
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2022 

Hydrogen and Peer-to-Peer Energy Exchanges for Deep Hydrogen and Peer-to-Peer Energy Exchanges for Deep 

Decarbonization of Power Systems Decarbonization of Power Systems 

Hamed Haggi 
University of Central Florida 

 Part of the Power and Energy Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Haggi, Hamed, "Hydrogen and Peer-to-Peer Energy Exchanges for Deep Decarbonization of Power 
Systems" (2022). Electronic Theses and Dissertations, 2020-. 1211. 
https://stars.library.ucf.edu/etd2020/1211 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/274?utm_source=stars.library.ucf.edu%2Fetd2020%2F1211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1211?utm_source=stars.library.ucf.edu%2Fetd2020%2F1211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


HYDROGEN AND PEER-TO-PEER ENERGY EXCHANGES FOR DEEP
DECARBONIZATION OF POWER SYSTEMS

by

HAMED HAGGI
M.Sc. K. N. Toosi University of Technology, Tehran, Iran, 2018

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2022

Major Professor: Wei Sun



© 2022 Hamed Haggi

ii



ABSTRACT

Decreasing costs of renewable energy resources and net-zero emission energy production pol-

icy, set by U.S. government, are two preeminent factors that motivate power utilities to deploy

more system- or consumer-centric distributed energy resources (DERs) to decarbonize electricity

production. Since, deep energy decarbonization cannot be achieved without high penetration of

renewable energy sources, utilities should develop and invest in new business models for power

system operation and planning during the energy transition. Considering the pathways to deeply

decarbonize power systems, first, this dissertation proposes a novel hierarchical peer-to-peer (P2P)

energy market design in active distribution networks. The framework integrates the distributional

locational marginal price to a multi-round double auction with average price mechanism to inte-

grate the network usage charges into the bills of customers. Second, this dissertation investigates

the role of grid-integrated hydrogen (H2) systems for improved utility operations and to supply

fuel to transportation sector. Power quality concerns as well as risk of uncertain parameters are

considered using conditional value at risk based epsilon constraint method. Third, this dissertation

proposes a bi-level proactive rolling-horizon based scheduling of H2 systems in integrated distri-

bution and transmission networks considering the flexibility of these assets as controllable load or

generation, in addressing the utility operators’ normal and emergency operation signals. Fourth,

a detailed model is developed for grid-integrated Electrolyzer considering polarization curve and

non-linear conversion efficiency of these assets in the P2P enabled distribution network. This

framework shows that reasonable penetration of P2P energy exchanges can significantly lower the

H2 production cost. Finally, this dissertation proposes a cyber-physical vulnerability assessment

of P2P energy exchanges in an unbalanced active distribution networks. Simulation results of this

dissertation show the effectiveness of the proposed frameworks.
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CHAPTER 1: INTRODUCTION

Background

Continued reliance on fossil fuels for supplying the power and transportation sectors’ demand

contribute to the global warming crisis. According to the U.S. Energy Information Administration,

electricity production accounts for 33% of annual carbon dioxide (CO2) emissions in which 65%

of this amount is produced by large-scale coal and natural gas power plants [3]. Following the

current trajectory, the global temperature is estimated to rise more than 3 ◦C on average by the year

2050. To avoid additional damage to the environment and maintain the temperature rise below

2 ◦C [1] (presented in Fig. 1.1) U.S. as well as many other countries set a goal in which the power

sector, especially utilities and generation companies must supply their electricity demand with

green energy by 2035, and the transportation sector must be electrified completely by 2050 [4].

Figure 1.1. Temperature rise by the year 2050 for different cases: Following with current trajectory,
reference case, and ideal case [1]

1



Figure 1.2. Emmission reduction using renewable energy and electrification by the year 2050 [1].

This goal results in eliminating the carbon footprints (as much as possible) by mid-century Fig.

1.2, a goal that generally is defined as ”Deep Decarbonization”. In the quest for power system

deep decarbonization, different pathways must be considered to achieve the goal of net-zero emis-

sion energy production including government policies, priorities, realistic targets, and business

models and cost targets [5]. More specifically, deep decarbonization requires 1) high penetration

of distributed energy resources (DERs) such as wind, solar, storage, etc. to supply the current and

forecasted electricity demand, 2) reductions in total energy consumption using more efficient smart

grid technologies, 3) government support and policies by sending strong price incentives for using

clean energy and penalties for carbon based electricity generation 4) realistic targets by considering

the challenges of modern power systems’ operation, planning, economic, and resilience.
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Motivation and Challenges

Over the past decade, advancement in smart grid technologies results in significant reduction in

capital costs of DERs and electricity bill reduction. According to the National Renewable Energy

Lab’s (NREL) reports the capital costs of these technologies will drop by 60%-70% by the year

2050 [6], accelerating the growing trend of utilizing utility-operated and small-scale consumer-

centric DERs. This trend along with net-zero emission energy production policy motivates power

utilities to supply the electricity demand by taking advantage of small-scale DERs. However, go-

ing forward, large-scale deployment of these DERs in distribution networks can impose significant

technical challenges (such as bidirectional power flows, voltage fluctuations due to DERs power

injection, congestion issues, etc.) since the current distribution systems’ structure are not designed

based on these challenges. In addition to the technical challenges, the business models in distribu-

tion systems are different from wholesale market due to the large number of agents. Furthermore,

the current utility market designs cannot provide incentives to the small-scale DERs owners to

share the energy with the grid.

Considering the pathways to deep decarbonization of power systems in both normal and emergency

modes, long-term energy storage technologies are required for storing energy for longer duration

since Li-ion and redox flow batteries are limited to their energy capacity [7]. For instance, a 4-

hours duration battery cannot charge or discharge energy more than 4 hours with the maximum

power rating. This renders utilities to use better energy storage technologies with longer duration.

Recently, renewable H2 energy with its promising technical, economic, and environmental merits

has demonstrated great potential for large deployment in distribution systems [8]. H2 energy can

be produced, stored, and consumed using an electrolyzer, a reservoir tank, and fuel cell (FC) unit,

respectively for improved utility operations. Apart from power sector, renewable H2 energy can

be considered as a clean fuel for transportation sector especially heavy-duty road transport, deep
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sea shipping and aviation. However, how and where to invest these technologies as well as market

benefits of H2 energy while addressing policies and physical constraints of power networks are

challenges that researchers pay attention.

Outline of the Dissertation

Considering the motivations and challenges discussed in the previous sections, Fig. 1.3 presents the

outline of this dissertation which aims to provide decision making tools to overcome the challenges

during the transition to carbon free power systems. The following paragraphs will specifically

present the outline of this dissertation.
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Figure 1.3. Power system deep decarbonization transition challenges.
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Chapter 2 presents a comprehensive review for local energy markets with the focus on Peer-to-Peer

energy trading in the first section. The business and physical layers as well as market settlement

time aspects were compared. In the second section, a comprehensive review on techno-economic

analysis of H2 systems with the focus on economic and resilience perspective is presented.

Chapter 3 proposes a multi-round double auction based Peer-to-Peer energy trading in active dis-

tribution networks. The entire distribution network clustered into multiple zones with transactions

cleared at different levels, which decreases the additional costs for successful transactions, reduces

the computational time, and increases the number of successful transactions. The proposed hierar-

chical framework considers distribution network physical constraints and present a strong budget

balance market clearing mechanism for peers who successfully negotiate. Additionally, extra net-

work usage costs for each transaction, such as power loss cost, voltage regulation cost, etc., into the

payments of all prosumers and consumers, through distributional locational marginal component

decomposition.

Chapter 4 proposes a multi-objective network-constrained framework for the day-ahead schedul-

ing of hydrogen systems, including hydrogen production from water electrolysis by electrolyzers,

hydrogen storage, stationary fuel cells, and fueling of fuel cell electric vehicles. This framework

includes various physical constraints to ensure reliable operation and considers integrated demand

response and conservation voltage reduction, and reactive power support from hydrogen systems

for realistic day-ahead scheduling. It also incorporates the cooperative operation of PV units

and hydrogen systems to supply power for water electrolysis from stationary hydrogen systems

equipped with onsite PVs. Moreover, Conditional Value-at-Risk is applied to address the risk of

PV output, H2 demand, loads, and market price.

Chapter 5 proposes a proactive rolling-horizon-based scheme for resilience-oriented operation of

hydrogen systems in integrated distribution and transmission networks. The proposed framework
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is a bi-level model in which the upper-level is focused on distribution system operation in both

normal and emergency operation modes, and the lower-level problem accounts for the transmis-

sion network operation. To show the flexibility of H2 systems, capacity-based demand response

signals are considered in both normal and emergency operation modes. Moreover, Unlike the bat-

teries which can only charge and discharge energy based on maximum duration times and power

ratings, H2 systems can be considered as the flexible long-term energy storage by storing H2 for

days and supplying power to fuel cell in the case of N-m outages lasting for more than 10 hours.

Moreover, H2 production cost based on water electrolysis and storage costs is calculated through

distributional locational marginal.

Chapter 6 proposes a detailed model for grid-integrated electrolyzer operation based on polar-

ization curves and variable efficiency under different operating conditions (different temperature,

pressure, H2 demand, etc.). The model is integrated to an P2P enabled active distribution network

under optimization framework. This study clearly shows that customer side DERs and accordingly

P2P markets can contribute to the low-cost H2 production due to reducing the residential demand

of customers, increasing the available capacity of renewables, and as a consequence reducing the

distributional locational marginal price (DLMP) and H2 production cost.

Chapter 7 proposes a framework to assess the vulnerability of P2P energy exchanges to cyber-

physical attacks in an unbalanced distribution network. In this study, a three phase P2P model is

developed and integrated to Distflow model. various scenarios for vulnerability assessment of P2P

energy exchanges considering adverse prosumers and consumers, who provide false information

regarding the price and quantity with the goal of maximum financial benefit and system operation

disruption, are considered.

Finally, Chapter 8 conclude the dissertation and presents the future works as potential extensions

of these works.
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CHAPTER 2: LITERATURE REVIEW

Peer-to-Peer Energy Trading Literature Review

The large-scale deployment of DERs and information and communication technologies (ICT) en-

ables the emerging of pro-active consumers known as prosumers, with the capability of both pro-

ducing and consuming energy in active distribution networks [9]. During certain times of a day,

prosumers can sell their surplus energy to other consumers for monetary benefits, provision of

ancillary services to the grid, etc. The energy exchange among prosumers and consumers could

be enabled through peer-to-peer (P2P) energy trading. However, the distribution system operator

(DSO) cannot manage large number of participants in the distribution energy market, due to the

inaccessibility to real-time data and the behavior of market participants (e.g. offered prices, util-

ities of agents, and the amount of energy to be traded). Therefore, it is motivated to explore the

possibility of building a P2P energy trading market under DSO’s control.

The recent development of P2P market-oriented pragmatic projects include 1) design and modeling

of the P2P market, e.g. Enerchain [10], NRGcoin [11], and P2P community energy trading with

multi-time, multi-scale, and multi-qualities (P2P3M) [12]; and 2) implementation of control and

ICT platform for prosumers, e.g. EMPOWER, Smart Watts, and Community First Village [13].

Besides practical P2P projects, research efforts on local energy market designs can be generally

divided into three categories: 1) Business layer focusing on market structures and tools; 2) Physical

layer; and 3) Market settlement time of local market with various considerations.
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Business Layer

Different research studies in this layer can be categorized into two main directions: market struc-

tures and market tools.

Market Structure

There are various literature works on the market structure including, centralized, decentralized,

and fully distributed designs. In the centralized design, DSO solves the optimal power flow (OPF)

to obtain the optimal scheduling of DERs and clears the market with DLMP, derived from the dual-

ity analysis of network energy balance constraint, using second-order cone programming (SOCP)

relaxation [14–16]. It is assumed that detailed information regarding agent behaviors, bid price,

amount of energy to be traded, etc. must be accessible to system operators to schedule the gener-

ating units and DERs. Therefore, effective market mechanisms should be designed to extract this

hidden information and consider consumers as price maker entities in local market designs.

On the other hand, decentralized and distributed designs address the challenges by sharing lim-

ited private information for decision-making. For instance, in [17], a decentralized DLMP-based

market is presented considering a novel method for convergence acceleration by removing re-

dundant Lagrangian multipliers. A market framework for decentralized congestion management

using mobile distributed storage is presented in [18]. Alternating direction method of multipliers

(ADMM) and dual decomposition are examples of fully distributed solution algorithms to solve

DERs dispatching through sharing limited information among neighboring nodes [19, 20]. Be-

sides, addressing the privacy of agents regarding the data sharing, the major concern of distributed

techniques in local market designs is the convergence issue, which results in high computational

time due to the potentially large number of market participants in the distribution network [21].
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Market Tool

Recently, there has been preeminent attention on local energy markets based on P2P energy ex-

changes, which provides a platform for direct negotiations between prosumers and consumers.

To this end, proper market mechanisms and structures are needed to enable this platform for

agents. Research studies on P2P energy trading can be categorized into three different directions:

a) Auction-based P2P markets; b) Game theory-based P2P markets; and c) Blockchain-based P2P

markets; as well as the Hybrid methods combining both market structures and market tools, such as

blockchain-based distributed P2P energy trading [22]. Each category is discussed below in details.

Auction-based P2P Market

An iterative double auction for enabling localized P2P electricity trading is proposed in [23] con-

sidering consortium blockchain technology. The major focus of this chapter is the balance between

local generation units and local demand. However, not considering the network constraints may

significantly affect the matching results between prosumers and consumers due to the physical

limits of power system operation. To address this limitation, a decentralized P2P energy trading

based on continuous double auction is proposed in [24], by considering the network’s physical

constraints. However, the proposed model fails to address the additional network charges which

significantly affect matching results, such as the cost-saving of consumers and the profit of pro-

sumers. Additionally, some agents may participate in the market with better prices, but due to

communication delays, they may miss the opportunity to trade with more consumers/prosumers

(e.g. the first-come-first-serve rule). Moreover, trading with neighboring agents as well as moti-

vating agents to participate in the P2P market has not been addressed in the auction-based market

designs and need proper mechanism to address the limitation of auction-based P2P designs.
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Game theory-based P2P Market

Game theory is another market tool that affects/depends on the agents’ decisions based on the

action of other agents in P2P markets. The general form of this approach is known as the multi-

leader multi-follower game. Considering the cooperative game theory approaches, a Stackelberg

game is proposed for P2P energy trading in [25, 26], in which a unique and stable equilibrium

can be achieved. Another Stackelberg game-theoretic approach for P2P energy trading in virtual

microgrids is proposed in [27], considering load demand uncertainty and modeling the commu-

nication layer. Since game theory approaches depend on agents’ behavior (leader-follower rule),

a psychology-based motivational game-theoretic approach for P2P energy trading is investigated

in [28] considering human behaviors. Apart from cooperative designs, a novel P2P energy sharing

model as a non-cooperative game is proposed in [29] for energy sharing among buildings equipped

with heating, ventilation, and air conditioning (HVAC) units and renewable energy units. The ma-

jor deficiencies of the aforementioned research efforts are not considering the physical network

constraints and additional costs associated with transactions, which significantly affect the P2P

market outcomes. Additionally, game theory-based models heavily depend on iterative mecha-

nisms to find the solution and render the model to converge in a longer time period for a system

with large number of prosumers and consumers.

Blockchain-based P2P Market

Blockchain technology is another appropriate tool for P2P-based energy sharing mechanisms, with

the characteristics of distributed data sharing among agents, privacy, and no need for a central

entity. A comprehensive and systematic classification on P2P topics including different trading

mechanisms, physical and communication layers, technical approaches, future blockchain-based

P2P trading fundamentals, etc. is provided in [30]. P2P transactive energy exchange in local energy
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markets is studied in [22] based on blockchain-based technologies. Consortium Blockchain-based

energy trading to reduce cost and balance between load and generation for electric vehicles are

presented in [23, 31, 32]. The aforementioned studies are mainly focused on the balance between

generation and load without fully considering the network constraints and additional costs for

each transaction. Although the transparency, privacy, and security of transactions increase by

using blockchain technologies, trading mechanisms, grid constraints, and the role of prosumers

and consumers on defining the matching price as well as additional costs must be addressed in

blockchain-based P2P-based markets.

Hybrid Method-based P2P Market

The hybrid methods for P2P energy sharing are the combination of market tools and market struc-

tures. For instance, an iterative mechanism is introduced in [33] for peer and system-centric trad-

ing, with a strong assumption that DSO has the access to all required information about prosumers

and consumers to clear the market. Additionally, consumers are considered as price taker entities

in this method which neglects the role of consumers in P2P markets. Considering the flexibility

of loads, authors of [34] propose a P2P local market for the joint trading of energy and uncer-

tainty associated with local generation. This P2P model is proposed to trade forecasted PV power

and uncertain power due to forecast error without considering grid constraints. Besides, different

designs such as bilateral and auction-based P2P energy trading are reviewed in [35]. Bilateral

contract-based designs are investigated in [36–38]. However, the hybrid methods presented in this

section mainly follow the iterative process which significantly increases the computational time in

distribution systems with a large number of market participants. Another factor that may increase

the time of P2P matchings is the price adjusting factors, in which smaller values will increase the

computational time.
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Physical Grid Layer and Market Settlement Time

Besides price matching among peers, physical constraints of power systems like the voltage, power

flows, etc. need to be considered for energy trading. The deficiencies of the iterative-based ap-

proaches have been explained in the previous sections. For auction-based P2P energy sharing,

which is the more appropriate modeling since both prosumers and consumers can be considered

as price maker entities, only [24] addresses network constraints. However, this study fails to ad-

dress the additional costs associated with every transaction and consequently the revenue/payment

of prosumers and consumers. Moreover, with the proposed method in [24], many P2P matchings

satisfying the physical constraints may be subjected to rejection due to uneconomical reasons, e.g.

the extra costs. On the other hand, many transactions could be finally rejected because of both

uneconomical matchings and network constraint violations. Therefore, proper mechanisms are re-

quired for addressing these issues in auction-based P2P energy tradings, which have not been fully

investigated yet.

Besides technical layer designs, the market settlement time of the aforementioned research efforts

is another preeminent factor in designing P2P markets. The majority of papers are focused on the

day-ahead operation of distribution network. However, P2P energy sharing depends on agents’

participation, whose behaviors can change during the day. Besides, the uncertainty of loads and

DERs must be modeled with high accuracy to ensure the reliable operation of the network. Con-

sidering the real-time aspect of P2P energy trading, iterative-based studies cannot be applicable

due to the large number of agents’ participation and price adjusting factors, which significantly

increases the computational burden or the convergence time.
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Cyber-Physical Resilience of Peer-to-Peer Energy Markets

A large number of prosumers and consumers in P2P designs are equipped with IoT devices to

share required information with each other or system operators. The information exchange happen

through the communication layer of P2P designs and transactive energy markets. However, the

communication and physical layers of P2P-enabled distribution network models are in danger of

cyber-physical attacks. For instance, various data manipulation and false data injection attacks in

power systems are reviewed in [39, 40]. A cooperative learning-based decentralized P2P energy

trading market with considering cyber issues is proposed in [41]. In [42], a blockchain-based

transactive energy market defense behavior against denial of service attacks is investigated. Cyber-

physical security against data manipulation for transactive energy systems considering ventilation,

heating, and air conditioning (HVAC) is analyzed in [43–45].

P2P energy trading frameworks presented in [46]- [30] are mainly focused on various market

mechanisms, while some of them are focused on modeling the physical network constraints and

transaction charges in balanced distribution networks. However, the real distribution networks are

phase unbalanced, and proper modelling efforts are required to integrate P2P models to unbalanced

systems. Moreover, these research studies are only focused on the normal operation of system, and

neglect to consider the emergency operation in the case of disruptions such as natural disasters, cy-

ber attacks, etc. Research works presented in [39]- [47] review the potential cyber-physical threats

in highly DER penetrated power systems. Only in [43–45] the impact of false data injection on

HVAC systems is investigated. There is no modelling effort for resilience-oriented P2P interac-

tions in unbalanced network considering the physical constraints such as voltage, line loading,

congestion, etc.
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Techno-economic Analysis of H2 Systems Literature Review

H2 Systems Scheduling and Market Analysis in Normal Operation mode

Emission caused by fossil fuels and their impact on climate change has prompted the research

in cleaner and sustainable energy form (e.g. photovoltaic (PV), wind, hydrogen (H2), etc.), for

electricity generation. However, due to different penetration levels and the stochastic nature of

these resources, new and challenging scenarios are emerging in the operation of power systems

[48]. Among the aforementioned energy sources, H2 energy has demonstrated a great potential for

large deployment in the future from economic, environmental, and technical viewpoints.

H2 energy can be produced, stored, and consumed using an electrolyzer, a reservoir tank, and fuel

cell (FC) unit, respectively for assisting the power and transportation sectors. There are various

technologies for water electrolysis such as alkaline, polymer electrolyte membrane (PEM), and

solid oxide electrolysis, in which electricity is used to convert water into oxygen and hydrogen

[49, 50]. The generated H2 can be stored in a reservoir tank, in the form of liquid or gas through

high pressure. During off-peak generation, H2 energy can be converted into electricity using FC

units, to supply loads or directly sold in the hydrogen market [51].

Different applications of H2 energy are, 1) power generation with stationary FC units; 2) trans-

portation fuel for fuel cell electric vehicles (FCEVs), trucks and railways; 3) fuel for residential and

commercial buildings (e.g. space and water heating); 4) feedstock for ammonia production, or at

refineries, etc. More details regarding various applications of H2 energy can be found in [52] [53].

