is apparent that the model is highly sensitive to the

academic experience factor. In addition, as Figure 5.1 illustrates, the number of departed students

between year one to four is not linear, and the slope decreases as the year increases.

To maximize the number of graduated students as well as to minimize the total number of departed

students, we performed a behavior search experiment using the proposed NetLogo model. Figure

5.4 shows the results of the behavior search experiment for both aforementioned objectives. As the

figure illustrates, the best value for both objectives is achieved by the value of 1 for goal, academic

integration, and social integration factors, and value of 0.9 for social skill factor. The maximum

number of graduated students as well as the minimum number of departed students based on the

aforementioned factor values are 88.700 and 86.3, respectively. However, because we are counting

the number of persons, both values will be rounded up to 89 and 87. These results show that almost

half of deaf students decide to depart post-secondary education before graduation.
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CHAPTER 6: CONCLUSION

In this dissertation, we first presented the FePh dataset, which to the best of our knowledge, is the

first real-life annotated sequenced facial expression dataset in the context of sign language. FePh

contains over 3000 sequenced images of the RWTH-PHOENIX-Weather 2014 dataset that are

identical to the full frame images of the RWTH-PHOENIX-Weather 2014 MS Handshapes dataset.

FePh in conjunction with RWTH-PHOENIX-Weather 2014 and RWTH-PHOENIX-Weather 2014

MS Handshapes datasets constitute the first sign language data with both handshapes and facial

expression labels. We hope this unique characteristic will propel research in multi-modal sign

language and gesture recognition.

Second, we studied the effects of four non-cognitive factors: having clear goals, social integration,

social skills, and academic experience, on post-secondary persistence or retention of deaf students

from an agent-based modeling (ABM) and simulation approach. To the best of our knowledge,

we present the first ABM simulation for the aforementioned problem in order to simulate students

retention behavior and discover the effects of non-cognitive factors in students persistence and

departure decisions. Our results indicate that first year persistence at a 4-year post-secondary

education (e.g., university, college) plays an integral role in student’s persistence and graduation.

In other words, if a student persists after the first year of a post-secondary education, the chances

of student departure decreases with a high margin. In addition, the best persistent rate of the model

is achieved by a social skill factor of 0.9 and other factors of 1. We believe that presenting and

creating ABM brought significant benefits to studying deaf students’ departure decisions during

post-secondary education.
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6.1 Future Work

As preliminary results and analysis of the FePh dataset indicate a meaningful relationship be-

tween two important modals of sign language (i.e., hand shapes and facial expressions), for future

work, we propose applying multi-modal learning and computer vision techniques on joint RWTH-

PHOENIX-Weather 2014 MS Handshapes and FePh datasets. We believe that the introduction of

this dataset will allow the facial expression, sign language, and gesture recognition communities

to improve their learning techniques to the latest levels of computer vision trends.

For the agent-based education model, we believe that presenting more sophisticated agent-based

models that considers effects of further number of factors and have less number of assumptions will

bring significant benefits to studying the departure decisions of all students during post-secondary

education. More accurate models will enable all decision makers such as policy makers, managers,

and teachers to make informed decision, and provide better services. This in turn can increase

educational levels, benefits the economy, and positively affects society.
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