From an environmental aspect, using FCEVs over internal combustion engines and using dis-

tributed FC units rather than centralized power plants, are two main reasons that result in 16%

CO2 and 36% NOx emission reductions [53].
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Figure 2.1. H2 energy applications in power in industry [2]

Research work in the literature has been focused on various aspects of H2 systems (HS), such as

chemistry and material research of HSs’ components, for use in the transportation sector, power

system, etc. This chapter is mainly focusing on the operation scheduling and techno-economic

analysis of HS. In this dissertation, it is assumed that HSs can be operated as 1) H2 fueling stations

(to produce H2, store it, and supply the H2 demand of transportation sector) 2) long-term energy

storage in which the H2 is produced by electrolyzer, store in reservoir tank, and be consumed by

FC unit to assist the power grid from economical and technical aspects.

Centralized scheduling of distributed HFS under dynamic H2 pricing is proposed in [51] con-

sidering the capacity-based demand response (DR). A supervisory-based framework for optimal

scheduling of distributed HFS is proposed in [54], in which the central entity uses the total reserved

capacity to assist the grid operation. In [55], optimal operation management for centralized and
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distributed electrolysis-based H2 generation and storage systems was developed to maximize the

net revenue of private investors. In [56], an operating cost minimization model was proposed for

scheduling H2 production to meet the H2 demand of HS. An economic feasibility study of sell-

ing H2 energy in the H2 market was investigated in [57] for the HSS integrated with the power

grid. The techno-economic analysis and feasibility study of industrial plants including HSS were

investigated in [58]. Another design framework is proposed in [59] considering the best design for

HFS, in terms of the number of banks, size, and cost. Moreover, optimal scheduling of H2 stor-

age to minimize cost and emission was studied in [60] considering DR and renewable energies.

A capacity estimation framework for wind, FC, and solar was proposed in [61]. To address the

uncertainty of renewables in HS operation, [62] proposed a multi-objective framework to address

the power quality concerns as well as cost minimization for HS operation scheduling. In [63], an

energy management framework considering fuel cell and combined heat and power technologies

was proposed. A decentralized local energy market for electricity and H2 trading was proposed

in [64] through a multiplayer game-based market clearing algorithm with the privacy preservation

of market participants. Stochastic scheduling of H2 storage with wind and DR was investigated

in [65, 66]. The authors proposed a distributed cooperative framework for wind and HFS opera-

tion using Nash bargaining theory in [67], considering uncertainties of wind power production and

electricity price.

H2 Systems scheduling for Enhancing Resilience of Power Systems

Proliferation of DERs and smart grid technologies, have driven the power systems more complex

and vulnerable to cyber-physical-human (CPH) threats and climate disasters [68] [69]. These

threats can significantly affect the operation of power systems, especially distribution networks

due to the radial topology, limited backup power, and overhead line outages [70]. To increase

the system resilience and minimize the impact of these high-impact low-probability events on
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power systems in both normal and emergency operation, proactive schemes must be considered

by utilities, such as using flexible DERs (e.g. energy storage, microgrids, etc.), to provide backup

power sources for delivering power especially to the critical loads.

Generally, the power systems resilience can be improved by proactive plans prior and after a disrup-

tion, survivability analysis, and restorative schemes. Since the scope of this dissertation is proac-

tive scheduling plans, the authors only reviewed the related proactive and survivability research

efforts in resilience enhancement topic (more details regarding the post-event and restoration part

can be found in our previous work [70]). For instance, in [71], a stochastic model was developed

for preparatory operation of distributed energy storage systems prior to hurricanes. Addition-

ally, post-event decisions were also considered to enhance the resilience by restoring the critical

loads. Authors of [72] proposed a two-stage adaptive robust approach to enhance the resilience

by minimizing the damaging consequences using microgrids. In [73], both normal and emergency

operation considering resilience cut for battery energy storage and microgrids were considered to

improve the resilience of system. Moreover, uncertainties of loads and renewable generation were

considered in their model. A proactive linearized plan was proposed in [74] using microgrids to

cope with windstorms. Network reconfiguration, demand side management, etc. were considered

to prevent load curtailment. Moreover, these authors’ work was extended by considering both

electric and gas networks [75].

System operators can schedule their assets, especially DERs, to prevent damages which may be

caused by natural disasters or CPH threats. In the recent years, H2 energy is of great interest of re-

searchers due to its environmental and technical merits in both power and transportation networks.

To this end, different applications of H2 energy have been mainly focused on, 1) power generation

by FC units for grid balancing purposes, 2) fuel for transportation sector by supplying the H2 de-

mand of heavy duty trucks, fuel cell electric vehicles (FCEVs), and aviation sector, 3) feedstock

for industry such as ammonia production, etc. [52]. For instance, authors of [54] proposed a model
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in which distributed H2 fueling stations participate in reserve market based on their free capacity

to increase the profit. In [51], H2 fueling stations (including electrolyzer and storage tank) were

optimally scheduled considering the demand response signals with the aim of maximizing the total

profit of private owner of these distributed fueling stations.

A design for onsite H2 production was proposed in [56] with the goal of minimizing the operational

cost as well as supplying the H2 demand of fuel cell vehicles. A techno-economic feasibility

analysis including H2 energy storage systems was investigated in [58]. A decentralized game

theory-based local market for H2 and electricity trading considering the H2 vehicles demand was

investigated in [64]. Authors of [67] proposed a distributed coordinated operation framework for

wind and H2 fueling stations considering uncertainty of wind and electricity price.
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CHAPTER 3: MULTI-ROUND DOUBLE AUCTION-ENABLED

PEER-TO-PEER ENERGY EXCHANGE IN ACTIVE DISTRIBUTION

NETWORKS 1

Introduction

DERs, together with information and communication technologies, have transformed the tradi-

tional electricity consumers into proactive consumers, namely prosumers. Prosumers can ex-

change their surplus energy with consumers through peer-to-peer (P2P) energy sharing. In this

chapter, the framework of P2P energy exchange in active distribution networks is developed using

a multi-round double auction (MRDA) with average pricing mechanism (APM) integrated with

distributional locational marginal price. The advantages of the proposed P2P framework include,

1) modeling and integration of the costs of voltage regulation, congestion, and power loss into

the payments of agents for each transaction; 2) the entire distribution network clustered into mul-

tiple zones with transactions cleared at different levels, which decreases the additional costs for

successful transactions, reduces the computational time, and increases the number of successful

transactions; and 3) the matching algorithm encourages more prosumers and consumers to partici-

pate in P2P energy sharing and increases the efficiency and benefit from P2P market. The proposed

MRDA-APM framework is validated by testing on the 33-node and 141-node distribution test sys-

tems. Simulation results demonstrate the effectiveness of the proposed mechanism for P2P energy

exchange from both technical and computational viewpoints.

The major limitation of the market structure category is the computational time and hidden in-

1This chapter is prepared based on the paper presented at [76]:
Hamed Haggi and Wei Sun, ”Multi-Round Double Auction-enabled Peer-to-Peer Energy Exchange in Active Distri-
bution Networks,” IEEE Transactions on Smart Grid, Vol. 12, No. 5, pp. 4403-4414, 2021.[Link]
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formation accessibility. Since the studies in this category consider iterative-based approaches,

computational time will be a major concern due to the large number of DERs in real distribu-

tion networks. This limitation can also be seen in game-theory-based models, since every action

of an agent significantly depends on other agents’ actions, and the feasible solution is achieved

after exploring all possible matching scenarios. Therefore, the most appropriate design for the

real-time P2P market is auction-based designs. However, considering the physical constraints of

power networks as well as allocating extra costs like power loss, congestion, voltage regulation

are the limitations of previous studies. Furthermore, due to the violations of network constraints,

many transactions are rejected because of voltage issues or high loss costs among peers. Therefore,

forming zones based on the DLMP signals in the distribution network (with at least one prosumer

and one consumer per zone) can improve the success rate of transaction approval and reduce the

extra costs of each transaction for both prosumers and consumers. Moreover, how to encourage

and motivate small-scale prosumers to participate in the P2P market and make the design more

reliable are another limitations that need to be addressed.

To address the aforementioned challenges, a multi-round double auction with an average price

mechanism (MRDA-APM) integrated with DLMP components is proposed for P2P energy sharing

in active distribution networks. The major contributions of the proposed P2P framework are:

• The proposed multi-round double auction provides the flexibility of matchings in bottom-up

order (nodal, zonal, and distribution network layer), and encourages prosumers to first ne-

gotiate with consumers in nodal, zonal levels, and then seek for possible matchings in the

distribution-level auction. The proposed hierarchical auction increases the benefit of agents

by reducing additional costs through three rounds of auction. Additionally, the computa-

tional time is less compared to the existing iterative-based P2P designs.

• The proposed MRDA-APM algorithm is strongly budget balanced. Therefore, the auctioneer
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(DSO) never benefit directly from running the auction. Additionally, the proposed MRDA

preserves the rights of agents and increases the motivation of P2P market participants, es-

pecially small-scale prosumers, to benefit from P2P market which improves the market effi-

ciency.

• Unlike previous auction-based P2P energy trading mechanisms, the proposed auction-based

framework integrates the DLMP to model the additional costs, using components of power

loss, congestion, and voltage regulation associated with each transaction; and also integrates

these costs into the payments of both prosumers and consumers with equal cost splitting,

which enables both prosumers and consumers to share the costs equally for energy trading.

Proposed Peer-to-Peer Energy Trading Framework

The proposed P2P energy trading framework is shown in Fig. 3.1, consisting of three main steps

as following.

Extracting Hidden Information of Agents

The first step is to collect the information from all agents who are willing to participate in the P2P

market. DSO extracts the information from the participating consumers and prosumers, such as

ask and bid prices, amount of power to be traded, by sending two price signals to agents. First,

DSO sends a feed-in tariff (FIT) price signal to all prosumers. If prosumers with surplus energy

are willing to participate in the P2P market, they should respond to this signal by sharing the

information of ask price and the amount of power to be traded with DSO; otherwise, prosumers

cannot participate in the market for trading time interval. It is worth mentioning that the FIT price

signal is defined as power purchase agreements between utilities and prosumers. In this chapter,
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Figure 3.1. Proposed P2P energy sharing framework in distribution network.

the FIT price signal is considered in a way to incentivize prosumers to trade their energy with the

grid even if they lose all rounds of the auction in P2P market. Next, after gathering the information

of price and amount of power from participating prosumers, DSO calculates DLMP and sends

this price signal to consumers. It is worth noting that this price signal is calculated based on the

forecast of consumers’ consumption level and the generation output of utility-operated distributed

generators (DGs), as well as prosumers ask price and amount of power. Then consumers use this

price signal as the upper bound to decide and send the bidding price back to DSO. Finally, DSO

obtains all required information for running the auction.
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MRDA-APM-based P2P Energy Sharing

After gathering all information from prosumers and consumers, including ask/bid prices, amount

of surplus power, and requested demand, DSO starts the P2P energy trading with a hierarchical

auction (MRDA). The hierarchical auction first starts from the nodal auction to balance the total

demand of prosumers and consumers located in the same node. Next, prosumers and consumers

trade in the zonal auction, and finally in distribution network (DN)-level auction. It should be noted

that the zones are defined based on the criteria of similar DLMP values, including at least one pro-

sumer, and the location in one neighborhood. Each agent is assigned with an identification (ID)

number based on the node, zone, and DN number (e.g. N12Z3D1 denotes an agent located in node

12, zone 3 of first DN). The advantage of the MRDA design is to achieve more benefits by sharing

energy with closest neighbors, save additional costs, and reduce the possibility of transaction re-

jection due to power loss, congestion, or voltage regulation. If agents fail to match in nodal, zonal,

or DN-level auction, prosumers sell surplus power with the FIT price to the grid, and consumers

purchase electricity from the grid with the DLMP price at their locations. Moreover, due to a large

number of agents, the proposed MRDA-APM algorithm has other advantages of preserving the

right of each market participant to benefit from the P2P market, through providing opportunities

for all agents to participate in P2P market and keeping agents motivated to participate in next P2P

market. More details and explanations will be explained in Section IV. It should also be mentioned

that three auction rounds are needed to complete the MRDA-based P2P market.

In this chapter, the cleared price of matched peers is the average of prosumer and consumer offering

prices based on the APM. The preeminent advantage of the APM mechanism over traditional

market-clearing prices is to enable the strong budget balance auction, in which all benefits from

traded energy are equally dispersed among matched peers. Additionally, the MRDA-APM design

satisfies other economic criteria such as individual rationality and truthfulness. It is worth noting
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that the framework doesn’t involve the bidding strategy design for P2P market participants or

consider more options from storage systems and demand response.

Sensitivity Check and Payment Rules

DSO is responsible for checking the security of transactions to determine whether the energy trad-

ings between matched peers violate any network constraints or not, using sensitivity factors to

block high-risk transactions. Once transactions satisfy the physical check, additional network

costs, such as voltage regulation cost, power loss cost, etc., for every matched transaction, will be

integrated into payments of both prosumers and consumers. These cost items can be calculated

by the decomposition of DLMP components. Upon the final approval by DSO, prosumers and

consumers split the additional cost, which the ratio could be adjusted by the market operator. In

this chapter, the simplest ratio is considered and assumed to be 50%.

Problem Formulation

The radial distribution network is represented as a graph (N,E), where N and E are the set of

nodes and edges, respectively. The root node is numbered as 0, and the set of all other nodes is

defined as N+ = N − {0}. The set of nodes connected with DERs as prosumers is denoted as

S = {1, 2, ..., Ns}, and all other nodes with demand are considered as consumers, with the set

defined as B = {1, 2, ..., Nb}; and accordingly, (S ∪ B) = N+. Finally, it is assumed that DSO is

responsible for determining the number and component of zones.
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Entities in Multi-Round Double Auction

Entities in double auctions include sellers (prosumers), buyers (consumers), and the auctioneer

(DSO). The indexes of n and m are denoted as prosumers and consumers, respectively.

Prosumers (Sellers)

The ask price and amount of power to be traded in P2P market are denoted by Sp and Sq, re-

spectively. The payoff of prosumer n from auction without considering additional costs, SWn, is

defined as:

SWn =


∑Nb

m=1 (γnm − Spn)× Sqnm, if prosumer n wins

0 otherwise.
(3.1)

where γnm is the auction cleared price of the successful transaction between prosumer n and con-

sumer m.

Consumers (Buyers)

The bid price and amount of energy to be traded in P2P market are denoted by Bp and Bq, re-

spectively. The payoff of consumer m from auction without considering additional costs, BWm,

is defined as:

BWm =


∑Ns

n=1 (Bpm − γmn)×Bqmn, if consumer m wins

0 otherwise.
(3.2)
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Auctioneer (DSO)

Total social welfare of all peers, TW , is defined as the sum of payoffs of both prosumers and

consumers in the auction, presented as below:

TW =
Ns∑
n=1

SWn +

Nb∑
m=1

BWm (3.3)

DLMP Formulation

For DSO, the market-clearing is formulated as a SOCP-based optimization problem with convex

relaxation. The DLMP price signal is used as a tool based on existing literature such as [14,77], for

extracting hidden and private information of agents and calculating additional transaction costs.

Objective Function

The objective is to minimize the generation cost of utility-operated DGs, and the cost of purchasing

power from the grid, which is shown as the first and second terms in (3.4), respectively. It is

assumed that PV units are the only generation units controlled by prosumers.

min

T∑
t=1

[
N∑
i=1

(Cg
i,t × P

g
i,t) + (Cg

0,t × P
g
0,t)

]
(3.4)

where Cg
i,t and Cg

0,t are the marginal cost of DGs and buying power from wholesale or retail mar-

kets, respectively. P g
i,t and P g

0,t are defined as the power related with two cost terms. The objective

function is subjected to technical constraints such as voltage limits, line flow limits, generation

limits, power balance, etc. The convex relaxation of constraints can be referred in [14]. Based on
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KKT conditions and duality analysis [14], nodal prices can be represented as following:

πi = ω1.πAi
+ ω2.µi + ω3.µAi

+ ω4.ηi + ω5.ηAi
(3.5)

where πi, µi, ηi are active power price, reactive power price, and contribution of complex power

at node i. Index Ai refers to the ancestor node of i. More details about the calculation of dual

variables ωi, and the decomposition of DLMP can be referred to [14]. In this chapter, DLMP price

signals have two major impacts, 1) serving as the upper bound of consumers’ bids; if violated,

consumers may lose the auction and have to purchase power from the grid with DLMP price; and

2) including valuable price information about the power transition, such as power loss, voltage

regulation, etc. In order to calculate the additional costs associated with every transaction, DLMP

differences between seller and buyer nodes are considered.

P2P Energy Sharing Mechanism

There are major challenges of directly applying the literature research of prosumers/consumers in

wholesale/retail markets [78] into distribution networks, which have been explained thoroughly in

Section I. In this chapter, a hierarchical auction with three rounds of nodal, zonal, and DN-level

auction (defined as MRDA) is proposed to address the challenges. The APM mechanism is also

integrated into MRDA to enable a strong budget balance, in which the auctioneer (DSO) cannot

benefit from running the auction and all the benefits are equally divided among prosumers and

consumers. In this chapter, the 15-minute time interval is considered for P2P energy exchanges. It

should be mentioned that the design of time intervals depends on the size of system, the number

of agents participating in the P2P market, and the auction design. The following subsections

will elaborate the details regarding the auction winner selections in price and quantity matching,

sensitivity check, and payments of agents considering extra network usage costs.
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Winner Selection Based on Price and Quantity

Considering the wholesale market as a reference, after collecting all data from agents, DSO ar-

ranges the requests from prosumers and consumers in ascending and descending orders, respec-

tively, as expressed below.

Sp1 < Sp2 < ... < Spn, ∀n ∈ S (3.6)

Bp1 > Bp2 > ... > Bpm, ∀m ∈ B (3.7)

After this arrangement, DSO calculates the average price of all agents participating in the P2P

market and selects the winners of auction. The MRDA-APM improves the process by introducing

the mean price λ, which makes all market players equal in terms of their chances to win auction. A

prosumer wins the auction if and only if Spn < λ; and from the consumer point of view, Bpm > λ

should be satisfied.

λ =

∑Ns

n=1 Spn +
∑Nb

m=1Bpm
Ns +Nb

(3.8)

The MRDA-APM enables agents to first negotiate with their neighbors (at nodal level) based on

their IDs, containing information of node, zone, and DN. It should be noted that the cleared trans-

actions in nodal level only need to provide a very small amount of additional cost, comparing to the

zonal and DN-level transactions which will procure larger additional cost. If there is no successful

matching with any consumer, prosumer n fails in the nodal auction and will participate again in the

zonal auction. If prosumer n fails again in the zonal auction, it will participate in DN-level auction

(zone crossing condition). If prosumer n fails in all three auctions, it can sell surplus energy to the

grid. This three-layer auction process preserves the rights for all agents to participate in the market
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so that no agents can sell or buy energy multiple times continuously within one-time interval.

Fig. 3.2 shows an example of how the proposed auction works. To compare with other auction

mechanisms in literature, let us first assume prosumers sell surplus energy one by one in Fig.

3.2(a). In this scenario, prosumers sell surplus energy until their energy is sold out. For instance,

prosumer 1 has sufficient surplus energy and asks for a lower price, which satisfies more than the

need of the first customer. Then prosumer 2 cannot sell its energy until prosumer 1 completely

sells all its energy. As a result, other prosumers must wait in line for their turn to sell energy and

will be reluctant to participate in future P2P markets, since they may not benefit from P2P market

in different time intervals. To fill this gap, the proposed peer matching mechanism preserves the

rights of all agents to participate in the P2P market.

Algorithm 1: MRDA-APM Price Match Algorithm
Input: Submitted ask and bid prices of agents, agents ID, DLMP and FIT prices for every
time slot t

Output: Winners and Losers of price matching
Initialization;
Define set of pros. Si (Spi, Sqi, IDi, i = n ∈ Ns)
Define set of cons. Bj (Bpj , Bqj , IDj , j = m ∈ Nb)
Calculate λ based on (3.8)
Stage 1:
if Spi ≤ λ then

Si →Winner and do quantity match
else

Si → Considered as Loser and should sell power
with FIT price to the grid

end
if Bpj ≥ λ then

Bj →Winner and do quantity match
else

Bj → Considered as Loser and should buy power with DLMP price from the grid
end

As shown in Fig. 3.2(b), prosumer 1 can only sell partial of its surplus energy (based on the demand

from consumer 1), and its remaining energy is transferred to the end of the prosumers list, waiting
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Figure 3.2. The matching sequence example of MRDA at one time interval.

for new consumers. When first transaction is completed, prosumer 2 sells energy to consumer 2.

This process continues until no consumers or prosumers on the list. The details of MRDA-APM

price and quantity matching mechanism are shown in Algorithm 1, Algorithm 2 and Fig. 3.3,

respectively. The benefit of matching in Fig. 3.2(b) is that prosumers and consumers cannot bid

strategically to sell/buy all surplus/needed energy. Moreover, MRDA increases the participation

level of prosumers and consumers, as all agents have the chance to get benefit from P2P market.

For better elaborating the quantity matching sequence presented in Fig. 3.2, let us assume that

there are 2 prosumers and 3 consumers in the P2P market, assuming that DSO has completed the

price matching based on Algorithm 1. The surplus power of prosumers 1 and 2 are assumed to
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Figure 3.3. The matching sequence flow chart for hierarchical quantity match.

be 100 and 50 kw, respectively; and the demand of consumers 1, 2, and 3 are 25, 25, 50 kw,

respectively. The first quantity matching happens between prosumer 1 and consumer 1 with 25 kw

traded power. If traditional auctions in Fig. 3.2(a) are considered, the next matching order will be

prosumer 1 with consumer 2 with 25 kw traded power, and prosumer 1 with consumer 3 with 50

kw traded power. As a result, during one trading time interval, prosumer 2 never receives benefits
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Algorithm 2: MRDA-APM Quantity Match Algorithm in Each Round of Auction
Input: Winners of price matching (Algorithm 1), agents ID, DLMP and FIT prices for every
time slot t

Output: Winners and Losers of quantity matching in every round of auction
Stage 2:
for Each node, zone, and whole DN do

while set {Si} = φ or set{Bj} = φ do
if Sqi ≥ Bqj then

1. Si sells Bqj to Bj with average price
2. Transfer Bj to pre-matching list and remove Bj from consumers list
3. Transfer Si with power of Sqi −Bqj to the end of prosumers list

else
1. Si sells Sqi to Bj with average price
2. Transfer Si to pre-matching list and remove Si from prosumers list
3. Transfer Bj with demand of Bqj − Sqi to the end of consumers list

end
end
Form losers matrix for prosumers and consumers
R← remaining consumers and prosumers list

end
Stage 3:
Do Step 2 for R until no prosumers or consumers remaining on the list

from P2P market. If this happens for more P2P time intervals, the motivation of prosumer 2 will

be decreased, and as a result, there is possibilities that this prosumer will not participate in the

upcoming P2P markets; and in the long term, prosumer 1 can increase the asking price and be the

dominant winner for the upcoming P2P markets. However, considering the matching sequence in

Fig. 3.2(b), the matching order is, prosumer 1 with consumer 1 with 25 kw traded power, prosumer

2 with consumer 2 with 25 kw traded power, and prosumer 1 with consumer 3 with 50 kw traded

power. As it can be seen, this matching sequence motivates small-scale prosumers to participate

more since they can benefit from the market. It should be noted that this mechanism also depends

on the number of prosumers and consumers in the network.

Additionally, this matching sequence, as shown in detail in Fig. 3.3 (with assumption that there is

either one prosumer or one consumer located at each node), prevents agents, like prosumer 1, from
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bidding intentionally lower to sell all their power. The proposed mechanism also enhances the

cyber-resilience by not depending on the limited number of prosumers. For instance, if prosumer

1 is an attacker and intentionally reports 100 kw surplus power (but in reality it only has 5 kw

surplus power, or is even a consumer), with traditional auctions the DSO must supply the load by

purchasing power from the grid for the 90 kw deficiency. However, with the proposed matching

sequence more prosumers are involved in P2P energy sharing markets and the system resiliency

can be improved (by reducing the risk of cyber attacks), and DSO does not have to purchase more

power from the upper grid or operate DGs to supply the load.

Apart from quantity matching, at each stage, the clearing price of matched peers is the average of

prosumer and consumer bidding prices, defined as APM. The main advantage of the APM mecha-

nism over traditional market clearing-prices is to enable strong budget balanced auctions, in which

all benefits from traded energy in the P2P market are equally dispersed among matched peers, not

the auctioneer or the central entity who runs the auction. However, DSO can indirectly benefit

from P2P market by bringing small-scale prosumers into the market and keep them motivated to

participate in all time periods when they have excess energy. Therefore, DSO can supply some

of the load with prosumers’ surplus energy (who are considered as final losers of the auction) and

purchase less energy from the upper-level network with LMP price to minimize the operational

cost. In the end, if the auction completes with no consumers, all prosumers should sell their re-

maining energy to the grid with FIT price; otherwise, if the auction completes with no prosumers,

all consumers should purchase their remaining energy from the grid with DLMP price.

Sensitivity Check

After the completion of the auction, there will be a large number of transactions successfully

matched in different rounds of auction. Next, DSO will check the physical feasibility of these
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transactions, preventing the power injections that may violate network constraints. In this chapter,

sensitivity factors are used to check the violation of physical network constraints.

Pfp = M ×∆Pinj; Pf q = M ×∆Qinj (3.9)

∆V = R× Pfp +X × Pf q (3.10)

SFv =
∂∆V

∂∆Pinj
= R×M (3.11)

SFlp =
∂Pf p

∂∆Pinj
= M ; SFlq =

∂Pf q

∂∆Qinj

= M (3.12)

Pfpi =
N∑
i=1

SFlp,i ×∆Pinj,i (3.13)

PTDFE
ij = Pfpi − Pf

p
j (3.14)

Ploss =
N∑
i=1

Rl × I2l ≈
N∑
i=1

Rl × Fl2l (3.15)

LF p
i =

∂Ploss
∂∆Pinj

=
N∑
i=1

2× Flpi ×Rl ×
N∑
i=1

SFlp,i (3.16)

where M is the injection shift factor (ISF) that represents the sensitivity between nodal active

(reactive) power injection ∆Pinj (∆Qinj) and active (reactive) line flow Pfp (Pf q), as shown in

(3.9). In distribution network, voltage difference ∆V can be approximated using line flow and line

resistant R and reactance X , as shown in (3.10). In (3.11), SFv represents the sensitivity factor
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between voltage difference and nodal active power injection by DERs; and the second equation

can be achieved by substituting (3.9) and (3.10) into (3.11). In (3.12), SFlp and SFlq represent

the sensitivity factor between line flow and nodal active/reactive power injection; and the second

equation can be achieved by substituting (3.9) into (3.12). (3.13) represents the active power

flow equals to the summation of all nodal active power injection multiplied by sensitivity factor.

Then power transfer distribution factor (PTDF), PTDFE
ij , can be obtained, which provides the

sensitivity of active power flow in branch E with respect to one active power injection at bus i and

the other active power withdrawn at bus j, as shown in (3.14). In (3.15), linear approximation of

active power loss, Ploss, can be presented using active power flow in branches. Loss sensitivity

factor, LF p
i , represents the sensitivity between power loss and injected power at bus i, as shown in

(3.16) [79]. After DSO’s final approval of transactions, network costs will be added to the payment

of all matched transactions. It should be noted that this chapter only considers the active power

cost.

Payments and Allocation of Extra Costs

The MRDA-APM cleared prices can be integrated into nodal pricing schemes, which are based

on marginal costs. For example, in PJM market, nodal price (NP) consists of system marginal

energy price (SMP), e.g. locational marginal price (LMP), congestion price (CP) and loss price

(LP) [80, 81].

NP = SMP + CP + LP (3.17)

To integrate the proposed auction clearing price to distribution nodal pricing, SMP should be

replaced with γ which indicates the cleared price of matched peers. Therefore, NP can be refor-

mulated as below:

NP = γ + CP + LP (3.18)
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Additionally, matched peers should pay for power loss, voltage support, etc. The additional costs

can be accessed by DLMP components from power injection by prosumers and power absorption

by matched consumers. The payment of matched transactions confirmed by DSO can be presented

as below:

SRn =

Nb∑
m=1

SWn −
Nb∑
m=1

(
|DLMPi − DLMPj|

2

)
Sqnm (3.19)

BPm =
Ns∑
n=1

BWm +
Ns∑
n=1

(
|DLMPj − DLMPi|

2

)
Bqmn (3.20)

where SRn andBPm denote to prosumers final revenue and consumers final payment, respectively.

The first term of (3.19) and (3.20) denotes the traded energy benefit from P2P market. The second

term of both equations is related to additional costs, which are equally split among matched peers.
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Figure 3.4. 33-node distribution test system.
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Figure 3.5. 33-node DLMP signals before and after P2P energy exchange.

Numerical Results

The proposed P2P framework is first validated on the modified 33-node distribution test system

[82] with pre-defined zones, as shown in Fig. 7.2. This test system has been used as a standard

test system in various studies such as [79], [81], and [82]. Three 1,000 kW PVs are installed at

nodes 3, 18, and 33, which represent three prosumers [79]. The nodes with load are considered as

consumers. The network is clustered into 3 different zones, following the modification from [20].

All asks and bids are randomly generated and received by DSO. The hourly load data are obtained

from [79], and PVs data are from CAISO for the first day of July 2019. Moreover, the hourly

LMPs are from PJM, which can be referred to [79]. The time steps between each P2P market

are set as ∆t = 15 minutes for a whole day. Next, the framework is further tested in 141-node

distribution system [83, 84] for scalability analysis and better explaining the benefits of defining

the zones. Simulations are carried out on a PC with Intel Core i7-7700, 3.6 GHz CPU, and 16 GB

RAM, with interfacing MATLAB and GAMS softwares.
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DLMP Results

Based on the hourly forecasting data and LMP data from the wholesale market, DSO performs the

DLMP calculation. Nodal prices of active power for all nodes with and without the participation of

prosumers for 24 hours are shown in Fig. 3.5a and Fig. 3.5b, respectively. Considering Fig. 3.5b,

the nodal prices vary between $15/MWh and $75/MWh, with the peak in the afternoon around 5

pm due to the peak demand. It should be mentioned that by prosumers participation in the P2P

market, the DLMP prices decrease because of surplus energy injection to the grid and neighbors

(maximum DLMP price based on Fig. 3.5a is $66/MWh). Additionally, every 15 minutes, DSO

sends these price signals to all consumers, and receives Bpj , and Bqj , which help determine the

number of agents to participate in P2P market, and the amount of load to be supplied at these time

slots.
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Figure 3.7. Prosumers income, consumers cost saving, additional transaction costs in P2P market.

P2P Transaction Prices vs. Traditional DLMP

The average P2P transaction prices for every time slot is shown in Fig. 3.6. The upper and lower

bounds of asks and bids are the average DLMP price and FIT price, respectively, which varies from

$14.6/MWh to $66.7/MWh. Moreover, in first 7 hours and last 4 hours, the average transaction

prices for P2P energy trading is zero, due to zero surplus energy for prosumers to participate in

P2P market.

Financial Benefits of Participating in P2P Market

To demonstrate how the proposed P2P market benefits both prosumers and consumers, different

load and generation scenarios are considered for trading, as shown in Fig. 3.7. Three bars with

different colors show prosumers’ income and consumers’ cost saving from the P2P market and

additional costs associated with each peer for using the DN to trade energy. As MRDA-APM
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Figure 3.8. Comparison of extra network costs.

is strongly budget balanced, all traded energy and resulted income and cost saving at each time

interval should be equal for both prosumers and consumers, as shown in Fig. 3.7. Take 1:30-

1:45 pm as an example, total power traded at this time interval is 2.793 MW, and the income and

cost saving for total prosumers and total consumers are the same of $66.065, which validates the

proposed double auction.

To reveal more details on network costs associated with transactions, Fig. 3.8a and Fig. 3.8b

are depicted to present total network costs for each prosumer and all consumers in each zone at

different trading hours, respectively. Considering 1:30-1:45 pm in Fig. 3.8a, the total network cost

is $1.45 for all prosumers. Based on the formulation, network costs can be calculated based on

DLMP differences between two nodes with DSO’s final approval of energy transition. Based on

Fig. 3.8a, prosumer 3 has the highest network cost, due to the cleared prices between prosumer 3

and consumers in zone 3. In some hours, if prosumers 3 asks for higher prices, it can affect DLMP

in that zone. As a consequence, DLMP differences become larger, and accordingly network costs

increase.
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Table 3.1. Revenue of Sellers w/o vs. w/ P2P Market

Sellers
Benefit
without
P2P ($)

Benefit with P2P ($) Benefit
Improvement

(%)
w/o Utility and

Extra Costs
w/ Utility and
Extra Costs

Pros. 1 378.9 1017.9 550.8 45.36
Pros. 2 393.1 702.4 507.7 29.15
Pros. 3 378.9 795.7 484.4 27.84

According to the proposed methodology, both consumers and prosumers benefit from participat-

ing in the P2P market. Table 3.1 and Table 3.2 show the benefit improvement with and without

participating in P2P market. Table 3.1 shows the P2P market benefits for each prosumer. If pro-

sumers only sell surplus energy to the grid with the FIT price, the revenue for each prosumer will

be $378.9, $393.1, and $378.9, respectively. However, by participating in P2P market, prosumers

can get more benefits. Furthermore, columns 3 and 4 of Table 3.1 show the benefit of participating

in market without and with considering utility and additional costs. The benefit enhancements for

prosumers 1, 2, and 3 with participating in the P2P market and considering additional network

costs and utility, are 45.36%, 29.15%, and 27.84%, respectively.

Different from prosumers, if consumers cannot get successfully matched with any prosumer in the

auction, they have to purchase power from the grid with DLMP price. Table 3.2 shows different

scenarios for consumers. For simplicity, the results of consumers cost are demonstrated by com-

paring aggregated consumers in each zone. If consumers in zones 1, 2, and 3 do not participate

in the P2P market, their total cost of paying to receive power from DSO in that time period is

$1783.5, $1841.4, and $1772.2, for each zone respectively. However, their cost will be reduced

by participating in P2P market. Considering additional costs in consumers’ payment, the total cost

for zones 1, 2, and 3 is $615.82, $320.12, and $390.74, respectively; and with the cost saving

improvement of 65.47%, 82.61%, and 77.59%, respectively.
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Table 3.2. Cost Saving of Buyers w/o vs. w/ P2P Market

Buyers Cost without Cost with P2P and Cost Saving
P2P ($) Extra Network Costs Improvement

($) (%)
Zone 1 Cons. 1783.5 615.82 65.47
Zone 2 Cons. 1841.4 320.12 82.61
Zone 3 Cons. 1772.2 390.74 77.95

Voltage Comparison w/ and w/o P2P Energy Trading

To capture the voltage issues, two scenarios with and without P2P energy trading are considered

to show voltage problems, as shown in Fig. 7.4a and Fig. 7.4b for the 33-node distribution system,

and in Fig. 3.10a and Fig. 3.10b for 141-node distribution system, respectively. Comparing results

in Fig. 7.4b and Fig. 7.4a, the voltage variation without P2P trading as a benchmark is from 0.915

p.u. to 1 p.u., which is increased to the range of 0.95 p.u. and 1.04 p.u. with P2P trading. The

reason is that when prosumers have surplus energy during certain times of a day, they participate

in the P2P market; depending on whether they are successful in P2P matching or not, prosumers

inject power to either supply consumers or sell to the grid, which causes voltages to increase.

Additionally, for the 141-node test system, hour 12:30 pm is selected for better analysis of voltage

values during the trading period.

Simulation Results for 141-Node Distribution System

For scalability analysis and demonstrating how the zones can benefit both prosumers and con-

sumers, 141-node real distribution system is considered for additional simulations. To validate how

the proposed P2P framework works, 12 PV units representing prosumers, and 2 utility-operated

DGs (each with the maximum capacity limit of 2 MW) are added to the 141-node system, as
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Figure 3.9. 33-node voltage magnitude before and after P2P energy exchange.
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Table 3.3. Prosumers Location and Maximum Capacity

Prosumers
Location 5 26 30

40,50
60,80

70,95
101,125 138

Capacity (MW) 0.2 0.5 0.75 1.5 1 0.75

shown in Fig. 3.11. The location of prosumers and DGs and their maximum capacity limits are

presented in Table 3.3. The entire distribution system is divided into 5 zones with the criteria of

similar DLMP signals and location of agents. For better analysis, hour 12:30 pm is selected, and

the DLMP signals, as well as voltage values, are presented in Fig. 3.12 and Fig. 3.13, respec-

tively. Based on Fig. 3.12, it can be seen that when utility supplies the consumers’ demand by

purchasing power from upper grid or DGs, the DLMP signals are above $52/MWh. However, if

the prosumers participate in the P2P market, then DLMP is reduced due to the cheaper energy sup-

ply by prosumers. In addition, the variations of DLMP for different zones depend on the density

of prosumers in the zones, the number of prosumers participating in P2P market, the total demand

of zones, and the auction design.

To elaborate how defining zones can benefit both prosumers and consumers, different scenarios are

designed based on hour 12:30 pm results. The goal is to compare which option is more beneficial

for prosumers, to negotiate either with a consumer with a lower bid price within the zone or another

consumer with a higher bid price outside the zone. For instance, zone 1 and zone 4 are selected

with average DLMP prices of $20/MWh and $53/MWh, respectively. Moreover, the operational

cost for prosumers is $10/MWh. Two scenarios are proposed to perform the economic analysis for

energy trading within and outside the zone. The first scenario can be considered as our proposed

model, and the second scenario can be considered as the traditional auction as stated in [24].

In the first scenario, both agents within zone 1 are negotiating with offering prices of $15/MWh

(prosumer) and $18/MWh (consumer). Based on the average price mechanism, agents’ cleared
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Figure 3.11. 141-node distribution test system.

price is $16.5/MWh. The extra cost for this transaction is calculated based on DLMP differences,

which is $0.23/MWh. For simplicity, assuming there is 1 MWh energy flow, and DLMP at pro-

sumer and consumer node is $20.04/MWh and $20.5/MWh, respectively. Total net revenue of

prosumer in zone 1 = 16.5 – 10 – 0.23 = $6.27; and total cost saving for consumer in zone 1 = 20

– 16.5 + 0.23 = $3.73. In the second scenario, agents are negotiating outside their zone (DN-level
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auction) with offering prices of $15/MWh (prosumer) and $45/MWh (consumer). Based on the

average price mechanism, agents’ cleared price is $30/MWh, and extra cost for this transaction is

$16.5/MWh. Total net revenue of prosumer in zone 1 = 30 – 10 – 16.5 = $3.5; and total cost saving

for consumer in zone 4 = 53 – 30 + 16.5 = $39.5. Based on the results from scenarios 1 and 2,

it can be seen that if prosumers negotiate within zones, then the net revenue is higher, compared

to the scenario that prosumers trade energy with consumers outside the zone even with higher bid

prices. This analysis clearly demonstrates the effectiveness of the proposed model in this chapter

over the matching presented by [24].

Besides the presented scenarios, trading outside the zones might be beneficial in some specific

scenarios, which mainly depends on the bid prices of agents. For instance, prosumers bid close to

the operational cost and consumers bid close to the DLMP signal. However, this scenario is not

beneficial (from economic perspective) for agents, since prosumers prefer to maximize their wel-

fare by bidding reasonably high compared to operational cost, and consumers prefer to bid lower

for welfare maximization and more cost savings. It is worth mentioning here that if prosumers

still have surplus energy after zonal auctions (completely supplying the loads in zonal level), they

can negotiate with consumers outside the zones since both peers can benefit from P2P market. But

again, this scenario depends on agents behaviour and their power/demand amount.

The computational time of the proposed P2P framework depends on calculating the DLMP and P2P

matchings in the hierarchical nodal, zonal, and DN-level auction. It should be mentioned that the

total computational time for calculating the DLMP and P2P matching of the 141-node test system

is 1.6 and 0.25 minutes, respectively, which is more efficient compared to the iterative-based P2P

mechanisms. It should also be mentioned that the simulation time depends on the participation

level of prosumers, DSO calculating DLMP, and trading time intervals.
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Conclusion

This chapter proposes a framework for P2P energy exchange in the active distribution network. The

framework utilizes the multi-round double auction with an average pricing mechanism, which pre-

serves the rights of agents for negotiation, and gives the priority to neighboring nodes for energy

exchange during the multi-round auction. The proposed MRDA-APM also satisfies the auction

criteria from economic perspective. Moreover, this chapter integrates additional network costs for

each transaction, such as power loss cost, voltage regulation cost, etc., into the payments of all pro-

sumers and consumers, through DLMP component decomposition. Simulation results demonstrate

the advantage and benefits for not only prosumers and consumers but also DSO (reliable operation

and reduce peak hour generation) from the proposed P2P market.

The proposed framework is based on assumptions to provide an alternative with advantages in

certain areas, rather than totally replacing other market mechanisms. The possible future research

directions include, 1) considering the impact of P2P energy sharing on integrated transmission

and distribution network and considering realistic assumptions such as polynomial bid prices for

agents; 2) extension of the proposed model by considering the uncertainty of renewable gener-

ation and its impact on DLMP and real-time auction models; 3) inclusion of energy storage to

address renewable energy curtailment issues, comparing the performance of different energy stor-

age systems, e.g. hydrogen and battery, and analyzing the local markets with considering P2P

and hydrogen market; and 4) considering fully distributed P2P market with distributed DLMP and

distributed auction with the aim of privacy-preserving of agents.
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CHAPTER 4: RISK-AVERSE COOPERATIVE OPERATION OF PV AND

HYDROGEN SYSTEMS IN ACTIVE DISTRIBUTION NETWORKS 1

Introduction

Environmental emissions and decreasing costs of renewable energy sources (i.e. photovoltaic (PV),

wind, hydrogen (H2), etc.) are prompting a sharp increase in renewable energy penetration into

the grid. Among various energy sources, H2 energy with its promising technical, economic, and

environmental merits has demonstrated great potential for large deployment in distribution sys-

tems. This chapter proposes a multi-objective network-constrained framework for the day-ahead

scheduling of hydrogen systems (HS), including hydrogen production from water electrolysis by

electrolyzers, hydrogen storage, stationary fuel cells, and fueling of fuel cell electric vehicles

(FCEVs). This framework includes various physical constraints to ensure reliable operation and

considers integrated demand response and conservation voltage reduction, and reactive power sup-

port from HSs for realistic day-ahead scheduling. It also incorporates the cooperative operation

of PV units and HSs to supply power for water electrolysis from stationary HSs equipped with

onsite PVs. Moreover, Conditional Value-at-Risk (CVaR) is applied to address the risk of PV

output, FCEVs’ H2 demand, loads, and market price. The proposed model is formulated as a

mixed-integer linear programming problem and validated by testing on a 33-node distribution test

feeder.

From previous research efforts, there are remaining gaps in the techno-economic analysis of hydro-

gen storage and hydrogen fuel station scheduling in the day-ahead electricity market. For instance,

1This chapter is prepared based on the paper presented at [62]:
Hamed Haggi, Wei Sun, James M. Fenton, and Paul Brooker “Risk-Averse Cooperative Operation of PV and Hydrogen
Systems in Active Distribution Networks ”, IEEE Systems Journal, 2021. [Link]
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Figure 4.1. Hydrogen System (HS) interface with distribution power grid.

power quality issues (i.e. voltage deviation) can happen in the case of imposing a huge amount of

H2 demand from FCEVs; and as a consequence, reactive power support by PV and HS inverters

and other voltage control methods should be considered in the practical operation of power sys-

tems, which is largely missing from previous studies. Additionally, [51]− [60] did not address the

risks and uncertainty of renewable energy output, wholesale market price, power grid load, and

H2 demand, or [58]− [67] neglected network constraints of power systems, which are critical for

the reliable operation of these assets. Additionally, previous studies failed to consider the coop-

erative scheduling of hydrogen systems with their onsite PV assets to produce cheap H2 energy.

Therefore, this chapter develops a new model for optimal scheduling of distributed HS in power

distribution networks considering the H2 demand from FCEVs in the transportation sector. The

major contributions of this chapter include:
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• A multi-objective network-constrained framework is proposed for day-ahead scheduling of

hydrogen systems (Fig. 4.1) including HSS for power grid balancing and HFS for supplying

the H2 demand from transportation sector. Since H2 demand from transportation sector can

impose a huge load on nodes with HSs, reliable operation with power quality concerns is

considered.

• Risk management is incorporated into the stochastic model using Conditional Value-at-Risk

(CVaR) to address the risk of uncertainties from PV output power, nodal demand, wholesale

market price, and H2 demand from FCEVs.

• The framework considers the cooperative operation of onsite HS equipped with PV units to

support the H2 demand of HFS with both self-supply and power from the grid which results

in lower H2 production costs.

• Framework also considers the practical operation by, 1) developing linear integrated DR with

conservation voltage reduction (CVR) model for active/reactive power shifting preserving

the load power factor and lowering cost; and 2) reactive power support from HS, PV and

distributed generators (DG) to improve voltage profiles.

The following indices are used for defining parameters and variables throughout this chapter. Sets

and Indices

• S Set of scenarios, indexed by s.

• N Set of nodes, indexed by i.

• T Set of scheduling time interval, indexed by t.

• NPV Set of nodes with PVs, indexed by p.

• NHS Set of nodes with HSs, indexed by h.
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• NDG Set of nodes with DGs, indexed by d.

• NUG Set of upper grid nodes, indexed by sub.

• L Set of network lines, indexed by (i,j) ⊂ N ×N .

Parameters

• λGrid Upper grid electricity price ($/MWh).

• λPV Operational cost of PV units ($/MWh).

• λDG Operational cost of DG units ($/MWh).

• ρs Probability of each scenario.

• ρPV Probability of each PV scenario.

• ρHDE Probability of each hydrogen demand scenario.

• ρload Probability of each load scenario.

• ρprice Probability of each wholesale market price scenario.

• ζ Linear load flow constant.

• HDE H2 demand from aggregated FCEVs (Kg/h).

• BF Beta function of solar data.

• ωi Coefficient indicating priority of nodes.

• Gl / Bl Conductance / susceptance of line.

• PLbase Active power consumption (MW).

• QLbase Reactive power consumption (MVar).

• ιi Percentage of shiftable load (%).

• Sshift Amount of shiftable apparent power (MVA).

• PLshift Amount of shiftable active power (MW).
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• QLshift Amount of shiftable reactive power (Mvar).

• LPF Load power factor.

• KPZ/KQZ Constant active/reactive impedance coefficient.

• KPI/KQI Constant active/reactive current coefficient.

• KPP/KQP Constant active/reactive power coefficient.

• πt / $t Beta function parameters.

• µt / σt Mean and variance of solar data.

• PST Rated power st standard test condition.

• Tj Cell temperature (◦C).

• NOCT Nominal operating cell temperature (◦C).

• nPVs / nPVp Number of PV modules in series or in parallel.

• γ Power temperature coefficient.

• Tamb Ambient temperature (◦C).

• SPV,inv PV inverter size (MVA).

• SDG,inv Maximum apparent power for DGs (MVA).

• SHS,inv HS inverter size (MVA).

• SUG Maximum apparent power for purchasing power from upper grid (MVA).

• ηEL / ηFC Efficiency of electrolyzer / Fuel Cell (%).

• P2HEL Electrolyzer power to hydrogen conversion factor (Kg/MWh).

• H2P FC Fuel cell hydrogen to power conversion factor (MWh/Kg).

• SOHH2,init Initial Mass of hydrogen in tank (Kg).

• SOHH2,min Minimum limit of H2 mass in tank (Kg).

• SOHH2,max Maximum H2 storage tank capacity (Kg).

• V max / V min Max. and min. voltage magnitude (pu).
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• M1 A big number for linearization.

• β Level of risk aversion.

• α Confidence level in risk management.

• PLDR,max Upper bound of PLDR (MW).

• PLDR,min Lower bound of PLDR (MW).

• λDsp Dissipation rate of HS .

• PEL,min minimum electrolyzer capacity (MW).

• PEL,max maximum electrolyzer capacity (MW).

• P FC,min minimum stationary FC unit capacity (MW).

• P FC,max maximum stationary FC unit capacity (MW).

• φinit Initial percentage of H2 in the tank.

Variables

• PQI Power quality index.

• P FC Fuel cell output power (MW).

• PEL Electrolyzer import power (MW).

• PEL,jo Imported power by electrolyzer in cooperative mode (MW).

• NFC,H2 Inflow of H2 in fuel cell (Kg/h).

• NEL,H2 Outflow of H2 from electrolyzer (Kg/h).

• P PV / QPV PV output active/reactive power (MW/Mvar).

• PDG / QDG DG output active/reactive power (MW/Mvar).

• PUG / QUG Active/reactive power from upper grid (MW/Mvar).

• PCV R Active load value after DR and CVR (MW).
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• QCV R Reactive load value after DR and CVR (Mvar).

• FLP /FLQ Net injected active/reactive power to node (MW/Mvar).

• V Voltage magnitude of nodes (pu).

• θ Voltage angle of nodes (pu).

• PLDR/QLDR Active/reactive power after DR (MW/Mvar).

• Gt Solar radiation variable (W/m2).

• SOHH2 State of hydrogen in tank (Kg).

• QHS Reactive power support by HS inverter (Mvar).

• ψ Binary variable for HS.

• PL / QL Active/reactive power flow in line l (MW/Mvar).

• SL Apparent power flow in line l (MVA).

• ϕs Auxiliary variable for risk management.

• W Auxiliary variable of bilinear optimization.

• δV + / δV − Positive/negative voltage deviation.

• δV Voltage deviation.

• V aR Value at risk.

• χ Binary variable for linearization.

Problem Formulation

Objective Functions

The multi-objective functions consist of both economic and technical objectives. In the following

formulation, the index s, representing scenarios of variables and parameters, is removed to simplify

equations due to space limitations.
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Total Operating Cost (OC) Minimization

The first objective function is to minimize the total system operating cost, as modeled in (4.1). The

first term of (4.1) relates to the purchasing power from the upper grid, and the other three terms are

the operating cost of utility-operated DGs, PVs, and HSs.

OCt =
T∑
t=1

[(PUG
t,sub × λGridt ) + (PDG

t,d × λDGt ) + (P PV
t,p × λPVt ) + ((PEL

t,h − P FC
t,h )× λGridt )] (4.1)

Power Quality Improvement (PQI)

The second objective function is to minimize the voltage deviation of nodes with higher priorities

as shown in (4.2). It is assumed that nodes with HSs have higher priority due to the H2 demand

of the transportation sector which must be supplied. Due to the efficiency of electrolyzers (which

is assumed to be 60% in this chapter) and accordingly H2 demand pattern, more power should

be consumed to produce 1 kg of H2. This results in higher loading of the node and consequently

significant voltage issues in the nodes with HSs. To that end, in order to provide a reliable and

safe operation of these assets, more reactive power support is needed to keep the voltages near to

1 per unit (p.u.). Equation (4.2) minimizes the voltage deviation compared to 1 p.u. Better voltage

profiles can be obtained by increasing the value of ωi in equation (4.2).

PQIt,i =
T∑
t=1

N∑
i=1

ωi
∣∣Vt,i − V ∗t,i∣∣ (4.2)

where V ∗t,i is the nominal voltage assumed to be 1 (p.u.).
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Technical Constraints and Models

Solar Radiation and PV Generation Modeling

Solar radiation is one of the preeminent factors that affects the output power of PV generators. The

literature shows that solar radiation roughly follows the beta distribution function as expressed in

(4.3)-(4.7).

BF (Gt) =
Γ(πt +$t)

Γ(πt) Γ($t)
× (1−Gt)

$t−1 × (Gt)
πt−1 (4.3)

πt =
µt ×$t

1− µt
, $t = (1− µt)× (

µt × (1 + µt)

σ2
t

− 1) (4.4)

PPV =

[
PST ×

Gt

1000
× (1− γ × (Tj − 25))

]
× nPVs × nPVp (4.5)

Tj = Tamb +
Gt

800
× (NOCT− 20) (4.6)

(P PV
t,p )2 + (QPV

t,p )2 ≤ (Sinv,PVt,p )2 (4.7)

where πt and $t are parameters of PV output power and cell temperature as defined in (4.4), (4.5)

and (4.6) respectively [85] [86] [87]. The PV units are equipped with inverters to provide both

active and reactive power, as limited by (4.7).
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Hydrogen System Modeling

Operating constraints of HSs, including electrolyzer, FC, hydrogen storage tank, and HFS are listed

in (4.8)-(5.18).

NEL,H2
t,h = ηEL × (PEL,jo

t,h )× P2HEL (4.8)

PEL,jo
t,h = PEL

t,h + P PV
t,p ,∀ h = p (4.9)

PEL,min
h × ψHSt,h ≤ PEL,jo

t,h ≤ PEL,Max
h × ψHSt,h (4.10)

0 ≤ NEL,H2
t,h ≤ NEL,H2

max × ψHSt,h (4.11)

NFC,H2
t,h =

P FC
t,h

ηFC H2P FC
(4.12)

P FC,min
h × (1− ψHSt,h ) ≤ P FC

t,h ≤ P FC,Max
h × (1− ψHSt,h ) (4.13)

0 ≤ NFC,H2
t,h ≤ NFC,H2

max × (1− ψHSt,h ) (4.14)

SOHH2
t,h = SOHH2

t−1,h − λDsp × SOHH2
t,h + (NEL,H2

t,h

−HDEt,h −NFC,H2
t,h ) ∆t

(4.15)

SOHH2,min
t,h ≤ SOHH2

t,h ≤ SOHH2,Max
t,h (4.16)
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SOHH2,init
t,h ≥ φinitt,h × SOH

H2,Max
h , ∀ t = 1 (4.17)

(PEL
t,h − P FC

t,h )2 + (QHS
t,h )2 ≤ (Sinv,HSt,h )2 (4.18)

where equation (4.8) represents the amount of H2 produced by the PEM electrolyzer. The coop-

erative operation of PV and power from the upper grid for electrolyzer usage is modeled in (4.9).

If the HS is equipped with PV, both PV output power and power from the grid can be used by the

electrolyzer for H2 production; otherwise, the only source of power for water electrolysis is the

purchased electricity from the grid, then P PV
t,p will be zero in (4.9). Electrolyzer power capacity

limits and the generated H2 from operating the electrolyzer are presented in (4.10) and (4.11),

respectively. Equation (4.12) models the H2 consumption by stationary FC to generate electricity.

FC power limits and H2 consumption levels for generating power are shown in (4.13) and (4.14),

respectively. To prevent simultaneous H2 production and consumption, a binary variable, ψHSt,h , is

defined. If ψHSt,h gets the value of 1, electrolyzers consume power, and stationary FC units could

not consume H2 for injecting power into the grid (in this scenario the FC units are remaining off).

On the other hand, if this variable gets the value of 0, FC units consume H2 and convert it into the

power, and electrolyzers are remaining off. H2 mass at each hour, H2 storage tank minimum and

maximum mass capacity limits, and initial mass of H2 of the tank are defined in (4.15), (4.16) and

(4.17), respectively. The inverter of HS poses limits on the power transfer from HS, as shown in

(5.18). Conversion factors of P2HEL and H2P FC are determined based on [54].

Demand Response and CVR Modeling

Appropriate load modeling is needed to provide a realistic power consumption profile. DR enables

customers to reduce their consumption level during peak hours and shift some portion of their
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load to off-peak hours to reduce their bills. This chapter considers both active and reactive power

shifting while preserving the power factor of each load. Defining the active base load as PLbaset,i ,

(4.19)-(4.24) show the DR formulation.

QLbaset,i = PLbaset,i (tan(arccos LPFi)) (4.19)

∣∣∣Sshiftt,i

∣∣∣ ≤ ιi

√
(PLbaset,i )2 + (QLbaset,i )2 (4.20)

PLshiftt,i = Sshiftt,i × LPFi (4.21)

QLshiftt,i = PLshiftt,i × (tan(arccos LPFi)) (4.22)

T∑
t=1

PLshiftt,i = 0,
T∑
t=1

QLshiftt,i = 0 (4.23)

PLDRt,i = PLbaset,i + PLshiftt,i , QLDRt,i = QLbaset,i +QLshiftt,i (4.24)

Where reactive power consumption and shiftable apparent power are shown in (4.19) and (4.20),

respectively. Shiftable active and reactive power can be calculated in (4.21) and (4.22). Constraint

(4.23) ensures that the reduced and increased amount of active and reactive load should be equal

during total operation hours. The reason for considering reactive power shifting is to keep the load

power factor constant. Finally, (4.24) express active and reactive power consumption after load

shifting.
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To address the dependency of loads to voltage magnitude at different time horizons, the polynomial

ZIP load model is utilized for the deployment of CVR. CVR can also be deployed by utilities

to further reduce the load and bills of customers, which the non-linear model was investigated

in [88].The mathematical formulation of CVR can be represented as below.

PCV R
t,i = PLDRt,i (KPZ

t,i (
Vt,i
V ∗t,i

)2 +KPI
t,i (

Vt,i
V ∗t,i

) +KPP
t,i ) (4.25)

QCV R
t,i = QLDRt,i (KQZ

t,i (
Vt,i
V ∗t,i

)2 +KQI
t,i (

Vt,i
V ∗t,i

) +KQP
t,i ) (4.26)

Network Constraints

Network-related constraints are expressed in (4.27)-(4.34) to address physical limits of power

grids. Active and reactive power balance are presented in (4.27) and (4.28), respectively. It should

be noted that PCV R
t,i,s could be replaced with PLDR or PLbaset,i for considering scenarios that only

address load with DR or base load of system. The general form of AC power flow constraints

are shown in (4.29) and (4.30). (4.31) presents active and reactive line flow limits based on the

line capacity. Accordingly, (4.32) and (4.33) are active and reactive power capacity limits for DGs

and purchasing power from the upper grid. Finally, (4.34) keeps the voltage magnitude within the

specified limit (i.e., ±5% of nominal voltage in p.u.) [89].

N∑
j=1

FLPt,(i,j) = PUG
t,sub + PDG

t,d + P PV
t,p + P FC

t,h − PCV R
t,i − PEL,jo

t,h (4.27)
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N∑
j=1

FLQt,(i,j) = QUG
t,sub +QDG

t,d +QPV
t,p −QCV R

t,i −QHS
t,h (4.28)

FLPt,(i,j) = Gi,j(V
2
t,i − Vt,i Vt,j cos(θt,i − θt,j))−Bi,j(Vt,i Vt,j sin(θt,i − θt,j)) (4.29)

FLQt,(i,j) = −Bi,j(V
2
t,i,s − Vt,i Vt,j cos(θt,i − θt,j))−Gi,j(Vt,i Vt,j sin(θt,i − θt,j)) (4.30)

(FLPt,(i,j))
2 + (FLQt,(i,j))

2 ≤ (SLt,(i,j))
2 (4.31)

(PDG
t,d )2 + (QDG

t,d )2 ≤ (SDGt,d )2 (4.32)

(PUG
t,sub)

2 + (QUG
t,sub)

2 ≤ (SUGt,sub)
2 (4.33)

V min ≤ Vt,i ≤ V Max (4.34)

Linearization Procedure

Nonlinearity in constraints (4.2), (4.7), (5.18), (4.25)-(4.26) and (4.29)-(4.33) are linearized to

build the MILP model.
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Second Objective Function Linearization

Linearization of second objective function PQI can be found in (4.35)-(4.39), which replaces (4.2)

as the second objective function.

Min. PQI =
T∑
t=1

N∑
i=1

ωi
(
δV +

t,i + δV −t,i
)

(4.35)

δVt,i = Vt,i − V ∗t,i (4.36)

δVt,i = δV +
t,i − δV −t,i (4.37)

0 ≤ δV +
t,i ≤M1(1− χt,i) (4.38)

0 ≤ δV −t,i ≤M1 χt,i (4.39)

Second-order Constraints Linearization

A minimum power factor is required for PV integration in power grids. The linearization of (4.7)

can be defined as follows [90]:

P√
P 2 +Q2

≥ K (4.40)
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− P
√

1−K2

K
≤ Q ≤ P

√
1−K2

K
(4.41)

where K is a constant value related to the power factor of PV units. Additionally, the general form

of second order constraints (4.31)-(4.33) is presented in (4.42), which can be linearized based on

equations (4.43)-(4.45). As an example, considering equation (4.33), x, y, and z can be replaced

by PUG
t,sub, Q

UG
t,sub, and SUGt,sub, respectively.

x2 + y2 ≤ z2 (4.42)

−
√

3 (x+ z) ≤ y ≤ −
√

3 (x− z) (4.43)

−
√

3

2
z ≤ y ≤

√
3

2
(4.44)

√
3 (x− z) ≤ y ≤

√
3 (x+ z) (4.45)

It should be noted that hexagon approximation is used in this chapter for the best compromise

between error and size of the optimization problem [91].
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DR and CVR Constraints Linearization

Nonlinearity of (4.25)-(4.26) can be linearized in two steps. First, considering the standard voltage

range of [0.95-1.05] (p.u.), the second-order term of voltage (
Vt,i
V ∗
t,i

)2 can be linearized as follows.

PCV R
t,i = PLDRt,i (KPZ

t,i (1 + 2(Vt,i − V ∗t,i)) +KPI
t,i (

Vt,i
V ∗t,i

) +KPP
t,i ) (4.46)

QCV R
t,i = QLDRt,i (KQZ

t,i (1 + 2(Vt,i − V ∗t,i)) +KQI
t,i (

Vt,i
V ∗t,i

) +KQP
t,i ) (4.47)

Second, the McCormick method [92] is applied to replace the bilinear terms of the product of two

continuous variables (PLDRt,i and Vt,i) with a new variable (Wt,i). Then (4.46) can be reformulated

as follows:

Wt,i = PLDRt,i × Vt,i (4.48)

PCV R
t,i = Wt,i (2KPZ

t,i +KPI
t,i )− PLDRt,i KPZ

t,i + PLDRt,i K
PP
t,i

(4.49)

To reduce the search space, upper and lower bounds of two continuous variables should be set
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appropriately.

Wt,i ≥ −PLDR,maxt,i V max
t,i + PLDRt,i V max

t,i + PLDR,maxt,i Vt,i (4.50)

Wt,i ≥ −PLDR,mint,i V min
t,i + PLDRt,i V min

t,i + PLDR,mint,i Vt,i (4.51)

Wt,i ≤ −PLDR,maxt,i V min
t,i + PLDRt,i V min

t,i + PLDR,maxt,i Vt,i (4.52)

Wt,i ≤ −PLDR,mint,i V max
t,i + PLDRt,i V max

t,i + PLDR,mint,i Vt,i (4.53)

Finally, (4.49)-(4.53) are the linearized form of (4.46). As similar approach was applied to linearize

(4.47).

AC Power Flow Constraints Linearization

linearized form of AC power flow equations with consideration of the loss factor is incorporated

into the model as used in [93] [94] for radial distribution networks.

FLPt,j =
N∑
i=1

(Gi,j(Vt,i + Vt,j − 1) +Bi,j(θt,i − θt,j)) (4.54)

FLQt,j =
N∑
i=1

(−Bi,j(Vt,i + Vt,j − 1) +Gi,j(θt,i − θt,j)) (4.55)
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PLt,(i,j) = −Gi,j(Vt,i + Vt,j) +Bi,j(θt,i − θt,j) (4.56)

QLt,(i,j) = Bi,j(Vt,i + Vt,j) +Gi,j(θt,i − θt,j) (4.57)

SLt,(i,j) = PLt,i,j + ξt,i,j ×QLt,i,j (4.58)

∣∣SLt,(i,j)∣∣ ≤ SLMax
i,j (4.59)

Equations (4.54)-(4.55) refer to linearized AC power flow constraints in which FLpt,j and FLqt,j

refer to the net injected active and reactive power into the node j at hour t. Additionally, (4.56)-

(4.59) express the active, reactive, and apparent power flow in line l, which connects node i to node

j, respectively. More details regarding the linearized formulation can be found in [94].

Risk-Aversion

CVaR is applied to address the risk of uncertain parameters in day-ahead scheduling. For a given

confidence level α ∈ [0, 1], CVaR can be defined as the expected cost of (1−α)×100 of the worst-

case scenarios [94, 95]. The CVaR and risk constraints can be integrated into the optimization

problem as presented in (4.60)-(4.63).

min {(1− β)
S∑
s=1

ρs ×OCt,s + β (V aR +
1

1− α

S∑
s=1

ρs × ϕs)} (4.60)
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OCt,s − V aR− ϕs ≤ 0 (4.61)

ϕs ≥ 0 (4.62)

ρs = ρPV × ρHDE × ρload × ρPrice (4.63)

where β ∈ [0, 1] is a tuning parameter for managing the level of risk aversion with 0 meaning risk

neutral and 1 meaning fully risk averse.This chapter considers the simultaneous risk of grid load,

wholesale market price, H2 demand, and PV generation as defined in (4.63).

ε-constrained Method

To solve both objective functions simultaneously in the multi-objective MILP problem, a proper

and fair compromise should be considered. The weighted sum technique is one of the common

methods, but the determination of proper weights of each objective function is a major challenge.

In this chapter, ε-constrained method [96, 97] is used for solving the multi-objective problem. In

the first step, this technique considers one objective as the major objective function, and the other

objectives are considered as constraints. The formulation is presented in (4.64)-(4.65).

minimize OCt (4.64)

s.t

−∞ ≤ PQIt ≤ +∞

All linear constraints
(4.65)
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The second step starts with considering a reasonable deviation (ΥOC) for the first objective func-

tion, as follows.

minimize PQIt (4.66)

s.t

OCt ≤ OCOptimal
t × (1 + ΥOC)

All linear constraints
(4.67)

where (ΥOC) can be considered as a parameter for achieving the compromise between two objec-

tive functions. For instance, (ΥOC = 10 %) explains that the voltage deviation is minimized with

the cost of 10% deviation from its optimal value.

Simulation Results and Analysis

Description of Test System and Assumptions

The proposed multi-objective risk-based model is validated on the 33-node distribution test system

[82] [98] as depicted in Fig. 6.2 with an hourly time step. There are two distributed HSs, three PV

units with the maximum capacity of 0.5MW each, and three utility-operated DGs with a maximum

and minimum capacity of 3MW and 0.21MW each, respectively [72]. The DGs and PVs are

assumed to supply the loads with the operational cost of $50/MWh and $10/MWh. These costs

are selected to incentivize the use of cheaper generation assets [99]. PEM Electrolyzer, reservoir

tank, and PEM FC units data are from [54], and H2 demand pattern is obtained from [56]. H2

demand from FCEVs at HS1 and HS2 is 285.3kg and 142.6kg of H2 (which approximately equals

to 95 and 47 FCEVs), respectively. FCEVs are 2020 Honda Clarity models [100] considering with

the assumption that these cars arrive at HFSs with 45% fuel in their tank (FCEVs fill the tanks
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Figure 4.2. Distribution system with RESs and distributed HSs.

for the remaining tank capacity which is 55%). Moreover, the maximum apparent power limits

for purchasing/generating power from/to upper grid, PVs, DGs, and HSs are assumed as their

maximum generation capacities.

A one-month (July 2019) statistical analysis of the PJM market (for capturing the real mean and

variance of actual data) [80] is performed to provide realistic upper-grid market prices and load

data. Monte Carlo simulation was applied to generate 1,000 scenarios, which were downsized to

7 scenarios using forward selection probability distance algorithm (Kantrovich distance) [95], as

shown in Fig. 4.3. To demonstrate the results effectively, scenario 3 is chosen to present details, as

it has the highest probability among all scenarios shown in Table 4.1. Accordingly, Fig. 4.4(a) and

Fig. 4.4(b) show Hourly data for load, market price, H2 demand, and output PV power for scenario

3. It should be mentioned that multiplier in Fig. 4.4(b) refers to the normalized coefficient based

on the maximum value of data. For instance, the maximum H2 demand from FCEVs at hour 7 AM
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Figure 4.3. PV, demand, and wholesale market price scenarios.

is approximately 41 kg, and multiplier 1 shows the 41 kg of H2 demand. Since the H2 demand of

HFS 2 is 20.5 kg (the maximum H2 demand for HFS 2), the maximum multiplier for HFS 2 is 0.5.

The power factor is considered as 0.9, and voltage-dependent load coefficients are calculated based

on the method presented in [101]. However, deep learning methods can also be used for these

coefficients as peresented in [102]. Moreover, the boundary for load shifting is assumed to be 15%

of apparent power, which is calculated based on active/reactive load power factor. Additionally, H2

demand scenarios are generated based on [56] with the standard deviation of 0.1. The confidence

level for risk-averse analysis is assumed to be 0.95.

The simulations are carried out on a PC with an Intel Core-i7 CPU of 1.8 GHz and 16 GB

RAM. Additionally, the proposed MILP framework was solved using IBM ILOG CPLEX 12.6

and GAMS IDE with a gap of 0%.
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Table 4.1. Probability of Each Scenario

Scenario # Probability (%) Scenario # Probability (%)
Scenario 1 16.4 Scenario 5 12.6
Scenario 2 9.8 Scenario 6 3.6
Scenario 3 23.6 Scenario 7 14.6
Scenario 4 19.4
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Figure 4.4. Hourly data for load, wholesale market price, H2 demand, and output PV power for
scenario 3.

The Impact of DR and CVR on Load Profile

Fig. 4.5 shows the impact of DR and CVR on the load curve in three scenarios. Based on the 15%

DR, a portion of total demand at every hour is shifted from hours when the wholesale market price

is high to hours when the market price is low. Due to the voltage-dependent loads, after deploying

CVR from the utility side, total demand at each hour is reduced as shown in green curve. Therefore,

this reduction in voltage values results in decreasing the load and accordingly the electricity bill
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Figure 4.5. Total grid load w/ and w/o DR/CVR.

of customers due to the voltage dependent loads. Consequently, both utilities and customers can

save money. More details regarding the impact of risk levels on operating cost will be presented in

section 4.

The Impact of Power Quality Enhancement

To analyze the impact of power quality enhancement, the model is solved without and with con-

sidering PQI, which is the second objective function that pushes the voltage towards the nominal

voltage. Fig. 4.6a and Fig. 4.6b demonstrate the voltage values for all nodes before and after

considering the PQI. The range of voltage magnitude is reduced after considering PQI, which can

provide more reliable operation of the entire distribution system.

In this chapter, nodes with HS must supply hydrogen to FCEVs, and they are considered as high-

priority nodes. The comparison of before and after considering PQI at nodes 21 and 33 are shown

in Fig. 4.7 and Fig. 4.8, respectively. Voltage values deviate less from nominal voltage with PQI
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Figure 4.6. Voltage profile w/o and w/ considering PQI
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Figure 4.7. Voltage of node 21 before and after considering PQI

compared to the case without PQI, which shows the reliable operation of these nodes.
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Figure 4.8. Voltage of node 33 before and after considering PQI.

HS Operation w/ and w/o Cooperative Operation with PV

The bidding of HSs significantly depends on market price, H2 demand from FCEVs, and PV

output (for the cooperative operation of HS and PV). Two cases are considered in this study; 1)

without considering the cooperative (joint) operation, 2) with considering a cooperative operation.

In the first case, HS purchases power from the grid at market price for electrolyzer operation and

supplying the H2 demand. For example, HS1 must purchase power from grid even though a PV

is installed at node 33, as the owners of HS and PV units are assumed to be different. The second

case is when both the PV and HS belong to the same owner, who can also receive power from

upper grid. The second case study is only considered for HS1.

The bidding strategy of HS2 is the same for both case studies since there is no PV to be coop-

eratively operated at node 21. Fig. 4.9a demonstrates the bidding strategy for minimizing the

operating cost of HS2 besides supplying the H2 demand of FCEVs. It shows that HS purchases

power for electrolyzer operation (H2 production) from grid when the market price is lower (1 am

to 8 am); and when the market price is higher (at 1 pm and 3-7 pm), extra H2 is converted to power
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by the FC and injected to grid. The mass of hydrogen at each hour is also depicted in Fig. 4.9b.

The bidding strategy of HS1 and the mass of hydrogen in the tank are shown in Fig. 4.10 for

both case studies. In the first case, same as HS2, electrolyzer consumes power to produce H2 in

the early hours due to cheaper electricity price. As it can be seen from Fig. 4.10(a), in this case

(without joint operation) the exported power from FC units into the grid is zero MW since it is not

cost-effective to generate power. It is because the PV energy is used to supply the grid load, rather

than enabling electrolyzers to produce H2 for FC consumption. For this reason, the yellow bars

did not appear in the Fig. 4.10(a). However, considering the case of cooperative (joint) operation

with PV, there is potential to import power directly from PV from 9 am till 6 pm, assuming that

HS directly uses PV power. Therefore, there is no need for the electrolyzer to be fully operated in

the early hours. Instead, some portion of H2 demand can be supplied from PV in the next hours, as

shown in Fig. 4.10a. For instance, total power consumed by electrolyzer at 9 am is 1.287MW, in

which 1.233MW is purchased from grid and 0.054MW is from PV generation. Another example

at 1 pm (maximum PV output), total 8.07Kg H2 (based on 0.455MW PV output) is produced and

stored at H2 tank. Additionally, in cooperative mode, FC injects 0.5 MW power into the grid at 5

pm, since market price reaches the maximum based on Fig. 4.4b.

Additional analysis is that if an HS only purchases power from the grid with market price, it should

produce hydrogen in the early hours of the day, which forces HS to have larger hydrogen tanks to

store H2. However, the capacity of the tank can be reduced by cooperative operation of PV, as

shown in Fig. 4.10b. Moreover, it can be recognized that in the cooperative operation mode, there

is potential for FC to transform excess H2 energy to power and inject it into the grid for more

benefits.
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Figure 4.9. Results of hydrogen system (HS2) located at node 21
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Figure 4.10. Results of hydrogen system (HS1) located at node 33
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Impact of Risk Level on Operating Cost

The impact of risk level on system operating cost in different scenarios is presented in Fig. 4.11.

First, in the risk-neutral case (β = 0), the total operating cost for the techno-economic model

without considering DR, CVR, or cooperative operation is $3109.432. Through the participation

of DR and CVR, the total operating cost is reduced by $174.841 (which equals to the total cost

of $2934.59) compared to the base case. Furthermore, if DR, CVR, and cooperative operation of

PV and HS are all considered, the total operating cost is reduced by $91.8 compared to the second

scenario. It should be noted that since there is only one PV with maximum capacity of 0.5 MW

cooperatively operated with HS1, the amount of cost reduction seems limited. However, if all HSs

are operated with onsite PVs with larger capacities, the total cost saving will be more than the

demonstrated value in case studies. Additionally, as the risk level increases, total operating cost

increases. Because, in risk-neutral case, there is no risk for operator from uncertain parameters.

However, as β reaches 1, which means fully risk-averse condition, the expected risk cost is added

to the operating cost. For instance, with considering DR, CVR, cooperative operation, and the risk

level of 100%, the total operating cost considering PQI is $2985.5.

Conclusion

This chapter proposed a multi-objective risk-based model for day-ahead scheduling of HSs, con-

sidering the uncertainty of H2 demand, load, PV generation, and market price. Power quality

enhancement was also incorporated in the model to improve the voltage profiles for nodes with

higher priority such as nodes with HS. Additionally, linear model for DR and CVR were devel-

oped and deployed to present realistic results. Moreover, day-ahead scheduling of HS in the case

of normal and cooperative operation with PV was presented. Simulation results indicate that the

cooperative operation of HS with PV lowers the total cost of operation. The future work will in-
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Figure 4.11. The impact of β on CVaR-based case studies.

clude the operation of detailed models of HS, FCEVs and their travel behavior in integrated power

and transportation networks. Additionally, since the scope of this chapter was on the day-ahead

operation and risk management, scalability was not the focus. However, in the case of considering

intra-day and real-time markets, distributed optimization techniques can be applied to address the

scalability issue for larger test systems.
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CHAPTER 5: PROACTIVE ROLLING-HORIZON BASED

SCHEDULING OF HYDROGEN SYSTEMS FOR RESILIENT POWER

GRIDS 1

Deploying DERs and other smart grid technologies have increased the complexity of power grids

and made them more vulnerable to natural disasters and cyber-physical-human (CPH) threats. To

deal with these extreme events, proactive plans are required by utilities to minimize the dam-

ages caused by CPH threats. This chapter proposes a proactive rolling-horizon-based scheme for

resilience-oriented operation of hydrogen (H2) systems in integrated distribution and transmission

networks. The proposed framework is a bi-level model in which the upper-level is focused on

distribution system operation in both normal and emergency operation modes, and the lower-level

problem accounts for the transmission network operation. Two preeminent aspects of H2 systems

are considered in this chapter, 1) to show the flexibility of H2 systems, capacity-based demand

response signals are considered for electrolyzers, stationary fuel cell (FC) units, and H2 storage

tanks are considered in both normal and emergency operation modes; 2) unlike the batteries which

can only charge and discharge energy based on maximum duration times and power ratings, H2

systems can be considered as the flexible long-term energy storage by storing H2 for days and

supplying power to FC in the case of N-m outages lasting for more than 10 hours. Moreover,

H2 production cost based on water electrolysis and storage costs is calculated. Simulation results

demonstrate that utilities can improve the system-level resilience using H2 systems as long-term

backup power resources.

Considering the aforementioned discussion, research efforts are mainly focused on normal opera-

1This chapter is prepared based on the paper presented at [103]:
Hamed Haggi, Wei Sun, James M. Fenton, and Paul Brooker, ”Proactive Rolling Horizon based Scheduling of Hydro-
gen Systems for Resilient Power Grids”, IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 1737-1746,
2022. [Link]
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tion scheduling of H2 systems [52]- [67], and the techno-economic merit of H2 systems in enhanc-

ing the grid resilience has not been investigated yet. However, unlike the battery energy storages

which can only store, charge, and discharge energy based on their maximum energy rating (maxi-

mum duration time), H2 systems can be considered as long-term energy storages to produce H2 by

electrolyzers, store it in the tank, then convert it to power with FC units and inject power into the

grid with the maximum FC capacity for longer period of time (e.g. days, months, etc.). In addi-

tion, the coordinated operation scheduling of distribution and transmission networks has been only

focused on normal operation and planning context [104]- [105]. However, proactive scheduling of

DERs in integrated transmission and distribution systems with the aim of resilience enhancement

has not been investigated. Additionally, previous proactive scheduling frameworks only addressed

the distribution network operation without considering the benefits of selling or purchasing power

from transmission networks [71]- [75]. Therefore, this chapter extends authors’ previous work

presented in [7] by developing a bi-level framework for resilient scheduling of H2 systems in inte-

grated distribution and transmission networks. The major contributions of this chapter compared

to [7] are:

• A bi-level resilience-oriented framework considering the coordinated operation of distribu-

tion and transmission networks with the focus on scheduling the H2 systems (including both

H2 refueling station and long-term energy storage system), in both normal and emergency

operation mode is proposed. The upper-level and lower-level problems are focused on dis-

tribution network managed by distribution system operator (DSO) and transmission network

managed by transmission system operator (TSO), respectively. To efficiently solve the bi-

level problem, duality theory is deployed to recast it as a single-level equivalent problem.

• Capacity-based demand response (CBDR) signals are considered in pre-event operation. In

normal operation, H2 systems can follow the signals imposed by DSO and assist the grid by

acting as load (operating the electrolyzers) or generation unit (operating FC units). For the
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emergency operation preparation, as soon as having the access to extreme event time based

on the forecast, DSO sends signals to H2 systems to fill their storage tanks and be prepared

for long-duration outages.

• Rolling horizon approach is deployed to limit the access of DSO to the perfect forecast

of extreme event time (by providing only the next-day forecast), CBDR signals, and other

information of renewables. Additionally, rolling-based operation can show the capability of

H2 systems as fast-response DERs which provides more realistic results.

• Water electrolysis and storage costs are calculated for defining the selling price of H2 to

FCEVs and providing a realistic revenue for DSO. It should be mentioned that H2 production

cost is calculated based on real capacity factor (CF) of electrolyzers, distributional locational

marginal price (DLMP), etc., which is more realistic due to the consideration of integrated

operation of distribution and transmission networks energy price, congestion, power loss,

and voltage regulation costs.

The rest of the chapter is organized as follows. Section 5 introduces the framework of this chapter.

Section 5 presents the problem formulation. Section 7 presents numerical results and analysis, and

finally Section 7 concludes the chapter and presents future work directions. More details on the

linearization of the problem formulation is presented in Appendix.

Sets and Indices

• N Set of nodes, indexed by i.

• T Set of scheduling time interval, indexed by t.

• NPV Set of nodes with photovoltaic units.

• NW Set of nodes with wind units.
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• NHS Set of nodes with hydrogen system units.

• NDG Set of nodes with generation units.

• L Set of network lines, indexed by (i,j) ⊂ N ×N .

Parameters

• β Sold electricity price to wholesale market ($/MWh).

• b/k No load cost ($) and ramping cost of DGs ($/MWh).

• P/QDG,min Minimum active/reactive power output of DGs (MW).

• P/QDG,max Maximum active/reactive power output of DGs (MW).

• SDG Apparent power limit of DGs (MVA).

• ρSU /ρSD Startup and shutdown costs ($).

• SPV Inverter capacity of PV units (MVA).

• P PV,max Maximum output power of PVs (MW).

• ηEL/ηFC Electrolyzer and Fuel Cell Efficiency (%).

• πEL Power to H2 and H2 to power conversion factors (kg/MWh).

• πFC H2 to power conversion factors (MWh/kg).

• QHEL/FC,min Minimum H2 production/consumption limit (kg).

• QHEL/FC,max Maximum H2 production/consumption limit (kg).

• πDsp Dissipation rate of H2 in tank (%/h).

• QHdem H2 demand from transportation sector (kg/h).

• SHS Inverter capacity of HS units (MW).

• MOHmin/max Mass of hydrogen limits (kg).

• PDRSgl Capacity based demand response signal by DSO (MW).

83



• κ Emergency operation reserve percentage imposed by DSO (%).

• R/X Resistant and reactance of lines (pu).

• V max/V min Maximum and minimum voltage limits (pu).

• P load/Qload Active/reactive power demand (MW).

• Sline Distribution system lines’ capacity (MVA).

• V OLL Value of loss of load ($/MWh).

• Cg Operation cost of generators ($/MWh).

• Pgmin/max Minimum and maximum output power of generators (MW).

• TF lmin/max Minimum and maximum limits of transmission lines (MVA).

• Pwmax Maximum wind power output (MW).

• PUG,max Maximum limit for exchanged power between DSO and TSO (MW).

• TD Transmission system power demand (MW).

Variables

• PEXb Purchased power from wholesale market (MW).

• PEXs Sold power to wholesale market (MW).

• CDG Operation cost of DGs ($/MWh).

• CPV Operation cost of PVs ($/MWh).

• CSU /CSD Startup and shutdown costs of DGs ($).

• CLoad,shd Grid load curtailment cost ($).

• xDG Binary variable for status of DG (1 if unit is on and 0 if unit is off.)

• PDG/QDG Active/Reactive power output of DGs (MW/MVAr).

• P PV /QPV Active/Reactive power output of PVs (MW/MVAr).
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• QHEL Outflow of H2 from Electrolyzer (kg/h).

• PEL Power consumed by Electrolyzer (MW).

• QHFC Inflow of H2 into Fuel Cell (kg/h).

• P FC Power generated by Fuel Cell (MW).

• QHS Output reactive power of H2 systems (MVAr).

• ψHS Binary variable for avoiding simultaneous H2 production and consumption.

• MOHH2 Mass of H2 in the storage tank (kg).

• CFEL Capacity factor of Electrolyzer (%).

• PEL,Shd Electrolyzer demand curtailment (MWh).

• P load,Shd Active/reactive power demand curtailment (MW/MVAr).

• V Squared voltage magnitude of distribution nodes.

• fp/q Active/reactive power flow in distribution lines (MW/MVAr).

• a Squared current magnitude of distribution system nodes.

• Pg Active power of generators (MW).

• Pw Output power of wind farms (MW).

• Tfl Active power flow of transmission lines (MW).

• U Binary variable for preventing of simultaneous purchasing and selling power.

• λ Locational marginal price (Dual variable of power balance) ($/MWh).

• α / α Dual variable of min/max output of generators.

• ψ / ψ Dual variable of exchanged power with DSO.

• δ / δ Dual variable of min/max capacity limit of transmission lines.

• γ Dual variable of maximum output wind power.

• ζ Dual variable of transmission line power flow.

• θ Voltage phase angle of nodes in transmission network.
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Figure 5.1. The proposed bi-level resilience-oriented framework for integrated transmission and
distribution networks.

Proposed Framework

The proposed bi-level resilience-oriented framework with the focus on proactive scheduling of in-

tegrated transmission and distribution networks is presented in Fig. 5.1. It shows that the scope of

this chapter is proactive scheduling and survivability analysis for the normal and emergency oper-

ation, respectively. The upper-level (UL) problem minimizes the total operation cost of all assets

in both normal and emergency operation modes from DSO’s perspective. On the other hand, the

lower-level (LL) problem maximizes the total social welfare of the wholesale market managed by

TSO. In this framework, distribution network (DN) is connected to transmission network (TN) via

single root bus. It should be mentioned that, DSO participates in wholesale market by submitting

the offers PExs
t,i and bids PExb

t,i for selling and purchasing power, respectively. On the other hand,

TSO defines the locational marginal price (LMPs) which is defined as λt,i.
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In this resilience-oriented framework, a vertically integrated DN is considered in a way that DSO

operates utility-operated photovoltaic (PV) units and natural gas power plants. DSO must sup-

ply the power to H2 systems, including electrolyzers, storage tanks, and stationary fuel cell (FC)

units. In the normal operation, distributed H2 systems are scheduled to exploit renewable energy

resources and minimize the total operation cost and energy not supplied (based on load priority).

The H2 production cost, consisting of water electrolysis cost and storage cost, is calculated based

on the distributional locational marginal prices (DLMPs) considering the LMP prices of trans-

mission network. Additionally, CBDR signals are incorporated into the optimization problem to

demonstrate the flexibility of H2 systems. Prior to an emergency operation mode, DSO sends

emergency CBDR signals to H2 systems in order to fill their storage tank and be prepared for

post-event times. This results in maximizing the survivability by using the stored H2 for stationary

FC consumption and consequently the resilience improvement. Moreover, the rolling horizon ap-

proach is applied to the bi-level framework, in order to address the challenge from the unavailable

perfect forecasts for system operators. With this model, DSO does not know the exact time of

disruption, output power of renewable energy resources, transportation sector demand, and CBDR

signals for scheduling; However, DSO only has the access to next 24-hour forecasts (total rolling

horizon period is 48 hours). At each time period, the final status of DGs, mass of H2 in the tank

state, etc., will be fixed as initial condition for the next rolling horizon-based scheduling as de-

picted in Fig. 5.2. This results in more realistic results in the case of major disruption. In this

chapter, the optimization horizon is the same for both DSO and TSO.

Problem Formulation

The problem formulation of the proposed bi-level resilience-constrained problem (RCP) is pre-

sented in this section. The proposed RCP model is formulated as a mixed integer quadratic con-

strained program (MIQCP). Given a network, (N ,L), where N and L are the set of nodes and
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Figure 5.2. Rolling-horizon based approach for resilient day-ahead scheduling.

lines indexed by i and l. For DN and transmission network, the sets of nodes and lines are ND

and LD, NT and LT , respectively. The root node of DN is connected to the bus two of TN. T

represents the set of time steps indexed by t.

Upper-Level Problem Formulation: DSO Perspective

Objective Function of UL Problem

The objective function of the UL is to minimize the total operation cost in both normal and emer-

gency conditions. For the sake of brevity, the problem formulation is not divided into normal and

emergency operation modes. However, prior to the major disruption, all equations are valid except
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for load shedding terms, which should be removed or considered as zero in the equations.

min.
T∑
t=1

{
λt,i . P

Exb
t,i − βt,i . PExs

t,i +

NG∑
i=1

CDG
t,i +

NG∑
i=1

CSU
t,i +

NG∑
i=1

CSD
t,i +

NPV∑
i=1

CPV
t,i

+
N∑
i=1

CLoad,Shd
t,i

} (5.1)

In (5.1), the first term refers to the purchasing power from the wholesale market. The second term

refers to selling power from the distribution network to the wholesale market. The third, forth, and

fifth terms refer to operating cost, startup, and shutdown cost of DGs, respectively. The next two

terms refer to operational cost of utility operated PV units and cost of energy not supplied based on

the load priority (e.g. critical, moderately-critical, and non-critical grid load). It should be noted

that the costs associated with H2 systems are not taken into account and DSO only schedules its

system demand. In this chapter, both DSO and H2 system owners perform the cost benefit analysis

separately, and exchange energy with power purchase agreement price. Moreover, the cost of

FCEVs demand curtailment is not considered in the objective function since the value of loss of

EV load is negligible compared to loss of grid load.

Operational Constraints of DG Units

The operational constraints for utility-operated DGs are shown in (5.2)-(5.8). Equations (5.2)-(5.4)

show the operational cost and active/reactive power output limits of DGs, respectively. Equation

(5.5) expresses the reactive power support limit based on active power flow. Moreover, equations

(5.6) and (5.7) show the startup and shutdown cost of DGs, respectively. Finally, equation (5.8)

presents the ramping up and down limits of DGs.

CDG
t,i = xDGt,i . b

DG + kDG. PDG
t,i (5.2)

89



PDG,min
i . xDGt,i ≤ PDG

t,i ≤ PDG,max
i . xDGt,i (5.3)

QDG,min
i . xDGt,i ≤ QDG

t,i ≤ QDG,max
i . xDGt,i (5.4)

(PDG
t,i )2 + (QDG

t,i )2 ≤ (SDG)2 (5.5)

CSU
t,i ≥ (xDGt,i − xDGt−1,i). ρSU , if xDGt,i ≥ xDGt−1,i (5.6)

CSD
t,i ≥ (xDGt−1,i − xDGt,i ). ρSD, if xDGt−1,i ≥ xDGt,i (5.7)

−RD
i ≤ PDG

t,i − PDG
t−1,i ≤ RU

i (5.8)

Operational Constraints of PV Units

The operational costs of utility-operated PV units, minimum and maximum limit of output power,

and inverter capacity constraints are presented in equations (5.9)-(5.11), respectively.

CPV
t,i = cPV . P PV

t,i (5.9)

0 ≤ P PV
t,i ≤ P PV,max (5.10)
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(P PV
t,i )2 + (QPV

t,i )2 ≤ (SPV )2 (5.11)

Operational Constraints of H2 Systems

The operational constraints of H2 systems are presented in (5.12)-(5.18). Equations (5.12)-(5.15)

refer to the H2 production/consumption level of electrolyzer/stationary FC units based on efficien-

cies and converting factors. Additionally, these constraints prevent the simultaneous operation of

electrolyzer and FC units by considering a binary variable ψHSt,i . For instance if ψHSt,i = 1, the

electrolyzer consumes power and the FC cannot inject power into the grid; and if ψHSt,i = 0, it

means that the FC is operated and the electrolyzer cannot consume power. H2 mass balance equa-

tion including transportation demand from FCEVs and dissipation rate is expressed in (5.16). The

storage tank capacity limits and H2 systems’ inverter for reactive power support are presented in

equations (5.17) and (5.18), respectively. Finally, electrolyzer capacity factor during the optimiza-

tion horizon and limits on electrolyzer load curtailment can be calculated based on equations (5.19)

and (5.20), respectively.

QHEL
t,i = πEL. PEL

t,i . η
EL (5.12)

P FC
t,i = πFC . QHFC

t,i . η
FC (5.13)

QHEL,min
i . ψHSt,i ≤ QHEL

t,i ≤ QHEL,max
i . ψHSt,i (5.14)

QHFC,min
i . (1− ψHSt,i ) ≤ QHFC

t,i ≤ QHFC,max
i . (1− ψHSt,i ) (5.15)
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MOHH2
t,i =MOHH2

t−1,i − πDsp. MOHH2
t,i + (QHEL

t,i

−QHdem
t,i −QHFC

t,i ). ∆t

(5.16)

MOHH2,min
i ≤MOHH2

t,i ≤MOHH2,max
i (5.17)

(PEL
i,t − P FC

i,t )2 + (QHS
i,t )2 ≤ (SHS)2 (5.18)

CFEL
i =

∑T
t=1 P

EL
t,i∑T

t=1 P
EL,max
i

(5.19)

0 ≤ PEL,Shd
t,i ≤

QHdem
t,i

πEL. ηEL
(5.20)

To show the flexibility of H2 systems during the normal and emergency operations, three CB-

DRS are considered. In (5.21) and (5.22), CBDR signals, shown as PDRSgl, are expressed for

electrolyzers and FC units. In the case of any external signal from DSO, based on their available

capacity (electrolyzer, storage tank, and FC units), H2 systems follow the signal and act as load

or generation asset based on equations (5.21) and (5.22). Accordingly, in the case of N −m con-

tingencies, H2 systems can act as long-term energy storage with long-duration times compared to

batteries. To that end, constraint (5.23) expresses the demand response (DR) signal, in which κt

denotes the percentage of H2 required from DSO regarding the H2 mass in the tank, as a reserve

before emergency operation. Prior to any forecasted disruption (t < tevent), DSO asks H2 system

owners to fill their tank completely as a backup generation unit for supplying the load in the post-

event time (t ≥ tevent). This will help DSO to minimize the total cost and total load curtailment
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during N −m contingencies.

Sgn(PDRSgl) . PDRSgl ≤
NH∑
i=1

PEL
t,i ≤

NH∑
i=1

PEL,max, if PDRSgl ≥ 0. (5.21)

Sgn(PDRSgl) . PDRSgl ≤
NH∑
i=1

P FC
t,i ≤

NH∑
i=1

P FC,max, if PDRSgl ≤ 0. (5.22)

NH∑
i=1

MOHH2
t,i ≥ κt .

NH∑
i=1

MOHH2,max (5.23)

SOCP-based Distribution Network AC Power Flow Model

The AC power flow constraints (addressing both normal and emergency operation) based on branch

flow model are presented in (7.7)-(7.22). The voltage constraints are shown in (7.7) and (7.18).

The active and reactive power balance equations are shown in (7.12) and (7.13), respectively. Line

flows are limited by equations (5.28) and (7.14), and SOCP-based constraints are presented in

(5.30). More details regarding the exact conic relaxation can be found in [106]. Finally, equations

(7.20)-(7.22) express the constraints for emergency operation which may result in load curtailment.

It should be noted that load curtailment is penalized by the value of loss of load (V OLL) , based

on the load importance. For instance, this value is $10,000/MWh for critical loads , $5,000/MWh

for moderately-critical loads, and $1,000/MWh for non-critical loads.

Vt,i = Vt,j − 2(Rji . f
p
i,t −Xji . f

q
t,i) + (R2

ji +X2
ji) . at,l (5.24)
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(V min)2 ≤ Vt,i ≤ (V max)2 (5.25)

fpt,i =PLoad
t,i +

∑
j→i

fpt,j +Rji.at,l + PEL
t,i + PExb

t,i − PExs
t,i − P FC

t,i − P PV
t,i − PDG

t,i

− PEL,Shd
t,i − PLoad,Shd

t,i

(5.26)

f qt,i =QLoad
t,i +

∑
j→i

f qt,j +Xji.at,l +QEL
t,i −QFC

t,i −QPV
t,i −QDG

t,i −Q
Load,Shd
t,i

+QHS
t,i

(5.27)

(fpt,i)
2 + (f qt,i)

2 ≤ (Sline)2 (5.28)

(fpt,i −Rji . at,l)
2 + (f qt,i −Xji . at,l)

2 ≤ (Sline)2 (5.29)

[(fpt,i)
2 + (f qt,i)

2] .
1

at,l
≤ Vt,i (5.30)

CLoad,Shd
t,i = V OLL(i). PLoad,Shd

t,i (5.31)

0 ≤ PLoad,Shd
t,i ≤ PLoad

t,i (5.32)

QLoad,Shd
t,i = PLoad,Shd

t,i .
QLoad
t,i

PLoad
t,i

(5.33)
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Lower-Level Primal Problem: TSO Perspective

The objective function and constraints of LL primal problem are presented in (5.34)-(5.41). The

objective of TSO is to maximize the social welfare, or equivalently minimizing the total operation

cost. In (5.34), the first term relates to the operation cost of large-scale generators. The second and

third terms are denoting the exchanged power cost with DSO, and finally the last term refers to

the operation cost of wind farms. It should be mentioned that, in order to integrate the dual of LL

primal problem into UL problem, dual variables are assigned to all equations (5.36)-(5.41). Equa-

tions (5.35) and (5.36) show the generator minimum and maximum generation limits, and power

balance for transmission network, respectively. Additionally, (5.37) and (5.38) model the line flow

and its thermal limits based on DC power flow, in which δ denote the voltage phase angle. More-

over, wind power constraint is presented in (5.39). Finally, the active power exchange between DN

and TN are constrained by (5.40) and (5.41). Please note that, more detailed formulation including

generators minimum uptime, minimum downtime, etc. can be found in [107].

min.
T∑
t=1

{ NG∑
i=1

Cg
i Pgt,i − ρbt PExb

t,i + ρst P
Exs
t,i +

NW∑
i=1

Cw
i Pwt,i

}
(5.34)

Pgmini ≤ Pgt,i ≤ Pgmaxi : (αt,i, αt,i) (5.35)

NG∑
i=1

Pgt,i +
∑
i→j

Tflpt,i −
∑
j→i

Tflpj,t − PExb
t,i + PExs

t,i + Pwt,i = TDt,i : (λt,i) (5.36)

Tflt,i =
1

Xl

(δi − δj) : (ζt,i) (5.37)
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TF lminl ≤ Tflt,l ≤ TF lmaxl : (δt,l, δt,l) (5.38)

Pwt,i ≤ Pwmaxt,i : (γi,t) (5.39)

PExs
t,i ≤ PUG,max . Ut,i : (ψt,i) (5.40)

PExb
t,i ≤ PUG,max . (1− Ut,i) : (ψ

t,i
) (5.41)

Lower-Level Dual Problem: TSO Perspective

The duality-based technique [108] is used to solve the aforementioned bi-level problem, by inte-

grating the dual of LL problem into UL problem and achieving a single-level equivalent problem.

The following equations are the dual problem of equations (5.34)-(5.41).

max.
T∑
t=1

{ NG∑
i=1

(Pgmini αt,i + Pgmaxi αt,i) +

Nl∑
l=1

(TF lminl δt,l + TF lmaxl δt,l)

+

Ni∑
i=1

(PUG,max (1− Ut,i) ψt,i + PUG,max Ut,i ψt,i)

+

Ni∑
i=1

λt,iTDt,i +

Ni∑
i=1

γi,tPwt,i

}
(5.42)

αt,i + αt,i + λi,t = Cg
i (5.43)

δt,l + δt,l + ζt,l + λt,i − λt,j = 0 (5.44)
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ψt,i + λt,i ≤ ρst (5.45)

ψ
t,i
− λt,i ≤ ρbt (5.46)

−
NL∑

l=ord(i)

ζt,l
Xl

+

NL∑
l=ord(j)

ζt,l
Xl

= 0 (5.47)

γt,i + λt,i ≤ Cw
i (5.48)

Strong Duality for Primal and Dual Problems of TSO

The strong duality theory is applied on primal and dual LL problems to obtain the optimal solution,

as expressed in equation (5.49).

T∑
t=1

{ NG∑
i=1

Cg
i Pgt,i − ρbtPExb

t,i + ρstP
Exs
t,i +

NW∑
i=1

Cw
i wt,i

}
=

T∑
t=1

{ NG∑
i=1

(Pgminαt,i + Pgmaxαt,i) +

Nl∑
l=1

(TF lminδt,l

+ TF lmaxδt,l) +

Ni∑
i=1

(PUG,max (1− Ut,i) ψt,i

+ PUG,max Ut,i ψt,i) +

Ni∑
i=1

λt,iTDt,i

Ni∑
i=1

+γt,iPwt,i

}
(5.49)
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Algorithm 3: H2 Production Cost Calculation Based on Water Electrolysis and Storage Tank
Cost
Input: H2 system input data, CF, DLMP, etc.
Output: Water electrolysis cost, storage cost, average H2 production cost.

Initialization:
1. Electrolyzer system cost = CAPEX value × Electrolyzer size.
2. Lifetime output = (Electrolyzer size × Operational hours × CF) / (Specific energy).
3. CAPEX cost = (Electrolyzer system cost) / (Lifetime output).
4. Water electrolysis cost = (Specific energy × DLMP) + CAPEX cost.

5. Storage system cost = CAPEX value × Tank capacity.
6. Storage cost = (Storage system cost) / (Tank capacity × Operational hours × cycles per
day)

7. H2 production cost ($/kg) = Water electrolysis cost + Storage cost.

Single-Level Equivalent Optimization

After integrating the dual of LL problem into the UL problem, the single-level equivalent problem

is as follows:

min. Equation (5.1)

s.t

Equations (5.2)-(7.22), (5.35)-(5.41), (5.43)-(5.49)

(5.50)

H2 Production Cost Calculation for Optimization Horizon

Based on the outcome of the aforementioned optimization problem and the solution technique

presented in [14], DLMP for each node including power loss, voltage regulation, and congestion

costs of DN can be calculated for each node of DN. As a result, H2 production cost including water

electrolysis and storage cost can be calculated based on Algorithm 3.
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Simulation Results and Analysis

The proposed method is validated by testing on IEEE 24-bus transmission test system [109], and

33-node distribution test feeder [82] with an hourly time step during the week. The transmission

network hosts six wind farms located at buses 3, 5, 7, 16, 21, and 23. More information regarding

the transmission system and wind farms’ capacity can be found in [109]. The distribution network

includes three natural gas power plants, six utility-operated PV units with the total capacity same

as total grid load (based on scaling factors), and three H2 systems, as shown in Fig. 6.2. The

operational costs including capital expenditures (CAPEX) are considered for generation assets

based on National Renewable Energy Laboratory’s (NREL) advanced technology baseline [6].

The H2 demand requested by FCEVs is calculated based on the method presented in [110]. These

FCEVs are considered as Honda Clarity models [100] assuming that these cars arrive at the H2

fueling station with 45% H2 fuel in their tanks. Moreover, the load, solar (without scaling factor),

and FCEVs weekly patterns are shown in Fig. 5.4 and Fig. 5.5, respectively. In this , it is assumed

that H2 systems’ leakage is negligible (compared to the cryogenic and salt dome H2 systems) due

to the high pressure of H2 energy. Moreover, in this it is assumed that the electrolyzer and fuel cell

efficiencies are 60% and 70%, respectively. Different from other research efforts focused on line

outages, in order to show the benefits of H2 systems over batteries, it is assumed that the tie line

connecting distribution network to transmission network as well as three natural gas power plants

are out of service for almost two days. The rolling optimization horizon is 48 hours, in which the

DSO release the day-ahead operation based on the next 24 hours data forecasts. The electrolyzer

and FC units sizes are considered as 0.5 MW. Additionally, specific energy, electrolyzer and FC

efficiencies are from [7].

The simulations are carried out on a PC with an Intel Core-i7 CPU of 1.8 GHz and 16 GB RAM.

The proposed framework is solved using GAMS/Gurobi [111] with a gap of 0.1%.
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Figure 5.3. 33-node distribution test system which is connected to bus 2 of IEEE RTS 24-bus test
system.
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Figure 5.4. Hourly 33-node load pattern and output PV power pattern.
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Figure 5.5. Hourly hydrogen demand from transportation sector.
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Figure 5.6. Demand response signals imposed to H2 systems by DSO.

Results for Operation of Integrated Distribution and Transmission Networks

Considering the coordinated operation of distribution and transmission systems, Fig. 5.7 shows

the hourly LMP prices of bus 2 of transmission systems, which TSO shares with DSO for power

exchanges. As it can be seen, due to the different participation levels of generation units located

in transmission network, different LMP values are obtained. Additionally, due to the high wind
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Figure 5.7. LMP prices,λ, from transmission network.

penetration during hours 49 to 53 and 145 to 150, LMP values are $23.5/MWh. In these hours, TSO

sells energy to distribution system since the lowest DG operational cost is $36/MWh. Moreover, in

the case of emergency, DSO must purchase energy from TSO in the case that total DN generation

capacity is not sufficient. More details will be presented in the following section.

Results for Proactive Scheduling of H2 Systems with and without Rolling Horizon Approach

The results of proactive management of H2 systems including electrolyzers, storage tanks, and

FC units, with and without considering rolling horizon approach are shown in Fig. 5.8 to Fig.

5.10, and Fig. 5.11 to Fig. 5.13, respectively. In the proposed framework, H2 systems should

follow the CBDR signals in both normal and proactive mode imposed by DSO, as depicted in

Fig. 5.6. It should be mentioned that positive and negative signals are for electrolyzers and FC

units, respectively. In both scenarios (with and without rolling horizon), H2 systems respond to

these signals. For instance, considering hours 21, 36 and 38, DSO asks the H2 systems to generate

power for some purposes. Based on Fig. 5.9 and Fig. 5.12, it can be easily seen that these signals

are addressed by H2 systems. It should be noted that the level of participation in CBDR signal
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is based on the technical reasons, such as the available capacity of electrolyzer, storage, FC, or

economic reasons. On the other hand, DSO also sends signals to H2 systems to produce H2 (act

as load in the system) due to the arrival of heavy duty H2 trucks, which requires at least 50kg of

H2 for filling the tank [112]. For example, considering DR signal in hours 28 and 29, Fig. 5.8 and

Fig. 5.11 clearly show that these signals are addressed.

In the case of disruption, DSO must schedule its resources in advance to minimize the cost and

load curtailment. However, sometimes the forecasts are inaccurate and proactive scheduling cannot

reduce but even increase the operational cost, due to the increasing amount of reserve capacity. For

instance, the hurricane direction is forecasted to hit the location, but changes the direction one or

two days later. Fig. 5.10 shows the mass of H2 in the tank without considering rolling horizon.

In this scenario, DSO has the access to perfect forecasts regarding the output power of PV units,

the exact time of extreme event, etc., and imposes CBDR signals to H2 systems to fill their storage

tank and be prepared for post-event times. That’s the reason why the H2 mass in the tank gradually

increases from hour 1 until hour 115 (when the extreme event happens). This can also be seen from

Fig. 5.8, in which from the first day of week, electrolyzers consume power to minimize the cost

and address the CBDR signal regarding the extreme event. However, the aforementioned scenario

is not applicable in real-world applications due to the reasons that DSO never has access to the

perfect forecasts, and the expectations regarding the extreme event may not be true. To this end,

Fig. 5.13 shows the mass of H2 in the tank considering rolling horizon approach in which limits

the access of DSO to the perfect forecasts regarding the extreme time and input data. As it can be

seen, for the first 3 days, DSO normally supplies the grid load and transportation sector demand.

However, in the rolling period of fourth day (which starts from hour 73 to 120), DSO sends the

CBDR signal to H2 systems to fill their storage tank prior to hour 115 based on the available

capacity of H2 system components. Different from the previous scenario, that’s the reason why

the H2 mass is not gradually increasing in the first 3 days. After the notice of DSO, H2 systems
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Figure 5.8. Electrolyzer scheduling w/o considering rolling horizon approach.
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Figure 5.9. FC units scheduling w/o considering rolling horizon approach.

consume power to fill their tank as much as possible. This can also be seen in Fig. 5.11 in which

electrolyzers are fully operated from hours 73 to 114. Additionally, based on Fig. 5.12, from

hour 115, FC units start injecting power into the grid to supply the critical and moderately-critical

loads. More details regarding the energy not supplied and the resilience index of H2 systems will

be presented in the following sections.
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Figure 5.10. Mass of H2 in storage tank w/o considering rolling horizon approach.
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Figure 5.11. Electrolyzer scheduling considering rolling horizon approach.

Resilience Analysis for H2 systems Compared to Batteries with Different Duration Times

To provide a fair comparison of the performance between H2 system and battery energy storage

systems with different duration times, it is assumed that the transit sector demand is zero kg, and

battery energy storage power ratings are the same as electrolyzers and FC units. Moreover, the

battery efficiencies are considered as 90%, and the constraints related to the CBDR signals are

ignored. Five case studies are considered for comparing the resilience performance of the H2
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Figure 5.12. FC units scheduling considering rolling horizon approach.
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Figure 5.13. Mass of H2 in the storage tank considering rolling horizon approach.

systems and the battery energy storage systems with different duration times:

• Resilience analysis for batteries with 2-hours duration

• Resilience analysis for batteries with 4-hours duration

• Resilience analysis for batteries with 6-hours duration
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• Resilience analysis for batteries with 8-hours duration

• Resilience analysis for H2 systems considering round-trip efficiency of 42%

The total load of system during hours 115 till 144 is 84.3 MW, including 28.1 MW critical loads,

11.1 MW moderately-critical loads, and 45.1 MW non-critical loads. Table 5.1 shows the energy

not supplied for different load types for the aforementioned scenarios. This table clearly shows that

using H2 systems prevents more load curtailment, especially for critical and moderately critical

loads. Based on the results, H2 systems supplied 100% of critical loads, and 96.5 % of moderately

critical loads, which performs better even with lower efficiencies compared to the battery energy

storage systems. To analyze the total served energy, the following resilience index (RI) is used:

RI (%) =
(Total Load− Curtailed Load

Total Load

)
× 100 (5.51)

Considering the RI between hours 115 and 144, the worst case scenario is the first one, which is a

battery with 2 hours duration and 37.3% served energy; and the best scenario happened when H2

systems are used as backup power sources and long-duration storages, with an index of 80.1%.

H2 Production Cost Analysis in Both Normal and Emergency Operation Modes

The results regarding the H2 production cost including water electrolysis and storage costs are pre-

sented in Table 6.5b for both normal and resilient operation modes. As it can be seen, the capacity

factor of electrolyzers in resilient operation mode is higher than normal operation mode due to

the DR signal imposed by DSO for preparation of extreme event. Additionally, since H2 demand

from FCEVs and the amount of H2 produced for grid assistance are different, capacity factors for

three H2 systems are different from each other. Additionally, the average H2 production cost in
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Table 5.1. Resilience Analysis Between H2 Systems and Batteries with Different Duration

Case Study 1 2 3 4 5

Energy
Not

Supplied
(MWh)

Critical
Load 13.92 9.06 4.53 2.11 0

Moderately
Critical
Load

7.57 7.57 7.24 6.03 0.38

Non-Critical
Load 31.38 31.38 31.38 30.17 16.41

Total Energy Not
Supplied (MWh) 52.87 48.01 43.15 38.31 16.79

RI (%) 37.3 43.1 48.8 54.6 80.1

Table 5.2. H2 Production Cost Analysis in Different Operaton Modes

Operation Mode Normal Operation Resilient Operation
H2 System HS1 HS2 HS3 HS1 HS2 HS3

Capacity Factor
(%) 38.34 39.27 41.73 54.74 53.29 58.11

Water Electrolysis
Cost ($/kg) 1.46 1.54 1.59 2.18 2.33 2.53

Storage Cost
($/kg) 0.02 0.02 0.02 0.02 0.02 0.02

H2 Production
Cost ($/kg) 1.48 1.57 1.61 2.21 2.35 2.55

normal operation is $1.5/kg. However, in resilient operation mode, the average H2 production cost

is $2.3/kg, due to the power consumption of electrolyzers by expensive DGs. It should be noted

that H2 production cost is mainly the function of water electrolysis cost, since it depends on hourly

consumed prices rather than the storage cost.
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Conclusion

In this chapter, a bi-level proactive scheduling framework for H2 systems’ operation in integrated

distribution and transmission networks was proposed for both normal and emergency operation

modes. The goal of the was to minimize the load curtailment based on their priority and impor-

tance using H2 systems. Additionally, rolling horizon approach was applied to limit the access

of DSO to perfect information regarding the PV, wind, and extreme event time. Additionally, to

show the flexibility of H2 systems and preventing from more load curtailment, CBDR signals are

modeled for both normal and emergency preparation modes in which DSO asks H2 system owners

to fill their storage tank in the case of long-lasting outages (e.g. outages for more than 10 hours).

Moreover, realistic costs considering water electrolysis and storage costs are calculated based on

the true capacity factor of the electrolyzer.

Simulation results showed that the DSO can exchange power with TSO to minimize the cost by

purchasing power from TSO in the case of high wind penetration (which results in lower purchas-

ing prices compared to DGs in distribution system) and selling the excess PV power to TSO. In

addition, simulation results showed that DSO can impose CBDR signals in normal and emergency

operation modes based on the system needs, and H2 system can follow those signals based on their

available electrolyzer, fuel cell, and storage capacity. Moreover, simulation results demonstrated

that H2 production cost in the case of emergency operation is higher compared to the normal op-

eration mode, due to the power consumption of electrolyzer from DG units to address the signals

imposed by DSO regarding filling the tank with H2 for preparatory operation. Finally, simula-

tion results demonstrate that H2 systems perform better in supplying more loads (higher resilience

index) compared to the battery energy storage units with different duration times in the case of

long-duration outages. The future work directions can be 1) improving the modeling aspect of H2

systems by considering heat constraints, leakage models, etc.; 2) applying robust techniques to deal
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with uncertainties from load, renewable energy, and disruption time; 3) planning of H2 systems in

both normal and emergency operation modes for decarbonized and resilient power systems.
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CHAPTER 6: P2P ENERGY EXCHANGES FOR LOWERING THE

HYDROGEN PRODUCTION COST: TOWARDS ENERGY

DECARBONIZATION 1

Energy decarbonization cannot be achieved without high penetration of renewables (such as wind,

solar, etc.). Recently, hydrogen (H2) energy has demonstrated a great potential for decarboniza-

tion concerns due to its benefits in energy sector. However, due the land availability and monetary

restrictions, as well as battery storage duration (energy) limitation, electric utilities are not capable

of increasing the renewable penetration significantly in the transition, unless they consider the role

of customer side DERs. The emerging peer-to-peer (P2P) markets can incentivize customers to

share energy with each other or grid with lower prices than utility tariffs. Considerable penetration

of P2P energy exchanges could result in lowering the net residential demand, increasing the po-

tential capacity of renewable generation without installing utility-scale renewables, lowering the

market clearing price, and as a consequence reducing the H2 production cost during the energy

transition. Simulation results demonstrate that 1) electrolyzer efficiency changes under different

operating conditions which significantly depends on actual cell voltage and current; 2) H2 could

be produced at lower costs due to P2P energy exchanges by reducing the peers’ electricity demand,

providing more available capacity of renewables, and consequently reducing the market clearing

price and H2 cost.

Motivated by the net-zero emission policy targets, this chapter aims at exploiting the potential

benefits of peer-to-peer (P2P) energy exchanges in lowering the hydrogen (H2) production cost in

the active distribution networks. The main contributions of this chapter are:

1This chapter is prepared based on the paper that is under review:
Hamed Haggi, Wei Sun, Paul Brooker, and James M. Fenton ”Peer-to-Peer Energy Exchanges for Lowering the
Hydrogen Production Cost: Towards Energy Decarbonization”, IEEE Transactions on Power Systems, Under review,
2022.
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• Developing a realistic model for grid-integrated electrolyzer based on polarization curve

components to address the non-linear conversion efficiency of this device under different

operating conditions which significantly affect the actual voltage and current of stack, H2

production rate and consequently stack efficiency.

• Developing a P2P enabled optimization framework for balanced distribution networks. Con-

siderable penetration of P2P energy exchanges could result in lowering the net residential

demand, increasing the potential capacity of renewable generation without installing utility-

scale renewables, lowering the market clearing price, and as a consequence reducing the H2

production cost during the energy transition

Problem Formulation

This section provides a detailed formulation for electrolyzer stack considering polarization curves

and how this model is integrated to a utility-centric P2P energy exchange model.

Water Electrolysis and Storage System Modelling

The electrolyzer electrochemical model is presented in (6.1)-(6.22). Let us define V cell, V oc, V ohm,

V act, and V con as electrolyzer cell voltage, open circuit voltage, ohmic voltage, activation over-

potential, and concentration voltage. Equation (6.1) refers to electrolyzer cell overpotential which

consists of open circuit voltage, ohmic voltage, activation overpotential, and concentration voltage.

Equation (6.2) refers to Nernst equation where ∆G, R, T , and F denote as Gibbs free energy of

reaction, ideal gas constant, temperature, and Faraday constant, respectively. PH2 , PO2 , and PH2O

are defined as hydrogen, oxygen, and water operating pressures. Equations (6.3)-(6.4) present

ohmic overpotential calculation, in which Rohm, Icell, δ, and λ are defined as ohmic resistant, cell
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current, material thickness, and membrane water content [50]. Activation overpotentials for anode

and cathode are shown in (6.5)-(6.6) where αa and αc are defined as charge transfer coefficient at

anode and cathode, respectively. Concentration voltage of electrolyzer cell is presented in (6.7)

where IL denotes to limit current density.

V cell = V oc + V ohm + V act,a + V act,c + V con (6.1)

V oc = E0 +
R.T

2.F
× Ln

(
PH2.
√
PO2

PH2O

)
, E0 =

∆G

2.F
(6.2)

V ohm = Rohm . Icell, Rohm =
δ

σ
(6.3)

σ = (0.005139 . λ− 0.00236) exp

[
1268(

1

303
− 1

T
)

]
(6.4)

V act,a =
R.T

2.αa.F
. arcsinh(

Icell

2.Ia0
) (6.5)

V act,c =
R.T

2.αc.F
. arcsinh(

Icell

2.Ic0
) (6.6)

V con =
R.T

2.F
. Ln(

IL
IL − Icell

) (6.7)

Activation overpotential equations can be simplified using arcsinh(x) = Ln(x +
√
x2 + 1) as

follows:

V act,a =
R.T

2.αa.F
. Ln(

Icell

2.Ia0
+

√
(
Icell

2.Ia0
)2 + 1) (6.8)
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V act,c =
R.T

2.αc.F
. Ln(

Icell

2.Ic0
+

√
(
Icell

2.Ic0
)2 + 1) (6.9)

Since I >> I0, the updated equations for anode and cathode activation overpotential will be:

V act,a =
R.T

2.αa.F
.Ln(

Icell

Ia0
) (6.10)

V act,c =
R.T

2.αc.F
. Ln(

Icell

Ic0
) (6.11)

Moreover the equation (9) can be rewritten as follows:

V con =
R.T

2.F
. Ln(IL)− R.T

2.F
. Ln(IL − Icell) (6.12)

Electrolyzer power consumption is defined as PEL in (6.13). Considering different designs for

electrolyzer stack, equation (6.14) shows the stack voltage and current based on the number of

cells which is defined as Nv and Ni. Equations (6.15)-(6.17) show the upper and lower limits of

cell current, cell voltage, and power of electrolyzer. Defining MEL, ηEL, and HHV as amount of

hydrogen produced in kg, electrolyzer efficiency, and higher heating value of hydrogen, equations

(6.18)-(6.19) refer to hydrogen production and its limits. Equation (6.20) refer to electrolyzer

efficiency in which the ηFaraday is defined as Faraday efficiency [113]. Finally, H2 mass balance

equation and storage tank limits are presented in (6.21)-(6.22) in which Mdem, MOH , and λdsp

refer to H2 demand from transportation sector, mass of H2 in the storage tank, and dissipation rate,

respectively.

PEL
t = V EL

t . IELt (6.13)
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V EL
t = Nv . V

cell
t , IEL = Ni . I

cell
t (6.14)

Icell,min ≤ Icellt ≤ Icell,Max (6.15)

V cell,min ≤ V cell
t ≤ V cell,Max (6.16)

PEL,min ≤ PEL
t ≤ PEL,Max (6.17)

MEL
t . HHV = ηELt PEL

t (6.18)

0 ≤MEL
t ≤MEL,Max (6.19)

ηELt = ηFaraday.
V ideal

V cell
t

(6.20)

MOHt = MOHt−1 + (MEL
t −Mdem

t )− λdsp.MOHt (6.21)

MOHmin ≤MOHt ≤MOHmax (6.22)
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Peer 1 Peer 4

Peer 2Peer 3

P(1,4) + P(1,3) = P(1) P(4,1) + P(4,2) = P(4) 

P(2,4) + P(2,3) = P(2) P(3,1) + P(3,2) = P(3) 

P(1,4) = - P(4,1)

P(2,3) = - P(3,2)

P(1,3) = - P(3,1)
P(2,4) = - P(4,2)

Consumer

Prosumer

Prosumer

Prosumer

Consumer

Figure 6.1. Peer-to-Peer energy exchange concept among prosumers and consumers.

Utility-Centric P2P Energy Exchange Model

To begin with optimization based P2P energy exchange formulation, Fig. 6.1 shows the concept

of P2P power exchanges among prosumers and consumers. As it can be see, each prosumer shares

power to other two consumers and each consumer receives power from the two prosumers. For

instance, peer 1 as prosumer exchange power with peer 4 and peer 3 who are consumers. The

sold power by prosumers is considered as positive power exchange, and the purchased power by

consumers is considered as negative. The sum of all power exchanges of peer 1 with different

consumers is considered as final power share of that peer and vice versa.

The problem formulation for utility-centric P2P energy exchange model is presented in equations

(6.23)-(6.41). Let us defineOCP2P andOCGrid as the operation cost of P2P energy exchanges and
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grid in equations (6.24)-(6.25), and consider linear cost terms. P p
t,i and demc

t,j denote to total traded

power of prosumers and total received power by consumers, respectively. Equations (6.27)-(6.28)

illustrate the P2P energy exchange among prosumers and consumers in which the sold power by

prosumer, Pnm, should be equal to the power purchased by consumer Pmn. Equations (6.29)-

(6.30) express the total sold power from prosumer to consumers, and total purchased power by

consumer from other prosumers, respectively. Active power and reactive power (defined as Qp
t,i)

constraints of prosumers, and general form of elastic demand for all agents are expressed in (6.31)-

(6.33). In this chapter it is assumed that the agents’ demand is considered as inelastic. Therefore,

the upper and lower limits are the same. The inverter capacity Sinv constraints of prosumers

(e.g. rooftop solar owners) is shown in (6.34). Distflow model is used to model distribution

power flow [106] [114]. Let us define OCGrid and Ci(PX
t,i ) as total operational cost of grid, and

cost of purchasing power from upper grid, or operating the DGs, or operation cost of PV. fp, f q,

P/Qload, Rl, Xl denote to active and reactive power flows, active and reactive electricity demand,

and resistance and reactance of distribution system lines. Additionally, P/QUG, P/QDG, P/QEL,

Sl, ul and al refer to active and reactive power of upper grid, active and reactive power of DGs,

active and reactive power of electrolyzer, apparent power, voltage and current of lines respectively.

To this end, equations (6.35)-(6.36) refer to active and reactive power balance equations. The

apparent power flow limits and relaxation of second order cone constraint are expressed in (6.37)-

(6.39). Voltage drop constraints and current limits are expressed in (6.40)-(6.41).

min. OCP2P +OCGrid (6.23)

OCP2P =
∑
t∈T

{∑
i∈Np

Ci(P
p
t,i)−

∑
j∈Nc

Uj(dem
c
t,j)
}

(6.24)
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OCGrid =
∑
t∈T

{∑
i∈Ng

Ci(P
UG
t,i ) +

∑
i∈Ng

Ci(P
DG
t,i ) +

∑
i∈Ng

Ci(P
PV
t,i )

}
(6.25)

Ci(P
X
t,i ) = Pt,i × ΛX (6.26)

P nm
t,i,j + Pmn

t,j,i = 0, ∀(i, j) ∈ (Np, N c) (6.27)

P nm
t,i,j ≥ 0 , Pmn

t,j,i ≤ 0, ∀(i, j) ∈ (Np, N c) (6.28)

P p
t,i =

∑
j

P nm
t,i,j, ∀(i, j) ∈ (Np, N c) (6.29)

demc
t,j =

∑
i

Pmnt, j, i, ∀(i, j) ∈ (Np, N c) (6.30)

P p,min ≤ P p
t,i ≤ P p,max, ∀i ∈ Np (6.31)

Qp,min ≤ Qp
t,i ≤ Qp,max, ∀i ∈ Np (6.32)

PLoad,min ≤ demc
t,j ≤ PLoad,max, ∀j ∈ N c (6.33)

(P p
t,i)

2 + (Qp
t,i)

2 ≤ (Sinv)2, ∀i ∈ Np (6.34)
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fpt,i = PLoad
t,i +

∑
j→i

fpt,j +Rl.at,l − PUG
t,i − P

p
t,i + PEL

t,i (6.35)

f qt,i = QLoad
t,i +

∑
j→i

f qt,j +Xl.at,l −QUG
t,i −Q

p
t,i +QEL

t,i (6.36)

(fpt,l)
2 + (f qt,l)

2 ≤ (Sl)2 (6.37)

(fpt,i −Rl.at,l)
2 + (f qt,i −Xl.at,l)

2 ≤ (Sl)2 (6.38)

∥∥∥∥∥∥∥∥∥∥
2fpt,i

2f qt,i

at,l − ut,i

∥∥∥∥∥∥∥∥∥∥
2

≤ at,l + ut,i (6.39)

ut,i = ut,j − 2(Rl . f
p
t,i +Xl . f

q
t,i) + Z̃l . at,l (6.40)

umin ≤ ut,i ≤ umax Imin ≤ at,l ≤ Imax (6.41)

Simulation Results and Analysis

Fig. 6.2 shows a 33-node distribution network used for validating the results. More details re-

garding the DGs and PV units can be found in our previous work [103]. Seven prosumers were

added to enable P2P energy exchanges among all agents. Additionally, Fig. 6.3a shows normal-

ized hydrogen demand from transportation sector (with maximum demand of 42.4 kg of H2), and

PV power profile (both utility and prosumers with capacity of 1.75 MW and 0.2 MW each) [115].
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Figure 6.2. P2P integrated active distribution network.

The optimization time horizon is 24 hours with 30 minutes time intervals. All required parameters

mentioned in Section 6 can be found in [50], [113], and [116] and electrolyzer capital cost target

can be found in [117]. It should be noted that electrolyzer size, temperature, H2 pressure, oxygen

and water pressure, and also tank capacity are 3 (MW), 323 (K), 40 barg, 6.9 barg, and 200 (kg).

More information can be found in our previous works [118] [119] [120] Finally, the problem is

formulated as non-linear program and IPOPT solver is used for solving the problem.

Three case studies are designed to show how P2P energy exchanges can contribute to the 2030

decarbonization targets by lowering the hydrogen production cost: supplying energy 1) without

utility PV and P2P markets; 2) with utility PV and without P2P markets; 3) with utility PV and P2P

markets. Fig. 6.3b shows the results of polarization curve for cell voltage vs. cell current density.

Different operating conditions such as temperature, pressure, resistor, etc. could significantly affect

the cell voltage and current, and as a consequence electrolyzer power and its efficiency. Fig. 6.4

shows the electrolyzer efficiency for all three cases. In the first case study, electrolyzer’s required

energy is supplied by three DG units. Unlike solar power which is available at certain times of a
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Figure 6.3. Normalized inputs, and electrolyzer polarization curve.

day, all three DGs can generate power and supply the required energy for water electrolysis. Due to

available DGs power capacity, the efficiency is almost a flat line. However, in the second case study,

due to available utility scale PV power, the electrolyzer is operated with higher current densities to

use all available PV power considering the technical and physical network constraints in order to

produce cheap H2 (generally the electrolyzers should be operated in lower current densities to have

higher efficiencies, but imposed H2 demand make electrolyzers to be operated in higher current

densities and this reduces the efficiency significantly and affect the H2 production rate). Operating

the electrolyzer in higher current densities results in lower efficiency values, which can be seen

clearly during hours 9 am to 4 pm when there is cheap solar energy and H2 system makes low-cost

H2 energy. Finally, in the third case study, prosumers exchange their surplus energy (after self

supply) with other agents in the P2P market. This results in lowering the residential demand and in

some hours, prosumer’s surplus power could assist the grid by providing more renewable capacity,

which makes electrolyzer to be operated with higher efficiencies compared to second case study

and produce cost-effective H2 energy.
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Figure 6.4. Electrolyzer conversion efficiency.
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(a) DLMP at node 6.

0 5 10 15 20
Time (h)

0

1

2

3

4

5

6

H
yd

ro
ge

n 
Pr

od
uc

tio
n 

C
os

t (
$/

kg
)

Case Study 1
Case Study 2
Case Study 3

(b) H2 production cost.

Figure 6.5. Hourly DLMP values and H2 production cost at node 6.

Fig. 6.5a and Fig. 6.5b show the DLMP values of node 6 where H2 system is located, and H2

production cost for all three cases. It shows that the first and third case studies have the highest

and lowest DLMP values. Fig. 6.5a shows that utility scale PV units can not significantly lower

the DLMP values. However, DLMP values could be lower if prosumers and consumers participate

in the P2P market and supply their electricity demand by negotiating with other agents in local
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Figure 6.6. Mass of hydrogen in the tank.

markets or inject the surplus generation to the grid and assist the grid to increase the renewable

penetration. More P2P interactions results in more available renewable capacity and consequently

electrolyzer can be operated by low-cost renewable power which reduces the H2 production cost

for other applications such as transportation. This is highlighted in Fig 6.5b that H2 production

cost (out of the electrolyzer) could be produced at $1/kg (H2 cost is calculated considering the

CAPEX cost, actual capacity factor, lifetime of asset, etc. of the electrolyzer) in the third case

study in which both utility PV units and P2P energy exchanges were considered. In addition to the

aforementioned results, Fig. 6.6 shows the amount of H2 in the storage tank for three case studies.

The mass of H2 in the tank follows the amount of H2 produced by electrolyzer and the H2 demand

demand (please see Fig. 6.3a).

To analyze the impact of compressor on H2 cost, compressor efficiency as well as capital cost of

this asset is integrated to the aforementioned formulation. Fig. 6.7 shows the sensitivity of H2

cost for the third case study where both utility-scale renewables and P2P energy exchanges were

considered. Six different scenarios are considered:
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Figure 6.7. H2 cost sensitivity with and without compressor

• Scenario 1: Average H2 cost with no compressor and electrolyzer capital cost of $100/kw

• Scenario 2: Average H2 cost with 100% compressor efficiency and capital cost of $148/kw

• Scenario 3: Average H2 cost with 90% compressor efficiency and capital cost of $148/kw

• Scenario 4: Average H2 cost with 80% compressor efficiency and capital cost of $148/kw

• Scenario 5: Average H2 cost with 70% compressor efficiency and capital cost of $148/kw

• Scenario 6: Average H2 cost with 60% compressor efficiency and capital cost of $148/kw

The average H2 cost for the first scenario is $3.2/kg when there is no compressor. In scenarios 2

to 6, as the compressor efficiency increases, total H2 cost including electrolyzer and compressor

CAPEX costs increases as well. The maximum H2 cost value occurs in scenario 6 (with $8.4/kg)

since the efficiency of compressor is low and more energy is required to compress the H2. This

results in consuming more energy and as a consequence operating DGs even during the time when

there are P2P energy exchanges and utility scale PV energy.
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Conclusion

This Chapter developed a grid-integrated H2 system model in the P2P-enabled distribution net-

work. A detailed model for H2 system including non-linear conversion efficiency of the elec-

trolyzer based on polarization curves was considered to have realistic H2 production costs. Sim-

ulation results highlight that P2P energy exchanges could minimize the operation cost through

reducing the peers’ electricity demand, providing more available capacity of utility and customer-

side renewables for H2 production, and consequently reducing the DLMP and H2 production cost

which could play a major role on achieving the net-zero emission targets by the year 2030.
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CHAPTER 7: CYBER-PHYSICAL VULNERABILITY ASSESSMENT OF

P2P ENERGY EXCHANGES IN ACTIVE DISTRIBUTION NETWORKS1

Decreasing costs of DERs and net-zero emission energy production policy are two preeminent

factors that motivate utilities to deploy more DERs to enable deep decarbonization of energy pro-

duction targets [4]. Since energy decarbonization cannot be achieved without high penetration of

renewable energy sources, utilities should develop and invest in new business models by consid-

ering the price-making role of customer side DERs. However, the current market designs are not

able to provide sufficient incentives for small-scale DER owners to share the energy with grid or

neighbors. To this end, in order to capture the socio-economic benefits of customer side DERs,

peer-to-peer (P2P) energy exchange platforms, including communication, business, and physical

layers, are introduced to maximize the green energy harvesting, reducing the bills of customers, etc.

However, The large number of peers (prosumers and consumers) equipped with internet of things

(IoT) devices have driven the power grids more complex and vulnerable to cyber-physical threats

such as natural disasters, cyber intrusions, etc. [70] [47]. Therefore, the motivation of this chapter

is to explore the potential cyber-physical threats in P2P markets and analyze the vulnerability of

these threats on the real operation of power systems from economic and physical perspectives. To

this end, in this chapter, a resilience-oriented P2P energy exchange model is developed consider-

ing three phase unbalanced distribution systems. In addition, various scenarios for vulnerability

assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide

false information regarding the price and quantity with the goal of maximum financial benefit and

system operation disruption, are considered. Techno-economic survivability analysis against these

attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results

1This chapter is prepared based on the paper published at [121]:
Hamed Haggi and Wei Sun ”Cyber-Physical Vulnerability Assessment of P2P Energy Exchanges in Active Distribu-
tion Networks”, 2022 IEEE Kansas Power and Energy Conference (KPEC), 2022. [Link]
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demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits,

and cause financial loss of other agents. P2P energy trading frameworks presented in [46]- [30] are

mainly focused on various market mechanisms, while some of them are focused on modeling the

physical network constraints and transaction charges in balanced distribution networks. However,

the real distribution networks are phase unbalanced, and proper modelling efforts are required to

integrate P2P models to unbalanced systems. Moreover, these research studies are only focused

on the normal operation of system, and neglect to consider the emergency operation in the case

of disruptions such as natural disasters, cyber attacks, etc. Research works presented in [39]- [45]

review the potential cyber-physical threats in transactive energy markets. Only in [43–45] the im-

pact of false data injection on HVAC systems is investigated. There is no modelling effort for

resilience-oriented P2P interactions in unbalanced network considering the physical constraints

such as voltage, line loading, congestion, etc. Motivated by the aforementioned challenges, this

chapter proposes a resilience-oriented framework for P2P energy exchanges in unbalanced active

distribution networks focusing on both normal and emergency operation modes. In addition, to

analyze the vulnerability against cyber-physical attacks, adverse prosumers and consumers who

provide false information regarding their surplus renewable energy, demand, and offered price are

considered, which results in financial losses of other agents, physical constraint violation, load

curtailment, etc.

Proposed P2P Energy Exchange Framework with Cyber-Physical Threats

Fig. 7.1 shows the P2P-enabled distribution system operation including physical, communication,

and business layers for agents (including prosumers and consumers that might be equipped with

home energy management systems, batteries, etc.). During the time when the prosumers have

surplus energy, they can share required information including price and quantity through commu-
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Figure 7.1. Peer-to-Peer enabled distribution system operation with business, physical, and com-
munication layers.

nication layer with consumers to exchange energy based on business layer rules, and increase the

monetary benefits while addressing the physical constraints of power grid. However, P2P markets

can face with preeminent challenges such as cyber-physical threats due to disruptions in any lay-

ers. Natural disasters such as hurricanes, floods, wildfire, etc. and physical attacks on assets in

distribution system can impose a threat on the grid-level operation [70, 122]. Moreover, P2P mar-

kets create opportunities for cyber attacks at different layers especially communication layer due to

large number of IoT devices. Attacks on communication channels (e.g., false data injection, load

redistribution attacks, etc.), attacks through adverse users (providing false information to operators

and agents), and physical attacks (e.g., on smart metering or distribution lines) are potential threats

that P2P energy sharing mechanisms can face [40]. This chapter is focused on prosumers’ and

consumers’ intentional attack as an attacker by providing false information regarding their surplus

energy, demand, or even the price of selling or purchasing energy. It should be mentioned that
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coordinated attack among prosumers and consumers as adverse agents can significantly affect the

normal operation of system from economic and technical perspectives.

Problem Formulation

The proposed resilience-oriented P2P formulation which is integrated to unbalanced distribution

network is presented in this section. The distribution network is represented as a graph (N ,L),

where N and L are the set of nodes and lines, respectively. Additionally, the line impedance is

expressed as Zl = Rl + jXl. The set of prosumers’ and consumers’ nodes are defined as N p

(indexed by i) and N c (indexed by j), correspondingly in which N p ∪ N c = N . Moreover, to

make the formulation general, we consider the time index in the formulation and T represents the

set of time steps indexed by t.

P2P Energy Exchange Formulation

Following the P2P concept that was presented in the previously, in this chapter, P2P energy ex-

change model with the goal of minimizing the total cost of peers (maximizing social welfare) is

developed for three phase unbalanced distribution networks and integrated to unbalanced Distflow

model as presented in (7.1)-(7.10):

min. OCP2P =
∑
t∈T

{∑
i∈Np

Ci(P
p
t,i)−

∑
j∈Nc

Uj(dem
c
t,j)
}

(7.1)

Pnm(t, i, j) + Pmn(t, j, i) = 0, ∀(i, j) ∈ (Np, N c) (7.2)
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Pnm(t, i, j) ≥ 0, ∀(i, j) ∈ (Np, N c) (7.3)

Pmn(t, j, i) ≤ 0, ∀(i, j) ∈ (Np, N c) (7.4)

P p
t,i =

∑
j

Pnm(t, i, j), ∀(i, j) ∈ (Np, N c) (7.5)

demc
t,j =

∑
i

Pmn(t, j, i), ∀(i, j) ∈ (Np, N c) (7.6)

P p,min ≤ P p
t,i ≤ P p,max, ∀i ∈ Np (7.7)

Qp,min ≤ Qp
t,i ≤ Qp,max, ∀i ∈ Np (7.8)

PLoad,min ≤ demc
t,j ≤ PLoad,max, ∀j ∈ N c (7.9)

(P p
t,i)

2 + (Qp
t,i)

2 ≤ (Sinv)2, ∀i ∈ Np (7.10)

where the objective function in (7.1) includes the prosumers cost and utility of consumers (linear

cost curves). P p
t,i and demc

t,j denote to total traded power of prosumers and total received power

by consumers, respectively. Equations (7.2)-(7.4) illustrate the P2P energy exchange among pro-

sumers and consumers in which the sold power by prosumer, Pnm, should be equal with the power

purchased by consumer Pmn. Equation (7.5) and (7.6) express the total sold power from prosumer

to consumers, and total purchased power by consumer from other prosumers, respectively. Active
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and reactive power (reactive ower is defined as Qp
t,i) constraints of prosumers, and general form of

elastic demand for all agents are expressed in (7.7)-(7.9). However, in this chapter it is assumed

that the agents’ demand is considered as inelastic. Therefore, the upper and lower limits are the

same. The inverter capacity constraints of prosumers (e.g. rooftop solar owners) is shown in (7.10)

which is defined as Sinv.

Unbalanced Grid Operation Formulation

To address the business and physical network constraints, the aforementioned P2P model then

is developed and integrated to unbalanced convex branch flow [106] model, as shown in (7.11)-

(7.22):

min. OCGrid =
∑
t∈T

{∑
i∈Ng

Ci(P
UG
t,i ) +

∑
i∈N

Ci(P
Shd
t,i )

}
(7.11)

fpt,i = PLoad
t,i +

∑
j→i

fpt,j +Rl.at,l − PUG
t,i − P

p
t,i − P Shd

t,i (7.12)

f qt,i = QLoad
t,i +

∑
j→i

f qt,j +Xl.at,l −QUG
t,i −Q

p
t,i −QShd

t,i (7.13)

(fpt,l)
2 + (f qt,l)

2 ≤ (Sl)2 (7.14)

(fpt,i −Rl.at,l)
2 + (f qt,i −Xl.at,l)

2 ≤ (Sl)2 (7.15)

∥∥∥∥∥∥∥∥∥∥
2fpt,i

2f qt,i

at,l − vt,i

∥∥∥∥∥∥∥∥∥∥
2

≤ at,l + vt,i (7.16)
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vt,i = vt,j − 2(R̃l . f
p
t,i + X̃l . f

q
t,i) + Z̃l . at,l (7.17)

(V min)2 ≤ vt,i ≤ (V max)2 (7.18)

(Imin)2 ≤ at,l ≤ (Imax)2 (7.19)

Ci(P
Shd
t,i ) = V OLL. P Shd

t,i (7.20)

0 ≤ P Shd
t,i ≤ PLoad

t,i (7.21)

QShd
t,i = P Shd

t,i .
QLoad
t,i

PLoad
t,i

(7.22)

where the objective is to minimize the total purchased power from upper grid, PUG
t,i ∈ R3×1, and

load curtailment, P Shd
t,i ∈ R3×1, due to cyber-physical threats. Let us denote fp/qt,i ∈ R3×1, Rl, Xl,

at,i ∈ R3×1, QShd
t,i ∈ R3×1, QUG

t,i ∈ R3×1 the active/reactive power flow of distribution lines, line

resistant, line reactance, squared current flow of the lines, reactive load curtailment, and reactive

power from upper grid. In addition, Sl, vt,i =
[∣∣vat,i∣∣ , ∣∣vbt,i∣∣ , ∣∣vct,i∣∣]T , Imin/max, V min/max denote

line capacity, squared voltage magnitude, and minimum and maximum limits for the current and

voltage magnitudes. Considering the definitions, (7.12) and (7.13) refer to active and reactive

power balance of distribution network including the peers demand and surplus energy. The appar-

ent power flow limits and relaxation of second order cone constraint are expressed in (7.14), (7.15),

and (7.16). Voltage drop constraints and its maximum and minimum limits as well as current lim-

its are expressed in (7.7)-(7.19). More information regarding the angle relaxation and balanced
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voltage, and also distributional locational marginal price (DLMP) can be found in [123] and [14],

respectively. Finally, load shedding cost based on the value of loss of load (VOLL) and active and

reactive load curtailment constraints are expressed in (7.20)-(7.22).

Considering � as element wise product, the following equations are used to calculate R̃l, X̃l, and

Z̃l [123]:

R̃l = Re {α � Rl} − Img {α � Xl} (7.23)

X̃l = Re {α � Xl}+ Img {α � Rl} (7.24)

Z̃l = |Zl| � |Zl| (7.25)

α =


1 e−j2π/3 ej2π/3

ej2π/3 1 e−j2π/3

e−j2π/3 ej2π/3 1

 (7.26)

The final co-optimization between P2P model and distribution system is expressed in (7.27).

min. [ OCP2P + OCGrid ]

s.t

Equations (7.2)-(7.10), (7.12)-(7.26)

(7.27)
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Figure 7.2. Modified IEEE 13-node distribution test system.

Simulation Results and Analysis

The proposed resilience-oriented framework is validated by testing on the modified IEEE-13 node

unbalanced distribution system shown in Fig. 7.2. More details regarding the test system can be

found in [124]. Nodes 3 and 13 are considered as prosumers (with three-phase connection) with

maximum capacity of 650 KVA and offering price of $35/MWh and $20/MWh, respectively. Pro-

sumer at node 13 and consumer at node 7 are considered as adverse agents (attackers who provide

false information regarding the price and quantity). During the post attack scenario, prosumer at

node 13 intentionally increases the price of energy sharing to $45/MWh and consumer at node

7 reports its demand 25% higher to violate the regular operation of system. Two scenarios for

simulation results are considered; 1) Techno-economic survivability analysis before the attack of

adverse agents, 2) Post-attack survivability assessment.
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Pre- and Post-attack Financial Analysis of Prosumers and Consumers

The normal operation results of P2P energy exchanges for phase c of 13-node system is shown

in Fig. 7.3, in which two prosumers exchange power with consumers distributed across the grid.

Due to no demand in nodes 2, 3, 5, 6, 10, and 12 [124], there is not any matchings with prosumers

in Fig. 7.3. Any prosumer can exchange energy with multiple consumers at grid and vice versa.

For instance, considering the phase c, consumer located at node 7 receives 385 kw from both pro-

sumers located at nodes 3 and 13. In addition, DLMP for each phase is calculated and presented

in Fig. 7.4a. Before attack, prosumers share correct information with system operator, and the

DLMP values are in the range of [$35/MWh-$38/MWh] depending on the location of nodes and

voltage regulation, power loss , costs and electricity demand from consumers. During the coordi-

nated attack, prosumer at node 13 and consumer at node 7 intentionally provide false information

regarding the offering price and quantity with the goal of maximizing benefit and disruption in

normal operation of system. Therefore, the DLMP values are shifted to the range of [$45/MWh-

$51/MWh]. In this attack, consumer at node 7 increases the demand by 25%, and the DLMP

value at phase b significantly increases due to purchasing power from substation node with price

of $50/MWh, which results in more financial losses of consumers compared to phase c.

The final bills of consumers and prosumers for both pre- and post-attack scenarios are calculated

based on [76], as presented in Fig. 7.5 and Fig. 7.6. Due to the increase in DLMP in post-attack

scenario, the final consumers’ bill are increased too. For instance, the final bill of consumer 9 is

increased by 35% in the post-attack scenario, and the financial loss is clearly shown in Fig. 7.5.

It should be mentioned that node 9 has the highest electricity consumption among the affected

consumers and that’s why its loss is more than other consumers. Accordingly, the prosumers final

revenue is increased in post-attack scenario, as shown in Fig. 7.6. It should also be noted that the

total operation cost before and after attack are $88.6 and $144.5, respectively.
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Figure 7.6. Financial benefit of adverse prosumers before and after attack.

Results for Physical Constraints of Distribution Network before and after Attack

Besides financial issues that adverse users can create for business layer of P2P market, they also

have the capability of affecting the regular operation of networks. For instance, voltage magnitudes

for three phases in both pre- and post-attack scenarios are presented in Fig. 7.7. It can be seen that

adverse users can change the optimum voltage set points by providing false information, which
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Figure 7.7. Voltage magnitudes before and after attack.

also change the power flow of lines, additional costs, etc. However, since voltage is still within the

range, it is hard for system operator to detect this attack. Additionally, prosumer located at node

13 can intentionally damage the line connecting node 2 to 7 (results in line outage) to increase

the benefit by selling power to neighboring nodes with a very high price. For instance, if the line

between nodes 2 to 7 is attacked to be out of service, the DLMP is increased in nodes 7 to 13 and

as a consequence, prosumer 13 (as the only energy provider) can sell all the available power with

a very high price such as V OLL and maximize the benefit. Furthermore, this attack can results in

1.8 MW total curtailment in load.

Conclusions

This chapter proposed a resilience-oriented framework for P2P energy exchanges in unbalanced

active distribution networks. The problem is formulated to analyze the normal and emergency op-

eration of P2P integrated distribution network operation in the case of cyber-physical threats. Be-

sides analyzing the potential threats in P2P markets, adverse prosumers’ and consumers’ behaviour
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in providing false information regarding the offered price and quantity is considered. Additionally,

the impact of this false data provision on market clearing price and physical constraints of network

such as voltage is investigated. Simulation results on the IEEE 13-node test feeder demonstrate the

effectiveness of the proposed model.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORKS

The growth in electricity demand and a continued reliance on fossil fuels for supplying this demand

will contribute to the global warming crisis. The rapid and large-scale deployment of renewable

energy resources such as wind, solar, and hydrogen due to significant equipment capital cost reduc-

tion and net-zero emission energy production policy set by U.S. government are two preeminent

factors for power utilities to decarbonize electricity production. While deep decarbonization of

electricity production can be achieved with high penetration of renewable energy resources, utili-

ties must consider the role of small-scale DERs in operation and planning policies of distribution

power networks to reach the goal of net-zero emission electricity production.

As an important step toward decarbonization of power systems, this dissertation has proposed

mathematical models and decision-making tools for power system operation with a high penetra-

tion of renewable generation, while incorporating new techno-economic changes induced from the

recent transition towards low-carbon power systems. First, a multi-round double auction enabled

P2P energy trading framework was proposed in Chapter 3 to provide a novel platform for peers to

trade and exchange energy considering the physical constraints and additional costs of distribution

networks. Second, in chapter 4, a cooperative operation of PV and hydrogen systems considering

the uncertainty and risk level of load, H2 demand, PV power, and market price was proposed to

analyze the benefits of H2 systems in normal operation modes. Third, in chapter 5 to analyze

the impact of long-duration energy storage in normal and emergency operation mode, a proactive

rolling-horizon based bi-level framework operation scheduling of H2 systems considering H2 pro-

duction cost and emergency capacity based demand response signals was investigated. To analyze

the potential benefits of P2P energy exchanges on H2 cost, chapter 6 proposes a detailed model for

grid integrated electrolyzer considering non-linear conversion efficiency and polarization curves.

Additionally, a P2P optimization framework was developed and integrated to balanced distribution
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network. Finally, in chapter 7, cyber-physical vulnerability assessment of P2P energy exchanges in

unbalanced distribution networks was investigated by developing a three phase resilience oriented

P2P energy sharing model. Cyber attacks from adverse prosumers and adverse consumers as well

as physical attacks were considered.

The directions for future research that stem from this dissertation until now are summarized as

follows.

• Although P2P energy exchanges bring several opportunities, the challenges of new technolo-

gies must be considered in the energy transition. One of the most important aspect of P2P

energy exchanges is the privacy of agents. Applying distributed or decentralized methods

such as alternating direction method of multipliers (ADMM) algorithms can address this

issue. Moreover, to address the uncertainty of customer side DERs (electricity demand, pro-

sumers’ generation, etc.), chance constrained, robust, or distributionally robust tools can be

applied to the formulation presented in this dissertation as future work.

• Since P2P market models include a lot of IoT devices, cyber attacks might be increased sig-

nificantly in different layers such as physical, communication, etc. Developing a defender-

attacker-defender P2P model to guarantee a safe and reliable operation against cyber-physical

attacks, such as false data injection, load redistribution attacks, etc. is required.

• In this dissertation, a detailed model for grid-integrated electrolyzer was developed. How-

ever, detailed model for fuel cell is also required to optimally size and operate these systems

in active distribution networks. Moreover, natural gas networks as well as water [125] [126]

and transportation [127] network modeling can be integrated as extension of H2 related

works that are presented in this dissertation.
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The DSO objective function is non-linear (multiplying two continuous variables) due to the

λt,i.P
Exb
t,i term, which is defined as NLE. To address the non-linearity, equation (5.46) is used

to convert it to a linear equivalent equation:

NLE =
T∑
t=1

(λt,i . P
Exb
t,i ) =

T∑
t=1

((ψ
t,i
− ρbt) . PExb

t,i ) =

T∑
t=1

(ψ
t,i
. PExb

t,i − ρbt . PExb
t,i )

(B.1)

Then, by using Karush Kuhn Tucker (KKT) conditions from equation (5.41), the following

equation is obtained:

NLE =
T∑
t=1

(ψ
t,i
. PExb

t,i − ρbt . PExb
t,i ) =

T∑
t=1

(ψ
t,i
. PUG,max

− ψ
t,i
. PUG,max . Ui,t − ρbt . PExb

t,i ))

(B.2)

Considering equation (B.2), the term ψ
t,i
.PUG,max.Ui,t is the product of binary and continu-

ous variable, which can be linearized based on the big-M method [128] as following:

Kt,i = ψ
t,i
.PUG,max (B.3)

−M(1− Ut,i) ≤ Kt,i − ψt,i.P
UG,max ≤M(1− Ut,i) (B.4)

−M . Ut,i ≤ Kt,i ≤M . Ut,i (B.5)
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